xref: /freebsd/sys/fs/ext2fs/ext2_alloc.c (revision a98ff317388a00b992f1bf8404dee596f9383f5e)
1 /*-
2  *  modified for Lites 1.1
3  *
4  *  Aug 1995, Godmar Back (gback@cs.utah.edu)
5  *  University of Utah, Department of Computer Science
6  */
7 /*-
8  * Copyright (c) 1982, 1986, 1989, 1993
9  *	The Regents of the University of California.  All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
36  * $FreeBSD$
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/conf.h>
42 #include <sys/vnode.h>
43 #include <sys/stat.h>
44 #include <sys/mount.h>
45 #include <sys/sysctl.h>
46 #include <sys/syslog.h>
47 #include <sys/buf.h>
48 
49 #include <fs/ext2fs/fs.h>
50 #include <fs/ext2fs/inode.h>
51 #include <fs/ext2fs/ext2_mount.h>
52 #include <fs/ext2fs/ext2fs.h>
53 #include <fs/ext2fs/ext2_extern.h>
54 
55 static daddr_t	ext2_alloccg(struct inode *, int, daddr_t, int);
56 static daddr_t	ext2_clusteralloc(struct inode *, int, daddr_t, int);
57 static u_long	ext2_dirpref(struct inode *);
58 static void	ext2_fserr(struct m_ext2fs *, uid_t, char *);
59 static u_long	ext2_hashalloc(struct inode *, int, long, int,
60 				daddr_t (*)(struct inode *, int, daddr_t,
61 						int));
62 static daddr_t	ext2_nodealloccg(struct inode *, int, daddr_t, int);
63 static daddr_t  ext2_mapsearch(struct m_ext2fs *, char *, daddr_t);
64 
65 /*
66  * Allocate a block in the filesystem.
67  *
68  * A preference may be optionally specified. If a preference is given
69  * the following hierarchy is used to allocate a block:
70  *   1) allocate the requested block.
71  *   2) allocate a rotationally optimal block in the same cylinder.
72  *   3) allocate a block in the same cylinder group.
73  *   4) quadradically rehash into other cylinder groups, until an
74  *        available block is located.
75  * If no block preference is given the following hierarchy is used
76  * to allocate a block:
77  *   1) allocate a block in the cylinder group that contains the
78  *        inode for the file.
79  *   2) quadradically rehash into other cylinder groups, until an
80  *        available block is located.
81  */
82 int
83 ext2_alloc(struct inode *ip, int32_t lbn, int32_t bpref, int size,
84     struct ucred *cred, int32_t *bnp)
85 {
86 	struct m_ext2fs *fs;
87 	struct ext2mount *ump;
88 	int32_t bno;
89 	int cg;
90 	*bnp = 0;
91 	fs = ip->i_e2fs;
92 	ump = ip->i_ump;
93 	mtx_assert(EXT2_MTX(ump), MA_OWNED);
94 #ifdef INVARIANTS
95 	if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) {
96 		vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n",
97 		    (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt);
98 		panic("ext2_alloc: bad size");
99 	}
100 	if (cred == NOCRED)
101 		panic("ext2_alloc: missing credential");
102 #endif /* INVARIANTS */
103 	if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0)
104 		goto nospace;
105 	if (cred->cr_uid != 0 &&
106 		fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount)
107 		goto nospace;
108 	if (bpref >= fs->e2fs->e2fs_bcount)
109 		bpref = 0;
110 	if (bpref == 0)
111 		cg = ino_to_cg(fs, ip->i_number);
112 	else
113 		cg = dtog(fs, bpref);
114 	bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize,
115 				      ext2_alloccg);
116 	if (bno > 0) {
117 		/* set next_alloc fields as done in block_getblk */
118 		ip->i_next_alloc_block = lbn;
119 		ip->i_next_alloc_goal = bno;
120 
121 		ip->i_blocks += btodb(fs->e2fs_bsize);
122 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
123 		*bnp = bno;
124 		return (0);
125         }
126 nospace:
127 	EXT2_UNLOCK(ump);
128 	ext2_fserr(fs, cred->cr_uid, "filesystem full");
129 	uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt);
130 	return (ENOSPC);
131 }
132 
133 /*
134  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
135  *
136  * The vnode and an array of buffer pointers for a range of sequential
137  * logical blocks to be made contiguous is given. The allocator attempts
138  * to find a range of sequential blocks starting as close as possible to
139  * an fs_rotdelay offset from the end of the allocation for the logical
140  * block immediately preceding the current range. If successful, the
141  * physical block numbers in the buffer pointers and in the inode are
142  * changed to reflect the new allocation. If unsuccessful, the allocation
143  * is left unchanged. The success in doing the reallocation is returned.
