1 /*- 2 * Copyright (c) 2004-2006 Kip Macy 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/sockio.h> 36 #include <sys/limits.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/kernel.h> 41 #include <sys/socket.h> 42 #include <sys/sysctl.h> 43 #include <sys/queue.h> 44 #include <sys/lock.h> 45 #include <sys/sx.h> 46 47 #include <net/if.h> 48 #include <net/if_var.h> 49 #include <net/if_arp.h> 50 #include <net/ethernet.h> 51 #include <net/if_dl.h> 52 #include <net/if_media.h> 53 54 #include <net/bpf.h> 55 56 #include <net/if_types.h> 57 58 #include <netinet/in_systm.h> 59 #include <netinet/in.h> 60 #include <netinet/ip.h> 61 #include <netinet/if_ether.h> 62 #if __FreeBSD_version >= 700000 63 #include <netinet/tcp.h> 64 #include <netinet/tcp_lro.h> 65 #endif 66 67 #include <vm/vm.h> 68 #include <vm/pmap.h> 69 70 #include <machine/clock.h> /* for DELAY */ 71 #include <machine/bus.h> 72 #include <machine/resource.h> 73 #include <machine/frame.h> 74 #include <machine/vmparam.h> 75 76 #include <sys/bus.h> 77 #include <sys/rman.h> 78 79 #include <machine/intr_machdep.h> 80 81 #include <xen/xen-os.h> 82 #include <xen/hypervisor.h> 83 #include <xen/xen_intr.h> 84 #include <xen/gnttab.h> 85 #include <xen/interface/memory.h> 86 #include <xen/interface/io/netif.h> 87 #include <xen/xenbus/xenbusvar.h> 88 89 #include "xenbus_if.h" 90 91 /* Features supported by all backends. TSO and LRO can be negotiated */ 92 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 93 94 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 95 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 96 97 #if __FreeBSD_version >= 700000 98 /* 99 * Should the driver do LRO on the RX end 100 * this can be toggled on the fly, but the 101 * interface must be reset (down/up) for it 102 * to take effect. 103 */ 104 static int xn_enable_lro = 1; 105 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 106 #else 107 108 #define IFCAP_TSO4 0 109 #define CSUM_TSO 0 110 111 #endif 112 113 #ifdef CONFIG_XEN 114 static int MODPARM_rx_copy = 0; 115 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0); 116 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)"); 117 static int MODPARM_rx_flip = 0; 118 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0); 119 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)"); 120 #else 121 static const int MODPARM_rx_copy = 1; 122 static const int MODPARM_rx_flip = 0; 123 #endif 124 125 /** 126 * \brief The maximum allowed data fragments in a single transmit 127 * request. 128 * 129 * This limit is imposed by the backend driver. We assume here that 130 * we are dealing with a Linux driver domain and have set our limit 131 * to mirror the Linux MAX_SKB_FRAGS constant. 132 */ 133 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 134 135 #define RX_COPY_THRESHOLD 256 136 137 #define net_ratelimit() 0 138 139 struct netfront_info; 140 struct netfront_rx_info; 141 142 static void xn_txeof(struct netfront_info *); 143 static void xn_rxeof(struct netfront_info *); 144 static void network_alloc_rx_buffers(struct netfront_info *); 145 146 static void xn_tick_locked(struct netfront_info *); 147 static void xn_tick(void *); 148 149 static void xn_intr(void *); 150 static inline int xn_count_frags(struct mbuf *m); 151 static int xn_assemble_tx_request(struct netfront_info *sc, 152 struct mbuf *m_head); 153 static void xn_start_locked(struct ifnet *); 154 static void xn_start(struct ifnet *); 155 static int xn_ioctl(struct ifnet *, u_long, caddr_t); 156 static void xn_ifinit_locked(struct netfront_info *); 157 static void xn_ifinit(void *); 158 static void xn_stop(struct netfront_info *); 159 static void xn_query_features(struct netfront_info *np); 160 static int xn_configure_features(struct netfront_info *np); 161 #ifdef notyet 162 static void xn_watchdog(struct ifnet *); 163 #endif 164 165 #ifdef notyet 166 static void netfront_closing(device_t dev); 167 #endif 168 static void netif_free(struct netfront_info *info); 169 static int netfront_detach(device_t dev); 170 171 static int talk_to_backend(device_t dev, struct netfront_info *info); 172 static int create_netdev(device_t dev); 173 static void netif_disconnect_backend(struct netfront_info *info); 174 static int setup_device(device_t dev, struct netfront_info *info); 175 static void free_ring(int *ref, void *ring_ptr_ref); 176 177 static int xn_ifmedia_upd(struct ifnet *ifp); 178 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 179 180 /* Xenolinux helper functions */ 181 int network_connect(struct netfront_info *); 182 183 static void xn_free_rx_ring(struct netfront_info *); 184 185 static void xn_free_tx_ring(struct netfront_info *); 186 187 static int xennet_get_responses(struct netfront_info *np, 188 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 189 struct mbuf **list, int *pages_flipped_p); 190 191 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT) 192 193 #define INVALID_P2M_ENTRY (~0UL) 194 195 /* 196 * Mbuf pointers. We need these to keep track of the virtual addresses 197 * of our mbuf chains since we can only convert from virtual to physical, 198 * not the other way around. The size must track the free index arrays. 199 */ 200 struct xn_chain_data { 201 struct mbuf *xn_tx_chain[NET_TX_RING_SIZE+1]; 202 int xn_tx_chain_cnt; 203 struct mbuf *xn_rx_chain[NET_RX_RING_SIZE+1]; 204 }; 205 206 struct net_device_stats 207 { 208 u_long rx_packets; /* total packets received */ 209 u_long tx_packets; /* total packets transmitted */ 210 u_long rx_bytes; /* total bytes received */ 211 u_long tx_bytes; /* total bytes transmitted */ 212 u_long rx_errors; /* bad packets received */ 213 u_long tx_errors; /* packet transmit problems */ 214 u_long rx_dropped; /* no space in linux buffers */ 215 u_long tx_dropped; /* no space available in linux */ 216 u_long multicast; /* multicast packets received */ 217 u_long collisions; 218 219 /* detailed rx_errors: */ 220 u_long rx_length_errors; 221 u_long rx_over_errors; /* receiver ring buff overflow */ 222 u_long rx_crc_errors; /* recved pkt with crc error */ 223 u_long rx_frame_errors; /* recv'd frame alignment error */ 224 u_long rx_fifo_errors; /* recv'r fifo overrun */ 225 u_long rx_missed_errors; /* receiver missed packet */ 226 227 /* detailed tx_errors */ 228 u_long tx_aborted_errors; 229 u_long tx_carrier_errors; 230 u_long tx_fifo_errors; 231 u_long tx_heartbeat_errors; 232 u_long tx_window_errors; 233 234 /* for cslip etc */ 235 u_long rx_compressed; 236 u_long tx_compressed; 237 }; 238 239 struct netfront_info { 240 struct ifnet *xn_ifp; 241 #if __FreeBSD_version >= 700000 242 struct lro_ctrl xn_lro; 243 #endif 244 245 struct net_device_stats stats; 246 u_int tx_full; 247 248 netif_tx_front_ring_t tx; 249 netif_rx_front_ring_t rx; 250 251 struct mtx tx_lock; 252 struct mtx rx_lock; 253 struct mtx sc_lock; 254 255 xen_intr_handle_t xen_intr_handle; 256 u_int copying_receiver; 257 u_int carrier; 258 u_int maxfrags; 259 260 /* Receive-ring batched refills. */ 261 #define RX_MIN_TARGET 32 262 #define RX_MAX_TARGET NET_RX_RING_SIZE 263 int rx_min_target; 264 int rx_max_target; 265 int rx_target; 266 267 grant_ref_t gref_tx_head; 268 grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1]; 269 grant_ref_t gref_rx_head; 270 grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1]; 271 272 device_t xbdev; 273 int tx_ring_ref; 274 int rx_ring_ref; 275 uint8_t mac[ETHER_ADDR_LEN]; 