xref: /freebsd/sys/fs/ext2fs/ext2_alloc.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  *  modified for Lites 1.1
3  *
4  *  Aug 1995, Godmar Back (gback@cs.utah.edu)
5  *  University of Utah, Department of Computer Science
6  */
7 /*-
8  * Copyright (c) 1982, 1986, 1989, 1993
9  *	The Regents of the University of California.  All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
36  * $FreeBSD$
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/conf.h>
42 #include <sys/vnode.h>
43 #include <sys/stat.h>
44 #include <sys/mount.h>
45 #include <sys/sysctl.h>
46 #include <sys/syslog.h>
47 #include <sys/buf.h>
48 
49 #include <fs/ext2fs/fs.h>
50 #include <fs/ext2fs/inode.h>
51 #include <fs/ext2fs/ext2_mount.h>
52 #include <fs/ext2fs/ext2fs.h>
53 #include <fs/ext2fs/ext2_extern.h>
54 
55 static daddr_t	ext2_alloccg(struct inode *, int, daddr_t, int);
56 static daddr_t	ext2_clusteralloc(struct inode *, int, daddr_t, int);
57 static u_long	ext2_dirpref(struct inode *);
58 static void	ext2_fserr(struct m_ext2fs *, uid_t, char *);
59 static u_long	ext2_hashalloc(struct inode *, int, long, int,
60 				daddr_t (*)(struct inode *, int, daddr_t,
61 						int));
62 static daddr_t	ext2_nodealloccg(struct inode *, int, daddr_t, int);
63 static daddr_t  ext2_mapsearch(struct m_ext2fs *, char *, daddr_t);
64 
65 /*
66  * Allocate a block in the filesystem.
67  *
68  * A preference may be optionally specified. If a preference is given
69  * the following hierarchy is used to allocate a block:
70  *   1) allocate the requested block.
71  *   2) allocate a rotationally optimal block in the same cylinder.
72  *   3) allocate a block in the same cylinder group.
73  *   4) quadradically rehash into other cylinder groups, until an
74  *        available block is located.
75  * If no block preference is given the following hierarchy is used
76  * to allocate a block:
77  *   1) allocate a block in the cylinder group that contains the
78  *        inode for the file.
79  *   2) quadradically rehash into other cylinder groups, until an
80  *        available block is located.
81  */
82 int
83 ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size,
84     struct ucred *cred, e4fs_daddr_t *bnp)
85 {
86 	struct m_ext2fs *fs;
87 	struct ext2mount *ump;
88 	int32_t bno;
89 	int cg;
90 	*bnp = 0;
91 	fs = ip->i_e2fs;
92 	ump = ip->i_ump;
93 	mtx_assert(EXT2_MTX(ump), MA_OWNED);
94 #ifdef INVARIANTS
95 	if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) {
96 		vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n",
97 		    (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt);
98 		panic("ext2_alloc: bad size");
99 	}
100 	if (cred == NOCRED)
101 		panic("ext2_alloc: missing credential");
102 #endif /* INVARIANTS */
103 	if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0)
104 		goto nospace;
105 	if (cred->cr_uid != 0 &&
106 		fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount)
107 		goto nospace;
108 	if (bpref >= fs->e2fs->e2fs_bcount)
109 		bpref = 0;
110 	if (bpref == 0)
111 		cg = ino_to_cg(fs, ip->i_number);
112 	else
113 		cg = dtog(fs, bpref);
114 	bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize,
115 				      ext2_alloccg);
116 	if (bno > 0) {
117 		/* set next_alloc fields as done in block_getblk */
118 		ip->i_next_alloc_block = lbn;
119 		ip->i_next_alloc_goal = bno;
120 
121 		ip->i_blocks += btodb(fs->e2fs_bsize);
122 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
123 		*bnp = bno;
124 		return (0);
125 	}
126 nospace:
127 	EXT2_UNLOCK(ump);
128 	ext2_fserr(fs, cred->cr_uid, "filesystem full");
129 	uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt);
130 	return (ENOSPC);
131 }
132 
133 /*
134  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
135  *
136  * The vnode and an array of buffer pointers for a range of sequential
137  * logical blocks to be made contiguous is given. The allocator attempts
138  * to find a range of sequential blocks starting as close as possible to
139  * an fs_rotdelay offset from the end of the allocation for the logical
140  * block immediately preceding the current range. If successful, the
141  * physical block numbers in the buffer pointers and in the inode are
142  * changed to reflect the new allocation. If unsuccessful, the allocation
143  * is left unchanged. The success in doing the reallocation is returned.
