1 /*- 2 * Copyright (c) 2004-2006 Kip Macy 3 * Copyright (c) 2015 Wei Liu <wei.liu2@citrix.com> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/param.h> 35 #include <sys/sockio.h> 36 #include <sys/limits.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/kernel.h> 41 #include <sys/socket.h> 42 #include <sys/sysctl.h> 43 #include <sys/taskqueue.h> 44 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_arp.h> 48 #include <net/ethernet.h> 49 #include <net/if_media.h> 50 #include <net/bpf.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/ip.h> 55 #include <netinet/if_ether.h> 56 #include <netinet/tcp.h> 57 #include <netinet/tcp_lro.h> 58 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 62 #include <sys/bus.h> 63 64 #include <xen/xen-os.h> 65 #include <xen/hypervisor.h> 66 #include <xen/xen_intr.h> 67 #include <xen/gnttab.h> 68 #include <xen/interface/memory.h> 69 #include <xen/interface/io/netif.h> 70 #include <xen/xenbus/xenbusvar.h> 71 72 #include "xenbus_if.h" 73 74 /* Features supported by all backends. TSO and LRO can be negotiated */ 75 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 76 77 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 78 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 79 80 #define NET_RX_SLOTS_MIN (XEN_NETIF_NR_SLOTS_MIN + 1) 81 82 /* 83 * Should the driver do LRO on the RX end 84 * this can be toggled on the fly, but the 85 * interface must be reset (down/up) for it 86 * to take effect. 87 */ 88 static int xn_enable_lro = 1; 89 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 90 91 /* 92 * Number of pairs of queues. 93 */ 94 static unsigned long xn_num_queues = 4; 95 TUNABLE_ULONG("hw.xn.num_queues", &xn_num_queues); 96 97 /** 98 * \brief The maximum allowed data fragments in a single transmit 99 * request. 100 * 101 * This limit is imposed by the backend driver. We assume here that 102 * we are dealing with a Linux driver domain and have set our limit 103 * to mirror the Linux MAX_SKB_FRAGS constant. 104 */ 105 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 106 107 #define RX_COPY_THRESHOLD 256 108 109 #define net_ratelimit() 0 110 111 struct netfront_rxq; 112 struct netfront_txq; 113 struct netfront_info; 114 struct netfront_rx_info; 115 116 static void xn_txeof(struct netfront_txq *); 117 static void xn_rxeof(struct netfront_rxq *); 118 static void xn_alloc_rx_buffers(struct netfront_rxq *); 119 static void xn_alloc_rx_buffers_callout(void *arg); 120 121 static void xn_release_rx_bufs(struct netfront_rxq *); 122 static void xn_release_tx_bufs(struct netfront_txq *); 123 124 static void xn_rxq_intr(struct netfront_rxq *); 125 static void xn_txq_intr(struct netfront_txq *); 126 static void xn_intr(void *); 127 static inline int xn_count_frags(struct mbuf *m); 128 static int xn_assemble_tx_request(struct netfront_txq *, struct mbuf *); 129 static int xn_ioctl(struct ifnet *, u_long, caddr_t); 130 static void xn_ifinit_locked(struct netfront_info *); 131 static void xn_ifinit(void *); 132 static void xn_stop(struct netfront_info *); 133 static void xn_query_features(struct netfront_info *np); 134 static int xn_configure_features(struct netfront_info *np); 135 static void netif_free(struct netfront_info *info); 136 static int netfront_detach(device_t dev); 137 138 static int xn_txq_mq_start_locked(struct netfront_txq *, struct mbuf *); 139 static int xn_txq_mq_start(struct ifnet *, struct mbuf *); 140 141 static int talk_to_backend(device_t dev, struct netfront_info *info); 142 static int create_netdev(device_t dev); 143 static void netif_disconnect_backend(struct netfront_info *info); 144 static int setup_device(device_t dev, struct netfront_info *info, 145 unsigned long); 146 static int xn_ifmedia_upd(struct ifnet *ifp); 147 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 148 149 static int xn_connect(struct netfront_info *); 150 static void xn_kick_rings(struct netfront_info *); 151 152 static int xn_get_responses(struct netfront_rxq *, 153 struct netfront_rx_info *, RING_IDX, RING_IDX *, 154 struct mbuf **); 155 156 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT) 157 158 #define INVALID_P2M_ENTRY (~0UL) 159 #define XN_QUEUE_NAME_LEN 8 /* xn{t,r}x_%u, allow for two digits */ 160 struct netfront_rxq { 161 struct netfront_info *info; 162 u_int id; 163 char name[XN_QUEUE_NAME_LEN]; 164 struct mtx lock; 165 166 int ring_ref; 167 netif_rx_front_ring_t ring; 168 xen_intr_handle_t xen_intr_handle; 169 170 grant_ref_t gref_head; 171 grant_ref_t grant_ref[NET_TX_RING_SIZE + 1]; 172 173 struct mbuf *mbufs[NET_RX_RING_SIZE + 1]; 174 175 struct lro_ctrl lro; 176 177 struct callout rx_refill; 178 }; 179 180 struct netfront_txq { 181 struct netfront_info *info; 182 u_int id; 183 char name[XN_QUEUE_NAME_LEN]; 184 struct mtx lock; 185 186 int ring_ref; 187 netif_tx_front_ring_t ring; 188 xen_intr_handle_t xen_intr_handle; 189 190 grant_ref_t gref_head; 191 grant_ref_t grant_ref[NET_TX_RING_SIZE + 1]; 192 193 struct mbuf *mbufs[NET_TX_RING_SIZE + 1]; 194 int mbufs_cnt; 195 struct buf_ring *br; 196 197 struct taskqueue *tq; 198 struct task defrtask; 199 200 bool full; 201 }; 202 203 struct netfront_info { 204 struct ifnet *xn_ifp; 205 206 struct mtx sc_lock; 207 208 u_int num_queues; 209 struct netfront_rxq *rxq; 210 struct netfront_txq *txq; 211 212 u_int carrier; 213 u_int maxfrags; 214 215 device_t xbdev; 216 uint8_t mac[ETHER_ADDR_LEN]; 217 218 int xn_if_flags; 219 220 struct ifmedia sc_media; 221 222 bool xn_reset; 223 }; 224 225 struct netfront_rx_info { 226 struct netif_rx_response rx; 227 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 228 }; 229 230 #define XN_RX_LOCK(_q) mtx_lock(&(_q)->lock) 231 #define XN_RX_UNLOCK(_q) mtx_unlock(&(_q)->lock) 232 233 #define XN_TX_LOCK(_q) mtx_lock(&(_q)->lock) 234 #define XN_TX_TRYLOCK(_q) mtx_trylock(&(_q)->lock) 235 #define XN_TX_UNLOCK(_q) mtx_unlock(&(_q)->lock) 236 237 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 238 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 239 240 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 241 #define XN_RX_LOCK_ASSERT(_q) mtx_assert(&(_q)->lock, MA_OWNED); 242 #define XN_TX_LOCK_ASSERT(_q) mtx_assert(&(_q)->lock, MA_OWNED); 243 244 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 245 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 246 #define netfront_carrier_ok(netif) ((netif)->carrier) 247 248 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 249 250 static inline void 251 add_id_to_freelist(struct mbuf **list, uintptr_t id) 252 { 253 254 KASSERT(id != 0, 255 ("%s: the head item (0) must always be free.", __func__)); 256 list[id] = list[0]; 257 list[0] = (struct mbuf *)id; 258 } 259 260 static inline unsigned short 261 get_id_from_freelist(struct mbuf **list) 262 { 263 uintptr_t id; 264 265 id = (uintptr_t)list[0]; 266 KASSERT(id != 0, 267 ("%s: the head item (0) must always remain free.", __func__)); 268 list[0] = list[id]; 269 return (id); 270 } 271 272 static inline int 273 xn_rxidx(RING_IDX idx) 274 { 275 276 return idx & (NET_RX_RING_SIZE - 1); 277 } 278 279 static inline struct mbuf * 280 xn_get_rx_mbuf(struct netfront_rxq *rxq, RING_IDX ri) 281 { 282 int i; 283 struct mbuf *m; 284 285 i = xn_rxidx(ri); 286 m = rxq->mbufs[i]; 287 rxq->mbufs[i] = NULL; 288 return (m); 289 } 290 291 static inline grant_ref_t 292 xn_get_rx_ref(struct netfront_rxq *rxq, RING_IDX ri) 293 { 294 int i = xn_rxidx(ri); 295 grant_ref_t ref = rxq->grant_ref[i]; 296 297 KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n")); 298 rxq->grant_ref[i] = GRANT_REF_INVALID; 299 return (ref); 300 } 301 302 #define IPRINTK(fmt, args...) \ 303 printf("[XEN] " fmt, ##args) 304 #ifdef INVARIANTS 305 #define WPRINTK(fmt, args...) \ 306 printf("[XEN] " fmt, ##args) 307 #else 308 #define WPRINTK(fmt, args...) 309 #endif 310 #ifdef DEBUG 311 #define DPRINTK(fmt, args...) \ 312 printf("[XEN] %s: " fmt, __func__, ##args) 313 #else 314 #define DPRINTK(fmt, args...) 315 #endif 316 317 /** 318 * Read the 'mac' node at the given device's node in the store, and parse that 319 * as colon-separated octets, placing result the given mac array. mac must be 320 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 321 * Return 0 on success, or errno on error. 