1 /*- 2 * Copyright (c) 2004-2006 Kip Macy 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/sockio.h> 34 #include <sys/mbuf.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/sysctl.h> 40 #include <sys/queue.h> 41 #include <sys/lock.h> 42 #include <sys/sx.h> 43 44 #include <net/if.h> 45 #include <net/if_arp.h> 46 #include <net/ethernet.h> 47 #include <net/if_dl.h> 48 #include <net/if_media.h> 49 50 #include <net/bpf.h> 51 52 #include <net/if_types.h> 53 #include <net/if.h> 54 55 #include <netinet/in_systm.h> 56 #include <netinet/in.h> 57 #include <netinet/ip.h> 58 #include <netinet/if_ether.h> 59 #if __FreeBSD_version >= 700000 60 #include <netinet/tcp.h> 61 #include <netinet/tcp_lro.h> 62 #endif 63 64 #include <vm/vm.h> 65 #include <vm/pmap.h> 66 67 #include <machine/clock.h> /* for DELAY */ 68 #include <machine/bus.h> 69 #include <machine/resource.h> 70 #include <machine/frame.h> 71 #include <machine/vmparam.h> 72 73 #include <sys/bus.h> 74 #include <sys/rman.h> 75 76 #include <machine/intr_machdep.h> 77 78 #include <machine/xen/xen-os.h> 79 #include <machine/xen/xenfunc.h> 80 #include <xen/hypervisor.h> 81 #include <xen/xen_intr.h> 82 #include <xen/evtchn.h> 83 #include <xen/gnttab.h> 84 #include <xen/interface/memory.h> 85 #include <xen/interface/io/netif.h> 86 #include <xen/xenbus/xenbusvar.h> 87 88 #include <dev/xen/netfront/mbufq.h> 89 90 #include "xenbus_if.h" 91 92 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP | CSUM_TSO) 93 94 #define GRANT_INVALID_REF 0 95 96 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 97 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 98 99 #if __FreeBSD_version >= 700000 100 /* 101 * Should the driver do LRO on the RX end 102 * this can be toggled on the fly, but the 103 * interface must be reset (down/up) for it 104 * to take effect. 105 */ 106 static int xn_enable_lro = 1; 107 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 108 #else 109 110 #define IFCAP_TSO4 0 111 #define CSUM_TSO 0 112 113 #endif 114 115 #ifdef CONFIG_XEN 116 static int MODPARM_rx_copy = 0; 117 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0); 118 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)"); 119 static int MODPARM_rx_flip = 0; 120 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0); 121 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)"); 122 #else 123 static const int MODPARM_rx_copy = 1; 124 static const int MODPARM_rx_flip = 0; 125 #endif 126 127 /** 128 * \brief The maximum allowed data fragments in a single transmit 129 * request. 130 * 131 * This limit is imposed by the backend driver. We assume here that 132 * we are dealing with a Linux driver domain and have set our limit 133 * to mirror the Linux MAX_SKB_FRAGS constant. 134 */ 135 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 136 137 #define RX_COPY_THRESHOLD 256 138 139 #define net_ratelimit() 0 140 141 struct netfront_info; 142 struct netfront_rx_info; 143 144 static void xn_txeof(struct netfront_info *); 145 static void xn_rxeof(struct netfront_info *); 146 static void network_alloc_rx_buffers(struct netfront_info *); 147 148 static void xn_tick_locked(struct netfront_info *); 149 static void xn_tick(void *); 150 151 static void xn_intr(void *); 152 static inline int xn_count_frags(struct mbuf *m); 153 static int xn_assemble_tx_request(struct netfront_info *sc, 154 struct mbuf *m_head); 155 static void xn_start_locked(struct ifnet *); 156 static void xn_start(struct ifnet *); 157 static int xn_ioctl(struct ifnet *, u_long, caddr_t); 158 static void xn_ifinit_locked(struct netfront_info *); 159 static void xn_ifinit(void *); 160 static void xn_stop(struct netfront_info *); 161 #ifdef notyet 162 static void xn_watchdog(struct ifnet *); 163 #endif 164 165 static void show_device(struct netfront_info *sc); 166 #ifdef notyet 167 static void netfront_closing(device_t dev); 168 #endif 169 static void netif_free(struct netfront_info *info); 170 static int netfront_detach(device_t dev); 171 172 static int talk_to_backend(device_t dev, struct netfront_info *info); 173 static int create_netdev(device_t dev); 174 static void netif_disconnect_backend(struct netfront_info *info); 175 static int setup_device(device_t dev, struct netfront_info *info); 176 static void end_access(int ref, void *page); 177 178 static int xn_ifmedia_upd(struct ifnet *ifp); 179 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 180 181 /* Xenolinux helper functions */ 182 int network_connect(struct netfront_info *); 183 184 static void xn_free_rx_ring(struct netfront_info *); 185 186 static void xn_free_tx_ring(struct netfront_info *); 187 188 static int xennet_get_responses(struct netfront_info *np, 189 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 190 struct mbuf **list, int *pages_flipped_p); 191 192 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 193 194 #define INVALID_P2M_ENTRY (~0UL) 195 196 /* 197 * Mbuf pointers. We need these to keep track of the virtual addresses 198 * of our mbuf chains since we can only convert from virtual to physical, 199 * not the other way around. The size must track the free index arrays. 