1 /*- 2 * modified for Lites 1.1 3 * 4 * Aug 1995, Godmar Back (gback@cs.utah.edu) 5 * University of Utah, Department of Computer Science 6 */ 7 /*- 8 * Copyright (c) 1982, 1986, 1989, 1993 9 * The Regents of the University of California. All rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94 36 * $FreeBSD$ 37 */ 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/conf.h> 42 #include <sys/vnode.h> 43 #include <sys/stat.h> 44 #include <sys/mount.h> 45 #include <sys/sysctl.h> 46 #include <sys/syslog.h> 47 #include <sys/buf.h> 48 #include <sys/endian.h> 49 50 #include <fs/ext2fs/fs.h> 51 #include <fs/ext2fs/inode.h> 52 #include <fs/ext2fs/ext2_mount.h> 53 #include <fs/ext2fs/ext2fs.h> 54 #include <fs/ext2fs/ext2_extern.h> 55 56 static daddr_t ext2_alloccg(struct inode *, int, daddr_t, int); 57 static daddr_t ext2_clusteralloc(struct inode *, int, daddr_t, int); 58 static u_long ext2_dirpref(struct inode *); 59 static u_long ext2_hashalloc(struct inode *, int, long, int, 60 daddr_t (*)(struct inode *, int, daddr_t, 61 int)); 62 static daddr_t ext2_nodealloccg(struct inode *, int, daddr_t, int); 63 static daddr_t ext2_mapsearch(struct m_ext2fs *, char *, daddr_t); 64 65 /* 66 * Allocate a block in the filesystem. 67 * 68 * A preference may be optionally specified. If a preference is given 69 * the following hierarchy is used to allocate a block: 70 * 1) allocate the requested block. 71 * 2) allocate a rotationally optimal block in the same cylinder. 72 * 3) allocate a block in the same cylinder group. 73 * 4) quadradically rehash into other cylinder groups, until an 74 * available block is located. 75 * If no block preference is given the following hierarchy is used 76 * to allocate a block: 77 * 1) allocate a block in the cylinder group that contains the 78 * inode for the file. 79 * 2) quadradically rehash into other cylinder groups, until an 80 * available block is located. 81 */ 82 int 83 ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size, 84 struct ucred *cred, e4fs_daddr_t *bnp) 85 { 86 struct m_ext2fs *fs; 87 struct ext2mount *ump; 88 int32_t bno; 89 int cg; 90 91 *bnp = 0; 92 fs = ip->i_e2fs; 93 ump = ip->i_ump; 94 mtx_assert(EXT2_MTX(ump), MA_OWNED); 95 #ifdef INVARIANTS 96 if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) { 97 vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n", 98 (long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt); 99 panic("ext2_alloc: bad size"); 100 } 101 if (cred == NOCRED) 102 panic("ext2_alloc: missing credential"); 103 #endif /* INVARIANTS */ 104 if (size == fs->e2fs_bsize && fs->e2fs->e2fs_fbcount == 0) 105 goto nospace; 106 if (cred->cr_uid != 0 && 107 fs->e2fs->e2fs_fbcount < fs->e2fs->e2fs_rbcount) 108 goto nospace; 109 if (bpref >= fs->e2fs->e2fs_bcount) 110 bpref = 0; 111 if (bpref == 0) 112 cg = ino_to_cg(fs, ip->i_number); 113 else 114 cg = dtog(fs, bpref); 115 bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize, 116 ext2_alloccg); 117 if (bno > 0) { 118 /* set next_alloc fields as done in block_getblk */ 119 ip->i_next_alloc_block = lbn; 120 ip->i_next_alloc_goal = bno; 121 122 ip->i_blocks += btodb(fs->e2fs_bsize); 123 ip->i_flag |= IN_CHANGE | IN_UPDATE; 124 *bnp = bno; 125 return (0); 126 } 127 nospace: 128 EXT2_UNLOCK(ump); 129 ext2_fserr(fs, cred->cr_uid, "filesystem full"); 130 uprintf("\n%s: write failed, filesystem is full\n", fs->e2fs_fsmnt); 131 return (ENOSPC); 132 } 133 134 /* 135 * Allocate EA's block for inode. 136 */ 137 daddr_t 138 ext2_allocfacl(struct inode *ip) 139 { 140 struct m_ext2fs *fs; 141 daddr_t facl; 142 143 fs = ip->i_e2fs; 144 145 EXT2_LOCK(ip->i_ump); 146 facl = ext2_alloccg(ip, ino_to_cg(fs, ip->i_number), 0, fs->e2fs_bsize); 147 if (0 == facl) 148 EXT2_UNLOCK(ip->i_ump); 149 150 return (facl); 151 } 152 153 /* 154 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 155 * 156 * The vnode and an array of buffer pointers for a range of sequential 157 * logical blocks to be made contiguous is given. The allocator attempts 158 * to find a range of sequential blocks starting as close as possible to 159 * an fs_rotdelay offset from the end of the allocation for the logical 160 * block immediately preceding the current range. If successful, the 161 * physical block numbers in the buffer pointers and in the inode are 162 * changed to reflect the new allocation. If unsuccessful, the allocation 163 * is left unchanged. The success in doing the reallocation is returned. 