xref: /freebsd/sys/fs/ext2fs/ext2_alloc.c (revision 0b3105a37d7adcadcb720112fed4dc4e8040be99)
1 /*-
2  *  modified for Lites 1.1
3  *
4  *  Aug 1995, Godmar Back (gback@cs.utah.edu)
5  *  University of Utah, Department of Computer Science
6  */
7 /*-
8  * Copyright (c) 1982, 1986, 1989, 1993
9  *	The Regents of the University of California.  All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)ffs_alloc.c	8.8 (Berkeley) 2/21/94
36  * $FreeBSD$
37  */
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/conf.h>
42 #include <sys/vnode.h>
43 #include <sys/stat.h>
44 #include <sys/mount.h>
45 #include <sys/sysctl.h>
46 #include <sys/syslog.h>
47 #include <sys/buf.h>
48 
49 #include <fs/ext2fs/fs.h>
50 #include <fs/ext2fs/inode.h>
51 #include <fs/ext2fs/ext2_mount.h>
52 #include <fs/ext2fs/ext2fs.h>
53 #include <fs/ext2fs/ext2_extern.h>
54 
55 static daddr_t	ext2_alloccg(struct inode *, int, daddr_t, int);
56 static daddr_t	ext2_clusteralloc(struct inode *, int, daddr_t, int);
57 static u_long	ext2_dirpref(struct inode *);
58 static void	ext2_fserr(struct m_ext2fs *, uid_t, char *);
59 static u_long	ext2_hashalloc(struct inode *, int, long, int,
60 				daddr_t (*)(struct inode *, int, daddr_t,
61 						int));
62 static daddr_t	ext2_nodealloccg(struct inode *, int, daddr_t, int);
63 static daddr_t  ext2_mapsearch(struct m_ext2fs *, char *, daddr_t);
64 
65 /*
66  * Allocate a block in the filesystem.
67  *
68  * A preference may be optionally specified. If a preference is given
69  * the following hierarchy is used to allocate a block:
70  *   1) allocate the requested block.
71  *   2) allocate a rotationally optimal block in the same cylinder.
72  *   3) allocate a block in the same cylinder group.
73  *   4) quadradically rehash into other cylinder groups, until an
74  *        available block is located.
75  * If no block preference is given the following hierarchy is used
76  * to allocate a block:
77  *   1) allocate a block in the cylinder group that contains the
78  *        inode for the file.
79  *   2) quadradically rehash into other cylinder groups, until an
80  *        available block is located.
81  */
82 int
83 ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size,
84     struct ucred *cred, e4fs_daddr_t *bnp)
85 {
86 	struct m_ext2fs *fs;
87 	struct ext2mount *ump;
88 	int32_t bno;
89 	int cg;
90 	*bnp = 0;
91 	fs = ip->i_e2fs;
92 	ump = ip->i_ump;
93 	mtx_assert(EXT2_MTX(ump), MA_OWNED);
94 #ifdef INVARIANTS
95 	if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) {
96 		vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n",
97 		    (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt);
98 		panic("ext2_alloc: bad size");
99 	}
100 	if (cred == NOCRED)
101 		panic("ext2_alloc: missing credential");
102 #endif /* INVARIANTS */
103 	if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0)
104 		goto nospace;
105 	if (cred->cr_uid != 0 &&
106 		fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount)
107 		goto nospace;
108 	if (bpref >= fs->e2fs->e2fs_bcount)
109 		bpref = 0;
110 	if (bpref == 0)
111 		cg = ino_to_cg(fs, ip->i_number);
112 	else
113 		cg = dtog(fs, bpref);
114 	bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize,
115 				      ext2_alloccg);
116 	if (bno > 0) {
117 		/* set next_alloc fields as done in block_getblk */
118 		ip->i_next_alloc_block = lbn;
119 		ip->i_next_alloc_goal = bno;
120 
121 		ip->i_blocks += btodb(fs->e2fs_bsize);
122 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
123 		*bnp = bno;
124 		return (0);
125 	}
126 nospace:
127 	EXT2_UNLOCK(ump);
128 	ext2_fserr(fs, cred->cr_uid, "filesystem full");
129 	uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt);
130 	return (ENOSPC);
131 }
132 
133 /*
134  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
135  *
136  * The vnode and an array of buffer pointers for a range of sequential
137  * logical blocks to be made contiguous is given. The allocator attempts
138  * to find a range of sequential blocks starting as close as possible to
139  * an fs_rotdelay offset from the end of the allocation for the logical
140  * block immediately preceding the current range. If successful, the
141  * physical block numbers in the buffer pointers and in the inode are
142  * changed to reflect the new allocation. If unsuccessful, the allocation
143  * is left unchanged. The success in doing the reallocation is returned.
