xref: /freebsd/sys/fs/ext2fs/ext2_alloc.c (revision 3ef51c5fb9163f2aafb1c14729e06a8bf0c4d113)
1 /*-
2  *  modified for Lites 1.1
3  *
4  *  Aug 1995, Godmar Back (gback@cs.utah.edu)
5  *  University of Utah, Department of Computer Science
6  */
7 /*-
8  * Copyright (c) 1982, 1986, 1989, 1993
9  *	The Regents of the University of California.  All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
36  * $FreeBSD$
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/conf.h>
42 #include <sys/vnode.h>
43 #include <sys/stat.h>
44 #include <sys/mount.h>
45 #include <sys/sysctl.h>
46 #include <sys/syslog.h>
47 #include <sys/buf.h>
48 
49 #include <fs/ext2fs/inode.h>
50 #include <fs/ext2fs/ext2_mount.h>
51 #include <fs/ext2fs/ext2fs.h>
52 #include <fs/ext2fs/fs.h>
53 #include <fs/ext2fs/ext2_extern.h>
54 
55 static daddr_t	ext2_alloccg(struct inode *, int, daddr_t, int);
56 static daddr_t	ext2_clusteralloc(struct inode *, int, daddr_t, int);
57 static u_long	ext2_dirpref(struct inode *);
58 static void	ext2_fserr(struct m_ext2fs *, uid_t, char *);
59 static u_long	ext2_hashalloc(struct inode *, int, long, int,
60 				daddr_t (*)(struct inode *, int, daddr_t,
61 						int));
62 static daddr_t	ext2_nodealloccg(struct inode *, int, daddr_t, int);
63 static daddr_t  ext2_mapsearch(struct m_ext2fs *, char *, daddr_t);
64 
65 /*
66  * Allocate a block in the file system.
67  *
68  * A preference may be optionally specified. If a preference is given
69  * the following hierarchy is used to allocate a block:
70  *   1) allocate the requested block.
71  *   2) allocate a rotationally optimal block in the same cylinder.
72  *   3) allocate a block in the same cylinder group.
73  *   4) quadradically rehash into other cylinder groups, until an
74  *        available block is located.
75  * If no block preference is given the following hierarchy is used
76  * to allocate a block:
77  *   1) allocate a block in the cylinder group that contains the
78  *        inode for the file.
79  *   2) quadradically rehash into other cylinder groups, until an
80  *        available block is located.
81  */
82 int
83 ext2_alloc(ip, lbn, bpref, size, cred, bnp)
84 	struct inode *ip;
85 	int32_t lbn, bpref;
86 	int size;
87 	struct ucred *cred;
88 	int32_t *bnp;
89 {
90 	struct m_ext2fs *fs;
91 	struct ext2mount *ump;
92 	int32_t bno;
93 	int cg;
94 	*bnp = 0;
95 	fs = ip->i_e2fs;
96 	ump = ip->i_ump;
97 	mtx_assert(EXT2_MTX(ump), MA_OWNED);
98 #ifdef DIAGNOSTIC
99 	if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) {
100 		vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n",
101 		    (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt);
102 		panic("ext2_alloc: bad size");
103 	}
104 	if (cred == NOCRED)
105 		panic("ext2_alloc: missing credential");
106 #endif /* DIAGNOSTIC */
107 	if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0)
108 		goto nospace;
109 	if (cred->cr_uid != 0 &&
110 		fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount)
111 		goto nospace;
112 	if (bpref >= fs->e2fs->e2fs_bcount)
113 		bpref = 0;
114 	if (bpref == 0)
115 		cg = ino_to_cg(fs, ip->i_number);
116 	else
117 		cg = dtog(fs, bpref);
118 	bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize,
119 				      ext2_alloccg);
120 	if (bno > 0) {
121 		/* set next_alloc fields as done in block_getblk */
122 		ip->i_next_alloc_block = lbn;
123 		ip->i_next_alloc_goal = bno;
124 
125 		ip->i_blocks += btodb(fs->e2fs_bsize);
126 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
127 		*bnp = bno;
128 		return (0);
129         }
130 nospace:
131 	EXT2_UNLOCK(ump);
132 	ext2_fserr(fs, cred->cr_uid, "file system full");
133 	uprintf("\n%s: write failed, file system is full\n", fs->e2fs_fsmnt);
134 	return (ENOSPC);
135 }
136 
137 /*
138  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
139  *
140  * The vnode and an array of buffer pointers for a range of sequential
141  * logical blocks to be made contiguous is given. The allocator attempts
142  * to find a range of sequential blocks starting as close as possible to
143  * an fs_rotdelay offset from the end of the allocation for the logical
144  * block immediately preceding the current range. If successful, the
145  * physical block numbers in the buffer pointers and in the inode are
146  * changed to reflect the new allocation. If unsuccessful, the allocation
147  * is left unchanged. The success in doing the reallocation is returned.