144  * Note that the error return is not reflected back to the user. Rather
145  * the previous block allocation will be used.
146  */
147 
148 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem");
149 
150 static int doasyncfree = 1;
151 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
152     "Use asychronous writes to update block pointers when freeing blocks");
153 
154 static int doreallocblks = 1;
155 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
156 
157 int
158 ext2_reallocblks(struct vop_reallocblks_args *ap)
159 {
160 	struct m_ext2fs *fs;
161 	struct inode *ip;
162 	struct vnode *vp;
163 	struct buf *sbp, *ebp;
164 	uint32_t *bap, *sbap, *ebap = 0;
165 	struct ext2mount *ump;
166 	struct cluster_save *buflist;
167 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
168 	e2fs_lbn_t start_lbn, end_lbn;
169 	int soff;
170 	e2fs_daddr_t newblk, blkno;
171 	int i, len, start_lvl, end_lvl, pref, ssize;
172 
173 	if (doreallocblks == 0)
174 		  return (ENOSPC);
175 
176 	vp = ap->a_vp;
177 	ip = VTOI(vp);
178 	fs = ip->i_e2fs;
179 	ump = ip->i_ump;
180 
181 	if (fs->e2fs_contigsumsize <= 0)
182 		return (ENOSPC);
183 
184 	buflist = ap->a_buflist;
185 	len = buflist->bs_nchildren;
186 	start_lbn = buflist->bs_children[0]->b_lblkno;
187 	end_lbn = start_lbn + len - 1;
188 #ifdef INVARIANTS
189 	for (i = 1; i < len; i++)
190 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
191 			panic("ext2_reallocblks: non-cluster");
192 #endif
193 	/*
194 	 * If the cluster crosses the boundary for the first indirect
195 	 * block, leave space for the indirect block. Indirect blocks
196 	 * are initially laid out in a position after the last direct
197 	 * block. Block reallocation would usually destroy locality by
198 	 * moving the indirect block out of the way to make room for
199 	 * data blocks if we didn't compensate here. We should also do
200 	 * this for other indirect block boundaries, but it is only
201 	 * important for the first one.
202 	 */
203 	if (start_lbn < NDADDR && end_lbn >= NDADDR)
204 		return (ENOSPC);
205 	/*
206 	 * If the latest allocation is in a new cylinder group, assume that
207 	 * the filesystem has decided to move and do not force it back to
208 	 * the previous cylinder group.
209 	 */
210 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
211 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
212 		return (ENOSPC);
213 	if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
214 	    ext2_getlbns(vp, end_lbn, end_ap, &end_lvl))
215 		return (ENOSPC);
216 	/*
217 	 * Get the starting offset and block map for the first block.
218 	 */
219 	if (start_lvl == 0) {
220 		sbap = &ip->i_db[0];
221 		soff = start_lbn;
222 	} else {
223 		idp = &start_ap[start_lvl - 1];
224 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) {
225 			brelse(sbp);
226 			return (ENOSPC);
227 		}
228 		sbap = (u_int *)sbp->b_data;
229 		soff = idp->in_off;
230 	}
231 	/*
232 	 * If the block range spans two block maps, get the second map.
233 	 */
234 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
235 		ssize = len;
236 	} else {
237 #ifdef INVARIANTS
238 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
239 			panic("ext2_reallocblks: start == end");
240 #endif
241 		ssize = len - (idp->in_off + 1);
242 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp))
243 			goto fail;
244 		ebap = (u_int *)ebp->b_data;
245 	}
246 	/*
247 	 * Find the preferred location for the cluster.
248 	 */
249 	EXT2_LOCK(ump);
250 	pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0);
251 	/*
252 	 * Search the block map looking for an allocation of the desired size.
253 	 */
254 	if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref,
255 	    len, ext2_clusteralloc)) == 0){
256 		EXT2_UNLOCK(ump);
257 		goto fail;
258 	}
259 	/*
260 	 * We have found a new contiguous block.
261 	 *
262 	 * First we have to replace the old block pointers with the new
263 	 * block pointers in the inode and indirect blocks associated
264 	 * with the file.
265 	 */
266 #ifdef DEBUG
267 	printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
268 	    (intmax_t)start_lbn, (intmax_t)end_lbn);
269 #endif /* DEBUG */
270 	blkno = newblk;
271 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
272 		if (i == ssize) {
273 			bap = ebap;
274 			soff = -i;
275 		}
276 #ifdef INVARIANTS
277 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
278 			panic("ext2_reallocblks: alloc mismatch");
279 #endif
280 #ifdef DEBUG
281 	printf(" %d,", *bap);
282 #endif /* DEBUG */
283 		*bap++ = blkno;
284 	}
285 	/*
286 	 * Next we must write out the modified inode and indirect blocks.