322 */ 323 static int 324 xen_net_read_mac(device_t dev, uint8_t mac[]) 325 { 326 int error, i; 327 char *s, *e, *macstr; 328 const char *path; 329 330 path = xenbus_get_node(dev); 331 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 332 if (error == ENOENT) { 333 /* 334 * Deal with missing mac XenStore nodes on devices with 335 * HVM emulation (the 'ioemu' configuration attribute) 336 * enabled. 337 * 338 * The HVM emulator may execute in a stub device model 339 * domain which lacks the permission, only given to Dom0, 340 * to update the guest's XenStore tree. For this reason, 341 * the HVM emulator doesn't even attempt to write the 342 * front-side mac node, even when operating in Dom0. 343 * However, there should always be a mac listed in the 344 * backend tree. Fallback to this version if our query 345 * of the front side XenStore location doesn't find 346 * anything. 347 */ 348 path = xenbus_get_otherend_path(dev); 349 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 350 } 351 if (error != 0) { 352 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 353 return (error); 354 } 355 356 s = macstr; 357 for (i = 0; i < ETHER_ADDR_LEN; i++) { 358 mac[i] = strtoul(s, &e, 16); 359 if (s == e || (e[0] != ':' && e[0] != 0)) { 360 free(macstr, M_XENBUS); 361 return (ENOENT); 362 } 363 s = &e[1]; 364 } 365 free(macstr, M_XENBUS); 366 return (0); 367 } 368 369 /** 370 * Entry point to this code when a new device is created. Allocate the basic 371 * structures and the ring buffers for communication with the backend, and 372 * inform the backend of the appropriate details for those. Switch to 373 * Connected state. 374 */ 375 static int 376 netfront_probe(device_t dev) 377 { 378 379 if (xen_hvm_domain() && xen_disable_pv_nics != 0) 380 return (ENXIO); 381 382 if (!strcmp(xenbus_get_type(dev), "vif")) { 383 device_set_desc(dev, "Virtual Network Interface"); 384 return (0); 385 } 386 387 return (ENXIO); 388 } 389 390 static int 391 netfront_attach(device_t dev) 392 { 393 int err; 394 395 err = create_netdev(dev); 396 if (err != 0) { 397 xenbus_dev_fatal(dev, err, "creating netdev"); 398 return (err); 399 } 400 401 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 402 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 403 OID_AUTO, "enable_lro", CTLFLAG_RW, 404 &xn_enable_lro, 0, "Large Receive Offload"); 405 406 SYSCTL_ADD_ULONG(device_get_sysctl_ctx(dev), 407 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 408 OID_AUTO, "num_queues", CTLFLAG_RD, 409 &xn_num_queues, "Number of pairs of queues"); 410 411 return (0); 412 } 413 414 static int 415 netfront_suspend(device_t dev) 416 { 417 struct netfront_info *np = device_get_softc(dev); 418 u_int i; 419 420 for (i = 0; i < np->num_queues; i++) { 421 XN_RX_LOCK(&np->rxq[i]); 422 XN_TX_LOCK(&np->txq[i]); 423 } 424 netfront_carrier_off(np); 425 for (i = 0; i < np->num_queues; i++) { 426 XN_RX_UNLOCK(&np->rxq[i]); 427 XN_TX_UNLOCK(&np->txq[i]); 428 } 429 return (0); 430 } 431 432 /** 433 * We are reconnecting to the backend, due to a suspend/resume, or a backend 434 * driver restart. We tear down our netif structure and recreate it, but 435 * leave the device-layer structures intact so that this is transparent to the 436 * rest of the kernel. 437 */ 438 static int 439 netfront_resume(device_t dev) 440 { 441 struct netfront_info *info = device_get_softc(dev); 442 443 netif_disconnect_backend(info); 444 return (0); 445 } 446 447 static int 448 write_queue_xenstore_keys(device_t dev, 449 struct netfront_rxq *rxq, 450 struct netfront_txq *txq, 451 struct xs_transaction *xst, bool hierarchy) 452 { 453 int err; 454 const char *message; 455 const char *node = xenbus_get_node(dev); 456 char *path; 457 size_t path_size; 458 459 KASSERT(rxq->id == txq->id, ("Mismatch between RX and TX queue ids")); 460 /* Split event channel support is not yet there. */ 461 KASSERT(rxq->xen_intr_handle == txq->xen_intr_handle, 462 ("Split event channels are not supported")); 463 464 if (hierarchy) { 465 path_size = strlen(node) + 10; 466 path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO); 467 snprintf(path, path_size, "%s/queue-%u", node, rxq->id); 468 } else { 469 path_size = strlen(node) + 1; 470 path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO); 471 snprintf(path, path_size, "%s", node); 472 } 473 474 err = xs_printf(*xst, path, "tx-ring-ref","%u", txq->ring_ref); 475 if (err != 0) { 476 message = "writing tx ring-ref"; 477 goto error; 478 } 479 err = xs_printf(*xst, path, "rx-ring-ref","%u", rxq->ring_ref); 480 if (err != 0) { 481 message = "writing rx ring-ref"; 482 goto error; 483 } 484 err = xs_printf(*xst, path, "event-channel", "%u", 485 xen_intr_port(rxq->xen_intr_handle)); 486 if (err != 0) { 487 message = "writing event-channel"; 488 goto error; 489 } 490 491 free(path, M_DEVBUF); 492 493 return (0); 494 495 error: 496 free(path, M_DEVBUF); 497 xenbus_dev_fatal(dev, err, "%s", message); 498 499 return (err); 500 } 501 502 /* Common code used when first setting up, and when resuming. */ 503 static int 504 talk_to_backend(device_t dev, struct netfront_info *info) 505 { 506 const char *message; 507 struct xs_transaction xst; 508 const char *node = xenbus_get_node(dev); 509 int err; 510 unsigned long num_queues, max_queues = 0; 511 unsigned int i; 512 513 err = xen_net_read_mac(dev, info->mac); 514 if (err != 0) { 515 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 516 goto out; 517 } 518 519 err = xs_scanf(XST_NIL, xenbus_get_otherend_path(info->xbdev), 520 "multi-queue-max-queues", NULL, "%lu", &max_queues); 521 if (err != 0) 522 max_queues = 1; 523 num_queues = xn_num_queues; 524 if (num_queues > max_queues) 525 num_queues = max_queues; 526 527 err = setup_device(dev, info, num_queues); 528 if (err != 0) 529 goto out; 530 531 again: 532 err = xs_transaction_start(&xst); 533 if (err != 0) { 534 xenbus_dev_fatal(dev, err, "starting transaction"); 535 goto free; 536 } 537 538 if (info->num_queues == 1) { 539 err = write_queue_xenstore_keys(dev, &info->rxq[0], 540 &info->txq[0], &xst, false); 541 if (err != 0) 542 goto abort_transaction_no_def_error; 543 } else { 544 err = xs_printf(xst, node, "multi-queue-num-queues", 545 "%u", info->num_queues); 546 if (err != 0) { 547 message = "writing multi-queue-num-queues"; 548 goto abort_transaction; 549 } 550 551 for (i = 0; i < info->num_queues; i++) { 552 err = write_queue_xenstore_keys(dev, &info->rxq[i], 553 &info->txq[i], &xst, true); 554 if (err != 0) 555 goto abort_transaction_no_def_error; 556 } 557 } 558 559 err = xs_printf(xst, node, "request-rx-copy", "%u", 1); 560 if (err != 0) { 561 message = "writing request-rx-copy"; 562 goto abort_transaction; 563 } 564 err = xs_printf(xst, node, "feature-rx-notify", "%d", 1); 565 if (err != 0) { 566 message = "writing feature-rx-notify"; 567 goto abort_transaction; 568 } 569 err = xs_printf(xst, node, "feature-sg", "%d", 1); 570 if (err != 0) { 571 message = "writing feature-sg"; 572 goto abort_transaction; 573 } 574 if ((info->xn_ifp->if_capenable & IFCAP_LRO) != 0) { 575 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1); 576 if (err != 0) { 577 message = "writing feature-gso-tcpv4"; 578 goto abort_transaction; 579 } 580 } 581 if ((info->xn_ifp->if_capenable & IFCAP_RXCSUM) == 0) { 582 err = xs_printf(xst, node, "feature-no-csum-offload", "%d", 1); 583 if (err != 0) { 584 message = "writing feature-no-csum-offload"; 585 goto abort_transaction; 586 } 587 } 588 589 err = xs_transaction_end(xst, 0); 590 if (err != 0) { 591 if (err == EAGAIN) 592 goto again; 593 xenbus_dev_fatal(dev, err, "completing transaction"); 594 goto free; 595 } 596 597 return 0; 598 599 abort_transaction: 600 xenbus_dev_fatal(dev, err, "%s", message); 601 abort_transaction_no_def_error: 602 xs_transaction_end(xst, 1); 603 free: 604 netif_free(info); 605 out: 606 return (err); 607 } 608 609 static void 610 xn_rxq_intr(struct netfront_rxq *rxq) 611 { 612 613 XN_RX_LOCK(rxq); 614 xn_rxeof(rxq); 615 XN_RX_UNLOCK(rxq); 616 } 617 618 static void 619 xn_txq_start(struct netfront_txq *txq) 620 { 621 struct netfront_info *np = txq->info; 622 struct ifnet *ifp = np->xn_ifp; 623 624 XN_TX_LOCK_ASSERT(txq); 625 if (!drbr_empty(ifp, txq->br)) 626 xn_txq_mq_start_locked(txq, NULL); 627 } 628 629 static void 630 xn_txq_intr(struct netfront_txq *txq) 631 { 632 633 XN_TX_LOCK(txq); 634 if (RING_HAS_UNCONSUMED_RESPONSES(&txq->ring)) 635 xn_txeof(txq); 636 xn_txq_start(txq); 637 XN_TX_UNLOCK(txq); 638 } 639 640 static void 641 xn_txq_tq_deferred(void *xtxq, int pending) 642 { 643 struct netfront_txq *txq = xtxq; 644 645 XN_TX_LOCK(txq); 646 xn_txq_start(txq); 647 XN_TX_UNLOCK(txq); 648 } 649 650 static void 651 disconnect_rxq(struct netfront_rxq *rxq) 652 { 653 654 xn_release_rx_bufs(rxq); 655 gnttab_free_grant_references(rxq->gref_head); 656 gnttab_end_foreign_access(rxq->ring_ref, NULL); 657 /* 658 * No split event channel support at the moment, handle will 659 * be unbound in tx. So no need to call xen_intr_unbind here, 660 * but we do want to reset the handler to 0. 661 */ 662 rxq->xen_intr_handle = 0; 663 } 664 665 static void 666 destroy_rxq(struct netfront_rxq *rxq) 667 { 668 669 callout_drain(&rxq->rx_refill); 670 free(rxq->ring.sring, M_DEVBUF); 671 } 672 673 static void 674 destroy_rxqs(struct netfront_info *np) 675 { 676 int i; 677 678 for (i = 0; i < np->num_queues; i++) 679 destroy_rxq(&np->rxq[i]); 680 681 free(np->rxq, M_DEVBUF); 682 np->rxq = NULL; 683 } 684 685 static int 686 setup_rxqs(device_t dev, struct netfront_info *info, 687 unsigned long num_queues) 688 { 689 int q, i; 690 int error; 691 netif_rx_sring_t *rxs; 692 struct netfront_rxq *rxq; 693 694 info->rxq = malloc(sizeof(struct netfront_rxq) * num_queues, 695 M_DEVBUF, M_WAITOK|M_ZERO); 696 697 for (q = 0; q < num_queues; q++) { 698 rxq = &info->rxq[q]; 699 700 rxq->id = q; 701 rxq->info = info; 702 rxq->ring_ref = GRANT_REF_INVALID; 703 rxq->ring.sring = NULL; 704 snprintf(rxq->name, XN_QUEUE_NAME_LEN, "xnrx_%u", q); 705 mtx_init(&rxq->lock, rxq->name, "netfront receive lock", 706 MTX_DEF); 707 708 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 709 rxq->mbufs[i] = NULL; 710 rxq->grant_ref[i] = GRANT_REF_INVALID; 711 } 712 713 /* Start resources allocation */ 714 715 if (gnttab_alloc_grant_references(NET_RX_RING_SIZE, 716 &rxq->gref_head) != 0) { 717 device_printf(dev, "allocating rx gref"); 718 error = ENOMEM; 719 goto fail; 720 } 721 722 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, 723 M_WAITOK|M_ZERO); 724 SHARED_RING_INIT(rxs); 725 FRONT_RING_INIT(&rxq->ring, rxs, PAGE_SIZE); 726 727 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), 728 &rxq->ring_ref); 729 if (error != 0) { 730 device_printf(dev, "granting rx ring page"); 731 goto fail_grant_ring; 732 } 733 734 callout_init(&rxq->rx_refill, 1); 735 } 736 737 return (0); 738 739 fail_grant_ring: 740 gnttab_free_grant_references(rxq->gref_head); 741 free(rxq->ring.sring, M_DEVBUF); 742 fail: 743 for (; q >= 0; q--) { 744 disconnect_rxq(&info->rxq[q]); 745 destroy_rxq(&info->rxq[q]); 746 } 747 748 free(info->rxq, M_DEVBUF); 749 return (error); 750 } 751 752 static void 753 disconnect_txq(struct netfront_txq *txq) 754 { 755 756 xn_release_tx_bufs(txq); 757 gnttab_free_grant_references(txq->gref_head); 758 gnttab_end_foreign_access(txq->ring_ref, NULL); 759 xen_intr_unbind(&txq->xen_intr_handle); 760 } 761 762 static void 763 destroy_txq(struct netfront_txq *txq) 764 { 765 766 free(txq->ring.sring, M_DEVBUF); 767 buf_ring_free(txq->br, M_DEVBUF); 768 taskqueue_drain_all(txq->tq); 769 taskqueue_free(txq->tq); 770 } 771 772 static void 773 destroy_txqs(struct netfront_info *np) 774 { 775 int i; 776 777 for (i = 0; i < np->num_queues; i++) 778 destroy_txq(&np->txq[i]); 779 780 free(np->txq, M_DEVBUF); 781 np->txq = NULL; 782 } 783 784 static int 785 setup_txqs(device_t dev, struct netfront_info *info, 786 unsigned long num_queues) 787 { 788 int q, i; 789 int error; 790 netif_tx_sring_t *txs; 791 struct netfront_txq *txq; 792 793 info->txq = malloc(sizeof(struct netfront_txq) * num_queues, 794 M_DEVBUF, M_WAITOK|M_ZERO); 795 796 for (q = 0; q < num_queues; q++) { 797 txq = &info->txq[q]; 798 799 txq->id = q; 800 txq->info = info; 801 802 txq->ring_ref = GRANT_REF_INVALID; 803 txq->ring.sring = NULL; 804 805 snprintf(txq->name, XN_QUEUE_NAME_LEN, "xntx_%u", q); 806 807 mtx_init(&txq->lock, txq->name, "netfront transmit lock", 808 MTX_DEF); 809 810 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 811 txq->mbufs[i] = (void *) ((u_long) i+1); 812 txq->grant_ref[i] = GRANT_REF_INVALID; 813 } 814 txq->mbufs[NET_TX_RING_SIZE] = (void *)0; 815 816 /* Start resources allocation. */ 817 818 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 819 &txq->gref_head) != 0) { 820 device_printf(dev, "failed to allocate tx grant refs\n"); 821 error = ENOMEM; 822 goto fail; 823 } 824 825 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, 826 M_WAITOK|M_ZERO); 827 SHARED_RING_INIT(txs); 828 FRONT_RING_INIT(&txq->ring, txs, PAGE_SIZE); 829 830 error = xenbus_grant_ring(dev, virt_to_mfn(txs), 831 &txq->ring_ref); 832 if (error != 0) { 833 device_printf(dev, "failed to grant tx ring\n"); 834 goto fail_grant_ring; 835 } 836 837 txq->br = buf_ring_alloc(NET_TX_RING_SIZE, M_DEVBUF, 838 M_WAITOK, &txq->lock); 839 TASK_INIT(&txq->defrtask, 0, xn_txq_tq_deferred, txq); 840 841 txq->tq = taskqueue_create(txq->name, M_WAITOK, 842 taskqueue_thread_enqueue, &txq->tq); 843 844 error = taskqueue_start_threads(&txq->tq, 1, PI_NET, 845 "%s txq %d", device_get_nameunit(dev), txq->id); 846 if (error != 0) { 847 device_printf(dev, "failed to start tx taskq %d\n", 848 txq->id); 849 goto fail_start_thread; 850 } 851 852 error = xen_intr_alloc_and_bind_local_port(dev, 853 xenbus_get_otherend_id(dev), /* filter */ NULL, xn_intr, 854 &info->txq[q], INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, 855 &txq->xen_intr_handle); 856 857 if (error != 0) { 858 device_printf(dev, "xen_intr_alloc_and_bind_local_port failed\n"); 859 goto fail_bind_port; 860 } 861 } 862 863 return (0); 864 865 fail_bind_port: 866 taskqueue_drain_all(txq->tq); 867 fail_start_thread: 868 buf_ring_free(txq->br, M_DEVBUF); 869 taskqueue_free(txq->tq); 870 gnttab_end_foreign_access(txq->ring_ref, NULL); 871 fail_grant_ring: 872 gnttab_free_grant_references(txq->gref_head); 873 free(txq->ring.sring, M_DEVBUF); 874 fail: 875 for (; q >= 0; q--) { 876 disconnect_txq(&info->txq[q]); 877 destroy_txq(&info->txq[q]); 878 } 879 880 free(info->txq, M_DEVBUF); 881 return (error); 882 } 883 884 static int 885 setup_device(device_t dev, struct netfront_info *info, 886 unsigned long num_queues) 887 { 888 int error; 889 int q; 890 891 if (info->txq) 892 destroy_txqs(info); 893 894 if (info->rxq) 895 destroy_rxqs(info); 896 897 info->num_queues = 0; 898 899 error = setup_rxqs(dev, info, num_queues); 900 if (error != 0) 901 goto out; 902 error = setup_txqs(dev, info, num_queues); 903 if (error != 0) 904 goto out; 905 906 info->num_queues = num_queues; 907 908 /* No split event channel at the moment. */ 909 for (q = 0; q < num_queues; q++) 910 info->rxq[q].xen_intr_handle = info->txq[q].xen_intr_handle; 911 912 return (0); 913 914 out: 915 KASSERT(error != 0, ("Error path taken without providing an error code")); 916 return (error); 917 } 918 919 #ifdef INET 920 /** 921 * If this interface has an ipv4 address, send an arp for it. This 922 * helps to get the network going again after migrating hosts. 