276 struct xn_chain_data xn_cdata; /* mbufs */ 277 struct mbufq xn_rx_batch; /* batch queue */ 278 279 int xn_if_flags; 280 struct callout xn_stat_ch; 281 282 u_long rx_pfn_array[NET_RX_RING_SIZE]; 283 struct ifmedia sc_media; 284 285 bool xn_resume; 286 }; 287 288 #define rx_mbufs xn_cdata.xn_rx_chain 289 #define tx_mbufs xn_cdata.xn_tx_chain 290 291 #define XN_LOCK_INIT(_sc, _name) \ 292 mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \ 293 mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF); \ 294 mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF) 295 296 #define XN_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_lock) 297 #define XN_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_lock) 298 299 #define XN_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_lock) 300 #define XN_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_lock) 301 302 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 303 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 304 305 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 306 #define XN_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_lock, MA_OWNED); 307 #define XN_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_lock, MA_OWNED); 308 #define XN_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_lock); \ 309 mtx_destroy(&(_sc)->tx_lock); \ 310 mtx_destroy(&(_sc)->sc_lock); 311 312 struct netfront_rx_info { 313 struct netif_rx_response rx; 314 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 315 }; 316 317 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 318 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 319 #define netfront_carrier_ok(netif) ((netif)->carrier) 320 321 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 322 323 static inline void 324 add_id_to_freelist(struct mbuf **list, uintptr_t id) 325 { 326 KASSERT(id != 0, 327 ("%s: the head item (0) must always be free.", __func__)); 328 list[id] = list[0]; 329 list[0] = (struct mbuf *)id; 330 } 331 332 static inline unsigned short 333 get_id_from_freelist(struct mbuf **list) 334 { 335 uintptr_t id; 336 337 id = (uintptr_t)list[0]; 338 KASSERT(id != 0, 339 ("%s: the head item (0) must always remain free.", __func__)); 340 list[0] = list[id]; 341 return (id); 342 } 343 344 static inline int 345 xennet_rxidx(RING_IDX idx) 346 { 347 return idx & (NET_RX_RING_SIZE - 1); 348 } 349 350 static inline struct mbuf * 351 xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri) 352 { 353 int i = xennet_rxidx(ri); 354 struct mbuf *m; 355 356 m = np->rx_mbufs[i]; 357 np->rx_mbufs[i] = NULL; 358 return (m); 359 } 360 361 static inline grant_ref_t 362 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri) 363 { 364 int i = xennet_rxidx(ri); 365 grant_ref_t ref = np->grant_rx_ref[i]; 366 KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n")); 367 np->grant_rx_ref[i] = GRANT_REF_INVALID; 368 return ref; 369 } 370 371 #define IPRINTK(fmt, args...) \ 372 printf("[XEN] " fmt, ##args) 373 #ifdef INVARIANTS 374 #define WPRINTK(fmt, args...) \ 375 printf("[XEN] " fmt, ##args) 376 #else 377 #define WPRINTK(fmt, args...) 378 #endif 379 #ifdef DEBUG 380 #define DPRINTK(fmt, args...) \ 381 printf("[XEN] %s: " fmt, __func__, ##args) 382 #else 383 #define DPRINTK(fmt, args...) 384 #endif 385 386 /** 387 * Read the 'mac' node at the given device's node in the store, and parse that 388 * as colon-separated octets, placing result the given mac array. mac must be 389 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 390 * Return 0 on success, or errno on error. 391 */ 392 static int 393 xen_net_read_mac(device_t dev, uint8_t mac[]) 394 { 395 int error, i; 396 char *s, *e, *macstr; 397 const char *path; 398 399 path = xenbus_get_node(dev); 400 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 401 if (error == ENOENT) { 402 /* 403 * Deal with missing mac XenStore nodes on devices with 404 * HVM emulation (the 'ioemu' configuration attribute) 405 * enabled. 406 * 407 * The HVM emulator may execute in a stub device model 408 * domain which lacks the permission, only given to Dom0, 409 * to update the guest's XenStore tree. For this reason, 410 * the HVM emulator doesn't even attempt to write the 411 * front-side mac node, even when operating in Dom0. 412 * However, there should always be a mac listed in the 413 * backend tree. Fallback to this version if our query 414 * of the front side XenStore location doesn't find 415 * anything. 416 */ 417 path = xenbus_get_otherend_path(dev); 418 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 419 } 420 if (error != 0) { 421 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 422 return (error); 423 } 424 425 s = macstr; 426 for (i = 0; i < ETHER_ADDR_LEN; i++) { 427 mac[i] = strtoul(s, &e, 16); 428 if (s == e || (e[0] != ':' && e[0] != 0)) { 429 free(macstr, M_XENBUS); 430 return (ENOENT); 431 } 432 s = &e[1]; 433 } 434 free(macstr, M_XENBUS); 435 return (0); 436 } 437 438 /** 439 * Entry point to this code when a new device is created. Allocate the basic 440 * structures and the ring buffers for communication with the backend, and 441 * inform the backend of the appropriate details for those. Switch to 442 * Connected state. 443 */ 444 static int 445 netfront_probe(device_t dev) 446 { 447 448 if (xen_hvm_domain() && xen_disable_pv_nics != 0) 449 return (ENXIO); 450 451 if (!strcmp(xenbus_get_type(dev), "vif")) { 452 device_set_desc(dev, "Virtual Network Interface"); 453 return (0); 454 } 455 456 return (ENXIO); 457 } 458 459 static int 460 netfront_attach(device_t dev) 461 { 462 int err; 463 464 err = create_netdev(dev); 465 if (err) { 466 xenbus_dev_fatal(dev, err, "creating netdev"); 467 return (err); 468 } 469 470 #if __FreeBSD_version >= 700000 471 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 472 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 473 OID_AUTO, "enable_lro", CTLFLAG_RW, 474 &xn_enable_lro, 0, "Large Receive Offload"); 475 #endif 476 477 return (0); 478 } 479 480 static int 481 netfront_suspend(device_t dev) 482 { 483 struct netfront_info *info = device_get_softc(dev); 484 485 XN_RX_LOCK(info); 486 XN_TX_LOCK(info); 487 netfront_carrier_off(info); 488 XN_TX_UNLOCK(info); 489 XN_RX_UNLOCK(info); 490 return (0); 491 } 492 493 /** 494 * We are reconnecting to the backend, due to a suspend/resume, or a backend 495 * driver restart. We tear down our netif structure and recreate it, but 496 * leave the device-layer structures intact so that this is transparent to the 497 * rest of the kernel. 