1 /*- 2 * modified for Lites 1.1 3 * 4 * Aug 1995, Godmar Back (gback@cs.utah.edu) 5 * University of Utah, Department of Computer Science 6 */ 7 /*- 8 * Copyright (c) 1982, 1986, 1989, 1993 9 * The Regents of the University of California. All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94 36 * $FreeBSD$ 37 */ 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/conf.h> 42 #include <sys/vnode.h> 43 #include <sys/stat.h> 44 #include <sys/mount.h> 45 #include <sys/sysctl.h> 46 #include <sys/syslog.h> 47 #include <sys/buf.h> 48 49 #include <fs/ext2fs/fs.h> 50 #include <fs/ext2fs/inode.h> 51 #include <fs/ext2fs/ext2_mount.h> 52 #include <fs/ext2fs/ext2fs.h> 53 #include <fs/ext2fs/ext2_extern.h> 54 55 static daddr_t ext2_alloccg(struct inode *, int, daddr_t, int); 56 static daddr_t ext2_clusteralloc(struct inode *, int, daddr_t, int); 57 static u_long ext2_dirpref(struct inode *); 58 static void ext2_fserr(struct m_ext2fs *, uid_t, char *); 59 static u_long ext2_hashalloc(struct inode *, int, long, int, 60 daddr_t (*)(struct inode *, int, daddr_t, 61 int)); 62 static daddr_t ext2_nodealloccg(struct inode *, int, daddr_t, int); 63 static daddr_t ext2_mapsearch(struct m_ext2fs *, char *, daddr_t); 64 65 /* 66 * Allocate a block in the filesystem. 67 * 68 * A preference may be optionally specified. If a preference is given 69 * the following hierarchy is used to allocate a block: 70 * 1) allocate the requested block. 71 * 2) allocate a rotationally optimal block in the same cylinder. 72 * 3) allocate a block in the same cylinder group. 73 * 4) quadradically rehash into other cylinder groups, until an 74 * available block is located. 75 * If no block preference is given the following hierarchy is used 76 * to allocate a block: 77 * 1) allocate a block in the cylinder group that contains the 78 * inode for the file. 79 * 2) quadradically rehash into other cylinder groups, until an 80 * available block is located. 81 */ 82 int 83 ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size, 84 struct ucred *cred, e4fs_daddr_t *bnp) 85 { 86 struct m_ext2fs *fs; 87 struct ext2mount *ump; 88 int32_t bno; 89 int cg; 90 *bnp = 0; 91 fs = ip->i_e2fs; 92 ump = ip->i_ump; 93 mtx_assert(EXT2_MTX(ump), MA_OWNED); 94 #ifdef INVARIANTS 95 if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) { 96 vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n", 97 (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt); 98 panic("ext2_alloc: bad size"); 99 } 100 if (cred == NOCRED) 101 panic("ext2_alloc: missing credential"); 102 #endif /* INVARIANTS */ 103 if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0) 104 goto nospace; 105 if (cred->cr_uid != 0 && 106 fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount) 107 goto nospace; 108 if (bpref >= fs->e2fs->e2fs_bcount) 109 bpref = 0; 110 if (bpref == 0) 111 cg = ino_to_cg(fs, ip->i_number); 112 else 113 cg = dtog(fs, bpref); 114 bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize, 115 ext2_alloccg); 116 if (bno > 0) { 117 /* set next_alloc fields as done in block_getblk */ 118 ip->i_next_alloc_block = lbn; 119 ip->i_next_alloc_goal = bno; 120 121 ip->i_blocks += btodb(fs->e2fs_bsize); 122 ip->i_flag |= IN_CHANGE | IN_UPDATE; 123 *bnp = bno; 124 return (0); 125 } 126 nospace: 127 EXT2_UNLOCK(ump); 128 ext2_fserr(fs, cred->cr_uid, "filesystem full"); 129 uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt); 130 return (ENOSPC); 131 } 132 133 /* 134 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 135 * 136 * The vnode and an array of buffer pointers for a range of sequential 137 * logical blocks to be made contiguous is given. The allocator attempts 138 * to find a range of sequential blocks starting as close as possible to 139 * an fs_rotdelay offset from the end of the allocation for the logical 140 * block immediately preceding the current range. If successful, the 141 * physical block numbers in the buffer pointers and in the inode are 142 * changed to reflect the new allocation. If unsuccessful, the allocation 143 * is left unchanged. The success in doing the reallocation is returned. 