164 * Note that the error return is not reflected back to the user. Rather 165 * the previous block allocation will be used. 166 */ 167 168 static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW, 0, "EXT2FS filesystem"); 169 170 static int doasyncfree = 1; 171 172 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 173 "Use asychronous writes to update block pointers when freeing blocks"); 174 175 static int doreallocblks = 1; 176 177 SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, ""); 178 179 int 180 ext2_reallocblks(struct vop_reallocblks_args *ap) 181 { 182 struct m_ext2fs *fs; 183 struct inode *ip; 184 struct vnode *vp; 185 struct buf *sbp, *ebp; 186 uint32_t *bap, *sbap, *ebap; 187 struct ext2mount *ump; 188 struct cluster_save *buflist; 189 struct indir start_ap[EXT2_NIADDR + 1], end_ap[EXT2_NIADDR + 1], *idp; 190 e2fs_lbn_t start_lbn, end_lbn; 191 int soff; 192 e2fs_daddr_t newblk, blkno; 193 int i, len, start_lvl, end_lvl, pref, ssize; 194 195 if (doreallocblks == 0) 196 return (ENOSPC); 197 198 vp = ap->a_vp; 199 ip = VTOI(vp); 200 fs = ip->i_e2fs; 201 ump = ip->i_ump; 202 203 if (fs->e2fs_contigsumsize <= 0) 204 return (ENOSPC); 205 206 buflist = ap->a_buflist; 207 len = buflist->bs_nchildren; 208 start_lbn = buflist->bs_children[0]->b_lblkno; 209 end_lbn = start_lbn + len - 1; 210 #ifdef INVARIANTS 211 for (i = 1; i < len; i++) 212 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 213 panic("ext2_reallocblks: non-cluster"); 214 #endif 215 /* 216 * If the cluster crosses the boundary for the first indirect 217 * block, leave space for the indirect block. Indirect blocks 218 * are initially laid out in a position after the last direct 219 * block. Block reallocation would usually destroy locality by 220 * moving the indirect block out of the way to make room for 221 * data blocks if we didn't compensate here. We should also do 222 * this for other indirect block boundaries, but it is only 223 * important for the first one. 224 */ 225 if (start_lbn < EXT2_NDADDR && end_lbn >= EXT2_NDADDR) 226 return (ENOSPC); 227 /* 228 * If the latest allocation is in a new cylinder group, assume that 229 * the filesystem has decided to move and do not force it back to 230 * the previous cylinder group. 231 */ 232 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 233 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 234 return (ENOSPC); 235 if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) || 236 ext2_getlbns(vp, end_lbn, end_ap, &end_lvl)) 237 return (ENOSPC); 238 /* 239 * Get the starting offset and block map for the first block. 240 */ 241 if (start_lvl == 0) { 242 sbap = &ip->i_db[0]; 243 soff = start_lbn; 244 } else { 245 idp = &start_ap[start_lvl - 1]; 246 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) { 247 brelse(sbp); 248 return (ENOSPC); 249 } 250 sbap = (u_int *)sbp->b_data; 251 soff = idp->in_off; 252 } 253 /* 254 * If the block range spans two block maps, get the second map. 255 */ 256 ebap = NULL; 257 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 258 ssize = len; 259 } else { 260 #ifdef INVARIANTS 261 if (start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 262 panic("ext2_reallocblks: start == end"); 263 #endif 264 ssize = len - (idp->in_off + 1); 265 if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp)) 266 goto fail; 267 ebap = (u_int *)ebp->b_data; 268 } 269 /* 270 * Find the preferred location for the cluster. 271 */ 272 EXT2_LOCK(ump); 273 pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0); 274 /* 275 * Search the block map looking for an allocation of the desired size. 276 */ 277 if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref, 278 len, ext2_clusteralloc)) == 0) { 279 EXT2_UNLOCK(ump); 280 goto fail; 281 } 282 /* 283 * We have found a new contiguous block. 284 * 285 * First we have to replace the old block pointers with the new 286 * block pointers in the inode and indirect blocks associated 287 * with the file. 288 */ 289 #ifdef DEBUG 290 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 291 (uintmax_t)ip->i_number, (intmax_t)start_lbn, (intmax_t)end_lbn); 292 #endif /* DEBUG */ 293 blkno = newblk; 294 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) { 295 if (i == ssize) { 296 bap = ebap; 297 soff = -i; 298 } 299 #ifdef INVARIANTS 300 if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap)) 301 panic("ext2_reallocblks: alloc mismatch"); 302 #endif 303 #ifdef DEBUG 304 printf(" %d,", *bap); 305 #endif /* DEBUG */ 306 *bap++ = blkno; 307 } 308 /* 309 * Next we must write out the modified inode and indirect blocks. 310 * For strict correctness, the writes should be synchronous since 311 * the old block values may have been written to disk. In practise 312 * they are almost never written, but if we are concerned about 313 * strict correctness, the `doasyncfree' flag should be set to zero. 314 * 315 * The test on `doasyncfree' should be changed to test a flag 316 * that shows whether the associated buffers and inodes have 317 * been written. The flag should be set when the cluster is 318 * started and cleared whenever the buffer or inode is flushed. 