1 /*- 2 * modified for Lites 1.1 3 * 4 * Aug 1995, Godmar Back (gback@cs.utah.edu) 5 * University of Utah, Department of Computer Science 6 */ 7 /*- 8 * Copyright (c) 1982, 1986, 1989, 1993 9 * The Regents of the University of California. All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94 36 * $FreeBSD$ 37 */ 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/conf.h> 42 #include <sys/vnode.h> 43 #include <sys/stat.h> 44 #include <sys/mount.h> 45 #include <sys/sysctl.h> 46 #include <sys/syslog.h> 47 #include <sys/buf.h> 48 49 #include <fs/ext2fs/fs.h> 50 #include <fs/ext2fs/inode.h> 51 #include <fs/ext2fs/ext2_mount.h> 52 #include <fs/ext2fs/ext2fs.h> 53 #include <fs/ext2fs/ext2_extern.h> 54 55 static daddr_t ext2_alloccg(struct inode *, int, daddr_t, int); 56 static daddr_t ext2_clusteralloc(struct inode *, int, daddr_t, int); 57 static u_long ext2_dirpref(struct inode *); 58 static void ext2_fserr(struct m_ext2fs *, uid_t, char *); 59 static u_long ext2_hashalloc(struct inode *, int, long, int, 60 daddr_t (*)(struct inode *, int, daddr_t, 61 int)); 62 static daddr_t ext2_nodealloccg(struct inode *, int, daddr_t, int); 63 static daddr_t ext2_mapsearch(struct m_ext2fs *, char *, daddr_t); 64 65 /* 66 * Allocate a block in the filesystem. 67 * 68 * A preference may be optionally specified. If a preference is given 69 * the following hierarchy is used to allocate a block: 70 * 1) allocate the requested block. 71 * 2) allocate a rotationally optimal block in the same cylinder. 72 * 3) allocate a block in the same cylinder group. 73 * 4) quadradically rehash into other cylinder groups, until an 74 * available block is located. 75 * If no block preference is given the following hierarchy is used 76 * to allocate a block: 77 * 1) allocate a block in the cylinder group that contains the 78 * inode for the file. 79 * 2) quadradically rehash into other cylinder groups, until an 80 * available block is located. 81 */ 82 int 83 ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size, 84 struct ucred *cred, e4fs_daddr_t *bnp) 85 { 86 struct m_ext2fs *fs; 87 struct ext2mount *ump; 88 int32_t bno; 89 int cg; 90 *bnp = 0; 91 fs = ip->i_e2fs; 92 ump = ip->i_ump; 93 mtx_assert(EXT2_MTX(ump), MA_OWNED); 94 #ifdef INVARIANTS 95 if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) { 96 vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n", 97 (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt); 98 panic("ext2_alloc: bad size"); 99 } 100 if (cred == NOCRED) 101 panic("ext2_alloc: missing credential"); 102 #endif /* INVARIANTS */ 103 if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0) 104 goto nospace; 105 if (cred->cr_uid != 0 && 106 fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount) 107 goto nospace; 108 if (bpref >= fs->e2fs->e2fs_bcount) 109 bpref = 0; 110 if (bpref == 0) 111 cg = ino_to_cg(fs, ip->i_number); 112 else 113 cg = dtog(fs, bpref); 114 bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize, 115 ext2_alloccg); 116 if (bno > 0) { 117 /* set next_alloc fields as done in block_getblk */ 118 ip->i_next_alloc_block = lbn; 119 ip->i_next_alloc_goal = bno; 120 121 ip->i_blocks += btodb(fs->e2fs_bsize); 122 ip->i_flag |= IN_CHANGE | IN_UPDATE; 123 *bnp = bno; 124 return (0); 125 } 126 nospace: 127 EXT2_UNLOCK(ump); 128 ext2_fserr(fs, cred->cr_uid, "filesystem full"); 129 uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt); 130 return (ENOSPC); 131 } 132 133 /* 134 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 135 * 136 * The vnode and an array of buffer pointers for a range of sequential 137 * logical blocks to be made contiguous is given. The allocator attempts 138 * to find a range of sequential blocks starting as close as possible to 139 * an fs_rotdelay offset from the end of the allocation for the logical 140 * block immediately preceding the current range. If successful, the 141 * physical block numbers in the buffer pointers and in the inode are 142 * changed to reflect the new allocation. If unsuccessful, the allocation 143 * is left unchanged. The success in doing the reallocation is returned. 