144 * Note that the error return is not reflected back to the user. Rather 145 * the previous block allocation will be used. 146 */ 147 148 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem"); 149 150 static int doasyncfree = 1; 151 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 152 "Use asychronous writes to update block pointers when freeing blocks"); 153 154 static int doreallocblks = 1; 155 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 156 157 int 158 ext2_reallocblks(struct vop_reallocblks_args *ap) 159 { 160 struct m_ext2fs *fs; 161 struct inode *ip; 162 struct vnode *vp; 163 struct buf *sbp, *ebp; 164 uint32_t *bap, *sbap, *ebap = 0; 165 struct ext2mount *ump; 166 struct cluster_save *buflist; 167 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 168 e2fs_lbn_t start_lbn, end_lbn; 169 int soff; 170 e2fs_daddr_t newblk, blkno; 171 int i, len, start_lvl, end_lvl, pref, ssize; 172 173 if (doreallocblks == 0) 174 return (ENOSPC); 175 176 vp = ap->a_vp; 177 ip = VTOI(vp); 178 fs = ip->i_e2fs; 179 ump = ip->i_ump; 180 181 if (fs->e2fs_contigsumsize <= 0) 182 return (ENOSPC); 183 184 buflist = ap->a_buflist; 185 len = buflist->bs_nchildren; 186 start_lbn = buflist->bs_children[0]->b_lblkno; 187 end_lbn = start_lbn + len - 1; 188 #ifdef INVARIANTS 189 for (i = 1; i < len; i++) 190 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 191 panic("ext2_reallocblks: non-cluster"); 192 #endif 193 /* 194 * If the cluster crosses the boundary for the first indirect 195 * block, leave space for the indirect block. Indirect blocks 196 * are initially laid out in a position after the last direct 197 * block. Block reallocation would usually destroy locality by 198 * moving the indirect block out of the way to make room for 199 * data blocks if we didn't compensate here. We should also do 200 * this for other indirect block boundaries, but it is only 201 * important for the first one. 202 */ 203 if (start_lbn < NDADDR && end_lbn >= NDADDR) 204 return (ENOSPC); 205 /* 206 * If the latest allocation is in a new cylinder group, assume that 207 * the filesystem has decided to move and do not force it back to 208 * the previous cylinder group. 209 */ 210 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 211 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 212 return (ENOSPC); 213 if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) || 214 ext2_getlbns(vp, end_lbn, end_ap, &end_lvl)) 215 return (ENOSPC); 216 /* 217 * Get the starting offset and block map for the first block. 218 */ 219 if (start_lvl == 0) { 220 sbap = &ip->i_db[0]; 221 soff = start_lbn; 222 } else { 223 idp = &start_ap[start_lvl - 1]; 224 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) { 225 brelse(sbp); 226 return (ENOSPC); 227 } 228 sbap = (u_int *)sbp->b_data; 229 soff = idp->in_off; 230 } 231 /* 232 * If the block range spans two block maps, get the second map. 233 */ 234 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 235 ssize = len; 236 } else { 237 #ifdef INVARIANTS 238 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 239 panic("ext2_reallocblks: start == end"); 240 #endif 241 ssize = len - (idp->in_off + 1); 242 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp)) 243 goto fail; 244 ebap = (u_int *)ebp->b_data; 245 } 246 /* 247 * Find the preferred location for the cluster. 248 */ 249 EXT2_LOCK(ump); 250 pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0); 251 /* 252 * Search the block map looking for an allocation of the desired size. 253 */ 254 if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref, 255 len, ext2_clusteralloc)) == 0){ 256 EXT2_UNLOCK(ump); 257 goto fail; 258 } 259 /* 260 * We have found a new contiguous block. 