1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/bio.h> 38 #include <sys/buf.h> 39 #include <sys/kernel.h> 40 #include <sys/mount.h> 41 #include <sys/rwlock.h> 42 #include <sys/vmmeter.h> 43 #include <sys/vnode.h> 44 45 #include <vm/vm.h> 46 #include <vm/vm_param.h> 47 #include <vm/vm_extern.h> 48 #include <vm/vm_page.h> 49 #include <vm/vm_object.h> 50 #include <vm/vm_pager.h> 51 #include <vm/vnode_pager.h> 52 53 #include <fs/nfs/nfsport.h> 54 #include <fs/nfsclient/nfsmount.h> 55 #include <fs/nfsclient/nfs.h> 56 #include <fs/nfsclient/nfsnode.h> 57 #include <fs/nfsclient/nfs_kdtrace.h> 58 59 extern int newnfs_directio_allow_mmap; 60 extern struct nfsstatsv1 nfsstatsv1; 61 extern struct mtx ncl_iod_mutex; 62 extern int ncl_numasync; 63 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON]; 64 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON]; 65 extern int newnfs_directio_enable; 66 extern int nfs_keep_dirty_on_error; 67 68 uma_zone_t ncl_pbuf_zone; 69 70 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, 71 struct thread *td); 72 static int nfs_directio_write(struct vnode *vp, struct uio *uiop, 73 struct ucred *cred, int ioflag); 74 75 /* 76 * Vnode op for VM getpages. 77 */ 78 SYSCTL_DECL(_vfs_nfs); 79 static int use_buf_pager = 1; 80 SYSCTL_INT(_vfs_nfs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, 81 &use_buf_pager, 0, 82 "Use buffer pager instead of direct readrpc call"); 83 84 static daddr_t 85 ncl_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 86 { 87 88 return (off / vp->v_bufobj.bo_bsize); 89 } 90 91 static int 92 ncl_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 93 { 94 struct nfsnode *np; 95 u_quad_t nsize; 96 int biosize, bcount; 97 98 np = VTONFS(vp); 99 NFSLOCKNODE(np); 100 nsize = np->n_size; 101 NFSUNLOCKNODE(np); 102 103 biosize = vp->v_bufobj.bo_bsize; 104 bcount = biosize; 105 if ((off_t)lbn * biosize >= nsize) 106 bcount = 0; 107 else if ((off_t)(lbn + 1) * biosize > nsize) 108 bcount = nsize - (off_t)lbn * biosize; 109 *sz = bcount; 110 return (0); 111 } 112 113 int 114 ncl_getpages(struct vop_getpages_args *ap) 115 { 116 int i, error, nextoff, size, toff, count, npages; 117 struct uio uio; 118 struct iovec iov; 119 vm_offset_t kva; 120 struct buf *bp; 121 struct vnode *vp; 122 struct thread *td; 123 struct ucred *cred; 124 struct nfsmount *nmp; 125 vm_object_t object; 126 vm_page_t *pages; 127 struct nfsnode *np; 128 129 vp = ap->a_vp; 130 np = VTONFS(vp); 131 td = curthread; 132 cred = curthread->td_ucred; 133 nmp = VFSTONFS(vp->v_mount); 134 pages = ap->a_m; 135 npages = ap->a_count; 136 137 if ((object = vp->v_object) == NULL) { 138 printf("ncl_getpages: called with non-merged cache vnode\n"); 139 return (VM_PAGER_ERROR); 140 } 141 142 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) { 143 NFSLOCKNODE(np); 144 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 145 NFSUNLOCKNODE(np); 146 printf("ncl_getpages: called on non-cacheable vnode\n"); 147 return (VM_PAGER_ERROR); 148 } else 149 NFSUNLOCKNODE(np); 150 } 151 152 mtx_lock(&nmp->nm_mtx); 153 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 154 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 155 mtx_unlock(&nmp->nm_mtx); 156 /* We'll never get here for v4, because we always have fsinfo */ 157 (void)ncl_fsinfo(nmp, vp, cred, td); 158 } else 159 mtx_unlock(&nmp->nm_mtx); 160 161 if (use_buf_pager) 162 return (vfs_bio_getpages(vp, pages, npages, ap->a_rbehind, 163 ap->a_rahead, ncl_gbp_getblkno, ncl_gbp_getblksz)); 164 165 /* 166 * If the requested page is partially valid, just return it and 167 * allow the pager to zero-out the blanks. Partially valid pages 168 * can only occur at the file EOF. 169 * 170 * XXXGL: is that true for NFS, where short read can occur??? 171 */ 172 VM_OBJECT_WLOCK(object); 173 if (!vm_page_none_valid(pages[npages - 1]) && --npages == 0) 174 goto out; 175 VM_OBJECT_WUNLOCK(object); 176 177 /* 178 * We use only the kva address for the buffer, but this is extremely 179 * convenient and fast. 180 */ 181 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 182 183 kva = (vm_offset_t) bp->b_data; 184 pmap_qenter(kva, pages, npages); 185 VM_CNT_INC(v_vnodein); 186 VM_CNT_ADD(v_vnodepgsin, npages); 187 188 count = npages << PAGE_SHIFT; 189 iov.iov_base = (caddr_t) kva; 190 iov.iov_len = count; 191 uio.uio_iov = &iov; 192 uio.uio_iovcnt = 1; 193 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 194 uio.uio_resid = count; 195 uio.uio_segflg = UIO_SYSSPACE; 196 uio.uio_rw = UIO_READ; 197 uio.uio_td = td; 198 199 error = ncl_readrpc(vp, &uio, cred); 200 pmap_qremove(kva, npages); 201 202 uma_zfree(ncl_pbuf_zone, bp); 203 204 if (error && (uio.uio_resid == count)) { 205 printf("ncl_getpages: error %d\n", error); 206 return (VM_PAGER_ERROR); 207 } 208 209 /* 210 * Calculate the number of bytes read and validate only that number 211 * of bytes. Note that due to pending writes, size may be 0. This 212 * does not mean that the remaining data is invalid! 213 */ 214 215 size = count - uio.uio_resid; 216 VM_OBJECT_WLOCK(object); 217 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 218 vm_page_t m; 219 nextoff = toff + PAGE_SIZE; 220 m = pages[i]; 221 222 if (nextoff <= size) { 223 /* 224 * Read operation filled an entire page 225 */ 226 vm_page_valid(m); 227 KASSERT(m->dirty == 0, 228 ("nfs_getpages: page %p is dirty", m)); 229 } else if (size > toff) { 230 /* 231 * Read operation filled a partial page. 232 */ 233 vm_page_invalid(m); 234 vm_page_set_valid_range(m, 0, size - toff); 235 KASSERT(m->dirty == 0, 236 ("nfs_getpages: page %p is dirty", m)); 237 } else { 238 /* 239 * Read operation was short. If no error 240 * occurred we may have hit a zero-fill 241 * section. We leave valid set to 0, and page 242 * is freed by vm_page_readahead_finish() if 243 * its index is not equal to requested, or 244 * page is zeroed and set valid by 245 * vm_pager_get_pages() for requested page. 246 */ 247 ; 248 } 249 } 250 out: 251 VM_OBJECT_WUNLOCK(object); 252 if (ap->a_rbehind) 253 *ap->a_rbehind = 0; 254 if (ap->a_rahead) 255 *ap->a_rahead = 0; 256 return (VM_PAGER_OK); 257 } 258 259 /* 260 * Vnode op for VM putpages. 