144  * Note that the error return is not reflected back to the user. Rather
145  * the previous block allocation will be used.
146  */
147 
148 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem");
149 
150 static int doasyncfree = 1;
151 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
152     "Use asychronous writes to update block pointers when freeing blocks");
153 
154 static int doreallocblks = 1;
155 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
156 
157 int
158 ext2_reallocblks(struct vop_reallocblks_args *ap)
159 {
160 	struct m_ext2fs *fs;
161 	struct inode *ip;
162 	struct vnode *vp;
163 	struct buf *sbp, *ebp;
164 	uint32_t *bap, *sbap, *ebap = 0;
165 	struct ext2mount *ump;
166 	struct cluster_save *buflist;
167 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
168 	e2fs_lbn_t start_lbn, end_lbn;
169 	int soff;
170 	e2fs_daddr_t newblk, blkno;
171 	int i, len, start_lvl, end_lvl, pref, ssize;
172 
173 	if (doreallocblks == 0)
174 		  return (ENOSPC);
175 
176 	vp = ap->a_vp;
177 	ip = VTOI(vp);
178 	fs = ip->i_e2fs;
179 	ump = ip->i_ump;
180 
181 	if (fs->e2fs_contigsumsize <= 0)
182 		return (ENOSPC);
183 
184 	buflist = ap->a_buflist;
185 	len = buflist->bs_nchildren;
186 	start_lbn = buflist->bs_children[0]->b_lblkno;
187 	end_lbn = start_lbn + len - 1;
188 #ifdef INVARIANTS
189 	for (i = 1; i < len; i++)
190 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
191 			panic("ext2_reallocblks: non-cluster");
192 #endif
193 	/*
194 	 * If the cluster crosses the boundary for the first indirect
195 	 * block, leave space for the indirect block. Indirect blocks
196 	 * are initially laid out in a position after the last direct
197 	 * block. Block reallocation would usually destroy locality by
198 	 * moving the indirect block out of the way to make room for
199 	 * data blocks if we didn't compensate here. We should also do
200 	 * this for other indirect block boundaries, but it is only
201 	 * important for the first one.
202 	 */
203 	if (start_lbn < NDADDR && end_lbn >= NDADDR)
204 		return (ENOSPC);
205 	/*
206 	 * If the latest allocation is in a new cylinder group, assume that
207 	 * the filesystem has decided to move and do not force it back to
208 	 * the previous cylinder group.
209 	 */
210 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
211 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
212 		return (ENOSPC);
213 	if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
214 	    ext2_getlbns(vp, end_lbn, end_ap, &end_lvl))
215 		return (ENOSPC);
216 	/*
217 	 * Get the starting offset and block map for the first block.
218 	 */
219 	if (start_lvl == 0) {
220 		sbap = &ip->i_db[0];
221 		soff = start_lbn;
222 	} else {
223 		idp = &start_ap[start_lvl - 1];
224 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) {
225 			brelse(sbp);
226 			return (ENOSPC);
227 		}
228 		sbap = (u_int *)sbp->b_data;
229 		soff = idp->in_off;
230 	}
231 	/*
232 	 * If the block range spans two block maps, get the second map.
233 	 */
234 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
235 		ssize = len;
236 	} else {
237 #ifdef INVARIANTS
238 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
239 			panic("ext2_reallocblks: start == end");
240 #endif
241 		ssize = len - (idp->in_off + 1);
242 		if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp))
243 			goto fail;
244 		ebap = (u_int *)ebp->b_data;
245 	}
246 	/*
247 	 * Find the preferred location for the cluster.
248 	 */
249 	EXT2_LOCK(ump);
250 	pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0);
251 	/*
252 	 * Search the block map looking for an allocation of the desired size.
253 	 */
254 	if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref,
255 	    len, ext2_clusteralloc)) == 0){
256 		EXT2_UNLOCK(ump);
257 		goto fail;
258 	}
259 	/*
260 	 * We have found a new contiguous block.
261 	 *
262 	 * First we have to replace the old block pointers with the new
263 	 * block pointers in the inode and indirect blocks associated
264 	 * with the file.
265 	 */
266 #ifdef DEBUG
267 	printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
268 	    (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn);
269 #endif /* DEBUG */
270 	blkno = newblk;
271 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
272 		if (i == ssize) {
273 			bap = ebap;
274 			soff = -i;
275 		}
276 #ifdef INVARIANTS
277 		if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
278 			panic("ext2_reallocblks: alloc mismatch");
279 #endif
280 #ifdef DEBUG
281 	printf(" %d,", *bap);
282 #endif /* DEBUG */
283 		*bap++ = blkno;
284 	}
285 	/*
286 	 * Next we must write out the modified inode and indirect blocks.