144  * Note that the error return is not reflected back to the user. Rather
145  * the previous block allocation will be used.
146  */
147 
148 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem");
149 
150 static int doasyncfree = 0;
151 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
152     "Use asychronous writes to update block pointers when freeing blocks");
153 
154 static int doreallocblks = 0;
155 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
156 
157 int
158 ext2_reallocblks(struct vop_reallocblks_args *ap)
159 {
160 	struct m_ext2fs *fs;
161 	struct inode *ip;
162 	struct vnode *vp;
163 	struct buf *sbp, *ebp;
164 	uint32_t *bap, *sbap, *ebap = 0;
165 	struct ext2mount *ump;
166 	struct cluster_save *buflist;
167 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
168 	e2fs_lbn_t start_lbn, end_lbn;
169 	int32_t soff, newblk, blkno;
170 	int i, len, start_lvl, end_lvl, pref, ssize;
171 
172 	if (doreallocblks == 0)
173 		  return (ENOSPC);
174 
175 	vp = ap->a_vp;
176 	ip = VTOI(vp);
177 	fs = ip->i_e2fs;
178 	ump = ip->i_ump;
179 
180 	if (fs->e2fs_contigsumsize <= 0)
181 		return (ENOSPC);
182 
183 	buflist = ap->a_buflist;
184 	len = buflist->bs_nchildren;
185 	start_lbn = buflist->bs_children[0]->b_lblkno;
186 	end_lbn = start_lbn + len - 1;
187 #ifdef INVARIANTS
188 	for (i = 1; i < len; i++)
189 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
190 			panic("ext2_reallocblks: non-cluster");
191 #endif
192 	/*
193 	 * If the cluster crosses the boundary for the first indirect
194 	 * block, leave space for the indirect block. Indirect blocks
195 	 * are initially laid out in a position after the last direct
196 	 * block. Block reallocation would usually destroy locality by
197 	 * moving the indirect block out of the way to make room for
198 	 * data blocks if we didn't compensate here. We should also do
199 	 * this for other indirect block boundaries, but it is only
200 	 * important for the first one.
201 	 */
202 	if (start_lbn < NDADDR && end_lbn >= NDADDR)
203 		return (ENOSPC);
204 	/*
205 	 * If the latest allocation is in a new cylinder group, assume that
206 	 * the filesystem has decided to move and do not force it back to
207 	 * the previous cylinder group.
208 	 */
209 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
210 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
211 		return (ENOSPC);
212 	if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
213 	    ext2_getlbns(vp, end_lbn, end_ap, &end_lvl))
214 		return (ENOSPC);
215 	/*
216 	 * Get the starting offset and block map for the first block.
217 	 */
218 	if (start_lvl == 0) {
219 		sbap = &ip->i_db[0];
220 		soff = start_lbn;
221 	} else {
222 		idp = &start_ap[start_lvl - 1];
223 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) {
224 			brelse(sbp);
225 			return (ENOSPC);
226 		}
227 		sbap = (u_int *)sbp->b_data;
228 		soff = idp->in_off;
229 	}
230 	/*
231 	 * If the block range spans two block maps, get the second map.
232 	 */
233 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
234 		ssize = len;
235 	} else {
236 #ifdef INVARIANTS
237 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
238 			panic("ext2_reallocblks: start == end");
239 #endif
240 		ssize = len - (idp->in_off + 1);
241 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp))
242 			goto fail;
243 		ebap = (u_int *)ebp->b_data;
244 	}
245 	/*
246 	 * Find the preferred location for the cluster.
247 	 */
248 	EXT2_LOCK(ump);
249 	pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0);
250 	/*
251 	 * Search the block map looking for an allocation of the desired size.
252 	 */
253 	if ((newblk = (int32_t)ext2_hashalloc(ip, dtog(fs, pref), pref,
254 	    len, ext2_clusteralloc)) == 0){
255 		EXT2_UNLOCK(ump);
256 		goto fail;
257 	}
258 	/*
259 	 * We have found a new contiguous block.
260 	 *
261 	 * First we have to replace the old block pointers with the new
262 	 * block pointers in the inode and indirect blocks associated
263 	 * with the file.
264 	 */
265 #ifdef DEBUG
266 	printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
267 	    (intmax_t)start_lbn, (intmax_t)end_lbn);
268 #endif /* DEBUG */
269 	blkno = newblk;
270 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
271 		if (i == ssize) {
272 			bap = ebap;
273 			soff = -i;
274 		}
275 #ifdef INVARIANTS
276 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
277 			panic("ext2_reallocblks: alloc mismatch");
278 #endif
279 #ifdef DEBUG
280 	printf(" %d,", *bap);
281 #endif /* DEBUG */
282 		*bap++ = blkno;
283 	}
284 	/*
285 	 * Next we must write out the modified inode and indirect blocks.
