xref: /freebsd/sys/fs/fuse/fuse_io.c (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007-2009 Google Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are
9  * met:
10  *
11  * * Redistributions of source code must retain the above copyright
12  *   notice, this list of conditions and the following disclaimer.
13  * * Redistributions in binary form must reproduce the above
14  *   copyright notice, this list of conditions and the following disclaimer
15  *   in the documentation and/or other materials provided with the
16  *   distribution.
17  * * Neither the name of Google Inc. nor the names of its
18  *   contributors may be used to endorse or promote products derived from
19  *   this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Copyright (C) 2005 Csaba Henk.
34  * All rights reserved.
35  *
36  * Copyright (c) 2019 The FreeBSD Foundation
37  *
38  * Portions of this software were developed by BFF Storage Systems, LLC under
39  * sponsorship from the FreeBSD Foundation.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  *
50  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  */
62 
63 #include <sys/types.h>
64 #include <sys/param.h>
65 #include <sys/module.h>
66 #include <sys/systm.h>
67 #include <sys/errno.h>
68 #include <sys/param.h>
69 #include <sys/kernel.h>
70 #include <sys/conf.h>
71 #include <sys/uio.h>
72 #include <sys/malloc.h>
73 #include <sys/queue.h>
74 #include <sys/lock.h>
75 #include <sys/sx.h>
76 #include <sys/mutex.h>
77 #include <sys/rwlock.h>
78 #include <sys/priv.h>
79 #include <sys/proc.h>
80 #include <sys/mount.h>
81 #include <sys/vnode.h>
82 #include <sys/stat.h>
83 #include <sys/unistd.h>
84 #include <sys/filedesc.h>
85 #include <sys/file.h>
86 #include <sys/fcntl.h>
87 #include <sys/bio.h>
88 #include <sys/buf.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_extern.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_object.h>
98 #include <vm/vnode_pager.h>
99 
100 #include "fuse.h"
101 #include "fuse_file.h"
102 #include "fuse_node.h"
103 #include "fuse_internal.h"
104 #include "fuse_ipc.h"
105 #include "fuse_io.h"
106 
107 /*
108  * Set in a struct buf to indicate that the write came from the buffer cache
109  * and the originating cred and pid are no longer known.
110  */
111 #define B_FUSEFS_WRITE_CACHE B_FS_FLAG1
112 
113 SDT_PROVIDER_DECLARE(fusefs);
114 /*
115  * Fuse trace probe:
116  * arg0: verbosity.  Higher numbers give more verbose messages
117  * arg1: Textual message
118  */
119 SDT_PROBE_DEFINE2(fusefs, , io, trace, "int", "char*");
120 
121 SDT_PROBE_DEFINE4(fusefs, , io, read_bio_backend_start, "int", "int", "int", "int");
122 SDT_PROBE_DEFINE2(fusefs, , io, read_bio_backend_feed, "int", "struct buf*");
123 SDT_PROBE_DEFINE4(fusefs, , io, read_bio_backend_end, "int", "ssize_t", "int",
124 		"struct buf*");
125 int
126 fuse_read_biobackend(struct vnode *vp, struct uio *uio, int ioflag,
127     struct ucred *cred, struct fuse_filehandle *fufh, pid_t pid)
128 {
129 	struct buf *bp;
130 	struct mount *mp;
131 	struct fuse_data *data;
132 	daddr_t lbn, nextlbn;
133 	int bcount, nextsize;
134 	int err, n = 0, on = 0, seqcount;
135 	off_t filesize;
136 
137 	const int biosize = fuse_iosize(vp);
138 	mp = vnode_mount(vp);
139 	data = fuse_get_mpdata(mp);
140 
141 	if (uio->uio_offset < 0)
142 		return (EINVAL);
143 
144 	seqcount = ioflag >> IO_SEQSHIFT;
145 
146 	err = fuse_vnode_size(vp, &filesize, cred, curthread);
147 	if (err)
148 		return err;
149 
150 	for (err = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
151 		if (fuse_isdeadfs(vp)) {
152 			err = ENXIO;
153 			break;
154 		}
155 		if (filesize - uio->uio_offset <= 0)
156 			break;
157 		lbn = uio->uio_offset / biosize;
158 		on = uio->uio_offset & (biosize - 1);
159 
160 		if ((off_t)lbn * biosize >= filesize) {
161 			bcount = 0;
162 		} else if ((off_t)(lbn + 1) * biosize > filesize) {
163 			bcount = filesize - (off_t)lbn *biosize;