923 */ 924 static void 925 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 926 { 927 struct ifnet *ifp; 928 struct ifaddr *ifa; 929 930 ifp = info->xn_ifp; 931 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 932 if (ifa->ifa_addr->sa_family == AF_INET) { 933 arp_ifinit(ifp, ifa); 934 } 935 } 936 } 937 #endif 938 939 /** 940 * Callback received when the backend's state changes. 941 */ 942 static void 943 netfront_backend_changed(device_t dev, XenbusState newstate) 944 { 945 struct netfront_info *sc = device_get_softc(dev); 946 947 DPRINTK("newstate=%d\n", newstate); 948 949 switch (newstate) { 950 case XenbusStateInitialising: 951 case XenbusStateInitialised: 952 case XenbusStateUnknown: 953 case XenbusStateReconfigured: 954 case XenbusStateReconfiguring: 955 break; 956 case XenbusStateInitWait: 957 if (xenbus_get_state(dev) != XenbusStateInitialising) 958 break; 959 if (xn_connect(sc) != 0) 960 break; 961 /* Switch to connected state before kicking the rings. */ 962 xenbus_set_state(sc->xbdev, XenbusStateConnected); 963 xn_kick_rings(sc); 964 break; 965 case XenbusStateClosing: 966 xenbus_set_state(dev, XenbusStateClosed); 967 break; 968 case XenbusStateClosed: 969 if (sc->xn_reset) { 970 netif_disconnect_backend(sc); 971 xenbus_set_state(dev, XenbusStateInitialising); 972 sc->xn_reset = false; 973 } 974 break; 975 case XenbusStateConnected: 976 #ifdef INET 977 netfront_send_fake_arp(dev, sc); 978 #endif 979 break; 980 } 981 } 982 983 /** 984 * \brief Verify that there is sufficient space in the Tx ring 985 * buffer for a maximally sized request to be enqueued. 986 * 987 * A transmit request requires a transmit descriptor for each packet 988 * fragment, plus up to 2 entries for "options" (e.g. TSO). 989 */ 990 static inline int 991 xn_tx_slot_available(struct netfront_txq *txq) 992 { 993 994 return (RING_FREE_REQUESTS(&txq->ring) > (MAX_TX_REQ_FRAGS + 2)); 995 } 996 997 static void 998 xn_release_tx_bufs(struct netfront_txq *txq) 999 { 1000 int i; 1001 1002 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 1003 struct mbuf *m; 1004 1005 m = txq->mbufs[i]; 1006 1007 /* 1008 * We assume that no kernel addresses are 1009 * less than NET_TX_RING_SIZE. Any entry 1010 * in the table that is below this number 1011 * must be an index from free-list tracking. 1012 */ 1013 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 1014 continue; 1015 gnttab_end_foreign_access_ref(txq->grant_ref[i]); 1016 gnttab_release_grant_reference(&txq->gref_head, 1017 txq->grant_ref[i]); 1018 txq->grant_ref[i] = GRANT_REF_INVALID; 1019 add_id_to_freelist(txq->mbufs, i); 1020 txq->mbufs_cnt--; 1021 if (txq->mbufs_cnt < 0) { 1022 panic("%s: tx_chain_cnt must be >= 0", __func__); 1023 } 1024 m_free(m); 1025 } 1026 } 1027 1028 static struct mbuf * 1029 xn_alloc_one_rx_buffer(struct netfront_rxq *rxq) 1030 { 1031 struct mbuf *m; 1032 1033 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1034 if (m == NULL) 1035 return NULL; 1036 m->m_len = m->m_pkthdr.len = MJUMPAGESIZE; 1037 1038 return (m); 1039 } 1040 1041 static void 1042 xn_alloc_rx_buffers(struct netfront_rxq *rxq) 1043 { 1044 RING_IDX req_prod; 1045 int notify; 1046 1047 XN_RX_LOCK_ASSERT(rxq); 1048 1049 if (__predict_false(rxq->info->carrier == 0)) 1050 return; 1051 1052 for (req_prod = rxq->ring.req_prod_pvt; 1053 req_prod - rxq->ring.rsp_cons < NET_RX_RING_SIZE; 1054 req_prod++) { 1055 struct mbuf *m; 1056 unsigned short id; 1057 grant_ref_t ref; 1058 struct netif_rx_request *req; 1059 unsigned long pfn; 1060 1061 m = xn_alloc_one_rx_buffer(rxq); 1062 if (m == NULL) 1063 break; 1064 1065 id = xn_rxidx(req_prod); 1066 1067 KASSERT(rxq->mbufs[id] == NULL, ("non-NULL xn_rx_chain")); 1068 rxq->mbufs[id] = m; 1069 1070 ref = gnttab_claim_grant_reference(&rxq->gref_head); 1071 KASSERT(ref != GNTTAB_LIST_END, 1072 ("reserved grant references exhuasted")); 1073 rxq->grant_ref[id] = ref; 1074 1075 pfn = atop(vtophys(mtod(m, vm_offset_t))); 1076 req = RING_GET_REQUEST(&rxq->ring, req_prod); 1077 1078 gnttab_grant_foreign_access_ref(ref, 1079 xenbus_get_otherend_id(rxq->info->xbdev), pfn, 0); 1080 req->id = id; 1081 req->gref = ref; 1082 } 1083 1084 rxq->ring.req_prod_pvt = req_prod; 1085 1086 /* Not enough requests? Try again later. */ 1087 if (req_prod - rxq->ring.rsp_cons < NET_RX_SLOTS_MIN) { 1088 callout_reset_curcpu(&rxq->rx_refill, hz/10, 1089 xn_alloc_rx_buffers_callout, rxq); 1090 return; 1091 } 1092 1093 wmb(); /* barrier so backend seens requests */ 1094 1095 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rxq->ring, notify); 1096 if (notify) 1097 xen_intr_signal(rxq->xen_intr_handle); 1098 } 1099 1100 static void xn_alloc_rx_buffers_callout(void *arg) 1101 { 1102 struct netfront_rxq *rxq; 1103 1104 rxq = (struct netfront_rxq *)arg; 1105 XN_RX_LOCK(rxq); 1106 xn_alloc_rx_buffers(rxq); 1107 XN_RX_UNLOCK(rxq); 1108 } 1109 1110 static void 1111 xn_release_rx_bufs(struct netfront_rxq *rxq) 1112 { 1113 int i, ref; 1114 struct mbuf *m; 1115 1116 for (i = 0; i < NET_RX_RING_SIZE; i++) { 1117 m = rxq->mbufs[i]; 1118 1119 if (m == NULL) 1120 continue; 1121 1122 ref = rxq->grant_ref[i]; 1123 if (ref == GRANT_REF_INVALID) 1124 continue; 1125 1126 gnttab_end_foreign_access_ref(ref); 1127 gnttab_release_grant_reference(&rxq->gref_head, ref); 1128 rxq->mbufs[i] = NULL; 1129 rxq->grant_ref[i] = GRANT_REF_INVALID; 1130 m_freem(m); 1131 } 1132 } 1133 1134 static void 1135 xn_rxeof(struct netfront_rxq *rxq) 1136 { 1137 struct ifnet *ifp; 1138 struct netfront_info *np = rxq->info; 1139 #if (defined(INET) || defined(INET6)) 1140 struct lro_ctrl *lro = &rxq->lro; 1141 #endif 1142 struct netfront_rx_info rinfo; 1143 struct netif_rx_response *rx = &rinfo.rx; 1144 struct netif_extra_info *extras = rinfo.extras; 1145 RING_IDX i, rp; 1146 struct mbuf *m; 1147 struct mbufq mbufq_rxq, mbufq_errq; 1148 int err, work_to_do; 1149 1150 do { 1151 XN_RX_LOCK_ASSERT(rxq); 1152 if (!netfront_carrier_ok(np)) 1153 return; 1154 1155 /* XXX: there should be some sane limit. */ 1156 mbufq_init(&mbufq_errq, INT_MAX); 1157 mbufq_init(&mbufq_rxq, INT_MAX); 1158 1159 ifp = np->xn_ifp; 1160 1161 rp = rxq->ring.sring->rsp_prod; 1162 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1163 1164 i = rxq->ring.rsp_cons; 1165 while ((i != rp)) { 1166 memcpy(rx, RING_GET_RESPONSE(&rxq->ring, i), sizeof(*rx)); 1167 memset(extras, 0, sizeof(rinfo.extras)); 1168 1169 m = NULL; 1170 err = xn_get_responses(rxq, &rinfo, rp, &i, &m); 1171 1172 if (__predict_false(err)) { 1173 if (m) 1174 (void )mbufq_enqueue(&mbufq_errq, m); 1175 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1176 continue; 1177 } 1178 1179 m->m_pkthdr.rcvif = ifp; 1180 if ( rx->flags & NETRXF_data_validated ) { 1181 /* Tell the stack the checksums are okay */ 1182 /* 1183 * XXX this isn't necessarily the case - need to add 1184 * check 1185 */ 1186 1187 m->m_pkthdr.csum_flags |= 1188 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID 1189 | CSUM_PSEUDO_HDR); 1190 m->m_pkthdr.csum_data = 0xffff; 1191 } 1192 if ((rx->flags & NETRXF_extra_info) != 0 && 1193 (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type == 1194 XEN_NETIF_EXTRA_TYPE_GSO)) { 1195 m->m_pkthdr.tso_segsz = 1196 extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].u.gso.size; 1197 m->m_pkthdr.csum_flags |= CSUM_TSO; 1198 } 1199 1200 (void )mbufq_enqueue(&mbufq_rxq, m); 1201 rxq->ring.rsp_cons = i; 1202 } 1203 1204 mbufq_drain(&mbufq_errq); 1205 1206 /* 1207 * Process all the mbufs after the remapping is complete. 