144 * Note that the error return is not reflected back to the user. Rather 145 * the previous block allocation will be used. 146 */ 147 148 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem"); 149 150 static int doasyncfree = 1; 151 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 152 "Use asychronous writes to update block pointers when freeing blocks"); 153 154 static int doreallocblks = 1; 155 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 156 157 int 158 ext2_reallocblks(struct vop_reallocblks_args *ap) 159 { 160 struct m_ext2fs *fs; 161 struct inode *ip; 162 struct vnode *vp; 163 struct buf *sbp, *ebp; 164 uint32_t *bap, *sbap, *ebap = 0; 165 struct ext2mount *ump; 166 struct cluster_save *buflist; 167 struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; 168 e2fs_lbn_t start_lbn, end_lbn; 169 int soff; 170 e2fs_daddr_t newblk, blkno; 171 int i, len, start_lvl, end_lvl, pref, ssize; 172 173 if (doreallocblks == 0) 174 return (ENOSPC); 175 176 vp = ap->a_vp; 177 ip = VTOI(vp); 178 fs = ip->i_e2fs; 179 ump = ip->i_ump; 180 181 if (fs->e2fs_contigsumsize <= 0) 182 return (ENOSPC); 183 184 buflist = ap->a_buflist; 185 len = buflist->bs_nchildren; 186 start_lbn = buflist->bs_children[0]->b_lblkno; 187 end_lbn = start_lbn + len - 1; 188 #ifdef INVARIANTS 189 for (i = 1; i < len; i++) 190 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 191 panic("ext2_reallocblks: non-cluster"); 192 #endif 193 /* 194 * If the cluster crosses the boundary for the first indirect 195 * block, leave space for the indirect block. Indirect blocks 196 * are initially laid out in a position after the last direct 197 * block. Block reallocation would usually destroy locality by 198 * moving the indirect block out of the way to make room for 199 * data blocks if we didn't compensate here. We should also do 200 * this for other indirect block boundaries, but it is only 201 * important for the first one. 202 */ 203 if (start_lbn < NDADDR && end_lbn >= NDADDR) 204 return (ENOSPC); 205 /* 206 * If the latest allocation is in a new cylinder group, assume that 207 * the filesystem has decided to move and do not force it back to 208 * the previous cylinder group. 209 */ 210 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 211 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 212 return (ENOSPC); 213 if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) || 214 ext2_getlbns(vp, end_lbn, end_ap, &end_lvl)) 215 return (ENOSPC); 216 /* 217 * Get the starting offset and block map for the first block. 218 */ 219 if (start_lvl == 0) { 220 sbap = &ip->i_db[0]; 221 soff = start_lbn; 222 } else { 223 idp = &start_ap[start_lvl - 1]; 224 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) { 225 brelse(sbp); 226 return (ENOSPC); 227 } 228 sbap = (u_int *)sbp->b_data; 229 soff = idp->in_off; 230 } 231 /* 232 * If the block range spans two block maps, get the second map. 233 */ 234 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 235 ssize = len; 236 } else { 237 #ifdef INVARIANTS 238 if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) 239 panic("ext2_reallocblks: start == end"); 240 #endif 241 ssize = len - (idp->in_off + 1); 242 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp)) 243 goto fail; 244 ebap = (u_int *)ebp->b_data; 245 } 246 /* 247 * Find the preferred location for the cluster. 248 */ 249 EXT2_LOCK(ump); 250 pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0); 251 /* 252 * Search the block map looking for an allocation of the desired size. 253 */ 254 if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref, 255 len, ext2_clusteralloc)) == 0){ 256 EXT2_UNLOCK(ump); 257 goto fail; 258 } 259 /* 260 * We have found a new contiguous block. 