261 * 262 * First we have to replace the old block pointers with the new 263 * block pointers in the inode and indirect blocks associated 264 * with the file. 265 */ 266 #ifdef DEBUG 267 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 268 (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn); 269 #endif /* DEBUG */ 270 blkno = newblk; 271 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) { 272 if (i == ssize) { 273 bap = ebap; 274 soff = -i; 275 } 276 #ifdef INVARIANTS 277 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap)) 278 panic("ext2_reallocblks: alloc mismatch"); 279 #endif 280 #ifdef DEBUG 281 printf(" %d,", *bap); 282 #endif /* DEBUG */ 283 *bap++ = blkno; 284 } 285 /* 286 * Next we must write out the modified inode and indirect blocks. 287 * For strict correctness, the writes should be synchronous since 288 * the old block values may have been written to disk. In practise 289 * they are almost never written, but if we are concerned about 290 * strict correctness, the `doasyncfree' flag should be set to zero. 291 * 292 * The test on `doasyncfree' should be changed to test a flag 293 * that shows whether the associated buffers and inodes have 294 * been written. The flag should be set when the cluster is 295 * started and cleared whenever the buffer or inode is flushed. 296 * We can then check below to see if it is set, and do the 297 * synchronous write only when it has been cleared. 298 */ 299 if (sbap != &ip->i_db[0]) { 300 if (doasyncfree) 301 bdwrite(sbp); 302 else 303 bwrite(sbp); 304 } else { 305 ip->i_flag |= IN_CHANGE | IN_UPDATE; 306 if (!doasyncfree) 307 ext2_update(vp, 1); 308 } 309 if (ssize < len) { 310 if (doasyncfree) 311 bdwrite(ebp); 312 else 313 bwrite(ebp); 314 } 315 /* 316 * Last, free the old blocks and assign the new blocks to the buffers. 317 */ 318 #ifdef DEBUG 319 printf("\n\tnew:"); 320 #endif /* DEBUG */ 321 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) { 322 ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), 323 fs->e2fs_bsize); 324 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 325 #ifdef DEBUG 326 printf(" %d,", blkno); 327 #endif /* DEBUG */ 328 } 329 #ifdef DEBUG 330 printf("\n"); 331 #endif /* DEBUG */ 332 return (0); 333 334 fail: 335 if (ssize < len) 336 brelse(ebp); 337 if (sbap != &ip->i_db[0]) 338 brelse(sbp); 339 return (ENOSPC); 340 } 341 342 /* 343 * Allocate an inode in the filesystem. 344 * 345 */ 346 int 347 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp) 348 { 349 struct timespec ts; 350 struct inode *pip; 351 struct m_ext2fs *fs; 352 struct inode *ip; 353 struct ext2mount *ump; 354 ino_t ino, ipref; 355 int i, error, cg; 356 357 *vpp = NULL; 358 pip = VTOI(pvp); 359 fs = pip->i_e2fs; 360 ump = pip->i_ump; 361 362 EXT2_LOCK(ump); 363 if (fs->e2fs->e2fs_ficount == 0) 364 goto noinodes; 365 /* 366 * If it is a directory then obtain a cylinder group based on 367 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is 368 * always the next inode. 369 */ 370 if ((mode & IFMT) == IFDIR) { 371 cg = ext2_dirpref(pip); 372 if (fs->e2fs_contigdirs[cg] < 255) 373 fs->e2fs_contigdirs[cg]++; 374 } else { 375 cg = ino_to_cg(fs, pip->i_number); 376 if (fs->e2fs_contigdirs[cg] > 0) 377 fs->e2fs_contigdirs[cg]--; 378 } 379 ipref = cg * fs->e2fs->e2fs_ipg + 1; 380 ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg); 381 382 if (ino == 0) 383 goto noinodes; 384 error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 385 if (error) { 386 ext2_vfree(pvp, ino, mode); 387 return (error); 388 } 389 ip = VTOI(*vpp); 390 391 /* 392 * The question is whether using VGET was such good idea at all: 393 * Linux doesn't read the old inode in when it is allocating a 394 * new one. I will set at least i_size and i_blocks to zero. 395 */ 396 ip->i_flag = 0; 397 ip->i_size = 0; 398 ip->i_blocks = 0; 399 ip->i_mode = 0; 400 ip->i_flags = 0; 401 /* now we want to make sure that the block pointers are zeroed out */ 402 for (i = 0; i < NDADDR; i++) 403 ip->i_db[i] = 0; 404 for (i = 0; i < NIADDR; i++) 405 ip->i_ib[i] = 0; 406 407 /* 408 * Set up a new generation number for this inode. 