148  * Note that the error return is not reflected back to the user. Rather
149  * the previous block allocation will be used.
150  */
151 
152 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem");
153 
154 static int doasyncfree = 1;
155 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
156     "Use asychronous writes to update block pointers when freeing blocks");
157 
158 static int doreallocblks = 1;
159 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
160 
161 int
162 ext2_reallocblks(ap)
163 	struct vop_reallocblks_args /* {
164 		struct vnode *a_vp;
165 		struct cluster_save *a_buflist;
166 	} */ *ap;
167 {
168 	struct m_ext2fs *fs;
169 	struct inode *ip;
170 	struct vnode *vp;
171 	struct buf *sbp, *ebp;
172 	int32_t *bap, *sbap, *ebap = 0;
173 	struct ext2mount *ump;
174 	struct cluster_save *buflist;
175 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
176 	int32_t start_lbn, end_lbn, soff, newblk, blkno;
177 	int i, len, start_lvl, end_lvl, pref, ssize;
178 
179 	if (doreallocblks == 0)
180 		  return (ENOSPC);
181 
182 	vp = ap->a_vp;
183 	ip = VTOI(vp);
184 	fs = ip->i_e2fs;
185 	ump = ip->i_ump;
186 
187 	if (fs->e2fs_contigsumsize <= 0)
188 		return (ENOSPC);
189 
190 	buflist = ap->a_buflist;
191 	len = buflist->bs_nchildren;
192 	start_lbn = buflist->bs_children[0]->b_lblkno;
193 	end_lbn = start_lbn + len - 1;
194 #ifdef DIAGNOSTIC
195 	for (i = 1; i < len; i++)
196 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
197 			panic("ext2_reallocblks: non-cluster");
198 #endif
199 	/*
200 	 * If the latest allocation is in a new cylinder group, assume that
201 	 * the filesystem has decided to move and do not force it back to
202 	 * the previous cylinder group.
203 	 */
204 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
205 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
206 		return (ENOSPC);
207 	if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
208 	    ext2_getlbns(vp, end_lbn, end_ap, &end_lvl))
209 		return (ENOSPC);
210 	/*
211 	 * Get the starting offset and block map for the first block.
212 	 */
213 	if (start_lvl == 0) {
214 		sbap = &ip->i_db[0];
215 		soff = start_lbn;
216 	} else {
217 		idp = &start_ap[start_lvl - 1];
218 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) {
219 			brelse(sbp);
220 			return (ENOSPC);
221 		}
222 		sbap = (int32_t *)sbp->b_data;
223 		soff = idp->in_off;
224 	}
225 	/*
226 	 * If the block range spans two block maps, get the second map.
227 	 */
228 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
229 		ssize = len;
230 	} else {
231 #ifdef DIAGNOSTIC
232 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
233 			panic("ext2_reallocblk: start == end");
234 #endif
235 		ssize = len - (idp->in_off + 1);
236 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp))
237 			goto fail;
238 		ebap = (int32_t *)ebp->b_data;
239 	}
240 	/*
241 	 * Find the preferred location for the cluster.
242 	 */
243 	EXT2_LOCK(ump);
244 	pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0);
245 	/*
246 	 * Search the block map looking for an allocation of the desired size.
247 	 */
248 	if ((newblk = (int32_t)ext2_hashalloc(ip, dtog(fs, pref), pref,
249 	    len, ext2_clusteralloc)) == 0){
250 		EXT2_UNLOCK(ump);
251 		goto fail;
252 	}
253 	/*
254 	 * We have found a new contiguous block.
255 	 *
256 	 * First we have to replace the old block pointers with the new
257 	 * block pointers in the inode and indirect blocks associated
258 	 * with the file.
259 	 */
260 #ifdef DEBUG
261 	printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
262 	    (intmax_t)start_lbn, (intmax_t)end_lbn);
263 #endif /* DEBUG */
264 	blkno = newblk;
265 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
266 		if (i == ssize) {
267 			bap = ebap;
268 			soff = -i;
269 		}
270 #ifdef DIAGNOSTIC
271 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
272 			panic("ext2_reallocblks: alloc mismatch");
273 #endif
274 #ifdef DEBUG
275 	printf(" %d,", *bap);
276 #endif /* DEBUG */
277 		*bap++ = blkno;
278 	}
279 	/*
280 	 * Next we must write out the modified inode and indirect blocks.
281 	 * For strict correctness, the writes should be synchronous since
282 	 * the old block values may have been written to disk. In practise
283 	 * they are almost never written, but if we are concerned about
284 	 * strict correctness, the `doasyncfree' flag should be set to zero.