200 */ 201 struct xn_chain_data { 202 struct mbuf *xn_tx_chain[NET_TX_RING_SIZE+1]; 203 int xn_tx_chain_cnt; 204 struct mbuf *xn_rx_chain[NET_RX_RING_SIZE+1]; 205 }; 206 207 #define NUM_ELEMENTS(x) (sizeof(x)/sizeof(*x)) 208 209 struct net_device_stats 210 { 211 u_long rx_packets; /* total packets received */ 212 u_long tx_packets; /* total packets transmitted */ 213 u_long rx_bytes; /* total bytes received */ 214 u_long tx_bytes; /* total bytes transmitted */ 215 u_long rx_errors; /* bad packets received */ 216 u_long tx_errors; /* packet transmit problems */ 217 u_long rx_dropped; /* no space in linux buffers */ 218 u_long tx_dropped; /* no space available in linux */ 219 u_long multicast; /* multicast packets received */ 220 u_long collisions; 221 222 /* detailed rx_errors: */ 223 u_long rx_length_errors; 224 u_long rx_over_errors; /* receiver ring buff overflow */ 225 u_long rx_crc_errors; /* recved pkt with crc error */ 226 u_long rx_frame_errors; /* recv'd frame alignment error */ 227 u_long rx_fifo_errors; /* recv'r fifo overrun */ 228 u_long rx_missed_errors; /* receiver missed packet */ 229 230 /* detailed tx_errors */ 231 u_long tx_aborted_errors; 232 u_long tx_carrier_errors; 233 u_long tx_fifo_errors; 234 u_long tx_heartbeat_errors; 235 u_long tx_window_errors; 236 237 /* for cslip etc */ 238 u_long rx_compressed; 239 u_long tx_compressed; 240 }; 241 242 struct netfront_info { 243 244 struct ifnet *xn_ifp; 245 #if __FreeBSD_version >= 700000 246 struct lro_ctrl xn_lro; 247 #endif 248 249 struct net_device_stats stats; 250 u_int tx_full; 251 252 netif_tx_front_ring_t tx; 253 netif_rx_front_ring_t rx; 254 255 struct mtx tx_lock; 256 struct mtx rx_lock; 257 struct mtx sc_lock; 258 259 u_int handle; 260 u_int irq; 261 u_int copying_receiver; 262 u_int carrier; 263 264 /* Receive-ring batched refills. */ 265 #define RX_MIN_TARGET 32 266 #define RX_MAX_TARGET NET_RX_RING_SIZE 267 int rx_min_target; 268 int rx_max_target; 269 int rx_target; 270 271 grant_ref_t gref_tx_head; 272 grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1]; 273 grant_ref_t gref_rx_head; 274 grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1]; 275 276 device_t xbdev; 277 int tx_ring_ref; 278 int rx_ring_ref; 279 uint8_t mac[ETHER_ADDR_LEN]; 280 struct xn_chain_data xn_cdata; /* mbufs */ 281 struct mbuf_head xn_rx_batch; /* head of the batch queue */ 282 283 int xn_if_flags; 284 struct callout xn_stat_ch; 285 286 u_long rx_pfn_array[NET_RX_RING_SIZE]; 287 multicall_entry_t rx_mcl[NET_RX_RING_SIZE+1]; 288 mmu_update_t rx_mmu[NET_RX_RING_SIZE]; 289 struct ifmedia sc_media; 290 }; 291 292 #define rx_mbufs xn_cdata.xn_rx_chain 293 #define tx_mbufs xn_cdata.xn_tx_chain 294 295 #define XN_LOCK_INIT(_sc, _name) \ 296 mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \ 297 mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF); \ 298 mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF) 299 300 #define XN_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_lock) 301 #define XN_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_lock) 302 303 #define XN_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_lock) 304 #define XN_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_lock) 305 306 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 307 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 308 309 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 310 #define XN_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_lock, MA_OWNED); 311 #define XN_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_lock, MA_OWNED); 312 #define XN_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_lock); \ 313 mtx_destroy(&(_sc)->tx_lock); \ 314 mtx_destroy(&(_sc)->sc_lock); 315 316 struct netfront_rx_info { 317 struct netif_rx_response rx; 318 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 319 }; 320 321 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 322 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 323 #define netfront_carrier_ok(netif) ((netif)->carrier) 324 325 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 326 327 328 329 /* 330 * Access macros for acquiring freeing slots in tx_skbs[]. 331 */ 332 333 static inline void 334 add_id_to_freelist(struct mbuf **list, uintptr_t id) 335 { 336 KASSERT(id != 0, 337 ("%s: the head item (0) must always be free.", __func__)); 338 list[id] = list[0]; 339 list[0] = (struct mbuf *)id; 340 } 341 342 static inline unsigned short 343 get_id_from_freelist(struct mbuf **list) 344 { 345 uintptr_t id; 346 347 id = (uintptr_t)list[0]; 348 KASSERT(id != 0, 349 ("%s: the head item (0) must always remain free.", __func__)); 350 list[0] = list[id]; 351 return (id); 352 } 353 354 static inline int 355 xennet_rxidx(RING_IDX idx) 356 { 357 return idx & (NET_RX_RING_SIZE - 1); 358 } 359 360 static inline struct mbuf * 361 xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri) 362 { 363 int i = xennet_rxidx(ri); 364 struct mbuf *m; 365 366 m = np->rx_mbufs[i]; 367 np->rx_mbufs[i] = NULL; 368 return (m); 369 } 370 371 static inline grant_ref_t 372 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri) 373 { 374 int i = xennet_rxidx(ri); 375 grant_ref_t ref = np->grant_rx_ref[i]; 376 np->grant_rx_ref[i] = GRANT_INVALID_REF; 377 return ref; 378 } 379 380 #define IPRINTK(fmt, args...) \ 381 printf("[XEN] " fmt, ##args) 382 #ifdef INVARIANTS 383 #define WPRINTK(fmt, args...) \ 384 printf("[XEN] " fmt, ##args) 385 #else 386 #define WPRINTK(fmt, args...) 387 #endif 388 #ifdef DEBUG 389 #define DPRINTK(fmt, args...) \ 390 printf("[XEN] %s: " fmt, __func__, ##args) 391 #else 392 #define DPRINTK(fmt, args...) 393 #endif 394 395 /** 396 * Read the 'mac' node at the given device's node in the store, and parse that 397 * as colon-separated octets, placing result the given mac array. mac must be 398 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 399 * Return 0 on success, or errno on error. 