1208 * Break the mbuf chain first though. 1209 */ 1210 while ((m = mbufq_dequeue(&mbufq_rxq)) != NULL) { 1211 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1212 1213 /* XXX: Do we really need to drop the rx lock? */ 1214 XN_RX_UNLOCK(rxq); 1215 #if (defined(INET) || defined(INET6)) 1216 /* Use LRO if possible */ 1217 if ((ifp->if_capenable & IFCAP_LRO) == 0 || 1218 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1219 /* 1220 * If LRO fails, pass up to the stack 1221 * directly. 1222 */ 1223 (*ifp->if_input)(ifp, m); 1224 } 1225 #else 1226 (*ifp->if_input)(ifp, m); 1227 #endif 1228 1229 XN_RX_LOCK(rxq); 1230 } 1231 1232 rxq->ring.rsp_cons = i; 1233 1234 #if (defined(INET) || defined(INET6)) 1235 /* 1236 * Flush any outstanding LRO work 1237 */ 1238 tcp_lro_flush_all(lro); 1239 #endif 1240 1241 xn_alloc_rx_buffers(rxq); 1242 1243 RING_FINAL_CHECK_FOR_RESPONSES(&rxq->ring, work_to_do); 1244 } while (work_to_do); 1245 } 1246 1247 static void 1248 xn_txeof(struct netfront_txq *txq) 1249 { 1250 RING_IDX i, prod; 1251 unsigned short id; 1252 struct ifnet *ifp; 1253 netif_tx_response_t *txr; 1254 struct mbuf *m; 1255 struct netfront_info *np = txq->info; 1256 1257 XN_TX_LOCK_ASSERT(txq); 1258 1259 if (!netfront_carrier_ok(np)) 1260 return; 1261 1262 ifp = np->xn_ifp; 1263 1264 do { 1265 prod = txq->ring.sring->rsp_prod; 1266 rmb(); /* Ensure we see responses up to 'rp'. */ 1267 1268 for (i = txq->ring.rsp_cons; i != prod; i++) { 1269 txr = RING_GET_RESPONSE(&txq->ring, i); 1270 if (txr->status == NETIF_RSP_NULL) 1271 continue; 1272 1273 if (txr->status != NETIF_RSP_OKAY) { 1274 printf("%s: WARNING: response is %d!\n", 1275 __func__, txr->status); 1276 } 1277 id = txr->id; 1278 m = txq->mbufs[id]; 1279 KASSERT(m != NULL, ("mbuf not found in chain")); 1280 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1281 ("mbuf already on the free list, but we're " 1282 "trying to free it again!")); 1283 M_ASSERTVALID(m); 1284 1285 if (__predict_false(gnttab_query_foreign_access( 1286 txq->grant_ref[id]) != 0)) { 1287 panic("%s: grant id %u still in use by the " 1288 "backend", __func__, id); 1289 } 1290 gnttab_end_foreign_access_ref(txq->grant_ref[id]); 1291 gnttab_release_grant_reference( 1292 &txq->gref_head, txq->grant_ref[id]); 1293 txq->grant_ref[id] = GRANT_REF_INVALID; 1294 1295 txq->mbufs[id] = NULL; 1296 add_id_to_freelist(txq->mbufs, id); 1297 txq->mbufs_cnt--; 1298 m_free(m); 1299 /* Only mark the txq active if we've freed up at least one slot to try */ 1300 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1301 } 1302 txq->ring.rsp_cons = prod; 1303 1304 /* 1305 * Set a new event, then check for race with update of 1306 * tx_cons. Note that it is essential to schedule a 1307 * callback, no matter how few buffers are pending. Even if 1308 * there is space in the transmit ring, higher layers may 1309 * be blocked because too much data is outstanding: in such 1310 * cases notification from Xen is likely to be the only kick 1311 * that we'll get. 1312 */ 1313 txq->ring.sring->rsp_event = 1314 prod + ((txq->ring.sring->req_prod - prod) >> 1) + 1; 1315 1316 mb(); 1317 } while (prod != txq->ring.sring->rsp_prod); 1318 1319 if (txq->full && 1320 ((txq->ring.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1321 txq->full = false; 1322 xn_txq_start(txq); 1323 } 1324 } 1325 1326 static void 1327 xn_intr(void *xsc) 1328 { 1329 struct netfront_txq *txq = xsc; 1330 struct netfront_info *np = txq->info; 1331 struct netfront_rxq *rxq = &np->rxq[txq->id]; 1332 1333 /* kick both tx and rx */ 1334 xn_rxq_intr(rxq); 1335 xn_txq_intr(txq); 1336 } 1337 1338 static void 1339 xn_move_rx_slot(struct netfront_rxq *rxq, struct mbuf *m, 1340 grant_ref_t ref) 1341 { 1342 int new = xn_rxidx(rxq->ring.req_prod_pvt); 1343 1344 KASSERT(rxq->mbufs[new] == NULL, ("mbufs != NULL")); 1345 rxq->mbufs[new] = m; 1346 rxq->grant_ref[new] = ref; 1347 RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->id = new; 1348 RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->gref = ref; 1349 rxq->ring.req_prod_pvt++; 1350 } 1351 1352 static int 1353 xn_get_extras(struct netfront_rxq *rxq, 1354 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1355 { 1356 struct netif_extra_info *extra; 1357 1358 int err = 0; 1359 1360 do { 1361 struct mbuf *m; 1362 grant_ref_t ref; 1363 1364 if (__predict_false(*cons + 1 == rp)) { 1365 err = EINVAL; 1366 break; 1367 } 1368 1369 extra = (struct netif_extra_info *) 1370 RING_GET_RESPONSE(&rxq->ring, ++(*cons)); 1371 1372 if (__predict_false(!extra->type || 1373 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1374 err = EINVAL; 1375 } else { 1376 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1377 } 1378 1379 m = xn_get_rx_mbuf(rxq, *cons); 1380 ref = xn_get_rx_ref(rxq, *cons); 1381 xn_move_rx_slot(rxq, m, ref); 1382 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1383 1384 return err; 1385 } 1386 1387 static int 1388 xn_get_responses(struct netfront_rxq *rxq, 1389 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1390 struct mbuf **list) 1391 { 1392 struct netif_rx_response *rx = &rinfo->rx; 1393 struct netif_extra_info *extras = rinfo->extras; 1394 struct mbuf *m, *m0, *m_prev; 1395 grant_ref_t ref = xn_get_rx_ref(rxq, *cons); 1396 RING_IDX ref_cons = *cons; 1397 int frags = 1; 1398 int err = 0; 1399 u_long ret; 1400 1401 m0 = m = m_prev = xn_get_rx_mbuf(rxq, *cons); 1402 1403 if (rx->flags & NETRXF_extra_info) { 1404 err = xn_get_extras(rxq, extras, rp, cons); 1405 } 1406 1407 if (m0 != NULL) { 1408 m0->m_pkthdr.len = 0; 1409 m0->m_next = NULL; 1410 } 1411 1412 for (;;) { 1413 #if 0 1414 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1415 rx->status, rx->offset, frags); 1416 #endif 1417 if (__predict_false(rx->status < 0 || 1418 rx->offset + rx->status > PAGE_SIZE)) { 1419 1420 xn_move_rx_slot(rxq, m, ref); 1421 if (m0 == m) 1422 m0 = NULL; 1423 m = NULL; 1424 err = EINVAL; 1425 goto next_skip_queue; 1426 } 1427 1428 /* 1429 * This definitely indicates a bug, either in this driver or in 1430 * the backend driver. In future this should flag the bad 1431 * situation to the system controller to reboot the backed. 1432 */ 1433 if (ref == GRANT_REF_INVALID) { 1434 printf("%s: Bad rx response id %d.\n", __func__, rx->id); 1435 err = EINVAL; 1436 goto next; 1437 } 1438 1439 ret = gnttab_end_foreign_access_ref(ref); 1440 KASSERT(ret, ("Unable to end access to grant references")); 1441 1442 gnttab_release_grant_reference(&rxq->gref_head, ref); 1443 1444 next: 1445 if (m == NULL) 1446 break; 1447 1448 m->m_len = rx->status; 1449 m->m_data += rx->offset; 1450 m0->m_pkthdr.len += rx->status; 1451 1452 next_skip_queue: 1453 if (!(rx->flags & NETRXF_more_data)) 1454 break; 1455 1456 if (*cons + frags == rp) { 1457 if (net_ratelimit()) 1458 WPRINTK("Need more frags\n"); 1459 err = ENOENT; 1460 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1461 __func__, *cons, frags, rp); 1462 break; 1463 } 1464 /* 1465 * Note that m can be NULL, if rx->status < 0 or if 1466 * rx->offset + rx->status > PAGE_SIZE above. 