286 	 * For strict correctness, the writes should be synchronous since
287 	 * the old block values may have been written to disk. In practise
288 	 * they are almost never written, but if we are concerned about
289 	 * strict correctness, the `doasyncfree' flag should be set to zero.
290 	 *
291 	 * The test on `doasyncfree' should be changed to test a flag
292 	 * that shows whether the associated buffers and inodes have
293 	 * been written. The flag should be set when the cluster is
294 	 * started and cleared whenever the buffer or inode is flushed.
295 	 * We can then check below to see if it is set, and do the
296 	 * synchronous write only when it has been cleared.
297 	 */
298 	if (sbap != &ip->i_db[0]) {
299 		if (doasyncfree)
300 			bdwrite(sbp);
301 		else
302 			bwrite(sbp);
303 	} else {
304 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
305 		if (!doasyncfree)
306 			ext2_update(vp, 1);
307 	}
308 	if (ssize < len) {
309 		if (doasyncfree)
310 			bdwrite(ebp);
311 		else
312 			bwrite(ebp);
313 	}
314 	/*
315 	 * Last, free the old blocks and assign the new blocks to the buffers.
316 	 */
317 #ifdef DEBUG
318 	printf("\n\tnew:");
319 #endif /* DEBUG */
320 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
321 		ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
322 		    fs->e2fs_bsize);
323 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
324 #ifdef DEBUG
325 		printf(" %d,", blkno);
326 #endif /* DEBUG */
327 	}
328 #ifdef DEBUG
329 	printf("\n");
330 #endif /* DEBUG */
331 	return (0);
332 
333 fail:
334 	if (ssize < len)
335 		brelse(ebp);
336 	if (sbap != &ip->i_db[0])
337 		brelse(sbp);
338 	return (ENOSPC);
339 }
340 
341 /*
342  * Allocate an inode in the filesystem.
343  *
344  */
345 int
346 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
347 {
348 	struct timespec ts;
349 	struct inode *pip;
350 	struct m_ext2fs *fs;
351 	struct inode *ip;
352 	struct ext2mount *ump;
353 	ino_t ino, ipref;
354 	int i, error, cg;
355 
356 	*vpp = NULL;
357 	pip = VTOI(pvp);
358 	fs = pip->i_e2fs;
359 	ump = pip->i_ump;
360 
361 	EXT2_LOCK(ump);
362 	if (fs->e2fs->e2fs_ficount == 0)
363 		goto noinodes;
364 	/*
365 	 * If it is a directory then obtain a cylinder group based on
366 	 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is
367 	 * always the next inode.
368 	 */
369 	if ((mode & IFMT) == IFDIR) {
370 		cg = ext2_dirpref(pip);
371 		if (fs->e2fs_contigdirs[cg] < 255)
372 			fs->e2fs_contigdirs[cg]++;
373 	} else {
374 		cg = ino_to_cg(fs, pip->i_number);
375 		if (fs->e2fs_contigdirs[cg] > 0)
376 			fs->e2fs_contigdirs[cg]--;
377 	}
378 	ipref = cg * fs->e2fs->e2fs_ipg + 1;
379 	ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg);
380 
381 	if (ino == 0)
382 		goto noinodes;
383 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
384 	if (error) {
385 		ext2_vfree(pvp, ino, mode);
386 		return (error);
387 	}
388 	ip = VTOI(*vpp);
389 
390 	/*
391 	 * The question is whether using VGET was such good idea at all:
392 	 * Linux doesn't read the old inode in when it is allocating a
393 	 * new one. I will set at least i_size and i_blocks to zero.
394 	 */
395 	ip->i_size = 0;
396 	ip->i_blocks = 0;
397 	ip->i_mode = 0;
398 	ip->i_flags = 0;
399         /* now we want to make sure that the block pointers are zeroed out */
400         for (i = 0; i < NDADDR; i++)
401                 ip->i_db[i] = 0;
402         for (i = 0; i < NIADDR; i++)
403                 ip->i_ib[i] = 0;
404 
405 	/*
406 	 * Set up a new generation number for this inode.