164 		} else {
165 			bcount = biosize;
166 		}
167 		nextlbn = lbn + 1;
168 		nextsize = MIN(biosize, filesize - nextlbn * biosize);
169 
170 		SDT_PROBE4(fusefs, , io, read_bio_backend_start,
171 			biosize, (int)lbn, on, bcount);
172 
173 		if (bcount < biosize) {
174 			/* If near EOF, don't do readahead */
175 			err = bread(vp, lbn, bcount, NOCRED, &bp);
176 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
177 			/* Try clustered read */
178 			long totread = uio->uio_resid + on;
179 			seqcount = MIN(seqcount,
180 				data->max_readahead_blocks + 1);
181 			err = cluster_read(vp, filesize, lbn, bcount, NOCRED,
182 				totread, seqcount, 0, &bp);
183 		} else if (seqcount > 1 && data->max_readahead_blocks >= 1) {
184 			/* Try non-clustered readahead */
185 			err = breadn(vp, lbn, bcount, &nextlbn, &nextsize, 1,
186 				NOCRED, &bp);
187 		} else {
188 			/* Just read what was requested */
189 			err = bread(vp, lbn, bcount, NOCRED, &bp);
190 		}
191 
192 		if (err) {
193 			brelse(bp);
194 			bp = NULL;
195 			break;
196 		}
197 
198 		/*
199 	         * on is the offset into the current bp.  Figure out how many
200 	         * bytes we can copy out of the bp.  Note that bcount is
201 	         * NOT DEV_BSIZE aligned.
202 	         *
203 	         * Then figure out how many bytes we can copy into the uio.
204 	         */
205 
206 		n = 0;
207 		if (on < bcount - bp->b_resid)
208 			n = MIN((unsigned)(bcount - bp->b_resid - on),
209 			    uio->uio_resid);
210 		if (n > 0) {
211 			SDT_PROBE2(fusefs, , io, read_bio_backend_feed, n, bp);
212 			err = uiomove(bp->b_data + on, n, uio);
213 		}
214 		vfs_bio_brelse(bp, ioflag);
215 		SDT_PROBE4(fusefs, , io, read_bio_backend_end, err,
216 			uio->uio_resid, n, bp);
217 		if (bp->b_resid > 0) {
218 			/* Short read indicates EOF */
219 			break;
220 		}
221 	}
222 
223 	return (err);
224 }
225 
226 SDT_PROBE_DEFINE1(fusefs, , io, read_directbackend_start,
227 	"struct fuse_read_in*");
228 SDT_PROBE_DEFINE3(fusefs, , io, read_directbackend_complete,
229 	"struct fuse_dispatcher*", "struct fuse_read_in*", "struct uio*");
230 
231 int
232 fuse_read_directbackend(struct vnode *vp, struct uio *uio,
233     struct ucred *cred, struct fuse_filehandle *fufh)
234 {
235 	struct fuse_data *data;
236 	struct fuse_dispatcher fdi;
237 	struct fuse_read_in *fri;
238 	int err = 0;
239 
240 	data = fuse_get_mpdata(vp->v_mount);
241 
242 	if (uio->uio_resid == 0)
243 		return (0);
244 
245 	fdisp_init(&fdi, 0);
246 
247 	/*
248          * XXX In "normal" case we use an intermediate kernel buffer for
249          * transmitting data from daemon's context to ours. Eventually, we should
250          * get rid of this. Anyway, if the target uio lives in sysspace (we are
251          * called from pageops), and the input data doesn't need kernel-side
252          * processing (we are not called from readdir) we can already invoke
253          * an optimized, "peer-to-peer" I/O routine.
254          */
255 	while (uio->uio_resid > 0) {
256 		fdi.iosize = sizeof(*fri);
257 		fdisp_make_vp(&fdi, FUSE_READ, vp, uio->uio_td, cred);
258 		fri = fdi.indata;
259 		fri->fh = fufh->fh_id;
260 		fri->offset = uio->uio_offset;
261 		fri->size = MIN(uio->uio_resid,
262 		    fuse_get_mpdata(vp->v_mount)->max_read);
263 		if (fuse_libabi_geq(data, 7, 9)) {
264 			/* See comment regarding FUSE_WRITE_LOCKOWNER */
265 			fri->read_flags = 0;
266 			fri->flags = fufh_type_2_fflags(fufh->fufh_type);
267 		}
268 
269 		SDT_PROBE1(fusefs, , io, read_directbackend_start, fri);
270 
271 		if ((err = fdisp_wait_answ(&fdi)))
272 			goto out;
273 
274 		SDT_PROBE3(fusefs, , io, read_directbackend_complete,
275 			&fdi, fri, uio);
276 
277 		if ((err = uiomove(fdi.answ, MIN(fri->size, fdi.iosize), uio)))
278 			break;
279 		if (fdi.iosize < fri->size) {
280 			/*
281 			 * Short read.  Should only happen at EOF or with
282 			 * direct io.