1467 */ 1468 m_prev = m; 1469 1470 rx = RING_GET_RESPONSE(&rxq->ring, *cons + frags); 1471 m = xn_get_rx_mbuf(rxq, *cons + frags); 1472 1473 /* 1474 * m_prev == NULL can happen if rx->status < 0 or if 1475 * rx->offset + * rx->status > PAGE_SIZE above. 1476 */ 1477 if (m_prev != NULL) 1478 m_prev->m_next = m; 1479 1480 /* 1481 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1482 * rx->status > PAGE_SIZE above. 1483 */ 1484 if (m0 == NULL) 1485 m0 = m; 1486 m->m_next = NULL; 1487 ref = xn_get_rx_ref(rxq, *cons + frags); 1488 ref_cons = *cons + frags; 1489 frags++; 1490 } 1491 *list = m0; 1492 *cons += frags; 1493 1494 return (err); 1495 } 1496 1497 /** 1498 * \brief Count the number of fragments in an mbuf chain. 1499 * 1500 * Surprisingly, there isn't an M* macro for this. 1501 */ 1502 static inline int 1503 xn_count_frags(struct mbuf *m) 1504 { 1505 int nfrags; 1506 1507 for (nfrags = 0; m != NULL; m = m->m_next) 1508 nfrags++; 1509 1510 return (nfrags); 1511 } 1512 1513 /** 1514 * Given an mbuf chain, make sure we have enough room and then push 1515 * it onto the transmit ring. 1516 */ 1517 static int 1518 xn_assemble_tx_request(struct netfront_txq *txq, struct mbuf *m_head) 1519 { 1520 struct mbuf *m; 1521 struct netfront_info *np = txq->info; 1522 struct ifnet *ifp = np->xn_ifp; 1523 u_int nfrags; 1524 int otherend_id; 1525 1526 /** 1527 * Defragment the mbuf if necessary. 1528 */ 1529 nfrags = xn_count_frags(m_head); 1530 1531 /* 1532 * Check to see whether this request is longer than netback 1533 * can handle, and try to defrag it. 1534 */ 1535 /** 1536 * It is a bit lame, but the netback driver in Linux can't 1537 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of 1538 * the Linux network stack. 1539 */ 1540 if (nfrags > np->maxfrags) { 1541 m = m_defrag(m_head, M_NOWAIT); 1542 if (!m) { 1543 /* 1544 * Defrag failed, so free the mbuf and 1545 * therefore drop the packet. 1546 */ 1547 m_freem(m_head); 1548 return (EMSGSIZE); 1549 } 1550 m_head = m; 1551 } 1552 1553 /* Determine how many fragments now exist */ 1554 nfrags = xn_count_frags(m_head); 1555 1556 /* 1557 * Check to see whether the defragmented packet has too many 1558 * segments for the Linux netback driver. 1559 */ 1560 /** 1561 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1562 * of mbufs longer than Linux can handle. Make sure we don't 1563 * pass a too-long chain over to the other side by dropping the 1564 * packet. It doesn't look like there is currently a way to 1565 * tell the TCP stack to generate a shorter chain of packets. 1566 */ 1567 if (nfrags > MAX_TX_REQ_FRAGS) { 1568 #ifdef DEBUG 1569 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback " 1570 "won't be able to handle it, dropping\n", 1571 __func__, nfrags, MAX_TX_REQ_FRAGS); 1572 #endif 1573 m_freem(m_head); 1574 return (EMSGSIZE); 1575 } 1576 1577 /* 1578 * This check should be redundant. We've already verified that we 1579 * have enough slots in the ring to handle a packet of maximum 1580 * size, and that our packet is less than the maximum size. Keep 1581 * it in here as an assert for now just to make certain that 1582 * chain_cnt is accurate. 1583 */ 1584 KASSERT((txq->mbufs_cnt + nfrags) <= NET_TX_RING_SIZE, 1585 ("%s: chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1586 "(%d)!", __func__, (int) txq->mbufs_cnt, 1587 (int) nfrags, (int) NET_TX_RING_SIZE)); 1588 1589 /* 1590 * Start packing the mbufs in this chain into 1591 * the fragment pointers. Stop when we run out 1592 * of fragments or hit the end of the mbuf chain. 1593 */ 1594 m = m_head; 1595 otherend_id = xenbus_get_otherend_id(np->xbdev); 1596 for (m = m_head; m; m = m->m_next) { 1597 netif_tx_request_t *tx; 1598 uintptr_t id; 1599 grant_ref_t ref; 1600 u_long mfn; /* XXX Wrong type? */ 1601 1602 tx = RING_GET_REQUEST(&txq->ring, txq->ring.req_prod_pvt); 1603 id = get_id_from_freelist(txq->mbufs); 1604 if (id == 0) 1605 panic("%s: was allocated the freelist head!\n", 1606 __func__); 1607 txq->mbufs_cnt++; 1608 if (txq->mbufs_cnt > NET_TX_RING_SIZE) 1609 panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n", 1610 __func__); 1611 txq->mbufs[id] = m; 1612 tx->id = id; 1613 ref = gnttab_claim_grant_reference(&txq->gref_head); 1614 KASSERT((short)ref >= 0, ("Negative ref")); 1615 mfn = virt_to_mfn(mtod(m, vm_offset_t)); 1616 gnttab_grant_foreign_access_ref(ref, otherend_id, 1617 mfn, GNTMAP_readonly); 1618 tx->gref = txq->grant_ref[id] = ref; 1619 tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1); 1620 tx->flags = 0; 1621 if (m == m_head) { 1622 /* 1623 * The first fragment has the entire packet 1624 * size, subsequent fragments have just the 1625 * fragment size. The backend works out the 1626 * true size of the first fragment by 1627 * subtracting the sizes of the other 1628 * fragments. 1629 */ 1630 tx->size = m->m_pkthdr.len; 1631 1632 /* 1633 * The first fragment contains the checksum flags 1634 * and is optionally followed by extra data for 1635 * TSO etc. 1636 */ 1637 /** 1638 * CSUM_TSO requires checksum offloading. 1639 * Some versions of FreeBSD fail to 1640 * set CSUM_TCP in the CSUM_TSO case, 1641 * so we have to test for CSUM_TSO 1642 * explicitly. 1643 */ 1644 if (m->m_pkthdr.csum_flags 1645 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1646 tx->flags |= (NETTXF_csum_blank 1647 | NETTXF_data_validated); 1648 } 1649 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1650 struct netif_extra_info *gso = 1651 (struct netif_extra_info *) 1652 RING_GET_REQUEST(&txq->ring, 1653 ++txq->ring.req_prod_pvt); 1654 1655 tx->flags |= NETTXF_extra_info; 1656 1657 gso->u.gso.size = m->m_pkthdr.tso_segsz; 1658 gso->u.gso.type = 1659 XEN_NETIF_GSO_TYPE_TCPV4; 1660 gso->u.gso.pad = 0; 1661 gso->u.gso.features = 0; 1662 1663 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1664 gso->flags = 0; 1665 } 1666 } else { 1667 tx->size = m->m_len; 1668 } 1669 if (m->m_next) 1670 tx->flags |= NETTXF_more_data; 1671 1672 txq->ring.req_prod_pvt++; 1673 } 1674 BPF_MTAP(ifp, m_head); 1675 1676 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1677 if_inc_counter(ifp, IFCOUNTER_OBYTES, m_head->m_pkthdr.len); 1678 if (m_head->m_flags & M_MCAST) 1679 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 1680 1681 xn_txeof(txq); 1682 1683 return (0); 1684 } 1685 1686 /* equivalent of network_open() in Linux */ 1687 static void 1688 xn_ifinit_locked(struct netfront_info *np) 1689 { 1690 struct ifnet *ifp; 1691 int i; 1692 struct netfront_rxq *rxq; 1693 1694 XN_LOCK_ASSERT(np); 1695 1696 ifp = np->xn_ifp; 1697 1698 if (ifp->if_drv_flags & IFF_DRV_RUNNING || !netfront_carrier_ok(np)) 1699 return; 1700 1701 xn_stop(np); 1702 1703 for (i = 0; i < np->num_queues; i++) { 1704 rxq = &np->rxq[i]; 1705 XN_RX_LOCK(rxq); 1706 xn_alloc_rx_buffers(rxq); 1707 rxq->ring.sring->rsp_event = rxq->ring.rsp_cons + 1; 1708 if (RING_HAS_UNCONSUMED_RESPONSES(&rxq->ring)) 1709 xn_rxeof(rxq); 1710 XN_RX_UNLOCK(rxq); 1711 } 1712 1713 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1714 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1715 if_link_state_change(ifp, LINK_STATE_UP); 1716 } 1717 1718 static void 1719 xn_ifinit(void *xsc) 1720 { 1721 struct netfront_info *sc = xsc; 1722 1723 XN_LOCK(sc); 1724 xn_ifinit_locked(sc); 1725 XN_UNLOCK(sc); 1726 } 1727 1728 static int 1729 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1730 { 1731 struct netfront_info *sc = ifp->if_softc; 1732 struct ifreq *ifr = (struct ifreq *) data; 1733 device_t dev; 1734 #ifdef INET 1735 struct