1 /*- 2 * Copyright (c) 2004-2006 Kip Macy 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/sockio.h> 36 #include <sys/limits.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/kernel.h> 41 #include <sys/socket.h> 42 #include <sys/sysctl.h> 43 #include <sys/queue.h> 44 #include <sys/lock.h> 45 #include <sys/sx.h> 46 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_arp.h> 50 #include <net/ethernet.h> 51 #include <net/if_dl.h> 52 #include <net/if_media.h> 53 54 #include <net/bpf.h> 55 56 #include <net/if_types.h> 57 58 #include <netinet/in_systm.h> 59 #include <netinet/in.h> 60 #include <netinet/ip.h> 61 #include <netinet/if_ether.h> 62 #if __FreeBSD_version >= 700000 63 #include <netinet/tcp.h> 64 #include <netinet/tcp_lro.h> 65 #endif 66 67 #include <vm/vm.h> 68 #include <vm/pmap.h> 69 70 #include <machine/clock.h> /* for DELAY */ 71 #include <machine/bus.h> 72 #include <machine/resource.h> 73 #include <machine/frame.h> 74 #include <machine/vmparam.h> 75 76 #include <sys/bus.h> 77 #include <sys/rman.h> 78 79 #include <machine/intr_machdep.h> 80 81 #include <xen/xen-os.h> 82 #include <xen/hypervisor.h> 83 #include <xen/xen_intr.h> 84 #include <xen/gnttab.h> 85 #include <xen/interface/memory.h> 86 #include <xen/interface/io/netif.h> 87 #include <xen/xenbus/xenbusvar.h> 88 89 #include <machine/xen/xenvar.h> 90 91 #include "xenbus_if.h" 92 93 /* Features supported by all backends. TSO and LRO can be negotiated */ 94 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 95 96 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 97 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 98 99 #if __FreeBSD_version >= 700000 100 /* 101 * Should the driver do LRO on the RX end 102 * this can be toggled on the fly, but the 103 * interface must be reset (down/up) for it 104 * to take effect. 105 */ 106 static int xn_enable_lro = 1; 107 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 108 #else 109 110 #define IFCAP_TSO4 0 111 #define CSUM_TSO 0 112 113 #endif 114 115 #ifdef CONFIG_XEN 116 static int MODPARM_rx_copy = 0; 117 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0); 118 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)"); 119 static int MODPARM_rx_flip = 0; 120 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0); 121 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)"); 122 #else 123 static const int MODPARM_rx_copy = 1; 124 static const int MODPARM_rx_flip = 0; 125 #endif 126 127 /** 128 * \brief The maximum allowed data fragments in a single transmit 129 * request. 130 * 131 * This limit is imposed by the backend driver. We assume here that 132 * we are dealing with a Linux driver domain and have set our limit 133 * to mirror the Linux MAX_SKB_FRAGS constant. 134 */ 135 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 136 137 #define RX_COPY_THRESHOLD 256 138 139 #define net_ratelimit() 0 140 141 struct netfront_info; 142 struct netfront_rx_info; 143 144 static void xn_txeof(struct netfront_info *); 145 static void xn_rxeof(struct netfront_info *); 146 static void network_alloc_rx_buffers(struct netfront_info *); 147 148 static void xn_tick_locked(struct netfront_info *); 149 static void xn_tick(void *); 150 151 static void xn_intr(void *); 152 static inline int xn_count_frags(struct mbuf *m); 153 static int xn_assemble_tx_request(struct netfront_info *sc, 154 struct mbuf *m_head); 155 static void xn_start_locked(struct ifnet *); 156 static void xn_start(struct ifnet *); 157 static int xn_ioctl(struct ifnet *, u_long, caddr_t); 158 static void xn_ifinit_locked(struct netfront_info *); 159 static void xn_ifinit(void *); 160 static void xn_stop(struct netfront_info *); 161 static void xn_query_features(struct netfront_info *np); 162 static int xn_configure_features(struct netfront_info *np); 163 #ifdef notyet 164 static void xn_watchdog(struct ifnet *); 165 #endif 166 167 #ifdef notyet 168 static void netfront_closing(device_t dev); 169 #endif 170 static void netif_free(struct netfront_info *info); 171 static int netfront_detach(device_t dev); 172 173 static int talk_to_backend(device_t dev, struct netfront_info *info); 174 static int create_netdev(device_t dev); 175 static void netif_disconnect_backend(struct netfront_info *info); 176 static int setup_device(device_t dev, struct netfront_info *info); 177 static void free_ring(int *ref, void *ring_ptr_ref); 178 179 static int xn_ifmedia_upd(struct ifnet *ifp); 180 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 181 182 /* Xenolinux helper functions */ 183 int network_connect(struct netfront_info *); 184 185 static void xn_free_rx_ring(struct netfront_info *); 186 187 static void xn_free_tx_ring(struct netfront_info *); 188 189 static int xennet_get_responses(struct netfront_info *np, 190 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 191 struct mbuf **list, int *pages_flipped_p); 192 193 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 194 195 #define INVALID_P2M_ENTRY (~0UL) 196 197 /* 198 * Mbuf pointers. We need these to keep track of the virtual addresses 199 * of our mbuf chains since we can only convert from virtual to physical, 200 * not the other way around. The size must track the free index arrays. 201 */ 202 struct xn_chain_data { 203 struct mbuf *xn_tx_chain[NET_TX_RING_SIZE+1]; 204 int xn_tx_chain_cnt; 205 struct mbuf *xn_rx_chain[NET_RX_RING_SIZE+1]; 206 }; 207 208 struct net_device_stats 209 { 210 u_long rx_packets; /* total packets received */ 211 u_long tx_packets; /* total packets transmitted */ 212 u_long rx_bytes; /* total bytes received */ 213 u_long tx_bytes; /* total bytes transmitted */ 214 u_long rx_errors; /* bad packets received */ 215 u_long tx_errors; /* packet transmit problems */ 216 u_long rx_dropped; /* no space in linux buffers */ 217 u_long tx_dropped; /* no space available in linux */ 218 u_long multicast; /* multicast packets received */ 219 u_long collisions; 220 221 /* detailed rx_errors: */ 222 u_long rx_length_errors; 223 u_long rx_over_errors; /* receiver ring buff overflow */ 224 u_long rx_crc_errors; /* recved pkt with crc error */ 225 u_long rx_frame_errors; /* recv'd frame alignment error */ 226 u_long rx_fifo_errors; /* recv'r fifo overrun */ 227 u_long rx_missed_errors; /* receiver missed packet */ 228 229 /* detailed tx_errors */ 230 u_long tx_aborted_errors; 231 u_long tx_carrier_errors; 232 u_long tx_fifo_errors; 233 u_long tx_heartbeat_errors; 234 u_long tx_window_errors; 235 236 /* for cslip etc */ 237 u_long rx_compressed; 238 u_long tx_compressed; 239 }; 240 241 struct netfront_info { 242 struct ifnet *xn_ifp; 243 #if __FreeBSD_version >= 700000 244 struct lro_ctrl xn_lro; 245 #endif 246 247 struct net_device_stats stats; 248 u_int tx_full; 249 250 netif_tx_front_ring_t tx; 251 netif_rx_front_ring_t rx; 252 253 struct mtx tx_lock; 254 struct mtx rx_lock; 255 struct mtx sc_lock; 256 257 xen_intr_handle_t xen_intr_handle; 258 u_int copying_receiver; 259 u_int carrier; 260 u_int maxfrags; 261 262 /* Receive-ring batched refills. */ 263 #define RX_MIN_TARGET 32 264 #define RX_MAX_TARGET NET_RX_RING_SIZE 265 int rx_min_target; 266 int rx_max_target; 267 int rx_target; 268 269 grant_ref_t gref_tx_head; 270 grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1]; 271 grant_ref_t gref_rx_head; 272 grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1]; 273 274 device_t xbdev; 275 int tx_ring_ref; 276 int rx_ring_ref; 277 uint8_t mac[ETHER_ADDR_LEN]; 278 struct xn_chain_data xn_cdata; /* mbufs */ 279 struct mbufq xn_rx_batch; /* batch queue */ 280 281 int xn_if_flags; 282 struct callout xn_stat_ch; 283 284 u_long rx_pfn_array[NET_RX_RING_SIZE]; 285 multicall_entry_t