498 */ 499 static int 500 netfront_resume(device_t dev) 501 { 502 struct netfront_info *info = device_get_softc(dev); 503 504 info->xn_resume = true; 505 netif_disconnect_backend(info); 506 return (0); 507 } 508 509 /* Common code used when first setting up, and when resuming. */ 510 static int 511 talk_to_backend(device_t dev, struct netfront_info *info) 512 { 513 const char *message; 514 struct xs_transaction xst; 515 const char *node = xenbus_get_node(dev); 516 int err; 517 518 err = xen_net_read_mac(dev, info->mac); 519 if (err) { 520 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 521 goto out; 522 } 523 524 /* Create shared ring, alloc event channel. */ 525 err = setup_device(dev, info); 526 if (err) 527 goto out; 528 529 again: 530 err = xs_transaction_start(&xst); 531 if (err) { 532 xenbus_dev_fatal(dev, err, "starting transaction"); 533 goto destroy_ring; 534 } 535 err = xs_printf(xst, node, "tx-ring-ref","%u", 536 info->tx_ring_ref); 537 if (err) { 538 message = "writing tx ring-ref"; 539 goto abort_transaction; 540 } 541 err = xs_printf(xst, node, "rx-ring-ref","%u", 542 info->rx_ring_ref); 543 if (err) { 544 message = "writing rx ring-ref"; 545 goto abort_transaction; 546 } 547 err = xs_printf(xst, node, 548 "event-channel", "%u", 549 xen_intr_port(info->xen_intr_handle)); 550 if (err) { 551 message = "writing event-channel"; 552 goto abort_transaction; 553 } 554 err = xs_printf(xst, node, "request-rx-copy", "%u", 555 info->copying_receiver); 556 if (err) { 557 message = "writing request-rx-copy"; 558 goto abort_transaction; 559 } 560 err = xs_printf(xst, node, "feature-rx-notify", "%d", 1); 561 if (err) { 562 message = "writing feature-rx-notify"; 563 goto abort_transaction; 564 } 565 err = xs_printf(xst, node, "feature-sg", "%d", 1); 566 if (err) { 567 message = "writing feature-sg"; 568 goto abort_transaction; 569 } 570 #if __FreeBSD_version >= 700000 571 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1); 572 if (err) { 573 message = "writing feature-gso-tcpv4"; 574 goto abort_transaction; 575 } 576 #endif 577 578 err = xs_transaction_end(xst, 0); 579 if (err) { 580 if (err == EAGAIN) 581 goto again; 582 xenbus_dev_fatal(dev, err, "completing transaction"); 583 goto destroy_ring; 584 } 585 586 return 0; 587 588 abort_transaction: 589 xs_transaction_end(xst, 1); 590 xenbus_dev_fatal(dev, err, "%s", message); 591 destroy_ring: 592 netif_free(info); 593 out: 594 return err; 595 } 596 597 static int 598 setup_device(device_t dev, struct netfront_info *info) 599 { 600 netif_tx_sring_t *txs; 601 netif_rx_sring_t *rxs; 602 int error; 603 604 info->tx_ring_ref = GRANT_REF_INVALID; 605 info->rx_ring_ref = GRANT_REF_INVALID; 606 info->rx.sring = NULL; 607 info->tx.sring = NULL; 608 609 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 610 if (!txs) { 611 error = ENOMEM; 612 xenbus_dev_fatal(dev, error, "allocating tx ring page"); 613 goto fail; 614 } 615 SHARED_RING_INIT(txs); 616 FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE); 617 error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref); 618 if (error) 619 goto fail; 620 621 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 622 if (!rxs) { 623 error = ENOMEM; 624 xenbus_dev_fatal(dev, error, "allocating rx ring page"); 625 goto fail; 626 } 627 SHARED_RING_INIT(rxs); 628 FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE); 629 630 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref); 631 if (error) 632 goto fail; 633 634 error = xen_intr_alloc_and_bind_local_port(dev, 635 xenbus_get_otherend_id(dev), /*filter*/NULL, xn_intr, info, 636 INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, &info->xen_intr_handle); 637 638 if (error) { 639 xenbus_dev_fatal(dev, error, 640 "xen_intr_alloc_and_bind_local_port failed"); 641 goto fail; 642 } 643 644 return (0); 645 646 fail: 647 netif_free(info); 648 return (error); 649 } 650 651 #ifdef INET 652 /** 653 * If this interface has an ipv4 address, send an arp for it. This 654 * helps to get the network going again after migrating hosts. 655 */ 656 static void 657 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 658 { 659 struct ifnet *ifp; 660 struct ifaddr *ifa; 661 662 ifp = info->xn_ifp; 663 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 664 if (ifa->ifa_addr->sa_family == AF_INET) { 665 arp_ifinit(ifp, ifa); 666 } 667 } 668 } 669 #endif 670 671 /** 672 * Callback received when the backend's state changes. 673 */ 674 static void 675 netfront_backend_changed(device_t dev, XenbusState newstate) 676 { 677 struct netfront_info *sc = device_get_softc(dev); 678 679 DPRINTK("newstate=%d\n", newstate); 680 681 switch (newstate) { 682 case XenbusStateInitialising: 683 case XenbusStateInitialised: 684 case XenbusStateUnknown: 685 case XenbusStateClosed: 686 case XenbusStateReconfigured: 687 case XenbusStateReconfiguring: 688 break; 689 case XenbusStateInitWait: 690 if (xenbus_get_state(dev) != XenbusStateInitialising) 691 break; 692 if (network_connect(sc) != 0) 693 break; 694 xenbus_set_state(dev, XenbusStateConnected); 695 break; 696 case XenbusStateClosing: 697 xenbus_set_state(dev, XenbusStateClosed); 698 break; 699 case XenbusStateConnected: 700 #ifdef INET 701 netfront_send_fake_arp(dev, sc); 702 #endif 703 break; 704 } 705 } 706 707 static void 708 xn_free_rx_ring(struct netfront_info *sc) 709 { 710 #if 0 711 int i; 712 713 for (i = 0; i < NET_RX_RING_SIZE; i++) { 714 if (sc->xn_cdata.rx_mbufs[i] != NULL) { 715 m_freem(sc->rx_mbufs[i]); 716 sc->rx_mbufs[i] = NULL; 717 } 718 } 719 720 sc->rx.rsp_cons = 0; 721 sc->xn_rx_if->req_prod = 0; 722 sc->xn_rx_if->event = sc->rx.rsp_cons ; 723 #endif 724 } 725 726 static void 727 xn_free_tx_ring(struct netfront_info *sc) 728 { 729 #if 0 730 int i; 731 732 for (i = 0; i < NET_TX_RING_SIZE; i++) { 733 if (sc->tx_mbufs[i] != NULL) { 734 m_freem(sc->tx_mbufs[i]); 735 sc->xn_cdata.xn_tx_chain[i] = NULL; 736 } 737 } 738 739 return; 740 #endif 741 } 742 743 /** 744 * \brief Verify that there is sufficient space in the Tx ring 745 * buffer for a maximally sized request to be enqueued. 746 * 747 * A transmit request requires a transmit descriptor for each packet 748 * fragment, plus up to 2 entries for "options" (e.g. TSO). 749 */ 750 static inline int 751 xn_tx_slot_available(struct netfront_info *np) 752 { 753 return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2)); 754 } 755 756 static void 757 netif_release_tx_bufs(struct netfront_info *np) 758 { 759 int i; 760 761 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 762 struct mbuf *m; 763 764 m = np->tx_mbufs[i]; 765 766 /* 767 * We assume that no kernel addresses are 768 * less than NET_TX_RING_SIZE. Any entry 769 * in the table that is below this number 770 * must be an index from free-list tracking. 771 */ 772 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 773 continue; 774 gnttab_end_foreign_access_ref(np->grant_tx_ref[i]); 775 gnttab_release_grant_reference(&np->gref_tx_head, 776 np->grant_tx_ref[i]); 777 np->grant_tx_ref[i] = GRANT_REF_INVALID; 778 add_id_to_freelist(np->tx_mbufs, i); 779 np->xn_cdata.xn_tx_chain_cnt--; 780 if (np->xn_cdata.xn_tx_chain_cnt < 0) { 781 panic("%s: tx_chain_cnt must be >= 0", __func__); 782 } 783 m_free(m); 784 } 785 } 786 787 static void 788 network_alloc_rx_buffers(struct netfront_info *sc) 789 { 790 int otherend_id = xenbus_get_otherend_id(sc->xbdev); 791 unsigned short id; 792 struct mbuf *m_new; 793 int i, batch_target, notify; 794 RING_IDX req_prod; 795 struct xen_memory_reservation reservation; 796 grant_ref_t ref; 797 int nr_flips; 798 netif_rx_request_t *req; 799 vm_offset_t vaddr; 800 u_long pfn; 801 802 req_prod = sc->rx.req_prod_pvt; 803 804 if (__predict_false(sc->carrier == 0)) 805 return; 806 807 /* 808 * Allocate mbufs greedily, even though we batch updates to the 809 * receive ring. This creates a less bursty demand on the memory 810 * allocator, and so should reduce the chance of failed allocation 811 * requests both for ourself and for other kernel subsystems. 