261 */ 262 int 263 ncl_putpages(struct vop_putpages_args *ap) 264 { 265 struct uio uio; 266 struct iovec iov; 267 int i, error, npages, count; 268 off_t offset; 269 int *rtvals; 270 struct vnode *vp; 271 struct thread *td; 272 struct ucred *cred; 273 struct nfsmount *nmp; 274 struct nfsnode *np; 275 vm_page_t *pages; 276 277 vp = ap->a_vp; 278 np = VTONFS(vp); 279 td = curthread; /* XXX */ 280 /* Set the cred to n_writecred for the write rpcs. */ 281 if (np->n_writecred != NULL) 282 cred = crhold(np->n_writecred); 283 else 284 cred = crhold(curthread->td_ucred); /* XXX */ 285 nmp = VFSTONFS(vp->v_mount); 286 pages = ap->a_m; 287 count = ap->a_count; 288 rtvals = ap->a_rtvals; 289 npages = btoc(count); 290 offset = IDX_TO_OFF(pages[0]->pindex); 291 292 mtx_lock(&nmp->nm_mtx); 293 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 294 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 295 mtx_unlock(&nmp->nm_mtx); 296 (void)ncl_fsinfo(nmp, vp, cred, td); 297 } else 298 mtx_unlock(&nmp->nm_mtx); 299 300 NFSLOCKNODE(np); 301 if (newnfs_directio_enable && !newnfs_directio_allow_mmap && 302 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) { 303 NFSUNLOCKNODE(np); 304 printf("ncl_putpages: called on noncache-able vnode\n"); 305 NFSLOCKNODE(np); 306 } 307 /* 308 * When putting pages, do not extend file past EOF. 309 */ 310 if (offset + count > np->n_size) { 311 count = np->n_size - offset; 312 if (count < 0) 313 count = 0; 314 } 315 NFSUNLOCKNODE(np); 316 317 for (i = 0; i < npages; i++) 318 rtvals[i] = VM_PAGER_ERROR; 319 320 VM_CNT_INC(v_vnodeout); 321 VM_CNT_ADD(v_vnodepgsout, count); 322 323 iov.iov_base = unmapped_buf; 324 iov.iov_len = count; 325 uio.uio_iov = &iov; 326 uio.uio_iovcnt = 1; 327 uio.uio_offset = offset; 328 uio.uio_resid = count; 329 uio.uio_segflg = UIO_NOCOPY; 330 uio.uio_rw = UIO_WRITE; 331 uio.uio_td = td; 332 333 error = VOP_WRITE(vp, &uio, vnode_pager_putpages_ioflags(ap->a_sync), 334 cred); 335 crfree(cred); 336 337 if (error == 0 || !nfs_keep_dirty_on_error) { 338 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid, 339 np->n_size - offset, npages * PAGE_SIZE); 340 } 341 return (rtvals[0]); 342 } 343 344 /* 345 * For nfs, cache consistency can only be maintained approximately. 346 * Although RFC1094 does not specify the criteria, the following is 347 * believed to be compatible with the reference port. 348 * For nfs: 349 * If the file's modify time on the server has changed since the 350 * last read rpc or you have written to the file, 351 * you may have lost data cache consistency with the 352 * server, so flush all of the file's data out of the cache. 353 * Then force a getattr rpc to ensure that you have up to date 354 * attributes. 355 * NB: This implies that cache data can be read when up to 356 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 357 * attributes this could be forced by setting n_attrstamp to 0 before 358 * the VOP_GETATTR() call. 359 */ 360 static inline int 361 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred) 362 { 363 int error = 0; 364 struct vattr vattr; 365 struct nfsnode *np = VTONFS(vp); 366 bool old_lock; 367 368 /* 369 * Ensure the exclusove access to the node before checking 370 * whether the cache is consistent. 371 */ 372 old_lock = ncl_excl_start(vp); 373 NFSLOCKNODE(np); 374 if (np->n_flag & NMODIFIED) { 375 NFSUNLOCKNODE(np); 376 if (vp->v_type != VREG) { 377 if (vp->v_type != VDIR) 378 panic("nfs: bioread, not dir"); 379 ncl_invaldir(vp); 380 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 381 if (error != 0) 382 goto out; 383 } 384 np->n_attrstamp = 0; 385 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 386 error = VOP_GETATTR(vp, &vattr, cred); 387 if (error) 388 goto out; 389 NFSLOCKNODE(np); 390 np->n_mtime = vattr.va_mtime; 391 NFSUNLOCKNODE(np); 392 } else { 393 NFSUNLOCKNODE(np); 394 error = VOP_GETATTR(vp, &vattr, cred); 395 if (error) 396 goto out; 397 NFSLOCKNODE(np); 398 if ((np->n_flag & NSIZECHANGED) 399 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) { 400 NFSUNLOCKNODE(np); 401 if (vp->v_type == VDIR) 402 ncl_invaldir(vp); 403 error = ncl_vinvalbuf(vp, V_SAVE | V_ALLOWCLEAN, td, 1); 404 if (error != 0) 405 goto out; 406 NFSLOCKNODE(np); 407 np->n_mtime = vattr.va_mtime; 408 np->n_flag &= ~NSIZECHANGED; 409 } 410 NFSUNLOCKNODE(np); 411 } 412 out: 413 ncl_excl_finish(vp, old_lock); 414 return (error); 415 } 416 417 /* 418 * Vnode op for read using bio 419 */ 420 int 421 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 422 { 423 struct nfsnode *np = VTONFS(vp); 424 struct buf *bp, *rabp; 425 struct thread *td; 426 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 427 daddr_t lbn, rabn; 428 int biosize, bcount, error, i, n, nra, on, save2, seqcount; 429 off_t tmp_off; 430 431 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode")); 432 if (uio->uio_resid == 0) 433 return (0); 434 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 435 return (EINVAL); 436 td = uio->uio_td; 437 438 mtx_lock(&nmp->nm_mtx); 439 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 440 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 441 mtx_unlock(&nmp->nm_mtx); 442 (void)ncl_fsinfo(nmp, vp, cred, td); 443 mtx_lock(&nmp->nm_mtx); 444 } 445 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0) 446 (void) newnfs_iosize(nmp); 447 448 tmp_off = uio->uio_offset + uio->uio_resid; 449 if (vp->v_type != VDIR && 450 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) { 451 mtx_unlock(&nmp->nm_mtx); 452 return (EFBIG); 453 } 454 mtx_unlock(&nmp->nm_mtx); 455 456 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG)) 457 /* No caching/ no readaheads. Just read data into the user buffer */ 458 return ncl_readrpc(vp, uio, cred); 459 460 n = 0; 461 on = 0; 462 biosize = vp->v_bufobj.bo_bsize; 463 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 464 465 error = nfs_bioread_check_cons(vp, td, cred); 466 if (error) 467 return error; 468 469 save2 = curthread_pflags2_set(TDP2_SBPAGES); 470 do { 471 u_quad_t nsize; 472 473 NFSLOCKNODE(np); 474 nsize = np->n_size; 475 NFSUNLOCKNODE(np); 476 477 switch (vp->v_type) { 478 case VREG: 479 NFSINCRGLOBAL(nfsstatsv1.biocache_reads); 480 lbn = uio->uio_offset / biosize; 481 on = uio->uio_offset - (lbn * biosize); 482 483 /* 484 * Start the read ahead(s), as required. 485 */ 486 if (nmp->nm_readahead > 0) { 487 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 488 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) { 489 rabn = lbn + 1 + nra; 490 if (incore(&vp->v_bufobj, rabn) == NULL) { 491 rabp = nfs_getcacheblk(vp, rabn, biosize, td); 492 if (!rabp) { 493 error = newnfs_sigintr(nmp, td); 494 if (error == 0) 495 error = EINTR; 496 goto out; 497 } 498 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 499 rabp->b_flags |= B_ASYNC; 500 rabp->b_iocmd = BIO_READ; 501 vfs_busy_pages(rabp, 0); 502 if (ncl_asyncio(nmp, rabp, cred, td)) { 503 rabp->b_flags |= B_INVAL; 504 rabp->b_ioflags |= BIO_ERROR; 505 vfs_unbusy_pages(rabp); 506 brelse(rabp); 507 break; 508 } 509 } else { 510 brelse(rabp); 511 } 512 } 513 } 514 } 515 516 /* Note that bcount is *not* DEV_BSIZE aligned. */ 517 bcount = biosize; 518 if ((off_t)lbn * biosize >= nsize) { 519 bcount = 0; 520 } else if ((off_t)(lbn + 1) * biosize > nsize) { 521 bcount = nsize - (off_t)lbn * biosize; 522 } 523 bp = nfs_getcacheblk(vp, lbn, bcount, td); 524 525 if (!bp) { 526 error = newnfs_sigintr(nmp, td); 527 if (error == 0) 528 error = EINTR; 529 goto out; 530 } 531 532 /* 533 * If B_CACHE is not set, we must issue the read. If this 534 * fails, we return an error. 535 */ 536 537 if ((bp->b_flags & B_CACHE) == 0) { 538 bp->b_iocmd = BIO_READ; 539 vfs_busy_pages(bp, 0); 540 error = ncl_doio(vp, bp, cred, td, 0); 541 if (error) { 542 brelse(bp); 543 goto out; 544 } 545 } 546 547 /* 548 * on is the offset into the current bp. Figure out how many 549 * bytes we can copy out of the bp. Note that bcount is 550 * NOT DEV_BSIZE aligned. 