287 	 * For strict correctness, the writes should be synchronous since
288 	 * the old block values may have been written to disk. In practise
289 	 * they are almost never written, but if we are concerned about
290 	 * strict correctness, the `doasyncfree' flag should be set to zero.
291 	 *
292 	 * The test on `doasyncfree' should be changed to test a flag
293 	 * that shows whether the associated buffers and inodes have
294 	 * been written. The flag should be set when the cluster is
295 	 * started and cleared whenever the buffer or inode is flushed.
296 	 * We can then check below to see if it is set, and do the
297 	 * synchronous write only when it has been cleared.
298 	 */
299 	if (sbap != &ip->i_db[0]) {
300 		if (doasyncfree)
301 			bdwrite(sbp);
302 		else
303 			bwrite(sbp);
304 	} else {
305 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
306 		if (!doasyncfree)
307 			ext2_update(vp, 1);
308 	}
309 	if (ssize < len) {
310 		if (doasyncfree)
311 			bdwrite(ebp);
312 		else
313 			bwrite(ebp);
314 	}
315 	/*
316 	 * Last, free the old blocks and assign the new blocks to the buffers.
317 	 */
318 #ifdef DEBUG
319 	printf("\n\tnew:");
320 #endif /* DEBUG */
321 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
322 		ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
323 		    fs->e2fs_bsize);
324 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
325 #ifdef DEBUG
326 		printf(" %d,", blkno);
327 #endif /* DEBUG */
328 	}
329 #ifdef DEBUG
330 	printf("\n");
331 #endif /* DEBUG */
332 	return (0);
333 
334 fail:
335 	if (ssize < len)
336 		brelse(ebp);
337 	if (sbap != &ip->i_db[0])
338 		brelse(sbp);
339 	return (ENOSPC);
340 }
341 
342 /*
343  * Allocate an inode in the filesystem.
344  *
345  */
346 int
347 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
348 {
349 	struct timespec ts;
350 	struct inode *pip;
351 	struct m_ext2fs *fs;
352 	struct inode *ip;
353 	struct ext2mount *ump;
354 	ino_t ino, ipref;
355 	int i, error, cg;
356 
357 	*vpp = NULL;
358 	pip = VTOI(pvp);
359 	fs = pip->i_e2fs;
360 	ump = pip->i_ump;
361 
362 	EXT2_LOCK(ump);
363 	if (fs->e2fs->e2fs_ficount == 0)
364 		goto noinodes;
365 	/*
366 	 * If it is a directory then obtain a cylinder group based on
367 	 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is
368 	 * always the next inode.
369 	 */
370 	if ((mode & IFMT) == IFDIR) {
371 		cg = ext2_dirpref(pip);
372 		if (fs->e2fs_contigdirs[cg] < 255)
373 			fs->e2fs_contigdirs[cg]++;
374 	} else {
375 		cg = ino_to_cg(fs, pip->i_number);
376 		if (fs->e2fs_contigdirs[cg] > 0)
377 			fs->e2fs_contigdirs[cg]--;
378 	}
379 	ipref = cg * fs->e2fs->e2fs_ipg + 1;
380 	ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg);
381 
382 	if (ino == 0)
383 		goto noinodes;
384 	error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
385 	if (error) {
386 		ext2_vfree(pvp, ino, mode);
387 		return (error);
388 	}
389 	ip = VTOI(*vpp);
390 
391 	/*
392 	 * The question is whether using VGET was such good idea at all:
393 	 * Linux doesn't read the old inode in when it is allocating a
394 	 * new one. I will set at least i_size and i_blocks to zero.
395 	 */
396 	ip->i_flag = 0;
397 	ip->i_size = 0;
398 	ip->i_blocks = 0;
399 	ip->i_mode = 0;
400 	ip->i_flags = 0;
401 	/* now we want to make sure that the block pointers are zeroed out */
402 	for (i = 0; i < NDADDR; i++)
403 		ip->i_db[i] = 0;
404 	for (i = 0; i < NIADDR; i++)
405 		ip->i_ib[i] = 0;
406 
407 	/*
408 	 * Set up a new generation number for this inode.
409 	 * XXX check if this makes sense in ext2
410 	 */
411 	if (ip->i_gen == 0 || ++ip->i_gen == 0)
412 		ip->i_gen = random() / 2 + 1;
413 
414 	vfs_timestamp(&ts);
415 	ip->i_birthtime = ts.tv_sec;
416 	ip->i_birthnsec = ts.tv_nsec;
417 
418 /*
419 printf("ext2_valloc: allocated inode %d\n", ino);
420 */
421 	return (0);
422 noinodes:
423 	EXT2_UNLOCK(ump);
424 	ext2_fserr(fs, cred->cr_uid, "out of inodes");
425 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt);
426 	return (ENOSPC);
427 }
428 
429 /*
430  * Find a cylinder to place a directory.