407 	 * XXX check if this makes sense in ext2
408 	 */
409 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
410 		ip->i_gen = random() / 2 + 1;
411 
412 	vfs_timestamp(&ts);
413 	ip->i_birthtime = ts.tv_sec;
414 	ip->i_birthnsec = ts.tv_nsec;
415 
416 /*
417 printf("ext2_valloc: allocated inode %d\n", ino);
418 */
419 	return (0);
420 noinodes:
421 	EXT2_UNLOCK(ump);
422 	ext2_fserr(fs, cred->cr_uid, "out of inodes");
423 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt);
424 	return (ENOSPC);
425 }
426 
427 /*
428  * Find a cylinder to place a directory.
429  *
430  * The policy implemented by this algorithm is to allocate a
431  * directory inode in the same cylinder group as its parent
432  * directory, but also to reserve space for its files inodes
433  * and data. Restrict the number of directories which may be
434  * allocated one after another in the same cylinder group
435  * without intervening allocation of files.
436  *
437  * If we allocate a first level directory then force allocation
438  * in another cylinder group.
439  *
440  */
441 static u_long
442 ext2_dirpref(struct inode *pip)
443 {
444 	struct m_ext2fs *fs;
445         int cg, prefcg, dirsize, cgsize;
446 	u_int avgifree, avgbfree, avgndir, curdirsize;
447 	u_int minifree, minbfree, maxndir;
448 	u_int mincg, minndir;
449 	u_int maxcontigdirs;
450 
451 	mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED);
452 	fs = pip->i_e2fs;
453 
454  	avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount;
455 	avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount;
456 	avgndir  = fs->e2fs_total_dir / fs->e2fs_gcount;
457 
458 	/*
459 	 * Force allocation in another cg if creating a first level dir.
460 	 */
461 	ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref");
462 	if (ITOV(pip)->v_vflag & VV_ROOT) {
463 		prefcg = arc4random() % fs->e2fs_gcount;
464 		mincg = prefcg;
465 		minndir = fs->e2fs_ipg;
466 		for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
467 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
468 			    fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
469 			    fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
470 				mincg = cg;
471 				minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
472 			}
473 		for (cg = 0; cg < prefcg; cg++)
474 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
475                             fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
476                             fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
477                                 mincg = cg;
478                                 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
479                         }
480 
481 		return (mincg);
482 	}
483 
484 	/*
485 	 * Count various limits which used for
486 	 * optimal allocation of a directory inode.
487 	 */
488 	maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg);
489 	minifree = avgifree - avgifree / 4;
490 	if (minifree < 1)
491 		minifree = 1;
492 	minbfree = avgbfree - avgbfree / 4;
493 	if (minbfree < 1)
494 		minbfree = 1;
495 	cgsize = fs->e2fs_fsize * fs->e2fs_fpg;
496 	dirsize = AVGDIRSIZE;
497 	curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0;
498 	if (dirsize < curdirsize)
499 		dirsize = curdirsize;
500 	if (dirsize <= 0)
501 		maxcontigdirs = 0;		/* dirsize overflowed */
502 	else
503 		maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255);
504 	maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR);
505 	if (maxcontigdirs == 0)
506 		maxcontigdirs = 1;
507 
508 	/*
509 	 * Limit number of dirs in one cg and reserve space for
510 	 * regular files, but only if we have no deficit in
511 	 * inodes or space.
512 	 */
513 	prefcg = ino_to_cg(fs, pip->i_number);
514 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
515 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
516 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
517 	    	    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
518 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
519 				return (cg);
520 		}
521 	for (cg = 0; cg < prefcg; cg++)
522 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
523 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
524 	    	    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
525 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
526 				return (cg);
527 		}
528 	/*
529 	 * This is a backstop when we have deficit in space.
530 	 */
531 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
532 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
533 			return (cg);
534 	for (cg = 0; cg < prefcg; cg++)
535 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
536 			break;
537 	return (cg);
538 }
539 
540 /*
541  * Select the desired position for the next block in a file.
542  *
543  * we try to mimic what Remy does in inode_getblk/block_getblk
544  *
545  * we note: blocknr == 0 means that we're about to allocate either
546  * a direct block or a pointer block at the first level of indirection
547  * (In other words, stuff that will go in i_db[] or i_ib[])
548  *
549  * blocknr != 0 means that we're allocating a block that is none
550  * of the above. Then, blocknr tells us the number of the block
551  * that will hold the pointer
552  */
553 int32_t
554 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, int32_t *bap,
555     int32_t blocknr)
556 {
557 	int	tmp;
558 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
559 
560 	/* if the next block is actually what we thought it is,
561 	   then set the goal to what we thought it should be
562 	*/
563 	if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0)
564 		return ip->i_next_alloc_goal;
565 
566 	/* now check whether we were provided with an array that basically
567 	   tells us previous blocks to which we want to stay closeby
568 	*/
569 	if (bap)
570                 for (tmp = indx - 1; tmp >= 0; tmp--)
571 			if (bap[tmp])
572 				return bap[tmp];
573 
574 	/* else let's fall back to the blocknr, or, if there is none,
575 	   follow the rule that a block should be allocated near its inode
576 	*/
577 	return blocknr ? blocknr :
578 			(int32_t)(ip->i_block_group *
579 			EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) +
580 			ip->i_e2fs->e2fs->e2fs_first_dblock;
581 }
582 
583 /*
584  * Implement the cylinder overflow algorithm.