409 */ 410 ip->i_gen = arc4random(); 411 412 vfs_timestamp(&ts); 413 ip->i_birthtime = ts.tv_sec; 414 ip->i_birthnsec = ts.tv_nsec; 415 416 /* 417 printf("ext2_valloc: allocated inode %d\n", ino); 418 */ 419 return (0); 420 noinodes: 421 EXT2_UNLOCK(ump); 422 ext2_fserr(fs, cred->cr_uid, "out of inodes"); 423 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt); 424 return (ENOSPC); 425 } 426 427 /* 428 * Find a cylinder to place a directory. 429 * 430 * The policy implemented by this algorithm is to allocate a 431 * directory inode in the same cylinder group as its parent 432 * directory, but also to reserve space for its files inodes 433 * and data. Restrict the number of directories which may be 434 * allocated one after another in the same cylinder group 435 * without intervening allocation of files. 436 * 437 * If we allocate a first level directory then force allocation 438 * in another cylinder group. 439 * 440 */ 441 static u_long 442 ext2_dirpref(struct inode *pip) 443 { 444 struct m_ext2fs *fs; 445 int cg, prefcg, cgsize; 446 u_int avgifree, avgbfree, avgndir, curdirsize; 447 u_int minifree, minbfree, maxndir; 448 u_int mincg, minndir; 449 u_int dirsize, maxcontigdirs; 450 451 mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED); 452 fs = pip->i_e2fs; 453 454 avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount; 455 avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount; 456 avgndir = fs->e2fs_total_dir / fs->e2fs_gcount; 457 458 /* 459 * Force allocation in another cg if creating a first level dir. 460 */ 461 ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref"); 462 if (ITOV(pip)->v_vflag & VV_ROOT) { 463 prefcg = arc4random() % fs->e2fs_gcount; 464 mincg = prefcg; 465 minndir = fs->e2fs_ipg; 466 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 467 if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir && 468 fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree && 469 fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) { 470 mincg = cg; 471 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs; 472 } 473 for (cg = 0; cg < prefcg; cg++) 474 if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir && 475 fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree && 476 fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) { 477 mincg = cg; 478 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs; 479 } 480 481 return (mincg); 482 } 483 484 /* 485 * Count various limits which used for 486 * optimal allocation of a directory inode. 487 */ 488 maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg); 489 minifree = avgifree - avgifree / 4; 490 if (minifree < 1) 491 minifree = 1; 492 minbfree = avgbfree - avgbfree / 4; 493 if (minbfree < 1) 494 minbfree = 1; 495 cgsize = fs->e2fs_fsize * fs->e2fs_fpg; 496 dirsize = AVGDIRSIZE; 497 curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0; 498 if (dirsize < curdirsize) 499 dirsize = curdirsize; 500 maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255); 501 maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR); 502 if (maxcontigdirs == 0) 503 maxcontigdirs = 1; 504 505 /* 506 * Limit number of dirs in one cg and reserve space for 507 * regular files, but only if we have no deficit in 508 * inodes or space. 