1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004-2006 Kip Macy 5 * Copyright (c) 2015 Wei Liu <wei.liu2@citrix.com> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/param.h> 35 #include <sys/sockio.h> 36 #include <sys/limits.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/kernel.h> 41 #include <sys/socket.h> 42 #include <sys/sysctl.h> 43 #include <sys/taskqueue.h> 44 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_arp.h> 48 #include <net/ethernet.h> 49 #include <net/if_media.h> 50 #include <net/bpf.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/ip.h> 55 #include <netinet/if_ether.h> 56 #include <netinet/tcp.h> 57 #include <netinet/tcp_lro.h> 58 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 62 #include <sys/bus.h> 63 64 #include <xen/xen-os.h> 65 #include <xen/hypervisor.h> 66 #include <xen/xen_intr.h> 67 #include <xen/gnttab.h> 68 #include <contrib/xen/memory.h> 69 #include <contrib/xen/io/netif.h> 70 #include <xen/xenbus/xenbusvar.h> 71 72 #include <machine/bus.h> 73 74 #include "xenbus_if.h" 75 76 /* Features supported by all backends. TSO and LRO can be negotiated */ 77 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 78 79 #define NET_TX_RING_SIZE __CONST_RING_SIZE(netif_tx, PAGE_SIZE) 80 #define NET_RX_RING_SIZE __CONST_RING_SIZE(netif_rx, PAGE_SIZE) 81 82 #define NET_RX_SLOTS_MIN (XEN_NETIF_NR_SLOTS_MIN + 1) 83 84 /* 85 * Should the driver do LRO on the RX end 86 * this can be toggled on the fly, but the 87 * interface must be reset (down/up) for it 88 * to take effect. 89 */ 90 static int xn_enable_lro = 1; 91 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 92 93 /* 94 * Number of pairs of queues. 95 */ 96 static unsigned long xn_num_queues = 4; 97 TUNABLE_ULONG("hw.xn.num_queues", &xn_num_queues); 98 99 /** 100 * \brief The maximum allowed data fragments in a single transmit 101 * request. 102 * 103 * This limit is imposed by the backend driver. We assume here that 104 * we are dealing with a Linux driver domain and have set our limit 105 * to mirror the Linux MAX_SKB_FRAGS constant. 106 */ 107 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 108 109 #define RX_COPY_THRESHOLD 256 110 111 #define net_ratelimit() 0 112 113 struct netfront_rxq; 114 struct netfront_txq; 115 struct netfront_info; 116 struct netfront_rx_info; 117 118 static void xn_txeof(struct netfront_txq *); 119 static void xn_rxeof(struct netfront_rxq *); 120 static void xn_alloc_rx_buffers(struct netfront_rxq *); 121 static void xn_alloc_rx_buffers_callout(void *arg); 122 123 static void xn_release_rx_bufs(struct netfront_rxq *); 124 static void xn_release_tx_bufs(struct netfront_txq *); 125 126 static void xn_rxq_intr(struct netfront_rxq *); 127 static void xn_txq_intr(struct netfront_txq *); 128 static void xn_intr(void *); 129 static int xn_assemble_tx_request(struct netfront_txq *, struct mbuf *); 130 static int xn_ioctl(if_t, u_long, caddr_t); 131 static void xn_ifinit_locked(struct netfront_info *); 132 static void xn_ifinit(void *); 133 static void xn_stop(struct netfront_info *); 134 static void xn_query_features(struct netfront_info *np); 135 static int xn_configure_features(struct netfront_info *np); 136 static void netif_free(struct netfront_info *info); 137 static int netfront_detach(device_t dev); 138 139 static int xn_txq_mq_start_locked(struct netfront_txq *, struct mbuf *); 140 static int xn_txq_mq_start(if_t, struct mbuf *); 141 142 static int talk_to_backend(device_t dev, struct netfront_info *info); 143 static int create_netdev(device_t dev); 144 static void netif_disconnect_backend(struct netfront_info *info); 145 static int setup_device(device_t dev, struct netfront_info *info, 146 unsigned long); 147 static int xn_ifmedia_upd(if_t ifp); 148 static void xn_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr); 149 150 static int xn_connect(struct netfront_info *); 151 static void xn_kick_rings(struct netfront_info *); 152 153 static int xn_get_responses(struct netfront_rxq *, 154 struct netfront_rx_info *, RING_IDX, RING_IDX *, 155 struct mbuf **); 156 157 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT) 158 159 #define INVALID_P2M_ENTRY (~0UL) 160 #define XN_QUEUE_NAME_LEN 8 /* xn{t,r}x_%u, allow for two digits */ 161 struct netfront_rxq { 162 struct netfront_info *info; 163 u_int id; 164 char name[XN_QUEUE_NAME_LEN]; 165 struct mtx lock; 166 167 int ring_ref; 168 netif_rx_front_ring_t ring; 169 xen_intr_handle_t xen_intr_handle; 170 171 grant_ref_t gref_head; 172 grant_ref_t grant_ref[NET_RX_RING_SIZE + 1]; 173 174 struct mbuf *mbufs[NET_RX_RING_SIZE + 1]; 175 176 struct lro_ctrl lro; 177 178 struct callout rx_refill; 179 }; 180 181 struct netfront_txq { 182 struct netfront_info *info; 183 u_int id; 184 char name[XN_QUEUE_NAME_LEN]; 185 struct mtx lock; 186 187 int ring_ref; 188 netif_tx_front_ring_t ring; 189 xen_intr_handle_t xen_intr_handle; 190 191 grant_ref_t gref_head; 192 grant_ref_t grant_ref[NET_TX_RING_SIZE + 1]; 193 194 struct mbuf *mbufs[NET_TX_RING_SIZE + 1]; 195 int mbufs_cnt; 196 struct buf_ring *br; 197 198 struct taskqueue *tq; 199 struct task defrtask; 200 201 bus_dma_segment_t segs[MAX_TX_REQ_FRAGS]; 202 struct mbuf_xennet { 203 struct m_tag tag; 204 bus_dma_tag_t dma_tag; 205 bus_dmamap_t dma_map; 206 struct netfront_txq *txq; 207 SLIST_ENTRY(mbuf_xennet) next; 208 u_int count; 209 } xennet_tag[NET_TX_RING_SIZE + 1]; 210 SLIST_HEAD(, mbuf_xennet) tags; 211 212 bool full; 213 }; 214 215 struct netfront_info { 216 if_t xn_ifp; 217 218 struct mtx sc_lock; 219 220 u_int num_queues; 221 struct netfront_rxq *rxq; 222 struct netfront_txq *txq; 223 224 u_int carrier; 225 u_int maxfrags; 226 227 device_t xbdev; 228 uint8_t mac[ETHER_ADDR_LEN]; 229 230 int xn_if_flags; 231 232 struct ifmedia sc_media; 233 234 bus_dma_tag_t dma_tag; 235 236 bool xn_reset; 237 }; 238 239 struct netfront_rx_info { 240 struct netif_rx_response rx; 241 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 242 }; 243 244 #define XN_RX_LOCK(_q) mtx_lock(&(_q)->lock) 245 #define XN_RX_UNLOCK(_q) mtx_unlock(&(_q)->lock) 246 247 #define XN_TX_LOCK(_q) mtx_lock(&(_q)->lock) 248 #define XN_TX_TRYLOCK(_q) mtx_trylock(&(_q)->lock) 249 #define XN_TX_UNLOCK(_q) mtx_unlock(&(_q)->lock) 250 251 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 252 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 253 254 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 255 #define XN_RX_LOCK_ASSERT(_q) mtx_assert(&(_q)->lock, MA_OWNED); 256 #define XN_TX_LOCK_ASSERT(_q) mtx_assert(&(_q)->lock, MA_OWNED); 257 258 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 259 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 260 #define netfront_carrier_ok(netif) ((netif)->carrier) 261 262 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 263 264 static inline void 265 add_id_to_freelist(struct mbuf **list, uintptr_t id) 266 { 267 268 KASSERT(id != 0, 269 ("%s: the head item (0) must always be free.", __func__)); 270 list[id] = list[0]; 271 list[0] = (struct mbuf *)id; 272 } 273 274 static inline unsigned short 275 get_id_from_freelist(struct mbuf **list) 276 { 277 uintptr_t id; 278 279 id = (uintptr_t)list[0]; 280 KASSERT(id != 0, 281 ("%s: the head item (0) must always remain free.", __func__)); 282 list[0] = list[id]; 283 return (id); 284 } 285 286 static inline int 287 xn_rxidx(RING_IDX idx) 288 { 289 290 return idx & (NET_RX_RING_SIZE - 1); 291 } 292 293 static inline struct mbuf * 294 xn_get_rx_mbuf(struct netfront_rxq *rxq, RING_IDX ri) 295 { 296 int i; 297 struct mbuf *m; 298 299 i = xn_rxidx(ri); 300 m = rxq->mbufs[i]; 301 rxq->mbufs[i] = NULL; 302 return (m); 303 } 304 305 static inline grant_ref_t 306 xn_get_rx_ref(struct netfront_rxq *rxq, RING_IDX ri) 307 { 308 int i = xn_rxidx(ri); 309 grant_ref_t ref = rxq->grant_ref[i]; 310 311 KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n")); 312 rxq->grant_ref[i] = GRANT_REF_INVALID; 313 return (ref); 314 } 315 316 #define MTAG_COOKIE 1218492000 317 #define MTAG_XENNET 0 318 319 static void mbuf_grab(struct mbuf *m) 320 { 321 struct mbuf_xennet *ref; 322 323 ref = (struct mbuf_xennet *)m_tag_locate(m, MTAG_COOKIE, 324 MTAG_XENNET, NULL); 325 KASSERT(ref != NULL, ("Cannot find refcount")); 326 ref->count++; 327 } 328 329 static void mbuf_release(struct mbuf *m) 330 { 331 struct mbuf_xennet *ref; 332 333 ref = (struct mbuf_xennet *)m_tag_locate(m, MTAG_COOKIE, 334 MTAG_XENNET, NULL); 335 KASSERT(ref != NULL, ("Cannot find refcount")); 336 KASSERT(ref->count > 0, ("Invalid reference count")); 337 338 if (--ref->count == 0) { 339 /* 340 * Explicitly free the tag while we hold the tx queue lock. 341 * This ensures that the tag is deleted promptly in case 342 * something else is holding extra references to the mbuf chain, 343 * such as netmap. 