812 * 813 * Here we attempt to maintain rx_target buffers in flight, counting 814 * buffers that we have yet to process in the receive ring. 815 */ 816 batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons); 817 for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) { 818 m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 819 if (m_new == NULL) { 820 if (i != 0) 821 goto refill; 822 /* 823 * XXX set timer 824 */ 825 break; 826 } 827 m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE; 828 829 /* queue the mbufs allocated */ 830 (void )mbufq_enqueue(&sc->xn_rx_batch, m_new); 831 } 832 833 /* 834 * If we've allocated at least half of our target number of entries, 835 * submit them to the backend - we have enough to make the overhead 836 * of submission worthwhile. Otherwise wait for more mbufs and 837 * request entries to become available. 838 */ 839 if (i < (sc->rx_target/2)) { 840 if (req_prod >sc->rx.sring->req_prod) 841 goto push; 842 return; 843 } 844 845 /* 846 * Double floating fill target if we risked having the backend 847 * run out of empty buffers for receive traffic. We define "running 848 * low" as having less than a fourth of our target buffers free 849 * at the time we refilled the queue. 850 */ 851 if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) { 852 sc->rx_target *= 2; 853 if (sc->rx_target > sc->rx_max_target) 854 sc->rx_target = sc->rx_max_target; 855 } 856 857 refill: 858 for (nr_flips = i = 0; ; i++) { 859 if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL) 860 break; 861 862 m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)( 863 vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT); 864 865 id = xennet_rxidx(req_prod + i); 866 867 KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain")); 868 sc->rx_mbufs[id] = m_new; 869 870 ref = gnttab_claim_grant_reference(&sc->gref_rx_head); 871 KASSERT(ref != GNTTAB_LIST_END, 872 ("reserved grant references exhuasted")); 873 sc->grant_rx_ref[id] = ref; 874 875 vaddr = mtod(m_new, vm_offset_t); 876 pfn = vtophys(vaddr) >> PAGE_SHIFT; 877 req = RING_GET_REQUEST(&sc->rx, req_prod + i); 878 879 if (sc->copying_receiver == 0) { 880 gnttab_grant_foreign_transfer_ref(ref, 881 otherend_id, pfn); 882 sc->rx_pfn_array[nr_flips] = pfn; 883 nr_flips++; 884 } else { 885 gnttab_grant_foreign_access_ref(ref, 886 otherend_id, 887 pfn, 0); 888 } 889 req->id = id; 890 req->gref = ref; 891 892 sc->rx_pfn_array[i] = 893 vtophys(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT; 894 } 895 896 KASSERT(i, ("no mbufs processed")); /* should have returned earlier */ 897 KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed")); 898 /* 899 * We may have allocated buffers which have entries outstanding 900 * in the page * update queue -- make sure we flush those first! 901 */ 902 if (nr_flips != 0) { 903 #ifdef notyet 904 /* Tell the ballon driver what is going on. */ 905 balloon_update_driver_allowance(i); 906 #endif 907 set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array); 908 reservation.nr_extents = i; 909 reservation.extent_order = 0; 910 reservation.address_bits = 0; 911 reservation.domid = DOMID_SELF; 912 } else { 913 wmb(); 914 } 915 916 /* Above is a suitable barrier to ensure backend will see requests. */ 917 sc->rx.req_prod_pvt = req_prod + i; 918 push: 919 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify); 920 if (notify) 921 xen_intr_signal(sc->xen_intr_handle); 922 } 923 924 static void 925 xn_rxeof(struct netfront_info *np) 926 { 927 struct ifnet *ifp; 928 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 929 struct lro_ctrl *lro = &np->xn_lro; 930 struct lro_entry *queued; 931 #endif 932 struct netfront_rx_info rinfo; 933 struct netif_rx_response *rx = &rinfo.rx; 934 struct netif_extra_info *extras = rinfo.extras; 935 RING_IDX i, rp; 936 struct mbuf *m; 937 struct mbufq rxq, errq; 938 int err, pages_flipped = 0, work_to_do; 939 940 do { 941 XN_RX_LOCK_ASSERT(np); 942 if (!netfront_carrier_ok(np)) 943 return; 944 945 /* XXX: there should be some sane limit. */ 946 mbufq_init(&errq, INT_MAX); 947 mbufq_init(&rxq, INT_MAX); 948 949 ifp = np->xn_ifp; 950 951 rp = np->rx.sring->rsp_prod; 952 rmb(); /* Ensure we see queued responses up to 'rp'. */ 953 954 i = np->rx.rsp_cons; 955 while ((i != rp)) { 956 memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx)); 957 memset(extras, 0, sizeof(rinfo.extras)); 958 959 m = NULL; 960 err = xennet_get_responses(np, &rinfo, rp, &i, &m, 961 &pages_flipped); 962 963 if (__predict_false(err)) { 964 if (m) 965 (void )mbufq_enqueue(&errq, m); 966 np->stats.rx_errors++; 967 continue; 968 } 969 970 m->m_pkthdr.rcvif = ifp; 971 if ( rx->flags & NETRXF_data_validated ) { 972 /* Tell the stack the checksums are okay */ 973 /* 974 * XXX this isn't necessarily the case - need to add 975 * check 976 */ 977 978 m->m_pkthdr.csum_flags |= 979 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID 980 | CSUM_PSEUDO_HDR); 981 m->m_pkthdr.csum_data = 0xffff; 982 } 983 984 np->stats.rx_packets++; 985 np->stats.rx_bytes += m->m_pkthdr.len; 986 987 (void )mbufq_enqueue(&rxq, m); 988 np->rx.rsp_cons = i; 989 } 990 991 if (pages_flipped) { 992 /* Some pages are no longer absent... */ 993 #ifdef notyet 994 balloon_update_driver_allowance(-pages_flipped); 995 #endif 996 } 997 998 mbufq_drain(&errq); 999 1000 /* 1001 * Process all the mbufs after the remapping is complete. 1002 * Break the mbuf chain first though. 1003 */ 1004 while ((m = mbufq_dequeue(&rxq)) != NULL) { 1005 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1006 1007 /* 1008 * Do we really need to drop the rx lock? 1009 */ 1010 XN_RX_UNLOCK(np); 1011 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1012 /* Use LRO if possible */ 1013 if ((ifp->if_capenable & IFCAP_LRO) == 0 || 1014 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1015 /* 1016 * If LRO fails, pass up to the stack 1017 * directly. 1018 */ 1019 (*ifp->if_input)(ifp, m); 1020 } 1021 #else 1022 (*ifp->if_input)(ifp, m); 1023 #endif 1024 XN_RX_LOCK(np); 1025 } 1026 1027 np->rx.rsp_cons = i; 1028 1029 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1030 /* 1031 * Flush any outstanding LRO work 1032 */ 1033 while (!SLIST_EMPTY(&lro->lro_active)) { 1034 queued = SLIST_FIRST(&lro->lro_active); 1035 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1036 tcp_lro_flush(lro, queued); 1037 } 1038 #endif 1039 1040 #if 0 1041 /* If we get a callback with very few responses, reduce fill target. */ 1042 /* NB. Note exponential increase, linear decrease. */ 1043 if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) > 1044 ((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target)) 1045 np->rx_target = np->rx_min_target; 1046 #endif 1047 1048 network_alloc_rx_buffers(np); 1049 1050 RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do); 1051 } while (work_to_do); 1052 } 1053 1054 static void 1055 xn_txeof(struct netfront_info *np) 1056 { 1057 RING_IDX i, prod; 1058 unsigned short id; 1059 struct ifnet *ifp; 1060 netif_tx_response_t *txr; 1061 struct mbuf *m; 1062 1063 XN_TX_LOCK_ASSERT(np); 1064 1065 if (!netfront_carrier_ok(np)) 1066 return; 1067 1068 ifp = np->xn_ifp; 1069 1070 do { 1071 prod = np->tx.sring->rsp_prod; 1072 rmb(); /* Ensure we see responses up to 'rp'. */ 1073 1074 for (i = np->tx.rsp_cons; i != prod; i++) { 1075 txr = RING_GET_RESPONSE(&np->tx, i); 1076 if (txr->status == NETIF_RSP_NULL) 1077 continue; 1078 1079 if (txr->status != NETIF_RSP_OKAY) { 1080 printf("%s: WARNING: response is %d!