431  *
432  * The policy implemented by this algorithm is to allocate a
433  * directory inode in the same cylinder group as its parent
434  * directory, but also to reserve space for its files inodes
435  * and data. Restrict the number of directories which may be
436  * allocated one after another in the same cylinder group
437  * without intervening allocation of files.
438  *
439  * If we allocate a first level directory then force allocation
440  * in another cylinder group.
441  *
442  */
443 static u_long
444 ext2_dirpref(struct inode *pip)
445 {
446 	struct m_ext2fs *fs;
447 	int cg, prefcg, cgsize;
448 	u_int avgifree, avgbfree, avgndir, curdirsize;
449 	u_int minifree, minbfree, maxndir;
450 	u_int mincg, minndir;
451 	u_int dirsize, maxcontigdirs;
452 
453 	mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED);
454 	fs = pip->i_e2fs;
455 
456 	avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount;
457 	avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount;
458 	avgndir  = fs->e2fs_total_dir / fs->e2fs_gcount;
459 
460 	/*
461 	 * Force allocation in another cg if creating a first level dir.
462 	 */
463 	ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref");
464 	if (ITOV(pip)->v_vflag & VV_ROOT) {
465 		prefcg = arc4random() % fs->e2fs_gcount;
466 		mincg = prefcg;
467 		minndir = fs->e2fs_ipg;
468 		for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
469 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
470 			    fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
471 			    fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
472 				mincg = cg;
473 				minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
474 			}
475 		for (cg = 0; cg < prefcg; cg++)
476 			if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir &&
477 			    fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree &&
478 			    fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) {
479 				mincg = cg;
480 				minndir = fs->e2fs_gd[cg].ext2bgd_ndirs;
481 			}
482 
483 		return (mincg);
484 	}
485 
486 	/*
487 	 * Count various limits which used for
488 	 * optimal allocation of a directory inode.
489 	 */
490 	maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg);
491 	minifree = avgifree - avgifree / 4;
492 	if (minifree < 1)
493 		minifree = 1;
494 	minbfree = avgbfree - avgbfree / 4;
495 	if (minbfree < 1)
496 		minbfree = 1;
497 	cgsize = fs->e2fs_fsize * fs->e2fs_fpg;
498 	dirsize = AVGDIRSIZE;
499 	curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0;
500 	if (dirsize < curdirsize)
501 		dirsize = curdirsize;
502 	maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255);
503 	maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR);
504 	if (maxcontigdirs == 0)
505 		maxcontigdirs = 1;
506 
507 	/*
508 	 * Limit number of dirs in one cg and reserve space for
509 	 * regular files, but only if we have no deficit in
510 	 * inodes or space.
511 	 */
512 	prefcg = ino_to_cg(fs, pip->i_number);
513 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
514 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
515 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
516 		    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
517 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
518 				return (cg);
519 		}
520 	for (cg = 0; cg < prefcg; cg++)
521 		if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir &&
522 		    fs->e2fs_gd[cg].ext2bgd_nifree >= minifree &&
523 		    fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) {
524 			if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
525 				return (cg);
526 		}
527 	/*
528 	 * This is a backstop when we have deficit in space.
529 	 */
530 	for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
531 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
532 			return (cg);
533 	for (cg = 0; cg < prefcg; cg++)
534 		if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree)
535 			break;
536 	return (cg);
537 }
538 
539 /*
540  * Select the desired position for the next block in a file.
541  *
542  * we try to mimic what Remy does in inode_getblk/block_getblk
543  *
544  * we note: blocknr == 0 means that we're about to allocate either
545  * a direct block or a pointer block at the first level of indirection
546  * (In other words, stuff that will go in i_db[] or i_ib[])
547  *
548  * blocknr != 0 means that we're allocating a block that is none
549  * of the above. Then, blocknr tells us the number of the block
550  * that will hold the pointer
551  */
552 e4fs_daddr_t
553 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap,
554     e2fs_daddr_t blocknr)
555 {
556 	int	tmp;
557 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
558 
559 	/* if the next block is actually what we thought it is,
560 	   then set the goal to what we thought it should be
561 	*/
562 	if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0)
563 		return ip->i_next_alloc_goal;
564 
565 	/* now check whether we were provided with an array that basically
566 	   tells us previous blocks to which we want to stay closeby
567 	*/
568 	if (bap)
569 		for (tmp = indx - 1; tmp >= 0; tmp--)
570 			if (bap[tmp])
571 				return bap[tmp];
572 
573 	/* else let's fall back to the blocknr, or, if there is none,
574 	   follow the rule that a block should be allocated near its inode
575 	*/
576 	return blocknr ? blocknr :
577 			(e2fs_daddr_t)(ip->i_block_group *
578 			EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) +
579 			ip->i_e2fs->e2fs->e2fs_first_dblock;
580 }
581 
582 /*
583  * Implement the cylinder overflow algorithm.