rx_mcl[NET_RX_RING_SIZE+1]; 286 mmu_update_t rx_mmu[NET_RX_RING_SIZE]; 287 struct ifmedia sc_media; 288 289 bool xn_resume; 290 }; 291 292 #define rx_mbufs xn_cdata.xn_rx_chain 293 #define tx_mbufs xn_cdata.xn_tx_chain 294 295 #define XN_LOCK_INIT(_sc, _name) \ 296 mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \ 297 mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF); \ 298 mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF) 299 300 #define XN_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_lock) 301 #define XN_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_lock) 302 303 #define XN_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_lock) 304 #define XN_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_lock) 305 306 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 307 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 308 309 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 310 #define XN_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_lock, MA_OWNED); 311 #define XN_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_lock, MA_OWNED); 312 #define XN_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_lock); \ 313 mtx_destroy(&(_sc)->tx_lock); \ 314 mtx_destroy(&(_sc)->sc_lock); 315 316 struct netfront_rx_info { 317 struct netif_rx_response rx; 318 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 319 }; 320 321 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 322 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 323 #define netfront_carrier_ok(netif) ((netif)->carrier) 324 325 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 326 327 static inline void 328 add_id_to_freelist(struct mbuf **list, uintptr_t id) 329 { 330 KASSERT(id != 0, 331 ("%s: the head item (0) must always be free.", __func__)); 332 list[id] = list[0]; 333 list[0] = (struct mbuf *)id; 334 } 335 336 static inline unsigned short 337 get_id_from_freelist(struct mbuf **list) 338 { 339 uintptr_t id; 340 341 id = (uintptr_t)list[0]; 342 KASSERT(id != 0, 343 ("%s: the head item (0) must always remain free.", __func__)); 344 list[0] = list[id]; 345 return (id); 346 } 347 348 static inline int 349 xennet_rxidx(RING_IDX idx) 350 { 351 return idx & (NET_RX_RING_SIZE - 1); 352 } 353 354 static inline struct mbuf * 355 xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri) 356 { 357 int i = xennet_rxidx(ri); 358 struct mbuf *m; 359 360 m = np->rx_mbufs[i]; 361 np->rx_mbufs[i] = NULL; 362 return (m); 363 } 364 365 static inline grant_ref_t 366 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri) 367 { 368 int i = xennet_rxidx(ri); 369 grant_ref_t ref = np->grant_rx_ref[i]; 370 KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n")); 371 np->grant_rx_ref[i] = GRANT_REF_INVALID; 372 return ref; 373 } 374 375 #define IPRINTK(fmt, args...) \ 376 printf("[XEN] " fmt, ##args) 377 #ifdef INVARIANTS 378 #define WPRINTK(fmt, args...) \ 379 printf("[XEN] " fmt, ##args) 380 #else 381 #define WPRINTK(fmt, args...) 382 #endif 383 #ifdef DEBUG 384 #define DPRINTK(fmt, args...) \ 385 printf("[XEN] %s: " fmt, __func__, ##args) 386 #else 387 #define DPRINTK(fmt, args...) 388 #endif 389 390 /** 391 * Read the 'mac' node at the given device's node in the store, and parse that 392 * as colon-separated octets, placing result the given mac array. mac must be 393 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 394 * Return 0 on success, or errno on error. 395 */ 396 static int 397 xen_net_read_mac(device_t dev, uint8_t mac[]) 398 { 399 int error, i; 400 char *s, *e, *macstr; 401 const char *path; 402 403 path = xenbus_get_node(dev); 404 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 405 if (error == ENOENT) { 406 /* 407 * Deal with missing mac XenStore nodes on devices with 408 * HVM emulation (the 'ioemu' configuration attribute) 409 * enabled. 410 * 411 * The HVM emulator may execute in a stub device model 412 * domain which lacks the permission, only given to Dom0, 413 * to update the guest's XenStore tree. For this reason, 414 * the HVM emulator doesn't even attempt to write the 415 * front-side mac node, even when operating in Dom0. 416 * However, there should always be a mac listed in the 417 * backend tree. Fallback to this version if our query 418 * of the front side XenStore location doesn't find 419 * anything. 420 */ 421 path = xenbus_get_otherend_path(dev); 422 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 423 } 424 if (error != 0) { 425 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 426 return (error); 427 } 428 429 s = macstr; 430 for (i = 0; i < ETHER_ADDR_LEN; i++) { 431 mac[i] = strtoul(s, &e, 16); 432 if (s == e || (e[0] != ':' && e[0] != 0)) { 433 free(macstr, M_XENBUS); 434 return (ENOENT); 435 } 436 s = &e[1]; 437 } 438 free(macstr, M_XENBUS); 439 return (0); 440 } 441 442 /** 443 * Entry point to this code when a new device is created. Allocate the basic 444 * structures and the ring buffers for communication with the backend, and 445 * inform the backend of the appropriate details for those. Switch to 446 * Connected state. 447 */ 448 static int 449 netfront_probe(device_t dev) 450 { 451 452 if (!strcmp(xenbus_get_type(dev), "vif")) { 453 device_set_desc(dev, "Virtual Network Interface"); 454 return (0); 455 } 456 457 return (ENXIO); 458 } 459 460 static int 461 netfront_attach(device_t dev) 462 { 463 int err; 464 465 err = create_netdev(dev); 466 if (err) { 467 xenbus_dev_fatal(dev, err, "creating netdev"); 468 return (err); 469 } 470 471 #if __FreeBSD_version >= 700000 472 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 473 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 474 OID_AUTO, "enable_lro", CTLFLAG_RW, 475 &xn_enable_lro, 0, "Large Receive Offload"); 476 #endif 477 478 return (0); 479 } 480 481 static int 482 netfront_suspend(device_t dev) 483 { 484 struct netfront_info *info = device_get_softc(dev); 485 486 XN_RX_LOCK(info); 487 XN_TX_LOCK(info); 488 netfront_carrier_off(info); 489 XN_TX_UNLOCK(info); 490 XN_RX_UNLOCK(info); 491 return (0); 492 } 493 494 /** 495 * We are reconnecting to the backend, due to a suspend/resume, or a backend 496 * driver restart. We tear down our netif structure and recreate it, but 497 * leave the device-layer structures intact so that this is transparent to the 498 * rest of the kernel. 499 */ 500 static int 501 netfront_resume(device_t dev) 502 { 503 struct netfront_info *info = device_get_softc(dev); 504 505 info->xn_resume = true; 506 netif_disconnect_backend(info); 507 return (0); 508 } 509 510 /* Common code used when first setting up, and when resuming. */ 511 static int 512 talk_to_backend(device_t dev, struct netfront_info *info) 513 { 514 const char *message; 515 struct xs_transaction xst; 516 const char *node = xenbus_get_node(dev); 517 int err; 518 519 err = xen_net_read_mac(dev, info->mac); 520 if (err) { 521 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 522 goto out; 523 } 524 525 /* Create shared ring, alloc event channel. */ 526 err = setup_device(dev, info); 527 if (err) 528 goto out; 529 530 again: 531 err = xs_transaction_start(&xst); 532 if (err) { 533 xenbus_dev_fatal(dev, err, "starting transaction"); 534 goto destroy_ring; 535 } 536 err = xs_printf(xst, node, "tx-ring-ref","%u", 537 info->tx_ring_ref); 538 if (err) { 539 message = "writing tx ring-ref"; 540 goto abort_transaction; 541 } 542 err = xs_printf(xst, node, "rx-ring-ref","%u", 543 info->rx_ring_ref); 544 if (err) { 545 message = "writing rx ring-ref"; 546 goto abort_transaction; 547 } 548 err = xs_printf(xst, node, 549 "event-channel", "%u", 550 xen_intr_port(info->xen_intr_handle)); 551 if (err) { 552 message = "writing event-channel"; 