509 */ 510 prefcg = ino_to_cg(fs, pip->i_number); 511 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 512 if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir && 513 fs->e2fs_gd[cg].ext2bgd_nifree >= minifree && 514 fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) { 515 if (fs->e2fs_contigdirs[cg] < maxcontigdirs) 516 return (cg); 517 } 518 for (cg = 0; cg < prefcg; cg++) 519 if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir && 520 fs->e2fs_gd[cg].ext2bgd_nifree >= minifree && 521 fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) { 522 if (fs->e2fs_contigdirs[cg] < maxcontigdirs) 523 return (cg); 524 } 525 /* 526 * This is a backstop when we have deficit in space. 527 */ 528 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 529 if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree) 530 return (cg); 531 for (cg = 0; cg < prefcg; cg++) 532 if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree) 533 break; 534 return (cg); 535 } 536 537 /* 538 * Select the desired position for the next block in a file. 539 * 540 * we try to mimic what Remy does in inode_getblk/block_getblk 541 * 542 * we note: blocknr == 0 means that we're about to allocate either 543 * a direct block or a pointer block at the first level of indirection 544 * (In other words, stuff that will go in i_db[] or i_ib[]) 545 * 546 * blocknr != 0 means that we're allocating a block that is none 547 * of the above. Then, blocknr tells us the number of the block 548 * that will hold the pointer 549 */ 550 e4fs_daddr_t 551 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap, 552 e2fs_daddr_t blocknr) 553 { 554 int tmp; 555 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); 556 557 /* if the next block is actually what we thought it is, 558 then set the goal to what we thought it should be 559 */ 560 if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0) 561 return ip->i_next_alloc_goal; 562 563 /* now check whether we were provided with an array that basically 564 tells us previous blocks to which we want to stay closeby 565 */ 566 if (bap) 567 for (tmp = indx - 1; tmp >= 0; tmp--) 568 if (bap[tmp]) 569 return bap[tmp]; 570 571 /* else let's fall back to the blocknr, or, if there is none, 572 follow the rule that a block should be allocated near its inode 573 */ 574 return blocknr ? blocknr : 575 (e2fs_daddr_t)(ip->i_block_group * 576 EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) + 577 ip->i_e2fs->e2fs->e2fs_first_dblock; 578 } 579 580 /* 581 * Implement the cylinder overflow algorithm. 582 * 583 * The policy implemented by this algorithm is: 584 * 1) allocate the block in its requested cylinder group. 585 * 2) quadradically rehash on the cylinder group number. 586 * 3) brute force search for a free block. 587 */ 588 static u_long 589 ext2_hashalloc(struct inode *ip, int cg, long pref, int size, 590 daddr_t (*allocator)(struct inode *, int, daddr_t, int)) 591 { 592 struct m_ext2fs *fs; 593 ino_t result; 594 int i, icg = cg; 595 596 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); 597 fs = ip->i_e2fs; 598 /* 599 * 1: preferred cylinder group 600 */ 601 result = (*allocator)(ip, cg, pref, size); 602 if (result) 603 return (result); 604 /* 605 * 2: quadratic rehash 606 */ 607 for (i = 1; i < fs->e2fs_gcount; i *= 2) { 608 cg += i; 609 if (cg >= fs->e2fs_gcount) 610 cg -= fs->e2fs_gcount; 611 result = (*allocator)(ip, cg, 0, size); 612 if (result) 613 return (result); 614 } 615 /* 616 * 3: brute force search 617 * Note that we start at i == 2, since 0 was checked initially, 618 * and 1 is always checked in the quadratic rehash. 619 */ 620 cg = (icg + 2) % fs->e2fs_gcount; 621 for (i = 2; i < fs->e2fs_gcount; i++) { 622 result = (*allocator)(ip, cg, 0, size); 623 if (result) 624 return (result); 625 cg++; 626 if (cg == fs->e2fs_gcount) 627 cg = 0; 628 } 629 return (0); 630 } 631 632 /* 633 * Determine whether a block can be allocated. 