584  *
585  * The policy implemented by this algorithm is:
586  *   1) allocate the block in its requested cylinder group.
587  *   2) quadradically rehash on the cylinder group number.
588  *   3) brute force search for a free block.
589  */
590 static u_long
591 ext2_hashalloc(struct inode *ip, int cg, long pref, int size,
592                 daddr_t (*allocator)(struct inode *, int, daddr_t, int))
593 {
594 	struct m_ext2fs *fs;
595 	ino_t result;
596 	int i, icg = cg;
597 
598 	mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
599 	fs = ip->i_e2fs;
600 	/*
601 	 * 1: preferred cylinder group
602 	 */
603 	result = (*allocator)(ip, cg, pref, size);
604 	if (result)
605 		return (result);
606 	/*
607 	 * 2: quadratic rehash
608 	 */
609 	for (i = 1; i < fs->e2fs_gcount; i *= 2) {
610 		cg += i;
611 		if (cg >= fs->e2fs_gcount)
612 			cg -= fs->e2fs_gcount;
613 		result = (*allocator)(ip, cg, 0, size);
614 		if (result)
615 			return (result);
616 	}
617 	/*
618 	 * 3: brute force search
619 	 * Note that we start at i == 2, since 0 was checked initially,
620 	 * and 1 is always checked in the quadratic rehash.
621 	 */
622 	cg = (icg + 2) % fs->e2fs_gcount;
623 	for (i = 2; i < fs->e2fs_gcount; i++) {
624 		result = (*allocator)(ip, cg, 0, size);
625 		if (result)
626 			return (result);
627 		cg++;
628 		if (cg == fs->e2fs_gcount)
629 			cg = 0;
630 	}
631 	return (0);
632 }
633 
634 /*
635  * Determine whether a block can be allocated.
636  *
637  * Check to see if a block of the appropriate size is available,
638  * and if it is, allocate it.
639  */
640 static daddr_t
641 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
642 {
643 	struct m_ext2fs *fs;
644 	struct buf *bp;
645 	struct ext2mount *ump;
646 	daddr_t bno, runstart, runlen;
647 	int bit, loc, end, error, start;
648 	char *bbp;
649 	/* XXX ondisk32 */
650 	fs = ip->i_e2fs;
651 	ump = ip->i_ump;
652 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0)
653 		return (0);
654 	EXT2_UNLOCK(ump);
655 	error = bread(ip->i_devvp, fsbtodb(fs,
656 		fs->e2fs_gd[cg].ext2bgd_b_bitmap),
657 		(int)fs->e2fs_bsize, NOCRED, &bp);
658 	if (error) {
659 		brelse(bp);
660 		EXT2_LOCK(ump);
661 		return (0);
662 	}
663 	if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) {
664 		/*
665 		 * Another thread allocated the last block in this
666 		 * group while we were waiting for the buffer.
667 		 */
668 		brelse(bp);
669 		EXT2_LOCK(ump);
670 		return (0);
671 	}
672 	bbp = (char *)bp->b_data;
673 
674 	if (dtog(fs, bpref) != cg)
675 		bpref = 0;
676 	if (bpref != 0) {
677 		bpref = dtogd(fs, bpref);
678 		/*
679 		 * if the requested block is available, use it
680 		 */
681 		if (isclr(bbp, bpref)) {
682 			bno = bpref;
683 			goto gotit;
684 		}
685 	}
686 	/*
687 	 * no blocks in the requested cylinder, so take next
688 	 * available one in this cylinder group.
689 	 * first try to get 8 contigous blocks, then fall back to a single
690 	 * block.
691 	 */
692 	if (bpref)
693 		start = dtogd(fs, bpref) / NBBY;
694 	else
695 		start = 0;
696 	end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
697 retry:
698 	runlen = 0;
699 	runstart = 0;
700 	for (loc = start; loc < end; loc++) {
701 		if (bbp[loc] == (char)0xff) {
702 			runlen = 0;
703 			continue;
704 		}
705 
706 		/* Start of a run, find the number of high clear bits. */
707 		if (runlen == 0) {
708 			bit = fls(bbp[loc]);
709 			runlen = NBBY - bit;
710 			runstart = loc * NBBY + bit;
711 		} else if (bbp[loc] == 0) {
712 			/* Continue a run. */
713 			runlen += NBBY;
714 		} else {
715 			/*
716 			 * Finish the current run.  If it isn't long
717 			 * enough, start a new one.