553 goto abort_transaction; 554 } 555 err = xs_printf(xst, node, "request-rx-copy", "%u", 556 info->copying_receiver); 557 if (err) { 558 message = "writing request-rx-copy"; 559 goto abort_transaction; 560 } 561 err = xs_printf(xst, node, "feature-rx-notify", "%d", 1); 562 if (err) { 563 message = "writing feature-rx-notify"; 564 goto abort_transaction; 565 } 566 err = xs_printf(xst, node, "feature-sg", "%d", 1); 567 if (err) { 568 message = "writing feature-sg"; 569 goto abort_transaction; 570 } 571 #if __FreeBSD_version >= 700000 572 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1); 573 if (err) { 574 message = "writing feature-gso-tcpv4"; 575 goto abort_transaction; 576 } 577 #endif 578 579 err = xs_transaction_end(xst, 0); 580 if (err) { 581 if (err == EAGAIN) 582 goto again; 583 xenbus_dev_fatal(dev, err, "completing transaction"); 584 goto destroy_ring; 585 } 586 587 return 0; 588 589 abort_transaction: 590 xs_transaction_end(xst, 1); 591 xenbus_dev_fatal(dev, err, "%s", message); 592 destroy_ring: 593 netif_free(info); 594 out: 595 return err; 596 } 597 598 static int 599 setup_device(device_t dev, struct netfront_info *info) 600 { 601 netif_tx_sring_t *txs; 602 netif_rx_sring_t *rxs; 603 int error; 604 struct ifnet *ifp; 605 606 ifp = info->xn_ifp; 607 608 info->tx_ring_ref = GRANT_REF_INVALID; 609 info->rx_ring_ref = GRANT_REF_INVALID; 610 info->rx.sring = NULL; 611 info->tx.sring = NULL; 612 613 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 614 if (!txs) { 615 error = ENOMEM; 616 xenbus_dev_fatal(dev, error, "allocating tx ring page"); 617 goto fail; 618 } 619 SHARED_RING_INIT(txs); 620 FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE); 621 error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref); 622 if (error) 623 goto fail; 624 625 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 626 if (!rxs) { 627 error = ENOMEM; 628 xenbus_dev_fatal(dev, error, "allocating rx ring page"); 629 goto fail; 630 } 631 SHARED_RING_INIT(rxs); 632 FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE); 633 634 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref); 635 if (error) 636 goto fail; 637 638 error = xen_intr_alloc_and_bind_local_port(dev, 639 xenbus_get_otherend_id(dev), /*filter*/NULL, xn_intr, info, 640 INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, &info->xen_intr_handle); 641 642 if (error) { 643 xenbus_dev_fatal(dev, error, 644 "xen_intr_alloc_and_bind_local_port failed"); 645 goto fail; 646 } 647 648 return (0); 649 650 fail: 651 netif_free(info); 652 return (error); 653 } 654 655 #ifdef INET 656 /** 657 * If this interface has an ipv4 address, send an arp for it. This 658 * helps to get the network going again after migrating hosts. 659 */ 660 static void 661 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 662 { 663 struct ifnet *ifp; 664 struct ifaddr *ifa; 665 666 ifp = info->xn_ifp; 667 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 668 if (ifa->ifa_addr->sa_family == AF_INET) { 669 arp_ifinit(ifp, ifa); 670 } 671 } 672 } 673 #endif 674 675 /** 676 * Callback received when the backend's state changes. 677 */ 678 static void 679 netfront_backend_changed(device_t dev, XenbusState newstate) 680 { 681 struct netfront_info *sc = device_get_softc(dev); 682 683 DPRINTK("newstate=%d\n", newstate); 684 685 switch (newstate) { 686 case XenbusStateInitialising: 687 case XenbusStateInitialised: 688 case XenbusStateUnknown: 689 case XenbusStateClosed: 690 case XenbusStateReconfigured: 691 case XenbusStateReconfiguring: 692 break; 693 case XenbusStateInitWait: 694 if (xenbus_get_state(dev) != XenbusStateInitialising) 695 break; 696 if (network_connect(sc) != 0) 697 break; 698 xenbus_set_state(dev, XenbusStateConnected); 699 break; 700 case XenbusStateClosing: 701 xenbus_set_state(dev, XenbusStateClosed); 702 break; 703 case XenbusStateConnected: 704 #ifdef INET 705 netfront_send_fake_arp(dev, sc); 706 #endif 707 break; 708 } 709 } 710 711 static void 712 xn_free_rx_ring(struct netfront_info *sc) 713 { 714 #if 0 715 int i; 716 717 for (i = 0; i < NET_RX_RING_SIZE; i++) { 718 if (sc->xn_cdata.rx_mbufs[i] != NULL) { 719 m_freem(sc->rx_mbufs[i]); 720 sc->rx_mbufs[i] = NULL; 721 } 722 } 723 724 sc->rx.rsp_cons = 0; 725 sc->xn_rx_if->req_prod = 0; 726 sc->xn_rx_if->event = sc->rx.rsp_cons ; 727 #endif 728 } 729 730 static void 731 xn_free_tx_ring(struct netfront_info *sc) 732 { 733 #if 0 734 int i; 735 736 for (i = 0; i < NET_TX_RING_SIZE; i++) { 737 if (sc->tx_mbufs[i] != NULL) { 738 m_freem(sc->tx_mbufs[i]); 739 sc->xn_cdata.xn_tx_chain[i] = NULL; 740 } 741 } 742 743 return; 744 #endif 745 } 746 747 /** 748 * \brief Verify that there is sufficient space in the Tx ring 749 * buffer for a maximally sized request to be enqueued. 750 * 751 * A transmit request requires a transmit descriptor for each packet 752 * fragment, plus up to 2 entries for "options" (e.g. TSO). 753 */ 754 static inline int 755 xn_tx_slot_available(struct netfront_info *np) 756 { 757 return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2)); 758 } 759 760 static void 761 netif_release_tx_bufs(struct netfront_info *np) 762 { 763 int i; 764 765 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 766 struct mbuf *m; 767 768 m = np->tx_mbufs[i]; 769 770 /* 771 * We assume that no kernel addresses are 772 * less than NET_TX_RING_SIZE. Any entry 773 * in the table that is below this number 774 * must be an index from free-list tracking. 775 */ 776 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 777 continue; 778 gnttab_end_foreign_access_ref(np->grant_tx_ref[i]); 779 gnttab_release_grant_reference(&np->gref_tx_head, 780 np->grant_tx_ref[i]); 781 np->grant_tx_ref[i] = GRANT_REF_INVALID; 782 add_id_to_freelist(np->tx_mbufs, i); 783 np->xn_cdata.xn_tx_chain_cnt--; 784 if (np->xn_cdata.xn_tx_chain_cnt < 0) { 785 panic("%s: tx_chain_cnt must be >= 0", __func__); 786 } 787 m_free(m); 788 } 789 } 790 791 static void 792 network_alloc_rx_buffers(struct netfront_info *sc) 793 { 794 int otherend_id = xenbus_get_otherend_id(sc->xbdev); 795 unsigned short id; 796 struct mbuf *m_new; 797 int i, batch_target, notify; 798 RING_IDX req_prod; 799 struct xen_memory_reservation reservation; 800 grant_ref_t ref; 801 int nr_flips; 802 netif_rx_request_t *req; 803 vm_offset_t vaddr; 804 u_long pfn; 805 806 req_prod = sc->rx.req_prod_pvt; 807 808 if (__predict_false(sc->carrier == 0)) 809 return; 810 811 /* 812 * Allocate mbufs greedily, even though we batch updates to the 813 * receive ring. This creates a less bursty demand on the memory 814 * allocator, and so should reduce the chance of failed allocation 815 * requests both for ourself and for other kernel subsystems. 816 * 817 * Here we attempt to maintain rx_target buffers in flight, counting 818 * buffers that we have yet to process in the receive ring. 819 */ 820 batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons); 821 for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) { 822 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 823 if (m_new == NULL) { 824 if (i != 0) 825 goto refill; 826 /* 827 * XXX set timer 828 */ 829 break; 830 } 831 m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE; 832 833 /* queue the mbufs allocated */ 834 (void )mbufq_enqueue(&sc->xn_rx_batch, m_new); 835 } 836 837 /* 838 * If we've allocated at least half of our target number of entries, 839 * submit them to the backend - we have enough to make the overhead 840 * of submission worthwhile. Otherwise wait for more mbufs and 841 * request entries to become available. 