xref: /freebsd/sys/fs/ext2fs/ext2_alloc.c (revision 2830819497fb2deae3dd71574592ace55f2fbdba)
1 /*-
2  *  modified for Lites 1.1
3  *
4  *  Aug 1995, Godmar Back (gback@cs.utah.edu)
5  *  University of Utah, Department of Computer Science
6  */
7 /*-
8  * Copyright (c) 1982, 1986, 1989, 1993
9  *	The Regents of the University of California.  All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
36  * $FreeBSD$
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/conf.h>
42 #include <sys/vnode.h>
43 #include <sys/stat.h>
44 #include <sys/mount.h>
45 #include <sys/sysctl.h>
46 #include <sys/syslog.h>
47 #include <sys/buf.h>
48 
49 #include <fs/ext2fs/fs.h>
50 #include <fs/ext2fs/inode.h>
51 #include <fs/ext2fs/ext2_mount.h>
52 #include <fs/ext2fs/ext2fs.h>
53 #include <fs/ext2fs/ext2_extern.h>
54 
55 static daddr_t	ext2_alloccg(struct inode *, int, daddr_t, int);
56 static daddr_t	ext2_clusteralloc(struct inode *, int, daddr_t, int);
57 static u_long	ext2_dirpref(struct inode *);
58 static void	ext2_fserr(struct m_ext2fs *, uid_t, char *);
59 static u_long	ext2_hashalloc(struct inode *, int, long, int,
60 				daddr_t (*)(struct inode *, int, daddr_t,
61 						int));
62 static daddr_t	ext2_nodealloccg(struct inode *, int, daddr_t, int);
63 static daddr_t  ext2_mapsearch(struct m_ext2fs *, char *, daddr_t);
64 
65 /*
66  * Allocate a block in the filesystem.
67  *
68  * A preference may be optionally specified. If a preference is given
69  * the following hierarchy is used to allocate a block:
70  *   1) allocate the requested block.
71  *   2) allocate a rotationally optimal block in the same cylinder.
72  *   3) allocate a block in the same cylinder group.
73  *   4) quadradically rehash into other cylinder groups, until an
74  *        available block is located.
75  * If no block preference is given the following hierarchy is used
76  * to allocate a block:
77  *   1) allocate a block in the cylinder group that contains the
78  *        inode for the file.
79  *   2) quadradically rehash into other cylinder groups, until an
80  *        available block is located.
81  */
82 int
83 ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size,
84     struct ucred *cred, e4fs_daddr_t *bnp)
85 {
86 	struct m_ext2fs *fs;
87 	struct ext2mount *ump;
88 	int32_t bno;
89 	int cg;
90 	*bnp = 0;
91 	fs = ip->i_e2fs;
92 	ump = ip->i_ump;
93 	mtx_assert(EXT2_MTX(ump), MA_OWNED);
94 #ifdef INVARIANTS
95 	if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) {
96 		vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n",
97 		    (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt);
98 		panic("ext2_alloc: bad size");
99 	}
100 	if (cred == NOCRED)
101 		panic("ext2_alloc: missing credential");
102 #endif /* INVARIANTS */
103 	if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0)
104 		goto nospace;
105 	if (cred->cr_uid != 0 &&
106 		fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount)
107 		goto nospace;
108 	if (bpref >= fs->e2fs->e2fs_bcount)
109 		bpref = 0;
110 	if (bpref == 0)
111 		cg = ino_to_cg(fs, ip->i_number);
112 	else
113 		cg = dtog(fs, bpref);
114 	bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize,
115 				      ext2_alloccg);
116 	if (bno > 0) {
117 		/* set next_alloc fields as done in block_getblk */
118 		ip->i_next_alloc_block = lbn;
119 		ip->i_next_alloc_goal = bno;
120 
121 		ip->i_blocks += btodb(fs->e2fs_bsize);
122 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
123 		*bnp = bno;
124 		return (0);
125 	}
126 nospace:
127 	EXT2_UNLOCK(ump);
128 	ext2_fserr(fs, cred->cr_uid, "filesystem full");
129 	uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt);
130 	return (ENOSPC);
131 }
132 
133 /*
134  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
135  *
136  * The vnode and an array of buffer pointers for a range of sequential
137  * logical blocks to be made contiguous is given. The allocator attempts
138  * to find a range of sequential blocks starting as close as possible to
139  * an fs_rotdelay offset from the end of the allocation for the logical
140  * block immediately preceding the current range. If successful, the
141  * physical block numbers in the buffer pointers and in the inode are
142  * changed to reflect the new allocation. If unsuccessful, the allocation
143  * is left unchanged. The success in doing the reallocation is returned.