319 * We can then check below to see if it is set, and do the 320 * synchronous write only when it has been cleared. 321 */ 322 if (sbap != &ip->i_db[0]) { 323 if (doasyncfree) 324 bdwrite(sbp); 325 else 326 bwrite(sbp); 327 } else { 328 ip->i_flag |= IN_CHANGE | IN_UPDATE; 329 if (!doasyncfree) 330 ext2_update(vp, 1); 331 } 332 if (ssize < len) { 333 if (doasyncfree) 334 bdwrite(ebp); 335 else 336 bwrite(ebp); 337 } 338 /* 339 * Last, free the old blocks and assign the new blocks to the buffers. 340 */ 341 #ifdef DEBUG 342 printf("\n\tnew:"); 343 #endif /* DEBUG */ 344 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) { 345 ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), 346 fs->e2fs_bsize); 347 buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); 348 #ifdef DEBUG 349 printf(" %d,", blkno); 350 #endif /* DEBUG */ 351 } 352 #ifdef DEBUG 353 printf("\n"); 354 #endif /* DEBUG */ 355 return (0); 356 357 fail: 358 if (ssize < len) 359 brelse(ebp); 360 if (sbap != &ip->i_db[0]) 361 brelse(sbp); 362 return (ENOSPC); 363 } 364 365 /* 366 * Allocate an inode in the filesystem. 367 * 368 */ 369 int 370 ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp) 371 { 372 struct timespec ts; 373 struct inode *pip; 374 struct m_ext2fs *fs; 375 struct inode *ip; 376 struct ext2mount *ump; 377 ino_t ino, ipref; 378 int i, error, cg; 379 380 *vpp = NULL; 381 pip = VTOI(pvp); 382 fs = pip->i_e2fs; 383 ump = pip->i_ump; 384 385 EXT2_LOCK(ump); 386 if (fs->e2fs->e2fs_ficount == 0) 387 goto noinodes; 388 /* 389 * If it is a directory then obtain a cylinder group based on 390 * ext2_dirpref else obtain it using ino_to_cg. The preferred inode is 391 * always the next inode. 392 */ 393 if ((mode & IFMT) == IFDIR) { 394 cg = ext2_dirpref(pip); 395 if (fs->e2fs_contigdirs[cg] < 255) 396 fs->e2fs_contigdirs[cg]++; 397 } else { 398 cg = ino_to_cg(fs, pip->i_number); 399 if (fs->e2fs_contigdirs[cg] > 0) 400 fs->e2fs_contigdirs[cg]--; 401 } 402 ipref = cg * fs->e2fs->e2fs_ipg + 1; 403 ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg); 404 405 if (ino == 0) 406 goto noinodes; 407 error = VFS_VGET(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 408 if (error) { 409 ext2_vfree(pvp, ino, mode); 410 return (error); 411 } 412 ip = VTOI(*vpp); 413 414 /* 415 * The question is whether using VGET was such good idea at all: 416 * Linux doesn't read the old inode in when it is allocating a 417 * new one. I will set at least i_size and i_blocks to zero. 418 */ 419 ip->i_flag = 0; 420 ip->i_size = 0; 421 ip->i_blocks = 0; 422 ip->i_mode = 0; 423 ip->i_flags = 0; 424 /* now we want to make sure that the block pointers are zeroed out */ 425 for (i = 0; i < EXT2_NDADDR; i++) 426 ip->i_db[i] = 0; 427 for (i = 0; i < EXT2_NIADDR; i++) 428 ip->i_ib[i] = 0; 429 430 /* 431 * Set up a new generation number for this inode. 432 * Avoid zero values. 433 */ 434 do { 435 ip->i_gen = arc4random(); 436 } while (ip->i_gen == 0); 437 438 vfs_timestamp(&ts); 439 ip->i_birthtime = ts.tv_sec; 440 ip->i_birthnsec = ts.tv_nsec; 441 442 /* 443 printf("ext2_valloc: allocated inode %d\n", ino); 444 */ 445 return (0); 446 noinodes: 447 EXT2_UNLOCK(ump); 448 ext2_fserr(fs, cred->cr_uid, "out of inodes"); 449 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->e2fs_fsmnt); 450 return (ENOSPC); 451 } 452 453 /* 454 * Find a cylinder to place a directory. 455 * 456 * The policy implemented by this algorithm is to allocate a 457 * directory inode in the same cylinder group as its parent 458 * directory, but also to reserve space for its files inodes 459 * and data. Restrict the number of directories which may be 460 * allocated one after another in the same cylinder group 461 * without intervening allocation of files. 462 * 463 * If we allocate a first level directory then force allocation 464 * in another cylinder group. 