\n", 1081 __func__, txr->status); 1082 } 1083 id = txr->id; 1084 m = np->tx_mbufs[id]; 1085 KASSERT(m != NULL, ("mbuf not found in xn_tx_chain")); 1086 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1087 ("mbuf already on the free list, but we're " 1088 "trying to free it again!")); 1089 M_ASSERTVALID(m); 1090 1091 /* 1092 * Increment packet count if this is the last 1093 * mbuf of the chain. 1094 */ 1095 if (!m->m_next) 1096 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1097 if (__predict_false(gnttab_query_foreign_access( 1098 np->grant_tx_ref[id]) != 0)) { 1099 panic("%s: grant id %u still in use by the " 1100 "backend", __func__, id); 1101 } 1102 gnttab_end_foreign_access_ref( 1103 np->grant_tx_ref[id]); 1104 gnttab_release_grant_reference( 1105 &np->gref_tx_head, np->grant_tx_ref[id]); 1106 np->grant_tx_ref[id] = GRANT_REF_INVALID; 1107 1108 np->tx_mbufs[id] = NULL; 1109 add_id_to_freelist(np->tx_mbufs, id); 1110 np->xn_cdata.xn_tx_chain_cnt--; 1111 m_free(m); 1112 /* Only mark the queue active if we've freed up at least one slot to try */ 1113 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1114 } 1115 np->tx.rsp_cons = prod; 1116 1117 /* 1118 * Set a new event, then check for race with update of 1119 * tx_cons. Note that it is essential to schedule a 1120 * callback, no matter how few buffers are pending. Even if 1121 * there is space in the transmit ring, higher layers may 1122 * be blocked because too much data is outstanding: in such 1123 * cases notification from Xen is likely to be the only kick 1124 * that we'll get. 1125 */ 1126 np->tx.sring->rsp_event = 1127 prod + ((np->tx.sring->req_prod - prod) >> 1) + 1; 1128 1129 mb(); 1130 } while (prod != np->tx.sring->rsp_prod); 1131 1132 if (np->tx_full && 1133 ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1134 np->tx_full = 0; 1135 #if 0 1136 if (np->user_state == UST_OPEN) 1137 netif_wake_queue(dev); 1138 #endif 1139 } 1140 } 1141 1142 static void 1143 xn_intr(void *xsc) 1144 { 1145 struct netfront_info *np = xsc; 1146 struct ifnet *ifp = np->xn_ifp; 1147 1148 #if 0 1149 if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod && 1150 likely(netfront_carrier_ok(np)) && 1151 ifp->if_drv_flags & IFF_DRV_RUNNING)) 1152 return; 1153 #endif 1154 if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) { 1155 XN_TX_LOCK(np); 1156 xn_txeof(np); 1157 XN_TX_UNLOCK(np); 1158 } 1159 1160 XN_RX_LOCK(np); 1161 xn_rxeof(np); 1162 XN_RX_UNLOCK(np); 1163 1164 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1165 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1166 xn_start(ifp); 1167 } 1168 1169 static void 1170 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m, 1171 grant_ref_t ref) 1172 { 1173 int new = xennet_rxidx(np->rx.req_prod_pvt); 1174 1175 KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL")); 1176 np->rx_mbufs[new] = m; 1177 np->grant_rx_ref[new] = ref; 1178 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new; 1179 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref; 1180 np->rx.req_prod_pvt++; 1181 } 1182 1183 static int 1184 xennet_get_extras(struct netfront_info *np, 1185 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1186 { 1187 struct netif_extra_info *extra; 1188 1189 int err = 0; 1190 1191 do { 1192 struct mbuf *m; 1193 grant_ref_t ref; 1194 1195 if (__predict_false(*cons + 1 == rp)) { 1196 #if 0 1197 if (net_ratelimit()) 1198 WPRINTK("Missing extra info\n"); 1199 #endif 1200 err = EINVAL; 1201 break; 1202 } 1203 1204 extra = (struct netif_extra_info *) 1205 RING_GET_RESPONSE(&np->rx, ++(*cons)); 1206 1207 if (__predict_false(!extra->type || 1208 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1209 #if 0 1210 if (net_ratelimit()) 1211 WPRINTK("Invalid extra type: %d\n", 1212 extra->type); 1213 #endif 1214 err = EINVAL; 1215 } else { 1216 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1217 } 1218 1219 m = xennet_get_rx_mbuf(np, *cons); 1220 ref = xennet_get_rx_ref(np, *cons); 1221 xennet_move_rx_slot(np, m, ref); 1222 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1223 1224 return err; 1225 } 1226 1227 static int 1228 xennet_get_responses(struct netfront_info *np, 1229 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1230 struct mbuf **list, 1231 int *pages_flipped_p) 1232 { 1233 int pages_flipped = *pages_flipped_p; 1234 struct netif_rx_response *rx = &rinfo->rx; 1235 struct netif_extra_info *extras = rinfo->extras; 1236 struct mbuf *m, *m0, *m_prev; 1237 grant_ref_t ref = xennet_get_rx_ref(np, *cons); 1238 RING_IDX ref_cons = *cons; 1239 int frags = 1; 1240 int err = 0; 1241 u_long ret; 1242 1243 m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons); 1244 1245 if (rx->flags & NETRXF_extra_info) { 1246 err = xennet_get_extras(np, extras, rp, cons); 1247 } 1248 1249 if (m0 != NULL) { 1250 m0->m_pkthdr.len = 0; 1251 m0->m_next = NULL; 1252 } 1253 1254 for (;;) { 1255 u_long mfn; 1256 1257 #if 0 1258 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1259 rx->status, rx->offset, frags); 1260 #endif 1261 if (__predict_false(rx->status < 0 || 1262 rx->offset + rx->status > PAGE_SIZE)) { 1263 1264 #if 0 1265 if (net_ratelimit()) 1266 WPRINTK("rx->offset: %x, size: %u\n", 1267 rx->offset, rx->status); 1268 #endif 1269 xennet_move_rx_slot(np, m, ref); 1270 if (m0 == m) 1271 m0 = NULL; 1272 m = NULL; 1273 err = EINVAL; 1274 goto next_skip_queue; 1275 } 1276 1277 /* 1278 * This definitely indicates a bug, either in this driver or in 1279 * the backend driver. In future this should flag the bad 1280 * situation to the system controller to reboot the backed. 1281 */ 1282 if (ref == GRANT_REF_INVALID) { 1283 1284 #if 0 1285 if (net_ratelimit()) 1286 WPRINTK("Bad rx response id %d.\n", rx->id); 1287 #endif 1288 printf("%s: Bad rx response id %d.\n", __func__,rx->id); 1289 err = EINVAL; 1290 goto next; 1291 } 1292 1293 if (!np->copying_receiver) { 1294 /* Memory pressure, insufficient buffer 1295 * headroom, ... 1296 */ 1297 if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) { 1298 WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n", 1299 rx->id, rx->status); 1300 xennet_move_rx_slot(np, m, ref); 1301 err = ENOMEM; 1302 goto next; 1303 } 1304 1305 pages_flipped++; 1306 } else { 1307 ret = gnttab_end_foreign_access_ref(ref); 1308 KASSERT(ret, ("ret != 0")); 1309 } 1310 1311 gnttab_release_grant_reference(&np->gref_rx_head, ref); 1312 1313 next: 1314 if (m == NULL) 1315 break; 1316 1317 m->m_len = rx->status; 1318 m->m_data += rx->offset; 1319 m0->m_pkthdr.len += rx->status; 1320 1321 next_skip_queue: 1322 if (!(rx->flags & NETRXF_more_data)) 1323 break; 1324 1325 if (*cons + frags == rp) { 1326 if (net_ratelimit()) 1327 WPRINTK("Need more frags\n"); 1328 err = ENOENT; 1329 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1330 __func__, *cons, frags, rp); 1331 break; 1332 } 1333 /* 1334 * Note that m can be NULL, if rx->status < 0 or if 1335 * rx->offset + rx->status > PAGE_SIZE above. 1336 */ 1337 m_prev = m; 1338 1339 rx = RING_GET_RESPONSE(&np->rx, *cons + frags); 1340 m = xennet_get_rx_mbuf(np, *cons + frags); 1341 1342 /* 1343 * m_prev == NULL can happen if rx->status < 0 or if 1344 * rx->offset + * rx->status > PAGE_SIZE above. 1345 */ 1346 if (m_prev != NULL) 1347 m_prev->m_next = m; 1348 1349 /* 1350 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1351 * rx->status > PAGE_SIZE above. 