144  * Note that the error return is not reflected back to the user. Rather
145  * the previous block allocation will be used.
146  */
147 
148 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem");
149 
150 static int doasyncfree = 1;
151 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
152     "Use asychronous writes to update block pointers when freeing blocks");
153 
154 static int doreallocblks = 1;
155 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
156 
157 int
158 ext2_reallocblks(struct vop_reallocblks_args *ap)
159 {
160 	struct m_ext2fs *fs;
161 	struct inode *ip;
162 	struct vnode *vp;
163 	struct buf *sbp, *ebp;
164 	uint32_t *bap, *sbap, *ebap = 0;
165 	struct ext2mount *ump;
166 	struct cluster_save *buflist;
167 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
168 	e2fs_lbn_t start_lbn, end_lbn;
169 	int soff;
170 	e2fs_daddr_t newblk, blkno;
171 	int i, len, start_lvl, end_lvl, pref, ssize;
172 
173 	if (doreallocblks == 0)
174 		  return (ENOSPC);
175 
176 	vp = ap->a_vp;
177 	ip = VTOI(vp);
178 	fs = ip->i_e2fs;
179 	ump = ip->i_ump;
180 
181 	if (fs->e2fs_contigsumsize <= 0)
182 		return (ENOSPC);
183 
184 	buflist = ap->a_buflist;
185 	len = buflist->bs_nchildren;
186 	start_lbn = buflist->bs_children[0]->b_lblkno;
187 	end_lbn = start_lbn + len - 1;
188 #ifdef INVARIANTS
189 	for (i = 1; i < len; i++)
190 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
191 			panic("ext2_reallocblks: non-cluster");
192 #endif
193 	/*
194 	 * If the cluster crosses the boundary for the first indirect
195 	 * block, leave space for the indirect block. Indirect blocks
196 	 * are initially laid out in a position after the last direct
197 	 * block. Block reallocation would usually destroy locality by
198 	 * moving the indirect block out of the way to make room for
199 	 * data blocks if we didn't compensate here. We should also do
200 	 * this for other indirect block boundaries, but it is only
201 	 * important for the first one.
202 	 */
203 	if (start_lbn < NDADDR && end_lbn >= NDADDR)
204 		return (ENOSPC);
205 	/*
206 	 * If the latest allocation is in a new cylinder group, assume that
207 	 * the filesystem has decided to move and do not force it back to
208 	 * the previous cylinder group.
209 	 */
210 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
211 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
212 		return (ENOSPC);
213 	if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
214 	    ext2_getlbns(vp, end_lbn, end_ap, &end_lvl))
215 		return (ENOSPC);
216 	/*
217 	 * Get the starting offset and block map for the first block.
218 	 */
219 	if (start_lvl == 0) {
220 		sbap = &ip->i_db[0];
221 		soff = start_lbn;
222 	} else {
223 		idp = &start_ap[start_lvl - 1];
224 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) {
225 			brelse(sbp);
226 			return (ENOSPC);
227 		}
228 		sbap = (u_int *)sbp->b_data;
229 		soff = idp->in_off;
230 	}
231 	/*
232 	 * If the block range spans two block maps, get the second map.
233 	 */
234 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
235 		ssize = len;
236 	} else {
237 #ifdef INVARIANTS
238 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
239 			panic("ext2_reallocblks: start == end");
240 #endif
241 		ssize = len - (idp->in_off + 1);
242 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp))
243 			goto fail;
244 		ebap = (u_int *)ebp->b_data;
245 	}
246 	/*
247 	 * Find the preferred location for the cluster.
248 	 */
249 	EXT2_LOCK(ump);
250 	pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0);
251 	/*
252 	 * Search the block map looking for an allocation of the desired size.
253 	 */
254 	if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref,
255 	    len, ext2_clusteralloc)) == 0){
256 		EXT2_UNLOCK(ump);
257 		goto fail;
258 	}
259 	/*
260 	 * We have found a new contiguous block.
261 	 *
262 	 * First we have to replace the old block pointers with the new
263 	 * block pointers in the inode and indirect blocks associated
264 	 * with the file.
265 	 */
266 #ifdef DEBUG
267 	printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
268 	    (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn);
269 #endif /* DEBUG */
270 	blkno = newblk;
271 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
272 		if (i == ssize) {
273 			bap = ebap;
274 			soff = -i;
275 		}
276 #ifdef INVARIANTS
277 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
278 			panic("ext2_reallocblks: alloc mismatch");
279 #endif
280 #ifdef DEBUG
281 	printf(" %d,", *bap);
282 #endif /* DEBUG */
283 		*bap++ = blkno;
284 	}
285 	/*
286 	 * Next we must write out the modified inode and indirect blocks.