261 * 262 * First we have to replace the old block pointers with the new 263 * block pointers in the inode and indirect blocks associated 264 * with the file. 265 */ 266 #ifdef DEBUG 267 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 268 (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn); 269 #endif /* DEBUG */ 270 blkno = newblk; 271 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) { 272 if (i == ssize) { 273 bap = ebap; 274 soff = -i; 275 } 276 #ifdef INVARIANTS 277 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap)) 278 panic("ext2_reallocblks: alloc mismatch"); 279 #endif 280 #ifdef DEBUG 281 printf(" %d,", *bap); 282 #endif /* DEBUG */ 283 *bap++ = blkno; 284 } 285 /* 286 * Next we must write out the modified inode and indirect blocks. 287 * For strict correctness, the writes should be synchronous since 288 * the old block values may have been written to disk. In practise 289 * they are almost never written, but if we are concerned about 290 * strict correctness, the `doasyncfree' flag should be set to zero. 291 * 292 * The test on `doasyncfree' should be changed to test a flag 293 * that shows whether the associated buffers and inodes have 294 * been written. The flag should be set when the cluster is 295 * started and cleared whenever the buffer or inode is flushed. 296 * We can then check below to see if it is set, and do the 297 * synchronous write only when it has been cleared. 298 */ 299 if (sbap != &ip->i_db[0]) { 300 if (doasyncfree) 301 bdwrite(sbp); 302 else 303 bwrite(sbp); 304 } else { 305 ip->i_flag |= IN_CHANGE | IN_UPDATE; 306 if (!doasyncfree) 307 ext2_update(vp, 1); 308 } 309 if (ssize < len) { 310 if (doasyncfree) 311 bdwrite(ebp); 312 else 313 bwrite(ebp); 314 } 315 /* 316 * Last, free the old blocks and assign the new blocks to the buffers. 317 */ 318 #ifdef DEBUG 319 printf("\n\tnew:"); 320 #endif /* DEBUG */ 321 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) { 322 ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), 323 fs->e2fs_bsize); 324 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 325 #ifdef DEBUG 326 printf(" %d,", blkno); 327 #endif /* DEBUG */ 328 } 329 #ifdef DEBUG 330 printf("\n"); 331 #endif /* DEBUG */ 332 return (0); 333 334 fail: 335 if (ssize < len) 336 brelse(ebp); 337 if (sbap != &ip->i_db[0]) 338 brelse(sbp); 339 return (ENOSPC); 340 } 341 342 /* 343 * Allocate an inode in the filesystem. 344 * 345 */ 346 int 347 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp) 348 { 349 struct timespec ts; 350 struct inode *pip; 351 struct m_ext2fs *fs; 352 struct inode *ip; 353 struct ext2mount *ump; 354 ino_t ino, ipref; 355 int i, error, cg; 356 357 *vpp = NULL; 358 pip = VTOI(pvp); 359 fs = pip->i_e2fs; 360 ump = pip->i_ump; 361 362 EXT2_LOCK(ump); 363 if (fs->e2fs->e2fs_ficount == 0) 364 goto noinodes; 365 /* 366 * If it is a directory then obtain a cylinder group based on 367 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is 368 * always the next inode. 369 */ 370 if ((mode & IFMT) == IFDIR) { 371 cg = ext2_dirpref(pip); 372 if (fs->e2fs_contigdirs[cg] < 255) 373 fs->e2fs_contigdirs[cg]++; 374 } else { 375 cg = ino_to_cg(fs, pip->i_number); 376 if (fs->e2fs_contigdirs[cg] > 0) 377 fs->e2fs_contigdirs[cg]--; 378 } 379 ipref = cg * fs->e2fs->e2fs_ipg + 1; 380 ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg); 381 382 if (ino == 0) 383 goto noinodes; 384 error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 385 if (error) { 386 ext2_vfree(pvp, ino, mode); 387 return (error); 388 } 389 ip = VTOI(*vpp); 390 391 /* 392 * The question is whether using VGET was such good idea at all: 393 * Linux doesn't read the old inode in when it is allocating a 394 * new one. I will set at least i_size and i_blocks to zero. 395 */ 396 ip->i_flag = 0; 397 ip->i_size = 0; 398 ip->i_blocks = 0; 399 ip->i_mode = 0; 400 ip->i_flags = 0; 401 /* now we want to make sure that the block pointers are zeroed out */ 402 for (i = 0; i < NDADDR; i++) 403 ip->i_db[i] = 0; 404 for (i = 0; i < NIADDR; i++) 405 ip->i_ib[i] = 0; 406 407 /* 408 * Set up a new generation number for this inode. 