585  *
586  * The policy implemented by this algorithm is:
587  *   1) allocate the block in its requested cylinder group.
588  *   2) quadradically rehash on the cylinder group number.
589  *   3) brute force search for a free block.
590  */
591 static u_long
592 ext2_hashalloc(struct inode *ip, int cg, long pref, int size,
593                 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
594 {
595 	struct m_ext2fs *fs;
596 	ino_t result;
597 	int i, icg = cg;
598 
599 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
600 	fs = ip->i_e2fs;
601 	/*
602 	 * 1: preferred cylinder group
603 	 */
604 	result = (*allocator)(ip, cg, pref, size);
605 	if (result)
606 		return (result);
607 	/*
608 	 * 2: quadratic rehash
609 	 */
610 	for (i = 1; i < fs->e2fs_gcount; i *= 2) {
611 		cg += i;
612 		if (cg >= fs->e2fs_gcount)
613 			cg -= fs->e2fs_gcount;
614 		result = (*allocator)(ip, cg, 0, size);
615 		if (result)
616 			return (result);
617 	}
618 	/*
619 	 * 3: brute force search
620 	 * Note that we start at i == 2, since 0 was checked initially,
621 	 * and 1 is always checked in the quadratic rehash.
622 	 */
623 	cg = (icg + 2) % fs->e2fs_gcount;
624 	for (i = 2; i < fs->e2fs_gcount; i++) {
625 		result = (*allocator)(ip, cg, 0, size);
626 		if (result)
627 			return (result);
628 		cg++;
629 		if (cg == fs->e2fs_gcount)
630 			cg = 0;
631 	}
632 	return (0);
633 }
634 
635 /*
636  * Determine whether a block can be allocated.
637  *
638  * Check to see if a block of the appropriate size is available,
639  * and if it is, allocate it.
640  */
641 static daddr_t
642 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
643 {
644 	struct m_ext2fs *fs;
645 	struct buf *bp;
646 	struct ext2mount *ump;
647 	daddr_t bno, runstart, runlen;
648 	int bit, loc, end, error, start;
649 	char *bbp;
650 	/* XXX ondisk32 */
651 	fs = ip->i_e2fs;
652 	ump = ip->i_ump;
653 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0)
654 		return (0);
655 	EXT2_UNLOCK(ump);
656 	error = bread(ip->i_devvp, fsbtodb(fs,
657 		fs->e2fs_gd[cg].ext2bgd_b_bitmap),
658 		(int)fs->e2fs_bsize, NOCRED, &bp);
659 	if (error) {
660 		brelse(bp);
661 		EXT2_LOCK(ump);
662 		return (0);
663 	}
664 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) {
665 		/*
666 		 * Another thread allocated the last block in this
667 		 * group while we were waiting for the buffer.
668 		 */
669 		brelse(bp);
670 		EXT2_LOCK(ump);
671 		return (0);
672 	}
673 	bbp = (char *)bp->b_data;
674 
675 	if (dtog(fs, bpref) != cg)
676 		bpref = 0;
677 	if (bpref != 0) {
678 		bpref = dtogd(fs, bpref);
679 		/*
680 		 * if the requested block is available, use it
681 		 */
682 		if (isclr(bbp, bpref)) {
683 			bno = bpref;
684 			goto gotit;
685 		}
686 	}
687 	/*
688 	 * no blocks in the requested cylinder, so take next
689 	 * available one in this cylinder group.
690 	 * first try to get 8 contigous blocks, then fall back to a single
691 	 * block.
692 	 */
693 	if (bpref)
694 		start = dtogd(fs, bpref) / NBBY;
695 	else
696 		start = 0;
697 	end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
698 retry:
699 	runlen = 0;
700 	runstart = 0;
701 	for (loc = start; loc < end; loc++) {
702 		if (bbp[loc] == (char)0xff) {
703 			runlen = 0;
704 			continue;
705 		}
706 
707 		/* Start of a run, find the number of high clear bits. */
708 		if (runlen == 0) {
709 			bit = fls(bbp[loc]);
710 			runlen = NBBY - bit;
711 			runstart = loc * NBBY + bit;
712 		} else if (bbp[loc] == 0) {
713 			/* Continue a run. */
714 			runlen += NBBY;
715 		} else {
716 			/*
717 			 * Finish the current run.  If it isn't long
718 			 * enough, start a new one.