287 	 * For strict correctness, the writes should be synchronous since
288 	 * the old block values may have been written to disk. In practise
289 	 * they are almost never written, but if we are concerned about
290 	 * strict correctness, the `doasyncfree' flag should be set to zero.
291 	 *
292 	 * The test on `doasyncfree' should be changed to test a flag
293 	 * that shows whether the associated buffers and inodes have
294 	 * been written. The flag should be set when the cluster is
295 	 * started and cleared whenever the buffer or inode is flushed.
296 	 * We can then check below to see if it is set, and do the
297 	 * synchronous write only when it has been cleared.
298 	 */
299 	if (sbap != &ip->i_db[0]) {
300 		if (doasyncfree)
301 			bdwrite(sbp);
302 		else
303 			bwrite(sbp);
304 	} else {
305 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
306 		if (!doasyncfree)
307 			ext2_update(vp, 1);
308 	}
309 	if (ssize < len) {
310 		if (doasyncfree)
311 			bdwrite(ebp);
312 		else
313 			bwrite(ebp);
314 	}
315 	/*
316 	 * Last, free the old blocks and assign the new blocks to the buffers.
317 	 */
318 #ifdef DEBUG
319 	printf("\n\tnew:");
320 #endif /* DEBUG */
321 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
322 		ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
323 		    fs->e2fs_bsize);
324 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
325 #ifdef DEBUG
326 		printf(" %d,", blkno);
327 #endif /* DEBUG */
328 	}
329 #ifdef DEBUG
330 	printf("\n");
331 #endif /* DEBUG */
332 	return (0);
333 
334 fail:
335 	if (ssize < len)
336 		brelse(ebp);
337 	if (sbap != &ip->i_db[0])
338 		brelse(sbp);
339 	return (ENOSPC);
340 }
341 
342 /*
343  * Allocate an inode in the filesystem.
344  *
345  */
346 int
347 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
348 {
349 	struct timespec ts;
350 	struct inode *pip;
351 	struct m_ext2fs *fs;
352 	struct inode *ip;
353 	struct ext2mount *ump;
354 	ino_t ino, ipref;
355 	int i, error, cg;
356 
357 	*vpp = NULL;
358 	pip = VTOI(pvp);
359 	fs = pip->i_e2fs;
360 	ump = pip->i_ump;
361 
362 	EXT2_LOCK(ump);
363 	if (fs->e2fs->e2fs_ficount == 0)
364 		goto noinodes;
365 	/*
366 	 * If it is a directory then obtain a cylinder group based on
367 	 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is
368 	 * always the next inode.
369 	 */
370 	if ((mode & IFMT) == IFDIR) {
371 		cg = ext2_dirpref(pip);
372 		if (fs->e2fs_contigdirs[cg] < 255)
373 			fs->e2fs_contigdirs[cg]++;
374 	} else {
375 		cg = ino_to_cg(fs, pip->i_number);
376 		if (fs->e2fs_contigdirs[cg] > 0)
377 			fs->e2fs_contigdirs[cg]--;
378 	}
379 	ipref = cg * fs->e2fs->e2fs_ipg + 1;
380 	ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg);
381 
382 	if (ino == 0)
383 		goto noinodes;
384 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
385 	if (error) {
386 		ext2_vfree(pvp, ino, mode);
387 		return (error);
388 	}
389 	ip = VTOI(*vpp);
390 
391 	/*
392 	 * The question is whether using VGET was such good idea at all:
393 	 * Linux doesn't read the old inode in when it is allocating a
394 	 * new one. I will set at least i_size and i_blocks to zero.
395 	 */
396 	ip->i_size = 0;
397 	ip->i_blocks = 0;
398 	ip->i_mode = 0;
399 	ip->i_flags = 0;
400 	/* now we want to make sure that the block pointers are zeroed out */
401 	for (i = 0; i < NDADDR; i++)
402 		ip->i_db[i] = 0;
403 	for (i = 0; i < NIADDR; i++)
404 		ip->i_ib[i] = 0;
405 
406 	/*
407 	 * Set up a new generation number for this inode.
408 	 * XXX check if this makes sense in ext2
409 	 */
410 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
411 		ip->i_gen = random() / 2 + 1;
412 
413 	vfs_timestamp(&ts);
414 	ip->i_birthtime = ts.tv_sec;
415 	ip->i_birthnsec = ts.tv_nsec;
416 
417 /*
418 printf("ext2_valloc: allocated inode %d\n", ino);
419 */
420 	return (0);
421 noinodes:
422 	EXT2_UNLOCK(ump);
423 	ext2_fserr(fs, cred->cr_uid, "out of inodes");
424 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt);
425 	return (ENOSPC);
426 }
427 
428 /*
429  * Find a cylinder to place a directory.