344 */ 345 m_tag_delete(m, &ref->tag); 346 m_freem(m); 347 } 348 } 349 350 static void tag_free(struct m_tag *t) 351 { 352 struct mbuf_xennet *ref = (struct mbuf_xennet *)t; 353 354 KASSERT(ref->count == 0, ("Free mbuf tag with pending refcnt")); 355 bus_dmamap_sync(ref->dma_tag, ref->dma_map, BUS_DMASYNC_POSTWRITE); 356 bus_dmamap_destroy(ref->dma_tag, ref->dma_map); 357 SLIST_INSERT_HEAD(&ref->txq->tags, ref, next); 358 } 359 360 #define IPRINTK(fmt, args...) \ 361 printf("[XEN] " fmt, ##args) 362 #ifdef INVARIANTS 363 #define WPRINTK(fmt, args...) \ 364 printf("[XEN] " fmt, ##args) 365 #else 366 #define WPRINTK(fmt, args...) 367 #endif 368 #ifdef DEBUG 369 #define DPRINTK(fmt, args...) \ 370 printf("[XEN] %s: " fmt, __func__, ##args) 371 #else 372 #define DPRINTK(fmt, args...) 373 #endif 374 375 /** 376 * Read the 'mac' node at the given device's node in the store, and parse that 377 * as colon-separated octets, placing result the given mac array. mac must be 378 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 379 * Return 0 on success, or errno on error. 380 */ 381 static int 382 xen_net_read_mac(device_t dev, uint8_t mac[]) 383 { 384 int error, i; 385 char *s, *e, *macstr; 386 const char *path; 387 388 path = xenbus_get_node(dev); 389 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 390 if (error == ENOENT) { 391 /* 392 * Deal with missing mac XenStore nodes on devices with 393 * HVM emulation (the 'ioemu' configuration attribute) 394 * enabled. 395 * 396 * The HVM emulator may execute in a stub device model 397 * domain which lacks the permission, only given to Dom0, 398 * to update the guest's XenStore tree. For this reason, 399 * the HVM emulator doesn't even attempt to write the 400 * front-side mac node, even when operating in Dom0. 401 * However, there should always be a mac listed in the 402 * backend tree. Fallback to this version if our query 403 * of the front side XenStore location doesn't find 404 * anything. 405 */ 406 path = xenbus_get_otherend_path(dev); 407 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 408 } 409 if (error != 0) { 410 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 411 return (error); 412 } 413 414 s = macstr; 415 for (i = 0; i < ETHER_ADDR_LEN; i++) { 416 mac[i] = strtoul(s, &e, 16); 417 if (s == e || (e[0] != ':' && e[0] != 0)) { 418 free(macstr, M_XENBUS); 419 return (ENOENT); 420 } 421 s = &e[1]; 422 } 423 free(macstr, M_XENBUS); 424 return (0); 425 } 426 427 /** 428 * Entry point to this code when a new device is created. Allocate the basic 429 * structures and the ring buffers for communication with the backend, and 430 * inform the backend of the appropriate details for those. Switch to 431 * Connected state. 432 */ 433 static int 434 netfront_probe(device_t dev) 435 { 436 437 if (xen_pv_nics_disabled()) 438 return (ENXIO); 439 440 if (!strcmp(xenbus_get_type(dev), "vif")) { 441 device_set_desc(dev, "Virtual Network Interface"); 442 return (0); 443 } 444 445 return (ENXIO); 446 } 447 448 static int 449 netfront_attach(device_t dev) 450 { 451 int err; 452 453 err = create_netdev(dev); 454 if (err != 0) { 455 xenbus_dev_fatal(dev, err, "creating netdev"); 456 return (err); 457 } 458 459 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 460 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 461 OID_AUTO, "enable_lro", CTLFLAG_RW, 462 &xn_enable_lro, 0, "Large Receive Offload"); 463 464 SYSCTL_ADD_ULONG(device_get_sysctl_ctx(dev), 465 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 466 OID_AUTO, "num_queues", CTLFLAG_RD, 467 &xn_num_queues, "Number of pairs of queues"); 468 469 return (0); 470 } 471 472 static int 473 netfront_suspend(device_t dev) 474 { 475 struct netfront_info *np = device_get_softc(dev); 476 u_int i; 477 478 for (i = 0; i < np->num_queues; i++) { 479 XN_RX_LOCK(&np->rxq[i]); 480 XN_TX_LOCK(&np->txq[i]); 481 } 482 netfront_carrier_off(np); 483 for (i = 0; i < np->num_queues; i++) { 484 XN_RX_UNLOCK(&np->rxq[i]); 485 XN_TX_UNLOCK(&np->txq[i]); 486 } 487 return (0); 488 } 489 490 /** 491 * We are reconnecting to the backend, due to a suspend/resume, or a backend 492 * driver restart. We tear down our netif structure and recreate it, but 493 * leave the device-layer structures intact so that this is transparent to the 494 * rest of the kernel. 495 */ 496 static int 497 netfront_resume(device_t dev) 498 { 499 struct netfront_info *info = device_get_softc(dev); 500 u_int i; 501 502 if (xen_suspend_cancelled) { 503 for (i = 0; i < info->num_queues; i++) { 504 XN_RX_LOCK(&info->rxq[i]); 505 XN_TX_LOCK(&info->txq[i]); 506 } 507 netfront_carrier_on(info); 508 for (i = 0; i < info->num_queues; i++) { 509 XN_RX_UNLOCK(&info->rxq[i]); 510 XN_TX_UNLOCK(&info->txq[i]); 511 } 512 return (0); 513 } 514 515 netif_disconnect_backend(info); 516 return (0); 517 } 518 519 static int 520 write_queue_xenstore_keys(device_t dev, 521 struct netfront_rxq *rxq, 522 struct netfront_txq *txq, 523 struct xs_transaction *xst, bool hierarchy) 524 { 525 int err; 526 const char *message; 527 const char *node = xenbus_get_node(dev); 528 char *path; 529 size_t path_size; 530 531 KASSERT(rxq->id == txq->id, ("Mismatch between RX and TX queue ids")); 532 /* Split event channel support is not yet there. */ 533 KASSERT(rxq->xen_intr_handle == txq->xen_intr_handle, 534 ("Split event channels are not supported")); 535 536 if (hierarchy) { 537 path_size = strlen(node) + 10; 538 path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO); 539 snprintf(path, path_size, "%s/queue-%u", node, rxq->id); 540 } else { 541 path_size = strlen(node) + 1; 542 path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO); 543 snprintf(path, path_size, "%s", node); 544 } 545 546 err = xs_printf(*xst, path, "tx-ring-ref","%u", txq->ring_ref); 547 if (err != 0) { 548 message = "writing tx ring-ref"; 549 goto error; 550 } 551 err = xs_printf(*xst, path, "rx-ring-ref","%u", rxq->ring_ref); 552 if (err != 0) { 553 message = "writing rx ring-ref"; 554 goto error; 555 } 556 err = xs_printf(*xst, path, "event-channel", "%u", 557 xen_intr_port(rxq->xen_intr_handle)); 558 if (err != 0) { 559 message = "writing event-channel"; 560 goto error; 561 } 562 563 free(path, M_DEVBUF); 564 565 return (0); 566 567 error: 568 free(path, M_DEVBUF); 569 xenbus_dev_fatal(dev, err, "%s", message); 570 571 return (err); 572 } 573 574 /* Common code used when first setting up, and when resuming. */ 575 static int 576 talk_to_backend(device_t dev, struct netfront_info *info) 577 { 578 const char *message; 579 struct xs_transaction xst; 580 const char *node = xenbus_get_node(dev); 581 int err; 582 unsigned long num_queues, max_queues = 0; 583 unsigned int i; 584 585 err = xen_net_read_mac(dev, info->mac); 586 if (err != 0) { 587 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 588 goto out; 589 } 590 591 err = xs_scanf(XST_NIL, xenbus_get_otherend_path(info->xbdev), 592 "multi-queue-max-queues", NULL, "%lu", &max_queues); 593 if (err != 0) 594 max_queues = 1; 595 num_queues = xn_num_queues; 596 if (num_queues > max_queues) 597 num_queues = max_queues; 598 599 err = setup_device(dev, info, num_queues); 600 if (err != 0) { 601 xenbus_dev_fatal(dev, err, "setup device"); 602 goto out; 603 } 604 605 again: 606 err = xs_transaction_start(&xst); 607 if (err != 0) { 608 xenbus_dev_fatal(dev, err, "starting transaction"); 609 goto free; 610 } 611 612 if (info->num_queues == 1) { 613 err = write_queue_xenstore_keys(dev, &info->rxq[0], 614 &info->txq[0], &xst, false); 615 if (err != 0) 616 goto abort_transaction_no_def_error; 617 } else { 618 err = xs_printf(xst, node, "multi-queue-num-queues", 619 "%u", info->num_queues); 620 if (err != 0) { 621 message = "writing multi-queue-num-queues"; 622 goto abort_transaction; 623 } 624 625 for (i = 0; i < info->num_queues; i++) { 626 err = write_queue_xenstore_keys(dev, &info->rxq[i], 627 &info->txq[i], &xst, true); 628 if (err != 0) 629 goto abort_transaction_no_def_error; 630 } 631 } 632 633 err = xs_printf(xst, node, "request-rx-copy", "%u", 1); 634 if (err != 0) { 635 message = "writing request-rx-copy"; 636 goto abort_transaction; 637 } 638 err = xs_printf(xst, node, "feature-rx-notify", "%d", 1); 639 if (err != 0) { 640 message = "writing feature-rx-notify"; 641 goto abort_transaction; 642 } 643 err = xs_printf(xst, node, "feature-sg", "%d", 1); 644 if (err != 0) { 645 message = "writing feature-sg"; 646 goto abort_transaction; 647 } 648 if ((if_getcapenable(info->xn_ifp) & IFCAP_LRO) != 0) { 649 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1); 650 if (err != 0) { 651 message = "writing feature-gso-tcpv4"; 652 goto abort_transaction; 653 } 654 } 655 if ((if_getcapenable(info->xn_ifp) & IFCAP_RXCSUM) == 0) { 656 err = xs_printf(xst, node, "feature-no-csum-offload", "%d", 1); 657 if (err != 0) { 658 message = "writing feature-no-csum-offload"; 659 goto abort_transaction; 660 } 661 } 662 663 err = xs_transaction_end(xst, 0); 664 if (err != 0) { 665 if (err == EAGAIN) 666 goto again; 667 xenbus_dev_fatal(dev, err, "completing transaction"); 668 goto free; 669 } 670 671 return 0; 672 673 abort_transaction: 674 xenbus_dev_fatal(dev, err, "%s", message); 675 abort_transaction_no_def_error: 676 xs_transaction_end(xst, 1); 677 free: 678 netif_free(info); 679 out: 680 return (err); 681 } 682 683 static void 684 xn_rxq_intr(struct netfront_rxq *rxq) 685 { 686 687 XN_RX_LOCK(rxq); 688 xn_rxeof(rxq); 689 XN_RX_UNLOCK(rxq); 690 } 691 692 static void 693 xn_txq_start(struct netfront_txq *txq) 694 { 695 struct netfront_info *np = txq->info; 696 if_t ifp = np->xn_ifp; 697 698 XN_TX_LOCK_ASSERT(txq); 699 if (!drbr_empty(ifp, txq->br)) 700 xn_txq_mq_start_locked(txq, NULL); 701 } 702 703 static void 704 xn_txq_intr(struct netfront_txq *txq) 705 { 706 707 XN_TX_LOCK(txq); 708 if (RING_HAS_UNCONSUMED_RESPONSES(&txq->ring)) 709 xn_txeof(txq); 710 xn_txq_start(txq); 711 XN_TX_UNLOCK(txq); 712 } 713 714 static void 715 xn_txq_tq_deferred(void *xtxq, int pending) 716 { 717 struct netfront_txq *txq = xtxq; 718 719 XN_TX_LOCK(txq); 720 xn_txq_start(txq); 721 XN_TX_UNLOCK(txq); 722 } 723 724 static void 725 disconnect_rxq(struct netfront_rxq *rxq) 726 { 727 728 xn_release_rx_bufs(rxq); 729 gnttab_free_grant_references(rxq->gref_head); 730 if (rxq->ring_ref != GRANT_REF_INVALID) { 731 gnttab_end_foreign_access(rxq->ring_ref, NULL); 732 rxq->ring_ref = GRANT_REF_INVALID; 733 } 734 /* 735 * No split event channel support at the moment, handle will 736 * be unbound in tx. So no need to call xen_intr_unbind here, 737 * but we do want to reset the handler to 0. 738 */ 739 rxq->xen_intr_handle = 0; 740 } 741 742 static void 743 destroy_rxq(struct netfront_rxq *rxq) 744 { 745 746 callout_drain(&rxq->rx_refill); 747 free(rxq->ring.sring, M_DEVBUF); 748 rxq->ring.sring = NULL; 749 } 750 751 static void 752 destroy_rxqs(struct netfront_info *np) 753 { 754 int i; 755 756 for (i = 0; i < np->num_queues; i++) 757 destroy_rxq(&np->rxq[i]); 758 759 free(np->rxq, M_DEVBUF); 760 np->rxq = NULL; 761 } 762 763 static int 764 setup_rxqs(device_t dev, struct netfront_info *info, 765 unsigned long num_queues) 766 { 767 int q, i; 768 int error; 769 netif_rx_sring_t *rxs; 770 struct netfront_rxq *rxq; 771 772 info->rxq = malloc(sizeof(struct netfront_rxq) * num_queues, 773 M_DEVBUF, M_WAITOK|M_ZERO); 774 775 for (q = 0; q < num_queues; q++) { 776 rxq = &info->rxq[q]; 777 778 rxq->id = q; 779 rxq->info = info; 780 781 rxq->gref_head = GNTTAB_LIST_END; 782 rxq->ring_ref = GRANT_REF_INVALID; 783 rxq->ring.sring = NULL; 784 snprintf(rxq->name, XN_QUEUE_NAME_LEN, "xnrx_%u", q); 785 mtx_init(&rxq->lock, rxq->name, "netfront receive lock", 786 MTX_DEF); 787 788 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 789 rxq->mbufs[i] = NULL; 790 rxq->grant_ref[i] = GRANT_REF_INVALID; 791 } 792 793 /* Start resources allocation */ 794 795 if (gnttab_alloc_grant_references(NET_RX_RING_SIZE, 796 &rxq->gref_head) != 0) { 797 device_printf(dev, "allocating rx gref"); 798 error = ENOMEM; 799 goto fail; 800 } 801 802 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, 803 M_WAITOK|M_ZERO); 804 SHARED_RING_INIT(rxs); 805 FRONT_RING_INIT(&rxq->ring, rxs, PAGE_SIZE); 806 807 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), 808 &rxq->ring_ref); 809 if (error != 0) { 810 device_printf(dev, "granting rx ring page"); 811 goto fail_grant_ring; 812 } 813 814 callout_init(&rxq->rx_refill, 1); 815 } 816 817 return (0); 818 819 fail_grant_ring: 820 gnttab_free_grant_references(rxq->gref_head); 821 free(rxq->ring.sring, M_DEVBUF); 822 fail: 823 for (; q >= 0; q--) { 824 disconnect_rxq(&info->rxq[q]); 825 destroy_rxq(&info->rxq[q]); 826 } 827 828 free(info->rxq, M_DEVBUF); 829 return (error); 830 } 831 832 static void 833 disconnect_txq(struct netfront_txq *txq) 834 { 835 836 xn_release_tx_bufs(txq); 837 gnttab_free_grant_references(txq->gref_head); 838 if (txq->ring_ref != GRANT_REF_INVALID) { 839 gnttab_end_foreign_access(txq->ring_ref, NULL); 840 txq->ring_ref = GRANT_REF_INVALID; 841 } 842 xen_intr_unbind(&txq->xen_intr_handle); 843 } 844 845 static void 846 destroy_txq(struct netfront_txq *txq) 847 { 848 unsigned int i; 849 850 free(txq->ring.sring, M_DEVBUF); 851 txq->ring.sring = NULL; 852 buf_ring_free(txq->br, M_DEVBUF); 853 txq->br = NULL; 854 if (txq->tq) { 855 taskqueue_drain_all(txq->tq); 856 taskqueue_free(txq->tq); 857 txq->tq = NULL; 858 } 859 860 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 861 bus_dmamap_destroy(txq->info->dma_tag, 862 txq->xennet_tag[i].dma_map); 863 txq->xennet_tag[i].dma_map = NULL; 864 } 865 } 866 867 static void 868 destroy_txqs(struct netfront_info *np) 869 { 870 int i; 871 872 for (i = 0; i < np->num_queues; i++) 873 destroy_txq(&np->txq[i]); 874 875 free(np->txq, M_DEVBUF); 876 np->txq = NULL; 877 } 878 879 static int 880 setup_txqs(device_t dev, struct netfront_info *info, 881 unsigned long num_queues) 882 { 883 int q, i; 884 int error; 885 netif_tx_sring_t *txs; 886 struct netfront_txq *txq; 887 888 info->txq = malloc(sizeof(struct netfront_txq) * num_queues, 889 M_DEVBUF, M_WAITOK|M_ZERO); 890 891 for (q = 0; q < num_queues; q++) { 892 txq = &info->txq[q]; 893 894 txq->id = q; 895 txq->info = info; 896 897 txq->gref_head = GNTTAB_LIST_END; 898 txq->ring_ref = GRANT_REF_INVALID; 899 txq->ring.sring = NULL; 900 901 snprintf(txq->name, XN_QUEUE_NAME_LEN, "xntx_%u", q); 902 903 mtx_init(&txq->lock, txq->name, "netfront transmit lock", 904 MTX_DEF); 905 SLIST_INIT(&txq->tags); 906 907 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 908 txq->mbufs[i] = (void *) ((u_long) i+1); 909 txq->grant_ref[i] = GRANT_REF_INVALID; 910 txq->xennet_tag[i].txq = txq; 911 txq->xennet_tag[i].dma_tag = info->dma_tag; 912 error = bus_dmamap_create(info->dma_tag, 0, 913 &txq->xennet_tag[i].dma_map); 914 if (error != 0) { 915 device_printf(dev, 916 "failed to allocate dma map\n"); 917 goto fail; 918 } 919 m_tag_setup(&txq->xennet_tag[i].tag, 920 MTAG_COOKIE, MTAG_XENNET, 921 sizeof(txq->xennet_tag[i]) - 922 sizeof(txq->xennet_tag[i].tag)); 923 txq->xennet_tag[i].tag.m_tag_free = &tag_free; 924 SLIST_INSERT_HEAD(&txq->tags, &txq->xennet_tag[i], 925 next); 926 } 927 txq->mbufs[NET_TX_RING_SIZE] = (void *)0; 928 929 /* Start resources allocation. */ 930 931 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 932 &txq->gref_head) != 0) { 933 device_printf(dev, "failed to allocate tx grant refs\n"); 934 error = ENOMEM; 935 goto fail; 936 } 937 938 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, 939 M_WAITOK|M_ZERO); 940 SHARED_RING_INIT(txs); 941 FRONT_RING_INIT(&txq->ring, txs, PAGE_SIZE); 942 943 error = xenbus_grant_ring(dev, virt_to_mfn(txs), 944 &txq->ring_ref); 945 if (error != 0) { 946 device_printf(dev, "failed to grant tx ring\n"); 947 goto fail_grant_ring; 948 } 949 950 txq->br = buf_ring_alloc(NET_TX_RING_SIZE, M_DEVBUF, 951 M_WAITOK, &txq->lock); 952 TASK_INIT(&txq->defrtask, 0, xn_txq_tq_deferred, txq); 953 954 txq->tq = taskqueue_create(txq->name, M_WAITOK, 955 taskqueue_thread_enqueue, &txq->tq); 956 957 error = taskqueue_start_threads(&txq->tq, 1, PI_NET, 958 "%s txq %d", device_get_nameunit(dev), txq->id); 959 if (error != 0) { 960 device_printf(dev, "failed to start tx taskq %d\n", 961 txq->id); 962 goto fail_start_thread; 963 } 964 965 error = xen_intr_alloc_and_bind_local_port(dev, 966 xenbus_get_otherend_id(dev), /* filter */ NULL, xn_intr, 967 &info->txq[q], INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, 968 &txq->xen_intr_handle); 969 970 if (error != 0) { 971 device_printf(dev, "xen_intr_alloc_and_bind_local_port failed\n"); 972 goto fail_bind_port; 973 } 974 } 975 976 return (0); 977 978 fail_bind_port: 979 taskqueue_drain_all(txq->tq); 980 fail_start_thread: 981 buf_ring_free(txq->br, M_DEVBUF); 982 taskqueue_free(txq->tq); 983 gnttab_end_foreign_access(txq->ring_ref, NULL); 984 fail_grant_ring: 985 gnttab_free_grant_references(txq->gref_head); 986 free(txq->ring.sring, M_DEVBUF); 987 fail: 988 for (; q >= 0; q--) { 989 disconnect_txq(&info->txq[q]); 990 destroy_txq(&info->txq[q]); 991 } 992 993 free(info->txq, M_DEVBUF); 994 return (error); 995 } 996 997 static int 998 setup_device(device_t dev, struct netfront_info *info, 999 unsigned long num_queues) 1000 { 1001 int error; 1002 int q; 1003 1004 if (info->txq) 1005 destroy_txqs(info); 1006 1007 if (info->rxq) 1008 destroy_rxqs(info); 1009 1010 info->num_queues = 0; 1011 1012 error = setup_rxqs(dev, info, num_queues); 1013 if (error != 0) 1014 goto out; 1015 error = setup_txqs(dev, info, num_queues); 1016 if (error != 0) 1017 goto out; 1018 1019 info->num_queues = num_queues; 1020 1021 /* No split event channel at the moment. */ 1022 for (q = 0; q < num_queues; q++) 1023 info->rxq[q].xen_intr_handle = info->txq[q].xen_intr_handle; 1024 1025 return (0); 1026 1027 out: 1028 KASSERT(error != 0, ("Error path taken without providing an error code")); 1029 return (error); 1030 } 1031 1032 /** 1033 * Callback received when the backend's state changes. 1034 */ 1035 static void 1036 netfront_backend_changed(device_t dev, XenbusState newstate) 1037 { 1038 struct netfront_info *sc = device_get_softc(dev); 1039 1040 DPRINTK("newstate=%d\n", newstate); 1041 1042 CURVNET_SET(if_getvnet(sc->xn_ifp)); 1043 1044 switch (newstate) { 1045 case XenbusStateInitialising: 1046 case XenbusStateInitialised: 1047 case XenbusStateUnknown: 1048 case XenbusStateReconfigured: 1049 case XenbusStateReconfiguring: 1050 break; 1051 case XenbusStateInitWait: 1052 if (xenbus_get_state(dev) != XenbusStateInitialising) 1053 break; 1054 if (xn_connect(sc) != 0) 1055 break; 1056 /* Switch to connected state before kicking the rings. */ 1057 xenbus_set_state(sc->xbdev, XenbusStateConnected); 1058 xn_kick_rings(sc); 1059 break; 1060 case XenbusStateClosing: 1061 xenbus_set_state(dev, XenbusStateClosed); 1062 break; 1063 case XenbusStateClosed: 1064 if (sc->xn_reset) { 1065 netif_disconnect_backend(sc); 1066 xenbus_set_state(dev, XenbusStateInitialising); 1067 sc->xn_reset = false; 1068 } 1069 break; 1070 case XenbusStateConnected: 1071 #ifdef INET 1072 /* 1073 * If this interface has an ipv4 address, send an arp for it. 1074 * This helps to get the network going again after migrating 1075 * hosts. 1076 */ 1077 EVENTHANDLER_INVOKE(iflladdr_event, sc->xn_ifp); 1078 #endif 1079 break; 1080 } 1081 1082 CURVNET_RESTORE(); 1083 } 1084 1085 /** 1086 * \brief Verify that there is sufficient space in the Tx ring 1087 * buffer for a maximally sized request to be enqueued. 1088 * 1089 * A transmit request requires a transmit descriptor for each packet 1090 * fragment, plus up to 2 entries for "options" (e.g. TSO). 1091 */ 1092 static inline int 1093 xn_tx_slot_available(struct netfront_txq *txq) 1094 { 1095 1096 return (RING_FREE_REQUESTS(&txq->ring) > (MAX_TX_REQ_FRAGS + 2)); 1097 } 1098 1099 static void 1100 xn_release_tx_bufs(struct netfront_txq *txq) 1101 { 1102 int i; 1103 1104 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 1105 struct mbuf *m; 1106 1107 m = txq->mbufs[i]; 1108 1109 /* 1110 * We assume that no kernel addresses are 1111 * less than NET_TX_RING_SIZE. Any entry 1112 * in the table that is below this number 1113 * must be an index from free-list tracking. 1114 */ 1115 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 1116 continue; 1117 gnttab_end_foreign_access_ref(txq->grant_ref[i]); 1118 gnttab_release_grant_reference(&txq->gref_head, 1119 txq->grant_ref[i]); 1120 txq->grant_ref[i] = GRANT_REF_INVALID; 1121 add_id_to_freelist(txq->mbufs, i); 1122 txq->mbufs_cnt--; 1123 if (txq->mbufs_cnt < 0) { 1124 panic("%s: tx_chain_cnt must be >= 0", __func__); 1125 } 1126 mbuf_release(m); 1127 } 1128 } 1129 1130 static struct mbuf * 1131 xn_alloc_one_rx_buffer(struct netfront_rxq *rxq) 1132 { 1133 struct mbuf *m; 1134 1135 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1136 if (m == NULL) 1137 return NULL; 1138 m->m_len = m->m_pkthdr.len = MJUMPAGESIZE; 1139 1140 return (m); 1141 } 1142 1143 static void 1144 xn_alloc_rx_buffers(struct netfront_rxq *rxq) 1145 { 1146 RING_IDX req_prod; 1147 int notify; 1148 1149 XN_RX_LOCK_ASSERT(rxq); 1150 1151 if (__predict_false(rxq->info->carrier == 0)) 1152 return; 1153 1154 for (req_prod = rxq->ring.req_prod_pvt; 1155 req_prod - rxq->ring.rsp_cons < NET_RX_RING_SIZE; 1156 req_prod++) { 1157 struct mbuf *m; 1158 unsigned short id; 1159 grant_ref_t ref; 1160 struct netif_rx_request *req; 1161 unsigned long pfn; 1162 1163 m = xn_alloc_one_rx_buffer(rxq); 1164 if (m == NULL) 1165 break; 1166 1167 id = xn_rxidx(req_prod); 1168 1169 KASSERT(rxq->mbufs[id] == NULL, ("non-NULL xn_rx_chain")); 1170 rxq->mbufs[id] = m; 1171 1172 ref = gnttab_claim_grant_reference(&rxq->gref_head); 1173 KASSERT(ref != GNTTAB_LIST_END, 1174 ("reserved grant references exhuasted")); 1175 rxq->grant_ref[id] = ref; 1176 1177 pfn = atop(vtophys(mtod(m, vm_offset_t))); 1178 req = RING_GET_REQUEST(&rxq->ring, req_prod); 1179 1180 gnttab_grant_foreign_access_ref(ref, 1181 xenbus_get_otherend_id(rxq->info->xbdev), pfn, 0); 1182 req->id = id; 1183 req->gref = ref; 1184 } 1185 1186 rxq->ring.req_prod_pvt = req_prod; 1187 1188 /* Not enough requests? Try again later. */ 1189 if (req_prod - rxq->ring.rsp_cons < NET_RX_SLOTS_MIN) { 1190 callout_reset_curcpu(&rxq->rx_refill, hz/10, 1191 xn_alloc_rx_buffers_callout, rxq); 1192 return; 1193 } 1194 1195 wmb(); /* barrier so backend seens requests */ 1196 1197 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rxq->ring, notify); 1198 if (notify) 1199 xen_intr_signal(rxq->xen_intr_handle); 1200 } 1201 1202 static void xn_alloc_rx_buffers_callout(void *arg) 1203 { 1204 struct netfront_rxq *rxq; 1205 1206 rxq = (struct netfront_rxq *)arg; 1207 XN_RX_LOCK(rxq); 1208 xn_alloc_rx_buffers(rxq); 1209 XN_RX_UNLOCK(rxq); 1210 } 1211 1212 static void 1213 xn_release_rx_bufs(struct netfront_rxq *rxq) 1214 { 1215 int i, ref; 1216 struct mbuf *m; 1217 1218 for (i = 0; i < NET_RX_RING_SIZE; i++) { 1219 m = rxq->mbufs[i]; 1220 1221 if (m == NULL) 1222 continue; 1223 1224 ref = rxq->grant_ref[i]; 1225 if (ref == GRANT_REF_INVALID) 1226 continue; 1227 1228 gnttab_end_foreign_access_ref(ref); 1229 gnttab_release_grant_reference(&rxq->gref_head, ref); 1230 rxq->mbufs[i] = NULL; 1231 rxq->grant_ref[i] = GRANT_REF_INVALID; 1232 m_freem(m); 1233 } 1234 } 1235 1236 static void 1237 xn_rxeof(struct netfront_rxq *rxq) 1238 { 1239 if_t ifp; 1240 struct netfront_info *np = rxq->info; 1241 #if (defined(INET) || defined(INET6)) 1242 struct lro_ctrl *lro = &rxq->lro; 1243 #endif 1244 struct netfront_rx_info rinfo; 1245 struct netif_rx_response *rx = &rinfo.rx; 1246 struct netif_extra_info *extras = rinfo.extras; 1247 RING_IDX i, rp; 1248 struct mbuf *m; 1249 struct mbufq mbufq_rxq, mbufq_errq; 1250 int err, work_to_do; 1251 1252 XN_RX_LOCK_ASSERT(rxq); 1253 1254 if (!netfront_carrier_ok(np)) 1255 return; 1256 1257 /* XXX: there should be some sane limit. */ 1258 mbufq_init(&mbufq_errq, INT_MAX); 1259 mbufq_init(&mbufq_rxq, INT_MAX); 1260 1261 ifp = np->xn_ifp; 1262 1263 do { 1264 rp = rxq->ring.sring->rsp_prod; 1265 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1266 1267 i = rxq->ring.rsp_cons; 1268 while ((i != rp)) { 1269 memcpy(rx, RING_GET_RESPONSE(&rxq->ring, i), sizeof(*rx)); 1270 memset(extras, 0, sizeof(rinfo.extras)); 1271 1272 m = NULL; 1273 err = xn_get_responses(rxq, &rinfo, rp, &i, &m); 1274 1275 if (__predict_false(err)) { 1276 if (m) 1277 (void )mbufq_enqueue(&mbufq_errq, m); 1278 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1279 continue; 1280 } 1281 1282 m->m_pkthdr.rcvif = ifp; 1283 if (rx->flags & NETRXF_data_validated) { 1284 /* 1285 * According to mbuf(9) the correct way to tell 1286 * the stack that the checksum of an inbound 1287 * packet is correct, without it actually being 1288 * present (because the underlying interface 1289 * doesn't provide it), is to set the 1290 * CSUM_DATA_VALID and CSUM_PSEUDO_HDR flags, 1291 * and the csum_data field to 0xffff. 