287 	 * For strict correctness, the writes should be synchronous since
288 	 * the old block values may have been written to disk. In practise
289 	 * they are almost never written, but if we are concerned about
290 	 * strict correctness, the `doasyncfree' flag should be set to zero.
291 	 *
292 	 * The test on `doasyncfree' should be changed to test a flag
293 	 * that shows whether the associated buffers and inodes have
294 	 * been written. The flag should be set when the cluster is
295 	 * started and cleared whenever the buffer or inode is flushed.
296 	 * We can then check below to see if it is set, and do the
297 	 * synchronous write only when it has been cleared.
298 	 */
299 	if (sbap != &ip->i_db[0]) {
300 		if (doasyncfree)
301 			bdwrite(sbp);
302 		else
303 			bwrite(sbp);
304 	} else {
305 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
306 		if (!doasyncfree)
307 			ext2_update(vp, 1);
308 	}
309 	if (ssize < len) {
310 		if (doasyncfree)
311 			bdwrite(ebp);
312 		else
313 			bwrite(ebp);
314 	}
315 	/*
316 	 * Last, free the old blocks and assign the new blocks to the buffers.
317 	 */
318 #ifdef DEBUG
319 	printf("\n\tnew:");
320 #endif /* DEBUG */
321 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
322 		ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
323 		    fs->e2fs_bsize);
324 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
325 #ifdef DEBUG
326 		printf(" %d,", blkno);
327 #endif /* DEBUG */
328 	}
329 #ifdef DEBUG
330 	printf("\n");
331 #endif /* DEBUG */
332 	return (0);
333 
334 fail:
335 	if (ssize < len)
336 		brelse(ebp);
337 	if (sbap != &ip->i_db[0])
338 		brelse(sbp);
339 	return (ENOSPC);
340 }
341 
342 /*
343  * Allocate an inode in the filesystem.
344  *
345  */
346 int
347 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
348 {
349 	struct timespec ts;
350 	struct inode *pip;
351 	struct m_ext2fs *fs;
352 	struct inode *ip;
353 	struct ext2mount *ump;
354 	ino_t ino, ipref;
355 	int i, error, cg;
356 
357 	*vpp = NULL;
358 	pip = VTOI(pvp);
359 	fs = pip->i_e2fs;
360 	ump = pip->i_ump;
361 
362 	EXT2_LOCK(ump);
363 	if (fs->e2fs->e2fs_ficount == 0)
364 		goto noinodes;
365 	/*
366 	 * If it is a directory then obtain a cylinder group based on
367 	 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is
368 	 * always the next inode.
369 	 */
370 	if ((mode & IFMT) == IFDIR) {
371 		cg = ext2_dirpref(pip);
372 		if (fs->e2fs_contigdirs[cg] < 255)
373 			fs->e2fs_contigdirs[cg]++;
374 	} else {
375 		cg = ino_to_cg(fs, pip->i_number);
376 		if (fs->e2fs_contigdirs[cg] > 0)
377 			fs->e2fs_contigdirs[cg]--;
378 	}
379 	ipref = cg * fs->e2fs->e2fs_ipg + 1;
380 	ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg);
381 
382 	if (ino == 0)
383 		goto noinodes;
384 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
385 	if (error) {
386 		ext2_vfree(pvp, ino, mode);
387 		return (error);
388 	}
389 	ip = VTOI(*vpp);
390 
391 	/*
392 	 * The question is whether using VGET was such good idea at all:
393 	 * Linux doesn't read the old inode in when it is allocating a
394 	 * new one. I will set at least i_size and i_blocks to zero.
395 	 */
396 	ip->i_size = 0;
397 	ip->i_blocks = 0;
398 	ip->i_mode = 0;
399 	ip->i_flags = 0;
400 	/* now we want to make sure that the block pointers are zeroed out */
401 	for (i = 0; i < NDADDR; i++)
402 		ip->i_db[i] = 0;
403 	for (i = 0; i < NIADDR; i++)
404 		ip->i_ib[i] = 0;
405 
406 	/*
407 	 * Set up a new generation number for this inode.
408 	 * XXX check if this makes sense in ext2
409 	 */
410 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
411 		ip->i_gen = random() / 2 + 1;
412 
413 	vfs_timestamp(&ts);
414 	ip->i_birthtime = ts.tv_sec;
415 	ip->i_birthnsec = ts.tv_nsec;
416 
417 /*
418 printf("ext2_valloc: allocated inode %d\n", ino);
419 */
420 	return (0);
421 noinodes:
422 	EXT2_UNLOCK(ump);
423 	ext2_fserr(fs, cred->cr_uid, "out of inodes");
424 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt);
425 	return (ENOSPC);
426 }
427 
428 /*
429  * Find a cylinder to place a directory.