409 * XXX check if this makes sense in ext2 410 */ 411 if (ip->i_gen == 0 || ++ip->i_gen == 0) 412 ip->i_gen = random() / 2 + 1; 413 414 vfs_timestamp(&ts); 415 ip->i_birthtime = ts.tv_sec; 416 ip->i_birthnsec = ts.tv_nsec; 417 418 /* 419 printf("ext2_valloc: allocated inode %d\n", ino); 420 */ 421 return (0); 422 noinodes: 423 EXT2_UNLOCK(ump); 424 ext2_fserr(fs, cred->cr_uid, "out of inodes"); 425 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt); 426 return (ENOSPC); 427 } 428 429 /* 430 * Find a cylinder to place a directory. 431 * 432 * The policy implemented by this algorithm is to allocate a 433 * directory inode in the same cylinder group as its parent 434 * directory, but also to reserve space for its files inodes 435 * and data. Restrict the number of directories which may be 436 * allocated one after another in the same cylinder group 437 * without intervening allocation of files. 438 * 439 * If we allocate a first level directory then force allocation 440 * in another cylinder group. 441 * 442 */ 443 static u_long 444 ext2_dirpref(struct inode *pip) 445 { 446 struct m_ext2fs *fs; 447 int cg, prefcg, cgsize; 448 u_int avgifree, avgbfree, avgndir, curdirsize; 449 u_int minifree, minbfree, maxndir; 450 u_int mincg, minndir; 451 u_int dirsize, maxcontigdirs; 452 453 mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED); 454 fs = pip->i_e2fs; 455 456 avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount; 457 avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount; 458 avgndir = fs->e2fs_total_dir / fs->e2fs_gcount; 459 460 /* 461 * Force allocation in another cg if creating a first level dir. 462 */ 463 ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref"); 464 if (ITOV(pip)->v_vflag & VV_ROOT) { 465 prefcg = arc4random() % fs->e2fs_gcount; 466 mincg = prefcg; 467 minndir = fs->e2fs_ipg; 468 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 469 if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir && 470 fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree && 471 fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) { 472 mincg = cg; 473 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs; 474 } 475 for (cg = 0; cg < prefcg; cg++) 476 if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir && 477 fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree && 478 fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) { 479 mincg = cg; 480 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs; 481 } 482 483 return (mincg); 484 } 485 486 /* 487 * Count various limits which used for 488 * optimal allocation of a directory inode. 489 */ 490 maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg); 491 minifree = avgifree - avgifree / 4; 492 if (minifree < 1) 493 minifree = 1; 494 minbfree = avgbfree - avgbfree / 4; 495 if (minbfree < 1) 496 minbfree = 1; 497 cgsize = fs->e2fs_fsize * fs->e2fs_fpg; 498 dirsize = AVGDIRSIZE; 499 curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0; 500 if (dirsize < curdirsize) 501 dirsize = curdirsize; 502 maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255); 503 maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR); 504 if (maxcontigdirs == 0) 505 maxcontigdirs = 1; 506 507 /* 508 * Limit number of dirs in one cg and reserve space for 509 * regular files, but only if we have no deficit in 510 * inodes or space. 