634 * 635 * Check to see if a block of the appropriate size is available, 636 * and if it is, allocate it. 637 */ 638 static daddr_t 639 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size) 640 { 641 struct m_ext2fs *fs; 642 struct buf *bp; 643 struct ext2mount *ump; 644 daddr_t bno, runstart, runlen; 645 int bit, loc, end, error, start; 646 char *bbp; 647 /* XXX ondisk32 */ 648 fs = ip->i_e2fs; 649 ump = ip->i_ump; 650 if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) 651 return (0); 652 EXT2_UNLOCK(ump); 653 error = bread(ip->i_devvp, fsbtodb(fs, 654 fs->e2fs_gd[cg].ext2bgd_b_bitmap), 655 (int)fs->e2fs_bsize, NOCRED, &bp); 656 if (error) { 657 brelse(bp); 658 EXT2_LOCK(ump); 659 return (0); 660 } 661 if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) { 662 /* 663 * Another thread allocated the last block in this 664 * group while we were waiting for the buffer. 665 */ 666 brelse(bp); 667 EXT2_LOCK(ump); 668 return (0); 669 } 670 bbp = (char *)bp->b_data; 671 672 if (dtog(fs, bpref) != cg) 673 bpref = 0; 674 if (bpref != 0) { 675 bpref = dtogd(fs, bpref); 676 /* 677 * if the requested block is available, use it 678 */ 679 if (isclr(bbp, bpref)) { 680 bno = bpref; 681 goto gotit; 682 } 683 } 684 /* 685 * no blocks in the requested cylinder, so take next 686 * available one in this cylinder group. 687 * first try to get 8 contigous blocks, then fall back to a single 688 * block. 689 */ 690 if (bpref) 691 start = dtogd(fs, bpref) / NBBY; 692 else 693 start = 0; 694 end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; 695 retry: 696 runlen = 0; 697 runstart = 0; 698 for (loc = start; loc < end; loc++) { 699 if (bbp[loc] == (char)0xff) { 700 runlen = 0; 701 continue; 702 } 703 704 /* Start of a run, find the number of high clear bits. */ 705 if (runlen == 0) { 706 bit = fls(bbp[loc]); 707 runlen = NBBY - bit; 708 runstart = loc * NBBY + bit; 709 } else if (bbp[loc] == 0) { 710 /* Continue a run. */ 711 runlen += NBBY; 712 } else { 713 /* 714 * Finish the current run. If it isn't long 715 * enough, start a new one. 716 */ 717 bit = ffs(bbp[loc]) - 1; 718 runlen += bit; 719 if (runlen >= 8) { 720 bno = runstart; 721 goto gotit; 722 } 723 724 /* Run was too short, start a new one. */ 725 bit = fls(bbp[loc]); 726 runlen = NBBY - bit; 727 runstart = loc * NBBY + bit; 728 } 729 730 /* If the current run is long enough, use it. */ 731 if (runlen >= 8) { 732 bno = runstart; 733 goto gotit; 734 } 735 } 736 if (start != 0) { 737 end = start; 738 start = 0; 739 goto retry; 740 } 741 742 bno = ext2_mapsearch(fs, bbp, bpref); 743 if (bno < 0){ 744 brelse(bp); 745 EXT2_LOCK(ump); 746 return (0); 747 } 748 gotit: 749 #ifdef INVARIANTS 750 if (isset(bbp, bno)) { 751 printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n", 752 cg, (intmax_t)bno, fs->e2fs_fsmnt); 753 panic("ext2fs_alloccg: dup alloc"); 754 } 755 #endif 756 setbit(bbp, bno); 757 EXT2_LOCK(ump); 758 ext2_clusteracct(fs, bbp, cg, bno, -1); 759 fs->e2fs->e2fs_fbcount--; 760 fs->e2fs_gd[cg].ext2bgd_nbfree--; 761 fs->e2fs_fmod = 1; 762 EXT2_UNLOCK(ump); 763 bdwrite(bp); 764 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); 765 } 766 767 /* 768 * Determine whether a cluster can be allocated. 769 */ 770 static daddr_t 771 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len) 772 { 773 struct m_ext2fs *fs; 774 struct ext2mount *ump; 775 struct buf *bp; 776 char *bbp; 777 int bit, error, got, i, loc, run; 778 int32_t *lp; 779 daddr_t bno; 780 781 fs = ip->i_e2fs; 782 ump = ip->i_ump; 783 784 if (fs->e2fs_maxcluster[cg] < len) 785 return (0); 786 787 EXT2_UNLOCK(ump); 788 error = bread(ip->i_devvp, 789 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap), 790 (int)fs->e2fs_bsize, NOCRED, &bp); 791 if (error) 792 goto fail_lock; 793 794 bbp = (char *)bp->b_data; 795 EXT2_LOCK(ump); 796 /* 797 * Check to see if a cluster of the needed size (or bigger) is 798 * available in this cylinder group. 