465 * 466 */ 467 static u_long 468 ext2_dirpref(struct inode *pip) 469 { 470 struct m_ext2fs *fs; 471 int cg, prefcg, cgsize; 472 u_int avgifree, avgbfree, avgndir, curdirsize; 473 u_int minifree, minbfree, maxndir; 474 u_int mincg, minndir; 475 u_int dirsize, maxcontigdirs; 476 477 mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED); 478 fs = pip->i_e2fs; 479 480 avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount; 481 avgbfree = fs->e2fs->e2fs_fbcount / fs->e2fs_gcount; 482 avgndir = fs->e2fs_total_dir / fs->e2fs_gcount; 483 484 /* 485 * Force allocation in another cg if creating a first level dir. 486 */ 487 ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref"); 488 if (ITOV(pip)->v_vflag & VV_ROOT) { 489 prefcg = arc4random() % fs->e2fs_gcount; 490 mincg = prefcg; 491 minndir = fs->e2fs_ipg; 492 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 493 if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir && 494 fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree && 495 fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) { 496 mincg = cg; 497 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs; 498 } 499 for (cg = 0; cg < prefcg; cg++) 500 if (fs->e2fs_gd[cg].ext2bgd_ndirs < minndir && 501 fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree && 502 fs->e2fs_gd[cg].ext2bgd_nbfree >= avgbfree) { 503 mincg = cg; 504 minndir = fs->e2fs_gd[cg].ext2bgd_ndirs; 505 } 506 return (mincg); 507 } 508 /* 509 * Count various limits which used for 510 * optimal allocation of a directory inode. 511 */ 512 maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg); 513 minifree = avgifree - avgifree / 4; 514 if (minifree < 1) 515 minifree = 1; 516 minbfree = avgbfree - avgbfree / 4; 517 if (minbfree < 1) 518 minbfree = 1; 519 cgsize = fs->e2fs_fsize * fs->e2fs_fpg; 520 dirsize = AVGDIRSIZE; 521 curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0; 522 if (dirsize < curdirsize) 523 dirsize = curdirsize; 524 maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255); 525 maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR); 526 if (maxcontigdirs == 0) 527 maxcontigdirs = 1; 528 529 /* 530 * Limit number of dirs in one cg and reserve space for 531 * regular files, but only if we have no deficit in 532 * inodes or space. 533 */ 534 prefcg = ino_to_cg(fs, pip->i_number); 535 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 536 if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir && 537 fs->e2fs_gd[cg].ext2bgd_nifree >= minifree && 538 fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) { 539 if (fs->e2fs_contigdirs[cg] < maxcontigdirs) 540 return (cg); 541 } 542 for (cg = 0; cg < prefcg; cg++) 543 if (fs->e2fs_gd[cg].ext2bgd_ndirs < maxndir && 544 fs->e2fs_gd[cg].ext2bgd_nifree >= minifree && 545 fs->e2fs_gd[cg].ext2bgd_nbfree >= minbfree) { 546 if (fs->e2fs_contigdirs[cg] < maxcontigdirs) 547 return (cg); 548 } 549 /* 550 * This is a backstop when we have deficit in space. 551 */ 552 for (cg = prefcg; cg < fs->e2fs_gcount; cg++) 553 if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree) 554 return (cg); 555 for (cg = 0; cg < prefcg; cg++) 556 if (fs->e2fs_gd[cg].ext2bgd_nifree >= avgifree) 557 break; 558 return (cg); 559 } 560 561 /* 562 * Select the desired position for the next block in a file. 563 * 564 * we try to mimic what Remy does in inode_getblk/block_getblk 565 * 566 * we note: blocknr == 0 means that we're about to allocate either 567 * a direct block or a pointer block at the first level of indirection 568 * (In other words, stuff that will go in i_db[] or i_ib[]) 569 * 570 * blocknr != 0 means that we're allocating a block that is none 571 * of the above. Then, blocknr tells us the number of the block 572 * that will hold the pointer 573 */ 574 e4fs_daddr_t 575 ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap, 576 e2fs_daddr_t blocknr) 577 { 578 int tmp; 579 580 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); 581 582 /* 583 * If the next block is actually what we thought it is, then set the 584 * goal to what we thought it should be. 585 */ 586 if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0) 587 return ip->i_next_alloc_goal; 588 589 /* 590 * Now check whether we were provided with an array that basically 591 * tells us previous blocks to which we want to stay close. 592 */ 593 if (bap) 594 for (tmp = indx - 1; tmp >= 0; tmp--) 595 if (bap[tmp]) 596 return bap[tmp]; 597 598 /* 599 * Else lets fall back to the blocknr or, if there is none, follow 600 * the rule that a block should be allocated near its inode. 601 */ 602 return blocknr ? blocknr : 603 (e2fs_daddr_t)(ip->i_block_group * 604 EXT2_BLOCKS_PER_GROUP(ip->i_e2fs)) + 605 ip->i_e2fs->e2fs->e2fs_first_dblock; 606 } 607 608 /* 609 * Implement the cylinder overflow algorithm. 610 * 611 * The policy implemented by this algorithm is: 612 * 1) allocate the block in its requested cylinder group. 613 * 2) quadradically rehash on the cylinder group number. 614 * 3) brute force search for a free block. 