511 */ 512 prefcg = ino_to_cg(fs, pip->i_number); 513 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 514 if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir && 515 fs->e2fs_gd[cg].ext2bgd_nifree >= minifree && 516 fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) { 517 if (fs->e2fs_contigdirs[cg] < maxcontigdirs) 518 return (cg); 519 } 520 for (cg = 0; cg < prefcg; cg++) 521 if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir && 522 fs->e2fs_gd[cg].ext2bgd_nifree >= minifree && 523 fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) { 524 if (fs->e2fs_contigdirs[cg] < maxcontigdirs) 525 return (cg); 526 } 527 /* 528 * This is a backstop when we have deficit in space. 529 */ 530 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 531 if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree) 532 return (cg); 533 for (cg = 0; cg < prefcg; cg++) 534 if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree) 535 break; 536 return (cg); 537 } 538 539 /* 540 * Select the desired position for the next block in a file. 541 * 542 * we try to mimic what Remy does in inode_getblk/block_getblk 543 * 544 * we note: blocknr == 0 means that we're about to allocate either 545 * a direct block or a pointer block at the first level of indirection 546 * (In other words, stuff that will go in i_db[] or i_ib[]) 547 * 548 * blocknr != 0 means that we're allocating a block that is none 549 * of the above. Then, blocknr tells us the number of the block 550 * that will hold the pointer 551 */ 552 e4fs_daddr_t 553 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap, 554 e2fs_daddr_t blocknr) 555 { 556 int tmp; 557 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); 558 559 /* if the next block is actually what we thought it is, 560 then set the goal to what we thought it should be 561 */ 562 if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0) 563 return ip->i_next_alloc_goal; 564 565 /* now check whether we were provided with an array that basically 566 tells us previous blocks to which we want to stay closeby 567 */ 568 if (bap) 569 for (tmp = indx - 1; tmp >= 0; tmp--) 570 if (bap[tmp]) 571 return bap[tmp]; 572 573 /* else let's fall back to the blocknr, or, if there is none, 574 follow the rule that a block should be allocated near its inode 575 */ 576 return blocknr ? blocknr : 577 (e2fs_daddr_t)(ip->i_block_group * 578 EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) + 579 ip->i_e2fs->e2fs->e2fs_first_dblock; 580 } 581 582 /* 583 * Implement the cylinder overflow algorithm. 584 * 585 * The policy implemented by this algorithm is: 586 * 1) allocate the block in its requested cylinder group. 587 * 2) quadradically rehash on the cylinder group number. 588 * 3) brute force search for a free block. 589 */ 590 static u_long 591 ext2_hashalloc(struct inode *ip, int cg, long pref, int size, 592 daddr_t (*allocator)(struct inode *, int, daddr_t, int)) 593 { 594 struct m_ext2fs *fs; 595 ino_t result; 596 int i, icg = cg; 597 598 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); 599 fs = ip->i_e2fs; 600 /* 601 * 1: preferred cylinder group 602 */ 603 result = (*allocator)(ip, cg, pref, size); 604 if (result) 605 return (result); 606 /* 607 * 2: quadratic rehash 608 */ 609 for (i = 1; i < fs->e2fs_gcount; i *= 2) { 610 cg += i; 611 if (cg >= fs->e2fs_gcount) 612 cg -= fs->e2fs_gcount; 613 result = (*allocator)(ip, cg, 0, size); 614 if (result) 615 return (result); 616 } 617 /* 618 * 3: brute force search 619 * Note that we start at i == 2, since 0 was checked initially, 620 * and 1 is always checked in the quadratic rehash. 621 */ 622 cg = (icg + 2) % fs->e2fs_gcount; 623 for (i = 2; i < fs->e2fs_gcount; i++) { 624 result = (*allocator)(ip, cg, 0, size); 625 if (result) 626 return (result); 627 cg++; 628 if (cg == fs->e2fs_gcount) 629 cg = 0; 630 } 631 return (0); 632 } 633 634 /* 635 * Determine whether a block can be allocated. 