283 			 */
284 			break;
285 		}
286 	}
287 
288 out:
289 	fdisp_destroy(&fdi);
290 	return (err);
291 }
292 
293 int
294 fuse_write_directbackend(struct vnode *vp, struct uio *uio,
295     struct ucred *cred, struct fuse_filehandle *fufh, off_t filesize,
296     int ioflag, bool pages)
297 {
298 	struct fuse_vnode_data *fvdat = VTOFUD(vp);
299 	struct fuse_data *data;
300 	struct fuse_write_in *fwi;
301 	struct fuse_write_out *fwo;
302 	struct fuse_dispatcher fdi;
303 	size_t chunksize;
304 	ssize_t r;
305 	void *fwi_data;
306 	off_t as_written_offset;
307 	int diff;
308 	int err = 0;
309 	bool direct_io = fufh->fuse_open_flags & FOPEN_DIRECT_IO;
310 	bool wrote_anything = false;
311 	uint32_t write_flags;
312 
313 	data = fuse_get_mpdata(vp->v_mount);
314 
315 	/*
316 	 * Don't set FUSE_WRITE_LOCKOWNER in write_flags.  It can't be set
317 	 * accurately when using POSIX AIO, libfuse doesn't use it, and I'm not
318 	 * aware of any file systems that do.  It was an attempt to add
319 	 * Linux-style mandatory locking to the FUSE protocol, but mandatory
320 	 * locking is deprecated even on Linux.  See Linux commit
321 	 * f33321141b273d60cbb3a8f56a5489baad82ba5e .
322 	 */
323 	/*
324 	 * Set FUSE_WRITE_CACHE whenever we don't know the uid, gid, and/or pid
325 	 * that originated a write.  For example when writing from the
326 	 * writeback cache.  I don't know of a single file system that cares,
327 	 * but the protocol says we're supposed to do this.
328 	 */
329 	write_flags = !pages && (
330 		(ioflag & IO_DIRECT) ||
331 		!fsess_opt_datacache(vnode_mount(vp)) ||
332 		!fsess_opt_writeback(vnode_mount(vp))) ? 0 : FUSE_WRITE_CACHE;
333 
334 	if (uio->uio_resid == 0)
335 		return (0);
336 
337 	if (ioflag & IO_APPEND)
338 		uio_setoffset(uio, filesize);
339 
340 	err = vn_rlimit_fsizex(vp, uio, 0, &r, uio->uio_td);
341 	if (err != 0) {
342 		vn_rlimit_fsizex_res(uio, r);
343 		return (err);
344 	}
345 
346 	fdisp_init(&fdi, 0);
347 
348 	while (uio->uio_resid > 0) {
349 		size_t sizeof_fwi;
350 
351 		if (fuse_libabi_geq(data, 7, 9)) {
352 			sizeof_fwi = sizeof(*fwi);
353 		} else {
354 			sizeof_fwi = FUSE_COMPAT_WRITE_IN_SIZE;
355 		}
356 
357 		chunksize = MIN(uio->uio_resid, data->max_write);
358 
359 		fdi.iosize = sizeof_fwi + chunksize;
360 		fdisp_make_vp(&fdi, FUSE_WRITE, vp, uio->uio_td, cred);
361 
362 		fwi = fdi.indata;
363 		fwi->fh = fufh->fh_id;
364 		fwi->offset = uio->uio_offset;
365 		fwi->size = chunksize;
366 		fwi->write_flags = write_flags;
367 		if (fuse_libabi_geq(data, 7, 9)) {
368 			fwi->flags = fufh_type_2_fflags(fufh->fufh_type);
369 		}
370 		fwi_data = (char *)fdi.indata + sizeof_fwi;
371 
372 		if ((err = uiomove(fwi_data, chunksize, uio)))
373 			break;
374 
375 retry:
376 		err = fdisp_wait_answ(&fdi);
377 		if (err == ERESTART || err == EINTR || err == EWOULDBLOCK) {
378 			/*
379 			 * Rewind the uio so dofilewrite will know it's
380 			 * incomplete
381 			 */
382 			uio->uio_resid += fwi->size;
383 			uio->uio_offset -= fwi->size;
384 			/*
385 			 * Change ERESTART into EINTR because we can't rewind
386 			 * uio->uio_iov.  Basically, once uiomove(9) has been
387 			 * called, it's impossible to restart a syscall.