285 	 *
286 	 * The test on `doasyncfree' should be changed to test a flag
287 	 * that shows whether the associated buffers and inodes have
288 	 * been written. The flag should be set when the cluster is
289 	 * started and cleared whenever the buffer or inode is flushed.
290 	 * We can then check below to see if it is set, and do the
291 	 * synchronous write only when it has been cleared.
292 	 */
293 	if (sbap != &ip->i_db[0]) {
294 		if (doasyncfree)
295 			bdwrite(sbp);
296 		else
297 			bwrite(sbp);
298 	} else {
299 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
300 		if (!doasyncfree)
301 			ext2_update(vp, 1);
302 	}
303 	if (ssize < len) {
304 		if (doasyncfree)
305 			bdwrite(ebp);
306 		else
307 			bwrite(ebp);
308 	}
309 	/*
310 	 * Last, free the old blocks and assign the new blocks to the buffers.
311 	 */
312 #ifdef DEBUG
313 	printf("\n\tnew:");
314 #endif /* DEBUG */
315 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
316 		ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
317 		    fs->e2fs_bsize);
318 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
319 #ifdef DEBUG
320 		printf(" %d,", blkno);
321 #endif /* DEBUG */
322 	}
323 #ifdef DEBUG
324 	printf("\n");
325 #endif /* DEBUG */
326 	return (0);
327 
328 fail:
329 	if (ssize < len)
330 		brelse(ebp);
331 	if (sbap != &ip->i_db[0])
332 		brelse(sbp);
333 	return (ENOSPC);
334 }
335 
336 /*
337  * Allocate an inode in the file system.
338  *
339  */
340 int
341 ext2_valloc(pvp, mode, cred, vpp)
342 	struct vnode *pvp;
343 	int mode;
344 	struct ucred *cred;
345 	struct vnode **vpp;
346 {
347 	struct timespec ts;
348 	struct inode *pip;
349 	struct m_ext2fs *fs;
350 	struct inode *ip;
351 	struct ext2mount *ump;
352 	ino_t ino, ipref;
353 	int i, error, cg;
354 
355 	*vpp = NULL;
356 	pip = VTOI(pvp);
357 	fs = pip->i_e2fs;
358 	ump = pip->i_ump;
359 
360 	EXT2_LOCK(ump);
361 	if (fs->e2fs->e2fs_ficount == 0)
362 		goto noinodes;
363 	/*
364 	 * If it is a directory then obtain a cylinder group based on
365 	 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is
366 	 * always the next inode.
367 	 */
368 	if ((mode & IFMT) == IFDIR) {
369 		cg = ext2_dirpref(pip);
370 		if (fs->e2fs_contigdirs[cg] < 255)
371 			fs->e2fs_contigdirs[cg]++;
372 	} else {
373 		cg = ino_to_cg(fs, pip->i_number);
374 		if (fs->e2fs_contigdirs[cg] > 0)
375 			fs->e2fs_contigdirs[cg]--;
376 	}
377 	ipref = cg * fs->e2fs->e2fs_ipg + 1;
378 	ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg);
379 
380 	if (ino == 0)
381 		goto noinodes;
382 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
383 	if (error) {
384 		ext2_vfree(pvp, ino, mode);
385 		return (error);
386 	}
387 	ip = VTOI(*vpp);
388 
389 	/*
390 	 * The question is whether using VGET was such good idea at all:
391 	 * Linux doesn't read the old inode in when it is allocating a
392 	 * new one. I will set at least i_size and i_blocks to zero.
393 	 */
394 	ip->i_size = 0;
395 	ip->i_blocks = 0;
396 	ip->i_mode = 0;
397 	ip->i_flags = 0;
398         /* now we want to make sure that the block pointers are zeroed out */
399         for (i = 0; i < NDADDR; i++)
400                 ip->i_db[i] = 0;
401         for (i = 0; i < NIADDR; i++)
402                 ip->i_ib[i] = 0;
403 
404 	/*
405 	 * Set up a new generation number for this inode.
406 	 * XXX check if this makes sense in ext2
407 	 */
408 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
409 		ip->i_gen = random() / 2 + 1;
410 
411 	vfs_timestamp(&ts);
412 	ip->i_birthtime = ts.tv_sec;
413 	ip->i_birthnsec = ts.tv_nsec;
414 
415 /*
416 printf("ext2_valloc: allocated inode %d\n", ino);
417 */
418 	return (0);
419 noinodes:
420 	EXT2_UNLOCK(ump);
421 	ext2_fserr(fs, cred->cr_uid, "out of inodes");
422 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt);
423 	return (ENOSPC);
424 }
425 
426 /*
427  * Find a cylinder to place a directory.