1292 */ 1293 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID 1294 | CSUM_PSEUDO_HDR); 1295 m->m_pkthdr.csum_data = 0xffff; 1296 } 1297 if ((rx->flags & NETRXF_extra_info) != 0 && 1298 (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type == 1299 XEN_NETIF_EXTRA_TYPE_GSO)) { 1300 m->m_pkthdr.tso_segsz = 1301 extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].u.gso.size; 1302 m->m_pkthdr.csum_flags |= CSUM_TSO; 1303 } 1304 1305 (void )mbufq_enqueue(&mbufq_rxq, m); 1306 } 1307 1308 rxq->ring.rsp_cons = i; 1309 1310 xn_alloc_rx_buffers(rxq); 1311 1312 RING_FINAL_CHECK_FOR_RESPONSES(&rxq->ring, work_to_do); 1313 } while (work_to_do); 1314 1315 mbufq_drain(&mbufq_errq); 1316 /* 1317 * Process all the mbufs after the remapping is complete. 1318 * Break the mbuf chain first though. 1319 */ 1320 while ((m = mbufq_dequeue(&mbufq_rxq)) != NULL) { 1321 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1322 #if (defined(INET) || defined(INET6)) 1323 /* Use LRO if possible */ 1324 if ((if_getcapenable(ifp) & IFCAP_LRO) == 0 || 1325 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1326 /* 1327 * If LRO fails, pass up to the stack 1328 * directly. 1329 */ 1330 if_input(ifp, m); 1331 } 1332 #else 1333 if_input(ifp, m); 1334 #endif 1335 } 1336 1337 #if (defined(INET) || defined(INET6)) 1338 /* 1339 * Flush any outstanding LRO work 1340 */ 1341 tcp_lro_flush_all(lro); 1342 #endif 1343 } 1344 1345 static void 1346 xn_txeof(struct netfront_txq *txq) 1347 { 1348 RING_IDX i, prod; 1349 unsigned short id; 1350 if_t ifp; 1351 netif_tx_response_t *txr; 1352 struct mbuf *m; 1353 struct netfront_info *np = txq->info; 1354 1355 XN_TX_LOCK_ASSERT(txq); 1356 1357 if (!netfront_carrier_ok(np)) 1358 return; 1359 1360 ifp = np->xn_ifp; 1361 1362 do { 1363 prod = txq->ring.sring->rsp_prod; 1364 rmb(); /* Ensure we see responses up to 'rp'. */ 1365 1366 for (i = txq->ring.rsp_cons; i != prod; i++) { 1367 txr = RING_GET_RESPONSE(&txq->ring, i); 1368 if (txr->status == NETIF_RSP_NULL) 1369 continue; 1370 1371 if (txr->status != NETIF_RSP_OKAY) { 1372 printf("%s: WARNING: response is %d!\n", 1373 __func__, txr->status); 1374 } 1375 id = txr->id; 1376 m = txq->mbufs[id]; 1377 KASSERT(m != NULL, ("mbuf not found in chain")); 1378 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1379 ("mbuf already on the free list, but we're " 1380 "trying to free it again!")); 1381 M_ASSERTVALID(m); 1382 1383 if (__predict_false(gnttab_query_foreign_access( 1384 txq->grant_ref[id]) != 0)) { 1385 panic("%s: grant id %u still in use by the " 1386 "backend", __func__, id); 1387 } 1388 gnttab_end_foreign_access_ref(txq->grant_ref[id]); 1389 gnttab_release_grant_reference( 1390 &txq->gref_head, txq->grant_ref[id]); 1391 txq->grant_ref[id] = GRANT_REF_INVALID; 1392 1393 txq->mbufs[id] = NULL; 1394 add_id_to_freelist(txq->mbufs, id); 1395 txq->mbufs_cnt--; 1396 mbuf_release(m); 1397 /* Only mark the txq active if we've freed up at least one slot to try */ 1398 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 1399 } 1400 txq->ring.rsp_cons = prod; 1401 1402 /* 1403 * Set a new event, then check for race with update of 1404 * tx_cons. Note that it is essential to schedule a 1405 * callback, no matter how few buffers are pending. Even if 1406 * there is space in the transmit ring, higher layers may 1407 * be blocked because too much data is outstanding: in such 1408 * cases notification from Xen is likely to be the only kick 1409 * that we'll get. 1410 */ 1411 txq->ring.sring->rsp_event = 1412 prod + ((txq->ring.sring->req_prod - prod) >> 1) + 1; 1413 1414 mb(); 1415 } while (prod != txq->ring.sring->rsp_prod); 1416 1417 if (txq->full && 1418 ((txq->ring.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1419 txq->full = false; 1420 xn_txq_start(txq); 1421 } 1422 } 1423 1424 static void 1425 xn_intr(void *xsc) 1426 { 1427 struct netfront_txq *txq = xsc; 1428 struct netfront_info *np = txq->info; 1429 struct netfront_rxq *rxq = &np->rxq[txq->id]; 1430 1431 /* kick both tx and rx */ 1432 xn_rxq_intr(rxq); 1433 xn_txq_intr(txq); 1434 } 1435 1436 static void 1437 xn_move_rx_slot(struct netfront_rxq *rxq, struct mbuf *m, 1438 grant_ref_t ref) 1439 { 1440 int new = xn_rxidx(rxq->ring.req_prod_pvt); 1441 1442 KASSERT(rxq->mbufs[new] == NULL, ("mbufs != NULL")); 1443 rxq->mbufs[new] = m; 1444 rxq->grant_ref[new] = ref; 1445 RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->id = new; 1446 RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->gref = ref; 1447 rxq->ring.req_prod_pvt++; 1448 } 1449 1450 static int 1451 xn_get_extras(struct netfront_rxq *rxq, 1452 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1453 { 1454 struct netif_extra_info *extra; 1455 1456 int err = 0; 1457 1458 do { 1459 struct mbuf *m; 1460 grant_ref_t ref; 1461 1462 if (__predict_false(*cons + 1 == rp)) { 1463 err = EINVAL; 1464 break; 1465 } 1466 1467 extra = (struct netif_extra_info *) 1468 RING_GET_RESPONSE(&rxq->ring, ++(*cons)); 1469 1470 if (__predict_false(!extra->type || 1471 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1472 err = EINVAL; 1473 } else { 1474 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1475 } 1476 1477 m = xn_get_rx_mbuf(rxq, *cons); 1478 ref = xn_get_rx_ref(rxq, *cons); 1479 xn_move_rx_slot(rxq, m, ref); 1480 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1481 1482 return err; 1483 } 1484 1485 static int 1486 xn_get_responses(struct netfront_rxq *rxq, 1487 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1488 struct mbuf **list) 1489 { 1490 struct netif_rx_response *rx = &rinfo->rx; 1491 struct netif_extra_info *extras = rinfo->extras; 1492 struct mbuf *m, *m0, *m_prev; 1493 grant_ref_t ref = xn_get_rx_ref(rxq, *cons); 1494 int frags = 1; 1495 int err = 0; 1496 u_long ret __diagused; 1497 1498 m0 = m = m_prev = xn_get_rx_mbuf(rxq, *cons); 1499 1500 if (rx->flags & NETRXF_extra_info) { 1501 err = xn_get_extras(rxq, extras, rp, cons); 1502 } 1503 1504 if (m0 != NULL) { 1505 m0->m_pkthdr.len = 0; 1506 m0->m_next = NULL; 1507 } 1508 1509 for (;;) { 1510 #if 0 1511 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1512 rx->status, rx->offset, frags); 1513 #endif 1514 if (__predict_false(rx->status < 0 || 1515 rx->offset + rx->status > PAGE_SIZE)) { 1516 xn_move_rx_slot(rxq, m, ref); 1517 if (m0 == m) 1518 m0 = NULL; 1519 m = NULL; 1520 err = EINVAL; 1521 goto next_skip_queue; 1522 } 1523 1524 /* 1525 * This definitely indicates a bug, either in this driver or in 1526 * the backend driver. In future this should flag the bad 1527 * situation to the system controller to reboot the backed. 1528 */ 1529 if (ref == GRANT_REF_INVALID) { 1530 printf("%s: Bad rx response id %d.\n", __func__, rx->id); 1531 err = EINVAL; 1532 goto next; 1533 } 1534 1535 ret = gnttab_end_foreign_access_ref(ref); 1536 KASSERT(ret, ("Unable to end access to grant references")); 1537 1538 gnttab_release_grant_reference(&rxq->gref_head, ref); 1539 1540 next: 1541 if (m == NULL) 1542 break; 1543 1544 m->m_len = rx->status; 1545 m->m_data += rx->offset; 1546 m0->m_pkthdr.len += rx->status; 1547 1548 next_skip_queue: 1549 if (!