388 			 */
389 			if (err == ERESTART)
390 				err = EINTR;
391 			break;
392 		} else if (err) {
393 			break;
394 		} else {
395 			wrote_anything = true;
396 		}
397 
398 		fwo = ((struct fuse_write_out *)fdi.answ);
399 
400 		if (fwo->size > fwi->size) {
401 			fuse_warn(data, FSESS_WARN_WROTE_LONG,
402 				"wrote more data than we provided it.");
403 			/* This is bonkers.  Clear attr cache. */
404 			fvdat->flag &= ~FN_SIZECHANGE;
405 			fuse_vnode_clear_attr_cache(vp);
406 			err = EINVAL;
407 			break;
408 		}
409 
410 		/* Adjust the uio in the case of short writes */
411 		diff = fwi->size - fwo->size;
412 
413 		as_written_offset = uio->uio_offset - diff;
414 
415 		if (as_written_offset - diff > filesize) {
416 			fuse_vnode_setsize(vp, as_written_offset, false);
417 			getnanouptime(&fvdat->last_local_modify);
418 		}
419 		if (as_written_offset - diff >= filesize)
420 			fvdat->flag &= ~FN_SIZECHANGE;
421 
422 		if (diff > 0) {
423 			/* Short write */
424 			if (!direct_io) {
425 				fuse_warn(data, FSESS_WARN_SHORT_WRITE,
426 					"short writes are only allowed with "
427 					"direct_io.");
428 			}
429 			if (ioflag & IO_DIRECT) {
430 				/* Return early */
431 				uio->uio_resid += diff;
432 				uio->uio_offset -= diff;
433 				break;
434 			} else {
435 				/* Resend the unwritten portion of data */
436 				fdi.iosize = sizeof_fwi + diff;
437 				/* Refresh fdi without clearing data buffer */
438 				fdisp_refresh_vp(&fdi, FUSE_WRITE, vp,
439 					uio->uio_td, cred);
440 				fwi = fdi.indata;
441 				MPASS2(fwi == fdi.indata, "FUSE dispatcher "
442 					"reallocated despite no increase in "
443 					"size?");
444 				void *src = (char*)fwi_data + fwo->size;
445 				memmove(fwi_data, src, diff);
446 				fwi->fh = fufh->fh_id;
447 				fwi->offset = as_written_offset;
448 				fwi->size = diff;
449 				fwi->write_flags = write_flags;
450 				goto retry;
451 			}
452 		}
453 	}
454 
455 	fdisp_destroy(&fdi);
456 
457 	if (wrote_anything)
458 		fuse_vnode_undirty_cached_timestamps(vp, false);
459 
460 	vn_rlimit_fsizex_res(uio, r);
461 	return (err);
462 }
463 
464 SDT_PROBE_DEFINE6(fusefs, , io, write_biobackend_start, "int64_t", "int", "int",
465 		"struct uio*", "int", "bool");
466 SDT_PROBE_DEFINE2(fusefs, , io, write_biobackend_append_race, "long", "int");
467 SDT_PROBE_DEFINE2(fusefs, , io, write_biobackend_issue, "int", "struct buf*");
468 
469 int
470 fuse_write_biobackend(struct vnode *vp, struct uio *uio,
471     struct ucred *cred, struct fuse_filehandle *fufh, int ioflag, pid_t pid)
472 {
473 	struct fuse_vnode_data *fvdat = VTOFUD(vp);
474 	struct buf *bp;
475 	daddr_t lbn;
476 	off_t filesize;
477 	ssize_t r;
478 	int bcount;
479 	int n, on, seqcount, err = 0;
480 
481 	const int biosize = fuse_iosize(vp);
482 
483 	seqcount = ioflag >> IO_SEQSHIFT;
484 
485 	KASSERT(uio->uio_rw == UIO_WRITE, ("fuse_write_biobackend mode"));
486 	if (vp->v_type != VREG)
487 		return (EIO);
488 	if (uio->uio_offset < 0)
489 		return (EINVAL);
490 	if (uio->uio_resid == 0)
491 		return (0);
492 
493 	err = fuse_vnode_size(vp, &filesize, cred, curthread);
494 	if (err)
495 		return err;
496 
497 	if (ioflag & IO_APPEND)
498 		uio_setoffset(uio, filesize);
499 
500 	err = vn_rlimit_fsizex(vp, uio, 0, &r, uio->uio_td);
501 	if (err != 0) {
502 		vn_rlimit_fsizex_res(uio, r);
503 		return (err);
504 	}
505 
506 	do {
507 		bool direct_append, extending;
508 
509 		if (fuse_isdeadfs(vp)) {
510 			err = ENXIO;
511 			break;
512 		}
513 		lbn = uio->uio_offset / biosize;
514 		on = uio->uio_offset & (biosize - 1);
515 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
516 
517 again:
518 		/* Get or create a buffer for the write */
519 		direct_append = uio->uio_offset == filesize && n;
520 		if (uio->uio_offset + n < filesize) {
521 			extending = false;
522 			if ((off_t)(lbn + 1) * biosize < filesize) {
523 				/* Not the file's last block */
524 				bcount = biosize;
525 			} else {
526 				/* The file's last block */
527 				bcount = filesize - (off_t)lbn * biosize;
528 			}
529 		} else {
530 			extending = true;
531 			bcount = on + n;
532 		}
533 		if (direct_append) {
534 			/*
535 			 * Take care to preserve the buffer's B_CACHE state so
536 			 * as not to cause an unnecessary read.