430  *
431  * The policy implemented by this algorithm is to allocate a
432  * directory inode in the same cylinder group as its parent
433  * directory, but also to reserve space for its files inodes
434  * and data. Restrict the number of directories which may be
435  * allocated one after another in the same cylinder group
436  * without intervening allocation of files.
437  *
438  * If we allocate a first level directory then force allocation
439  * in another cylinder group.
440  *
441  */
442 static u_long
443 ext2_dirpref(struct inode *pip)
444 {
445 	struct m_ext2fs *fs;
446 	int cg, prefcg, dirsize, cgsize;
447 	u_int avgifree, avgbfree, avgndir, curdirsize;
448 	u_int minifree, minbfree, maxndir;
449 	u_int mincg, minndir;
450 	u_int maxcontigdirs;
451 
452 	mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED);
453 	fs = pip->i_e2fs;
454 
455 	avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount;
456 	avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount;
457 	avgndir  = fs->e2fs_total_dir / fs->e2fs_gcount;
458 
459 	/*
460 	 * Force allocation in another cg if creating a first level dir.
461 	 */
462 	ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref");
463 	if (ITOV(pip)->v_vflag & VV_ROOT) {
464 		prefcg = arc4random() % fs->e2fs_gcount;
465 		mincg = prefcg;
466 		minndir = fs->e2fs_ipg;
467 		for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
468 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
469 			    fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
470 			    fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
471 				mincg = cg;
472 				minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
473 			}
474 		for (cg = 0; cg < prefcg; cg++)
475 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
476 			    fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
477 			    fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
478 				mincg = cg;
479 				minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
480 			}
481 
482 		return (mincg);
483 	}
484 
485 	/*
486 	 * Count various limits which used for
487 	 * optimal allocation of a directory inode.
488 	 */
489 	maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg);
490 	minifree = avgifree - avgifree / 4;
491 	if (minifree < 1)
492 		minifree = 1;
493 	minbfree = avgbfree - avgbfree / 4;
494 	if (minbfree < 1)
495 		minbfree = 1;
496 	cgsize = fs->e2fs_fsize * fs->e2fs_fpg;
497 	dirsize = AVGDIRSIZE;
498 	curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0;
499 	if (dirsize < curdirsize)
500 		dirsize = curdirsize;
501 	if (dirsize <= 0)
502 		maxcontigdirs = 0;		/* dirsize overflowed */
503 	else
504 		maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255);
505 	maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR);
506 	if (maxcontigdirs == 0)
507 		maxcontigdirs = 1;
508 
509 	/*
510 	 * Limit number of dirs in one cg and reserve space for
511 	 * regular files, but only if we have no deficit in
512 	 * inodes or space.
513 	 */
514 	prefcg = ino_to_cg(fs, pip->i_number);
515 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
516 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
517 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
518 		    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
519 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
520 				return (cg);
521 		}
522 	for (cg = 0; cg < prefcg; cg++)
523 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
524 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
525 		    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
526 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
527 				return (cg);
528 		}
529 	/*
530 	 * This is a backstop when we have deficit in space.
531 	 */
532 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
533 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
534 			return (cg);
535 	for (cg = 0; cg < prefcg; cg++)
536 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
537 			break;
538 	return (cg);
539 }
540 
541 /*
542  * Select the desired position for the next block in a file.
543  *
544  * we try to mimic what Remy does in inode_getblk/block_getblk
545  *
546  * we note: blocknr == 0 means that we're about to allocate either
547  * a direct block or a pointer block at the first level of indirection
548  * (In other words, stuff that will go in i_db[] or i_ib[])
549  *
550  * blocknr != 0 means that we're allocating a block that is none
551  * of the above. Then, blocknr tells us the number of the block
552  * that will hold the pointer
553  */
554 e4fs_daddr_t
555 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap,
556     e2fs_daddr_t blocknr)
557 {
558 	int	tmp;
559 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
560 
561 	/* if the next block is actually what we thought it is,
562 	   then set the goal to what we thought it should be
563 	*/
564 	if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0)
565 		return ip->i_next_alloc_goal;
566 
567 	/* now check whether we were provided with an array that basically
568 	   tells us previous blocks to which we want to stay closeby
569 	*/
570 	if (bap)
571 		for (tmp = indx - 1; tmp >= 0; tmp--)
572 			if (bap[tmp])
573 				return bap[tmp];
574 
575 	/* else let's fall back to the blocknr, or, if there is none,
576 	   follow the rule that a block should be allocated near its inode
577 	*/
578 	return blocknr ? blocknr :
579 			(e2fs_daddr_t)(ip->i_block_group *
580 			EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) +
581 			ip->i_e2fs->e2fs->e2fs_first_dblock;
582 }
583 
584 /*
585  * Implement the cylinder overflow algorithm.