428  *
429  * The policy implemented by this algorithm is to allocate a
430  * directory inode in the same cylinder group as its parent
431  * directory, but also to reserve space for its files inodes
432  * and data. Restrict the number of directories which may be
433  * allocated one after another in the same cylinder group
434  * without intervening allocation of files.
435  *
436  * If we allocate a first level directory then force allocation
437  * in another cylinder group.
438  *
439  */
440 static u_long
441 ext2_dirpref(struct inode *pip)
442 {
443 	struct m_ext2fs *fs;
444         int cg, prefcg, dirsize, cgsize;
445 	int avgifree, avgbfree, avgndir, curdirsize;
446 	int minifree, minbfree, maxndir;
447 	int mincg, minndir;
448 	int maxcontigdirs;
449 
450 	mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED);
451 	fs = pip->i_e2fs;
452 
453  	avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount;
454 	avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount;
455 	avgndir  = fs->e2fs_total_dir / fs->e2fs_gcount;
456 
457 	/*
458 	 * Force allocation in another cg if creating a first level dir.
459 	 */
460 	ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref");
461 	if (ITOV(pip)->v_vflag & VV_ROOT) {
462 		prefcg = arc4random() % fs->e2fs_gcount;
463 		mincg = prefcg;
464 		minndir = fs->e2fs_ipg;
465 		for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
466 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
467 			    fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
468 			    fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
469 				mincg = cg;
470 				minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
471 			}
472 		for (cg = 0; cg < prefcg; cg++)
473 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
474                             fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
475                             fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
476                                 mincg = cg;
477                                 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
478                         }
479 
480 		return (mincg);
481 	}
482 
483 	/*
484 	 * Count various limits which used for
485 	 * optimal allocation of a directory inode.
486 	 */
487 	maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg);
488 	minifree = avgifree - avgifree / 4;
489 	if (minifree < 1)
490 		minifree = 1;
491 	minbfree = avgbfree - avgbfree / 4;
492 	if (minbfree < 1)
493 		minbfree = 1;
494 	cgsize = fs->e2fs_fsize * fs->e2fs_fpg;
495 	dirsize = AVGDIRSIZE;
496 	curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0;
497 	if (dirsize < curdirsize)
498 		dirsize = curdirsize;
499 	if (dirsize <= 0)
500 		maxcontigdirs = 0;		/* dirsize overflowed */
501 	else
502 		maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255);
503 	maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR);
504 	if (maxcontigdirs == 0)
505 		maxcontigdirs = 1;
506 
507 	/*
508 	 * Limit number of dirs in one cg and reserve space for
509 	 * regular files, but only if we have no deficit in
510 	 * inodes or space.
511 	 */
512 	prefcg = ino_to_cg(fs, pip->i_number);
513 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
514 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
515 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
516 	    	    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
517 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
518 				return (cg);
519 		}
520 	for (cg = 0; cg < prefcg; cg++)
521 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
522 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
523 	    	    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
524 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
525 				return (cg);
526 		}
527 	/*
528 	 * This is a backstop when we have deficit in space.
529 	 */
530 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
531 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
532 			return (cg);
533 	for (cg = 0; cg < prefcg; cg++)
534 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
535 			break;
536 	return (cg);
537 }
538 
539 /*
540  * Select the desired position for the next block in a file.
541  *
542  * we try to mimic what Remy does in inode_getblk/block_getblk
543  *
544  * we note: blocknr == 0 means that we're about to allocate either
545  * a direct block or a pointer block at the first level of indirection
546  * (In other words, stuff that will go in i_db[] or i_ib[])
547  *
548  * blocknr != 0 means that we're allocating a block that is none
549  * of the above. Then, blocknr tells us the number of the block
550  * that will hold the pointer
551  */
552 int32_t
553 ext2_blkpref(ip, lbn, indx, bap, blocknr)
554 	struct inode *ip;
555 	int32_t lbn;
556 	int indx;
557 	int32_t *bap;
558 	int32_t blocknr;
559 {
560 	int	tmp;
561 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
562 
563 	/* if the next block is actually what we thought it is,
564 	   then set the goal to what we thought it should be
565 	*/
566 	if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0)
567 		return ip->i_next_alloc_goal;
568 
569 	/* now check whether we were provided with an array that basically
570 	   tells us previous blocks to which we want to stay closeby
571 	*/
572 	if (bap)
573                 for (tmp = indx - 1; tmp >= 0; tmp--)
574 			if (bap[tmp])
575 				return bap[tmp];
576 
577 	/* else let's fall back to the blocknr, or, if there is none,
578 	   follow the rule that a block should be allocated near its inode
579 	*/
580 	return blocknr ? blocknr :
581 			(int32_t)(ip->i_block_group *
582 			EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) +
583 			ip->i_e2fs->e2fs->e2fs_first_dblock;
584 }
585 
586 /*
587  * Implement the cylinder overflow algorithm.