430  *
431  * The policy implemented by this algorithm is to allocate a
432  * directory inode in the same cylinder group as its parent
433  * directory, but also to reserve space for its files inodes
434  * and data. Restrict the number of directories which may be
435  * allocated one after another in the same cylinder group
436  * without intervening allocation of files.
437  *
438  * If we allocate a first level directory then force allocation
439  * in another cylinder group.
440  *
441  */
442 static u_long
443 ext2_dirpref(struct inode *pip)
444 {
445 	struct m_ext2fs *fs;
446 	int cg, prefcg, cgsize;
447 	u_int avgifree, avgbfree, avgndir, curdirsize;
448 	u_int minifree, minbfree, maxndir;
449 	u_int mincg, minndir;
450 	u_int dirsize, maxcontigdirs;
451 
452 	mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED);
453 	fs = pip->i_e2fs;
454 
455 	avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount;
456 	avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount;
457 	avgndir  = fs->e2fs_total_dir / fs->e2fs_gcount;
458 
459 	/*
460 	 * Force allocation in another cg if creating a first level dir.
461 	 */
462 	ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref");
463 	if (ITOV(pip)->v_vflag & VV_ROOT) {
464 		prefcg = arc4random() % fs->e2fs_gcount;
465 		mincg = prefcg;
466 		minndir = fs->e2fs_ipg;
467 		for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
468 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
469 			    fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
470 			    fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
471 				mincg = cg;
472 				minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
473 			}
474 		for (cg = 0; cg < prefcg; cg++)
475 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
476 			    fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
477 			    fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
478 				mincg = cg;
479 				minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
480 			}
481 
482 		return (mincg);
483 	}
484 
485 	/*
486 	 * Count various limits which used for
487 	 * optimal allocation of a directory inode.
488 	 */
489 	maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg);
490 	minifree = avgifree - avgifree / 4;
491 	if (minifree < 1)
492 		minifree = 1;
493 	minbfree = avgbfree - avgbfree / 4;
494 	if (minbfree < 1)
495 		minbfree = 1;
496 	cgsize = fs->e2fs_fsize * fs->e2fs_fpg;
497 	dirsize = AVGDIRSIZE;
498 	curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0;
499 	if (dirsize < curdirsize)
500 		dirsize = curdirsize;
501 	maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255);
502 	maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR);
503 	if (maxcontigdirs == 0)
504 		maxcontigdirs = 1;
505 
506 	/*
507 	 * Limit number of dirs in one cg and reserve space for
508 	 * regular files, but only if we have no deficit in
509 	 * inodes or space.
510 	 */
511 	prefcg = ino_to_cg(fs, pip->i_number);
512 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
513 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
514 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
515 		    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
516 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
517 				return (cg);
518 		}
519 	for (cg = 0; cg < prefcg; cg++)
520 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
521 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
522 		    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
523 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
524 				return (cg);
525 		}
526 	/*
527 	 * This is a backstop when we have deficit in space.
528 	 */
529 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
530 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
531 			return (cg);
532 	for (cg = 0; cg < prefcg; cg++)
533 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
534 			break;
535 	return (cg);
536 }
537 
538 /*
539  * Select the desired position for the next block in a file.
540  *
541  * we try to mimic what Remy does in inode_getblk/block_getblk
542  *
543  * we note: blocknr == 0 means that we're about to allocate either
544  * a direct block or a pointer block at the first level of indirection
545  * (In other words, stuff that will go in i_db[] or i_ib[])
546  *
547  * blocknr != 0 means that we're allocating a block that is none
548  * of the above. Then, blocknr tells us the number of the block
549  * that will hold the pointer
550  */
551 e4fs_daddr_t
552 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap,
553     e2fs_daddr_t blocknr)
554 {
555 	int	tmp;
556 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
557 
558 	/* if the next block is actually what we thought it is,
559 	   then set the goal to what we thought it should be
560 	*/
561 	if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0)
562 		return ip->i_next_alloc_goal;
563 
564 	/* now check whether we were provided with an array that basically
565 	   tells us previous blocks to which we want to stay closeby
566 	*/
567 	if (bap)
568 		for (tmp = indx - 1; tmp >= 0; tmp--)
569 			if (bap[tmp])
570 				return bap[tmp];
571 
572 	/* else let's fall back to the blocknr, or, if there is none,
573 	   follow the rule that a block should be allocated near its inode
574 	*/
575 	return blocknr ? blocknr :
576 			(e2fs_daddr_t)(ip->i_block_group *
577 			EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) +
578 			ip->i_e2fs->e2fs->e2fs_first_dblock;
579 }
580 
581 /*
582  * Implement the cylinder overflow algorithm.