842 */ 843 if (i < (sc->rx_target/2)) { 844 if (req_prod >sc->rx.sring->req_prod) 845 goto push; 846 return; 847 } 848 849 /* 850 * Double floating fill target if we risked having the backend 851 * run out of empty buffers for receive traffic. We define "running 852 * low" as having less than a fourth of our target buffers free 853 * at the time we refilled the queue. 854 */ 855 if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) { 856 sc->rx_target *= 2; 857 if (sc->rx_target > sc->rx_max_target) 858 sc->rx_target = sc->rx_max_target; 859 } 860 861 refill: 862 for (nr_flips = i = 0; ; i++) { 863 if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL) 864 break; 865 866 m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)( 867 vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT); 868 869 id = xennet_rxidx(req_prod + i); 870 871 KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain")); 872 sc->rx_mbufs[id] = m_new; 873 874 ref = gnttab_claim_grant_reference(&sc->gref_rx_head); 875 KASSERT(ref != GNTTAB_LIST_END, 876 ("reserved grant references exhuasted")); 877 sc->grant_rx_ref[id] = ref; 878 879 vaddr = mtod(m_new, vm_offset_t); 880 pfn = vtophys(vaddr) >> PAGE_SHIFT; 881 req = RING_GET_REQUEST(&sc->rx, req_prod + i); 882 883 if (sc->copying_receiver == 0) { 884 gnttab_grant_foreign_transfer_ref(ref, 885 otherend_id, pfn); 886 sc->rx_pfn_array[nr_flips] = pfn; 887 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 888 /* Remove this page before passing 889 * back to Xen. 890 */ 891 MULTI_update_va_mapping(&sc->rx_mcl[i], 892 vaddr, 0, 0); 893 } 894 nr_flips++; 895 } else { 896 gnttab_grant_foreign_access_ref(ref, 897 otherend_id, 898 pfn, 0); 899 } 900 req->id = id; 901 req->gref = ref; 902 903 sc->rx_pfn_array[i] = 904 vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT; 905 } 906 907 KASSERT(i, ("no mbufs processed")); /* should have returned earlier */ 908 KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed")); 909 /* 910 * We may have allocated buffers which have entries outstanding 911 * in the page * update queue -- make sure we flush those first! 912 */ 913 if (nr_flips != 0) { 914 #ifdef notyet 915 /* Tell the ballon driver what is going on. */ 916 balloon_update_driver_allowance(i); 917 #endif 918 set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array); 919 reservation.nr_extents = i; 920 reservation.extent_order = 0; 921 reservation.address_bits = 0; 922 reservation.domid = DOMID_SELF; 923 924 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 925 /* After all PTEs have been zapped, flush the TLB. */ 926 sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] = 927 UVMF_TLB_FLUSH|UVMF_ALL; 928 929 /* Give away a batch of pages. */ 930 sc->rx_mcl[i].op = __HYPERVISOR_memory_op; 931 sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation; 932 sc->rx_mcl[i].args[1] = (u_long)&reservation; 933 /* Zap PTEs and give away pages in one big multicall. */ 934 (void)HYPERVISOR_multicall(sc->rx_mcl, i+1); 935 936 if (__predict_false(sc->rx_mcl[i].result != i || 937 HYPERVISOR_memory_op(XENMEM_decrease_reservation, 938 &reservation) != i)) 939 panic("%s: unable to reduce memory " 940 "reservation\n", __func__); 941 } 942 } else { 943 wmb(); 944 } 945 946 /* Above is a suitable barrier to ensure backend will see requests. */ 947 sc->rx.req_prod_pvt = req_prod + i; 948 push: 949 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify); 950 if (notify) 951 xen_intr_signal(sc->xen_intr_handle); 952 } 953 954 static void 955 xn_rxeof(struct netfront_info *np) 956 { 957 struct ifnet *ifp; 958 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 959 struct lro_ctrl *lro = &np->xn_lro; 960 struct lro_entry *queued; 961 #endif 962 struct netfront_rx_info rinfo; 963 struct netif_rx_response *rx = &rinfo.rx; 964 struct netif_extra_info *extras = rinfo.extras; 965 RING_IDX i, rp; 966 multicall_entry_t *mcl; 967 struct mbuf *m; 968 struct mbufq rxq, errq; 969 int err, pages_flipped = 0, work_to_do; 970 971 do { 972 XN_RX_LOCK_ASSERT(np); 973 if (!netfront_carrier_ok(np)) 974 return; 975 976 /* XXX: there should be some sane limit. */ 977 mbufq_init(&errq, INT_MAX); 978 mbufq_init(&rxq, INT_MAX); 979 980 ifp = np->xn_ifp; 981 982 rp = np->rx.sring->rsp_prod; 983 rmb(); /* Ensure we see queued responses up to 'rp'. */ 984 985 i = np->rx.rsp_cons; 986 while ((i != rp)) { 987 memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx)); 988 memset(extras, 0, sizeof(rinfo.extras)); 989 990 m = NULL; 991 err = xennet_get_responses(np, &rinfo, rp, &i, &m, 992 &pages_flipped); 993 994 if (__predict_false(err)) { 995 if (m) 996 (void )mbufq_enqueue(&errq, m); 997 np->stats.rx_errors++; 998 continue; 999 } 1000 1001 m->m_pkthdr.rcvif = ifp; 1002 if ( rx->flags & NETRXF_data_validated ) { 1003 /* Tell the stack the checksums are okay */ 1004 /* 1005 * XXX this isn't necessarily the case - need to add 1006 * check 1007 */ 1008 1009 m->m_pkthdr.csum_flags |= 1010 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID 1011 | CSUM_PSEUDO_HDR); 1012 m->m_pkthdr.csum_data = 0xffff; 1013 } 1014 1015 np->stats.rx_packets++; 1016 np->stats.rx_bytes += m->m_pkthdr.len; 1017 1018 (void )mbufq_enqueue(&rxq, m); 1019 np->rx.rsp_cons = i; 1020 } 1021 1022 if (pages_flipped) { 1023 /* Some pages are no longer absent... */ 1024 #ifdef notyet 1025 balloon_update_driver_allowance(-pages_flipped); 1026 #endif 1027 /* Do all the remapping work, and M->P updates, in one big 1028 * hypercall. 1029 */ 1030 if (!!xen_feature(XENFEAT_auto_translated_physmap)) { 1031 mcl = np->rx_mcl + pages_flipped; 1032 mcl->op = __HYPERVISOR_mmu_update; 1033 mcl->args[0] = (u_long)np->rx_mmu; 1034 mcl->args[1] = pages_flipped; 1035 mcl->args[2] = 0; 1036 mcl->args[3] = DOMID_SELF; 1037 (void)HYPERVISOR_multicall(np->rx_mcl, 1038 pages_flipped + 1); 1039 } 1040 } 1041 1042 mbufq_drain(&errq); 1043 1044 /* 1045 * Process all the mbufs after the remapping is complete. 1046 * Break the mbuf chain first though. 1047 */ 1048 while ((m = mbufq_dequeue(&rxq)) != NULL) { 1049 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1050 1051 /* 1052 * Do we really need to drop the rx lock? 1053 */ 1054 XN_RX_UNLOCK(np); 1055 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1056 /* Use LRO if possible */ 1057 if ((ifp->if_capenable & IFCAP_LRO) == 0 || 1058 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1059 /* 1060 * If LRO fails, pass up to the stack 1061 * directly. 1062 */ 1063 (*ifp->if_input)(ifp, m); 1064 } 1065 #else 1066 (*ifp->if_input)(ifp, m); 1067 #endif 1068 XN_RX_LOCK(np); 1069 } 1070 1071 np->rx.rsp_cons = i; 1072 1073 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1074 /* 1075 * Flush any outstanding LRO work 1076 */ 1077 while (!SLIST_EMPTY(&lro->lro_active)) { 1078 queued = SLIST_FIRST(&lro->lro_active); 1079 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1080 tcp_lro_flush(lro, queued); 1081 } 1082 #endif 1083 1084 #if 0 1085 /* If we get a callback with very few responses, reduce fill target. */ 1086 /* NB. Note exponential increase, linear decrease. */ 1087 if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) > 1088 ((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target)) 1089 np->rx_target = np->rx_min_target; 1090 #endif 1091 1092 network_alloc_rx_buffers(np); 1093 1094 RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do); 1095 } while (work_to_do); 1096 } 1097 1098 static void 1099 xn_txeof(struct netfront_info *np) 1100 { 1101 RING_IDX i, prod; 1102 unsigned short id; 1103 struct ifnet *ifp; 1104 netif_tx_response_t *txr; 1105 struct mbuf *m; 1106 1107 XN_TX_LOCK_ASSERT(np); 1108 1109 if (!netfront_carrier_ok(np)) 1110 return; 1111 1112 ifp = np->xn_ifp; 1113 1114 do { 1115 prod = np->tx.sring->rsp_prod; 1116 rmb(); /* Ensure we see responses up to 'rp'. */ 1117 1118 for (i = np->tx.rsp_cons; i != prod; i++) { 1119 txr = RING_GET_RESPONSE(&np->tx, i); 1120 if (txr->status == NETIF_RSP_NULL) 1121 continue; 1122 1123 if (txr->status != NETIF_RSP_OKAY) { 1124 printf("%s: WARNING: response is %d!