588  *
589  * The policy implemented by this algorithm is:
590  *   1) allocate the block in its requested cylinder group.
591  *   2) quadradically rehash on the cylinder group number.
592  *   3) brute force search for a free block.
593  */
594 static u_long
595 ext2_hashalloc(struct inode *ip, int cg, long pref, int size,
596                 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
597 {
598 	struct m_ext2fs *fs;
599 	ino_t result;
600 	int i, icg = cg;
601 
602 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
603 	fs = ip->i_e2fs;
604 	/*
605 	 * 1: preferred cylinder group
606 	 */
607 	result = (*allocator)(ip, cg, pref, size);
608 	if (result)
609 		return (result);
610 	/*
611 	 * 2: quadratic rehash
612 	 */
613 	for (i = 1; i < fs->e2fs_gcount; i *= 2) {
614 		cg += i;
615 		if (cg >= fs->e2fs_gcount)
616 			cg -= fs->e2fs_gcount;
617 		result = (*allocator)(ip, cg, 0, size);
618 		if (result)
619 			return (result);
620 	}
621 	/*
622 	 * 3: brute force search
623 	 * Note that we start at i == 2, since 0 was checked initially,
624 	 * and 1 is always checked in the quadratic rehash.
625 	 */
626 	cg = (icg + 2) % fs->e2fs_gcount;
627 	for (i = 2; i < fs->e2fs_gcount; i++) {
628 		result = (*allocator)(ip, cg, 0, size);
629 		if (result)
630 			return (result);
631 		cg++;
632 		if (cg == fs->e2fs_gcount)
633 			cg = 0;
634 	}
635 	return (0);
636 }
637 
638 /*
639  * Determine whether a block can be allocated.
640  *
641  * Check to see if a block of the appropriate size is available,
642  * and if it is, allocate it.
643  */
644 static daddr_t
645 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
646 {
647 	struct m_ext2fs *fs;
648 	struct buf *bp;
649 	struct ext2mount *ump;
650 	daddr_t bno, runstart, runlen;
651 	int bit, loc, end, error, start;
652 	char *bbp;
653 	/* XXX ondisk32 */
654 	fs = ip->i_e2fs;
655 	ump = ip->i_ump;
656 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0)
657 		return (0);
658 	EXT2_UNLOCK(ump);
659 	error = bread(ip->i_devvp, fsbtodb(fs,
660 		fs->e2fs_gd[cg].ext2bgd_b_bitmap),
661 		(int)fs->e2fs_bsize, NOCRED, &bp);
662 	if (error) {
663 		brelse(bp);
664 		EXT2_LOCK(ump);
665 		return (0);
666 	}
667 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) {
668 		/*
669 		 * Another thread allocated the last block in this
670 		 * group while we were waiting for the buffer.
671 		 */
672 		brelse(bp);
673 		EXT2_LOCK(ump);
674 		return (0);
675 	}
676 	bbp = (char *)bp->b_data;
677 
678 	if (dtog(fs, bpref) != cg)
679 		bpref = 0;
680 	if (bpref != 0) {
681 		bpref = dtogd(fs, bpref);
682 		/*
683 		 * if the requested block is available, use it
684 		 */
685 		if (isclr(bbp, bpref)) {
686 			bno = bpref;
687 			goto gotit;
688 		}
689 	}
690 	/*
691 	 * no blocks in the requested cylinder, so take next
692 	 * available one in this cylinder group.
693 	 * first try to get 8 contigous blocks, then fall back to a single
694 	 * block.
695 	 */
696 	if (bpref)
697 		start = dtogd(fs, bpref) / NBBY;
698 	else
699 		start = 0;
700 	end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
701 retry:
702 	runlen = 0;
703 	runstart = 0;
704 	for (loc = start; loc < end; loc++) {
705 		if (bbp[loc] == (char)0xff) {
706 			runlen = 0;
707 			continue;
708 		}
709 
710 		/* Start of a run, find the number of high clear bits. */
711 		if (runlen == 0) {
712 			bit = fls(bbp[loc]);
713 			runlen = NBBY - bit;
714 			runstart = loc * NBBY + bit;
715 		} else if (bbp[loc] == 0) {
716 			/* Continue a run. */
717 			runlen += NBBY;
718 		} else {
719 			/*
720 			 * Finish the current run.  If it isn't long
721 			 * enough, start a new one.