636 * 637 * Check to see if a block of the appropriate size is available, 638 * and if it is, allocate it. 639 */ 640 static daddr_t 641 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size) 642 { 643 struct m_ext2fs *fs; 644 struct buf *bp; 645 struct ext2mount *ump; 646 daddr_t bno, runstart, runlen; 647 int bit, loc, end, error, start; 648 char *bbp; 649 /* XXX ondisk32 */ 650 fs = ip->i_e2fs; 651 ump = ip->i_ump; 652 if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) 653 return (0); 654 EXT2_UNLOCK(ump); 655 error = bread(ip->i_devvp, fsbtodb(fs, 656 fs->e2fs_gd[cg].ext2bgd_b_bitmap), 657 (int)fs->e2fs_bsize, NOCRED, &bp); 658 if (error) { 659 brelse(bp); 660 EXT2_LOCK(ump); 661 return (0); 662 } 663 if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) { 664 /* 665 * Another thread allocated the last block in this 666 * group while we were waiting for the buffer. 667 */ 668 brelse(bp); 669 EXT2_LOCK(ump); 670 return (0); 671 } 672 bbp = (char *)bp->b_data; 673 674 if (dtog(fs, bpref) != cg) 675 bpref = 0; 676 if (bpref != 0) { 677 bpref = dtogd(fs, bpref); 678 /* 679 * if the requested block is available, use it 680 */ 681 if (isclr(bbp, bpref)) { 682 bno = bpref; 683 goto gotit; 684 } 685 } 686 /* 687 * no blocks in the requested cylinder, so take next 688 * available one in this cylinder group. 689 * first try to get 8 contigous blocks, then fall back to a single 690 * block. 691 */ 692 if (bpref) 693 start = dtogd(fs, bpref) / NBBY; 694 else 695 start = 0; 696 end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; 697 retry: 698 runlen = 0; 699 runstart = 0; 700 for (loc = start; loc < end; loc++) { 701 if (bbp[loc] == (char)0xff) { 702 runlen = 0; 703 continue; 704 } 705 706 /* Start of a run, find the number of high clear bits. */ 707 if (runlen == 0) { 708 bit = fls(bbp[loc]); 709 runlen = NBBY - bit; 710 runstart = loc * NBBY + bit; 711 } else if (bbp[loc] == 0) { 712 /* Continue a run. */ 713 runlen += NBBY; 714 } else { 715 /* 716 * Finish the current run. If it isn't long 717 * enough, start a new one. 718 */ 719 bit = ffs(bbp[loc]) - 1; 720 runlen += bit; 721 if (runlen >= 8) { 722 bno = runstart; 723 goto gotit; 724 } 725 726 /* Run was too short, start a new one. */ 727 bit = fls(bbp[loc]); 728 runlen = NBBY - bit; 729 runstart = loc * NBBY + bit; 730 } 731 732 /* If the current run is long enough, use it. */ 733 if (runlen >= 8) { 734 bno = runstart; 735 goto gotit; 736 } 737 } 738 if (start != 0) { 739 end = start; 740 start = 0; 741 goto retry; 742 } 743 744 bno = ext2_mapsearch(fs, bbp, bpref); 745 if (bno < 0){ 746 brelse(bp); 747 EXT2_LOCK(ump); 748 return (0); 749 } 750 gotit: 751 #ifdef INVARIANTS 752 if (isset(bbp, bno)) { 753 printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n", 754 cg, (intmax_t)bno, fs->e2fs_fsmnt); 755 panic("ext2fs_alloccg: dup alloc"); 756 } 757 #endif 758 setbit(bbp, bno); 759 EXT2_LOCK(ump); 760 ext2_clusteracct(fs, bbp, cg, bno, -1); 761 fs->e2fs->e2fs_fbcount--; 762 fs->e2fs_gd[cg].ext2bgd_nbfree--; 763 fs->e2fs_fmod = 1; 764 EXT2_UNLOCK(ump); 765 bdwrite(bp); 766 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); 767 } 768 769 /* 770 * Determine whether a cluster can be allocated. 771 */ 772 static daddr_t 773 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len) 774 { 775 struct m_ext2fs *fs; 776 struct ext2mount *ump; 777 struct buf *bp; 778 char *bbp; 779 int bit, error, got, i, loc, run; 780 int32_t *lp; 781 daddr_t bno; 782 783 fs = ip->i_e2fs; 784 ump = ip->i_ump; 785 786 if (fs->e2fs_maxcluster[cg] < len) 787 return (0); 788 789 EXT2_UNLOCK(ump); 790 error = bread(ip->i_devvp, 791 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap), 792 (int)fs->e2fs_bsize, NOCRED, &bp); 793 if (error) 794 goto fail_lock; 795 796 bbp = (char *)bp->b_data; 797 EXT2_LOCK(ump); 798 /* 799 * Check to see if a cluster of the needed size (or bigger) is 800 * available in this cylinder group. 