(rx->flags & NETRXF_more_data)) 1550 break; 1551 1552 if (*cons + frags == rp) { 1553 if (net_ratelimit()) 1554 WPRINTK("Need more frags\n"); 1555 err = ENOENT; 1556 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1557 __func__, *cons, frags, rp); 1558 break; 1559 } 1560 /* 1561 * Note that m can be NULL, if rx->status < 0 or if 1562 * rx->offset + rx->status > PAGE_SIZE above. 1563 */ 1564 m_prev = m; 1565 1566 rx = RING_GET_RESPONSE(&rxq->ring, *cons + frags); 1567 m = xn_get_rx_mbuf(rxq, *cons + frags); 1568 1569 /* 1570 * m_prev == NULL can happen if rx->status < 0 or if 1571 * rx->offset + * rx->status > PAGE_SIZE above. 1572 */ 1573 if (m_prev != NULL) 1574 m_prev->m_next = m; 1575 1576 /* 1577 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1578 * rx->status > PAGE_SIZE above. 1579 */ 1580 if (m0 == NULL) 1581 m0 = m; 1582 m->m_next = NULL; 1583 ref = xn_get_rx_ref(rxq, *cons + frags); 1584 frags++; 1585 } 1586 *list = m0; 1587 *cons += frags; 1588 1589 return (err); 1590 } 1591 1592 /** 1593 * Given an mbuf chain, make sure we have enough room and then push 1594 * it onto the transmit ring. 1595 */ 1596 static int 1597 xn_assemble_tx_request(struct netfront_txq *txq, struct mbuf *m_head) 1598 { 1599 struct netfront_info *np = txq->info; 1600 if_t ifp = np->xn_ifp; 1601 int otherend_id, error, nfrags; 1602 bus_dma_segment_t *segs = txq->segs; 1603 struct mbuf_xennet *tag; 1604 bus_dmamap_t map; 1605 unsigned int i; 1606 1607 KASSERT(!SLIST_EMPTY(&txq->tags), ("no tags available")); 1608 tag = SLIST_FIRST(&txq->tags); 1609 SLIST_REMOVE_HEAD(&txq->tags, next); 1610 KASSERT(tag->count == 0, ("tag already in-use")); 1611 map = tag->dma_map; 1612 error = bus_dmamap_load_mbuf_sg(np->dma_tag, map, m_head, segs, 1613 &nfrags, 0); 1614 if (error == EFBIG || nfrags > np->maxfrags) { 1615 struct mbuf *m; 1616 1617 bus_dmamap_unload(np->dma_tag, map); 1618 m = m_defrag(m_head, M_NOWAIT); 1619 if (!m) { 1620 /* 1621 * Defrag failed, so free the mbuf and 1622 * therefore drop the packet. 1623 */ 1624 SLIST_INSERT_HEAD(&txq->tags, tag, next); 1625 m_freem(m_head); 1626 return (EMSGSIZE); 1627 } 1628 m_head = m; 1629 error = bus_dmamap_load_mbuf_sg(np->dma_tag, map, m_head, segs, 1630 &nfrags, 0); 1631 if (error != 0 || nfrags > np->maxfrags) { 1632 bus_dmamap_unload(np->dma_tag, map); 1633 SLIST_INSERT_HEAD(&txq->tags, tag, next); 1634 m_freem(m_head); 1635 return (error ?: EFBIG); 1636 } 1637 } else if (error != 0) { 1638 SLIST_INSERT_HEAD(&txq->tags, tag, next); 1639 m_freem(m_head); 1640 return (error); 1641 } 1642 1643 /** 1644 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1645 * of mbufs longer than Linux can handle. Make sure we don't 1646 * pass a too-long chain over to the other side by dropping the 1647 * packet. It doesn't look like there is currently a way to 1648 * tell the TCP stack to generate a shorter chain of packets. 1649 */ 1650 if (nfrags > MAX_TX_REQ_FRAGS) { 1651 #ifdef DEBUG 1652 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback " 1653 "won't be able to handle it, dropping\n", 1654 __func__, nfrags, MAX_TX_REQ_FRAGS); 1655 #endif 1656 SLIST_INSERT_HEAD(&txq->tags, tag, next); 1657 bus_dmamap_unload(np->dma_tag, map); 1658 m_freem(m_head); 1659 return (EMSGSIZE); 1660 } 1661 1662 /* 1663 * This check should be redundant. We've already verified that we 1664 * have enough slots in the ring to handle a packet of maximum 1665 * size, and that our packet is less than the maximum size. Keep 1666 * it in here as an assert for now just to make certain that 1667 * chain_cnt is accurate. 1668 */ 1669 KASSERT((txq->mbufs_cnt + nfrags) <= NET_TX_RING_SIZE, 1670 ("%s: chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1671 "(%d)!", __func__, (int) txq->mbufs_cnt, 1672 (int) nfrags, (int) NET_TX_RING_SIZE)); 1673 1674 /* 1675 * Start packing the mbufs in this chain into 1676 * the fragment pointers. Stop when we run out 1677 * of fragments or hit the end of the mbuf chain. 1678 */ 1679 otherend_id = xenbus_get_otherend_id(np->xbdev); 1680 m_tag_prepend(m_head, &tag->tag); 1681 for (i = 0; i < nfrags; i++) { 1682 netif_tx_request_t *tx; 1683 uintptr_t id; 1684 grant_ref_t ref; 1685 u_long mfn; /* XXX Wrong type? */ 1686 1687 tx = RING_GET_REQUEST(&txq->ring, txq->ring.req_prod_pvt); 1688 id = get_id_from_freelist(txq->mbufs); 1689 if (id == 0) 1690 panic("%s: was allocated the freelist head!\n", 1691 __func__); 1692 txq->mbufs_cnt++; 1693 if (txq->mbufs_cnt > NET_TX_RING_SIZE) 1694 panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n", 1695 __func__); 1696 mbuf_grab(m_head); 1697 txq->mbufs[id] = m_head; 1698 tx->id = id; 1699 ref = gnttab_claim_grant_reference(&txq->gref_head); 1700 KASSERT((short)ref >= 0, ("Negative ref")); 1701 mfn = atop(segs[i].ds_addr); 1702 gnttab_grant_foreign_access_ref(ref, otherend_id, 1703 mfn, GNTMAP_readonly); 1704 tx->gref = txq->grant_ref[id] = ref; 1705 tx->offset = segs[i].ds_addr & PAGE_MASK; 1706 KASSERT(tx->offset + segs[i].ds_len <= PAGE_SIZE, 1707 ("mbuf segment crosses a page boundary")); 1708 tx->flags = 0; 1709 if (i == 0) { 1710 /* 1711 * The first fragment has the entire packet 1712 * size, subsequent fragments have just the 1713 * fragment size. The backend works out the 1714 * true size of the first fragment by 1715 * subtracting the sizes of the other 1716 * fragments. 1717 */ 1718 tx->size = m_head->m_pkthdr.len; 1719 1720 /* 1721 * The first fragment contains the checksum flags 1722 * and is optionally followed by extra data for 1723 * TSO etc. 1724 */ 1725 /** 1726 * CSUM_TSO requires checksum offloading. 1727 * Some versions of FreeBSD fail to 1728 * set CSUM_TCP in the CSUM_TSO case, 1729 * so we have to test for CSUM_TSO 1730 * explicitly. 1731 */ 1732 if (m_head->m_pkthdr.csum_flags 1733 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1734 tx->flags |= (NETTXF_csum_blank 1735 | NETTXF_data_validated); 1736 } 1737 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { 1738 struct netif_extra_info *gso = 1739 (struct netif_extra_info *) 1740 RING_GET_REQUEST(&txq->ring, 1741 ++txq->ring.req_prod_pvt); 1742 1743 tx->flags |= NETTXF_extra_info; 1744 1745 gso->u.gso.size = m_head->m_pkthdr.tso_segsz; 1746 gso->u.gso.type = 1747 XEN_NETIF_GSO_TYPE_TCPV4; 1748 gso->u.gso.pad = 0; 1749 gso->u.gso.features = 0; 1750 1751 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1752 gso->flags = 0; 1753 } 1754 } else { 1755 tx->size = segs[i].ds_len; 1756 } 1757 if (i != nfrags - 1) 1758 tx->flags |= NETTXF_more_data; 1759 1760 txq->ring.req_prod_pvt++; 1761 } 1762 bus_dmamap_sync(np->dma_tag, map, BUS_DMASYNC_PREWRITE); 1763 BPF_MTAP(ifp, m_head); 1764 1765 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1766 if_inc_counter(ifp, IFCOUNTER_OBYTES, m_head->m_pkthdr.len); 1767 if (m_head->m_flags & M_MCAST) 1768 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 1769 1770 xn_txeof(txq); 1771 1772 return (0); 1773 } 1774 1775 /* equivalent of network_open() in Linux */ 1776 static void 1777 xn_ifinit_locked(struct netfront_info *np) 1778 { 1779 if_t ifp; 1780 int i; 1781 struct netfront_rxq *rxq; 1782 1783 XN_LOCK_ASSERT(np); 1784 1785 ifp = np->xn_ifp; 1786 1787 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING || !netfront_carrier_ok(np)) 1788 return; 1789 1790 xn_stop(np); 1791 1792 for (i = 0; i < np->num_queues; i++) { 1793 rxq = &np->rxq[i]; 1794 XN_RX_LOCK(rxq); 1795 xn_alloc_rx_buffers(rxq); 1796 rxq->ring.sring->rsp_event = rxq->ring.rsp_cons + 1; 1797 if (RING_HAS_UNCONSUMED_RESPONSES(&rxq->ring)) 1798 xn_rxeof(rxq); 1799 XN_RX_UNLOCK(rxq); 1800 } 1801 1802 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 1803 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 1804 if_link_state_change(ifp, LINK_STATE_UP); 1805 } 1806 1807 static void 1808 xn_ifinit(void *xsc) 1809 { 1810 struct netfront_info *sc = xsc; 1811 1812 XN_LOCK(sc); 1813 xn_ifinit_locked(sc); 1814 XN_UNLOCK(sc); 1815 } 1816 1817 static int 1818 