722 			 */
723 			bit = ffs(bbp[loc]) - 1;
724 			runlen += bit;
725 			if (runlen >= 8) {
726 				bno = runstart;
727 				goto gotit;
728 			}
729 
730 			/* Run was too short, start a new one. */
731 			bit = fls(bbp[loc]);
732 			runlen = NBBY - bit;
733 			runstart = loc * NBBY + bit;
734 		}
735 
736 		/* If the current run is long enough, use it. */
737 		if (runlen >= 8) {
738 			bno = runstart;
739 			goto gotit;
740 		}
741 	}
742 	if (start != 0) {
743 		end = start;
744 		start = 0;
745 		goto retry;
746 	}
747 
748 	bno = ext2_mapsearch(fs, bbp, bpref);
749 	if (bno < 0){
750 		brelse(bp);
751 		EXT2_LOCK(ump);
752 		return (0);
753 	}
754 gotit:
755 #ifdef DIAGNOSTIC
756 	if (isset(bbp, bno)) {
757 		printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n",
758 			cg, (intmax_t)bno, fs->e2fs_fsmnt);
759 		panic("ext2fs_alloccg: dup alloc");
760 	}
761 #endif
762 	setbit(bbp, bno);
763 	EXT2_LOCK(ump);
764 	ext2_clusteracct(fs, bbp, cg, bno, -1);
765 	fs->e2fs->e2fs_fbcount--;
766 	fs->e2fs_gd[cg].ext2bgd_nbfree--;
767 	fs->e2fs_fmod = 1;
768 	EXT2_UNLOCK(ump);
769 	bdwrite(bp);
770 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
771 }
772 
773 /*
774  * Determine whether a cluster can be allocated.
775  */
776 static daddr_t
777 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
778 {
779 	struct m_ext2fs *fs;
780 	struct ext2mount *ump;
781 	struct buf *bp;
782 	char *bbp;
783 	int bit, error, got, i, loc, run;
784 	int32_t *lp;
785 	daddr_t bno;
786 
787 	fs = ip->i_e2fs;
788 	ump = ip->i_ump;
789 
790 	if (fs->e2fs_maxcluster[cg] < len)
791 		return (0);
792 
793 	EXT2_UNLOCK(ump);
794 	error = bread(ip->i_devvp,
795 	    fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
796 	    (int)fs->e2fs_bsize, NOCRED, &bp);
797 	if (error)
798 		goto fail_lock;
799 
800 	bbp = (char *)bp->b_data;
801 	bp->b_xflags |= BX_BKGRDWRITE;
802 
803 	EXT2_LOCK(ump);
804 	/*
805 	 * Check to see if a cluster of the needed size (or bigger) is
806 	 * available in this cylinder group.
807 	 */
808 	lp = &fs->e2fs_clustersum[cg].cs_sum[len];
809 	for (i = len; i <= fs->e2fs_contigsumsize; i++)
810 		if (*lp++ > 0)
811 			break;
812 	if (i > fs->e2fs_contigsumsize) {
813 		/*
814 		 * Update the cluster summary information to reflect
815 		 * the true maximum-sized cluster so that future cluster
816 		 * allocation requests can avoid reading the bitmap only
817 		 * to find no cluster.
818 		 */
819 		lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1];
820 			for (i = len - 1; i > 0; i--)
821 				if (*lp-- > 0)
822 					break;
823 		fs->e2fs_maxcluster[cg] = i;
824 		goto fail;
825 	}
826 	EXT2_UNLOCK(ump);
827 
828 	/* Search the bitmap to find a big enough cluster like in FFS. */
829 	if (dtog(fs, bpref) != cg)
830 		bpref = 0;
831 	if (bpref != 0)
832 		bpref = dtogd(fs, bpref);
833 	loc = bpref / NBBY;
834 	bit = 1 << (bpref % NBBY);
835 	for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) {
836 		if ((bbp[loc] & bit) != 0)
837 			run = 0;
838 		else {
839 			run++;
840 			if (run == len)
841 				break;
842 		}
843 		if ((got & (NBBY - 1)) != (NBBY - 1))
844 			bit <<= 1;
845 		else {
846 			loc++;
847 			bit = 1;
848 		}
849 	}
850 
851 	if (got >= fs->e2fs->e2fs_fpg)
852 		goto fail_lock;
853 
854 	/* Allocate the cluster that we found. */
855 	for (i = 1; i < len; i++)
856 		if (!isclr(bbp, got - run + i))
857 			panic("ext2_clusteralloc: map mismatch");
858 
859 	bno = got - run + 1;
860 	if (bno >= fs->e2fs->e2fs_fpg)
861 		panic("ext2_clusteralloc: allocated out of group");
862 
863 	EXT2_LOCK(ump);
864 	for (i = 0; i < len; i += fs->e2fs_fpb) {
865 		setbit(bbp, bno + i);
866 		ext2_clusteracct(fs, bbp, cg, bno + i, -1);
867 		fs->e2fs->e2fs_fbcount--;
868 		fs->e2fs_gd[cg].ext2bgd_nbfree--;
869 	}
870 	fs->e2fs_fmod = 1;
871 	EXT2_UNLOCK(ump);
872 
873 	bdwrite(bp);
874 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
875 
876 fail_lock:
877 	EXT2_LOCK(ump);
878 fail:
879 	brelse(bp);
880 	return (0);
881 }
882 
883 /*
884  * Determine whether an inode can be allocated.