400 */ 401 static int 402 xen_net_read_mac(device_t dev, uint8_t mac[]) 403 { 404 int error, i; 405 char *s, *e, *macstr; 406 407 error = xenbus_read(XBT_NIL, xenbus_get_node(dev), "mac", NULL, 408 (void **) &macstr); 409 if (error) 410 return (error); 411 412 s = macstr; 413 for (i = 0; i < ETHER_ADDR_LEN; i++) { 414 mac[i] = strtoul(s, &e, 16); 415 if (s == e || (e[0] != ':' && e[0] != 0)) { 416 free(macstr, M_DEVBUF); 417 return (ENOENT); 418 } 419 s = &e[1]; 420 } 421 free(macstr, M_DEVBUF); 422 return (0); 423 } 424 425 /** 426 * Entry point to this code when a new device is created. Allocate the basic 427 * structures and the ring buffers for communication with the backend, and 428 * inform the backend of the appropriate details for those. Switch to 429 * Connected state. 430 */ 431 static int 432 netfront_probe(device_t dev) 433 { 434 435 if (!strcmp(xenbus_get_type(dev), "vif")) { 436 device_set_desc(dev, "Virtual Network Interface"); 437 return (0); 438 } 439 440 return (ENXIO); 441 } 442 443 static int 444 netfront_attach(device_t dev) 445 { 446 int err; 447 448 err = create_netdev(dev); 449 if (err) { 450 xenbus_dev_fatal(dev, err, "creating netdev"); 451 return err; 452 } 453 454 #if __FreeBSD_version >= 700000 455 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 456 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 457 OID_AUTO, "enable_lro", CTLTYPE_INT|CTLFLAG_RW, 458 &xn_enable_lro, 0, "Large Receive Offload"); 459 #endif 460 461 return 0; 462 } 463 464 465 /** 466 * We are reconnecting to the backend, due to a suspend/resume, or a backend 467 * driver restart. We tear down our netif structure and recreate it, but 468 * leave the device-layer structures intact so that this is transparent to the 469 * rest of the kernel. 470 */ 471 static int 472 netfront_resume(device_t dev) 473 { 474 struct netfront_info *info = device_get_softc(dev); 475 476 netif_disconnect_backend(info); 477 return (0); 478 } 479 480 481 /* Common code used when first setting up, and when resuming. */ 482 static int 483 talk_to_backend(device_t dev, struct netfront_info *info) 484 { 485 const char *message; 486 struct xenbus_transaction xbt; 487 const char *node = xenbus_get_node(dev); 488 int err; 489 490 err = xen_net_read_mac(dev, info->mac); 491 if (err) { 492 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 493 goto out; 494 } 495 496 /* Create shared ring, alloc event channel. */ 497 err = setup_device(dev, info); 498 if (err) 499 goto out; 500 501 again: 502 err = xenbus_transaction_start(&xbt); 503 if (err) { 504 xenbus_dev_fatal(dev, err, "starting transaction"); 505 goto destroy_ring; 506 } 507 err = xenbus_printf(xbt, node, "tx-ring-ref","%u", 508 info->tx_ring_ref); 509 if (err) { 510 message = "writing tx ring-ref"; 511 goto abort_transaction; 512 } 513 err = xenbus_printf(xbt, node, "rx-ring-ref","%u", 514 info->rx_ring_ref); 515 if (err) { 516 message = "writing rx ring-ref"; 517 goto abort_transaction; 518 } 519 err = xenbus_printf(xbt, node, 520 "event-channel", "%u", irq_to_evtchn_port(info->irq)); 521 if (err) { 522 message = "writing event-channel"; 523 goto abort_transaction; 524 } 525 err = xenbus_printf(xbt, node, "request-rx-copy", "%u", 526 info->copying_receiver); 527 if (err) { 528 message = "writing request-rx-copy"; 529 goto abort_transaction; 530 } 531 err = xenbus_printf(xbt, node, "feature-rx-notify", "%d", 1); 532 if (err) { 533 message = "writing feature-rx-notify"; 534 goto abort_transaction; 535 } 536 err = xenbus_printf(xbt, node, "feature-sg", "%d", 1); 537 if (err) { 538 message = "writing feature-sg"; 539 goto abort_transaction; 540 } 541 #if __FreeBSD_version >= 700000 542 err = xenbus_printf(xbt, node, "feature-gso-tcpv4", "%d", 1); 543 if (err) { 544 message = "writing feature-gso-tcpv4"; 545 goto abort_transaction; 546 } 547 #endif 548 549 err = xenbus_transaction_end(xbt, 0); 550 if (err) { 551 if (err == EAGAIN) 552 goto again; 553 xenbus_dev_fatal(dev, err, "completing transaction"); 554 goto destroy_ring; 555 } 556 557 return 0; 558 559 abort_transaction: 560 xenbus_transaction_end(xbt, 1); 561 xenbus_dev_fatal(dev, err, "%s", message); 562 destroy_ring: 563 netif_free(info); 564 out: 565 return err; 566 } 567 568 569 static int 570 setup_device(device_t dev, struct netfront_info *info) 571 { 572 netif_tx_sring_t *txs; 573 netif_rx_sring_t *rxs; 574 int error; 575 struct ifnet *ifp; 576 577 ifp = info->xn_ifp; 578 579 info->tx_ring_ref = GRANT_INVALID_REF; 580 info->rx_ring_ref = GRANT_INVALID_REF; 581 info->rx.sring = NULL; 582 info->tx.sring = NULL; 583 info->irq = 0; 584 585 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 586 if (!txs) { 587 error = ENOMEM; 588 xenbus_dev_fatal(dev, error, "allocating tx ring page"); 589 goto fail; 590 } 591 SHARED_RING_INIT(txs); 592 FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE); 593 error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref); 594 if (error) 595 goto fail; 596 597 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 598 if (!rxs) { 599 error = ENOMEM; 600 xenbus_dev_fatal(dev, error, "allocating rx ring page"); 601 goto fail; 602 } 603 SHARED_RING_INIT(rxs); 604 FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE); 605 606 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref); 607 if (error) 608 goto fail; 609 610 error = bind_listening_port_to_irqhandler(xenbus_get_otherend_id(dev), 611 "xn", xn_intr, info, INTR_TYPE_NET | INTR_MPSAFE, &info->irq); 612 613 if (error) { 614 xenbus_dev_fatal(dev, error, 615 "bind_evtchn_to_irqhandler failed"); 616 goto fail; 617 } 618 619 show_device(info); 620 621 return (0); 622 623 fail: 624 netif_free(info); 625 return (error); 626 } 627 628 /** 629 * If this interface has an ipv4 address, send an arp for it. This 630 * helps to get the network going again after migrating hosts. 