xn_ioctl(if_t ifp, u_long cmd, caddr_t data) 1819 { 1820 struct netfront_info *sc = if_getsoftc(ifp); 1821 struct ifreq *ifr = (struct ifreq *) data; 1822 device_t dev; 1823 #ifdef INET 1824 struct ifaddr *ifa = (struct ifaddr *)data; 1825 #endif 1826 int mask, error = 0, reinit; 1827 1828 dev = sc->xbdev; 1829 1830 switch(cmd) { 1831 case SIOCSIFADDR: 1832 #ifdef INET 1833 XN_LOCK(sc); 1834 if (ifa->ifa_addr->sa_family == AF_INET) { 1835 if_setflagbits(ifp, IFF_UP, 0); 1836 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 1837 xn_ifinit_locked(sc); 1838 arp_ifinit(ifp, ifa); 1839 XN_UNLOCK(sc); 1840 } else { 1841 XN_UNLOCK(sc); 1842 #endif 1843 error = ether_ioctl(ifp, cmd, data); 1844 #ifdef INET 1845 } 1846 #endif 1847 break; 1848 case SIOCSIFMTU: 1849 if (if_getmtu(ifp) == ifr->ifr_mtu) 1850 break; 1851 1852 if_setmtu(ifp, ifr->ifr_mtu); 1853 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1854 xn_ifinit(sc); 1855 break; 1856 case SIOCSIFFLAGS: 1857 XN_LOCK(sc); 1858 if (if_getflags(ifp) & IFF_UP) { 1859 /* 1860 * If only the state of the PROMISC flag changed, 1861 * then just use the 'set promisc mode' command 1862 * instead of reinitializing the entire NIC. Doing 1863 * a full re-init means reloading the firmware and 1864 * waiting for it to start up, which may take a 1865 * second or two. 1866 */ 1867 xn_ifinit_locked(sc); 1868 } else { 1869 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 1870 xn_stop(sc); 1871 } 1872 } 1873 sc->xn_if_flags = if_getflags(ifp); 1874 XN_UNLOCK(sc); 1875 break; 1876 case SIOCSIFCAP: 1877 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 1878 reinit = 0; 1879 1880 if (mask & IFCAP_TXCSUM) { 1881 if_togglecapenable(ifp, IFCAP_TXCSUM); 1882 if_togglehwassist(ifp, XN_CSUM_FEATURES); 1883 } 1884 if (mask & IFCAP_TSO4) { 1885 if_togglecapenable(ifp, IFCAP_TSO4); 1886 if_togglehwassist(ifp, CSUM_TSO); 1887 } 1888 1889 if (mask & (IFCAP_RXCSUM | IFCAP_LRO)) { 1890 /* These Rx features require us to renegotiate. */ 1891 reinit = 1; 1892 1893 if (mask & IFCAP_RXCSUM) 1894 if_togglecapenable(ifp, IFCAP_RXCSUM); 1895 if (mask & IFCAP_LRO) 1896 if_togglecapenable(ifp, IFCAP_LRO); 1897 } 1898 1899 if (reinit == 0) 1900 break; 1901 1902 /* 1903 * We must reset the interface so the backend picks up the 1904 * new features. 1905 */ 1906 device_printf(sc->xbdev, 1907 "performing interface reset due to feature change\n"); 1908 XN_LOCK(sc); 1909 netfront_carrier_off(sc); 1910 sc->xn_reset = true; 1911 /* 1912 * NB: the pending packet queue is not flushed, since 1913 * the interface should still support the old options. 1914 */ 1915 XN_UNLOCK(sc); 1916 /* 1917 * Delete the xenstore nodes that export features. 1918 * 1919 * NB: There's a xenbus state called 1920 * "XenbusStateReconfiguring", which is what we should set 1921 * here. Sadly none of the backends know how to handle it, 1922 * and simply disconnect from the frontend, so we will just 1923 * switch back to XenbusStateInitialising in order to force 1924 * a reconnection. 1925 */ 1926 xs_rm(XST_NIL, xenbus_get_node(dev), "feature-gso-tcpv4"); 1927 xs_rm(XST_NIL, xenbus_get_node(dev), "feature-no-csum-offload"); 1928 xenbus_set_state(dev, XenbusStateClosing); 1929 1930 /* 1931 * Wait for the frontend to reconnect before returning 1932 * from the ioctl. 30s should be more than enough for any 1933 * sane backend to reconnect. 1934 */ 1935 error = tsleep(sc, 0, "xn_rst", 30*hz); 1936 break; 1937 case SIOCADDMULTI: 1938 case SIOCDELMULTI: 1939 break; 1940 case SIOCSIFMEDIA: 1941 case SIOCGIFMEDIA: 1942 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1943 break; 1944 default: 1945 error = ether_ioctl(ifp, cmd, data); 1946 } 1947 1948 return (error); 1949 } 1950 1951 static void 1952 xn_stop(struct netfront_info *sc) 1953 { 1954 if_t ifp; 1955 1956 XN_LOCK_ASSERT(sc); 1957 1958 ifp = sc->xn_ifp; 1959 1960 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1961 if_link_state_change(ifp, LINK_STATE_DOWN); 1962 } 1963 1964 static void 1965 xn_rebuild_rx_bufs(struct netfront_rxq *rxq) 1966 { 1967 int requeue_idx, i; 1968 grant_ref_t ref; 1969 netif_rx_request_t *req; 1970 1971 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1972 struct mbuf *m; 1973 u_long pfn; 1974 1975 if (rxq->mbufs[i] == NULL) 1976 continue; 1977 1978 m = rxq->mbufs[requeue_idx] = xn_get_rx_mbuf(rxq, i); 1979 ref = rxq->grant_ref[requeue_idx] = xn_get_rx_ref(rxq, i); 1980 1981 req = RING_GET_REQUEST(&rxq->ring, requeue_idx); 1982 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1983 1984 gnttab_grant_foreign_access_ref(ref, 1985 xenbus_get_otherend_id(rxq->info->xbdev), 1986 pfn, 0); 1987 1988 req->gref = ref; 1989 req->id = requeue_idx; 1990 1991 requeue_idx++; 1992 } 1993 1994 rxq->ring.req_prod_pvt = requeue_idx; 1995 } 1996 1997 /* START of Xenolinux helper functions adapted to FreeBSD */ 1998 static int 1999 xn_connect(struct netfront_info *np) 2000 { 2001 int i, error; 2002 u_int feature_rx_copy; 2003 struct netfront_rxq *rxq; 2004 struct netfront_txq *txq; 2005 2006 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 2007 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 2008 if (error != 0) 2009 feature_rx_copy = 0; 2010 2011 /* We only support rx copy. */ 2012 if (!feature_rx_copy) 2013 return (EPROTONOSUPPORT); 2014 2015 /* Recovery procedure: */ 2016 error = talk_to_backend(np->xbdev, np); 2017 if (error != 0) 2018 return (error); 2019 2020 /* Step 1: Reinitialise variables. */ 2021 xn_query_features(np); 2022 xn_configure_features(np); 2023 2024 /* Step 2: Release TX buffer */ 2025 for (i = 0; i < np->num_queues; i++) { 2026 txq = &np->txq[i]; 2027 xn_release_tx_bufs(txq); 2028 } 2029 2030 /* Step 3: Rebuild the RX buffer freelist and the RX ring itself. */ 2031 for (i = 0; i < np->num_queues; i++) { 2032 rxq = &np->rxq[i]; 2033 xn_rebuild_rx_bufs(rxq); 2034 } 2035 2036 /* Step 4: All public and private state should now be sane. Get 2037 * ready to start sending and receiving packets and give the driver 2038 * domain a kick because we've probably just requeued some 2039 * packets. 2040 */ 2041 netfront_carrier_on(np); 2042 wakeup(np); 2043 2044 return (0); 2045 } 2046 2047 static void 2048 xn_kick_rings(struct netfront_info *np) 2049 { 2050 struct netfront_rxq *rxq; 2051 struct netfront_txq *txq; 2052 int i; 2053 2054 for (i = 0; i < np->num_queues; i++) { 2055 txq = &np->txq[i]; 2056 rxq = &np->rxq[i]; 2057 xen_intr_signal(txq->xen_intr_handle); 2058 XN_TX_LOCK(txq); 2059 xn_txeof(txq); 2060 XN_TX_UNLOCK(txq); 2061 XN_RX_LOCK(rxq); 2062 xn_alloc_rx_buffers(rxq); 2063 XN_RX_UNLOCK(rxq); 2064 } 2065 } 2066 2067 static void 2068 xn_query_features(struct netfront_info *np) 2069 { 2070 int val; 2071 2072 device_printf(np->xbdev, "backend features:"); 2073 2074 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 2075 "feature-sg", NULL, "%d", &val) != 0) 2076 val = 0; 2077 2078 np->maxfrags = 1; 2079 if (val) { 2080 np->maxfrags = MAX_TX_REQ_FRAGS; 2081 printf(" feature-sg"); 2082 } 2083 2084 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 2085 "feature-gso-tcpv4", NULL, "%d", &val) != 0) 2086 val = 0; 2087 2088 if_setcapabilitiesbit(np->xn_ifp, 0, IFCAP_TSO4 | IFCAP_LRO); 2089 if (val) { 2090 if_setcapabilitiesbit(np->xn_ifp, IFCAP_TSO4 | IFCAP_LRO, 0); 2091 printf(" feature-gso-tcp4"); 2092 } 2093 2094 /* 2095 * HW CSUM offload is assumed to be available unless 2096 * feature-no-csum-offload is set in xenstore. 