586  *
587  * The policy implemented by this algorithm is:
588  *   1) allocate the block in its requested cylinder group.
589  *   2) quadradically rehash on the cylinder group number.
590  *   3) brute force search for a free block.
591  */
592 static u_long
593 ext2_hashalloc(struct inode *ip, int cg, long pref, int size,
594                 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
595 {
596 	struct m_ext2fs *fs;
597 	ino_t result;
598 	int i, icg = cg;
599 
600 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
601 	fs = ip->i_e2fs;
602 	/*
603 	 * 1: preferred cylinder group
604 	 */
605 	result = (*allocator)(ip, cg, pref, size);
606 	if (result)
607 		return (result);
608 	/*
609 	 * 2: quadratic rehash
610 	 */
611 	for (i = 1; i < fs->e2fs_gcount; i *= 2) {
612 		cg += i;
613 		if (cg >= fs->e2fs_gcount)
614 			cg -= fs->e2fs_gcount;
615 		result = (*allocator)(ip, cg, 0, size);
616 		if (result)
617 			return (result);
618 	}
619 	/*
620 	 * 3: brute force search
621 	 * Note that we start at i == 2, since 0 was checked initially,
622 	 * and 1 is always checked in the quadratic rehash.
623 	 */
624 	cg = (icg + 2) % fs->e2fs_gcount;
625 	for (i = 2; i < fs->e2fs_gcount; i++) {
626 		result = (*allocator)(ip, cg, 0, size);
627 		if (result)
628 			return (result);
629 		cg++;
630 		if (cg == fs->e2fs_gcount)
631 			cg = 0;
632 	}
633 	return (0);
634 }
635 
636 /*
637  * Determine whether a block can be allocated.
638  *
639  * Check to see if a block of the appropriate size is available,
640  * and if it is, allocate it.
641  */
642 static daddr_t
643 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
644 {
645 	struct m_ext2fs *fs;
646 	struct buf *bp;
647 	struct ext2mount *ump;
648 	daddr_t bno, runstart, runlen;
649 	int bit, loc, end, error, start;
650 	char *bbp;
651 	/* XXX ondisk32 */
652 	fs = ip->i_e2fs;
653 	ump = ip->i_ump;
654 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0)
655 		return (0);
656 	EXT2_UNLOCK(ump);
657 	error = bread(ip->i_devvp, fsbtodb(fs,
658 		fs->e2fs_gd[cg].ext2bgd_b_bitmap),
659 		(int)fs->e2fs_bsize, NOCRED, &bp);
660 	if (error) {
661 		brelse(bp);
662 		EXT2_LOCK(ump);
663 		return (0);
664 	}
665 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) {
666 		/*
667 		 * Another thread allocated the last block in this
668 		 * group while we were waiting for the buffer.
669 		 */
670 		brelse(bp);
671 		EXT2_LOCK(ump);
672 		return (0);
673 	}
674 	bbp = (char *)bp->b_data;
675 
676 	if (dtog(fs, bpref) != cg)
677 		bpref = 0;
678 	if (bpref != 0) {
679 		bpref = dtogd(fs, bpref);
680 		/*
681 		 * if the requested block is available, use it
682 		 */
683 		if (isclr(bbp, bpref)) {
684 			bno = bpref;
685 			goto gotit;
686 		}
687 	}
688 	/*
689 	 * no blocks in the requested cylinder, so take next
690 	 * available one in this cylinder group.
691 	 * first try to get 8 contigous blocks, then fall back to a single
692 	 * block.
693 	 */
694 	if (bpref)
695 		start = dtogd(fs, bpref) / NBBY;
696 	else
697 		start = 0;
698 	end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
699 retry:
700 	runlen = 0;
701 	runstart = 0;
702 	for (loc = start; loc < end; loc++) {
703 		if (bbp[loc] == (char)0xff) {
704 			runlen = 0;
705 			continue;
706 		}
707 
708 		/* Start of a run, find the number of high clear bits. */
709 		if (runlen == 0) {
710 			bit = fls(bbp[loc]);
711 			runlen = NBBY - bit;
712 			runstart = loc * NBBY + bit;
713 		} else if (bbp[loc] == 0) {
714 			/* Continue a run. */
715 			runlen += NBBY;
716 		} else {
717 			/*
718 			 * Finish the current run.  If it isn't long
719 			 * enough, start a new one.