551 * 552 * Then figure out how many bytes we can copy into the uio. 553 */ 554 555 n = 0; 556 if (on < bcount) 557 n = MIN((unsigned)(bcount - on), uio->uio_resid); 558 break; 559 case VLNK: 560 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks); 561 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td); 562 if (!bp) { 563 error = newnfs_sigintr(nmp, td); 564 if (error == 0) 565 error = EINTR; 566 goto out; 567 } 568 if ((bp->b_flags & B_CACHE) == 0) { 569 bp->b_iocmd = BIO_READ; 570 vfs_busy_pages(bp, 0); 571 error = ncl_doio(vp, bp, cred, td, 0); 572 if (error) { 573 bp->b_ioflags |= BIO_ERROR; 574 brelse(bp); 575 goto out; 576 } 577 } 578 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 579 on = 0; 580 break; 581 case VDIR: 582 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs); 583 NFSLOCKNODE(np); 584 if (np->n_direofoffset 585 && uio->uio_offset >= np->n_direofoffset) { 586 NFSUNLOCKNODE(np); 587 error = 0; 588 goto out; 589 } 590 NFSUNLOCKNODE(np); 591 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 592 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 593 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td); 594 if (!bp) { 595 error = newnfs_sigintr(nmp, td); 596 if (error == 0) 597 error = EINTR; 598 goto out; 599 } 600 if ((bp->b_flags & B_CACHE) == 0) { 601 bp->b_iocmd = BIO_READ; 602 vfs_busy_pages(bp, 0); 603 error = ncl_doio(vp, bp, cred, td, 0); 604 if (error) { 605 brelse(bp); 606 } 607 while (error == NFSERR_BAD_COOKIE) { 608 ncl_invaldir(vp); 609 error = ncl_vinvalbuf(vp, 0, td, 1); 610 611 /* 612 * Yuck! The directory has been modified on the 613 * server. The only way to get the block is by 614 * reading from the beginning to get all the 615 * offset cookies. 616 * 617 * Leave the last bp intact unless there is an error. 618 * Loop back up to the while if the error is another 619 * NFSERR_BAD_COOKIE (double yuch!). 620 */ 621 for (i = 0; i <= lbn && !error; i++) { 622 NFSLOCKNODE(np); 623 if (np->n_direofoffset 624 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) { 625 NFSUNLOCKNODE(np); 626 error = 0; 627 goto out; 628 } 629 NFSUNLOCKNODE(np); 630 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td); 631 if (!bp) { 632 error = newnfs_sigintr(nmp, td); 633 if (error == 0) 634 error = EINTR; 635 goto out; 636 } 637 if ((bp->b_flags & B_CACHE) == 0) { 638 bp->b_iocmd = BIO_READ; 639 vfs_busy_pages(bp, 0); 640 error = ncl_doio(vp, bp, cred, td, 0); 641 /* 642 * no error + B_INVAL == directory EOF, 643 * use the block. 644 */ 645 if (error == 0 && (bp->b_flags & B_INVAL)) 646 break; 647 } 648 /* 649 * An error will throw away the block and the 650 * for loop will break out. If no error and this 651 * is not the block we want, we throw away the 652 * block and go for the next one via the for loop. 653 */ 654 if (error || i < lbn) 655 brelse(bp); 656 } 657 } 658 /* 659 * The above while is repeated if we hit another cookie 660 * error. If we hit an error and it wasn't a cookie error, 661 * we give up. 662 */ 663 if (error) 664 goto out; 665 } 666 667 /* 668 * If not eof and read aheads are enabled, start one. 669 * (You need the current block first, so that you have the 670 * directory offset cookie of the next block.) 671 */ 672 NFSLOCKNODE(np); 673 if (nmp->nm_readahead > 0 && 674 (bp->b_flags & B_INVAL) == 0 && 675 (np->n_direofoffset == 0 || 676 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) && 677 incore(&vp->v_bufobj, lbn + 1) == NULL) { 678 NFSUNLOCKNODE(np); 679 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td); 680 if (rabp) { 681 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 682 rabp->b_flags |= B_ASYNC; 683 rabp->b_iocmd = BIO_READ; 684 vfs_busy_pages(rabp, 0); 685 if (ncl_asyncio(nmp, rabp, cred, td)) { 686 rabp->b_flags |= B_INVAL; 687 rabp->b_ioflags |= BIO_ERROR; 688 vfs_unbusy_pages(rabp); 689 brelse(rabp); 690 } 691 } else { 692 brelse(rabp); 693 } 694 } 695 NFSLOCKNODE(np); 696 } 697 /* 698 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 699 * chopped for the EOF condition, we cannot tell how large 700 * NFS directories are going to be until we hit EOF. So 701 * an NFS directory buffer is *not* chopped to its EOF. Now, 702 * it just so happens that b_resid will effectively chop it 703 * to EOF. *BUT* this information is lost if the buffer goes 704 * away and is reconstituted into a B_CACHE state ( due to 705 * being VMIO ) later. So we keep track of the directory eof 706 * in np->n_direofoffset and chop it off as an extra step 707 * right here. 708 */ 709 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on); 710 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 711 n = np->n_direofoffset - uio->uio_offset; 712 NFSUNLOCKNODE(np); 713 break; 714 default: 715 printf(" ncl_bioread: type %x unexpected\n", vp->v_type); 716 bp = NULL; 717 break; 718 } 719 720 if (n > 0) { 721 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio); 722 } 723 if (vp->v_type == VLNK) 724 n = 0; 725 if (bp != NULL) 726 brelse(bp); 727 } while (error == 0 && uio->uio_resid > 0 && n > 0); 728 out: 729 curthread_pflags2_restore(save2); 730 if ((curthread->td_pflags2 & TDP2_SBPAGES) == 0) { 731 NFSLOCKNODE(np); 732 ncl_pager_setsize(vp, NULL); 733 } 734 return (error); 735 } 736 737 /* 738 * The NFS write path cannot handle iovecs with len > 1. So we need to 739 * break up iovecs accordingly (restricting them to wsize). 740 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf). 741 * For the ASYNC case, 2 copies are needed. The first a copy from the 742 * user buffer to a staging buffer and then a second copy from the staging 743 * buffer to mbufs. This can be optimized by copying from the user buffer 744 * directly into mbufs and passing the chain down, but that requires a 745 * fair amount of re-working of the relevant codepaths (and can be done 746 * later). 747 */ 748 static int 749 nfs_directio_write(struct vnode *vp, struct uio *uiop, struct ucred *cred, 750 int ioflag) 751 { 752 int error; 753 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 754 struct thread *td = uiop->uio_td; 755 int size; 756 int wsize; 757 758 mtx_lock(&nmp->nm_mtx); 759 wsize = nmp->nm_wsize; 760 mtx_unlock(&nmp->nm_mtx); 761 if (ioflag & IO_SYNC) { 762 int iomode, must_commit; 763 struct uio uio; 764 struct iovec iov; 765 do_sync: 766 while (uiop->uio_resid > 0) { 767 size = MIN(uiop->uio_resid, wsize); 768 size = MIN(uiop->uio_iov->iov_len, size); 769 iov.iov_base = uiop->uio_iov->iov_base; 770 iov.iov_len = size; 771 uio.uio_iov = &iov; 772 uio.uio_iovcnt = 1; 773 uio.uio_offset = uiop->uio_offset; 774 uio.uio_resid = size; 775 uio.uio_segflg = uiop->uio_segflg; 776 uio.uio_rw = UIO_WRITE; 777 uio.uio_td = td; 778 iomode = NFSWRITE_FILESYNC; 779 /* 780 * When doing direct I/O we do not care if the 781 * server's write verifier has changed, but we 782 * do not want to update the verifier if it has 783 * changed, since that hides the change from 784 * writes being done through the buffer cache. 785 * By passing must_commit in set to two, the code 786 * in nfsrpc_writerpc() will not update the 787 * verifier on the mount point. 