631 */ 632 static void 633 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 634 { 635 struct ifnet *ifp; 636 struct ifaddr *ifa; 637 638 ifp = info->xn_ifp; 639 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 640 if (ifa->ifa_addr->sa_family == AF_INET) { 641 arp_ifinit(ifp, ifa); 642 } 643 } 644 } 645 646 /** 647 * Callback received when the backend's state changes. 648 */ 649 static int 650 netfront_backend_changed(device_t dev, XenbusState newstate) 651 { 652 struct netfront_info *sc = device_get_softc(dev); 653 654 DPRINTK("newstate=%d\n", newstate); 655 656 switch (newstate) { 657 case XenbusStateInitialising: 658 case XenbusStateInitialised: 659 case XenbusStateConnected: 660 case XenbusStateUnknown: 661 case XenbusStateClosed: 662 case XenbusStateReconfigured: 663 case XenbusStateReconfiguring: 664 break; 665 case XenbusStateInitWait: 666 if (xenbus_get_state(dev) != XenbusStateInitialising) 667 break; 668 if (network_connect(sc) != 0) 669 break; 670 xenbus_set_state(dev, XenbusStateConnected); 671 netfront_send_fake_arp(dev, sc); 672 break; 673 case XenbusStateClosing: 674 xenbus_set_state(dev, XenbusStateClosed); 675 break; 676 } 677 return (0); 678 } 679 680 static void 681 xn_free_rx_ring(struct netfront_info *sc) 682 { 683 #if 0 684 int i; 685 686 for (i = 0; i < NET_RX_RING_SIZE; i++) { 687 if (sc->xn_cdata.rx_mbufs[i] != NULL) { 688 m_freem(sc->rx_mbufs[i]); 689 sc->rx_mbufs[i] = NULL; 690 } 691 } 692 693 sc->rx.rsp_cons = 0; 694 sc->xn_rx_if->req_prod = 0; 695 sc->xn_rx_if->event = sc->rx.rsp_cons ; 696 #endif 697 } 698 699 static void 700 xn_free_tx_ring(struct netfront_info *sc) 701 { 702 #if 0 703 int i; 704 705 for (i = 0; i < NET_TX_RING_SIZE; i++) { 706 if (sc->tx_mbufs[i] != NULL) { 707 m_freem(sc->tx_mbufs[i]); 708 sc->xn_cdata.xn_tx_chain[i] = NULL; 709 } 710 } 711 712 return; 713 #endif 714 } 715 716 /** 717 * \brief Verify that there is sufficient space in the Tx ring 718 * buffer for a maximally sized request to be enqueued. 719 * 720 * A transmit request requires a transmit descriptor for each packet 721 * fragment, plus up to 2 entries for "options" (e.g. TSO). 722 */ 723 static inline int 724 xn_tx_slot_available(struct netfront_info *np) 725 { 726 return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2)); 727 } 728 729 static void 730 netif_release_tx_bufs(struct netfront_info *np) 731 { 732 int i; 733 734 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 735 struct mbuf *m; 736 737 m = np->tx_mbufs[i]; 738 739 /* 740 * We assume that no kernel addresses are 741 * less than NET_TX_RING_SIZE. Any entry 742 * in the table that is below this number 743 * must be an index from free-list tracking. 744 */ 745 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 746 continue; 747 gnttab_grant_foreign_access_ref(np->grant_tx_ref[i], 748 xenbus_get_otherend_id(np->xbdev), 749 virt_to_mfn(mtod(m, vm_offset_t)), 750 GNTMAP_readonly); 751 gnttab_release_grant_reference(&np->gref_tx_head, 752 np->grant_tx_ref[i]); 753 np->grant_tx_ref[i] = GRANT_INVALID_REF; 754 add_id_to_freelist(np->tx_mbufs, i); 755 np->xn_cdata.xn_tx_chain_cnt--; 756 if (np->xn_cdata.xn_tx_chain_cnt < 0) { 757 panic("netif_release_tx_bufs: tx_chain_cnt must be >= 0"); 758 } 759 m_freem(m); 760 } 761 } 762 763 static void 764 network_alloc_rx_buffers(struct netfront_info *sc) 765 { 766 int otherend_id = xenbus_get_otherend_id(sc->xbdev); 767 unsigned short id; 768 struct mbuf *m_new; 769 int i, batch_target, notify; 770 RING_IDX req_prod; 771 struct xen_memory_reservation reservation; 772 grant_ref_t ref; 773 int nr_flips; 774 netif_rx_request_t *req; 775 vm_offset_t vaddr; 776 u_long pfn; 777 778 req_prod = sc->rx.req_prod_pvt; 779 780 if (unlikely(sc->carrier == 0)) 781 return; 782 783 /* 784 * Allocate mbufs greedily, even though we batch updates to the 785 * receive ring. This creates a less bursty demand on the memory 786 * allocator, and so should reduce the chance of failed allocation 787 * requests both for ourself and for other kernel subsystems. 788 * 789 * Here we attempt to maintain rx_target buffers in flight, counting 790 * buffers that we have yet to process in the receive ring. 791 */ 792 batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons); 793 for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) { 794 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 795 if (m_new == NULL) { 796 printf("%s: MGETHDR failed\n", __func__); 797 goto no_mbuf; 798 } 799 800 m_cljget(m_new, M_DONTWAIT, MJUMPAGESIZE); 801 if ((m_new->m_flags & M_EXT) == 0) { 802 printf("%s: m_cljget failed\n", __func__); 803 m_freem(m_new); 804 805 no_mbuf: 806 if (i != 0) 807 goto refill; 808 /* 809 * XXX set timer 810 */ 811 break; 812 } 813 m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE; 814 815 /* queue the mbufs allocated */ 816 mbufq_tail(&sc->xn_rx_batch, m_new); 817 } 818 819 /* 820 * If we've allocated at least half of our target number of entries, 821 * submit them to the backend - we have enough to make the overhead 822 * of submission worthwhile. Otherwise wait for more mbufs and 823 * request entries to become available. 