718 			 */
719 			bit = ffs(bbp[loc]) - 1;
720 			runlen += bit;
721 			if (runlen >= 8) {
722 				bno = runstart;
723 				goto gotit;
724 			}
725 
726 			/* Run was too short, start a new one. */
727 			bit = fls(bbp[loc]);
728 			runlen = NBBY - bit;
729 			runstart = loc * NBBY + bit;
730 		}
731 
732 		/* If the current run is long enough, use it. */
733 		if (runlen >= 8) {
734 			bno = runstart;
735 			goto gotit;
736 		}
737 	}
738 	if (start != 0) {
739 		end = start;
740 		start = 0;
741 		goto retry;
742 	}
743 
744 	bno = ext2_mapsearch(fs, bbp, bpref);
745 	if (bno < 0){
746 		brelse(bp);
747 		EXT2_LOCK(ump);
748 		return (0);
749 	}
750 gotit:
751 #ifdef INVARIANTS
752 	if (isset(bbp, bno)) {
753 		printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n",
754 			cg, (intmax_t)bno, fs->e2fs_fsmnt);
755 		panic("ext2fs_alloccg: dup alloc");
756 	}
757 #endif
758 	setbit(bbp, bno);
759 	EXT2_LOCK(ump);
760 	ext2_clusteracct(fs, bbp, cg, bno, -1);
761 	fs->e2fs->e2fs_fbcount--;
762 	fs->e2fs_gd[cg].ext2bgd_nbfree--;
763 	fs->e2fs_fmod = 1;
764 	EXT2_UNLOCK(ump);
765 	bdwrite(bp);
766 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
767 }
768 
769 /*
770  * Determine whether a cluster can be allocated.
771  */
772 static daddr_t
773 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
774 {
775 	struct m_ext2fs *fs;
776 	struct ext2mount *ump;
777 	struct buf *bp;
778 	char *bbp;
779 	int bit, error, got, i, loc, run;
780 	int32_t *lp;
781 	daddr_t bno;
782 
783 	fs = ip->i_e2fs;
784 	ump = ip->i_ump;
785 
786 	if (fs->e2fs_maxcluster[cg] < len)
787 		return (0);
788 
789 	EXT2_UNLOCK(ump);
790 	error = bread(ip->i_devvp,
791 	    fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
792 	    (int)fs->e2fs_bsize, NOCRED, &bp);
793 	if (error)
794 		goto fail_lock;
795 
796 	bbp = (char *)bp->b_data;
797 	EXT2_LOCK(ump);
798 	/*
799 	 * Check to see if a cluster of the needed size (or bigger) is
800 	 * available in this cylinder group.
801 	 */
802 	lp = &fs->e2fs_clustersum[cg].cs_sum[len];
803 	for (i = len; i <= fs->e2fs_contigsumsize; i++)
804 		if (*lp++ > 0)
805 			break;
806 	if (i > fs->e2fs_contigsumsize) {
807 		/*
808 		 * Update the cluster summary information to reflect
809 		 * the true maximum-sized cluster so that future cluster
810 		 * allocation requests can avoid reading the bitmap only
811 		 * to find no cluster.
812 		 */
813 		lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1];
814 			for (i = len - 1; i > 0; i--)
815 				if (*lp-- > 0)
816 					break;
817 		fs->e2fs_maxcluster[cg] = i;
818 		goto fail;
819 	}
820 	EXT2_UNLOCK(ump);
821 
822 	/* Search the bitmap to find a big enough cluster like in FFS. */
823 	if (dtog(fs, bpref) != cg)
824 		bpref = 0;
825 	if (bpref != 0)
826 		bpref = dtogd(fs, bpref);
827 	loc = bpref / NBBY;
828 	bit = 1 << (bpref % NBBY);
829 	for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) {
830 		if ((bbp[loc] & bit) != 0)
831 			run = 0;
832 		else {
833 			run++;
834 			if (run == len)
835 				break;
836 		}
837 		if ((got & (NBBY - 1)) != (NBBY - 1))
838 			bit <<= 1;
839 		else {
840 			loc++;
841 			bit = 1;
842 		}
843 	}
844 
845 	if (got >= fs->e2fs->e2fs_fpg)
846 		goto fail_lock;
847 
848 	/* Allocate the cluster that we found. */
849 	for (i = 1; i < len; i++)
850 		if (!isclr(bbp, got - run + i))
851 			panic("ext2_clusteralloc: map mismatch");
852 
853 	bno = got - run + 1;
854 	if (bno >= fs->e2fs->e2fs_fpg)
855 		panic("ext2_clusteralloc: allocated out of group");
856 
857 	EXT2_LOCK(ump);
858 	for (i = 0; i < len; i += fs->e2fs_fpb) {
859 		setbit(bbp, bno + i);
860 		ext2_clusteracct(fs, bbp, cg, bno + i, -1);
861 		fs->e2fs->e2fs_fbcount--;
862 		fs->e2fs_gd[cg].ext2bgd_nbfree--;
863 	}
864 	fs->e2fs_fmod = 1;
865 	EXT2_UNLOCK(ump);
866 
867 	bdwrite(bp);
868 	return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
869 
870 fail_lock:
871 	EXT2_LOCK(ump);
872 fail:
873 	brelse(bp);
874 	return (0);
875 }
876 
877 /*
878  * Determine whether an inode can be allocated.