720 			 */
721 			bit = ffs(bbp[loc]) - 1;
722 			runlen += bit;
723 			if (runlen >= 8) {
724 				bno = runstart;
725 				goto gotit;
726 			}
727 
728 			/* Run was too short, start a new one. */
729 			bit = fls(bbp[loc]);
730 			runlen = NBBY - bit;
731 			runstart = loc * NBBY + bit;
732 		}
733 
734 		/* If the current run is long enough, use it. */
735 		if (runlen >= 8) {
736 			bno = runstart;
737 			goto gotit;
738 		}
739 	}
740 	if (start != 0) {
741 		end = start;
742 		start = 0;
743 		goto retry;
744 	}
745 
746 	bno = ext2_mapsearch(fs, bbp, bpref);
747 	if (bno < 0){
748 		brelse(bp);
749 		EXT2_LOCK(ump);
750 		return (0);
751 	}
752 gotit:
753 #ifdef INVARIANTS
754 	if (isset(bbp, bno)) {
755 		printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n",
756 			cg, (intmax_t)bno, fs->e2fs_fsmnt);
757 		panic("ext2fs_alloccg: dup alloc");
758 	}
759 #endif
760 	setbit(bbp, bno);
761 	EXT2_LOCK(ump);
762 	ext2_clusteracct(fs, bbp, cg, bno, -1);
763 	fs->e2fs->e2fs_fbcount--;
764 	fs->e2fs_gd[cg].ext2bgd_nbfree--;
765 	fs->e2fs_fmod = 1;
766 	EXT2_UNLOCK(ump);
767 	bdwrite(bp);
768 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
769 }
770 
771 /*
772  * Determine whether a cluster can be allocated.
773  */
774 static daddr_t
775 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
776 {
777 	struct m_ext2fs *fs;
778 	struct ext2mount *ump;
779 	struct buf *bp;
780 	char *bbp;
781 	int bit, error, got, i, loc, run;
782 	int32_t *lp;
783 	daddr_t bno;
784 
785 	fs = ip->i_e2fs;
786 	ump = ip->i_ump;
787 
788 	if (fs->e2fs_maxcluster[cg] < len)
789 		return (0);
790 
791 	EXT2_UNLOCK(ump);
792 	error = bread(ip->i_devvp,
793 	    fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
794 	    (int)fs->e2fs_bsize, NOCRED, &bp);
795 	if (error)
796 		goto fail_lock;
797 
798 	bbp = (char *)bp->b_data;
799 	EXT2_LOCK(ump);
800 	/*
801 	 * Check to see if a cluster of the needed size (or bigger) is
802 	 * available in this cylinder group.
803 	 */
804 	lp = &fs->e2fs_clustersum[cg].cs_sum[len];
805 	for (i = len; i <= fs->e2fs_contigsumsize; i++)
806 		if (*lp++ > 0)
807 			break;
808 	if (i > fs->e2fs_contigsumsize) {
809 		/*
810 		 * Update the cluster summary information to reflect
811 		 * the true maximum-sized cluster so that future cluster
812 		 * allocation requests can avoid reading the bitmap only
813 		 * to find no cluster.
814 		 */
815 		lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1];
816 			for (i = len - 1; i > 0; i--)
817 				if (*lp-- > 0)
818 					break;
819 		fs->e2fs_maxcluster[cg] = i;
820 		goto fail;
821 	}
822 	EXT2_UNLOCK(ump);
823 
824 	/* Search the bitmap to find a big enough cluster like in FFS. */
825 	if (dtog(fs, bpref) != cg)
826 		bpref = 0;
827 	if (bpref != 0)
828 		bpref = dtogd(fs, bpref);
829 	loc = bpref / NBBY;
830 	bit = 1 << (bpref % NBBY);
831 	for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) {
832 		if ((bbp[loc] & bit) != 0)
833 			run = 0;
834 		else {
835 			run++;
836 			if (run == len)
837 				break;
838 		}
839 		if ((got & (NBBY - 1)) != (NBBY - 1))
840 			bit <<= 1;
841 		else {
842 			loc++;
843 			bit = 1;
844 		}
845 	}
846 
847 	if (got >= fs->e2fs->e2fs_fpg)
848 		goto fail_lock;
849 
850 	/* Allocate the cluster that we found. */
851 	for (i = 1; i < len; i++)
852 		if (!isclr(bbp, got - run + i))
853 			panic("ext2_clusteralloc: map mismatch");
854 
855 	bno = got - run + 1;
856 	if (bno >= fs->e2fs->e2fs_fpg)
857 		panic("ext2_clusteralloc: allocated out of group");
858 
859 	EXT2_LOCK(ump);
860 	for (i = 0; i < len; i += fs->e2fs_fpb) {
861 		setbit(bbp, bno + i);
862 		ext2_clusteracct(fs, bbp, cg, bno + i, -1);
863 		fs->e2fs->e2fs_fbcount--;
864 		fs->e2fs_gd[cg].ext2bgd_nbfree--;
865 	}
866 	fs->e2fs_fmod = 1;
867 	EXT2_UNLOCK(ump);
868 
869 	bdwrite(bp);
870 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
871 
872 fail_lock:
873 	EXT2_LOCK(ump);
874 fail:
875 	brelse(bp);
876 	return (0);
877 }
878 
879 /*
880  * Determine whether an inode can be allocated.