615 */ 616 static u_long 617 ext2_hashalloc(struct inode *ip, int cg, long pref, int size, 618 daddr_t (*allocator) (struct inode *, int, daddr_t, int)) 619 { 620 struct m_ext2fs *fs; 621 ino_t result; 622 int i, icg = cg; 623 624 mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED); 625 fs = ip->i_e2fs; 626 /* 627 * 1: preferred cylinder group 628 */ 629 result = (*allocator)(ip, cg, pref, size); 630 if (result) 631 return (result); 632 /* 633 * 2: quadratic rehash 634 */ 635 for (i = 1; i < fs->e2fs_gcount; i *= 2) { 636 cg += i; 637 if (cg >= fs->e2fs_gcount) 638 cg -= fs->e2fs_gcount; 639 result = (*allocator)(ip, cg, 0, size); 640 if (result) 641 return (result); 642 } 643 /* 644 * 3: brute force search 645 * Note that we start at i == 2, since 0 was checked initially, 646 * and 1 is always checked in the quadratic rehash. 647 */ 648 cg = (icg + 2) % fs->e2fs_gcount; 649 for (i = 2; i < fs->e2fs_gcount; i++) { 650 result = (*allocator)(ip, cg, 0, size); 651 if (result) 652 return (result); 653 cg++; 654 if (cg == fs->e2fs_gcount) 655 cg = 0; 656 } 657 return (0); 658 } 659 660 static unsigned long 661 ext2_cg_num_gdb(struct m_ext2fs *fs, int cg) 662 { 663 int gd_per_block, metagroup, first, last; 664 665 gd_per_block = fs->e2fs_bsize / sizeof(struct ext2_gd); 666 metagroup = cg / gd_per_block; 667 first = metagroup * gd_per_block; 668 last = first + gd_per_block - 1; 669 670 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) || 671 metagroup < fs->e2fs->e3fs_first_meta_bg) { 672 if (!ext2_cg_has_sb(fs, cg)) 673 return (0); 674 if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG)) 675 return (fs->e2fs->e3fs_first_meta_bg); 676 return (fs->e2fs_gdbcount); 677 } 678 679 if (cg == first || cg == first + 1 || cg == last) 680 return (1); 681 return (0); 682 683 } 684 685 static int 686 ext2_num_base_meta_blocks(struct m_ext2fs *fs, int cg) 687 { 688 int num, gd_per_block; 689 690 gd_per_block = fs->e2fs_bsize / sizeof(struct ext2_gd); 691 num = ext2_cg_has_sb(fs, cg); 692 693 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) || 694 cg < fs->e2fs->e3fs_first_meta_bg * gd_per_block) { 695 if (num) { 696 num += ext2_cg_num_gdb(fs, cg); 697 num += fs->e2fs->e2fs_reserved_ngdb; 698 } 699 } else { 700 num += ext2_cg_num_gdb(fs, cg); 701 } 702 703 return (num); 704 } 705 706 static int 707 ext2_get_cg_number(struct m_ext2fs *fs, daddr_t blk) 708 { 709 int cg; 710 711 if (fs->e2fs->e2fs_bpg == fs->e2fs_bsize * 8) 712 cg = (blk - fs->e2fs->e2fs_first_dblock) / (fs->e2fs_bsize * 8); 713 else 714 cg = blk - fs->e2fs->e2fs_first_dblock; 715 716 return (cg); 717 } 718 719 static void 720 ext2_mark_bitmap_end(int start_bit, int end_bit, char *bitmap) 721 { 722 int i; 723 724 if (start_bit >= end_bit) 725 return; 726 727 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) 728 setbit(bitmap, i); 729 if (i < end_bit) 730 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); 731 } 732 733 static int 734 ext2_cg_block_bitmap_init(struct m_ext2fs *fs, int cg, struct buf *bp) 735 { 736 int bit, bit_max, inodes_per_block; 737 uint32_t start, tmp; 738 739 if (!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) || 740 !(fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_BLOCK_UNINIT)) 741 return (0); 742 743 memset(bp->b_data, 0, fs->e2fs_bsize); 744 745 bit_max = ext2_num_base_meta_blocks(fs, cg); 746 if ((bit_max >> 3) >= fs->e2fs_bsize) 747 return (EINVAL); 748 749 for (bit = 0; bit < bit_max; bit++) 750 setbit(bp->b_data, bit); 751 752 start = cg * fs->e2fs->e2fs_bpg + fs->e2fs->e2fs_first_dblock; 753 754 /* Set bits for block and inode bitmaps, and inode table */ 755 tmp = fs->e2fs_gd[cg].ext2bgd_b_bitmap; 756 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || 757 tmp == ext2_get_cg_number(fs, cg)) 758 setbit(bp->b_data, tmp - start); 759 760 tmp = fs->e2fs_gd[cg].ext2bgd_i_bitmap; 761 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || 762 tmp == ext2_get_cg_number(fs, cg)) 763 setbit(bp->b_data, tmp - start); 764 765 tmp = fs->e2fs_gd[cg].ext2bgd_i_tables; 766 inodes_per_block = fs->e2fs_bsize/EXT2_INODE_SIZE(fs); 767 while( tmp < fs->e2fs_gd[cg].ext2bgd_i_tables + 768 fs->e2fs->e2fs_ipg / inodes_per_block ) { 769 if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) || 770 tmp == ext2_get_cg_number(fs, cg)) 771 setbit(bp->b_data, tmp - start); 772 tmp++; 773 } 774 775 /* 776 * Also if the number of blocks within the group is less than 777 * the blocksize * 8 ( which is the size of bitmap ), set rest 778 * of the block bitmap to 1 779 */ 780 ext2_mark_bitmap_end(fs->e2fs->e2fs_bpg, fs->e2fs_bsize * 8, 781 bp->b_data); 782 783 /* Clean the flag */ 784 fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_BLOCK_UNINIT; 785 786 return (0); 787 } 788 789 /* 790 * Determine whether a block can be allocated. 