2097 */ 2098 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 2099 "feature-no-csum-offload", NULL, "%d", &val) != 0) 2100 val = 0; 2101 2102 if_setcapabilitiesbit(np->xn_ifp, IFCAP_HWCSUM, 0); 2103 if (val) { 2104 if_setcapabilitiesbit(np->xn_ifp, 0, IFCAP_HWCSUM); 2105 printf(" feature-no-csum-offload"); 2106 } 2107 2108 printf("\n"); 2109 } 2110 2111 static int 2112 xn_configure_features(struct netfront_info *np) 2113 { 2114 int err, cap_enabled; 2115 #if (defined(INET) || defined(INET6)) 2116 int i; 2117 #endif 2118 if_t ifp; 2119 2120 ifp = np->xn_ifp; 2121 err = 0; 2122 2123 if ((if_getcapenable(ifp) & if_getcapabilities(ifp)) == if_getcapenable(ifp)) { 2124 /* Current options are available, no need to do anything. */ 2125 return (0); 2126 } 2127 2128 /* Try to preserve as many options as possible. */ 2129 cap_enabled = if_getcapenable(ifp); 2130 if_setcapenable(ifp, 0); 2131 if_sethwassist(ifp, 0); 2132 2133 #if (defined(INET) || defined(INET6)) 2134 if ((cap_enabled & IFCAP_LRO) != 0) 2135 for (i = 0; i < np->num_queues; i++) 2136 tcp_lro_free(&np->rxq[i].lro); 2137 if (xn_enable_lro && 2138 (if_getcapabilities(ifp) & cap_enabled & IFCAP_LRO) != 0) { 2139 if_setcapenablebit(ifp, IFCAP_LRO, 0); 2140 for (i = 0; i < np->num_queues; i++) { 2141 err = tcp_lro_init(&np->rxq[i].lro); 2142 if (err != 0) { 2143 device_printf(np->xbdev, 2144 "LRO initialization failed\n"); 2145 if_setcapenablebit(ifp, 0, IFCAP_LRO); 2146 break; 2147 } 2148 np->rxq[i].lro.ifp = ifp; 2149 } 2150 } 2151 if ((if_getcapabilities(ifp) & cap_enabled & IFCAP_TSO4) != 0) { 2152 if_setcapenablebit(ifp, IFCAP_TSO4, 0); 2153 if_sethwassistbits(ifp, CSUM_TSO, 0); 2154 } 2155 #endif 2156 if ((if_getcapabilities(ifp) & cap_enabled & IFCAP_TXCSUM) != 0) { 2157 if_setcapenablebit(ifp, IFCAP_TXCSUM, 0); 2158 if_sethwassistbits(ifp, XN_CSUM_FEATURES, 0); 2159 } 2160 if ((if_getcapabilities(ifp) & cap_enabled & IFCAP_RXCSUM) != 0) 2161 if_setcapenablebit(ifp, IFCAP_RXCSUM, 0); 2162 2163 return (err); 2164 } 2165 2166 static int 2167 xn_txq_mq_start_locked(struct netfront_txq *txq, struct mbuf *m) 2168 { 2169 struct netfront_info *np; 2170 if_t ifp; 2171 struct buf_ring *br; 2172 int error, notify; 2173 2174 np = txq->info; 2175 br = txq->br; 2176 ifp = np->xn_ifp; 2177 error = 0; 2178 2179 XN_TX_LOCK_ASSERT(txq); 2180 2181 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 2182 !netfront_carrier_ok(np)) { 2183 if (m != NULL) 2184 error = drbr_enqueue(ifp, br, m); 2185 return (error); 2186 } 2187 2188 if (m != NULL) { 2189 error = drbr_enqueue(ifp, br, m); 2190 if (error != 0) 2191 return (error); 2192 } 2193 2194 while ((m = drbr_peek(ifp, br)) != NULL) { 2195 if (!xn_tx_slot_available(txq)) { 2196 drbr_putback(ifp, br, m); 2197 break; 2198 } 2199 2200 error = xn_assemble_tx_request(txq, m); 2201 /* xn_assemble_tx_request always consumes the mbuf*/ 2202 if (error != 0) { 2203 drbr_advance(ifp, br); 2204 break; 2205 } 2206 2207 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&txq->ring, notify); 2208 if (notify) 2209 xen_intr_signal(txq->xen_intr_handle); 2210 2211 drbr_advance(ifp, br); 2212 } 2213 2214 if (RING_FULL(&txq->ring)) 2215 txq->full = true; 2216 2217 return (0); 2218 } 2219 2220 static int 2221 xn_txq_mq_start(if_t ifp, struct mbuf *m) 2222 { 2223 struct netfront_info *np; 2224 struct netfront_txq *txq; 2225 int i, npairs, error; 2226 2227 np = if_getsoftc(ifp); 2228 npairs = np->num_queues; 2229 2230 if (!netfront_carrier_ok(np)) 2231 return (ENOBUFS); 2232 2233 KASSERT(npairs != 0, ("called with 0 available queues")); 2234 2235 /* check if flowid is set */ 2236 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2237 i = m->m_pkthdr.flowid % npairs; 2238 else 2239 i = curcpu % npairs; 2240 2241 txq = &np->txq[i]; 2242 2243 if (XN_TX_TRYLOCK(txq) != 0) { 2244 error = xn_txq_mq_start_locked(txq, m); 2245 XN_TX_UNLOCK(txq); 2246 } else { 2247 error = drbr_enqueue(ifp, txq->br, m); 2248 taskqueue_enqueue(txq->tq, &txq->defrtask); 2249 } 2250 2251 return (error); 2252 } 2253 2254 static void 2255 xn_qflush(if_t ifp) 2256 { 2257 struct netfront_info *np; 2258 struct netfront_txq *txq; 2259 struct mbuf *m; 2260 int i; 2261 2262 np = if_getsoftc(ifp); 2263 2264 for (i = 0; i < np->num_queues; i++) { 2265 txq = &np->txq[i]; 2266 2267 XN_TX_LOCK(txq); 2268 while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) 2269 m_freem(m); 2270 XN_TX_UNLOCK(txq); 2271 } 2272 2273 if_qflush(ifp); 2274 } 2275 2276 /** 2277 * Create a network device. 2278 * @param dev Newbus device representing this virtual NIC. 2279 */ 2280 int 2281 create_netdev(device_t dev) 2282 { 2283 struct netfront_info *np; 2284 int err, cap_enabled; 2285 if_t ifp; 2286 2287 np = device_get_softc(dev); 2288 2289 np->xbdev = dev; 2290 2291 mtx_init(&np->sc_lock, "xnsc", "netfront softc lock", MTX_DEF); 2292 2293 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 2294 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 2295 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 2296 2297 err = xen_net_read_mac(dev, np->mac); 2298 if (err != 0) 2299 goto error; 2300 2301 /* Set up ifnet structure */ 2302 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2303 if_setsoftc(ifp, np); 2304 if_initname(ifp, "xn", device_get_unit(dev)); 2305 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2306 if_setioctlfn(ifp, xn_ioctl); 2307 2308 if_settransmitfn(ifp, xn_txq_mq_start); 2309 if_setqflushfn(ifp, xn_qflush); 2310 2311 if_setinitfn(ifp, xn_ifinit); 2312 2313 if_sethwassist(ifp, XN_CSUM_FEATURES); 2314 /* Enable all supported features at device creation. */ 2315 if_setcapabilities(ifp, IFCAP_HWCSUM|IFCAP_TSO4|IFCAP_LRO); 2316 cap_enabled = if_getcapabilities(ifp); 2317 if (!xn_enable_lro) { 2318 cap_enabled &= ~IFCAP_LRO; 2319 } 2320 if_setcapenable(ifp, cap_enabled); 2321 2322 if_sethwtsomax(ifp, 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 2323 if_sethwtsomaxsegcount(ifp, MAX_TX_REQ_FRAGS); 2324 if_sethwtsomaxsegsize(ifp, PAGE_SIZE); 2325 2326 ether_ifattach(ifp, np->mac); 2327 netfront_carrier_off(np); 2328 2329 err = bus_dma_tag_create( 2330 bus_get_dma_tag(dev), /* parent */ 2331 1, PAGE_SIZE, /* algnmnt, boundary */ 2332 BUS_SPACE_MAXADDR, /* lowaddr */ 2333 BUS_SPACE_MAXADDR, /* highaddr */ 2334 NULL, NULL, /* filter, filterarg */ 2335 PAGE_SIZE * MAX_TX_REQ_FRAGS, /* max request size */ 2336 MAX_TX_REQ_FRAGS, /* max segments */ 2337 PAGE_SIZE, /* maxsegsize */ 2338 BUS_DMA_ALLOCNOW, /* flags */ 2339 NULL, NULL, /* lockfunc, lockarg */ 2340 &np->dma_tag); 2341 2342 return (err); 2343 2344 error: 2345 KASSERT(err != 0, ("Error path with no error code specified")); 2346 return (err); 2347 } 2348 2349 static int 2350 netfront_detach(device_t dev) 2351 { 2352 struct netfront_info *info = device_get_softc(dev); 2353 2354 DPRINTK("%s\n", xenbus_get_node(dev)); 2355 2356 netif_free(info); 2357 2358 return 0; 2359 } 2360 2361 static void 2362 netif_free(struct netfront_info *np) 2363 { 2364 2365 XN_LOCK(np); 2366 xn_stop(np); 2367 XN_UNLOCK(np); 2368 netif_disconnect_backend(np); 2369 ether_ifdetach(np->xn_ifp); 2370 free(np->rxq, M_DEVBUF); 2371 free(np->txq, M_DEVBUF); 2372 if_free(np->xn_ifp); 2373 np->xn_ifp = NULL; 2374 ifmedia_removeall(&np->sc_media); 2375 bus_dma_tag_destroy(np->dma_tag); 2376 } 2377 2378 static void 2379 netif_disconnect_backend(struct netfront_info *np) 2380 { 2381 u_int i; 2382 2383 for (i = 0; i < np->num_queues; i++) { 2384 XN_RX_LOCK(&np->rxq[i]); 2385 XN_TX_LOCK(&np->txq[i]); 2386 } 2387 netfront_carrier_off(np); 2388 for (i = 0; i < np->num_queues; i++) { 2389 XN_RX_UNLOCK(&np->rxq[i]); 2390 XN_TX_UNLOCK(&np->txq[i]); 2391 } 2392 2393 for (i = 0; i < np->num_queues; i++) { 2394 disconnect_rxq(&np->rxq[i]); 2395 disconnect_txq(&np->txq[i]); 2396 } 2397 } 2398 2399 static int 2400 xn_ifmedia_upd(if_t ifp) 2401 { 2402 2403 return (0); 2404 } 2405 2406 static void 2407 xn_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2408 { 2409 2410 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2411 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2412 } 2413 2414 /* ** Driver registration ** */ 2415 static device_method_t netfront_methods[] = { 2416 /* Device interface */ 2417 DEVMETHOD(device_probe, netfront_probe), 2418 DEVMETHOD(device_attach, netfront_attach), 2419 DEVMETHOD(device_detach, netfront_detach), 2420 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2421 DEVMETHOD(device_suspend, netfront_suspend), 2422 DEVMETHOD(device_resume, netfront_resume), 2423 2424 /* Xenbus interface */ 2425 DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed), 2426 2427 DEVMETHOD_END 2428 }; 2429 2430 static driver_t netfront_driver = { 2431 "xn", 2432 netfront_methods, 2433 sizeof(struct netfront_info), 2434 }; 2435 2436 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, NULL, NULL); 2437