824 */ 825 if (i < (sc->rx_target/2)) { 826 if (req_prod >sc->rx.sring->req_prod) 827 goto push; 828 return; 829 } 830 831 /* 832 * Double floating fill target if we risked having the backend 833 * run out of empty buffers for receive traffic. We define "running 834 * low" as having less than a fourth of our target buffers free 835 * at the time we refilled the queue. 836 */ 837 if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) { 838 sc->rx_target *= 2; 839 if (sc->rx_target > sc->rx_max_target) 840 sc->rx_target = sc->rx_max_target; 841 } 842 843 refill: 844 for (nr_flips = i = 0; ; i++) { 845 if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL) 846 break; 847 848 m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)( 849 vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT); 850 851 id = xennet_rxidx(req_prod + i); 852 853 KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain")); 854 sc->rx_mbufs[id] = m_new; 855 856 ref = gnttab_claim_grant_reference(&sc->gref_rx_head); 857 KASSERT((short)ref >= 0, ("negative ref")); 858 sc->grant_rx_ref[id] = ref; 859 860 vaddr = mtod(m_new, vm_offset_t); 861 pfn = vtophys(vaddr) >> PAGE_SHIFT; 862 req = RING_GET_REQUEST(&sc->rx, req_prod + i); 863 864 if (sc->copying_receiver == 0) { 865 gnttab_grant_foreign_transfer_ref(ref, 866 otherend_id, pfn); 867 sc->rx_pfn_array[nr_flips] = PFNTOMFN(pfn); 868 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 869 /* Remove this page before passing 870 * back to Xen. 871 */ 872 set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 873 MULTI_update_va_mapping(&sc->rx_mcl[i], 874 vaddr, 0, 0); 875 } 876 nr_flips++; 877 } else { 878 gnttab_grant_foreign_access_ref(ref, 879 otherend_id, 880 PFNTOMFN(pfn), 0); 881 } 882 req->id = id; 883 req->gref = ref; 884 885 sc->rx_pfn_array[i] = 886 vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT; 887 } 888 889 KASSERT(i, ("no mbufs processed")); /* should have returned earlier */ 890 KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed")); 891 /* 892 * We may have allocated buffers which have entries outstanding 893 * in the page * update queue -- make sure we flush those first! 894 */ 895 PT_UPDATES_FLUSH(); 896 if (nr_flips != 0) { 897 #ifdef notyet 898 /* Tell the ballon driver what is going on. */ 899 balloon_update_driver_allowance(i); 900 #endif 901 set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array); 902 reservation.nr_extents = i; 903 reservation.extent_order = 0; 904 reservation.address_bits = 0; 905 reservation.domid = DOMID_SELF; 906 907 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 908 909 /* After all PTEs have been zapped, flush the TLB. */ 910 sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] = 911 UVMF_TLB_FLUSH|UVMF_ALL; 912 913 /* Give away a batch of pages. */ 914 sc->rx_mcl[i].op = __HYPERVISOR_memory_op; 915 sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation; 916 sc->rx_mcl[i].args[1] = (u_long)&reservation; 917 /* Zap PTEs and give away pages in one big multicall. */ 918 (void)HYPERVISOR_multicall(sc->rx_mcl, i+1); 919 920 /* Check return status of HYPERVISOR_dom_mem_op(). */ 921 if (unlikely(sc->rx_mcl[i].result != i)) 922 panic("Unable to reduce memory reservation\n"); 923 } else { 924 if (HYPERVISOR_memory_op( 925 XENMEM_decrease_reservation, &reservation) 926 != i) 927 panic("Unable to reduce memory " 928 "reservation\n"); 929 } 930 } else { 931 wmb(); 932 } 933 934 /* Above is a suitable barrier to ensure backend will see requests. */ 935 sc->rx.req_prod_pvt = req_prod + i; 936 push: 937 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify); 938 if (notify) 939 notify_remote_via_irq(sc->irq); 940 } 941 942 static void 943 xn_rxeof(struct netfront_info *np) 944 { 945 struct ifnet *ifp; 946 #if __FreeBSD_version >= 700000 947 struct lro_ctrl *lro = &np->xn_lro; 948 struct lro_entry *queued; 949 #endif 950 struct netfront_rx_info rinfo; 951 struct netif_rx_response *rx = &rinfo.rx; 952 struct netif_extra_info *extras = rinfo.extras; 953 RING_IDX i, rp; 954 multicall_entry_t *mcl; 955 struct mbuf *m; 956 struct mbuf_head rxq, errq; 957 int err, pages_flipped = 0, work_to_do; 958 959 do { 960 XN_RX_LOCK_ASSERT(np); 961 if (!netfront_carrier_ok(np)) 962 return; 963 964 mbufq_init(&errq); 965 mbufq_init(&rxq); 966 967 ifp = np->xn_ifp; 968 969 rp = np->rx.sring->rsp_prod; 970 rmb(); /* Ensure we see queued responses up to 'rp'. */ 971 972 i = np->rx.rsp_cons; 973 while ((i != rp)) { 974 memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx)); 975 memset(extras, 0, sizeof(rinfo.extras)); 976 977 m = NULL; 978 err = xennet_get_responses(np, &rinfo, rp, &i, &m, 979 &pages_flipped); 980 981 if (unlikely(err)) { 982 if (m) 983 mbufq_tail(&errq, m); 984 np->stats.rx_errors++; 985 continue; 986 } 987 988 m->m_pkthdr.rcvif = ifp; 989 if ( rx->flags & NETRXF_data_validated ) { 990 /* Tell the stack the checksums are okay */ 991 /* 992 * XXX this isn't necessarily the case - need to add 993 * check 994 */ 995 996 m->m_pkthdr.csum_flags |= 997 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID 998 | CSUM_PSEUDO_HDR); 999 m->m_pkthdr.csum_data = 0xffff; 1000 } 1001 1002 np->stats.rx_packets++; 1003 np->stats.rx_bytes += m->m_pkthdr.len; 1004 1005 mbufq_tail(&rxq, m); 1006 np->rx.rsp_cons = i; 1007 } 1008 1009 if (pages_flipped) { 1010 /* Some pages are no longer absent... */ 1011 #ifdef notyet 1012 balloon_update_driver_allowance(-pages_flipped); 1013 #endif 1014 /* Do all the remapping work, and M->P updates, in one big 1015 * hypercall. 