ifaddr *ifa = (struct ifaddr *)data; 1736 #endif 1737 int mask, error = 0, reinit; 1738 1739 dev = sc->xbdev; 1740 1741 switch(cmd) { 1742 case SIOCSIFADDR: 1743 #ifdef INET 1744 XN_LOCK(sc); 1745 if (ifa->ifa_addr->sa_family == AF_INET) { 1746 ifp->if_flags |= IFF_UP; 1747 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1748 xn_ifinit_locked(sc); 1749 arp_ifinit(ifp, ifa); 1750 XN_UNLOCK(sc); 1751 } else { 1752 XN_UNLOCK(sc); 1753 #endif 1754 error = ether_ioctl(ifp, cmd, data); 1755 #ifdef INET 1756 } 1757 #endif 1758 break; 1759 case SIOCSIFMTU: 1760 ifp->if_mtu = ifr->ifr_mtu; 1761 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1762 xn_ifinit(sc); 1763 break; 1764 case SIOCSIFFLAGS: 1765 XN_LOCK(sc); 1766 if (ifp->if_flags & IFF_UP) { 1767 /* 1768 * If only the state of the PROMISC flag changed, 1769 * then just use the 'set promisc mode' command 1770 * instead of reinitializing the entire NIC. Doing 1771 * a full re-init means reloading the firmware and 1772 * waiting for it to start up, which may take a 1773 * second or two. 1774 */ 1775 xn_ifinit_locked(sc); 1776 } else { 1777 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1778 xn_stop(sc); 1779 } 1780 } 1781 sc->xn_if_flags = ifp->if_flags; 1782 XN_UNLOCK(sc); 1783 break; 1784 case SIOCSIFCAP: 1785 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1786 reinit = 0; 1787 1788 if (mask & IFCAP_TXCSUM) { 1789 ifp->if_capenable ^= IFCAP_TXCSUM; 1790 ifp->if_hwassist ^= XN_CSUM_FEATURES; 1791 } 1792 if (mask & IFCAP_TSO4) { 1793 ifp->if_capenable ^= IFCAP_TSO4; 1794 ifp->if_hwassist ^= CSUM_TSO; 1795 } 1796 1797 if (mask & (IFCAP_RXCSUM | IFCAP_LRO)) { 1798 /* These Rx features require us to renegotiate. */ 1799 reinit = 1; 1800 1801 if (mask & IFCAP_RXCSUM) 1802 ifp->if_capenable ^= IFCAP_RXCSUM; 1803 if (mask & IFCAP_LRO) 1804 ifp->if_capenable ^= IFCAP_LRO; 1805 } 1806 1807 if (reinit == 0) 1808 break; 1809 1810 /* 1811 * We must reset the interface so the backend picks up the 1812 * new features. 1813 */ 1814 device_printf(sc->xbdev, 1815 "performing interface reset due to feature change\n"); 1816 XN_LOCK(sc); 1817 netfront_carrier_off(sc); 1818 sc->xn_reset = true; 1819 /* 1820 * NB: the pending packet queue is not flushed, since 1821 * the interface should still support the old options. 1822 */ 1823 XN_UNLOCK(sc); 1824 /* 1825 * Delete the xenstore nodes that export features. 1826 * 1827 * NB: There's a xenbus state called 1828 * "XenbusStateReconfiguring", which is what we should set 1829 * here. Sadly none of the backends know how to handle it, 1830 * and simply disconnect from the frontend, so we will just 1831 * switch back to XenbusStateInitialising in order to force 1832 * a reconnection. 1833 */ 1834 xs_rm(XST_NIL, xenbus_get_node(dev), "feature-gso-tcpv4"); 1835 xs_rm(XST_NIL, xenbus_get_node(dev), "feature-no-csum-offload"); 1836 xenbus_set_state(dev, XenbusStateClosing); 1837 1838 /* 1839 * Wait for the frontend to reconnect before returning 1840 * from the ioctl. 30s should be more than enough for any 1841 * sane backend to reconnect. 1842 */ 1843 error = tsleep(sc, 0, "xn_rst", 30*hz); 1844 break; 1845 case SIOCADDMULTI: 1846 case SIOCDELMULTI: 1847 break; 1848 case SIOCSIFMEDIA: 1849 case SIOCGIFMEDIA: 1850 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1851 break; 1852 default: 1853 error = ether_ioctl(ifp, cmd, data); 1854 } 1855 1856 return (error); 1857 } 1858 1859 static void 1860 xn_stop(struct netfront_info *sc) 1861 { 1862 struct ifnet *ifp; 1863 1864 XN_LOCK_ASSERT(sc); 1865 1866 ifp = sc->xn_ifp; 1867 1868 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1869 if_link_state_change(ifp, LINK_STATE_DOWN); 1870 } 1871 1872 static void 1873 xn_rebuild_rx_bufs(struct netfront_rxq *rxq) 1874 { 1875 int requeue_idx, i; 1876 grant_ref_t ref; 1877 netif_rx_request_t *req; 1878 1879 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1880 struct mbuf *m; 1881 u_long pfn; 1882 1883 if (rxq->mbufs[i] == NULL) 1884 continue; 1885 1886 m = rxq->mbufs[requeue_idx] = xn_get_rx_mbuf(rxq, i); 1887 ref = rxq->grant_ref[requeue_idx] = xn_get_rx_ref(rxq, i); 1888 1889 req = RING_GET_REQUEST(&rxq->ring, requeue_idx); 1890 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1891 1892 gnttab_grant_foreign_access_ref(ref, 1893 xenbus_get_otherend_id(rxq->info->xbdev), 1894 pfn, 0); 1895 1896 req->gref = ref; 1897 req->id = requeue_idx; 1898 1899 requeue_idx++; 1900 } 1901 1902 rxq->ring.req_prod_pvt = requeue_idx; 1903 } 1904 1905 /* START of Xenolinux helper functions adapted to FreeBSD */ 1906 static int 1907 xn_connect(struct netfront_info *np) 1908 { 1909 int i, error; 1910 u_int feature_rx_copy; 1911 struct netfront_rxq *rxq; 1912 struct netfront_txq *txq; 1913 1914 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1915 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1916 if (error != 0) 1917 feature_rx_copy = 0; 1918 1919 /* We only support rx copy. */ 1920 if (!feature_rx_copy) 1921 return (EPROTONOSUPPORT); 1922 1923 /* Recovery procedure: */ 1924 error = talk_to_backend(np->xbdev, np); 1925 if (error != 0) 1926 return (error); 1927 1928 /* Step 1: Reinitialise variables. */ 1929 xn_query_features(np); 1930 xn_configure_features(np); 1931 1932 /* Step 2: Release TX buffer */ 1933 for (i = 0; i < np->num_queues; i++) { 1934 txq = &np->txq[i]; 1935 xn_release_tx_bufs(txq); 1936 } 1937 1938 /* Step 3: Rebuild the RX buffer freelist and the RX ring itself. */ 1939 for (i = 0; i < np->num_queues; i++) { 1940 rxq = &np->rxq[i]; 1941 xn_rebuild_rx_bufs(rxq); 1942 } 1943 1944 /* Step 4: All public and private state should now be sane. Get 1945 * ready to start sending and receiving packets and give the driver 1946 * domain a kick because we've probably just requeued some 1947 * packets. 1948 */ 1949 netfront_carrier_on(np); 1950 wakeup(np); 1951 1952 return (0); 1953 } 1954 1955 static void 1956 xn_kick_rings(struct netfront_info *np) 1957 { 1958 struct netfront_rxq *rxq; 1959 struct netfront_txq *txq; 1960 int i; 1961 1962 for (i = 0; i < np->num_queues; i++) { 1963 txq = &np->txq[i]; 1964 rxq = &np->rxq[i]; 1965 xen_intr_signal(txq->xen_intr_handle); 1966 XN_TX_LOCK(txq); 1967 xn_txeof(txq); 1968 XN_TX_UNLOCK(txq); 1969 XN_RX_LOCK(rxq); 1970 xn_alloc_rx_buffers(rxq); 1971 XN_RX_UNLOCK(rxq); 1972 } 1973 } 1974 1975 static void 1976 xn_query_features(struct netfront_info *np) 1977 { 1978 int val; 1979 1980 device_printf(np->xbdev, "backend features:"); 1981 1982 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1983 "feature-sg", NULL, "%d", &val) != 0) 1984 val = 0; 1985 1986 np->maxfrags = 1; 1987 if (val) { 1988 np->maxfrags = MAX_TX_REQ_FRAGS; 1989 printf(" feature-sg"); 1990 } 1991 1992 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1993 "feature-gso-tcpv4", NULL, "%d", &val) != 0) 1994 val = 0; 1995 1996 np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO); 1997 if (val) { 1998 np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO; 1999 printf(" feature-gso-tcp4"); 2000 } 2001 2002 /* 2003 * HW CSUM offload is assumed to be available unless 2004 * feature-no-csum-offload is set in xenstore. 