799 */ 800 lp = &fs->e2fs_clustersum[cg].cs_sum[len]; 801 for (i = len; i <= fs->e2fs_contigsumsize; i++) 802 if (*lp++ > 0) 803 break; 804 if (i > fs->e2fs_contigsumsize) { 805 /* 806 * Update the cluster summary information to reflect 807 * the true maximum-sized cluster so that future cluster 808 * allocation requests can avoid reading the bitmap only 809 * to find no cluster. 810 */ 811 lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1]; 812 for (i = len - 1; i > 0; i--) 813 if (*lp-- > 0) 814 break; 815 fs->e2fs_maxcluster[cg] = i; 816 goto fail; 817 } 818 EXT2_UNLOCK(ump); 819 820 /* Search the bitmap to find a big enough cluster like in FFS. */ 821 if (dtog(fs, bpref) != cg) 822 bpref = 0; 823 if (bpref != 0) 824 bpref = dtogd(fs, bpref); 825 loc = bpref / NBBY; 826 bit = 1 << (bpref % NBBY); 827 for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) { 828 if ((bbp[loc] & bit) != 0) 829 run = 0; 830 else { 831 run++; 832 if (run == len) 833 break; 834 } 835 if ((got & (NBBY - 1)) != (NBBY - 1)) 836 bit <<= 1; 837 else { 838 loc++; 839 bit = 1; 840 } 841 } 842 843 if (got >= fs->e2fs->e2fs_fpg) 844 goto fail_lock; 845 846 /* Allocate the cluster that we found. */ 847 for (i = 1; i < len; i++) 848 if (!isclr(bbp, got - run + i)) 849 panic("ext2_clusteralloc: map mismatch"); 850 851 bno = got - run + 1; 852 if (bno >= fs->e2fs->e2fs_fpg) 853 panic("ext2_clusteralloc: allocated out of group"); 854 855 EXT2_LOCK(ump); 856 for (i = 0; i < len; i += fs->e2fs_fpb) { 857 setbit(bbp, bno + i); 858 ext2_clusteracct(fs, bbp, cg, bno + i, -1); 859 fs->e2fs->e2fs_fbcount--; 860 fs->e2fs_gd[cg].ext2bgd_nbfree--; 861 } 862 fs->e2fs_fmod = 1; 863 EXT2_UNLOCK(ump); 864 865 bdwrite(bp); 866 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); 867 868 fail_lock: 869 EXT2_LOCK(ump); 870 fail: 871 brelse(bp); 872 return (0); 873 } 874 875 /* 876 * Determine whether an inode can be allocated. 877 * 878 * Check to see if an inode is available, and if it is, 879 * allocate it using tode in the specified cylinder group. 880 */ 881 static daddr_t 882 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode) 883 { 884 struct m_ext2fs *fs; 885 struct buf *bp; 886 struct ext2mount *ump; 887 int error, start, len; 888 char *ibp, *loc; 889 ipref--; /* to avoid a lot of (ipref -1) */ 890 if (ipref == -1) 891 ipref = 0; 892 fs = ip->i_e2fs; 893 ump = ip->i_ump; 894 if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) 895 return (0); 896 EXT2_UNLOCK(ump); 897 error = bread(ip->i_devvp, fsbtodb(fs, 898 fs->e2fs_gd[cg].ext2bgd_i_bitmap), 899 (int)fs->e2fs_bsize, NOCRED, &bp); 900 if (error) { 901 brelse(bp); 902 EXT2_LOCK(ump); 903 return (0); 904 } 905 if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) { 906 /* 907 * Another thread allocated the last i-node in this 908 * group while we were waiting for the buffer. 909 */ 910 brelse(bp); 911 EXT2_LOCK(ump); 912 return (0); 913 } 914 ibp = (char *)bp->b_data; 915 if (ipref) { 916 ipref %= fs->e2fs->e2fs_ipg; 917 if (isclr(ibp, ipref)) 918 goto gotit; 919 } 920 start = ipref / NBBY; 921 len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY); 922 loc = memcchr(&ibp[start], 0xff, len); 923 if (loc == NULL) { 924 len = start + 1; 925 start = 0; 926 loc = memcchr(&ibp[start], 0xff, len); 927 if (loc == NULL) { 928 printf("cg = %d, ipref = %lld, fs = %s\n", 929 cg, (long long)ipref, fs->e2fs_fsmnt); 930 panic("ext2fs_nodealloccg: map corrupted"); 931 /* NOTREACHED */ 932 } 933 } 934 ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1; 935 gotit: 936 setbit(ibp, ipref); 937 EXT2_LOCK(ump); 938 fs->e2fs_gd[cg].ext2bgd_nifree--; 939 fs->e2fs->e2fs_ficount--; 940 fs->e2fs_fmod = 1; 941 if ((mode & IFMT) == IFDIR) { 942 fs->e2fs_gd[cg].ext2bgd_ndirs++; 943 fs->e2fs_total_dir++; 944 } 945 EXT2_UNLOCK(ump); 946 bdwrite(bp); 947 return (cg * fs->e2fs->e2fs_ipg + ipref +1); 948 } 949 950 /* 951 * Free a block or fragment. 