1352 */ 1353 if (m0 == NULL) 1354 m0 = m; 1355 m->m_next = NULL; 1356 ref = xennet_get_rx_ref(np, *cons + frags); 1357 ref_cons = *cons + frags; 1358 frags++; 1359 } 1360 *list = m0; 1361 *cons += frags; 1362 *pages_flipped_p = pages_flipped; 1363 1364 return (err); 1365 } 1366 1367 static void 1368 xn_tick_locked(struct netfront_info *sc) 1369 { 1370 XN_RX_LOCK_ASSERT(sc); 1371 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1372 1373 /* XXX placeholder for printing debug information */ 1374 } 1375 1376 static void 1377 xn_tick(void *xsc) 1378 { 1379 struct netfront_info *sc; 1380 1381 sc = xsc; 1382 XN_RX_LOCK(sc); 1383 xn_tick_locked(sc); 1384 XN_RX_UNLOCK(sc); 1385 } 1386 1387 /** 1388 * \brief Count the number of fragments in an mbuf chain. 1389 * 1390 * Surprisingly, there isn't an M* macro for this. 1391 */ 1392 static inline int 1393 xn_count_frags(struct mbuf *m) 1394 { 1395 int nfrags; 1396 1397 for (nfrags = 0; m != NULL; m = m->m_next) 1398 nfrags++; 1399 1400 return (nfrags); 1401 } 1402 1403 /** 1404 * Given an mbuf chain, make sure we have enough room and then push 1405 * it onto the transmit ring. 1406 */ 1407 static int 1408 xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head) 1409 { 1410 struct ifnet *ifp; 1411 struct mbuf *m; 1412 u_int nfrags; 1413 int otherend_id; 1414 1415 ifp = sc->xn_ifp; 1416 1417 /** 1418 * Defragment the mbuf if necessary. 1419 */ 1420 nfrags = xn_count_frags(m_head); 1421 1422 /* 1423 * Check to see whether this request is longer than netback 1424 * can handle, and try to defrag it. 1425 */ 1426 /** 1427 * It is a bit lame, but the netback driver in Linux can't 1428 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of 1429 * the Linux network stack. 1430 */ 1431 if (nfrags > sc->maxfrags) { 1432 m = m_defrag(m_head, M_NOWAIT); 1433 if (!m) { 1434 /* 1435 * Defrag failed, so free the mbuf and 1436 * therefore drop the packet. 1437 */ 1438 m_freem(m_head); 1439 return (EMSGSIZE); 1440 } 1441 m_head = m; 1442 } 1443 1444 /* Determine how many fragments now exist */ 1445 nfrags = xn_count_frags(m_head); 1446 1447 /* 1448 * Check to see whether the defragmented packet has too many 1449 * segments for the Linux netback driver. 1450 */ 1451 /** 1452 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1453 * of mbufs longer than Linux can handle. Make sure we don't 1454 * pass a too-long chain over to the other side by dropping the 1455 * packet. It doesn't look like there is currently a way to 1456 * tell the TCP stack to generate a shorter chain of packets. 1457 */ 1458 if (nfrags > MAX_TX_REQ_FRAGS) { 1459 #ifdef DEBUG 1460 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback " 1461 "won't be able to handle it, dropping\n", 1462 __func__, nfrags, MAX_TX_REQ_FRAGS); 1463 #endif 1464 m_freem(m_head); 1465 return (EMSGSIZE); 1466 } 1467 1468 /* 1469 * This check should be redundant. We've already verified that we 1470 * have enough slots in the ring to handle a packet of maximum 1471 * size, and that our packet is less than the maximum size. Keep 1472 * it in here as an assert for now just to make certain that 1473 * xn_tx_chain_cnt is accurate. 1474 */ 1475 KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE, 1476 ("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1477 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt, 1478 (int) nfrags, (int) NET_TX_RING_SIZE)); 1479 1480 /* 1481 * Start packing the mbufs in this chain into 1482 * the fragment pointers. Stop when we run out 1483 * of fragments or hit the end of the mbuf chain. 1484 */ 1485 m = m_head; 1486 otherend_id = xenbus_get_otherend_id(sc->xbdev); 1487 for (m = m_head; m; m = m->m_next) { 1488 netif_tx_request_t *tx; 1489 uintptr_t id; 1490 grant_ref_t ref; 1491 u_long mfn; /* XXX Wrong type? */ 1492 1493 tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt); 1494 id = get_id_from_freelist(sc->tx_mbufs); 1495 if (id == 0) 1496 panic("%s: was allocated the freelist head!\n", 1497 __func__); 1498 sc->xn_cdata.xn_tx_chain_cnt++; 1499 if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE) 1500 panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n", 1501 __func__); 1502 sc->tx_mbufs[id] = m; 1503 tx->id = id; 1504 ref = gnttab_claim_grant_reference(&sc->gref_tx_head); 1505 KASSERT((short)ref >= 0, ("Negative ref")); 1506 mfn = virt_to_mfn(mtod(m, vm_offset_t)); 1507 gnttab_grant_foreign_access_ref(ref, otherend_id, 1508 mfn, GNTMAP_readonly); 1509 tx->gref = sc->grant_tx_ref[id] = ref; 1510 tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1); 1511 tx->flags = 0; 1512 if (m == m_head) { 1513 /* 1514 * The first fragment has the entire packet 1515 * size, subsequent fragments have just the 1516 * fragment size. The backend works out the 1517 * true size of the first fragment by 1518 * subtracting the sizes of the other 1519 * fragments. 1520 */ 1521 tx->size = m->m_pkthdr.len; 1522 1523 /* 1524 * The first fragment contains the checksum flags 1525 * and is optionally followed by extra data for 1526 * TSO etc. 1527 */ 1528 /** 1529 * CSUM_TSO requires checksum offloading. 1530 * Some versions of FreeBSD fail to 1531 * set CSUM_TCP in the CSUM_TSO case, 1532 * so we have to test for CSUM_TSO 1533 * explicitly. 1534 */ 1535 if (m->m_pkthdr.csum_flags 1536 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1537 tx->flags |= (NETTXF_csum_blank 1538 | NETTXF_data_validated); 1539 } 1540 #if __FreeBSD_version >= 700000 1541 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1542 struct netif_extra_info *gso = 1543 (struct netif_extra_info *) 1544 RING_GET_REQUEST(&sc->tx, 1545 ++sc->tx.req_prod_pvt); 1546 1547 tx->flags |= NETTXF_extra_info; 1548 1549 gso->u.gso.size = m->m_pkthdr.tso_segsz; 1550 gso->u.gso.type = 1551 XEN_NETIF_GSO_TYPE_TCPV4; 1552 gso->u.gso.pad = 0; 1553 gso->u.gso.features = 0; 1554 1555 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1556 gso->flags = 0; 1557 } 1558 #endif 1559 } else { 1560 tx->size = m->m_len; 1561 } 1562 if (m->m_next) 1563 tx->flags |= NETTXF_more_data; 1564 1565 sc->tx.req_prod_pvt++; 1566 } 1567 BPF_MTAP(ifp, m_head); 1568 1569 sc->stats.tx_bytes += m_head->m_pkthdr.len; 1570 sc->stats.tx_packets++; 1571 1572 return (0); 1573 } 1574 1575 static void 1576 xn_start_locked(struct ifnet *ifp) 1577 { 1578 struct netfront_info *sc; 1579 struct mbuf *m_head; 1580 int notify; 1581 1582 sc = ifp->if_softc; 1583 1584 if (!netfront_carrier_ok(sc)) 1585 return; 1586 1587 /* 1588 * While we have enough transmit slots available for at least one 1589 * maximum-sized packet, pull mbufs off the queue and put them on 1590 * the transmit ring. 1591 */ 1592 while (xn_tx_slot_available(sc)) { 1593 IF_DEQUEUE(&ifp->if_snd, m_head); 1594 if (m_head == NULL) 1595 break; 1596 1597 if (xn_assemble_tx_request(sc, m_head) != 0) 1598 break; 1599 } 1600 1601 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify); 1602 if (notify) 1603 xen_intr_signal(sc->xen_intr_handle); 1604 1605 if (RING_FULL(&sc->tx)) { 1606 sc->tx_full = 1; 1607 #if 0 1608 netif_stop_queue(dev); 1609 #endif 1610 } 1611 } 1612 1613 static void 1614 xn_start(struct ifnet *ifp) 1615 { 1616 struct netfront_info *sc; 1617 sc = ifp->if_softc; 1618 XN_TX_LOCK(sc); 1619 xn_start_locked(ifp); 1620 XN_TX_UNLOCK(sc); 1621 } 1622 1623 /* equivalent of network_open() in Linux */ 1624 static void 1625 xn_ifinit_locked(struct netfront_info *sc) 1626 { 1627 struct ifnet *ifp; 1628 1629 XN_LOCK_ASSERT(sc); 1630 1631 ifp = sc->xn_ifp; 1632 1633 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1634 return; 1635 1636 xn_stop(sc); 1637 1638 network_alloc_rx_buffers(sc); 