\n", 1125 __func__, txr->status); 1126 } 1127 id = txr->id; 1128 m = np->tx_mbufs[id]; 1129 KASSERT(m != NULL, ("mbuf not found in xn_tx_chain")); 1130 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1131 ("mbuf already on the free list, but we're " 1132 "trying to free it again!")); 1133 M_ASSERTVALID(m); 1134 1135 /* 1136 * Increment packet count if this is the last 1137 * mbuf of the chain. 1138 */ 1139 if (!m->m_next) 1140 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1141 if (__predict_false(gnttab_query_foreign_access( 1142 np->grant_tx_ref[id]) != 0)) { 1143 panic("%s: grant id %u still in use by the " 1144 "backend", __func__, id); 1145 } 1146 gnttab_end_foreign_access_ref( 1147 np->grant_tx_ref[id]); 1148 gnttab_release_grant_reference( 1149 &np->gref_tx_head, np->grant_tx_ref[id]); 1150 np->grant_tx_ref[id] = GRANT_REF_INVALID; 1151 1152 np->tx_mbufs[id] = NULL; 1153 add_id_to_freelist(np->tx_mbufs, id); 1154 np->xn_cdata.xn_tx_chain_cnt--; 1155 m_free(m); 1156 /* Only mark the queue active if we've freed up at least one slot to try */ 1157 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1158 } 1159 np->tx.rsp_cons = prod; 1160 1161 /* 1162 * Set a new event, then check for race with update of 1163 * tx_cons. Note that it is essential to schedule a 1164 * callback, no matter how few buffers are pending. Even if 1165 * there is space in the transmit ring, higher layers may 1166 * be blocked because too much data is outstanding: in such 1167 * cases notification from Xen is likely to be the only kick 1168 * that we'll get. 1169 */ 1170 np->tx.sring->rsp_event = 1171 prod + ((np->tx.sring->req_prod - prod) >> 1) + 1; 1172 1173 mb(); 1174 } while (prod != np->tx.sring->rsp_prod); 1175 1176 if (np->tx_full && 1177 ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1178 np->tx_full = 0; 1179 #if 0 1180 if (np->user_state == UST_OPEN) 1181 netif_wake_queue(dev); 1182 #endif 1183 } 1184 } 1185 1186 static void 1187 xn_intr(void *xsc) 1188 { 1189 struct netfront_info *np = xsc; 1190 struct ifnet *ifp = np->xn_ifp; 1191 1192 #if 0 1193 if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod && 1194 likely(netfront_carrier_ok(np)) && 1195 ifp->if_drv_flags & IFF_DRV_RUNNING)) 1196 return; 1197 #endif 1198 if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) { 1199 XN_TX_LOCK(np); 1200 xn_txeof(np); 1201 XN_TX_UNLOCK(np); 1202 } 1203 1204 XN_RX_LOCK(np); 1205 xn_rxeof(np); 1206 XN_RX_UNLOCK(np); 1207 1208 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1209 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1210 xn_start(ifp); 1211 } 1212 1213 static void 1214 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m, 1215 grant_ref_t ref) 1216 { 1217 int new = xennet_rxidx(np->rx.req_prod_pvt); 1218 1219 KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL")); 1220 np->rx_mbufs[new] = m; 1221 np->grant_rx_ref[new] = ref; 1222 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new; 1223 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref; 1224 np->rx.req_prod_pvt++; 1225 } 1226 1227 static int 1228 xennet_get_extras(struct netfront_info *np, 1229 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1230 { 1231 struct netif_extra_info *extra; 1232 1233 int err = 0; 1234 1235 do { 1236 struct mbuf *m; 1237 grant_ref_t ref; 1238 1239 if (__predict_false(*cons + 1 == rp)) { 1240 #if 0 1241 if (net_ratelimit()) 1242 WPRINTK("Missing extra info\n"); 1243 #endif 1244 err = EINVAL; 1245 break; 1246 } 1247 1248 extra = (struct netif_extra_info *) 1249 RING_GET_RESPONSE(&np->rx, ++(*cons)); 1250 1251 if (__predict_false(!extra->type || 1252 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1253 #if 0 1254 if (net_ratelimit()) 1255 WPRINTK("Invalid extra type: %d\n", 1256 extra->type); 1257 #endif 1258 err = EINVAL; 1259 } else { 1260 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1261 } 1262 1263 m = xennet_get_rx_mbuf(np, *cons); 1264 ref = xennet_get_rx_ref(np, *cons); 1265 xennet_move_rx_slot(np, m, ref); 1266 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1267 1268 return err; 1269 } 1270 1271 static int 1272 xennet_get_responses(struct netfront_info *np, 1273 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1274 struct mbuf **list, 1275 int *pages_flipped_p) 1276 { 1277 int pages_flipped = *pages_flipped_p; 1278 struct mmu_update *mmu; 1279 struct multicall_entry *mcl; 1280 struct netif_rx_response *rx = &rinfo->rx; 1281 struct netif_extra_info *extras = rinfo->extras; 1282 struct mbuf *m, *m0, *m_prev; 1283 grant_ref_t ref = xennet_get_rx_ref(np, *cons); 1284 RING_IDX ref_cons = *cons; 1285 int frags = 1; 1286 int err = 0; 1287 u_long ret; 1288 1289 m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons); 1290 1291 if (rx->flags & NETRXF_extra_info) { 1292 err = xennet_get_extras(np, extras, rp, cons); 1293 } 1294 1295 if (m0 != NULL) { 1296 m0->m_pkthdr.len = 0; 1297 m0->m_next = NULL; 1298 } 1299 1300 for (;;) { 1301 u_long mfn; 1302 1303 #if 0 1304 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1305 rx->status, rx->offset, frags); 1306 #endif 1307 if (__predict_false(rx->status < 0 || 1308 rx->offset + rx->status > PAGE_SIZE)) { 1309 1310 #if 0 1311 if (net_ratelimit()) 1312 WPRINTK("rx->offset: %x, size: %u\n", 1313 rx->offset, rx->status); 1314 #endif 1315 xennet_move_rx_slot(np, m, ref); 1316 if (m0 == m) 1317 m0 = NULL; 1318 m = NULL; 1319 err = EINVAL; 1320 goto next_skip_queue; 1321 } 1322 1323 /* 1324 * This definitely indicates a bug, either in this driver or in 1325 * the backend driver. In future this should flag the bad 1326 * situation to the system controller to reboot the backed. 1327 */ 1328 if (ref == GRANT_REF_INVALID) { 1329 1330 #if 0 1331 if (net_ratelimit()) 1332 WPRINTK("Bad rx response id %d.\n", rx->id); 1333 #endif 1334 printf("%s: Bad rx response id %d.\n", __func__,rx->id); 1335 err = EINVAL; 1336 goto next; 1337 } 1338 1339 if (!np->copying_receiver) { 1340 /* Memory pressure, insufficient buffer 1341 * headroom, ... 1342 */ 1343 if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) { 1344 WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n", 1345 rx->id, rx->status); 1346 xennet_move_rx_slot(np, m, ref); 1347 err = ENOMEM; 1348 goto next; 1349 } 1350 1351 if (!xen_feature( XENFEAT_auto_translated_physmap)) { 1352 /* Remap the page. */ 1353 void *vaddr = mtod(m, void *); 1354 uint32_t pfn; 1355 1356 mcl = np->rx_mcl + pages_flipped; 1357 mmu = np->rx_mmu + pages_flipped; 1358 1359 MULTI_update_va_mapping(mcl, (u_long)vaddr, 1360 (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW | 1361 PG_V | PG_M | PG_A, 0); 1362 pfn = (uintptr_t)m->m_ext.ext_arg1; 1363 mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) | 1364 MMU_MACHPHYS_UPDATE; 1365 mmu->val = pfn; 1366 } 1367 pages_flipped++; 1368 } else { 1369 ret = gnttab_end_foreign_access_ref(ref); 1370 KASSERT(ret, ("ret != 0")); 1371 } 1372 1373 gnttab_release_grant_reference(&np->gref_rx_head, ref); 1374 1375 next: 1376 if (m == NULL) 1377 break; 1378 1379 m->m_len = rx->status; 1380 m->m_data += rx->offset; 1381 m0->m_pkthdr.len += rx->status; 1382 1383 next_skip_queue: 1384 if (!(rx->flags & NETRXF_more_data)) 1385 break; 1386 1387 if (*cons + frags == rp) { 1388 if (net_ratelimit()) 1389 WPRINTK("Need more frags\n"); 1390 err = ENOENT; 1391 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1392 __func__, *cons, frags, rp); 1393 break; 1394 } 1395 /* 1396 * Note that m can be NULL, if rx->status < 0 or if 1397 * rx->offset + rx->status > PAGE_SIZE above. 