801 */ 802 lp = &fs->e2fs_clustersum[cg].cs_sum[len]; 803 for (i = len; i <= fs->e2fs_contigsumsize; i++) 804 if (*lp++ > 0) 805 break; 806 if (i > fs->e2fs_contigsumsize) { 807 /* 808 * Update the cluster summary information to reflect 809 * the true maximum-sized cluster so that future cluster 810 * allocation requests can avoid reading the bitmap only 811 * to find no cluster. 812 */ 813 lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1]; 814 for (i = len - 1; i > 0; i--) 815 if (*lp-- > 0) 816 break; 817 fs->e2fs_maxcluster[cg] = i; 818 goto fail; 819 } 820 EXT2_UNLOCK(ump); 821 822 /* Search the bitmap to find a big enough cluster like in FFS. */ 823 if (dtog(fs, bpref) != cg) 824 bpref = 0; 825 if (bpref != 0) 826 bpref = dtogd(fs, bpref); 827 loc = bpref / NBBY; 828 bit = 1 << (bpref % NBBY); 829 for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) { 830 if ((bbp[loc] & bit) != 0) 831 run = 0; 832 else { 833 run++; 834 if (run == len) 835 break; 836 } 837 if ((got & (NBBY - 1)) != (NBBY - 1)) 838 bit <<= 1; 839 else { 840 loc++; 841 bit = 1; 842 } 843 } 844 845 if (got >= fs->e2fs->e2fs_fpg) 846 goto fail_lock; 847 848 /* Allocate the cluster that we found. */ 849 for (i = 1; i < len; i++) 850 if (!isclr(bbp, got - run + i)) 851 panic("ext2_clusteralloc: map mismatch"); 852 853 bno = got - run + 1; 854 if (bno >= fs->e2fs->e2fs_fpg) 855 panic("ext2_clusteralloc: allocated out of group"); 856 857 EXT2_LOCK(ump); 858 for (i = 0; i < len; i += fs->e2fs_fpb) { 859 setbit(bbp, bno + i); 860 ext2_clusteracct(fs, bbp, cg, bno + i, -1); 861 fs->e2fs->e2fs_fbcount--; 862 fs->e2fs_gd[cg].ext2bgd_nbfree--; 863 } 864 fs->e2fs_fmod = 1; 865 EXT2_UNLOCK(ump); 866 867 bdwrite(bp); 868 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); 869 870 fail_lock: 871 EXT2_LOCK(ump); 872 fail: 873 brelse(bp); 874 return (0); 875 } 876 877 /* 878 * Determine whether an inode can be allocated. 879 * 880 * Check to see if an inode is available, and if it is, 881 * allocate it using tode in the specified cylinder group. 882 */ 883 static daddr_t 884 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode) 885 { 886 struct m_ext2fs *fs; 887 struct buf *bp; 888 struct ext2mount *ump; 889 int error, start, len; 890 char *ibp, *loc; 891 ipref--; /* to avoid a lot of (ipref -1) */ 892 if (ipref == -1) 893 ipref = 0; 894 fs = ip->i_e2fs; 895 ump = ip->i_ump; 896 if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) 897 return (0); 898 EXT2_UNLOCK(ump); 899 error = bread(ip->i_devvp, fsbtodb(fs, 900 fs->e2fs_gd[cg].ext2bgd_i_bitmap), 901 (int)fs->e2fs_bsize, NOCRED, &bp); 902 if (error) { 903 brelse(bp); 904 EXT2_LOCK(ump); 905 return (0); 906 } 907 if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) { 908 /* 909 * Another thread allocated the last i-node in this 910 * group while we were waiting for the buffer. 911 */ 912 brelse(bp); 913 EXT2_LOCK(ump); 914 return (0); 915 } 916 ibp = (char *)bp->b_data; 917 if (ipref) { 918 ipref %= fs->e2fs->e2fs_ipg; 919 if (isclr(ibp, ipref)) 920 goto gotit; 921 } 922 start = ipref / NBBY; 923 len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY); 924 loc = memcchr(&ibp[start], 0xff, len); 925 if (loc == NULL) { 926 len = start + 1; 927 start = 0; 928 loc = memcchr(&ibp[start], 0xff, len); 929 if (loc == NULL) { 930 printf("cg = %d, ipref = %lld, fs = %s\n", 931 cg, (long long)ipref, fs->e2fs_fsmnt); 932 panic("ext2fs_nodealloccg: map corrupted"); 933 /* NOTREACHED */ 934 } 935 } 936 ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1; 937 gotit: 938 setbit(ibp, ipref); 939 EXT2_LOCK(ump); 940 fs->e2fs_gd[cg].ext2bgd_nifree--; 941 fs->e2fs->e2fs_ficount--; 942 fs->e2fs_fmod = 1; 943 if ((mode & IFMT) == IFDIR) { 944 fs->e2fs_gd[cg].ext2bgd_ndirs++; 945 fs->e2fs_total_dir++; 946 } 947 EXT2_UNLOCK(ump); 948 bdwrite(bp); 949 return (cg * fs->e2fs->e2fs_ipg + ipref +1); 950 } 951 952 /* 953 * Free a block or fragment. 