583  *
584  * The policy implemented by this algorithm is:
585  *   1) allocate the block in its requested cylinder group.
586  *   2) quadradically rehash on the cylinder group number.
587  *   3) brute force search for a free block.
588  */
589 static u_long
590 ext2_hashalloc(struct inode *ip, int cg, long pref, int size,
591                 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
592 {
593 	struct m_ext2fs *fs;
594 	ino_t result;
595 	int i, icg = cg;
596 
597 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
598 	fs = ip->i_e2fs;
599 	/*
600 	 * 1: preferred cylinder group
601 	 */
602 	result = (*allocator)(ip, cg, pref, size);
603 	if (result)
604 		return (result);
605 	/*
606 	 * 2: quadratic rehash
607 	 */
608 	for (i = 1; i < fs->e2fs_gcount; i *= 2) {
609 		cg += i;
610 		if (cg >= fs->e2fs_gcount)
611 			cg -= fs->e2fs_gcount;
612 		result = (*allocator)(ip, cg, 0, size);
613 		if (result)
614 			return (result);
615 	}
616 	/*
617 	 * 3: brute force search
618 	 * Note that we start at i == 2, since 0 was checked initially,
619 	 * and 1 is always checked in the quadratic rehash.
620 	 */
621 	cg = (icg + 2) % fs->e2fs_gcount;
622 	for (i = 2; i < fs->e2fs_gcount; i++) {
623 		result = (*allocator)(ip, cg, 0, size);
624 		if (result)
625 			return (result);
626 		cg++;
627 		if (cg == fs->e2fs_gcount)
628 			cg = 0;
629 	}
630 	return (0);
631 }
632 
633 /*
634  * Determine whether a block can be allocated.
635  *
636  * Check to see if a block of the appropriate size is available,
637  * and if it is, allocate it.
638  */
639 static daddr_t
640 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
641 {
642 	struct m_ext2fs *fs;
643 	struct buf *bp;
644 	struct ext2mount *ump;
645 	daddr_t bno, runstart, runlen;
646 	int bit, loc, end, error, start;
647 	char *bbp;
648 	/* XXX ondisk32 */
649 	fs = ip->i_e2fs;
650 	ump = ip->i_ump;
651 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0)
652 		return (0);
653 	EXT2_UNLOCK(ump);
654 	error = bread(ip->i_devvp, fsbtodb(fs,
655 		fs->e2fs_gd[cg].ext2bgd_b_bitmap),
656 		(int)fs->e2fs_bsize, NOCRED, &bp);
657 	if (error) {
658 		brelse(bp);
659 		EXT2_LOCK(ump);
660 		return (0);
661 	}
662 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) {
663 		/*
664 		 * Another thread allocated the last block in this
665 		 * group while we were waiting for the buffer.
666 		 */
667 		brelse(bp);
668 		EXT2_LOCK(ump);
669 		return (0);
670 	}
671 	bbp = (char *)bp->b_data;
672 
673 	if (dtog(fs, bpref) != cg)
674 		bpref = 0;
675 	if (bpref != 0) {
676 		bpref = dtogd(fs, bpref);
677 		/*
678 		 * if the requested block is available, use it
679 		 */
680 		if (isclr(bbp, bpref)) {
681 			bno = bpref;
682 			goto gotit;
683 		}
684 	}
685 	/*
686 	 * no blocks in the requested cylinder, so take next
687 	 * available one in this cylinder group.
688 	 * first try to get 8 contigous blocks, then fall back to a single
689 	 * block.
690 	 */
691 	if (bpref)
692 		start = dtogd(fs, bpref) / NBBY;
693 	else
694 		start = 0;
695 	end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
696 retry:
697 	runlen = 0;
698 	runstart = 0;
699 	for (loc = start; loc < end; loc++) {
700 		if (bbp[loc] == (char)0xff) {
701 			runlen = 0;
702 			continue;
703 		}
704 
705 		/* Start of a run, find the number of high clear bits. */
706 		if (runlen == 0) {
707 			bit = fls(bbp[loc]);
708 			runlen = NBBY - bit;
709 			runstart = loc * NBBY + bit;
710 		} else if (bbp[loc] == 0) {
711 			/* Continue a run. */
712 			runlen += NBBY;
713 		} else {
714 			/*
715 			 * Finish the current run.  If it isn't long
716 			 * enough, start a new one.