879  *
880  * Check to see if an inode is available, and if it is,
881  * allocate it using tode in the specified cylinder group.
882  */
883 static daddr_t
884 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
885 {
886 	struct m_ext2fs *fs;
887 	struct buf *bp;
888 	struct ext2mount *ump;
889 	int error, start, len;
890 	char *ibp, *loc;
891 	ipref--; /* to avoid a lot of (ipref -1) */
892 	if (ipref == -1)
893 		ipref = 0;
894 	fs = ip->i_e2fs;
895 	ump = ip->i_ump;
896 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0)
897 		return (0);
898 	EXT2_UNLOCK(ump);
899 	error = bread(ip->i_devvp, fsbtodb(fs,
900 		fs->e2fs_gd[cg].ext2bgd_i_bitmap),
901 		(int)fs->e2fs_bsize, NOCRED, &bp);
902 	if (error) {
903 		brelse(bp);
904 		EXT2_LOCK(ump);
905 		return (0);
906 	}
907 	if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) {
908 		/*
909 		 * Another thread allocated the last i-node in this
910 		 * group while we were waiting for the buffer.
911 		 */
912 		brelse(bp);
913 		EXT2_LOCK(ump);
914 		return (0);
915 	}
916 	ibp = (char *)bp->b_data;
917 	if (ipref) {
918 		ipref %= fs->e2fs->e2fs_ipg;
919 		if (isclr(ibp, ipref))
920 			goto gotit;
921 	}
922 	start = ipref / NBBY;
923 	len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
924 	loc = memcchr(&ibp[start], 0xff, len);
925 	if (loc == NULL) {
926 		len = start + 1;
927 		start = 0;
928 		loc = memcchr(&ibp[start], 0xff, len);
929 		if (loc == NULL) {
930 			printf("cg = %d, ipref = %lld, fs = %s\n",
931 				cg, (long long)ipref, fs->e2fs_fsmnt);
932 			panic("ext2fs_nodealloccg: map corrupted");
933 			/* NOTREACHED */
934 		}
935 	}
936 	ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1;
937 gotit:
938 	setbit(ibp, ipref);
939 	EXT2_LOCK(ump);
940 	fs->e2fs_gd[cg].ext2bgd_nifree--;
941 	fs->e2fs->e2fs_ficount--;
942 	fs->e2fs_fmod = 1;
943 	if ((mode & IFMT) == IFDIR) {
944 		fs->e2fs_gd[cg].ext2bgd_ndirs++;
945 		fs->e2fs_total_dir++;
946 	}
947 	EXT2_UNLOCK(ump);
948 	bdwrite(bp);
949 	return (cg * fs->e2fs->e2fs_ipg + ipref +1);
950 }
951 
952 /*
953  * Free a block or fragment.
954  *
955  */
956 void
957 ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size)
958 {
959 	struct m_ext2fs *fs;
960 	struct buf *bp;
961 	struct ext2mount *ump;
962 	int cg, error;
963 	char *bbp;
964 
965 	fs = ip->i_e2fs;
966 	ump = ip->i_ump;
967 	cg = dtog(fs, bno);
968 	if ((u_int)bno >= fs->e2fs->e2fs_bcount) {
969 		printf("bad block %lld, ino %ju\n", (long long)bno,
970 		    (uintmax_t)ip->i_number);
971 		ext2_fserr(fs, ip->i_uid, "bad block");
972 		return;
973 	}
974 	error = bread(ip->i_devvp,
975 		fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap),
976 		(int)fs->e2fs_bsize, NOCRED, &bp);
977 	if (error) {
978 		brelse(bp);
979 		return;
980 	}
981 	bbp = (char *)bp->b_data;
982 	bno = dtogd(fs, bno);
983 	if (isclr(bbp, bno)) {
984 		printf("block = %lld, fs = %s\n",
985 		     (long long)bno, fs->e2fs_fsmnt);
986 		panic("ext2_blkfree: freeing free block");
987 	}
988 	clrbit(bbp, bno);
989 	EXT2_LOCK(ump);
990 	ext2_clusteracct(fs, bbp, cg, bno, 1);
991 	fs->e2fs->e2fs_fbcount++;
992 	fs->e2fs_gd[cg].ext2bgd_nbfree++;
993 	fs->e2fs_fmod = 1;
994 	EXT2_UNLOCK(ump);
995 	bdwrite(bp);
996 }
997 
998 /*
999  * Free an inode.