791 * 792 * Check to see if a block of the appropriate size is available, 793 * and if it is, allocate it. 794 */ 795 static daddr_t 796 ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size) 797 { 798 struct m_ext2fs *fs; 799 struct buf *bp; 800 struct ext2mount *ump; 801 daddr_t bno, runstart, runlen; 802 int bit, loc, end, error, start; 803 char *bbp; 804 /* XXX ondisk32 */ 805 fs = ip->i_e2fs; 806 ump = ip->i_ump; 807 if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) 808 return (0); 809 EXT2_UNLOCK(ump); 810 error = bread(ip->i_devvp, fsbtodb(fs, 811 fs->e2fs_gd[cg].ext2bgd_b_bitmap), 812 (int)fs->e2fs_bsize, NOCRED, &bp); 813 if (error) { 814 brelse(bp); 815 EXT2_LOCK(ump); 816 return (0); 817 } 818 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM)) { 819 error = ext2_cg_block_bitmap_init(fs, cg, bp); 820 if (error) { 821 brelse(bp); 822 EXT2_LOCK(ump); 823 return (0); 824 } 825 } 826 if (fs->e2fs_gd[cg].ext2bgd_nbfree == 0) { 827 /* 828 * Another thread allocated the last block in this 829 * group while we were waiting for the buffer. 830 */ 831 brelse(bp); 832 EXT2_LOCK(ump); 833 return (0); 834 } 835 bbp = (char *)bp->b_data; 836 837 if (dtog(fs, bpref) != cg) 838 bpref = 0; 839 if (bpref != 0) { 840 bpref = dtogd(fs, bpref); 841 /* 842 * if the requested block is available, use it 843 */ 844 if (isclr(bbp, bpref)) { 845 bno = bpref; 846 goto gotit; 847 } 848 } 849 /* 850 * no blocks in the requested cylinder, so take next 851 * available one in this cylinder group. 852 * first try to get 8 contigous blocks, then fall back to a single 853 * block. 854 */ 855 if (bpref) 856 start = dtogd(fs, bpref) / NBBY; 857 else 858 start = 0; 859 end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; 860 retry: 861 runlen = 0; 862 runstart = 0; 863 for (loc = start; loc < end; loc++) { 864 if (bbp[loc] == (char)0xff) { 865 runlen = 0; 866 continue; 867 } 868 869 /* Start of a run, find the number of high clear bits. */ 870 if (runlen == 0) { 871 bit = fls(bbp[loc]); 872 runlen = NBBY - bit; 873 runstart = loc * NBBY + bit; 874 } else if (bbp[loc] == 0) { 875 /* Continue a run. */ 876 runlen += NBBY; 877 } else { 878 /* 879 * Finish the current run. If it isn't long 880 * enough, start a new one. 881 */ 882 bit = ffs(bbp[loc]) - 1; 883 runlen += bit; 884 if (runlen >= 8) { 885 bno = runstart; 886 goto gotit; 887 } 888 889 /* Run was too short, start a new one. */ 890 bit = fls(bbp[loc]); 891 runlen = NBBY - bit; 892 runstart = loc * NBBY + bit; 893 } 894 895 /* If the current run is long enough, use it. */ 896 if (runlen >= 8) { 897 bno = runstart; 898 goto gotit; 899 } 900 } 901 if (start != 0) { 902 end = start; 903 start = 0; 904 goto retry; 905 } 906 bno = ext2_mapsearch(fs, bbp, bpref); 907 if (bno < 0) { 908 brelse(bp); 909 EXT2_LOCK(ump); 910 return (0); 911 } 912 gotit: 913 #ifdef INVARIANTS 914 if (isset(bbp, bno)) { 915 printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n", 916 cg, (intmax_t)bno, fs->e2fs_fsmnt); 917 panic("ext2fs_alloccg: dup alloc"); 918 } 919 #endif 920 setbit(bbp, bno); 921 EXT2_LOCK(ump); 922 ext2_clusteracct(fs, bbp, cg, bno, -1); 923 fs->e2fs->e2fs_fbcount--; 924 fs->e2fs_gd[cg].ext2bgd_nbfree--; 925 fs->e2fs_fmod = 1; 926 EXT2_UNLOCK(ump); 927 bdwrite(bp); 928 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); 929 } 930 931 /* 932 * Determine whether a cluster can be allocated. 933 */ 934 static daddr_t 935 ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len) 936 { 937 struct m_ext2fs *fs; 938 struct ext2mount *ump; 939 struct buf *bp; 940 char *bbp; 941 int bit, error, got, i, loc, run; 942 int32_t *lp; 943 daddr_t bno; 944 945 fs = ip->i_e2fs; 946 ump = ip->i_ump; 947 948 if (fs->e2fs_maxcluster[cg] < len) 949 return (0); 950 951 EXT2_UNLOCK(ump); 952 error = bread(ip->i_devvp, 953 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap), 954 (int)fs->e2fs_bsize, NOCRED, &bp); 955 if (error) 956 goto fail_lock; 957 958 bbp = (char *)bp->b_data; 959 EXT2_LOCK(ump); 960 /* 961 * Check to see if a cluster of the needed size (or bigger) is 962 * available in this cylinder group. 963 */ 964 lp = &fs->e2fs_clustersum[cg].cs_sum[len]; 965 for (i = len; i <= fs->e2fs_contigsumsize; i++) 966 if (*lp++ > 0) 967 break; 968 if (i > fs->e2fs_contigsumsize) { 969 /* 970 * Update the cluster summary information to reflect 971 * the true maximum-sized cluster so that future cluster 972 * allocation requests can avoid reading the bitmap only 973 * to find no cluster. 