2005 */ 2006 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 2007 "feature-no-csum-offload", NULL, "%d", &val) != 0) 2008 val = 0; 2009 2010 np->xn_ifp->if_capabilities |= IFCAP_HWCSUM; 2011 if (val) { 2012 np->xn_ifp->if_capabilities &= ~(IFCAP_HWCSUM); 2013 printf(" feature-no-csum-offload"); 2014 } 2015 2016 printf("\n"); 2017 } 2018 2019 static int 2020 xn_configure_features(struct netfront_info *np) 2021 { 2022 int err, cap_enabled; 2023 #if (defined(INET) || defined(INET6)) 2024 int i; 2025 #endif 2026 struct ifnet *ifp; 2027 2028 ifp = np->xn_ifp; 2029 err = 0; 2030 2031 if ((ifp->if_capenable & ifp->if_capabilities) == ifp->if_capenable) { 2032 /* Current options are available, no need to do anything. */ 2033 return (0); 2034 } 2035 2036 /* Try to preserve as many options as possible. */ 2037 cap_enabled = ifp->if_capenable; 2038 ifp->if_capenable = ifp->if_hwassist = 0; 2039 2040 #if (defined(INET) || defined(INET6)) 2041 if ((cap_enabled & IFCAP_LRO) != 0) 2042 for (i = 0; i < np->num_queues; i++) 2043 tcp_lro_free(&np->rxq[i].lro); 2044 if (xn_enable_lro && 2045 (ifp->if_capabilities & cap_enabled & IFCAP_LRO) != 0) { 2046 ifp->if_capenable |= IFCAP_LRO; 2047 for (i = 0; i < np->num_queues; i++) { 2048 err = tcp_lro_init(&np->rxq[i].lro); 2049 if (err != 0) { 2050 device_printf(np->xbdev, 2051 "LRO initialization failed\n"); 2052 ifp->if_capenable &= ~IFCAP_LRO; 2053 break; 2054 } 2055 np->rxq[i].lro.ifp = ifp; 2056 } 2057 } 2058 if ((ifp->if_capabilities & cap_enabled & IFCAP_TSO4) != 0) { 2059 ifp->if_capenable |= IFCAP_TSO4; 2060 ifp->if_hwassist |= CSUM_TSO; 2061 } 2062 #endif 2063 if ((ifp->if_capabilities & cap_enabled & IFCAP_TXCSUM) != 0) { 2064 ifp->if_capenable |= IFCAP_TXCSUM; 2065 ifp->if_hwassist |= XN_CSUM_FEATURES; 2066 } 2067 if ((ifp->if_capabilities & cap_enabled & IFCAP_RXCSUM) != 0) 2068 ifp->if_capenable |= IFCAP_RXCSUM; 2069 2070 return (err); 2071 } 2072 2073 static int 2074 xn_txq_mq_start_locked(struct netfront_txq *txq, struct mbuf *m) 2075 { 2076 struct netfront_info *np; 2077 struct ifnet *ifp; 2078 struct buf_ring *br; 2079 int error, notify; 2080 2081 np = txq->info; 2082 br = txq->br; 2083 ifp = np->xn_ifp; 2084 error = 0; 2085 2086 XN_TX_LOCK_ASSERT(txq); 2087 2088 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 2089 !netfront_carrier_ok(np)) { 2090 if (m != NULL) 2091 error = drbr_enqueue(ifp, br, m); 2092 return (error); 2093 } 2094 2095 if (m != NULL) { 2096 error = drbr_enqueue(ifp, br, m); 2097 if (error != 0) 2098 return (error); 2099 } 2100 2101 while ((m = drbr_peek(ifp, br)) != NULL) { 2102 if (!xn_tx_slot_available(txq)) { 2103 drbr_putback(ifp, br, m); 2104 break; 2105 } 2106 2107 error = xn_assemble_tx_request(txq, m); 2108 /* xn_assemble_tx_request always consumes the mbuf*/ 2109 if (error != 0) { 2110 drbr_advance(ifp, br); 2111 break; 2112 } 2113 2114 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&txq->ring, notify); 2115 if (notify) 2116 xen_intr_signal(txq->xen_intr_handle); 2117 2118 drbr_advance(ifp, br); 2119 } 2120 2121 if (RING_FULL(&txq->ring)) 2122 txq->full = true; 2123 2124 return (0); 2125 } 2126 2127 static int 2128 xn_txq_mq_start(struct ifnet *ifp, struct mbuf *m) 2129 { 2130 struct netfront_info *np; 2131 struct netfront_txq *txq; 2132 int i, npairs, error; 2133 2134 np = ifp->if_softc; 2135 npairs = np->num_queues; 2136 2137 if (!netfront_carrier_ok(np)) 2138 return (ENOBUFS); 2139 2140 KASSERT(npairs != 0, ("called with 0 available queues")); 2141 2142 /* check if flowid is set */ 2143 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2144 i = m->m_pkthdr.flowid % npairs; 2145 else 2146 i = curcpu % npairs; 2147 2148 txq = &np->txq[i]; 2149 2150 if (XN_TX_TRYLOCK(txq) != 0) { 2151 error = xn_txq_mq_start_locked(txq, m); 2152 XN_TX_UNLOCK(txq); 2153 } else { 2154 error = drbr_enqueue(ifp, txq->br, m); 2155 taskqueue_enqueue(txq->tq, &txq->defrtask); 2156 } 2157 2158 return (error); 2159 } 2160 2161 static void 2162 xn_qflush(struct ifnet *ifp) 2163 { 2164 struct netfront_info *np; 2165 struct netfront_txq *txq; 2166 struct mbuf *m; 2167 int i; 2168 2169 np = ifp->if_softc; 2170 2171 for (i = 0; i < np->num_queues; i++) { 2172 txq = &np->txq[i]; 2173 2174 XN_TX_LOCK(txq); 2175 while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) 2176 m_freem(m); 2177 XN_TX_UNLOCK(txq); 2178 } 2179 2180 if_qflush(ifp); 2181 } 2182 2183 /** 2184 * Create a network device. 2185 * @param dev Newbus device representing this virtual NIC. 2186 */ 2187 int 2188 create_netdev(device_t dev) 2189 { 2190 struct netfront_info *np; 2191 int err; 2192 struct ifnet *ifp; 2193 2194 np = device_get_softc(dev); 2195 2196 np->xbdev = dev; 2197 2198 mtx_init(&np->sc_lock, "xnsc", "netfront softc lock", MTX_DEF); 2199 2200 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 2201 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 2202 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 2203 2204 err = xen_net_read_mac(dev, np->mac); 2205 if (err != 0) 2206 goto error; 2207 2208 /* Set up ifnet structure */ 2209 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2210 ifp->if_softc = np; 2211 if_initname(ifp, "xn", device_get_unit(dev)); 2212 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2213 ifp->if_ioctl = xn_ioctl; 2214 2215 ifp->if_transmit = xn_txq_mq_start; 2216 ifp->if_qflush = xn_qflush; 2217 2218 ifp->if_init = xn_ifinit; 2219 2220 ifp->if_hwassist = XN_CSUM_FEATURES; 2221 /* Enable all supported features at device creation. */ 2222 ifp->if_capenable = ifp->if_capabilities = 2223 IFCAP_HWCSUM|IFCAP_TSO4|IFCAP_LRO; 2224 ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 2225 ifp->if_hw_tsomaxsegcount = MAX_TX_REQ_FRAGS; 2226 ifp->if_hw_tsomaxsegsize = PAGE_SIZE; 2227 2228 ether_ifattach(ifp, np->mac); 2229 netfront_carrier_off(np); 2230 2231 return (0); 2232 2233 error: 2234 KASSERT(err != 0, ("Error path with no error code specified")); 2235 return (err); 2236 } 2237 2238 static int 2239 netfront_detach(device_t dev) 2240 { 2241 struct netfront_info *info = device_get_softc(dev); 2242 2243 DPRINTK("%s\n", xenbus_get_node(dev)); 2244 2245 netif_free(info); 2246 2247 return 0; 2248 } 2249 2250 static void 2251 netif_free(struct netfront_info *np) 2252 { 2253 2254 XN_LOCK(np); 2255 xn_stop(np); 2256 XN_UNLOCK(np); 2257 netif_disconnect_backend(np); 2258 ether_ifdetach(np->xn_ifp); 2259 free(np->rxq, M_DEVBUF); 2260 free(np->txq, M_DEVBUF); 2261 if_free(np->xn_ifp); 2262 np->xn_ifp = NULL; 2263 ifmedia_removeall(&np->sc_media); 2264 } 2265 2266 static void 2267 netif_disconnect_backend(struct netfront_info *np) 2268 { 2269 u_int i; 2270 2271 for (i = 0; i < np->num_queues; i++) { 2272 XN_RX_LOCK(&np->rxq[i]); 2273 XN_TX_LOCK(&np->txq[i]); 2274 } 2275 netfront_carrier_off(np); 2276 for (i = 0; i < np->num_queues; i++) { 2277 XN_RX_UNLOCK(&np->rxq[i]); 2278 XN_TX_UNLOCK(&np->txq[i]); 2279 } 2280 2281 for (i = 0; i < np->num_queues; i++) { 2282 disconnect_rxq(&np->rxq[i]); 2283 disconnect_txq(&np->txq[i]); 2284 } 2285 } 2286 2287 static int 2288 xn_ifmedia_upd(struct ifnet *ifp) 2289 { 2290 2291 return (0); 2292 } 2293 2294 static void 2295 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2296 { 2297 2298 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2299 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2300 } 2301 2302 /* ** Driver registration ** */ 2303 static device_method_t netfront_methods[] = { 2304 /* Device interface */ 2305 DEVMETHOD(device_probe, netfront_probe), 2306 DEVMETHOD(device_attach, netfront_attach), 2307 DEVMETHOD(device_detach, netfront_detach), 2308 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2309 DEVMETHOD(device_suspend, netfront_suspend), 2310 DEVMETHOD(device_resume, netfront_resume), 2311 2312 /* Xenbus interface */ 2313 DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed), 2314 2315 DEVMETHOD_END 2316 }; 2317 2318 static driver_t netfront_driver = { 2319 "xn", 2320 netfront_methods, 2321 sizeof(struct netfront_info), 2322 }; 2323 devclass_t netfront_devclass; 2324 2325 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL, 2326 NULL); 2327