1398 */ 1399 m_prev = m; 1400 1401 rx = RING_GET_RESPONSE(&np->rx, *cons + frags); 1402 m = xennet_get_rx_mbuf(np, *cons + frags); 1403 1404 /* 1405 * m_prev == NULL can happen if rx->status < 0 or if 1406 * rx->offset + * rx->status > PAGE_SIZE above. 1407 */ 1408 if (m_prev != NULL) 1409 m_prev->m_next = m; 1410 1411 /* 1412 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1413 * rx->status > PAGE_SIZE above. 1414 */ 1415 if (m0 == NULL) 1416 m0 = m; 1417 m->m_next = NULL; 1418 ref = xennet_get_rx_ref(np, *cons + frags); 1419 ref_cons = *cons + frags; 1420 frags++; 1421 } 1422 *list = m0; 1423 *cons += frags; 1424 *pages_flipped_p = pages_flipped; 1425 1426 return (err); 1427 } 1428 1429 static void 1430 xn_tick_locked(struct netfront_info *sc) 1431 { 1432 XN_RX_LOCK_ASSERT(sc); 1433 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1434 1435 /* XXX placeholder for printing debug information */ 1436 } 1437 1438 static void 1439 xn_tick(void *xsc) 1440 { 1441 struct netfront_info *sc; 1442 1443 sc = xsc; 1444 XN_RX_LOCK(sc); 1445 xn_tick_locked(sc); 1446 XN_RX_UNLOCK(sc); 1447 } 1448 1449 /** 1450 * \brief Count the number of fragments in an mbuf chain. 1451 * 1452 * Surprisingly, there isn't an M* macro for this. 1453 */ 1454 static inline int 1455 xn_count_frags(struct mbuf *m) 1456 { 1457 int nfrags; 1458 1459 for (nfrags = 0; m != NULL; m = m->m_next) 1460 nfrags++; 1461 1462 return (nfrags); 1463 } 1464 1465 /** 1466 * Given an mbuf chain, make sure we have enough room and then push 1467 * it onto the transmit ring. 1468 */ 1469 static int 1470 xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head) 1471 { 1472 struct ifnet *ifp; 1473 struct mbuf *m; 1474 u_int nfrags; 1475 int otherend_id; 1476 1477 ifp = sc->xn_ifp; 1478 1479 /** 1480 * Defragment the mbuf if necessary. 1481 */ 1482 nfrags = xn_count_frags(m_head); 1483 1484 /* 1485 * Check to see whether this request is longer than netback 1486 * can handle, and try to defrag it. 1487 */ 1488 /** 1489 * It is a bit lame, but the netback driver in Linux can't 1490 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of 1491 * the Linux network stack. 1492 */ 1493 if (nfrags > sc->maxfrags) { 1494 m = m_defrag(m_head, M_NOWAIT); 1495 if (!m) { 1496 /* 1497 * Defrag failed, so free the mbuf and 1498 * therefore drop the packet. 1499 */ 1500 m_freem(m_head); 1501 return (EMSGSIZE); 1502 } 1503 m_head = m; 1504 } 1505 1506 /* Determine how many fragments now exist */ 1507 nfrags = xn_count_frags(m_head); 1508 1509 /* 1510 * Check to see whether the defragmented packet has too many 1511 * segments for the Linux netback driver. 1512 */ 1513 /** 1514 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1515 * of mbufs longer than Linux can handle. Make sure we don't 1516 * pass a too-long chain over to the other side by dropping the 1517 * packet. It doesn't look like there is currently a way to 1518 * tell the TCP stack to generate a shorter chain of packets. 1519 */ 1520 if (nfrags > MAX_TX_REQ_FRAGS) { 1521 #ifdef DEBUG 1522 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback " 1523 "won't be able to handle it, dropping\n", 1524 __func__, nfrags, MAX_TX_REQ_FRAGS); 1525 #endif 1526 m_freem(m_head); 1527 return (EMSGSIZE); 1528 } 1529 1530 /* 1531 * This check should be redundant. We've already verified that we 1532 * have enough slots in the ring to handle a packet of maximum 1533 * size, and that our packet is less than the maximum size. Keep 1534 * it in here as an assert for now just to make certain that 1535 * xn_tx_chain_cnt is accurate. 1536 */ 1537 KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE, 1538 ("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1539 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt, 1540 (int) nfrags, (int) NET_TX_RING_SIZE)); 1541 1542 /* 1543 * Start packing the mbufs in this chain into 1544 * the fragment pointers. Stop when we run out 1545 * of fragments or hit the end of the mbuf chain. 1546 */ 1547 m = m_head; 1548 otherend_id = xenbus_get_otherend_id(sc->xbdev); 1549 for (m = m_head; m; m = m->m_next) { 1550 netif_tx_request_t *tx; 1551 uintptr_t id; 1552 grant_ref_t ref; 1553 u_long mfn; /* XXX Wrong type? */ 1554 1555 tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt); 1556 id = get_id_from_freelist(sc->tx_mbufs); 1557 if (id == 0) 1558 panic("%s: was allocated the freelist head!\n", 1559 __func__); 1560 sc->xn_cdata.xn_tx_chain_cnt++; 1561 if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE) 1562 panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n", 1563 __func__); 1564 sc->tx_mbufs[id] = m; 1565 tx->id = id; 1566 ref = gnttab_claim_grant_reference(&sc->gref_tx_head); 1567 KASSERT((short)ref >= 0, ("Negative ref")); 1568 mfn = virt_to_mfn(mtod(m, vm_offset_t)); 1569 gnttab_grant_foreign_access_ref(ref, otherend_id, 1570 mfn, GNTMAP_readonly); 1571 tx->gref = sc->grant_tx_ref[id] = ref; 1572 tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1); 1573 tx->flags = 0; 1574 if (m == m_head) { 1575 /* 1576 * The first fragment has the entire packet 1577 * size, subsequent fragments have just the 1578 * fragment size. The backend works out the 1579 * true size of the first fragment by 1580 * subtracting the sizes of the other 1581 * fragments. 1582 */ 1583 tx->size = m->m_pkthdr.len; 1584 1585 /* 1586 * The first fragment contains the checksum flags 1587 * and is optionally followed by extra data for 1588 * TSO etc. 1589 */ 1590 /** 1591 * CSUM_TSO requires checksum offloading. 1592 * Some versions of FreeBSD fail to 1593 * set CSUM_TCP in the CSUM_TSO case, 1594 * so we have to test for CSUM_TSO 1595 * explicitly. 1596 */ 1597 if (m->m_pkthdr.csum_flags 1598 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1599 tx->flags |= (NETTXF_csum_blank 1600 | NETTXF_data_validated); 1601 } 1602 #if __FreeBSD_version >= 700000 1603 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1604 struct netif_extra_info *gso = 1605 (struct netif_extra_info *) 1606 RING_GET_REQUEST(&sc->tx, 1607 ++sc->tx.req_prod_pvt); 1608 1609 tx->flags |= NETTXF_extra_info; 1610 1611 gso->u.gso.size = m->m_pkthdr.tso_segsz; 1612 gso->u.gso.type = 1613 XEN_NETIF_GSO_TYPE_TCPV4; 1614 gso->u.gso.pad = 0; 1615 gso->u.gso.features = 0; 1616 1617 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1618 gso->flags = 0; 1619 } 1620 #endif 1621 } else { 1622 tx->size = m->m_len; 1623 } 1624 if (m->m_next) 1625 tx->flags |= NETTXF_more_data; 1626 1627 sc->tx.req_prod_pvt++; 1628 } 1629 BPF_MTAP(ifp, m_head); 1630 1631 sc->stats.tx_bytes += m_head->m_pkthdr.len; 1632 sc->stats.tx_packets++; 1633 1634 return (0); 1635 } 1636 1637 static void 1638 xn_start_locked(struct ifnet *ifp) 1639 { 1640 struct netfront_info *sc; 1641 struct mbuf *m_head; 1642 int notify; 1643 1644 sc = ifp->if_softc; 1645 1646 if (!netfront_carrier_ok(sc)) 1647 return; 1648 1649 /* 1650 * While we have enough transmit slots available for at least one 1651 * maximum-sized packet, pull mbufs off the queue and put them on 1652 * the transmit ring. 1653 */ 1654 while (xn_tx_slot_available(sc)) { 1655 IF_DEQUEUE(&ifp->if_snd, m_head); 1656 if (m_head == NULL) 1657 break; 1658 1659 if (xn_assemble_tx_request(sc, m_head) != 0) 1660 break; 1661 } 1662 1663 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify); 1664 if (notify) 1665 xen_intr_signal(sc->xen_intr_handle); 1666 1667 if (RING_FULL(&sc->tx)) { 1668 sc->tx_full = 1; 1669 #if 0 1670 netif_stop_queue(dev); 1671 #endif 1672 } 1673 } 1674 1675 static