974 */ 975 lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1]; 976 for (i = len - 1; i > 0; i--) 977 if (*lp-- > 0) 978 break; 979 fs->e2fs_maxcluster[cg] = i; 980 goto fail; 981 } 982 EXT2_UNLOCK(ump); 983 984 /* Search the bitmap to find a big enough cluster like in FFS. */ 985 if (dtog(fs, bpref) != cg) 986 bpref = 0; 987 if (bpref != 0) 988 bpref = dtogd(fs, bpref); 989 loc = bpref / NBBY; 990 bit = 1 << (bpref % NBBY); 991 for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) { 992 if ((bbp[loc] & bit) != 0) 993 run = 0; 994 else { 995 run++; 996 if (run == len) 997 break; 998 } 999 if ((got & (NBBY - 1)) != (NBBY - 1)) 1000 bit <<= 1; 1001 else { 1002 loc++; 1003 bit = 1; 1004 } 1005 } 1006 1007 if (got >= fs->e2fs->e2fs_fpg) 1008 goto fail_lock; 1009 1010 /* Allocate the cluster that we found. */ 1011 for (i = 1; i < len; i++) 1012 if (!isclr(bbp, got - run + i)) 1013 panic("ext2_clusteralloc: map mismatch"); 1014 1015 bno = got - run + 1; 1016 if (bno >= fs->e2fs->e2fs_fpg) 1017 panic("ext2_clusteralloc: allocated out of group"); 1018 1019 EXT2_LOCK(ump); 1020 for (i = 0; i < len; i += fs->e2fs_fpb) { 1021 setbit(bbp, bno + i); 1022 ext2_clusteracct(fs, bbp, cg, bno + i, -1); 1023 fs->e2fs->e2fs_fbcount--; 1024 fs->e2fs_gd[cg].ext2bgd_nbfree--; 1025 } 1026 fs->e2fs_fmod = 1; 1027 EXT2_UNLOCK(ump); 1028 1029 bdwrite(bp); 1030 return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno); 1031 1032 fail_lock: 1033 EXT2_LOCK(ump); 1034 fail: 1035 brelse(bp); 1036 return (0); 1037 } 1038 1039 static int 1040 ext2_zero_inode_table(struct inode *ip, int cg) 1041 { 1042 struct m_ext2fs *fs; 1043 struct buf *bp; 1044 int i, all_blks, used_blks; 1045 1046 fs = ip->i_e2fs; 1047 1048 if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_ZEROED) 1049 return (0); 1050 1051 all_blks = fs->e2fs->e2fs_inode_size * fs->e2fs->e2fs_ipg / 1052 fs->e2fs_bsize; 1053 1054 used_blks = howmany(fs->e2fs->e2fs_ipg - 1055 fs->e2fs_gd[cg].ext4bgd_i_unused, 1056 fs->e2fs_bsize / EXT2_INODE_SIZE(fs)); 1057 1058 for (i = 0; i < all_blks - used_blks; i++) { 1059 bp = getblk(ip->i_devvp, fsbtodb(fs, 1060 fs->e2fs_gd[cg].ext2bgd_i_tables + used_blks + i), 1061 fs->e2fs_bsize, 0, 0, 0); 1062 if (!bp) 1063 return (EIO); 1064 1065 vfs_bio_bzero_buf(bp, 0, fs->e2fs_bsize); 1066 bawrite(bp); 1067 } 1068 1069 fs->e2fs_gd[cg].ext4bgd_flags |= EXT2_BG_INODE_ZEROED; 1070 1071 return (0); 1072 } 1073 1074 /* 1075 * Determine whether an inode can be allocated. 1076 * 1077 * Check to see if an inode is available, and if it is, 1078 * allocate it using tode in the specified cylinder group. 1079 */ 1080 static daddr_t 1081 ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode) 1082 { 1083 struct m_ext2fs *fs; 1084 struct buf *bp; 1085 struct ext2mount *ump; 1086 int error, start, len; 1087 char *ibp, *loc; 1088 1089 ipref--; /* to avoid a lot of (ipref -1) */ 1090 if (ipref == -1) 1091 ipref = 0; 1092 fs = ip->i_e2fs; 1093 ump = ip->i_ump; 1094 if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) 1095 return (0); 1096 EXT2_UNLOCK(ump); 1097 error = bread(ip->i_devvp, fsbtodb(fs, 1098 fs->e2fs_gd[cg].ext2bgd_i_bitmap), 1099 (int)fs->e2fs_bsize, NOCRED, &bp); 1100 if (error) { 1101 brelse(bp); 1102 EXT2_LOCK(ump); 1103 return (0); 1104 } 1105 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM)) { 1106 if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_UNINIT) { 1107 memset(bp->b_data, 0, fs->e2fs_bsize); 1108 fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_INODE_UNINIT; 1109 } 1110 error = ext2_zero_inode_table(ip, cg); 1111 if (error) { 1112 brelse(bp); 1113 EXT2_LOCK(ump); 1114 return (0); 1115 } 1116 } 1117 if (fs->e2fs_gd[cg].ext2bgd_nifree == 0) { 1118 /* 1119 * Another thread allocated the last i-node in this 1120 * group while we were waiting for the buffer. 1121 */ 1122 brelse(bp); 1123 EXT2_LOCK(ump); 1124 return (0); 1125 } 1126 ibp = (char *)bp->b_data; 1127 if (ipref) { 1128 ipref %= fs->e2fs->e2fs_ipg; 1129 if (isclr(ibp, ipref)) 1130 goto gotit; 1131 } 1132 start = ipref / NBBY; 1133 len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY); 1134 loc = memcchr(&ibp[start], 0xff, len); 1135 if (loc == NULL) { 1136 len = start + 1; 1137 start = 0; 1138 loc = memcchr(&ibp[start], 0xff, len); 1139 if (loc == NULL) { 1140 printf("cg = %d, ipref = %lld, fs = %s\n", 1141 cg, (long long)ipref, fs->e2fs_fsmnt); 1142 panic("ext2fs_nodealloccg: map corrupted"); 1143 /* NOTREACHED */ 1144 } 1145 } 1146 ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1; 1147 gotit: 1148 setbit(ibp, ipref); 1149 EXT2_LOCK(ump); 1150 fs->e2fs_gd[cg].ext2bgd_nifree--; 1151 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM)) 1152 fs->e2fs_gd[cg].ext4bgd_i_unused--; 1153 fs->e2fs->e2fs_ficount--; 1154 fs->e2fs_fmod = 1; 1155 if ((mode & IFMT) == IFDIR) { 1156 fs->e2fs_gd[cg].ext2bgd_ndirs++; 1157 fs->e2fs_total_dir++; 1158 } 1159 EXT2_UNLOCK(ump); 1160 bdwrite(bp); 1161 return (cg * fs->e2fs->e2fs_ipg + ipref + 1); 1162 } 1163 1164 /* 1165 * Free a block or fragment. 