537 			 */
538 			bp = getblk(vp, lbn, on, PCATCH, 0, 0);
539 			if (bp != NULL) {
540 				uint32_t save = bp->b_flags & B_CACHE;
541 				allocbuf(bp, bcount);
542 				bp->b_flags |= save;
543 			}
544 		} else {
545 			bp = getblk(vp, lbn, bcount, PCATCH, 0, 0);
546 		}
547 		if (!bp) {
548 			err = EINTR;
549 			break;
550 		}
551 		if (extending) {
552 			/*
553 			 * Extend file _after_ locking buffer so we won't race
554 			 * with other readers
555 			 */
556 			err = fuse_vnode_setsize(vp, uio->uio_offset + n, false);
557 			filesize = uio->uio_offset + n;
558 			getnanouptime(&fvdat->last_local_modify);
559 			fvdat->flag |= FN_SIZECHANGE;
560 			if (err) {
561 				brelse(bp);
562 				break;
563 			}
564 		}
565 
566 		SDT_PROBE6(fusefs, , io, write_biobackend_start,
567 			lbn, on, n, uio, bcount, direct_append);
568 		/*
569 	         * Issue a READ if B_CACHE is not set.  In special-append
570 	         * mode, B_CACHE is based on the buffer prior to the write
571 	         * op and is typically set, avoiding the read.  If a read
572 	         * is required in special append mode, the server will
573 	         * probably send us a short-read since we extended the file
574 	         * on our end, resulting in b_resid == 0 and, thusly,
575 	         * B_CACHE getting set.
576 	         *
577 	         * We can also avoid issuing the read if the write covers
578 	         * the entire buffer.  We have to make sure the buffer state
579 	         * is reasonable in this case since we will not be initiating
580 	         * I/O.  See the comments in kern/vfs_bio.c's getblk() for
581 	         * more information.
582 	         *
583 	         * B_CACHE may also be set due to the buffer being cached
584 	         * normally.
585 	         */
586 
587 		if (on == 0 && n == bcount) {
588 			bp->b_flags |= B_CACHE;
589 			bp->b_flags &= ~B_INVAL;
590 			bp->b_ioflags &= ~BIO_ERROR;
591 		}
592 		if ((bp->b_flags & B_CACHE) == 0) {
593 			bp->b_iocmd = BIO_READ;
594 			vfs_busy_pages(bp, 0);
595 			fuse_io_strategy(vp, bp);
596 			if ((err = bp->b_error)) {
597 				brelse(bp);
598 				break;
599 			}
600 			if (bp->b_resid > 0) {
601 				/*
602 				 * Short read indicates EOF.  Update file size
603 				 * from the server and try again.
604 				 */
605 				SDT_PROBE2(fusefs, , io, trace, 1,
606 					"Short read during a RMW");
607 				brelse(bp);
608 				err = fuse_vnode_size(vp, &filesize, cred,
609 				    curthread);
610 				if (err)
611 					break;
612 				else
613 					goto again;
614 			}
615 		}
616 		if (bp->b_wcred == NOCRED)
617 			bp->b_wcred = crhold(cred);
618 
619 		/*
620 	         * If dirtyend exceeds file size, chop it down.  This should
621 	         * not normally occur but there is an append race where it
622 	         * might occur XXX, so we log it.
623 	         *
624 	         * If the chopping creates a reverse-indexed or degenerate
625 	         * situation with dirtyoff/end, we 0 both of them.