1000  *
1001  */
1002 int
1003 ext2_vfree(struct vnode *pvp, ino_t ino, int mode)
1004 {
1005 	struct m_ext2fs *fs;
1006 	struct inode *pip;
1007 	struct buf *bp;
1008 	struct ext2mount *ump;
1009 	int error, cg;
1010 	char * ibp;
1011 
1012 	pip = VTOI(pvp);
1013 	fs = pip->i_e2fs;
1014 	ump = pip->i_ump;
1015 	if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount)
1016 		panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s",
1017 		    pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt);
1018 
1019 	cg = ino_to_cg(fs, ino);
1020 	error = bread(pip->i_devvp,
1021 		fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap),
1022 		(int)fs->e2fs_bsize, NOCRED, &bp);
1023 	if (error) {
1024 		brelse(bp);
1025 		return (0);
1026 	}
1027 	ibp = (char *)bp->b_data;
1028 	ino = (ino - 1) % fs->e2fs->e2fs_ipg;
1029 	if (isclr(ibp, ino)) {
1030 		printf("ino = %llu, fs = %s\n",
1031 			 (unsigned long long)ino, fs->e2fs_fsmnt);
1032 		if (fs->e2fs_ronly == 0)
1033 			panic("ext2_vfree: freeing free inode");
1034 	}
1035 	clrbit(ibp, ino);
1036 	EXT2_LOCK(ump);
1037 	fs->e2fs->e2fs_ficount++;
1038 	fs->e2fs_gd[cg].ext2bgd_nifree++;
1039 	if ((mode & IFMT) == IFDIR) {
1040 		fs->e2fs_gd[cg].ext2bgd_ndirs--;
1041 		fs->e2fs_total_dir--;
1042 	}
1043 	fs->e2fs_fmod = 1;
1044 	EXT2_UNLOCK(ump);
1045 	bdwrite(bp);
1046 	return (0);
1047 }
1048 
1049 /*
1050  * Find a block in the specified cylinder group.
1051  *
1052  * It is a panic if a request is made to find a block if none are
1053  * available.
1054  */
1055 static daddr_t
1056 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref)
1057 {
1058 	char *loc;
1059 	int start, len;
1060 
1061 	/*
1062 	 * find the fragment by searching through the free block
1063 	 * map for an appropriate bit pattern
1064 	 */
1065 	if (bpref)
1066 		start = dtogd(fs, bpref) / NBBY;
1067 	else
1068 		start = 0;
1069 	len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
1070 	loc = memcchr(&bbp[start], 0xff, len);
1071 	if (loc == NULL) {
1072 		len = start + 1;
1073 		start = 0;
1074 		loc = memcchr(&bbp[start], 0xff, len);
1075 		if (loc == NULL) {
1076 			printf("start = %d, len = %d, fs = %s\n",
1077 				start, len, fs->e2fs_fsmnt);
1078 			panic("ext2_mapsearch: map corrupted");
1079 			/* NOTREACHED */
1080 		}
1081 	}
1082 	return ((loc - bbp) * NBBY + ffs(~*loc) - 1);
1083 }
1084 
1085 /*
1086  * Fserr prints the name of a filesystem with an error diagnostic.
1087  *
1088  * The form of the error message is:
1089  *	fs: error message
1090  */
1091 static void
1092 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp)
1093 {
1094 
1095 	log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp);
1096 }
1097 
1098 int
1099 cg_has_sb(int i)
1100 {
1101 	int a3, a5, a7;
1102 
1103 	if (i == 0 || i == 1)
1104 		return 1;
1105 	for (a3 = 3, a5 = 5, a7 = 7;
1106 	    a3 <= i || a5 <= i || a7 <= i;
1107 	    a3 *= 3, a5 *= 5, a7 *= 7)
1108 		if (i == a3 || i == a5 || i == a7)
1109 			return 1;
1110 	return 0;
1111 }
1112