1016 */ 1017 if (!!xen_feature(XENFEAT_auto_translated_physmap)) { 1018 mcl = np->rx_mcl + pages_flipped; 1019 mcl->op = __HYPERVISOR_mmu_update; 1020 mcl->args[0] = (u_long)np->rx_mmu; 1021 mcl->args[1] = pages_flipped; 1022 mcl->args[2] = 0; 1023 mcl->args[3] = DOMID_SELF; 1024 (void)HYPERVISOR_multicall(np->rx_mcl, 1025 pages_flipped + 1); 1026 } 1027 } 1028 1029 while ((m = mbufq_dequeue(&errq))) 1030 m_freem(m); 1031 1032 /* 1033 * Process all the mbufs after the remapping is complete. 1034 * Break the mbuf chain first though. 1035 */ 1036 while ((m = mbufq_dequeue(&rxq)) != NULL) { 1037 ifp->if_ipackets++; 1038 1039 /* 1040 * Do we really need to drop the rx lock? 1041 */ 1042 XN_RX_UNLOCK(np); 1043 #if __FreeBSD_version >= 700000 1044 /* Use LRO if possible */ 1045 if ((ifp->if_capenable & IFCAP_LRO) == 0 || 1046 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1047 /* 1048 * If LRO fails, pass up to the stack 1049 * directly. 1050 */ 1051 (*ifp->if_input)(ifp, m); 1052 } 1053 #else 1054 (*ifp->if_input)(ifp, m); 1055 #endif 1056 XN_RX_LOCK(np); 1057 } 1058 1059 np->rx.rsp_cons = i; 1060 1061 #if __FreeBSD_version >= 700000 1062 /* 1063 * Flush any outstanding LRO work 1064 */ 1065 while (!SLIST_EMPTY(&lro->lro_active)) { 1066 queued = SLIST_FIRST(&lro->lro_active); 1067 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1068 tcp_lro_flush(lro, queued); 1069 } 1070 #endif 1071 1072 #if 0 1073 /* If we get a callback with very few responses, reduce fill target. */ 1074 /* NB. Note exponential increase, linear decrease. */ 1075 if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) > 1076 ((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target)) 1077 np->rx_target = np->rx_min_target; 1078 #endif 1079 1080 network_alloc_rx_buffers(np); 1081 1082 RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do); 1083 } while (work_to_do); 1084 } 1085 1086 static void 1087 xn_txeof(struct netfront_info *np) 1088 { 1089 RING_IDX i, prod; 1090 unsigned short id; 1091 struct ifnet *ifp; 1092 netif_tx_response_t *txr; 1093 struct mbuf *m; 1094 1095 XN_TX_LOCK_ASSERT(np); 1096 1097 if (!netfront_carrier_ok(np)) 1098 return; 1099 1100 ifp = np->xn_ifp; 1101 1102 do { 1103 prod = np->tx.sring->rsp_prod; 1104 rmb(); /* Ensure we see responses up to 'rp'. */ 1105 1106 for (i = np->tx.rsp_cons; i != prod; i++) { 1107 txr = RING_GET_RESPONSE(&np->tx, i); 1108 if (txr->status == NETIF_RSP_NULL) 1109 continue; 1110 1111 if (txr->status != NETIF_RSP_OKAY) { 1112 printf("%s: WARNING: response is %d!\n", 1113 __func__, txr->status); 1114 } 1115 id = txr->id; 1116 m = np->tx_mbufs[id]; 1117 KASSERT(m != NULL, ("mbuf not found in xn_tx_chain")); 1118 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1119 ("mbuf already on the free list, but we're " 1120 "trying to free it again!")); 1121 M_ASSERTVALID(m); 1122 1123 /* 1124 * Increment packet count if this is the last 1125 * mbuf of the chain. 1126 */ 1127 if (!m->m_next) 1128 ifp->if_opackets++; 1129 if (unlikely(gnttab_query_foreign_access( 1130 np->grant_tx_ref[id]) != 0)) { 1131 panic("grant id %u still in use by the backend", 1132 id); 1133 } 1134 gnttab_end_foreign_access_ref( 1135 np->grant_tx_ref[id]); 1136 gnttab_release_grant_reference( 1137 &np->gref_tx_head, np->grant_tx_ref[id]); 1138 np->grant_tx_ref[id] = GRANT_INVALID_REF; 1139 1140 np->tx_mbufs[id] = NULL; 1141 add_id_to_freelist(np->tx_mbufs, id); 1142 np->xn_cdata.xn_tx_chain_cnt--; 1143 m_free(m); 1144 /* Only mark the queue active if we've freed up at least one slot to try */ 1145 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1146 } 1147 np->tx.rsp_cons = prod; 1148 1149 /* 1150 * Set a new event, then check for race with update of 1151 * tx_cons. Note that it is essential to schedule a 1152 * callback, no matter how few buffers are pending. Even if 1153 * there is space in the transmit ring, higher layers may 1154 * be blocked because too much data is outstanding: in such 1155 * cases notification from Xen is likely to be the only kick 1156 * that we'll get. 1157 */ 1158 np->tx.sring->rsp_event = 1159 prod + ((np->tx.sring->req_prod - prod) >> 1) + 1; 1160 1161 mb(); 1162 } while (prod != np->tx.sring->rsp_prod); 1163 1164 if (np->tx_full && 1165 ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1166 np->tx_full = 0; 1167 #if 0 1168 if (np->user_state == UST_OPEN) 1169 netif_wake_queue(dev); 1170 #endif 1171 } 1172 1173 } 1174 1175 static void 1176 xn_intr(void *xsc) 1177 { 1178 struct netfront_info *np = xsc; 1179 struct ifnet *ifp = np->xn_ifp; 1180 1181 #if 0 1182 if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod && 1183 likely(netfront_carrier_ok(np)) && 1184 ifp->if_drv_flags & IFF_DRV_RUNNING)) 1185 return; 1186 #endif 1187 if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) { 1188 XN_TX_LOCK(np); 1189 xn_txeof(np); 1190 XN_TX_UNLOCK(np); 1191 } 1192 1193 XN_RX_LOCK(np); 1194 xn_rxeof(np); 1195 XN_RX_UNLOCK(np); 1196 1197 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1198 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1199 xn_start(ifp); 1200 } 1201 1202 1203 static void 1204 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m, 1205 grant_ref_t ref) 1206 { 1207 int new = xennet_rxidx(np->rx.req_prod_pvt); 1208 1209 KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL")); 