626 	         */
627 		if (bp->b_dirtyend > bcount) {
628 			SDT_PROBE2(fusefs, , io, write_biobackend_append_race,
629 			    (long)bp->b_blkno * biosize,
630 			    bp->b_dirtyend - bcount);
631 			bp->b_dirtyend = bcount;
632 		}
633 		if (bp->b_dirtyoff >= bp->b_dirtyend)
634 			bp->b_dirtyoff = bp->b_dirtyend = 0;
635 
636 		/*
637 	         * If the new write will leave a contiguous dirty
638 	         * area, just update the b_dirtyoff and b_dirtyend,
639 	         * otherwise force a write rpc of the old dirty area.
640 	         *
641 	         * While it is possible to merge discontiguous writes due to
642 	         * our having a B_CACHE buffer ( and thus valid read data
643 	         * for the hole), we don't because it could lead to
644 	         * significant cache coherency problems with multiple clients,
645 	         * especially if locking is implemented later on.
646 	         *
647 	         * as an optimization we could theoretically maintain
648 	         * a linked list of discontinuous areas, but we would still
649 	         * have to commit them separately so there isn't much
650 	         * advantage to it except perhaps a bit of asynchronization.
651 	         */
652 
653 		if (bp->b_dirtyend > 0 &&
654 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
655 			/*
656 	                 * Yes, we mean it. Write out everything to "storage"
657 	                 * immediately, without hesitation. (Apart from other
658 	                 * reasons: the only way to know if a write is valid
659 	                 * if its actually written out.)
660 	                 */
661 			SDT_PROBE2(fusefs, , io, write_biobackend_issue, 0, bp);
662 			bwrite(bp);
663 			if (bp->b_error == EINTR) {
664 				err = EINTR;
665 				break;
666 			}
667 			goto again;
668 		}
669 		err = uiomove((char *)bp->b_data + on, n, uio);
670 
671 		if (err) {
672 			bp->b_ioflags |= BIO_ERROR;
673 			bp->b_error = err;
674 			brelse(bp);
675 			break;
676 			/* TODO: vfs_bio_clrbuf like ffs_write does? */
677 		}
678 		/*
679 	         * Only update dirtyoff/dirtyend if not a degenerate
680 	         * condition.
681 	         */
682 		if (n) {
683 			if (bp->b_dirtyend > 0) {
684 				bp->b_dirtyoff = MIN(on, bp->b_dirtyoff);
685 				bp->b_dirtyend = MAX((on + n), bp->b_dirtyend);
686 			} else {
687 				bp->b_dirtyoff = on;
688 				bp->b_dirtyend = on + n;
689 			}
690 			vfs_bio_set_valid(bp, on, n);
691 		}
692 
693 		vfs_bio_set_flags(bp, ioflag);
694 
695 		bp->b_flags |= B_FUSEFS_WRITE_CACHE;
696 		if (ioflag & IO_SYNC) {
697 			SDT_PROBE2(fusefs, , io, write_biobackend_issue, 2, bp);
698 			if (!(ioflag & IO_VMIO))
699 				bp->b_flags &= ~B_FUSEFS_WRITE_CACHE;
700 			err = bwrite(bp);
701 		} else if (vm_page_count_severe() ||
702 			    buf_dirty_count_severe() ||
703 			    (ioflag & IO_ASYNC)) {
704 			bp->b_flags |= B_CLUSTEROK;
705 			SDT_PROBE2(fusefs, , io, write_biobackend_issue, 3, bp);
706 			bawrite(bp);
707 		} else if (on == 0 && n == bcount) {
708 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
709 				bp->b_flags |= B_CLUSTEROK;
710 				SDT_PROBE2(fusefs, , io, write_biobackend_issue,
711 					4, bp);
712 				cluster_write(vp, &fvdat->clusterw, bp,
713 				    filesize, seqcount, 0);
714 			} else {
715 				SDT_PROBE2(fusefs, , io, write_biobackend_issue,
716 					5, bp);
717 				bawrite(bp);
718 			}
719 		} else if (ioflag & IO_DIRECT) {
720 			bp->b_flags |= B_CLUSTEROK;
721 			SDT_PROBE2(fusefs, , io, write_biobackend_issue, 6, bp);
722 			bawrite(bp);
723 		} else {
724 			bp->b_flags &= ~B_CLUSTEROK;
725 			SDT_PROBE2(fusefs, , io, write_biobackend_issue, 7, bp);
726 			bdwrite(bp);
727 		}
728 		if (err)
729 			break;
730 	} while (uio->uio_resid > 0 && n > 0);
731 
732 	vn_rlimit_fsizex_res(uio, r);
733 	return (err);
734 }
735 
736 int
737 fuse_io_strategy(struct vnode *vp, struct buf *bp)
738 {
739 	struct fuse_vnode_data *fvdat = VTOFUD(vp);
740 	struct fuse_filehandle *fufh;
741 	struct ucred *cred;
742 	struct uio *uiop;
743 	struct uio uio;
744 	struct iovec io;
745 	off_t filesize;
746 	int error = 0;
747 	int fflag;
748 	/* We don't know the true pid when we're dealing with the cache */
749 	pid_t pid = 0;
750 
751 	const int biosize = fuse_iosize(vp);
752 
753 	MPASS(vp->v_type == VREG || vp->v_type == VDIR);
754 	MPASS(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE);
755 
756 	fflag = bp->b_iocmd == BIO_READ ? FREAD : FWRITE;
757 	cred = bp->b_iocmd == BIO_READ ? bp->b_rcred : bp->b_wcred;
758 	error = fuse_filehandle_getrw(vp, fflag, &fufh, cred, pid);
759 	if (bp->b_iocmd == BIO_READ && error == EBADF) {
760 		/*
761 		 * This may be a read-modify-write operation on a cached file
762 		 * opened O_WRONLY.  The FUSE protocol allows this.