717 			 */
718 			bit = ffs(bbp[loc]) - 1;
719 			runlen += bit;
720 			if (runlen >= 8) {
721 				bno = runstart;
722 				goto gotit;
723 			}
724 
725 			/* Run was too short, start a new one. */
726 			bit = fls(bbp[loc]);
727 			runlen = NBBY - bit;
728 			runstart = loc * NBBY + bit;
729 		}
730 
731 		/* If the current run is long enough, use it. */
732 		if (runlen >= 8) {
733 			bno = runstart;
734 			goto gotit;
735 		}
736 	}
737 	if (start != 0) {
738 		end = start;
739 		start = 0;
740 		goto retry;
741 	}
742 
743 	bno = ext2_mapsearch(fs, bbp, bpref);
744 	if (bno < 0){
745 		brelse(bp);
746 		EXT2_LOCK(ump);
747 		return (0);
748 	}
749 gotit:
750 #ifdef INVARIANTS
751 	if (isset(bbp, bno)) {
752 		printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n",
753 			cg, (intmax_t)bno, fs->e2fs_fsmnt);
754 		panic("ext2fs_alloccg: dup alloc");
755 	}
756 #endif
757 	setbit(bbp, bno);
758 	EXT2_LOCK(ump);
759 	ext2_clusteracct(fs, bbp, cg, bno, -1);
760 	fs->e2fs->e2fs_fbcount--;
761 	fs->e2fs_gd[cg].ext2bgd_nbfree--;
762 	fs->e2fs_fmod = 1;
763 	EXT2_UNLOCK(ump);
764 	bdwrite(bp);
765 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
766 }
767 
768 /*
769  * Determine whether a cluster can be allocated.
770  */
771 static daddr_t
772 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
773 {
774 	struct m_ext2fs *fs;
775 	struct ext2mount *ump;
776 	struct buf *bp;
777 	char *bbp;
778 	int bit, error, got, i, loc, run;
779 	int32_t *lp;
780 	daddr_t bno;
781 
782 	fs = ip->i_e2fs;
783 	ump = ip->i_ump;
784 
785 	if (fs->e2fs_maxcluster[cg] < len)
786 		return (0);
787 
788 	EXT2_UNLOCK(ump);
789 	error = bread(ip->i_devvp,
790 	    fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
791 	    (int)fs->e2fs_bsize, NOCRED, &bp);
792 	if (error)
793 		goto fail_lock;
794 
795 	bbp = (char *)bp->b_data;
796 	EXT2_LOCK(ump);
797 	/*
798 	 * Check to see if a cluster of the needed size (or bigger) is
799 	 * available in this cylinder group.
800 	 */
801 	lp = &fs->e2fs_clustersum[cg].cs_sum[len];
802 	for (i = len; i <= fs->e2fs_contigsumsize; i++)
803 		if (*lp++ > 0)
804 			break;
805 	if (i > fs->e2fs_contigsumsize) {
806 		/*
807 		 * Update the cluster summary information to reflect
808 		 * the true maximum-sized cluster so that future cluster
809 		 * allocation requests can avoid reading the bitmap only
810 		 * to find no cluster.
811 		 */
812 		lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1];
813 			for (i = len - 1; i > 0; i--)
814 				if (*lp-- > 0)
815 					break;
816 		fs->e2fs_maxcluster[cg] = i;
817 		goto fail;
818 	}
819 	EXT2_UNLOCK(ump);
820 
821 	/* Search the bitmap to find a big enough cluster like in FFS. */
822 	if (dtog(fs, bpref) != cg)
823 		bpref = 0;
824 	if (bpref != 0)
825 		bpref = dtogd(fs, bpref);
826 	loc = bpref / NBBY;
827 	bit = 1 << (bpref % NBBY);
828 	for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) {
829 		if ((bbp[loc] & bit) != 0)
830 			run = 0;
831 		else {
832 			run++;
833 			if (run == len)
834 				break;
835 		}
836 		if ((got & (NBBY - 1)) != (NBBY - 1))
837 			bit <<= 1;
838 		else {
839 			loc++;
840 			bit = 1;
841 		}
842 	}
843 
844 	if (got >= fs->e2fs->e2fs_fpg)
845 		goto fail_lock;
846 
847 	/* Allocate the cluster that we found. */
848 	for (i = 1; i < len; i++)
849 		if (!isclr(bbp, got - run + i))
850 			panic("ext2_clusteralloc: map mismatch");
851 
852 	bno = got - run + 1;
853 	if (bno >= fs->e2fs->e2fs_fpg)
854 		panic("ext2_clusteralloc: allocated out of group");
855 
856 	EXT2_LOCK(ump);
857 	for (i = 0; i < len; i += fs->e2fs_fpb) {
858 		setbit(bbp, bno + i);
859 		ext2_clusteracct(fs, bbp, cg, bno + i, -1);
860 		fs->e2fs->e2fs_fbcount--;
861 		fs->e2fs_gd[cg].ext2bgd_nbfree--;
862 	}
863 	fs->e2fs_fmod = 1;
864 	EXT2_UNLOCK(ump);
865 
866 	bdwrite(bp);
867 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
868 
869 fail_lock:
870 	EXT2_LOCK(ump);
871 fail:
872 	brelse(bp);
873 	return (0);
874 }
875 
876 /*
877  * Determine whether an inode can be allocated.