1166 * 1167 */ 1168 void 1169 ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size) 1170 { 1171 struct m_ext2fs *fs; 1172 struct buf *bp; 1173 struct ext2mount *ump; 1174 int cg, error; 1175 char *bbp; 1176 1177 fs = ip->i_e2fs; 1178 ump = ip->i_ump; 1179 cg = dtog(fs, bno); 1180 if ((u_int)bno >= fs->e2fs->e2fs_bcount) { 1181 printf("bad block %lld, ino %ju\n", (long long)bno, 1182 (uintmax_t)ip->i_number); 1183 ext2_fserr(fs, ip->i_uid, "bad block"); 1184 return; 1185 } 1186 error = bread(ip->i_devvp, 1187 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_b_bitmap), 1188 (int)fs->e2fs_bsize, NOCRED, &bp); 1189 if (error) { 1190 brelse(bp); 1191 return; 1192 } 1193 bbp = (char *)bp->b_data; 1194 bno = dtogd(fs, bno); 1195 if (isclr(bbp, bno)) { 1196 printf("block = %lld, fs = %s\n", 1197 (long long)bno, fs->e2fs_fsmnt); 1198 panic("ext2_blkfree: freeing free block"); 1199 } 1200 clrbit(bbp, bno); 1201 EXT2_LOCK(ump); 1202 ext2_clusteracct(fs, bbp, cg, bno, 1); 1203 fs->e2fs->e2fs_fbcount++; 1204 fs->e2fs_gd[cg].ext2bgd_nbfree++; 1205 fs->e2fs_fmod = 1; 1206 EXT2_UNLOCK(ump); 1207 bdwrite(bp); 1208 } 1209 1210 /* 1211 * Free an inode. 1212 * 1213 */ 1214 int 1215 ext2_vfree(struct vnode *pvp, ino_t ino, int mode) 1216 { 1217 struct m_ext2fs *fs; 1218 struct inode *pip; 1219 struct buf *bp; 1220 struct ext2mount *ump; 1221 int error, cg; 1222 char *ibp; 1223 1224 pip = VTOI(pvp); 1225 fs = pip->i_e2fs; 1226 ump = pip->i_ump; 1227 if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount) 1228 panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s", 1229 pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt); 1230 1231 cg = ino_to_cg(fs, ino); 1232 error = bread(pip->i_devvp, 1233 fsbtodb(fs, fs->e2fs_gd[cg].ext2bgd_i_bitmap), 1234 (int)fs->e2fs_bsize, NOCRED, &bp); 1235 if (error) { 1236 brelse(bp); 1237 return (0); 1238 } 1239 ibp = (char *)bp->b_data; 1240 ino = (ino - 1) % fs->e2fs->e2fs_ipg; 1241 if (isclr(ibp, ino)) { 1242 printf("ino = %llu, fs = %s\n", 1243 (unsigned long long)ino, fs->e2fs_fsmnt); 1244 if (fs->e2fs_ronly == 0) 1245 panic("ext2_vfree: freeing free inode"); 1246 } 1247 clrbit(ibp, ino); 1248 EXT2_LOCK(ump); 1249 fs->e2fs->e2fs_ficount++; 1250 fs->e2fs_gd[cg].ext2bgd_nifree++; 1251 if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM)) 1252 fs->e2fs_gd[cg].ext4bgd_i_unused++; 1253 if ((mode & IFMT) == IFDIR) { 1254 fs->e2fs_gd[cg].ext2bgd_ndirs--; 1255 fs->e2fs_total_dir--; 1256 } 1257 fs->e2fs_fmod = 1; 1258 EXT2_UNLOCK(ump); 1259 bdwrite(bp); 1260 return (0); 1261 } 1262 1263 /* 1264 * Find a block in the specified cylinder group. 1265 * 1266 * It is a panic if a request is made to find a block if none are 1267 * available. 1268 */ 1269 static daddr_t 1270 ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref) 1271 { 1272 char *loc; 1273 int start, len; 1274 1275 /* 1276 * find the fragment by searching through the free block 1277 * map for an appropriate bit pattern 1278 */ 1279 if (bpref) 1280 start = dtogd(fs, bpref) / NBBY; 1281 else 1282 start = 0; 1283 len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start; 1284 loc = memcchr(&bbp[start], 0xff, len); 1285 if (loc == NULL) { 1286 len = start + 1; 1287 start = 0; 1288 loc = memcchr(&bbp[start], 0xff, len); 1289 if (loc == NULL) { 1290 printf("start = %d, len = %d, fs = %s\n", 1291 start, len, fs->e2fs_fsmnt); 1292 panic("ext2_mapsearch: map corrupted"); 1293 /* NOTREACHED */ 1294 } 1295 } 1296 return ((loc - bbp) * NBBY + ffs(~*loc) - 1); 1297 } 1298 1299 /* 1300 * Fserr prints the name of a filesystem with an error diagnostic. 1301 * 1302 * The form of the error message is: 1303 * fs: error message 1304 */ 1305 void 1306 ext2_fserr(struct m_ext2fs *fs, uid_t uid, char *cp) 1307 { 1308 1309 log(LOG_ERR, "uid %u on %s: %s\n", uid, fs->e2fs_fsmnt, cp); 1310 } 1311 1312 int 1313 ext2_cg_has_sb(struct m_ext2fs *fs, int cg) 1314 { 1315 int a3, a5, a7; 1316 1317 if (cg == 0) 1318 return (1); 1319 1320 if (EXT2_HAS_COMPAT_FEATURE(fs, EXT2F_COMPAT_SPARSESUPER2)) { 1321 if (cg == fs->e2fs->e4fs_backup_bgs[0] || 1322 cg == fs->e2fs->e4fs_backup_bgs[1]) 1323 return (1); 1324 return (0); 1325 } 1326 1327 if ((cg <= 1) || 1328 !EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_SPARSESUPER)) 1329 return (1); 1330 1331 if (!(cg & 1)) 1332 return (0); 1333 1334 for (a3 = 3, a5 = 5, a7 = 7; 1335 a3 <= cg || a5 <= cg || a7 <= cg; 1336 a3 *= 3, a5 *= 5, a7 *= 7) 1337 if (cg == a3 || cg == a5 || cg == a7) 1338 return (1); 1339 return (0); 1340 } 1341