788 */ 789 must_commit = 2; 790 error = ncl_writerpc(vp, &uio, cred, &iomode, 791 &must_commit, 0, ioflag); 792 KASSERT((must_commit == 2), 793 ("ncl_directio_write: Updated write verifier")); 794 if (error) 795 return (error); 796 if (iomode != NFSWRITE_FILESYNC) 797 printf("nfs_directio_write: Broken server " 798 "did not reply FILE_SYNC\n"); 799 uiop->uio_offset += size; 800 uiop->uio_resid -= size; 801 if (uiop->uio_iov->iov_len <= size) { 802 uiop->uio_iovcnt--; 803 uiop->uio_iov++; 804 } else { 805 uiop->uio_iov->iov_base = 806 (char *)uiop->uio_iov->iov_base + size; 807 uiop->uio_iov->iov_len -= size; 808 } 809 } 810 } else { 811 struct uio *t_uio; 812 struct iovec *t_iov; 813 struct buf *bp; 814 815 /* 816 * Break up the write into blocksize chunks and hand these 817 * over to nfsiod's for write back. 818 * Unfortunately, this incurs a copy of the data. Since 819 * the user could modify the buffer before the write is 820 * initiated. 821 * 822 * The obvious optimization here is that one of the 2 copies 823 * in the async write path can be eliminated by copying the 824 * data here directly into mbufs and passing the mbuf chain 825 * down. But that will require a fair amount of re-working 826 * of the code and can be done if there's enough interest 827 * in NFS directio access. 828 */ 829 while (uiop->uio_resid > 0) { 830 size = MIN(uiop->uio_resid, wsize); 831 size = MIN(uiop->uio_iov->iov_len, size); 832 bp = uma_zalloc(ncl_pbuf_zone, M_WAITOK); 833 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK); 834 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK); 835 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK); 836 t_iov->iov_len = size; 837 t_uio->uio_iov = t_iov; 838 t_uio->uio_iovcnt = 1; 839 t_uio->uio_offset = uiop->uio_offset; 840 t_uio->uio_resid = size; 841 t_uio->uio_segflg = UIO_SYSSPACE; 842 t_uio->uio_rw = UIO_WRITE; 843 t_uio->uio_td = td; 844 KASSERT(uiop->uio_segflg == UIO_USERSPACE || 845 uiop->uio_segflg == UIO_SYSSPACE, 846 ("nfs_directio_write: Bad uio_segflg")); 847 if (uiop->uio_segflg == UIO_USERSPACE) { 848 error = copyin(uiop->uio_iov->iov_base, 849 t_iov->iov_base, size); 850 if (error != 0) 851 goto err_free; 852 } else 853 /* 854 * UIO_SYSSPACE may never happen, but handle 855 * it just in case it does. 856 */ 857 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base, 858 size); 859 bp->b_flags |= B_DIRECT; 860 bp->b_iocmd = BIO_WRITE; 861 if (cred != NOCRED) { 862 crhold(cred); 863 bp->b_wcred = cred; 864 } else 865 bp->b_wcred = NOCRED; 866 bp->b_caller1 = (void *)t_uio; 867 bp->b_vp = vp; 868 error = ncl_asyncio(nmp, bp, NOCRED, td); 869 err_free: 870 if (error) { 871 free(t_iov->iov_base, M_NFSDIRECTIO); 872 free(t_iov, M_NFSDIRECTIO); 873 free(t_uio, M_NFSDIRECTIO); 874 bp->b_vp = NULL; 875 uma_zfree(ncl_pbuf_zone, bp); 876 if (error == EINTR) 877 return (error); 878 goto do_sync; 879 } 880 uiop->uio_offset += size; 881 uiop->uio_resid -= size; 882 if (uiop->uio_iov->iov_len <= size) { 883 uiop->uio_iovcnt--; 884 uiop->uio_iov++; 885 } else { 886 uiop->uio_iov->iov_base = 887 (char *)uiop->uio_iov->iov_base + size; 888 uiop->uio_iov->iov_len -= size; 889 } 890 } 891 } 892 return (0); 893 } 894 895 /* 896 * Vnode op for write using bio 897 */ 898 int 899 ncl_write(struct vop_write_args *ap) 900 { 901 int biosize; 902 struct uio *uio = ap->a_uio; 903 struct thread *td = uio->uio_td; 904 struct vnode *vp = ap->a_vp; 905 struct nfsnode *np = VTONFS(vp); 906 struct ucred *cred = ap->a_cred; 907 int ioflag = ap->a_ioflag; 908 struct buf *bp; 909 struct vattr vattr; 910 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 911 daddr_t lbn; 912 int bcount, noncontig_write, obcount; 913 int bp_cached, n, on, error = 0, error1, save2, wouldcommit; 914 size_t orig_resid, local_resid; 915 off_t orig_size, tmp_off; 916 struct timespec ts; 917 918 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode")); 919 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread, 920 ("ncl_write proc")); 921 if (vp->v_type != VREG) 922 return (EIO); 923 NFSLOCKNODE(np); 924 if (np->n_flag & NWRITEERR) { 925 np->n_flag &= ~NWRITEERR; 926 NFSUNLOCKNODE(np); 927 return (np->n_error); 928 } else 929 NFSUNLOCKNODE(np); 930 mtx_lock(&nmp->nm_mtx); 931 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 932 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 933 mtx_unlock(&nmp->nm_mtx); 934 (void)ncl_fsinfo(nmp, vp, cred, td); 935 mtx_lock(&nmp->nm_mtx); 936 } 937 if (nmp->nm_wsize == 0) 938 (void) newnfs_iosize(nmp); 939 mtx_unlock(&nmp->nm_mtx); 940 941 /* 942 * Synchronously flush pending buffers if we are in synchronous 943 * mode or if we are appending. 944 */ 945 if ((ioflag & IO_APPEND) || ((ioflag & IO_SYNC) && (np->n_flag & 946 NMODIFIED))) { 947 /* 948 * For the case where IO_APPEND is being done using a 949 * direct output (to the NFS server) RPC and 950 * newnfs_directio_enable is 0, all buffer cache buffers, 951 * including ones not modified, must be invalidated. 952 * This ensures that stale data is not read out of the 953 * buffer cache. The call also invalidates all mapped 954 * pages and, since the exclusive lock is held on the vnode, 955 * new pages cannot be faulted in. 956 * 957 * For the case where newnfs_directio_enable is set 958 * (which is not the default), it is not obvious that 959 * stale data should be left in the buffer cache, but 960 * the code has been this way for over a decade without 961 * complaints. Note that, unlike doing IO_APPEND via 962 * a direct write RPC when newnfs_directio_enable is not set, 963 * when newnfs_directio_enable is set, reading is done via 964 * direct to NFS server RPCs as well. 965 */ 966 np->n_attrstamp = 0; 967 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 968 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 969 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 970 if (error != 0) 971 return (error); 972 } 973 974 orig_resid = uio->uio_resid; 975 NFSLOCKNODE(np); 976 orig_size = np->n_size; 977 NFSUNLOCKNODE(np); 978 979 /* 980 * If IO_APPEND then load uio_offset. We restart here if we cannot 981 * get the append lock. 982 */ 983 if (ioflag & IO_APPEND) { 984 /* 985 * For NFSv4, the AppendWrite will Verify the size against 986 * the file's size on the server. If not the same, the 987 * write will then be retried, using the file size returned 988 * by the AppendWrite. However, for NFSv2 and NFSv3, the 989 * size must be acquired here via a Getattr RPC. 990 * The AppendWrite is not done for a pNFS mount. 991 */ 992 if (!NFSHASNFSV4(nmp) || NFSHASPNFS(nmp)) { 993 np->n_attrstamp = 0; 994 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 995 error = VOP_GETATTR(vp, &vattr, cred); 996 if (error) 997 return (error); 998 } 999 NFSLOCKNODE(np); 1000 uio->uio_offset = np->n_size; 1001 NFSUNLOCKNODE(np); 1002 } 1003 1004 if (uio->uio_offset < 0) 1005 return (EINVAL); 1006 tmp_off = uio->uio_offset + uio->uio_resid; 1007 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset) 1008 return (EFBIG); 1009 if (uio->uio_resid == 0) 1010 return (0); 1011 1012 /* 1013 * Do IO_APPEND writing via a synchronous direct write. 1014 * This can result in a significant performance improvement. 1015 */ 1016 if ((newnfs_directio_enable && (ioflag & IO_DIRECT)) || 1017 (ioflag & IO_APPEND)) { 1018 /* 1019 * Direct writes to the server must be done NFSWRITE_FILESYNC, 1020 * because the write data is not cached and, therefore, the 1021 * write cannot be redone after a server reboot. 1022 * Set IO_SYNC to make this happen. 