952 * 953 */ 954 void 955 ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size) 956 { 957 struct m_ext2fs *fs; 958 struct buf *bp; 959 struct ext2mount *ump; 960 int cg, error; 961 char *bbp; 962 963 fs = ip->i_e2fs; 964 ump = ip->i_ump; 965 cg = dtog(fs, bno); 966 if ((u_int)bno >= fs->e2fs->e2fs_bcount) { 967 printf("bad block %lld, ino %ju\n", (long long)bno, 968 (uintmax_t)ip->i_number); 969 ext2_fserr(fs, ip->i_uid, "bad block"); 970 return; 971 } 972 error = bread(ip->i_devvp, 973 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap), 974 (int)fs->e2fs_bsize, NOCRED, &bp); 975 if (error) { 976 brelse(bp); 977 return; 978 } 979 bbp = (char *)bp->b_data; 980 bno = dtogd(fs, bno); 981 if (isclr(bbp, bno)) { 982 printf("block = %lld, fs = %s\n", 983 (long long)bno, fs->e2fs_fsmnt); 984 panic("ext2_blkfree: freeing free block"); 985 } 986 clrbit(bbp, bno); 987 EXT2_LOCK(ump); 988 ext2_clusteracct(fs, bbp, cg, bno, 1); 989 fs->e2fs->e2fs_fbcount++; 990 fs->e2fs_gd[cg].ext2bgd_nbfree++; 991 fs->e2fs_fmod = 1; 992 EXT2_UNLOCK(ump); 993 bdwrite(bp); 994 } 995 996 /* 997 * Free an inode. 998 * 999 */ 1000 int 1001 ext2_vfree(struct vnode *pvp, ino_t ino, int mode) 1002 { 1003 struct m_ext2fs *fs; 1004 struct inode *pip; 1005 struct buf *bp; 1006 struct ext2mount *ump; 1007 int error, cg; 1008 char * ibp; 1009 1010 pip = VTOI(pvp); 1011 fs = pip->i_e2fs; 1012 ump = pip->i_ump; 1013 if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount) 1014 panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s", 1015 pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt); 1016 1017 cg = ino_to_cg(fs, ino); 1018 error = bread(pip->i_devvp, 1019 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap), 1020 (int)fs->e2fs_bsize, NOCRED, &bp); 1021 if (error) { 1022 brelse(bp); 1023 return (0); 1024 } 1025 ibp = (char *)bp->b_data; 1026 ino = (ino - 1) % fs->e2fs->e2fs_ipg; 1027 if (isclr(ibp, ino)) { 1028 printf("ino = %llu, fs = %s\n", 1029 (unsigned long long)ino, fs->e2fs_fsmnt); 1030 if (fs->e2fs_ronly == 0) 1031 panic("ext2_vfree: freeing free inode"); 1032 } 1033 clrbit(ibp, ino); 1034 EXT2_LOCK(ump); 1035 fs->e2fs->e2fs_ficount++; 1036 fs->e2fs_gd[cg].ext2bgd_nifree++; 1037 if ((mode & IFMT) == IFDIR) { 1038 fs->e2fs_gd[cg].ext2bgd_ndirs--; 1039 fs->e2fs_total_dir--; 1040 } 1041 fs->e2fs_fmod = 1; 1042 EXT2_UNLOCK(ump); 1043 bdwrite(bp); 1044 return (0); 1045 } 1046 1047 /* 1048 * Find a block in the specified cylinder group. 1049 * 1050 * It is a panic if a request is made to find a block if none are 1051 * available. 1052 */ 1053 static daddr_t 1054 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref) 1055 { 1056 char *loc; 1057 int start, len; 1058 1059 /* 1060 * find the fragment by searching through the free block 1061 * map for an appropriate bit pattern 1062 */ 1063 if (bpref) 1064 start = dtogd(fs, bpref) / NBBY; 1065 else 1066 start = 0; 1067 len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; 1068 loc = memcchr(&bbp[start], 0xff, len); 1069 if (loc == NULL) { 1070 len = start + 1; 1071 start = 0; 1072 loc = memcchr(&bbp[start], 0xff, len); 1073 if (loc == NULL) { 1074 printf("start = %d, len = %d, fs = %s\n", 1075 start, len, fs->e2fs_fsmnt); 1076 panic("ext2_mapsearch: map corrupted"); 1077 /* NOTREACHED */ 1078 } 1079 } 1080 return ((loc - bbp) * NBBY + ffs(~*loc) - 1); 1081 } 1082 1083 /* 1084 * Fserr prints the name of a filesystem with an error diagnostic. 1085 * 1086 * The form of the error message is: 1087 * fs: error message 1088 */ 1089 static void 1090 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp) 1091 { 1092 1093 log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp); 1094 } 1095 1096 int 1097 cg_has_sb(int i) 1098 { 1099 int a3, a5, a7; 1100 1101 if (i == 0 || i == 1) 1102 return 1; 1103 for (a3 = 3, a5 = 5, a7 = 7; 1104 a3 <= i || a5 <= i || a7 <= i; 1105 a3 *= 3, a5 *= 5, a7 *= 7) 1106 if (i == a3 || i == a5 || i == a7) 1107 return 1; 1108 return 0; 1109 } 1110