1639 sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1; 1640 1641 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1642 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1643 if_link_state_change(ifp, LINK_STATE_UP); 1644 1645 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1646 } 1647 1648 static void 1649 xn_ifinit(void *xsc) 1650 { 1651 struct netfront_info *sc = xsc; 1652 1653 XN_LOCK(sc); 1654 xn_ifinit_locked(sc); 1655 XN_UNLOCK(sc); 1656 } 1657 1658 static int 1659 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1660 { 1661 struct netfront_info *sc = ifp->if_softc; 1662 struct ifreq *ifr = (struct ifreq *) data; 1663 #ifdef INET 1664 struct ifaddr *ifa = (struct ifaddr *)data; 1665 #endif 1666 1667 int mask, error = 0; 1668 switch(cmd) { 1669 case SIOCSIFADDR: 1670 #ifdef INET 1671 XN_LOCK(sc); 1672 if (ifa->ifa_addr->sa_family == AF_INET) { 1673 ifp->if_flags |= IFF_UP; 1674 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1675 xn_ifinit_locked(sc); 1676 arp_ifinit(ifp, ifa); 1677 XN_UNLOCK(sc); 1678 } else { 1679 XN_UNLOCK(sc); 1680 #endif 1681 error = ether_ioctl(ifp, cmd, data); 1682 #ifdef INET 1683 } 1684 #endif 1685 break; 1686 case SIOCSIFMTU: 1687 /* XXX can we alter the MTU on a VN ?*/ 1688 #ifdef notyet 1689 if (ifr->ifr_mtu > XN_JUMBO_MTU) 1690 error = EINVAL; 1691 else 1692 #endif 1693 { 1694 ifp->if_mtu = ifr->ifr_mtu; 1695 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1696 xn_ifinit(sc); 1697 } 1698 break; 1699 case SIOCSIFFLAGS: 1700 XN_LOCK(sc); 1701 if (ifp->if_flags & IFF_UP) { 1702 /* 1703 * If only the state of the PROMISC flag changed, 1704 * then just use the 'set promisc mode' command 1705 * instead of reinitializing the entire NIC. Doing 1706 * a full re-init means reloading the firmware and 1707 * waiting for it to start up, which may take a 1708 * second or two. 1709 */ 1710 #ifdef notyet 1711 /* No promiscuous mode with Xen */ 1712 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1713 ifp->if_flags & IFF_PROMISC && 1714 !(sc->xn_if_flags & IFF_PROMISC)) { 1715 XN_SETBIT(sc, XN_RX_MODE, 1716 XN_RXMODE_RX_PROMISC); 1717 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1718 !(ifp->if_flags & IFF_PROMISC) && 1719 sc->xn_if_flags & IFF_PROMISC) { 1720 XN_CLRBIT(sc, XN_RX_MODE, 1721 XN_RXMODE_RX_PROMISC); 1722 } else 1723 #endif 1724 xn_ifinit_locked(sc); 1725 } else { 1726 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1727 xn_stop(sc); 1728 } 1729 } 1730 sc->xn_if_flags = ifp->if_flags; 1731 XN_UNLOCK(sc); 1732 error = 0; 1733 break; 1734 case SIOCSIFCAP: 1735 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1736 if (mask & IFCAP_TXCSUM) { 1737 if (IFCAP_TXCSUM & ifp->if_capenable) { 1738 ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4); 1739 ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP 1740 | CSUM_IP | CSUM_TSO); 1741 } else { 1742 ifp->if_capenable |= IFCAP_TXCSUM; 1743 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP 1744 | CSUM_IP); 1745 } 1746 } 1747 if (mask & IFCAP_RXCSUM) { 1748 ifp->if_capenable ^= IFCAP_RXCSUM; 1749 } 1750 #if __FreeBSD_version >= 700000 1751 if (mask & IFCAP_TSO4) { 1752 if (IFCAP_TSO4 & ifp->if_capenable) { 1753 ifp->if_capenable &= ~IFCAP_TSO4; 1754 ifp->if_hwassist &= ~CSUM_TSO; 1755 } else if (IFCAP_TXCSUM & ifp->if_capenable) { 1756 ifp->if_capenable |= IFCAP_TSO4; 1757 ifp->if_hwassist |= CSUM_TSO; 1758 } else { 1759 IPRINTK("Xen requires tx checksum offload" 1760 " be enabled to use TSO\n"); 1761 error = EINVAL; 1762 } 1763 } 1764 if (mask & IFCAP_LRO) { 1765 ifp->if_capenable ^= IFCAP_LRO; 1766 1767 } 1768 #endif 1769 error = 0; 1770 break; 1771 case SIOCADDMULTI: 1772 case SIOCDELMULTI: 1773 #ifdef notyet 1774 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1775 XN_LOCK(sc); 1776 xn_setmulti(sc); 1777 XN_UNLOCK(sc); 1778 error = 0; 1779 } 1780 #endif 1781 /* FALLTHROUGH */ 1782 case SIOCSIFMEDIA: 1783 case SIOCGIFMEDIA: 1784 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1785 break; 1786 default: 1787 error = ether_ioctl(ifp, cmd, data); 1788 } 1789 1790 return (error); 1791 } 1792 1793 static void 1794 xn_stop(struct netfront_info *sc) 1795 { 1796 struct ifnet *ifp; 1797 1798 XN_LOCK_ASSERT(sc); 1799 1800 ifp = sc->xn_ifp; 1801 1802 callout_stop(&sc->xn_stat_ch); 1803 1804 xn_free_rx_ring(sc); 1805 xn_free_tx_ring(sc); 1806 1807 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1808 if_link_state_change(ifp, LINK_STATE_DOWN); 1809 } 1810 1811 /* START of Xenolinux helper functions adapted to FreeBSD */ 1812 int 1813 network_connect(struct netfront_info *np) 1814 { 1815 int i, requeue_idx, error; 1816 grant_ref_t ref; 1817 netif_rx_request_t *req; 1818 u_int feature_rx_copy, feature_rx_flip; 1819 1820 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1821 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1822 if (error) 1823 feature_rx_copy = 0; 1824 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1825 "feature-rx-flip", NULL, "%u", &feature_rx_flip); 1826 if (error) 1827 feature_rx_flip = 1; 1828 1829 /* 1830 * Copy packets on receive path if: 1831 * (a) This was requested by user, and the backend supports it; or 1832 * (b) Flipping was requested, but this is unsupported by the backend. 1833 */ 1834 np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) || 1835 (MODPARM_rx_flip && !feature_rx_flip)); 1836 1837 /* Recovery procedure: */ 1838 error = talk_to_backend(np->xbdev, np); 1839 if (error) 1840 return (error); 1841 1842 /* Step 1: Reinitialise variables. */ 1843 xn_query_features(np); 1844 xn_configure_features(np); 1845 netif_release_tx_bufs(np); 1846 1847 /* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */ 1848 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1849 struct mbuf *m; 1850 u_long pfn; 1851 1852 if (np->rx_mbufs[i] == NULL) 1853 continue; 1854 1855 m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i); 1856 ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i); 1857 1858 req = RING_GET_REQUEST(&np->rx, requeue_idx); 1859 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1860 1861 if (!np->copying_receiver) { 1862 gnttab_grant_foreign_transfer_ref(ref, 1863 xenbus_get_otherend_id(np->xbdev), 1864 pfn); 1865 } else { 1866 gnttab_grant_foreign_access_ref(ref, 1867 xenbus_get_otherend_id(np->xbdev), 1868 pfn, 0); 1869 } 1870 req->gref = ref; 1871 req->id = requeue_idx; 1872 1873 requeue_idx++; 1874 } 1875 1876 np->rx.req_prod_pvt = requeue_idx; 1877 1878 /* Step 3: All public and private state should now be sane. Get 1879 * ready to start sending and receiving packets and give the driver 1880 * domain a kick because we've probably just requeued some 1881 * packets. 