1023 */ 1024 ioflag |= IO_SYNC; 1025 return (nfs_directio_write(vp, uio, cred, ioflag)); 1026 } 1027 1028 /* 1029 * Maybe this should be above the vnode op call, but so long as 1030 * file servers have no limits, i don't think it matters 1031 */ 1032 error = vn_rlimit_fsize(vp, uio, td); 1033 if (error != 0) 1034 return (error); 1035 1036 save2 = curthread_pflags2_set(TDP2_SBPAGES); 1037 biosize = vp->v_bufobj.bo_bsize; 1038 /* 1039 * Find all of this file's B_NEEDCOMMIT buffers. If our writes 1040 * would exceed the local maximum per-file write commit size when 1041 * combined with those, we must decide whether to flush, 1042 * go synchronous, or return error. We don't bother checking 1043 * IO_UNIT -- we just make all writes atomic anyway, as there's 1044 * no point optimizing for something that really won't ever happen. 1045 */ 1046 wouldcommit = 0; 1047 if (!(ioflag & IO_SYNC)) { 1048 int nflag; 1049 1050 NFSLOCKNODE(np); 1051 nflag = np->n_flag; 1052 NFSUNLOCKNODE(np); 1053 if (nflag & NMODIFIED) { 1054 BO_LOCK(&vp->v_bufobj); 1055 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) { 1056 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, 1057 b_bobufs) { 1058 if (bp->b_flags & B_NEEDCOMMIT) 1059 wouldcommit += bp->b_bcount; 1060 } 1061 } 1062 BO_UNLOCK(&vp->v_bufobj); 1063 } 1064 } 1065 1066 do { 1067 if (!(ioflag & IO_SYNC)) { 1068 wouldcommit += biosize; 1069 if (wouldcommit > nmp->nm_wcommitsize) { 1070 np->n_attrstamp = 0; 1071 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1072 error = ncl_vinvalbuf(vp, V_SAVE | ((ioflag & 1073 IO_VMIO) != 0 ? V_VMIO : 0), td, 1); 1074 if (error != 0) 1075 goto out; 1076 wouldcommit = biosize; 1077 } 1078 } 1079 1080 NFSINCRGLOBAL(nfsstatsv1.biocache_writes); 1081 lbn = uio->uio_offset / biosize; 1082 on = uio->uio_offset - (lbn * biosize); 1083 n = MIN((unsigned)(biosize - on), uio->uio_resid); 1084 again: 1085 /* 1086 * Handle direct append and file extension cases, calculate 1087 * unaligned buffer size. 1088 */ 1089 NFSLOCKNODE(np); 1090 if ((np->n_flag & NHASBEENLOCKED) == 0 && 1091 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0) 1092 noncontig_write = 1; 1093 else 1094 noncontig_write = 0; 1095 if ((uio->uio_offset == np->n_size || 1096 (noncontig_write != 0 && 1097 lbn == (np->n_size / biosize) && 1098 uio->uio_offset + n > np->n_size)) && n) { 1099 NFSUNLOCKNODE(np); 1100 /* 1101 * Get the buffer (in its pre-append state to maintain 1102 * B_CACHE if it was previously set). Resize the 1103 * nfsnode after we have locked the buffer to prevent 1104 * readers from reading garbage. 1105 */ 1106 obcount = np->n_size - (lbn * biosize); 1107 bp = nfs_getcacheblk(vp, lbn, obcount, td); 1108 1109 if (bp != NULL) { 1110 long save; 1111 1112 NFSLOCKNODE(np); 1113 np->n_size = uio->uio_offset + n; 1114 np->n_flag |= NMODIFIED; 1115 np->n_flag &= ~NVNSETSZSKIP; 1116 vnode_pager_setsize(vp, np->n_size); 1117 NFSUNLOCKNODE(np); 1118 1119 save = bp->b_flags & B_CACHE; 1120 bcount = on + n; 1121 allocbuf(bp, bcount); 1122 bp->b_flags |= save; 1123 if (noncontig_write != 0 && on > obcount) 1124 vfs_bio_bzero_buf(bp, obcount, on - 1125 obcount); 1126 } 1127 } else { 1128 /* 1129 * Obtain the locked cache block first, and then 1130 * adjust the file's size as appropriate. 1131 */ 1132 bcount = on + n; 1133 if ((off_t)lbn * biosize + bcount < np->n_size) { 1134 if ((off_t)(lbn + 1) * biosize < np->n_size) 1135 bcount = biosize; 1136 else 1137 bcount = np->n_size - (off_t)lbn * biosize; 1138 } 1139 NFSUNLOCKNODE(np); 1140 bp = nfs_getcacheblk(vp, lbn, bcount, td); 1141 NFSLOCKNODE(np); 1142 if (uio->uio_offset + n > np->n_size) { 1143 np->n_size = uio->uio_offset + n; 1144 np->n_flag |= NMODIFIED; 1145 np->n_flag &= ~NVNSETSZSKIP; 1146 vnode_pager_setsize(vp, np->n_size); 1147 } 1148 NFSUNLOCKNODE(np); 1149 } 1150 1151 if (!bp) { 1152 error = newnfs_sigintr(nmp, td); 1153 if (!error) 1154 error = EINTR; 1155 break; 1156 } 1157 1158 /* 1159 * Issue a READ if B_CACHE is not set. In special-append 1160 * mode, B_CACHE is based on the buffer prior to the write 1161 * op and is typically set, avoiding the read. If a read 1162 * is required in special append mode, the server will 1163 * probably send us a short-read since we extended the file 1164 * on our end, resulting in b_resid == 0 and, thusly, 1165 * B_CACHE getting set. 1166 * 1167 * We can also avoid issuing the read if the write covers 1168 * the entire buffer. We have to make sure the buffer state 1169 * is reasonable in this case since we will not be initiating 1170 * I/O. See the comments in kern/vfs_bio.c's getblk() for 1171 * more information. 1172 * 1173 * B_CACHE may also be set due to the buffer being cached 1174 * normally. 1175 */ 1176 1177 bp_cached = 1; 1178 if (on == 0 && n == bcount) { 1179 if ((bp->b_flags & B_CACHE) == 0) 1180 bp_cached = 0; 1181 bp->b_flags |= B_CACHE; 1182 bp->b_flags &= ~B_INVAL; 1183 bp->b_ioflags &= ~BIO_ERROR; 1184 } 1185 1186 if ((bp->b_flags & B_CACHE) == 0) { 1187 bp->b_iocmd = BIO_READ; 1188 vfs_busy_pages(bp, 0); 1189 error = ncl_doio(vp, bp, cred, td, 0); 1190 if (error) { 1191 brelse(bp); 1192 break; 1193 } 1194 } 1195 if (bp->b_wcred == NOCRED) 1196 bp->b_wcred = crhold(cred); 1197 NFSLOCKNODE(np); 1198 np->n_flag |= NMODIFIED; 1199 NFSUNLOCKNODE(np); 1200 1201 /* 1202 * If dirtyend exceeds file size, chop it down. This should 1203 * not normally occur but there is an append race where it 1204 * might occur XXX, so we log it. 1205 * 1206 * If the chopping creates a reverse-indexed or degenerate 1207 * situation with dirtyoff/end, we 0 both of them. 1208 */ 1209 1210 if (bp->b_dirtyend > bcount) { 1211 printf("NFS append race @%lx:%d\n", 1212 (long)bp->b_blkno * DEV_BSIZE, 1213 bp->b_dirtyend - bcount); 1214 bp->b_dirtyend = bcount; 1215 } 1216 1217 if (bp->b_dirtyoff >= bp->b_dirtyend) 1218 bp->b_dirtyoff = bp->b_dirtyend = 0; 1219 1220 /* 1221 * If the new write will leave a contiguous dirty 1222 * area, just update the b_dirtyoff and b_dirtyend, 1223 * otherwise force a write rpc of the old dirty area. 1224 * 1225 * If there has been a file lock applied to this file 1226 * or vfs.nfs.old_noncontig_writing is set, do the following: 1227 * While it is possible to merge discontiguous writes due to 1228 * our having a B_CACHE buffer ( and thus valid read data 1229 * for the hole), we don't because it could lead to 1230 * significant cache coherency problems with multiple clients, 1231 * especially if locking is implemented later on. 1232 * 1233 * If vfs.nfs.old_noncontig_writing is not set and there has 1234 * not been file locking done on this file: 1235 * Relax coherency a bit for the sake of performance and 1236 * expand the current dirty region to contain the new 1237 * write even if it means we mark some non-dirty data as 1238 * dirty. 1239 */ 1240 1241 if (noncontig_write == 0 && bp->b_dirtyend > 0 && 1242 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1243 if (bwrite(bp) == EINTR) { 1244 error = EINTR; 1245 break; 1246 } 1247 goto again; 1248 } 1249 1250 local_resid = uio->uio_resid; 1251 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio); 1252 1253 if (error != 0 && !bp_cached) { 1254 /* 1255 * This block has no other content then what 1256 * possibly was written by the faulty uiomove. 1257 * Release it, forgetting the data pages, to 1258 * prevent the leak of uninitialized data to 1259 * usermode. 