719 			 */
720 			bit = ffs(bbp[loc]) - 1;
721 			runlen += bit;
722 			if (runlen >= 8) {
723 				bno = runstart;
724 				goto gotit;
725 			}
726 
727 			/* Run was too short, start a new one. */
728 			bit = fls(bbp[loc]);
729 			runlen = NBBY - bit;
730 			runstart = loc * NBBY + bit;
731 		}
732 
733 		/* If the current run is long enough, use it. */
734 		if (runlen >= 8) {
735 			bno = runstart;
736 			goto gotit;
737 		}
738 	}
739 	if (start != 0) {
740 		end = start;
741 		start = 0;
742 		goto retry;
743 	}
744 
745 	bno = ext2_mapsearch(fs, bbp, bpref);
746 	if (bno < 0){
747 		brelse(bp);
748 		EXT2_LOCK(ump);
749 		return (0);
750 	}
751 gotit:
752 #ifdef INVARIANTS
753 	if (isset(bbp, bno)) {
754 		printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n",
755 			cg, (intmax_t)bno, fs->e2fs_fsmnt);
756 		panic("ext2fs_alloccg: dup alloc");
757 	}
758 #endif
759 	setbit(bbp, bno);
760 	EXT2_LOCK(ump);
761 	ext2_clusteracct(fs, bbp, cg, bno, -1);
762 	fs->e2fs->e2fs_fbcount--;
763 	fs->e2fs_gd[cg].ext2bgd_nbfree--;
764 	fs->e2fs_fmod = 1;
765 	EXT2_UNLOCK(ump);
766 	bdwrite(bp);
767 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
768 }
769 
770 /*
771  * Determine whether a cluster can be allocated.
772  */
773 static daddr_t
774 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
775 {
776 	struct m_ext2fs *fs;
777 	struct ext2mount *ump;
778 	struct buf *bp;
779 	char *bbp;
780 	int bit, error, got, i, loc, run;
781 	int32_t *lp;
782 	daddr_t bno;
783 
784 	fs = ip->i_e2fs;
785 	ump = ip->i_ump;
786 
787 	if (fs->e2fs_maxcluster[cg] < len)
788 		return (0);
789 
790 	EXT2_UNLOCK(ump);
791 	error = bread(ip->i_devvp,
792 	    fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
793 	    (int)fs->e2fs_bsize, NOCRED, &bp);
794 	if (error)
795 		goto fail_lock;
796 
797 	bbp = (char *)bp->b_data;
798 	EXT2_LOCK(ump);
799 	/*
800 	 * Check to see if a cluster of the needed size (or bigger) is
801 	 * available in this cylinder group.
802 	 */
803 	lp = &fs->e2fs_clustersum[cg].cs_sum[len];
804 	for (i = len; i <= fs->e2fs_contigsumsize; i++)
805 		if (*lp++ > 0)
806 			break;
807 	if (i > fs->e2fs_contigsumsize) {
808 		/*
809 		 * Update the cluster summary information to reflect
810 		 * the true maximum-sized cluster so that future cluster
811 		 * allocation requests can avoid reading the bitmap only
812 		 * to find no cluster.
813 		 */
814 		lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1];
815 			for (i = len - 1; i > 0; i--)
816 				if (*lp-- > 0)
817 					break;
818 		fs->e2fs_maxcluster[cg] = i;
819 		goto fail;
820 	}
821 	EXT2_UNLOCK(ump);
822 
823 	/* Search the bitmap to find a big enough cluster like in FFS. */
824 	if (dtog(fs, bpref) != cg)
825 		bpref = 0;
826 	if (bpref != 0)
827 		bpref = dtogd(fs, bpref);
828 	loc = bpref / NBBY;
829 	bit = 1 << (bpref % NBBY);
830 	for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) {
831 		if ((bbp[loc] & bit) != 0)
832 			run = 0;
833 		else {
834 			run++;
835 			if (run == len)
836 				break;
837 		}
838 		if ((got & (NBBY - 1)) != (NBBY - 1))
839 			bit <<= 1;
840 		else {
841 			loc++;
842 			bit = 1;
843 		}
844 	}
845 
846 	if (got >= fs->e2fs->e2fs_fpg)
847 		goto fail_lock;
848 
849 	/* Allocate the cluster that we found. */
850 	for (i = 1; i < len; i++)
851 		if (!isclr(bbp, got - run + i))
852 			panic("ext2_clusteralloc: map mismatch");
853 
854 	bno = got - run + 1;
855 	if (bno >= fs->e2fs->e2fs_fpg)
856 		panic("ext2_clusteralloc: allocated out of group");
857 
858 	EXT2_LOCK(ump);
859 	for (i = 0; i < len; i += fs->e2fs_fpb) {
860 		setbit(bbp, bno + i);
861 		ext2_clusteracct(fs, bbp, cg, bno + i, -1);
862 		fs->e2fs->e2fs_fbcount--;
863 		fs->e2fs_gd[cg].ext2bgd_nbfree--;
864 	}
865 	fs->e2fs_fmod = 1;
866 	EXT2_UNLOCK(ump);
867 
868 	bdwrite(bp);
869 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
870 
871 fail_lock:
872 	EXT2_LOCK(ump);
873 fail:
874 	brelse(bp);
875 	return (0);
876 }
877 
878 /*
879  * Determine whether an inode can be allocated.