881  *
882  * Check to see if an inode is available, and if it is,
883  * allocate it using tode in the specified cylinder group.
884  */
885 static daddr_t
886 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
887 {
888 	struct m_ext2fs *fs;
889 	struct buf *bp;
890 	struct ext2mount *ump;
891 	int error, start, len;
892 	char *ibp, *loc;
893 	ipref--; /* to avoid a lot of (ipref -1) */
894 	if (ipref == -1)
895 		ipref = 0;
896 	fs = ip->i_e2fs;
897 	ump = ip->i_ump;
898 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0)
899 		return (0);
900 	EXT2_UNLOCK(ump);
901 	error = bread(ip->i_devvp, fsbtodb(fs,
902 		fs->e2fs_gd[cg].ext2bgd_i_bitmap),
903 		(int)fs->e2fs_bsize, NOCRED, &bp);
904 	if (error) {
905 		brelse(bp);
906 		EXT2_LOCK(ump);
907 		return (0);
908 	}
909 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) {
910 		/*
911 		 * Another thread allocated the last i-node in this
912 		 * group while we were waiting for the buffer.
913 		 */
914 		brelse(bp);
915 		EXT2_LOCK(ump);
916 		return (0);
917 	}
918 	ibp = (char *)bp->b_data;
919 	if (ipref) {
920 		ipref %= fs->e2fs->e2fs_ipg;
921 		if (isclr(ibp, ipref))
922 			goto gotit;
923 	}
924 	start = ipref / NBBY;
925 	len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
926 	loc = memcchr(&ibp[start], 0xff, len);
927 	if (loc == NULL) {
928 		len = start + 1;
929 		start = 0;
930 		loc = memcchr(&ibp[start], 0xff, len);
931 		if (loc == NULL) {
932 			printf("cg = %d, ipref = %lld, fs = %s\n",
933 				cg, (long long)ipref, fs->e2fs_fsmnt);
934 			panic("ext2fs_nodealloccg: map corrupted");
935 			/* NOTREACHED */
936 		}
937 	}
938 	ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1;
939 gotit:
940 	setbit(ibp, ipref);
941 	EXT2_LOCK(ump);
942 	fs->e2fs_gd[cg].ext2bgd_nifree--;
943 	fs->e2fs->e2fs_ficount--;
944 	fs->e2fs_fmod = 1;
945 	if ((mode & IFMT) == IFDIR) {
946 		fs->e2fs_gd[cg].ext2bgd_ndirs++;
947 		fs->e2fs_total_dir++;
948 	}
949 	EXT2_UNLOCK(ump);
950 	bdwrite(bp);
951 	return (cg * fs->e2fs->e2fs_ipg + ipref +1);
952 }
953 
954 /*
955  * Free a block or fragment.
956  *
957  */
958 void
959 ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size)
960 {
961 	struct m_ext2fs *fs;
962 	struct buf *bp;
963 	struct ext2mount *ump;
964 	int cg, error;
965 	char *bbp;
966 
967 	fs = ip->i_e2fs;
968 	ump = ip->i_ump;
969 	cg = dtog(fs, bno);
970 	if ((u_int)bno >= fs->e2fs->e2fs_bcount) {
971 		printf("bad block %lld, ino %llu\n", (long long)bno,
972 		    (unsigned long long)ip->i_number);
973 		ext2_fserr(fs, ip->i_uid, "bad block");
974 		return;
975 	}
976 	error = bread(ip->i_devvp,
977 		fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
978 		(int)fs->e2fs_bsize, NOCRED, &bp);
979 	if (error) {
980 		brelse(bp);
981 		return;
982 	}
983 	bbp = (char *)bp->b_data;
984 	bno = dtogd(fs, bno);
985 	if (isclr(bbp, bno)) {
986 		printf("block = %lld, fs = %s\n",
987 		     (long long)bno, fs->e2fs_fsmnt);
988 		panic("ext2_blkfree: freeing free block");
989 	}
990 	clrbit(bbp, bno);
991 	EXT2_LOCK(ump);
992 	ext2_clusteracct(fs, bbp, cg, bno, 1);
993 	fs->e2fs->e2fs_fbcount++;
994 	fs->e2fs_gd[cg].ext2bgd_nbfree++;
995 	fs->e2fs_fmod = 1;
996 	EXT2_UNLOCK(ump);
997 	bdwrite(bp);
998 }
999 
1000 /*
1001  * Free an inode.