878  *
879  * Check to see if an inode is available, and if it is,
880  * allocate it using tode in the specified cylinder group.
881  */
882 static daddr_t
883 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
884 {
885 	struct m_ext2fs *fs;
886 	struct buf *bp;
887 	struct ext2mount *ump;
888 	int error, start, len;
889 	char *ibp, *loc;
890 	ipref--; /* to avoid a lot of (ipref -1) */
891 	if (ipref == -1)
892 		ipref = 0;
893 	fs = ip->i_e2fs;
894 	ump = ip->i_ump;
895 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0)
896 		return (0);
897 	EXT2_UNLOCK(ump);
898 	error = bread(ip->i_devvp, fsbtodb(fs,
899 		fs->e2fs_gd[cg].ext2bgd_i_bitmap),
900 		(int)fs->e2fs_bsize, NOCRED, &bp);
901 	if (error) {
902 		brelse(bp);
903 		EXT2_LOCK(ump);
904 		return (0);
905 	}
906 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) {
907 		/*
908 		 * Another thread allocated the last i-node in this
909 		 * group while we were waiting for the buffer.
910 		 */
911 		brelse(bp);
912 		EXT2_LOCK(ump);
913 		return (0);
914 	}
915 	ibp = (char *)bp->b_data;
916 	if (ipref) {
917 		ipref %= fs->e2fs->e2fs_ipg;
918 		if (isclr(ibp, ipref))
919 			goto gotit;
920 	}
921 	start = ipref / NBBY;
922 	len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
923 	loc = memcchr(&ibp[start], 0xff, len);
924 	if (loc == NULL) {
925 		len = start + 1;
926 		start = 0;
927 		loc = memcchr(&ibp[start], 0xff, len);
928 		if (loc == NULL) {
929 			printf("cg = %d, ipref = %lld, fs = %s\n",
930 				cg, (long long)ipref, fs->e2fs_fsmnt);
931 			panic("ext2fs_nodealloccg: map corrupted");
932 			/* NOTREACHED */
933 		}
934 	}
935 	ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1;
936 gotit:
937 	setbit(ibp, ipref);
938 	EXT2_LOCK(ump);
939 	fs->e2fs_gd[cg].ext2bgd_nifree--;
940 	fs->e2fs->e2fs_ficount--;
941 	fs->e2fs_fmod = 1;
942 	if ((mode & IFMT) == IFDIR) {
943 		fs->e2fs_gd[cg].ext2bgd_ndirs++;
944 		fs->e2fs_total_dir++;
945 	}
946 	EXT2_UNLOCK(ump);
947 	bdwrite(bp);
948 	return (cg * fs->e2fs->e2fs_ipg + ipref +1);
949 }
950 
951 /*
952  * Free a block or fragment.
953  *
954  */
955 void
956 ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size)
957 {
958 	struct m_ext2fs *fs;
959 	struct buf *bp;
960 	struct ext2mount *ump;
961 	int cg, error;
962 	char *bbp;
963 
964 	fs = ip->i_e2fs;
965 	ump = ip->i_ump;
966 	cg = dtog(fs, bno);
967 	if ((u_int)bno >= fs->e2fs->e2fs_bcount) {
968 		printf("bad block %lld, ino %ju\n", (long long)bno,
969 		    (uintmax_t)ip->i_number);
970 		ext2_fserr(fs, ip->i_uid, "bad block");
971 		return;
972 	}
973 	error = bread(ip->i_devvp,
974 		fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
975 		(int)fs->e2fs_bsize, NOCRED, &bp);
976 	if (error) {
977 		brelse(bp);
978 		return;
979 	}
980 	bbp = (char *)bp->b_data;
981 	bno = dtogd(fs, bno);
982 	if (isclr(bbp, bno)) {
983 		printf("block = %lld, fs = %s\n",
984 		     (long long)bno, fs->e2fs_fsmnt);
985 		panic("ext2_blkfree: freeing free block");
986 	}
987 	clrbit(bbp, bno);
988 	EXT2_LOCK(ump);
989 	ext2_clusteracct(fs, bbp, cg, bno, 1);
990 	fs->e2fs->e2fs_fbcount++;
991 	fs->e2fs_gd[cg].ext2bgd_nbfree++;
992 	fs->e2fs_fmod = 1;
993 	EXT2_UNLOCK(ump);
994 	bdwrite(bp);
995 }
996 
997 /*
998  * Free an inode.