1260 */ 1261 bp->b_ioflags |= BIO_ERROR; 1262 brelse(bp); 1263 uio->uio_offset -= local_resid - uio->uio_resid; 1264 uio->uio_resid = local_resid; 1265 break; 1266 } 1267 1268 /* 1269 * Since this block is being modified, it must be written 1270 * again and not just committed. Since write clustering does 1271 * not work for the stage 1 data write, only the stage 2 1272 * commit rpc, we have to clear B_CLUSTEROK as well. 1273 */ 1274 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1275 1276 /* 1277 * Get the partial update on the progress made from 1278 * uiomove, if an error occurred. 1279 */ 1280 if (error != 0) 1281 n = local_resid - uio->uio_resid; 1282 1283 /* 1284 * Only update dirtyoff/dirtyend if not a degenerate 1285 * condition. 1286 */ 1287 if (n > 0) { 1288 if (bp->b_dirtyend > 0) { 1289 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1290 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1291 } else { 1292 bp->b_dirtyoff = on; 1293 bp->b_dirtyend = on + n; 1294 } 1295 vfs_bio_set_valid(bp, on, n); 1296 } 1297 1298 /* 1299 * If IO_SYNC do bwrite(). 1300 * 1301 * IO_INVAL appears to be unused. The idea appears to be 1302 * to turn off caching in this case. Very odd. XXX 1303 */ 1304 if ((ioflag & IO_SYNC)) { 1305 if (ioflag & IO_INVAL) 1306 bp->b_flags |= B_NOCACHE; 1307 error1 = bwrite(bp); 1308 if (error1 != 0) { 1309 if (error == 0) 1310 error = error1; 1311 break; 1312 } 1313 } else if ((n + on) == biosize || (ioflag & IO_ASYNC) != 0) { 1314 bp->b_flags |= B_ASYNC; 1315 (void) ncl_writebp(bp, 0, NULL); 1316 } else { 1317 bdwrite(bp); 1318 } 1319 1320 if (error != 0) 1321 break; 1322 } while (uio->uio_resid > 0 && n > 0); 1323 1324 if (error == 0) { 1325 nanouptime(&ts); 1326 NFSLOCKNODE(np); 1327 np->n_localmodtime = ts; 1328 NFSUNLOCKNODE(np); 1329 } else { 1330 if (ioflag & IO_UNIT) { 1331 VATTR_NULL(&vattr); 1332 vattr.va_size = orig_size; 1333 /* IO_SYNC is handled implicitely */ 1334 (void)VOP_SETATTR(vp, &vattr, cred); 1335 uio->uio_offset -= orig_resid - uio->uio_resid; 1336 uio->uio_resid = orig_resid; 1337 } 1338 } 1339 1340 out: 1341 curthread_pflags2_restore(save2); 1342 return (error); 1343 } 1344 1345 /* 1346 * Get an nfs cache block. 1347 * 1348 * Allocate a new one if the block isn't currently in the cache 1349 * and return the block marked busy. If the calling process is 1350 * interrupted by a signal for an interruptible mount point, return 1351 * NULL. 1352 * 1353 * The caller must carefully deal with the possible B_INVAL state of 1354 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it 1355 * indirectly), so synchronous reads can be issued without worrying about 1356 * the B_INVAL state. We have to be a little more careful when dealing 1357 * with writes (see comments in nfs_write()) when extending a file past 1358 * its EOF. 1359 */ 1360 static struct buf * 1361 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td) 1362 { 1363 struct buf *bp; 1364 struct mount *mp; 1365 struct nfsmount *nmp; 1366 1367 mp = vp->v_mount; 1368 nmp = VFSTONFS(mp); 1369 1370 if (nmp->nm_flag & NFSMNT_INT) { 1371 sigset_t oldset; 1372 1373 newnfs_set_sigmask(td, &oldset); 1374 bp = getblk(vp, bn, size, PCATCH, 0, 0); 1375 newnfs_restore_sigmask(td, &oldset); 1376 while (bp == NULL) { 1377 if (newnfs_sigintr(nmp, td)) 1378 return (NULL); 1379 bp = getblk(vp, bn, size, 0, 2 * hz, 0); 1380 } 1381 } else { 1382 bp = getblk(vp, bn, size, 0, 0, 0); 1383 } 1384 1385 if (vp->v_type == VREG) 1386 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE); 1387 return (bp); 1388 } 1389 1390 /* 1391 * Flush and invalidate all dirty buffers. If another process is already 1392 * doing the flush, just wait for completion. 1393 */ 1394 int 1395 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg) 1396 { 1397 struct nfsnode *np = VTONFS(vp); 1398 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1399 int error = 0, slpflag, slptimeo; 1400 bool old_lock; 1401 struct timespec ts; 1402 1403 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf"); 1404 1405 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1406 intrflg = 0; 1407 if (NFSCL_FORCEDISM(nmp->nm_mountp)) 1408 intrflg = 1; 1409 if (intrflg) { 1410 slpflag = PCATCH; 1411 slptimeo = 2 * hz; 1412 } else { 1413 slpflag = 0; 1414 slptimeo = 0; 1415 } 1416 1417 old_lock = ncl_excl_start(vp); 1418 if (old_lock) 1419 flags |= V_ALLOWCLEAN; 1420 1421 /* 1422 * Now, flush as required. 1423 */ 1424 if ((flags & (V_SAVE | V_VMIO)) == V_SAVE && 1425 vp->v_bufobj.bo_object != NULL) { 1426 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object); 1427 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC); 1428 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object); 1429 /* 1430 * If the page clean was interrupted, fail the invalidation. 1431 * Not doing so, we run the risk of losing dirty pages in the 1432 * vinvalbuf() call below. 1433 */ 1434 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1435 goto out; 1436 } 1437 1438 error = vinvalbuf(vp, flags, slpflag, 0); 1439 while (error) { 1440 if (intrflg && (error = newnfs_sigintr(nmp, td))) 1441 goto out; 1442 error = vinvalbuf(vp, flags, 0, slptimeo); 1443 } 1444 if (NFSHASPNFS(nmp)) { 1445 nfscl_layoutcommit(vp, td); 1446 nanouptime(&ts); 1447 /* 1448 * Invalidate the attribute cache, since writes to a DS 1449 * won't update the size attribute. 1450 */ 1451 NFSLOCKNODE(np); 1452 np->n_attrstamp = 0; 1453 } else { 1454 nanouptime(&ts); 1455 NFSLOCKNODE(np); 1456 } 1457 if (np->n_directio_asyncwr == 0 && (np->n_flag & NMODIFIED) != 0) { 1458 np->n_localmodtime = ts; 1459 np->n_flag &= ~NMODIFIED; 1460 } 1461 NFSUNLOCKNODE(np); 1462 out: 1463 ncl_excl_finish(vp, old_lock); 1464 return error; 1465 } 1466 1467 /* 1468 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 1469 * This is mainly to avoid queueing async I/O requests when the nfsiods 1470 * are all hung on a dead server. 1471 * 1472 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp 1473 * is eventually dequeued by the async daemon, ncl_doio() *will*. 1474 */ 1475 int 1476 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td) 1477 { 1478 int iod; 1479 int gotiod; 1480 int slpflag = 0; 1481 int slptimeo = 0; 1482 int error, error2; 1483 1484 /* 1485 * Commits are usually short and sweet so lets save some cpu and 1486 * leave the async daemons for more important rpc's (such as reads 1487 * and writes). 1488 * 1489 * Readdirplus RPCs do vget()s to acquire the vnodes for entries 1490 * in the directory in order to update attributes. This can deadlock 1491 * with another thread that is waiting for async I/O to be done by 1492 * an nfsiod thread while holding a lock on one of these vnodes. 1493 * To avoid this deadlock, don't allow the async nfsiod threads to 1494 * perform Readdirplus RPCs. 1495 */ 1496 NFSLOCKIOD(); 1497 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) && 1498 (nmp->nm_bufqiods > ncl_numasync / 2)) || 1499 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) { 1500 NFSUNLOCKIOD(); 1501 return(EIO); 1502 } 1503 again: 1504 if (nmp->nm_flag & NFSMNT_INT) 1505 slpflag = PCATCH; 1506 gotiod = FALSE; 1507 1508 /* 1509 * Find a free iod to process this request. 