1210 np->rx_mbufs[new] = m; 1211 np->grant_rx_ref[new] = ref; 1212 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new; 1213 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref; 1214 np->rx.req_prod_pvt++; 1215 } 1216 1217 static int 1218 xennet_get_extras(struct netfront_info *np, 1219 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1220 { 1221 struct netif_extra_info *extra; 1222 1223 int err = 0; 1224 1225 do { 1226 struct mbuf *m; 1227 grant_ref_t ref; 1228 1229 if (unlikely(*cons + 1 == rp)) { 1230 #if 0 1231 if (net_ratelimit()) 1232 WPRINTK("Missing extra info\n"); 1233 #endif 1234 err = EINVAL; 1235 break; 1236 } 1237 1238 extra = (struct netif_extra_info *) 1239 RING_GET_RESPONSE(&np->rx, ++(*cons)); 1240 1241 if (unlikely(!extra->type || 1242 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1243 #if 0 1244 if (net_ratelimit()) 1245 WPRINTK("Invalid extra type: %d\n", 1246 extra->type); 1247 #endif 1248 err = EINVAL; 1249 } else { 1250 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1251 } 1252 1253 m = xennet_get_rx_mbuf(np, *cons); 1254 ref = xennet_get_rx_ref(np, *cons); 1255 xennet_move_rx_slot(np, m, ref); 1256 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1257 1258 return err; 1259 } 1260 1261 static int 1262 xennet_get_responses(struct netfront_info *np, 1263 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1264 struct mbuf **list, 1265 int *pages_flipped_p) 1266 { 1267 int pages_flipped = *pages_flipped_p; 1268 struct mmu_update *mmu; 1269 struct multicall_entry *mcl; 1270 struct netif_rx_response *rx = &rinfo->rx; 1271 struct netif_extra_info *extras = rinfo->extras; 1272 struct mbuf *m, *m0, *m_prev; 1273 grant_ref_t ref = xennet_get_rx_ref(np, *cons); 1274 RING_IDX ref_cons = *cons; 1275 int max = 5 /* MAX_TX_REQ_FRAGS + (rx->status <= RX_COPY_THRESHOLD) */; 1276 int frags = 1; 1277 int err = 0; 1278 u_long ret; 1279 1280 m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons); 1281 1282 1283 if (rx->flags & NETRXF_extra_info) { 1284 err = xennet_get_extras(np, extras, rp, cons); 1285 } 1286 1287 1288 if (m0 != NULL) { 1289 m0->m_pkthdr.len = 0; 1290 m0->m_next = NULL; 1291 } 1292 1293 for (;;) { 1294 u_long mfn; 1295 1296 #if 0 1297 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1298 rx->status, rx->offset, frags); 1299 #endif 1300 if (unlikely(rx->status < 0 || 1301 rx->offset + rx->status > PAGE_SIZE)) { 1302 1303 #if 0 1304 if (net_ratelimit()) 1305 WPRINTK("rx->offset: %x, size: %u\n", 1306 rx->offset, rx->status); 1307 #endif 1308 xennet_move_rx_slot(np, m, ref); 1309 if (m0 == m) 1310 m0 = NULL; 1311 m = NULL; 1312 err = EINVAL; 1313 goto next_skip_queue; 1314 } 1315 1316 /* 1317 * This definitely indicates a bug, either in this driver or in 1318 * the backend driver. In future this should flag the bad 1319 * situation to the system controller to reboot the backed. 1320 */ 1321 if (ref == GRANT_INVALID_REF) { 1322 1323 #if 0 1324 if (net_ratelimit()) 1325 WPRINTK("Bad rx response id %d.\n", rx->id); 1326 #endif 1327 err = EINVAL; 1328 goto next; 1329 } 1330 1331 if (!np->copying_receiver) { 1332 /* Memory pressure, insufficient buffer 1333 * headroom, ... 1334 */ 1335 if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) { 1336 WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n", 1337 rx->id, rx->status); 1338 xennet_move_rx_slot(np, m, ref); 1339 err = ENOMEM; 1340 goto next; 1341 } 1342 1343 if (!xen_feature( XENFEAT_auto_translated_physmap)) { 1344 /* Remap the page. */ 1345 void *vaddr = mtod(m, void *); 1346 uint32_t pfn; 1347 1348 mcl = np->rx_mcl + pages_flipped; 1349 mmu = np->rx_mmu + pages_flipped; 1350 1351 MULTI_update_va_mapping(mcl, (u_long)vaddr, 1352 (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW | 1353 PG_V | PG_M | PG_A, 0); 1354 pfn = (uintptr_t)m->m_ext.ext_arg1; 1355 mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) | 1356 MMU_MACHPHYS_UPDATE; 1357 mmu->val = pfn; 1358 1359 set_phys_to_machine(pfn, mfn); 1360 } 1361 pages_flipped++; 1362 } else { 1363 ret = gnttab_end_foreign_access_ref(ref); 1364 KASSERT(ret, ("ret != 0")); 1365 } 1366 1367 gnttab_release_grant_reference(&np->gref_rx_head, ref); 1368 1369 next: 1370 if (m == NULL) 1371 break; 1372 1373 m->m_len = rx->status; 1374 m->m_data += rx->offset; 1375 m0->m_pkthdr.len += rx->status; 1376 1377 next_skip_queue: 1378 if (!(rx->flags & NETRXF_more_data)) 1379 break; 1380 1381 if (*cons + frags == rp) { 1382 if (net_ratelimit()) 1383 WPRINTK("Need more frags\n"); 1384 err = ENOENT; 1385 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1386 __func__, *cons, frags, rp); 1387 break; 1388 } 1389 /* 1390 * Note that m can be NULL, if rx->status < 0 or if 1391 * rx->offset + rx->status > PAGE_SIZE above. 1392 */ 1393 m_prev = m; 1394 1395 rx = RING_GET_RESPONSE(&np->rx, *cons + frags); 1396 m = xennet_get_rx_mbuf(np, *cons + frags); 1397 1398 /* 1399 * m_prev == NULL can happen if rx->status < 0 or if 1400 * rx->offset + * rx->status > PAGE_SIZE above. 1401 */ 1402 if (m_prev != NULL) 1403 m_prev->m_next = m; 1404 1405 /* 1406 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1407 * rx->status > PAGE_SIZE above. 