void 1676 xn_start(struct ifnet *ifp) 1677 { 1678 struct netfront_info *sc; 1679 sc = ifp->if_softc; 1680 XN_TX_LOCK(sc); 1681 xn_start_locked(ifp); 1682 XN_TX_UNLOCK(sc); 1683 } 1684 1685 /* equivalent of network_open() in Linux */ 1686 static void 1687 xn_ifinit_locked(struct netfront_info *sc) 1688 { 1689 struct ifnet *ifp; 1690 1691 XN_LOCK_ASSERT(sc); 1692 1693 ifp = sc->xn_ifp; 1694 1695 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1696 return; 1697 1698 xn_stop(sc); 1699 1700 network_alloc_rx_buffers(sc); 1701 sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1; 1702 1703 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1704 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1705 if_link_state_change(ifp, LINK_STATE_UP); 1706 1707 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1708 } 1709 1710 static void 1711 xn_ifinit(void *xsc) 1712 { 1713 struct netfront_info *sc = xsc; 1714 1715 XN_LOCK(sc); 1716 xn_ifinit_locked(sc); 1717 XN_UNLOCK(sc); 1718 } 1719 1720 static int 1721 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1722 { 1723 struct netfront_info *sc = ifp->if_softc; 1724 struct ifreq *ifr = (struct ifreq *) data; 1725 #ifdef INET 1726 struct ifaddr *ifa = (struct ifaddr *)data; 1727 #endif 1728 1729 int mask, error = 0; 1730 switch(cmd) { 1731 case SIOCSIFADDR: 1732 #ifdef INET 1733 XN_LOCK(sc); 1734 if (ifa->ifa_addr->sa_family == AF_INET) { 1735 ifp->if_flags |= IFF_UP; 1736 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1737 xn_ifinit_locked(sc); 1738 arp_ifinit(ifp, ifa); 1739 XN_UNLOCK(sc); 1740 } else { 1741 XN_UNLOCK(sc); 1742 #endif 1743 error = ether_ioctl(ifp, cmd, data); 1744 #ifdef INET 1745 } 1746 #endif 1747 break; 1748 case SIOCSIFMTU: 1749 /* XXX can we alter the MTU on a VN ?*/ 1750 #ifdef notyet 1751 if (ifr->ifr_mtu > XN_JUMBO_MTU) 1752 error = EINVAL; 1753 else 1754 #endif 1755 { 1756 ifp->if_mtu = ifr->ifr_mtu; 1757 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1758 xn_ifinit(sc); 1759 } 1760 break; 1761 case SIOCSIFFLAGS: 1762 XN_LOCK(sc); 1763 if (ifp->if_flags & IFF_UP) { 1764 /* 1765 * If only the state of the PROMISC flag changed, 1766 * then just use the 'set promisc mode' command 1767 * instead of reinitializing the entire NIC. Doing 1768 * a full re-init means reloading the firmware and 1769 * waiting for it to start up, which may take a 1770 * second or two. 1771 */ 1772 #ifdef notyet 1773 /* No promiscuous mode with Xen */ 1774 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1775 ifp->if_flags & IFF_PROMISC && 1776 !(sc->xn_if_flags & IFF_PROMISC)) { 1777 XN_SETBIT(sc, XN_RX_MODE, 1778 XN_RXMODE_RX_PROMISC); 1779 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1780 !(ifp->if_flags & IFF_PROMISC) && 1781 sc->xn_if_flags & IFF_PROMISC) { 1782 XN_CLRBIT(sc, XN_RX_MODE, 1783 XN_RXMODE_RX_PROMISC); 1784 } else 1785 #endif 1786 xn_ifinit_locked(sc); 1787 } else { 1788 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1789 xn_stop(sc); 1790 } 1791 } 1792 sc->xn_if_flags = ifp->if_flags; 1793 XN_UNLOCK(sc); 1794 error = 0; 1795 break; 1796 case SIOCSIFCAP: 1797 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1798 if (mask & IFCAP_TXCSUM) { 1799 if (IFCAP_TXCSUM & ifp->if_capenable) { 1800 ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4); 1801 ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP 1802 | CSUM_IP | CSUM_TSO); 1803 } else { 1804 ifp->if_capenable |= IFCAP_TXCSUM; 1805 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP 1806 | CSUM_IP); 1807 } 1808 } 1809 if (mask & IFCAP_RXCSUM) { 1810 ifp->if_capenable ^= IFCAP_RXCSUM; 1811 } 1812 #if __FreeBSD_version >= 700000 1813 if (mask & IFCAP_TSO4) { 1814 if (IFCAP_TSO4 & ifp->if_capenable) { 1815 ifp->if_capenable &= ~IFCAP_TSO4; 1816 ifp->if_hwassist &= ~CSUM_TSO; 1817 } else if (IFCAP_TXCSUM & ifp->if_capenable) { 1818 ifp->if_capenable |= IFCAP_TSO4; 1819 ifp->if_hwassist |= CSUM_TSO; 1820 } else { 1821 IPRINTK("Xen requires tx checksum offload" 1822 " be enabled to use TSO\n"); 1823 error = EINVAL; 1824 } 1825 } 1826 if (mask & IFCAP_LRO) { 1827 ifp->if_capenable ^= IFCAP_LRO; 1828 1829 } 1830 #endif 1831 error = 0; 1832 break; 1833 case SIOCADDMULTI: 1834 case SIOCDELMULTI: 1835 #ifdef notyet 1836 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1837 XN_LOCK(sc); 1838 xn_setmulti(sc); 1839 XN_UNLOCK(sc); 1840 error = 0; 1841 } 1842 #endif 1843 /* FALLTHROUGH */ 1844 case SIOCSIFMEDIA: 1845 case SIOCGIFMEDIA: 1846 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1847 break; 1848 default: 1849 error = ether_ioctl(ifp, cmd, data); 1850 } 1851 1852 return (error); 1853 } 1854 1855 static void 1856 xn_stop(struct netfront_info *sc) 1857 { 1858 struct ifnet *ifp; 1859 1860 XN_LOCK_ASSERT(sc); 1861 1862 ifp = sc->xn_ifp; 1863 1864 callout_stop(&sc->xn_stat_ch); 1865 1866 xn_free_rx_ring(sc); 1867 xn_free_tx_ring(sc); 1868 1869 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1870 if_link_state_change(ifp, LINK_STATE_DOWN); 1871 } 1872 1873 /* START of Xenolinux helper functions adapted to FreeBSD */ 1874 int 1875 network_connect(struct netfront_info *np) 1876 { 1877 int i, requeue_idx, error; 1878 grant_ref_t ref; 1879 netif_rx_request_t *req; 1880 u_int feature_rx_copy, feature_rx_flip; 1881 1882 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1883 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1884 if (error) 1885 feature_rx_copy = 0; 1886 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1887 "feature-rx-flip", NULL, "%u", &feature_rx_flip); 1888 if (error) 1889 feature_rx_flip = 1; 1890 1891 /* 1892 * Copy packets on receive path if: 1893 * (a) This was requested by user, and the backend supports it; or 1894 * (b) Flipping was requested, but this is unsupported by the backend. 1895 */ 1896 np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) || 1897 (MODPARM_rx_flip && !feature_rx_flip)); 1898 1899 /* Recovery procedure: */ 1900 error = talk_to_backend(np->xbdev, np); 1901 if (error) 1902 return (error); 1903 1904 /* Step 1: Reinitialise variables. */ 1905 xn_query_features(np); 1906 xn_configure_features(np); 1907 netif_release_tx_bufs(np); 1908 1909 /* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */ 1910 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1911 struct mbuf *m; 1912 u_long pfn; 1913 1914 if (np->rx_mbufs[i] == NULL) 1915 continue; 1916 1917 m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i); 1918 ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i); 1919 1920 req = RING_GET_REQUEST(&np->rx, requeue_idx); 1921 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1922 1923 if (!np->copying_receiver) { 1924 gnttab_grant_foreign_transfer_ref(ref, 1925 xenbus_get_otherend_id(np->xbdev), 1926 pfn); 1927 } else { 1928 gnttab_grant_foreign_access_ref(ref, 1929 xenbus_get_otherend_id(np->xbdev), 1930 pfn, 0); 1931 } 1932 req->gref = ref; 1933 req->id = requeue_idx; 1934 1935 requeue_idx++; 1936 } 1937 1938 np->rx.req_prod_pvt = requeue_idx; 1939 1940 /* Step 3: All public and private state should now be sane. Get 1941 * ready to start sending and receiving packets and give the driver 1942 * domain a kick because we've probably just requeued some 1943 * packets. 