1510 */ 1511 for (iod = 0; iod < ncl_numasync; iod++) 1512 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) { 1513 gotiod = TRUE; 1514 break; 1515 } 1516 1517 /* 1518 * Try to create one if none are free. 1519 */ 1520 if (!gotiod) 1521 ncl_nfsiodnew(); 1522 else { 1523 /* 1524 * Found one, so wake it up and tell it which 1525 * mount to process. 1526 */ 1527 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n", 1528 iod, nmp)); 1529 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE; 1530 ncl_iodmount[iod] = nmp; 1531 nmp->nm_bufqiods++; 1532 wakeup(&ncl_iodwant[iod]); 1533 } 1534 1535 /* 1536 * If none are free, we may already have an iod working on this mount 1537 * point. If so, it will process our request. 1538 */ 1539 if (!gotiod) { 1540 if (nmp->nm_bufqiods > 0) { 1541 NFS_DPF(ASYNCIO, 1542 ("ncl_asyncio: %d iods are already processing mount %p\n", 1543 nmp->nm_bufqiods, nmp)); 1544 gotiod = TRUE; 1545 } 1546 } 1547 1548 /* 1549 * If we have an iod which can process the request, then queue 1550 * the buffer. 1551 */ 1552 if (gotiod) { 1553 /* 1554 * Ensure that the queue never grows too large. We still want 1555 * to asynchronize so we block rather then return EIO. 1556 */ 1557 while (nmp->nm_bufqlen >= 2*ncl_numasync) { 1558 NFS_DPF(ASYNCIO, 1559 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp)); 1560 nmp->nm_bufqwant = TRUE; 1561 error = newnfs_msleep(td, &nmp->nm_bufq, 1562 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio", 1563 slptimeo); 1564 if (error) { 1565 error2 = newnfs_sigintr(nmp, td); 1566 if (error2) { 1567 NFSUNLOCKIOD(); 1568 return (error2); 1569 } 1570 if (slpflag == PCATCH) { 1571 slpflag = 0; 1572 slptimeo = 2 * hz; 1573 } 1574 } 1575 /* 1576 * We might have lost our iod while sleeping, 1577 * so check and loop if necessary. 1578 */ 1579 goto again; 1580 } 1581 1582 /* We might have lost our nfsiod */ 1583 if (nmp->nm_bufqiods == 0) { 1584 NFS_DPF(ASYNCIO, 1585 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp)); 1586 goto again; 1587 } 1588 1589 if (bp->b_iocmd == BIO_READ) { 1590 if (bp->b_rcred == NOCRED && cred != NOCRED) 1591 bp->b_rcred = crhold(cred); 1592 } else { 1593 if (bp->b_wcred == NOCRED && cred != NOCRED) 1594 bp->b_wcred = crhold(cred); 1595 } 1596 1597 if (bp->b_flags & B_REMFREE) 1598 bremfreef(bp); 1599 BUF_KERNPROC(bp); 1600 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 1601 nmp->nm_bufqlen++; 1602 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1603 NFSLOCKNODE(VTONFS(bp->b_vp)); 1604 VTONFS(bp->b_vp)->n_flag |= NMODIFIED; 1605 VTONFS(bp->b_vp)->n_directio_asyncwr++; 1606 NFSUNLOCKNODE(VTONFS(bp->b_vp)); 1607 } 1608 NFSUNLOCKIOD(); 1609 return (0); 1610 } 1611 1612 NFSUNLOCKIOD(); 1613 1614 /* 1615 * All the iods are busy on other mounts, so return EIO to 1616 * force the caller to process the i/o synchronously. 1617 */ 1618 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n")); 1619 return (EIO); 1620 } 1621 1622 void 1623 ncl_doio_directwrite(struct buf *bp) 1624 { 1625 int iomode, must_commit; 1626 struct uio *uiop = (struct uio *)bp->b_caller1; 1627 char *iov_base = uiop->uio_iov->iov_base; 1628 1629 iomode = NFSWRITE_FILESYNC; 1630 uiop->uio_td = NULL; /* NULL since we're in nfsiod */ 1631 /* 1632 * When doing direct I/O we do not care if the 1633 * server's write verifier has changed, but we 1634 * do not want to update the verifier if it has 1635 * changed, since that hides the change from 1636 * writes being done through the buffer cache. 1637 * By passing must_commit in set to two, the code 1638 * in nfsrpc_writerpc() will not update the 1639 * verifier on the mount point. 1640 */ 1641 must_commit = 2; 1642 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0, 0); 1643 KASSERT((must_commit == 2), ("ncl_doio_directwrite: Updated write" 1644 " verifier")); 1645 if (iomode != NFSWRITE_FILESYNC) 1646 printf("ncl_doio_directwrite: Broken server " 1647 "did not reply FILE_SYNC\n"); 1648 free(iov_base, M_NFSDIRECTIO); 1649 free(uiop->uio_iov, M_NFSDIRECTIO); 1650 free(uiop, M_NFSDIRECTIO); 1651 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) { 1652 struct nfsnode *np = VTONFS(bp->b_vp); 1653 NFSLOCKNODE(np); 1654 if (NFSHASPNFS(VFSTONFS(bp->b_vp->v_mount))) { 1655 /* 1656 * Invalidate the attribute cache, since writes to a DS 1657 * won't update the size attribute. 1658 */ 1659 np->n_attrstamp = 0; 1660 } 1661 np->n_directio_asyncwr--; 1662 if (np->n_directio_asyncwr == 0) { 1663 np->n_flag &= ~NMODIFIED; 1664 if ((np->n_flag & NFSYNCWAIT)) { 1665 np->n_flag &= ~NFSYNCWAIT; 1666 wakeup((caddr_t)&np->n_directio_asyncwr); 1667 } 1668 } 1669 NFSUNLOCKNODE(np); 1670 } 1671 bp->b_vp = NULL; 1672 uma_zfree(ncl_pbuf_zone, bp); 1673 } 1674 1675 /* 1676 * Do an I/O operation to/from a cache block. This may be called 1677 * synchronously or from an nfsiod. 1678 */ 1679 int 1680 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td, 1681 int called_from_strategy) 1682 { 1683 struct uio *uiop; 1684 struct nfsnode *np; 1685 struct nfsmount *nmp; 1686 int error = 0, iomode, must_commit = 0; 1687 struct uio uio; 1688 struct iovec io; 1689 struct proc *p = td ? td->td_proc : NULL; 1690 uint8_t iocmd; 1691 1692 np = VTONFS(vp); 1693 nmp = VFSTONFS(vp->v_mount); 1694 uiop = &uio; 1695 uiop->uio_iov = &io; 1696 uiop->uio_iovcnt = 1; 1697 uiop->uio_segflg = UIO_SYSSPACE; 1698 uiop->uio_td = td; 1699 1700 /* 1701 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We 1702 * do this here so we do not have to do it in all the code that 1703 * calls us. 1704 */ 1705 bp->b_flags &= ~B_INVAL; 1706 bp->b_ioflags &= ~BIO_ERROR; 1707 1708 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp)); 1709 iocmd = bp->b_iocmd; 1710 if (iocmd == BIO_READ) { 1711 io.iov_len = uiop->uio_resid = bp->b_bcount; 1712 io.iov_base = bp->b_data; 1713 uiop->uio_rw = UIO_READ; 1714 1715 switch (vp->v_type) { 1716 case VREG: 1717 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE; 1718 NFSINCRGLOBAL(nfsstatsv1.read_bios); 1719 error = ncl_readrpc(vp, uiop, cr); 1720 1721 if (!error) { 1722 if (uiop->uio_resid) { 1723 /* 1724 * If we had a short read with no error, we must have 1725 * hit a file hole. We should zero-fill the remainder. 1726 * This can also occur if the server hits the file EOF. 1727 * 1728 * Holes used to be able to occur due to pending 1729 * writes, but that is not possible any longer. 1730 */ 1731 int nread = bp->b_bcount - uiop->uio_resid; 1732 ssize_t left = uiop->uio_resid; 1733 1734 if (left > 0) 1735 bzero((char *)bp->b_data + nread, left); 1736 uiop->uio_resid = 0; 1737 } 1738 } 1739 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */ 1740 if (p && vp->v_writecount <= -1) { 1741 NFSLOCKNODE(np); 1742 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) { 1743 NFSUNLOCKNODE(np); 1744 PROC_LOCK(p); 1745 killproc(p, "text file modification"); 1746 PROC_UNLOCK(p); 1747 } else 1748 NFSUNLOCKNODE(np); 1749 } 1750 break; 1751 case VLNK: 1752 uiop->uio_offset = (off_t)0; 1753 NFSINCRGLOBAL(nfsstatsv1.readlink_bios); 1754 error = ncl_readlinkrpc(vp, uiop, cr); 1755 break; 1756 case VDIR: 1757 NFSINCRGLOBAL(nfsstatsv1.readdir_bios); 1758 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ; 1759 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) { 1760 error = ncl_readdirplusrpc(vp, uiop, cr, td); 1761 if (error == NFSERR_NOTSUPP) 1762 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1763 } 1764 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1765 error = ncl_readdirrpc(vp, uiop, cr, td); 1766 /* 1767 * end-of-directory sets B_INVAL but does not generate an 1768 * error. 