954 * 955 */ 956 void 957 ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size) 958 { 959 struct m_ext2fs *fs; 960 struct buf *bp; 961 struct ext2mount *ump; 962 int cg, error; 963 char *bbp; 964 965 fs = ip->i_e2fs; 966 ump = ip->i_ump; 967 cg = dtog(fs, bno); 968 if ((u_int)bno >= fs->e2fs->e2fs_bcount) { 969 printf("bad block %lld, ino %ju\n", (long long)bno, 970 (uintmax_t)ip->i_number); 971 ext2_fserr(fs, ip->i_uid, "bad block"); 972 return; 973 } 974 error = bread(ip->i_devvp, 975 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap), 976 (int)fs->e2fs_bsize, NOCRED, &bp); 977 if (error) { 978 brelse(bp); 979 return; 980 } 981 bbp = (char *)bp->b_data; 982 bno = dtogd(fs, bno); 983 if (isclr(bbp, bno)) { 984 printf("block = %lld, fs = %s\n", 985 (long long)bno, fs->e2fs_fsmnt); 986 panic("ext2_blkfree: freeing free block"); 987 } 988 clrbit(bbp, bno); 989 EXT2_LOCK(ump); 990 ext2_clusteracct(fs, bbp, cg, bno, 1); 991 fs->e2fs->e2fs_fbcount++; 992 fs->e2fs_gd[cg].ext2bgd_nbfree++; 993 fs->e2fs_fmod = 1; 994 EXT2_UNLOCK(ump); 995 bdwrite(bp); 996 } 997 998 /* 999 * Free an inode. 1000 * 1001 */ 1002 int 1003 ext2_vfree(struct vnode *pvp, ino_t ino, int mode) 1004 { 1005 struct m_ext2fs *fs; 1006 struct inode *pip; 1007 struct buf *bp; 1008 struct ext2mount *ump; 1009 int error, cg; 1010 char * ibp; 1011 1012 pip = VTOI(pvp); 1013 fs = pip->i_e2fs; 1014 ump = pip->i_ump; 1015 if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount) 1016 panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s", 1017 pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt); 1018 1019 cg = ino_to_cg(fs, ino); 1020 error = bread(pip->i_devvp, 1021 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap), 1022 (int)fs->e2fs_bsize, NOCRED, &bp); 1023 if (error) { 1024 brelse(bp); 1025 return (0); 1026 } 1027 ibp = (char *)bp->b_data; 1028 ino = (ino - 1) % fs->e2fs->e2fs_ipg; 1029 if (isclr(ibp, ino)) { 1030 printf("ino = %llu, fs = %s\n", 1031 (unsigned long long)ino, fs->e2fs_fsmnt); 1032 if (fs->e2fs_ronly == 0) 1033 panic("ext2_vfree: freeing free inode"); 1034 } 1035 clrbit(ibp, ino); 1036 EXT2_LOCK(ump); 1037 fs->e2fs->e2fs_ficount++; 1038 fs->e2fs_gd[cg].ext2bgd_nifree++; 1039 if ((mode & IFMT) == IFDIR) { 1040 fs->e2fs_gd[cg].ext2bgd_ndirs--; 1041 fs->e2fs_total_dir--; 1042 } 1043 fs->e2fs_fmod = 1; 1044 EXT2_UNLOCK(ump); 1045 bdwrite(bp); 1046 return (0); 1047 } 1048 1049 /* 1050 * Find a block in the specified cylinder group. 1051 * 1052 * It is a panic if a request is made to find a block if none are 1053 * available. 1054 */ 1055 static daddr_t 1056 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref) 1057 { 1058 char *loc; 1059 int start, len; 1060 1061 /* 1062 * find the fragment by searching through the free block 1063 * map for an appropriate bit pattern 1064 */ 1065 if (bpref) 1066 start = dtogd(fs, bpref) / NBBY; 1067 else 1068 start = 0; 1069 len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; 1070 loc = memcchr(&bbp[start], 0xff, len); 1071 if (loc == NULL) { 1072 len = start + 1; 1073 start = 0; 1074 loc = memcchr(&bbp[start], 0xff, len); 1075 if (loc == NULL) { 1076 printf("start = %d, len = %d, fs = %s\n", 1077 start, len, fs->e2fs_fsmnt); 1078 panic("ext2_mapsearch: map corrupted"); 1079 /* NOTREACHED */ 1080 } 1081 } 1082 return ((loc - bbp) * NBBY + ffs(~*loc) - 1); 1083 } 1084 1085 /* 1086 * Fserr prints the name of a filesystem with an error diagnostic. 1087 * 1088 * The form of the error message is: 1089 * fs: error message 1090 */ 1091 static void 1092 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp) 1093 { 1094 1095 log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp); 1096 } 1097 1098 int 1099 cg_has_sb(int i) 1100 { 1101 int a3, a5, a7; 1102 1103 if (i == 0 || i == 1) 1104 return 1; 1105 for (a3 = 3, a5 = 5, a7 = 7; 1106 a3 <= i || a5 <= i || a7 <= i; 1107 a3 *= 3, a5 *= 5, a7 *= 7) 1108 if (i == a3 || i == a5 || i == a7) 1109 return 1; 1110 return 0; 1111 } 1112