1882 */ 1883 netfront_carrier_on(np); 1884 xen_intr_signal(np->xen_intr_handle); 1885 XN_TX_LOCK(np); 1886 xn_txeof(np); 1887 XN_TX_UNLOCK(np); 1888 network_alloc_rx_buffers(np); 1889 1890 return (0); 1891 } 1892 1893 static void 1894 xn_query_features(struct netfront_info *np) 1895 { 1896 int val; 1897 1898 device_printf(np->xbdev, "backend features:"); 1899 1900 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1901 "feature-sg", NULL, "%d", &val) < 0) 1902 val = 0; 1903 1904 np->maxfrags = 1; 1905 if (val) { 1906 np->maxfrags = MAX_TX_REQ_FRAGS; 1907 printf(" feature-sg"); 1908 } 1909 1910 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1911 "feature-gso-tcpv4", NULL, "%d", &val) < 0) 1912 val = 0; 1913 1914 np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO); 1915 if (val) { 1916 np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO; 1917 printf(" feature-gso-tcp4"); 1918 } 1919 1920 printf("\n"); 1921 } 1922 1923 static int 1924 xn_configure_features(struct netfront_info *np) 1925 { 1926 int err, cap_enabled; 1927 1928 err = 0; 1929 1930 if (np->xn_resume && 1931 ((np->xn_ifp->if_capenable & np->xn_ifp->if_capabilities) 1932 == np->xn_ifp->if_capenable)) { 1933 /* Current options are available, no need to do anything. */ 1934 return (0); 1935 } 1936 1937 /* Try to preserve as many options as possible. */ 1938 if (np->xn_resume) 1939 cap_enabled = np->xn_ifp->if_capenable; 1940 else 1941 cap_enabled = UINT_MAX; 1942 1943 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1944 if ((np->xn_ifp->if_capenable & IFCAP_LRO) == (cap_enabled & IFCAP_LRO)) 1945 tcp_lro_free(&np->xn_lro); 1946 #endif 1947 np->xn_ifp->if_capenable = 1948 np->xn_ifp->if_capabilities & ~(IFCAP_LRO|IFCAP_TSO4) & cap_enabled; 1949 np->xn_ifp->if_hwassist &= ~CSUM_TSO; 1950 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1951 if (xn_enable_lro && (np->xn_ifp->if_capabilities & IFCAP_LRO) == 1952 (cap_enabled & IFCAP_LRO)) { 1953 err = tcp_lro_init(&np->xn_lro); 1954 if (err) { 1955 device_printf(np->xbdev, "LRO initialization failed\n"); 1956 } else { 1957 np->xn_lro.ifp = np->xn_ifp; 1958 np->xn_ifp->if_capenable |= IFCAP_LRO; 1959 } 1960 } 1961 if ((np->xn_ifp->if_capabilities & IFCAP_TSO4) == 1962 (cap_enabled & IFCAP_TSO4)) { 1963 np->xn_ifp->if_capenable |= IFCAP_TSO4; 1964 np->xn_ifp->if_hwassist |= CSUM_TSO; 1965 } 1966 #endif 1967 return (err); 1968 } 1969 1970 /** 1971 * Create a network device. 1972 * @param dev Newbus device representing this virtual NIC. 1973 */ 1974 int 1975 create_netdev(device_t dev) 1976 { 1977 int i; 1978 struct netfront_info *np; 1979 int err; 1980 struct ifnet *ifp; 1981 1982 np = device_get_softc(dev); 1983 1984 np->xbdev = dev; 1985 1986 XN_LOCK_INIT(np, xennetif); 1987 1988 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 1989 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1990 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 1991 1992 np->rx_target = RX_MIN_TARGET; 1993 np->rx_min_target = RX_MIN_TARGET; 1994 np->rx_max_target = RX_MAX_TARGET; 1995 1996 /* Initialise {tx,rx}_skbs to be a free chain containing every entry. */ 1997 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 1998 np->tx_mbufs[i] = (void *) ((u_long) i+1); 1999 np->grant_tx_ref[i] = GRANT_REF_INVALID; 2000 } 2001 np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0; 2002 2003 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 2004 2005 np->rx_mbufs[i] = NULL; 2006 np->grant_rx_ref[i] = GRANT_REF_INVALID; 2007 } 2008 2009 mbufq_init(&np->xn_rx_batch, INT_MAX); 2010 2011 /* A grant for every tx ring slot */ 2012 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 2013 &np->gref_tx_head) != 0) { 2014 IPRINTK("#### netfront can't alloc tx grant refs\n"); 2015 err = ENOMEM; 2016 goto exit; 2017 } 2018 /* A grant for every rx ring slot */ 2019 if (gnttab_alloc_grant_references(RX_MAX_TARGET, 2020 &np->gref_rx_head) != 0) { 2021 WPRINTK("#### netfront can't alloc rx grant refs\n"); 2022 gnttab_free_grant_references(np->gref_tx_head); 2023 err = ENOMEM; 2024 goto exit; 2025 } 2026 2027 err = xen_net_read_mac(dev, np->mac); 2028 if (err) 2029 goto out; 2030 2031 /* Set up ifnet structure */ 2032 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2033 ifp->if_softc = np; 2034 if_initname(ifp, "xn", device_get_unit(dev)); 2035 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2036 ifp->if_ioctl = xn_ioctl; 2037 ifp->if_output = ether_output; 2038 ifp->if_start = xn_start; 2039 #ifdef notyet 2040 ifp->if_watchdog = xn_watchdog; 2041 #endif 2042 ifp->if_init = xn_ifinit; 2043 ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1; 2044 2045 ifp->if_hwassist = XN_CSUM_FEATURES; 2046 ifp->if_capabilities = IFCAP_HWCSUM; 2047 ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 2048 ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS; 2049 ifp->if_hw_tsomaxsegsize = PAGE_SIZE; 2050 2051 ether_ifattach(ifp, np->mac); 2052 callout_init(&np->xn_stat_ch, 1); 2053 netfront_carrier_off(np); 2054 2055 return (0); 2056 2057 exit: 2058 gnttab_free_grant_references(np->gref_tx_head); 2059 out: 2060 return (err); 2061 } 2062 2063 /** 2064 * Handle the change of state of the backend to Closing. We must delete our 2065 * device-layer structures now, to ensure that writes are flushed through to 2066 * the backend. Once is this done, we can switch to Closed in 2067 * acknowledgement. 2068 */ 2069 #if 0 2070 static void 2071 netfront_closing(device_t dev) 2072 { 2073 #if 0 2074 struct netfront_info *info = dev->dev_driver_data; 2075 2076 DPRINTK("netfront_closing: %s removed\n", dev->nodename); 2077 2078 close_netdev(info); 2079 #endif 2080 xenbus_switch_state(dev, XenbusStateClosed); 2081 } 2082 #endif 2083 2084 static int 2085 netfront_detach(device_t dev) 2086 { 2087 struct netfront_info *info = device_get_softc(dev); 2088 2089 DPRINTK("%s\n", xenbus_get_node(dev)); 2090 2091 netif_free(info); 2092 2093 return 0; 2094 } 2095 2096 static void 2097 netif_free(struct netfront_info *info) 2098 { 2099 XN_LOCK(info); 2100 xn_stop(info); 2101 XN_UNLOCK(info); 2102 callout_drain(&info->xn_stat_ch); 2103 netif_disconnect_backend(info); 2104 if (info->xn_ifp != NULL) { 2105 ether_ifdetach(info->xn_ifp); 2106 if_free(info->xn_ifp); 2107 info->xn_ifp = NULL; 2108 } 2109 ifmedia_removeall(&info->sc_media); 2110 } 2111 2112 static void 2113 netif_disconnect_backend(struct netfront_info *info) 2114 { 2115 XN_RX_LOCK(info); 2116 XN_TX_LOCK(info); 2117 netfront_carrier_off(info); 2118 XN_TX_UNLOCK(info); 2119 XN_RX_UNLOCK(info); 2120 2121 free_ring(&info->tx_ring_ref, &info->tx.sring); 2122 free_ring(&info->rx_ring_ref, &info->rx.sring); 2123 2124 xen_intr_unbind(&info->xen_intr_handle); 2125 } 2126 2127 static void 2128 free_ring(int *ref, void *ring_ptr_ref) 2129 { 2130 void **ring_ptr_ptr = ring_ptr_ref; 2131 2132 if (*ref != GRANT_REF_INVALID) { 2133 /* This API frees the associated storage. */ 2134 gnttab_end_foreign_access(*ref, *ring_ptr_ptr); 2135 *ref = GRANT_REF_INVALID; 2136 } 2137 *ring_ptr_ptr = NULL; 2138 } 2139 2140 static int 2141 xn_ifmedia_upd(struct ifnet *ifp) 2142 { 2143 return (0); 2144 } 2145 2146 static void 2147 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2148 { 2149 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2150 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2151 } 2152 2153 /* ** Driver registration ** */ 2154 static device_method_t netfront_methods[] = { 2155 /* Device interface */ 2156 DEVMETHOD(device_probe, netfront_probe), 2157 DEVMETHOD(device_attach, netfront_attach), 2158 DEVMETHOD(device_detach, netfront_detach), 2159 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2160 DEVMETHOD(device_suspend, netfront_suspend), 2161 DEVMETHOD(device_resume, netfront_resume), 2162 2163 /* Xenbus interface */ 2164 DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed), 2165 2166 DEVMETHOD_END 2167 }; 2168 2169 static driver_t netfront_driver = { 2170 "xn", 2171 netfront_methods, 2172 sizeof(struct netfront_info), 2173 }; 2174 devclass_t netfront_devclass; 2175 2176 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL, 2177 NULL); 2178