1769 */ 1770 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1771 bp->b_flags |= B_INVAL; 1772 break; 1773 default: 1774 printf("ncl_doio: type %x unexpected\n", vp->v_type); 1775 break; 1776 } 1777 if (error) { 1778 bp->b_ioflags |= BIO_ERROR; 1779 bp->b_error = error; 1780 } 1781 } else { 1782 /* 1783 * If we only need to commit, try to commit 1784 */ 1785 if (bp->b_flags & B_NEEDCOMMIT) { 1786 int retv; 1787 off_t off; 1788 1789 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; 1790 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff, 1791 bp->b_wcred, td); 1792 if (NFSCL_FORCEDISM(vp->v_mount) || retv == 0) { 1793 bp->b_dirtyoff = bp->b_dirtyend = 0; 1794 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1795 bp->b_resid = 0; 1796 bufdone(bp); 1797 return (0); 1798 } 1799 if (retv == NFSERR_STALEWRITEVERF) { 1800 ncl_clearcommit(vp->v_mount); 1801 } 1802 } 1803 1804 /* 1805 * Setup for actual write 1806 */ 1807 NFSLOCKNODE(np); 1808 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size) 1809 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE; 1810 NFSUNLOCKNODE(np); 1811 1812 if (bp->b_dirtyend > bp->b_dirtyoff) { 1813 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1814 - bp->b_dirtyoff; 1815 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE 1816 + bp->b_dirtyoff; 1817 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1818 uiop->uio_rw = UIO_WRITE; 1819 NFSINCRGLOBAL(nfsstatsv1.write_bios); 1820 1821 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC) 1822 iomode = NFSWRITE_UNSTABLE; 1823 else 1824 iomode = NFSWRITE_FILESYNC; 1825 1826 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit, 1827 called_from_strategy, 0); 1828 1829 /* 1830 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1831 * to cluster the buffers needing commit. This will allow 1832 * the system to submit a single commit rpc for the whole 1833 * cluster. We can do this even if the buffer is not 100% 1834 * dirty (relative to the NFS blocksize), so we optimize the 1835 * append-to-file-case. 1836 * 1837 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1838 * cleared because write clustering only works for commit 1839 * rpc's, not for the data portion of the write). 1840 */ 1841 1842 if (!error && iomode == NFSWRITE_UNSTABLE) { 1843 bp->b_flags |= B_NEEDCOMMIT; 1844 if (bp->b_dirtyoff == 0 1845 && bp->b_dirtyend == bp->b_bcount) 1846 bp->b_flags |= B_CLUSTEROK; 1847 } else { 1848 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1849 } 1850 1851 /* 1852 * For an interrupted write, the buffer is still valid 1853 * and the write hasn't been pushed to the server yet, 1854 * so we can't set BIO_ERROR and report the interruption 1855 * by setting B_EINTR. For the B_ASYNC case, B_EINTR 1856 * is not relevant, so the rpc attempt is essentially 1857 * a noop. For the case of a V3 write rpc not being 1858 * committed to stable storage, the block is still 1859 * dirty and requires either a commit rpc or another 1860 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1861 * the block is reused. This is indicated by setting 1862 * the B_DELWRI and B_NEEDCOMMIT flags. 1863 * 1864 * EIO is returned by ncl_writerpc() to indicate a recoverable 1865 * write error and is handled as above, except that 1866 * B_EINTR isn't set. One cause of this is a stale stateid 1867 * error for the RPC that indicates recovery is required, 1868 * when called with called_from_strategy != 0. 1869 * 1870 * If the buffer is marked B_PAGING, it does not reside on 1871 * the vp's paging queues so we cannot call bdirty(). The 1872 * bp in this case is not an NFS cache block so we should 1873 * be safe. XXX 1874 * 1875 * The logic below breaks up errors into recoverable and 1876 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE 1877 * and keep the buffer around for potential write retries. 1878 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL) 1879 * and save the error in the nfsnode. This is less than ideal 1880 * but necessary. Keeping such buffers around could potentially 1881 * cause buffer exhaustion eventually (they can never be written 1882 * out, so will get constantly be re-dirtied). It also causes 1883 * all sorts of vfs panics. For non-recoverable write errors, 1884 * also invalidate the attrcache, so we'll be forced to go over 1885 * the wire for this object, returning an error to user on next 1886 * call (most of the time). 1887 */ 1888 if (error == EINTR || error == EIO || error == ETIMEDOUT 1889 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1890 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1891 if ((bp->b_flags & B_PAGING) == 0) { 1892 bdirty(bp); 1893 bp->b_flags &= ~B_DONE; 1894 } 1895 if ((error == EINTR || error == ETIMEDOUT) && 1896 (bp->b_flags & B_ASYNC) == 0) 1897 bp->b_flags |= B_EINTR; 1898 } else { 1899 if (error) { 1900 bp->b_ioflags |= BIO_ERROR; 1901 bp->b_flags |= B_INVAL; 1902 bp->b_error = np->n_error = error; 1903 NFSLOCKNODE(np); 1904 np->n_flag |= NWRITEERR; 1905 np->n_attrstamp = 0; 1906 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp); 1907 NFSUNLOCKNODE(np); 1908 } 1909 bp->b_dirtyoff = bp->b_dirtyend = 0; 1910 } 1911 } else { 1912 bp->b_resid = 0; 1913 bufdone(bp); 1914 return (0); 1915 } 1916 } 1917 bp->b_resid = uiop->uio_resid; 1918 if (must_commit == 1) 1919 ncl_clearcommit(vp->v_mount); 1920 bufdone(bp); 1921 return (error); 1922 } 1923 1924 /* 1925 * Used to aid in handling ftruncate() operations on the NFS client side. 1926 * Truncation creates a number of special problems for NFS. We have to 1927 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1928 * we have to properly handle VM pages or (potentially dirty) buffers 1929 * that straddle the truncation point. 1930 */ 1931 1932 int 1933 ncl_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize) 1934 { 1935 struct nfsnode *np = VTONFS(vp); 1936 u_quad_t tsize; 1937 int biosize = vp->v_bufobj.bo_bsize; 1938 int error = 0; 1939 1940 NFSLOCKNODE(np); 1941 tsize = np->n_size; 1942 np->n_size = nsize; 1943 NFSUNLOCKNODE(np); 1944 1945 if (nsize < tsize) { 1946 struct buf *bp; 1947 daddr_t lbn; 1948 int bufsize; 1949 1950 /* 1951 * vtruncbuf() doesn't get the buffer overlapping the 1952 * truncation point. We may have a B_DELWRI and/or B_CACHE 1953 * buffer that now needs to be truncated. 1954 */ 1955 error = vtruncbuf(vp, nsize, biosize); 1956 lbn = nsize / biosize; 1957 bufsize = nsize - (lbn * biosize); 1958 bp = nfs_getcacheblk(vp, lbn, bufsize, td); 1959 if (!bp) 1960 return EINTR; 1961 if (bp->b_dirtyoff > bp->b_bcount) 1962 bp->b_dirtyoff = bp->b_bcount; 1963 if (bp->b_dirtyend > bp->b_bcount) 1964 bp->b_dirtyend = bp->b_bcount; 1965 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1966 brelse(bp); 1967 } else { 1968 vnode_pager_setsize(vp, nsize); 1969 } 1970 return(error); 1971 } 1972