885  *
886  * Check to see if an inode is available, and if it is,
887  * allocate it using tode in the specified cylinder group.
888  */
889 static daddr_t
890 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
891 {
892 	struct m_ext2fs *fs;
893 	struct buf *bp;
894 	struct ext2mount *ump;
895 	int error, start, len;
896 	char *ibp, *loc;
897 	ipref--; /* to avoid a lot of (ipref -1) */
898 	if (ipref == -1)
899 		ipref = 0;
900 	fs = ip->i_e2fs;
901 	ump = ip->i_ump;
902 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0)
903 		return (0);
904 	EXT2_UNLOCK(ump);
905 	error = bread(ip->i_devvp, fsbtodb(fs,
906 		fs->e2fs_gd[cg].ext2bgd_i_bitmap),
907 		(int)fs->e2fs_bsize, NOCRED, &bp);
908 	if (error) {
909 		brelse(bp);
910 		EXT2_LOCK(ump);
911 		return (0);
912 	}
913 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) {
914 		/*
915 		 * Another thread allocated the last i-node in this
916 		 * group while we were waiting for the buffer.
917 		 */
918 		brelse(bp);
919 		EXT2_LOCK(ump);
920 		return (0);
921 	}
922 	ibp = (char *)bp->b_data;
923 	if (ipref) {
924 		ipref %= fs->e2fs->e2fs_ipg;
925 		if (isclr(ibp, ipref))
926 			goto gotit;
927 	}
928 	start = ipref / NBBY;
929 	len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
930 	loc = memcchr(&ibp[start], 0xff, len);
931 	if (loc == NULL) {
932 		len = start + 1;
933 		start = 0;
934 		loc = memcchr(&ibp[start], 0xff, len);
935 		if (loc == NULL) {
936 			printf("cg = %d, ipref = %lld, fs = %s\n",
937 				cg, (long long)ipref, fs->e2fs_fsmnt);
938 			panic("ext2fs_nodealloccg: map corrupted");
939 			/* NOTREACHED */
940 		}
941 	}
942 	ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1;
943 gotit:
944 	setbit(ibp, ipref);
945 	EXT2_LOCK(ump);
946 	fs->e2fs_gd[cg].ext2bgd_nifree--;
947 	fs->e2fs->e2fs_ficount--;
948 	fs->e2fs_fmod = 1;
949 	if ((mode & IFMT) == IFDIR) {
950 		fs->e2fs_gd[cg].ext2bgd_ndirs++;
951 		fs->e2fs_total_dir++;
952 	}
953 	EXT2_UNLOCK(ump);
954 	bdwrite(bp);
955 	return (cg * fs->e2fs->e2fs_ipg + ipref +1);
956 }
957 
958 /*
959  * Free a block or fragment.
960  *
961  */
962 void
963 ext2_blkfree(ip, bno, size)
964 	struct inode *ip;
965 	int32_t bno;
966 	long size;
967 {
968 	struct m_ext2fs *fs;
969 	struct buf *bp;
970 	struct ext2mount *ump;
971 	int cg, error;
972 	char *bbp;
973 
974 	fs = ip->i_e2fs;
975 	ump = ip->i_ump;
976 	cg = dtog(fs, bno);
977 	if ((u_int)bno >= fs->e2fs->e2fs_bcount) {
978                 printf("bad block %lld, ino %llu\n", (long long)bno,
979                     (unsigned long long)ip->i_number);
980                 ext2_fserr(fs, ip->i_uid, "bad block");
981                 return;
982         }
983         error = bread(ip->i_devvp,
984                 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
985                 (int)fs->e2fs_bsize, NOCRED, &bp);
986         if (error) {
987                 brelse(bp);
988                 return;
989         }
990         bbp = (char *)bp->b_data;
991         bno = dtogd(fs, bno);
992         if (isclr(bbp, bno)) {
993                 printf("block = %lld, fs = %s\n",
994                      (long long)bno, fs->e2fs_fsmnt);
995                 panic("blkfree: freeing free block");
996         }
997         clrbit(bbp, bno);
998 	EXT2_LOCK(ump);
999 	ext2_clusteracct(fs, bbp, cg, bno, 1);
1000         fs->e2fs->e2fs_fbcount++;
1001         fs->e2fs_gd[cg].ext2bgd_nbfree++;
1002         fs->e2fs_fmod = 1;
1003 	EXT2_UNLOCK(ump);
1004         bdwrite(bp);
1005 }
1006 
1007 /*
1008  * Free an inode.