763 		 */
764 		error = fuse_filehandle_get(vp, FWRITE, &fufh, cred, pid);
765 	}
766 	if (error) {
767 		printf("FUSE: strategy: filehandles are closed\n");
768 		bp->b_ioflags |= BIO_ERROR;
769 		bp->b_error = error;
770 		bufdone(bp);
771 		return (error);
772 	}
773 
774 	uiop = &uio;
775 	uiop->uio_iov = &io;
776 	uiop->uio_iovcnt = 1;
777 	uiop->uio_segflg = UIO_SYSSPACE;
778 	uiop->uio_td = curthread;
779 
780 	/*
781          * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
782          * do this here so we do not have to do it in all the code that
783          * calls us.
784          */
785 	bp->b_flags &= ~B_INVAL;
786 	bp->b_ioflags &= ~BIO_ERROR;
787 
788 	KASSERT(!(bp->b_flags & B_DONE),
789 	    ("fuse_io_strategy: bp %p already marked done", bp));
790 	if (bp->b_iocmd == BIO_READ) {
791 		ssize_t left;
792 
793 		io.iov_len = uiop->uio_resid = bp->b_bcount;
794 		io.iov_base = bp->b_data;
795 		uiop->uio_rw = UIO_READ;
796 
797 		uiop->uio_offset = ((off_t)bp->b_lblkno) * biosize;
798 		error = fuse_read_directbackend(vp, uiop, cred, fufh);
799 		/*
800 		 * Store the amount we failed to read in the buffer's private
801 		 * field, so callers can truncate the file if necessary'
802 		 */
803 
804 		if (!error && uiop->uio_resid) {
805 			int nread = bp->b_bcount - uiop->uio_resid;
806 			left = uiop->uio_resid;
807 			bzero((char *)bp->b_data + nread, left);
808 
809 			if ((fvdat->flag & FN_SIZECHANGE) == 0) {
810 				/*
811 				 * A short read with no error, when not using
812 				 * direct io, and when no writes are cached,
813 				 * indicates EOF caused by a server-side
814 				 * truncation.  Clear the attr cache so we'll
815 				 * pick up the new file size and timestamps.
816 				 *
817 				 * We must still bzero the remaining buffer so
818 				 * uninitialized data doesn't get exposed by a
819 				 * future truncate that extends the file.
820 				 *
821 				 * To prevent lock order problems, we must
822 				 * truncate the file upstack, not here.
823 				 */
824 				SDT_PROBE2(fusefs, , io, trace, 1,
825 					"Short read of a clean file");
826 				fuse_vnode_clear_attr_cache(vp);
827 			} else {
828 				/*
829 				 * If dirty writes _are_ cached beyond EOF,
830 				 * that indicates a newly created hole that the
831 				 * server doesn't know about.  Those don't pose
832 				 * any problem.
833 				 * XXX: we don't currently track whether dirty
834 				 * writes are cached beyond EOF, before EOF, or
835 				 * both.
836 				 */
837 				SDT_PROBE2(fusefs, , io, trace, 1,
838 					"Short read of a dirty file");
839 				uiop->uio_resid = 0;
840 			}
841 		}
842 		if (error) {
843 			bp->b_ioflags |= BIO_ERROR;
844 			bp->b_error = error;
845 		}
846 	} else {
847 		/*
848 	         * Setup for actual write
849 	         */
850 		/*
851 		 * If the file's size is cached, use that value, even if the
852 		 * cache is expired.  At this point we're already committed to
853 		 * writing something.  If the FUSE server has changed the
854 		 * file's size behind our back, it's too late for us to do
855 		 * anything about it.  In particular, we can't invalidate any
856 		 * part of the file's buffers because VOP_STRATEGY is called
857 		 * with them already locked.