1944 */ 1945 netfront_carrier_on(np); 1946 xen_intr_signal(np->xen_intr_handle); 1947 XN_TX_LOCK(np); 1948 xn_txeof(np); 1949 XN_TX_UNLOCK(np); 1950 network_alloc_rx_buffers(np); 1951 1952 return (0); 1953 } 1954 1955 static void 1956 xn_query_features(struct netfront_info *np) 1957 { 1958 int val; 1959 1960 device_printf(np->xbdev, "backend features:"); 1961 1962 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1963 "feature-sg", NULL, "%d", &val) < 0) 1964 val = 0; 1965 1966 np->maxfrags = 1; 1967 if (val) { 1968 np->maxfrags = MAX_TX_REQ_FRAGS; 1969 printf(" feature-sg"); 1970 } 1971 1972 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1973 "feature-gso-tcpv4", NULL, "%d", &val) < 0) 1974 val = 0; 1975 1976 np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO); 1977 if (val) { 1978 np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO; 1979 printf(" feature-gso-tcp4"); 1980 } 1981 1982 printf("\n"); 1983 } 1984 1985 static int 1986 xn_configure_features(struct netfront_info *np) 1987 { 1988 int err, cap_enabled; 1989 1990 err = 0; 1991 1992 if (np->xn_resume && 1993 ((np->xn_ifp->if_capenable & np->xn_ifp->if_capabilities) 1994 == np->xn_ifp->if_capenable)) { 1995 /* Current options are available, no need to do anything. */ 1996 return (0); 1997 } 1998 1999 /* Try to preserve as many options as possible. */ 2000 if (np->xn_resume) 2001 cap_enabled = np->xn_ifp->if_capenable; 2002 else 2003 cap_enabled = UINT_MAX; 2004 2005 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 2006 if ((np->xn_ifp->if_capenable & IFCAP_LRO) == (cap_enabled & IFCAP_LRO)) 2007 tcp_lro_free(&np->xn_lro); 2008 #endif 2009 np->xn_ifp->if_capenable = 2010 np->xn_ifp->if_capabilities & ~(IFCAP_LRO|IFCAP_TSO4) & cap_enabled; 2011 np->xn_ifp->if_hwassist &= ~CSUM_TSO; 2012 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 2013 if (xn_enable_lro && (np->xn_ifp->if_capabilities & IFCAP_LRO) == 2014 (cap_enabled & IFCAP_LRO)) { 2015 err = tcp_lro_init(&np->xn_lro); 2016 if (err) { 2017 device_printf(np->xbdev, "LRO initialization failed\n"); 2018 } else { 2019 np->xn_lro.ifp = np->xn_ifp; 2020 np->xn_ifp->if_capenable |= IFCAP_LRO; 2021 } 2022 } 2023 if ((np->xn_ifp->if_capabilities & IFCAP_TSO4) == 2024 (cap_enabled & IFCAP_TSO4)) { 2025 np->xn_ifp->if_capenable |= IFCAP_TSO4; 2026 np->xn_ifp->if_hwassist |= CSUM_TSO; 2027 } 2028 #endif 2029 return (err); 2030 } 2031 2032 /** 2033 * Create a network device. 2034 * @param dev Newbus device representing this virtual NIC. 2035 */ 2036 int 2037 create_netdev(device_t dev) 2038 { 2039 int i; 2040 struct netfront_info *np; 2041 int err; 2042 struct ifnet *ifp; 2043 2044 np = device_get_softc(dev); 2045 2046 np->xbdev = dev; 2047 2048 XN_LOCK_INIT(np, xennetif); 2049 2050 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 2051 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 2052 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 2053 2054 np->rx_target = RX_MIN_TARGET; 2055 np->rx_min_target = RX_MIN_TARGET; 2056 np->rx_max_target = RX_MAX_TARGET; 2057 2058 /* Initialise {tx,rx}_skbs to be a free chain containing every entry. */ 2059 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 2060 np->tx_mbufs[i] = (void *) ((u_long) i+1); 2061 np->grant_tx_ref[i] = GRANT_REF_INVALID; 2062 } 2063 np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0; 2064 2065 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 2066 2067 np->rx_mbufs[i] = NULL; 2068 np->grant_rx_ref[i] = GRANT_REF_INVALID; 2069 } 2070 2071 mbufq_init(&np->xn_rx_batch, INT_MAX); 2072 2073 /* A grant for every tx ring slot */ 2074 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 2075 &np->gref_tx_head) != 0) { 2076 IPRINTK("#### netfront can't alloc tx grant refs\n"); 2077 err = ENOMEM; 2078 goto exit; 2079 } 2080 /* A grant for every rx ring slot */ 2081 if (gnttab_alloc_grant_references(RX_MAX_TARGET, 2082 &np->gref_rx_head) != 0) { 2083 WPRINTK("#### netfront can't alloc rx grant refs\n"); 2084 gnttab_free_grant_references(np->gref_tx_head); 2085 err = ENOMEM; 2086 goto exit; 2087 } 2088 2089 err = xen_net_read_mac(dev, np->mac); 2090 if (err) 2091 goto out; 2092 2093 /* Set up ifnet structure */ 2094 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2095 ifp->if_softc = np; 2096 if_initname(ifp, "xn", device_get_unit(dev)); 2097 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2098 ifp->if_ioctl = xn_ioctl; 2099 ifp->if_output = ether_output; 2100 ifp->if_start = xn_start; 2101 #ifdef notyet 2102 ifp->if_watchdog = xn_watchdog; 2103 #endif 2104 ifp->if_init = xn_ifinit; 2105 ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1; 2106 2107 ifp->if_hwassist = XN_CSUM_FEATURES; 2108 ifp->if_capabilities = IFCAP_HWCSUM; 2109 ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 2110 ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS; 2111 ifp->if_hw_tsomaxsegsize = PAGE_SIZE; 2112 2113 ether_ifattach(ifp, np->mac); 2114 callout_init(&np->xn_stat_ch, 1); 2115 netfront_carrier_off(np); 2116 2117 return (0); 2118 2119 exit: 2120 gnttab_free_grant_references(np->gref_tx_head); 2121 out: 2122 return (err); 2123 } 2124 2125 /** 2126 * Handle the change of state of the backend to Closing. We must delete our 2127 * device-layer structures now, to ensure that writes are flushed through to 2128 * the backend. Once is this done, we can switch to Closed in 2129 * acknowledgement. 2130 */ 2131 #if 0 2132 static void 2133 netfront_closing(device_t dev) 2134 { 2135 #if 0 2136 struct netfront_info *info = dev->dev_driver_data; 2137 2138 DPRINTK("netfront_closing: %s removed\n", dev->nodename); 2139 2140 close_netdev(info); 2141 #endif 2142 xenbus_switch_state(dev, XenbusStateClosed); 2143 } 2144 #endif 2145 2146 static int 2147 netfront_detach(device_t dev) 2148 { 2149 struct netfront_info *info = device_get_softc(dev); 2150 2151 DPRINTK("%s\n", xenbus_get_node(dev)); 2152 2153 netif_free(info); 2154 2155 return 0; 2156 } 2157 2158 static void 2159 netif_free(struct netfront_info *info) 2160 { 2161 XN_LOCK(info); 2162 xn_stop(info); 2163 XN_UNLOCK(info); 2164 callout_drain(&info->xn_stat_ch); 2165 netif_disconnect_backend(info); 2166 if (info->xn_ifp != NULL) { 2167 ether_ifdetach(info->xn_ifp); 2168 if_free(info->xn_ifp); 2169 info->xn_ifp = NULL; 2170 } 2171 ifmedia_removeall(&info->sc_media); 2172 } 2173 2174 static void 2175 netif_disconnect_backend(struct netfront_info *info) 2176 { 2177 XN_RX_LOCK(info); 2178 XN_TX_LOCK(info); 2179 netfront_carrier_off(info); 2180 XN_TX_UNLOCK(info); 2181 XN_RX_UNLOCK(info); 2182 2183 free_ring(&info->tx_ring_ref, &info->tx.sring); 2184 free_ring(&info->rx_ring_ref, &info->rx.sring); 2185 2186 xen_intr_unbind(&info->xen_intr_handle); 2187 } 2188 2189 static void 2190 free_ring(int *ref, void *ring_ptr_ref) 2191 { 2192 void **ring_ptr_ptr = ring_ptr_ref; 2193 2194 if (*ref != GRANT_REF_INVALID) { 2195 /* This API frees the associated storage. */ 2196 gnttab_end_foreign_access(*ref, *ring_ptr_ptr); 2197 *ref = GRANT_REF_INVALID; 2198 } 2199 *ring_ptr_ptr = NULL; 2200 } 2201 2202 static int 2203 xn_ifmedia_upd(struct ifnet *ifp) 2204 { 2205 return (0); 2206 } 2207 2208 static void 2209 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2210 { 2211 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2212 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2213 } 2214 2215 /* ** Driver registration ** */ 2216 static device_method_t netfront_methods[] = { 2217 /* Device interface */ 2218 DEVMETHOD(device_probe, netfront_probe), 2219 DEVMETHOD(device_attach, netfront_attach), 2220 DEVMETHOD(device_detach, netfront_detach), 2221 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2222 DEVMETHOD(device_suspend, netfront_suspend), 2223 DEVMETHOD(device_resume, netfront_resume), 2224 2225 /* Xenbus interface */ 2226 DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed), 2227 2228 DEVMETHOD_END 2229 }; 2230 2231 static driver_t netfront_driver = { 2232 "xn", 2233 netfront_methods, 2234 sizeof(struct netfront_info), 2235 }; 2236 devclass_t netfront_devclass; 2237 2238 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL, 2239 NULL); 2240