880  *
881  * Check to see if an inode is available, and if it is,
882  * allocate it using tode in the specified cylinder group.
883  */
884 static daddr_t
885 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
886 {
887 	struct m_ext2fs *fs;
888 	struct buf *bp;
889 	struct ext2mount *ump;
890 	int error, start, len;
891 	char *ibp, *loc;
892 	ipref--; /* to avoid a lot of (ipref -1) */
893 	if (ipref == -1)
894 		ipref = 0;
895 	fs = ip->i_e2fs;
896 	ump = ip->i_ump;
897 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0)
898 		return (0);
899 	EXT2_UNLOCK(ump);
900 	error = bread(ip->i_devvp, fsbtodb(fs,
901 		fs->e2fs_gd[cg].ext2bgd_i_bitmap),
902 		(int)fs->e2fs_bsize, NOCRED, &bp);
903 	if (error) {
904 		brelse(bp);
905 		EXT2_LOCK(ump);
906 		return (0);
907 	}
908 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) {
909 		/*
910 		 * Another thread allocated the last i-node in this
911 		 * group while we were waiting for the buffer.
912 		 */
913 		brelse(bp);
914 		EXT2_LOCK(ump);
915 		return (0);
916 	}
917 	ibp = (char *)bp->b_data;
918 	if (ipref) {
919 		ipref %= fs->e2fs->e2fs_ipg;
920 		if (isclr(ibp, ipref))
921 			goto gotit;
922 	}
923 	start = ipref / NBBY;
924 	len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
925 	loc = memcchr(&ibp[start], 0xff, len);
926 	if (loc == NULL) {
927 		len = start + 1;
928 		start = 0;
929 		loc = memcchr(&ibp[start], 0xff, len);
930 		if (loc == NULL) {
931 			printf("cg = %d, ipref = %lld, fs = %s\n",
932 				cg, (long long)ipref, fs->e2fs_fsmnt);
933 			panic("ext2fs_nodealloccg: map corrupted");
934 			/* NOTREACHED */
935 		}
936 	}
937 	ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1;
938 gotit:
939 	setbit(ibp, ipref);
940 	EXT2_LOCK(ump);
941 	fs->e2fs_gd[cg].ext2bgd_nifree--;
942 	fs->e2fs->e2fs_ficount--;
943 	fs->e2fs_fmod = 1;
944 	if ((mode & IFMT) == IFDIR) {
945 		fs->e2fs_gd[cg].ext2bgd_ndirs++;
946 		fs->e2fs_total_dir++;
947 	}
948 	EXT2_UNLOCK(ump);
949 	bdwrite(bp);
950 	return (cg * fs->e2fs->e2fs_ipg + ipref +1);
951 }
952 
953 /*
954  * Free a block or fragment.
955  *
956  */
957 void
958 ext2_blkfree(struct inode *ip, int32_t bno, long size)
959 {
960 	struct m_ext2fs *fs;
961 	struct buf *bp;
962 	struct ext2mount *ump;
963 	int cg, error;
964 	char *bbp;
965 
966 	fs = ip->i_e2fs;
967 	ump = ip->i_ump;
968 	cg = dtog(fs, bno);
969 	if ((u_int)bno >= fs->e2fs->e2fs_bcount) {
970                 printf("bad block %lld, ino %llu\n", (long long)bno,
971                     (unsigned long long)ip->i_number);
972                 ext2_fserr(fs, ip->i_uid, "bad block");
973                 return;
974         }
975         error = bread(ip->i_devvp,
976                 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
977                 (int)fs->e2fs_bsize, NOCRED, &bp);
978         if (error) {
979                 brelse(bp);
980                 return;
981         }
982         bbp = (char *)bp->b_data;
983         bno = dtogd(fs, bno);
984         if (isclr(bbp, bno)) {
985                 printf("block = %lld, fs = %s\n",
986                      (long long)bno, fs->e2fs_fsmnt);
987                 panic("ext2_blkfree: freeing free block");
988         }
989         clrbit(bbp, bno);
990 	EXT2_LOCK(ump);
991 	ext2_clusteracct(fs, bbp, cg, bno, 1);
992         fs->e2fs->e2fs_fbcount++;
993         fs->e2fs_gd[cg].ext2bgd_nbfree++;
994         fs->e2fs_fmod = 1;
995 	EXT2_UNLOCK(ump);
996         bdwrite(bp);
997 }
998 
999 /*
1000  * Free an inode.