1009  *
1010  */
1011 int
1012 ext2_vfree(pvp, ino, mode)
1013 	struct vnode *pvp;
1014 	ino_t ino;
1015 	int mode;
1016 {
1017 	struct m_ext2fs *fs;
1018 	struct inode *pip;
1019 	struct buf *bp;
1020 	struct ext2mount *ump;
1021 	int error, cg;
1022 	char * ibp;
1023 /*	mode_t save_i_mode; */
1024 
1025 	pip = VTOI(pvp);
1026 	fs = pip->i_e2fs;
1027 	ump = pip->i_ump;
1028 	if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount)
1029 		panic("ext2_vfree: range: devvp = %p, ino = %d, fs = %s",
1030 		    pip->i_devvp, ino, fs->e2fs_fsmnt);
1031 
1032 	cg = ino_to_cg(fs, ino);
1033 	error = bread(pip->i_devvp,
1034 		fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap),
1035 		(int)fs->e2fs_bsize, NOCRED, &bp);
1036 	if (error) {
1037 		brelse(bp);
1038 		return (0);
1039 	}
1040 	ibp = (char *)bp->b_data;
1041 	ino = (ino - 1) % fs->e2fs->e2fs_ipg;
1042 	if (isclr(ibp, ino)) {
1043 		printf("ino = %llu, fs = %s\n",
1044 			 (unsigned long long)ino, fs->e2fs_fsmnt);
1045 		if (fs->e2fs_ronly == 0)
1046 			panic("ifree: freeing free inode");
1047 	}
1048 	clrbit(ibp, ino);
1049 	EXT2_LOCK(ump);
1050 	fs->e2fs->e2fs_ficount++;
1051 	fs->e2fs_gd[cg].ext2bgd_nifree++;
1052 	if ((mode & IFMT) == IFDIR) {
1053 		fs->e2fs_gd[cg].ext2bgd_ndirs--;
1054 		fs->e2fs_total_dir--;
1055 	}
1056 	fs->e2fs_fmod = 1;
1057 	EXT2_UNLOCK(ump);
1058 	bdwrite(bp);
1059 	return (0);
1060 }
1061 
1062 /*
1063  * Find a block in the specified cylinder group.
1064  *
1065  * It is a panic if a request is made to find a block if none are
1066  * available.
1067  */
1068 static daddr_t
1069 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref)
1070 {
1071 	char *loc;
1072 	int start, len;
1073 
1074 	/*
1075 	 * find the fragment by searching through the free block
1076 	 * map for an appropriate bit pattern
1077 	 */
1078 	if (bpref)
1079 		start = dtogd(fs, bpref) / NBBY;
1080 	else
1081 		start = 0;
1082 	len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
1083 	loc = memcchr(&bbp[start], 0xff, len);
1084 	if (loc == NULL) {
1085 		len = start + 1;
1086 		start = 0;
1087 		loc = memcchr(&bbp[start], 0xff, len);
1088 		if (loc == NULL) {
1089 			printf("start = %d, len = %d, fs = %s\n",
1090 				start, len, fs->e2fs_fsmnt);
1091 			panic("ext2fs_alloccg: map corrupted");
1092 			/* NOTREACHED */
1093 		}
1094 	}
1095 	return ((loc - bbp) * NBBY + ffs(~*loc) - 1);
1096 }
1097 
1098 /*
1099  * Fserr prints the name of a file system with an error diagnostic.
1100  *
1101  * The form of the error message is:
1102  *	fs: error message
1103  */
1104 static void
1105 ext2_fserr(fs, uid, cp)
1106 	struct m_ext2fs *fs;
1107 	uid_t uid;
1108 	char *cp;
1109 {
1110 
1111 	log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp);
1112 }
1113 
1114 int
1115 cg_has_sb(int i)
1116 {
1117         int a3, a5, a7;
1118 
1119         if (i == 0 || i == 1)
1120                 return 1;
1121         for (a3 = 3, a5 = 5, a7 = 7;
1122             a3 <= i || a5 <= i || a7 <= i;
1123             a3 *= 3, a5 *= 5, a7 *= 7)
1124                 if (i == a3 || i == a5 || i == a7)
1125                         return 1;
1126         return 0;
1127 }
1128