858 		 */
859 		filesize = fvdat->cached_attrs.va_size;
860 		/* filesize must've been cached by fuse_vnop_open.  */
861 		KASSERT(filesize != VNOVAL, ("filesize should've been cached"));
862 
863 		if ((off_t)bp->b_lblkno * biosize + bp->b_dirtyend > filesize)
864 			bp->b_dirtyend = filesize -
865 				(off_t)bp->b_lblkno * biosize;
866 
867 		if (bp->b_dirtyend > bp->b_dirtyoff) {
868 			io.iov_len = uiop->uio_resid = bp->b_dirtyend
869 			    - bp->b_dirtyoff;
870 			uiop->uio_offset = (off_t)bp->b_lblkno * biosize
871 			    + bp->b_dirtyoff;
872 			io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
873 			uiop->uio_rw = UIO_WRITE;
874 
875 			bool pages = bp->b_flags & B_FUSEFS_WRITE_CACHE;
876 			error = fuse_write_directbackend(vp, uiop, cred, fufh,
877 				filesize, 0, pages);
878 
879 			if (error == EINTR || error == ETIMEDOUT) {
880 				bp->b_flags &= ~(B_INVAL | B_NOCACHE);
881 				if ((bp->b_flags & B_PAGING) == 0) {
882 					bdirty(bp);
883 					bp->b_flags &= ~B_DONE;
884 				}
885 				if ((error == EINTR || error == ETIMEDOUT) &&
886 				    (bp->b_flags & B_ASYNC) == 0)
887 					bp->b_flags |= B_EINTR;
888 			} else {
889 				if (error) {
890 					bp->b_ioflags |= BIO_ERROR;
891 					bp->b_flags |= B_INVAL;
892 					bp->b_error = error;
893 				}
894 				bp->b_dirtyoff = bp->b_dirtyend = 0;
895 			}
896 		} else {
897 			bp->b_resid = 0;
898 			bufdone(bp);
899 			return (0);
900 		}
901 	}
902 	bp->b_resid = uiop->uio_resid;
903 	bufdone(bp);
904 	return (error);
905 }
906 
907 int
908 fuse_io_flushbuf(struct vnode *vp, int waitfor, struct thread *td)
909 {
910 
911 	return (vn_fsync_buf(vp, waitfor));
912 }
913 
914 /*
915  * Flush and invalidate all dirty buffers. If another process is already
916  * doing the flush, just wait for completion.
917  */
918 int
919 fuse_io_invalbuf(struct vnode *vp, struct thread *td)
920 {
921 	struct fuse_vnode_data *fvdat = VTOFUD(vp);
922 	int error = 0;
923 
924 	if (VN_IS_DOOMED(vp))
925 		return 0;
926 
927 	ASSERT_VOP_ELOCKED(vp, "fuse_io_invalbuf");
928 
929 	while (fvdat->flag & FN_FLUSHINPROG) {
930 		struct proc *p = td->td_proc;
931 
932 		if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF)
933 			return EIO;
934 		fvdat->flag |= FN_FLUSHWANT;
935 		tsleep(&fvdat->flag, PRIBIO + 2, "fusevinv", 2 * hz);
936 		error = 0;
937 		if (p != NULL) {
938 			PROC_LOCK(p);
939 			if (SIGNOTEMPTY(p->p_siglist) ||
940 			    SIGNOTEMPTY(td->td_siglist))
941 				error = EINTR;
942 			PROC_UNLOCK(p);
943 		}
944 		if (error == EINTR)
945 			return EINTR;
946 	}
947 	fvdat->flag |= FN_FLUSHINPROG;
948 
949 	vnode_pager_clean_sync(vp);
950 	error = vinvalbuf(vp, V_SAVE, PCATCH, 0);
951 	while (error) {
952 		if (error == ERESTART || error == EINTR) {
953 			fvdat->flag &= ~FN_FLUSHINPROG;
954 			if (fvdat->flag & FN_FLUSHWANT) {
955 				fvdat->flag &= ~FN_FLUSHWANT;
956 				wakeup(&fvdat->flag);
957 			}
958 			return EINTR;
959 		}
960 		error = vinvalbuf(vp, V_SAVE, PCATCH, 0);
961 	}
962 	fvdat->flag &= ~FN_FLUSHINPROG;
963 	if (fvdat->flag & FN_FLUSHWANT) {
964 		fvdat->flag &= ~FN_FLUSHWANT;
965 		wakeup(&fvdat->flag);
966 	}
967 	return (error);
968 }
969