1001  *
1002  */
1003 int
1004 ext2_vfree(struct vnode *pvp, ino_t ino, int mode)
1005 {
1006 	struct m_ext2fs *fs;
1007 	struct inode *pip;
1008 	struct buf *bp;
1009 	struct ext2mount *ump;
1010 	int error, cg;
1011 	char * ibp;
1012 
1013 	pip = VTOI(pvp);
1014 	fs = pip->i_e2fs;
1015 	ump = pip->i_ump;
1016 	if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount)
1017 		panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s",
1018 		    pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt);
1019 
1020 	cg = ino_to_cg(fs, ino);
1021 	error = bread(pip->i_devvp,
1022 		fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap),
1023 		(int)fs->e2fs_bsize, NOCRED, &bp);
1024 	if (error) {
1025 		brelse(bp);
1026 		return (0);
1027 	}
1028 	ibp = (char *)bp->b_data;
1029 	ino = (ino - 1) % fs->e2fs->e2fs_ipg;
1030 	if (isclr(ibp, ino)) {
1031 		printf("ino = %llu, fs = %s\n",
1032 			 (unsigned long long)ino, fs->e2fs_fsmnt);
1033 		if (fs->e2fs_ronly == 0)
1034 			panic("ext2_vfree: freeing free inode");
1035 	}
1036 	clrbit(ibp, ino);
1037 	EXT2_LOCK(ump);
1038 	fs->e2fs->e2fs_ficount++;
1039 	fs->e2fs_gd[cg].ext2bgd_nifree++;
1040 	if ((mode & IFMT) == IFDIR) {
1041 		fs->e2fs_gd[cg].ext2bgd_ndirs--;
1042 		fs->e2fs_total_dir--;
1043 	}
1044 	fs->e2fs_fmod = 1;
1045 	EXT2_UNLOCK(ump);
1046 	bdwrite(bp);
1047 	return (0);
1048 }
1049 
1050 /*
1051  * Find a block in the specified cylinder group.
1052  *
1053  * It is a panic if a request is made to find a block if none are
1054  * available.
1055  */
1056 static daddr_t
1057 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref)
1058 {
1059 	char *loc;
1060 	int start, len;
1061 
1062 	/*
1063 	 * find the fragment by searching through the free block
1064 	 * map for an appropriate bit pattern
1065 	 */
1066 	if (bpref)
1067 		start = dtogd(fs, bpref) / NBBY;
1068 	else
1069 		start = 0;
1070 	len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
1071 	loc = memcchr(&bbp[start], 0xff, len);
1072 	if (loc == NULL) {
1073 		len = start + 1;
1074 		start = 0;
1075 		loc = memcchr(&bbp[start], 0xff, len);
1076 		if (loc == NULL) {
1077 			printf("start = %d, len = %d, fs = %s\n",
1078 				start, len, fs->e2fs_fsmnt);
1079 			panic("ext2_mapsearch: map corrupted");
1080 			/* NOTREACHED */
1081 		}
1082 	}
1083 	return ((loc - bbp) * NBBY + ffs(~*loc) - 1);
1084 }
1085 
1086 /*
1087  * Fserr prints the name of a filesystem with an error diagnostic.
1088  *
1089  * The form of the error message is:
1090  *	fs: error message
1091  */
1092 static void
1093 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp)
1094 {
1095 
1096 	log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp);
1097 }
1098 
1099 int
1100 cg_has_sb(int i)
1101 {
1102         int a3, a5, a7;
1103 
1104         if (i == 0 || i == 1)
1105                 return 1;
1106         for (a3 = 3, a5 = 5, a7 = 7;
1107             a3 <= i || a5 <= i || a7 <= i;
1108             a3 *= 3, a5 *= 5, a7 *= 7)
1109                 if (i == a3 || i == a5 || i == a7)
1110                         return 1;
1111         return 0;
1112 }
1113