1002  *
1003  */
1004 int
1005 ext2_vfree(struct vnode *pvp, ino_t ino, int mode)
1006 {
1007 	struct m_ext2fs *fs;
1008 	struct inode *pip;
1009 	struct buf *bp;
1010 	struct ext2mount *ump;
1011 	int error, cg;
1012 	char * ibp;
1013 
1014 	pip = VTOI(pvp);
1015 	fs = pip->i_e2fs;
1016 	ump = pip->i_ump;
1017 	if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount)
1018 		panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s",
1019 		    pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt);
1020 
1021 	cg = ino_to_cg(fs, ino);
1022 	error = bread(pip->i_devvp,
1023 		fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap),
1024 		(int)fs->e2fs_bsize, NOCRED, &bp);
1025 	if (error) {
1026 		brelse(bp);
1027 		return (0);
1028 	}
1029 	ibp = (char *)bp->b_data;
1030 	ino = (ino - 1) % fs->e2fs->e2fs_ipg;
1031 	if (isclr(ibp, ino)) {
1032 		printf("ino = %llu, fs = %s\n",
1033 			 (unsigned long long)ino, fs->e2fs_fsmnt);
1034 		if (fs->e2fs_ronly == 0)
1035 			panic("ext2_vfree: freeing free inode");
1036 	}
1037 	clrbit(ibp, ino);
1038 	EXT2_LOCK(ump);
1039 	fs->e2fs->e2fs_ficount++;
1040 	fs->e2fs_gd[cg].ext2bgd_nifree++;
1041 	if ((mode & IFMT) == IFDIR) {
1042 		fs->e2fs_gd[cg].ext2bgd_ndirs--;
1043 		fs->e2fs_total_dir--;
1044 	}
1045 	fs->e2fs_fmod = 1;
1046 	EXT2_UNLOCK(ump);
1047 	bdwrite(bp);
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Find a block in the specified cylinder group.
1053  *
1054  * It is a panic if a request is made to find a block if none are
1055  * available.
1056  */
1057 static daddr_t
1058 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref)
1059 {
1060 	char *loc;
1061 	int start, len;
1062 
1063 	/*
1064 	 * find the fragment by searching through the free block
1065 	 * map for an appropriate bit pattern
1066 	 */
1067 	if (bpref)
1068 		start = dtogd(fs, bpref) / NBBY;
1069 	else
1070 		start = 0;
1071 	len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
1072 	loc = memcchr(&bbp[start], 0xff, len);
1073 	if (loc == NULL) {
1074 		len = start + 1;
1075 		start = 0;
1076 		loc = memcchr(&bbp[start], 0xff, len);
1077 		if (loc == NULL) {
1078 			printf("start = %d, len = %d, fs = %s\n",
1079 				start, len, fs->e2fs_fsmnt);
1080 			panic("ext2_mapsearch: map corrupted");
1081 			/* NOTREACHED */
1082 		}
1083 	}
1084 	return ((loc - bbp) * NBBY + ffs(~*loc) - 1);
1085 }
1086 
1087 /*
1088  * Fserr prints the name of a filesystem with an error diagnostic.
1089  *
1090  * The form of the error message is:
1091  *	fs: error message
1092  */
1093 static void
1094 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp)
1095 {
1096 
1097 	log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp);
1098 }
1099 
1100 int
1101 cg_has_sb(int i)
1102 {
1103 	int a3, a5, a7;
1104 
1105 	if (i == 0 || i == 1)
1106 		return 1;
1107 	for (a3 = 3, a5 = 5, a7 = 7;
1108 	    a3 <= i || a5 <= i || a7 <= i;
1109 	    a3 *= 3, a5 *= 5, a7 *= 7)
1110 		if (i == a3 || i == a5 || i == a7)
1111 			return 1;
1112 	return 0;
1113 }
1114