999  *
1000  */
1001 int
1002 ext2_vfree(struct vnode *pvp, ino_t ino, int mode)
1003 {
1004 	struct m_ext2fs *fs;
1005 	struct inode *pip;
1006 	struct buf *bp;
1007 	struct ext2mount *ump;
1008 	int error, cg;
1009 	char * ibp;
1010 
1011 	pip = VTOI(pvp);
1012 	fs = pip->i_e2fs;
1013 	ump = pip->i_ump;
1014 	if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount)
1015 		panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s",
1016 		    pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt);
1017 
1018 	cg = ino_to_cg(fs, ino);
1019 	error = bread(pip->i_devvp,
1020 		fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap),
1021 		(int)fs->e2fs_bsize, NOCRED, &bp);
1022 	if (error) {
1023 		brelse(bp);
1024 		return (0);
1025 	}
1026 	ibp = (char *)bp->b_data;
1027 	ino = (ino - 1) % fs->e2fs->e2fs_ipg;
1028 	if (isclr(ibp, ino)) {
1029 		printf("ino = %llu, fs = %s\n",
1030 			 (unsigned long long)ino, fs->e2fs_fsmnt);
1031 		if (fs->e2fs_ronly == 0)
1032 			panic("ext2_vfree: freeing free inode");
1033 	}
1034 	clrbit(ibp, ino);
1035 	EXT2_LOCK(ump);
1036 	fs->e2fs->e2fs_ficount++;
1037 	fs->e2fs_gd[cg].ext2bgd_nifree++;
1038 	if ((mode & IFMT) == IFDIR) {
1039 		fs->e2fs_gd[cg].ext2bgd_ndirs--;
1040 		fs->e2fs_total_dir--;
1041 	}
1042 	fs->e2fs_fmod = 1;
1043 	EXT2_UNLOCK(ump);
1044 	bdwrite(bp);
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Find a block in the specified cylinder group.
1050  *
1051  * It is a panic if a request is made to find a block if none are
1052  * available.
1053  */
1054 static daddr_t
1055 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref)
1056 {
1057 	char *loc;
1058 	int start, len;
1059 
1060 	/*
1061 	 * find the fragment by searching through the free block
1062 	 * map for an appropriate bit pattern
1063 	 */
1064 	if (bpref)
1065 		start = dtogd(fs, bpref) / NBBY;
1066 	else
1067 		start = 0;
1068 	len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
1069 	loc = memcchr(&bbp[start], 0xff, len);
1070 	if (loc == NULL) {
1071 		len = start + 1;
1072 		start = 0;
1073 		loc = memcchr(&bbp[start], 0xff, len);
1074 		if (loc == NULL) {
1075 			printf("start = %d, len = %d, fs = %s\n",
1076 				start, len, fs->e2fs_fsmnt);
1077 			panic("ext2_mapsearch: map corrupted");
1078 			/* NOTREACHED */
1079 		}
1080 	}
1081 	return ((loc - bbp) * NBBY + ffs(~*loc) - 1);
1082 }
1083 
1084 /*
1085  * Fserr prints the name of a filesystem with an error diagnostic.
1086  *
1087  * The form of the error message is:
1088  *	fs: error message
1089  */
1090 static void
1091 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp)
1092 {
1093 
1094 	log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp);
1095 }
1096 
1097 int
1098 cg_has_sb(int i)
1099 {
1100 	int a3, a5, a7;
1101 
1102 	if (i == 0 || i == 1)
1103 		return 1;
1104 	for (a3 = 3, a5 = 5, a7 = 7;
1105 	    a3 <= i || a5 <= i || a7 <= i;
1106 	    a3 *= 3, a5 *= 5, a7 *= 7)
1107 		if (i == a3 || i == a5 || i == a7)
1108 			return 1;
1109 	return 0;
1110 }
1111