1408 */ 1409 if (m0 == NULL) 1410 m0 = m; 1411 m->m_next = NULL; 1412 ref = xennet_get_rx_ref(np, *cons + frags); 1413 ref_cons = *cons + frags; 1414 frags++; 1415 } 1416 *list = m0; 1417 1418 if (unlikely(frags > max)) { 1419 if (net_ratelimit()) 1420 WPRINTK("Too many frags\n"); 1421 printf("%s: too many frags %d > max %d\n", __func__, frags, 1422 max); 1423 err = E2BIG; 1424 } 1425 1426 *cons += frags; 1427 1428 *pages_flipped_p = pages_flipped; 1429 1430 return err; 1431 } 1432 1433 static void 1434 xn_tick_locked(struct netfront_info *sc) 1435 { 1436 XN_RX_LOCK_ASSERT(sc); 1437 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1438 1439 /* XXX placeholder for printing debug information */ 1440 1441 } 1442 1443 1444 static void 1445 xn_tick(void *xsc) 1446 { 1447 struct netfront_info *sc; 1448 1449 sc = xsc; 1450 XN_RX_LOCK(sc); 1451 xn_tick_locked(sc); 1452 XN_RX_UNLOCK(sc); 1453 1454 } 1455 1456 /** 1457 * \brief Count the number of fragments in an mbuf chain. 1458 * 1459 * Surprisingly, there isn't an M* macro for this. 1460 */ 1461 static inline int 1462 xn_count_frags(struct mbuf *m) 1463 { 1464 int nfrags; 1465 1466 for (nfrags = 0; m != NULL; m = m->m_next) 1467 nfrags++; 1468 1469 return (nfrags); 1470 } 1471 1472 /** 1473 * Given an mbuf chain, make sure we have enough room and then push 1474 * it onto the transmit ring. 1475 */ 1476 static int 1477 xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head) 1478 { 1479 struct ifnet *ifp; 1480 struct mbuf *m; 1481 u_int nfrags; 1482 netif_extra_info_t *extra; 1483 int otherend_id; 1484 1485 ifp = sc->xn_ifp; 1486 1487 /** 1488 * Defragment the mbuf if necessary. 1489 */ 1490 nfrags = xn_count_frags(m_head); 1491 1492 /* 1493 * Check to see whether this request is longer than netback 1494 * can handle, and try to defrag it. 1495 */ 1496 /** 1497 * It is a bit lame, but the netback driver in Linux can't 1498 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of 1499 * the Linux network stack. 1500 */ 1501 if (nfrags > MAX_TX_REQ_FRAGS) { 1502 m = m_defrag(m_head, M_DONTWAIT); 1503 if (!m) { 1504 /* 1505 * Defrag failed, so free the mbuf and 1506 * therefore drop the packet. 1507 */ 1508 m_freem(m_head); 1509 return (EMSGSIZE); 1510 } 1511 m_head = m; 1512 } 1513 1514 /* Determine how many fragments now exist */ 1515 nfrags = xn_count_frags(m_head); 1516 1517 /* 1518 * Check to see whether the defragmented packet has too many 1519 * segments for the Linux netback driver. 1520 */ 1521 /** 1522 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1523 * of mbufs longer than Linux can handle. Make sure we don't 1524 * pass a too-long chain over to the other side by dropping the 1525 * packet. It doesn't look like there is currently a way to 1526 * tell the TCP stack to generate a shorter chain of packets. 1527 */ 1528 if (nfrags > MAX_TX_REQ_FRAGS) { 1529 m_freem(m_head); 1530 return (EMSGSIZE); 1531 } 1532 1533 /* 1534 * This check should be redundant. We've already verified that we 1535 * have enough slots in the ring to handle a packet of maximum 1536 * size, and that our packet is less than the maximum size. Keep 1537 * it in here as an assert for now just to make certain that 1538 * xn_tx_chain_cnt is accurate. 1539 */ 1540 KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE, 1541 ("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1542 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt, 1543 (int) nfrags, (int) NET_TX_RING_SIZE)); 1544 1545 /* 1546 * Start packing the mbufs in this chain into 1547 * the fragment pointers. Stop when we run out 1548 * of fragments or hit the end of the mbuf chain. 1549 */ 1550 m = m_head; 1551 extra = NULL; 1552 otherend_id = xenbus_get_otherend_id(sc->xbdev); 1553 for (m = m_head; m; m = m->m_next) { 1554 netif_tx_request_t *tx; 1555 uintptr_t id; 1556 grant_ref_t ref; 1557 u_long mfn; /* XXX Wrong type? */ 1558 1559 tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt); 1560 id = get_id_from_freelist(sc->tx_mbufs); 1561 if (id == 0) 1562 panic("xn_start_locked: was allocated the freelist head!\n"); 1563 sc->xn_cdata.xn_tx_chain_cnt++; 1564 if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE) 1565 panic("xn_start_locked: tx_chain_cnt must be <= NET_TX_RING_SIZE\n"); 1566 sc->tx_mbufs[id] = m; 1567 tx->id = id; 1568 ref = gnttab_claim_grant_reference(&sc->gref_tx_head); 1569 KASSERT((short)ref >= 0, ("Negative ref")); 1570 mfn = virt_to_mfn(mtod(m, vm_offset_t)); 1571 gnttab_grant_foreign_access_ref(ref, otherend_id, 1572 mfn, GNTMAP_readonly); 1573 tx->gref = sc->grant_tx_ref[id] = ref; 1574 tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1); 1575 tx->flags = 0; 1576 if (m == m_head) { 1577 /* 1578 * The first fragment has the entire packet 1579 * size, subsequent fragments have just the 1580 * fragment size. The backend works out the 1581 * true size of the first fragment by 1582 * subtracting the sizes of the other 1583 * fragments. 1584 */ 1585 tx->size = m->m_pkthdr.len; 1586 1587 /* 1588 * The first fragment contains the checksum flags 1589 * and is optionally followed by extra data for 1590 * TSO etc. 1591 */ 1592 /** 1593 * CSUM_TSO requires checksum offloading. 1594 * Some versions of FreeBSD fail to 1595 * set CSUM_TCP in the CSUM_TSO case, 1596 * so we have to test for CSUM_TSO 1597 * explicitly. 1598 */ 1599 if (m->m_pkthdr.csum_flags 1600 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1601 tx->flags |= (NETTXF_csum_blank 1602 | NETTXF_data_validated); 1603 } 1604 #if __FreeBSD_version >= 700000 1605 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1606 struct netif_extra_info *gso = 1607 (struct netif_extra_info *) 1608 RING_GET_REQUEST(&sc->tx, 1609 ++sc->tx.req_prod_pvt); 1610 1611 tx->flags |= NETTXF_extra_info; 1612 1613 gso->u.gso.size = m->m_pkthdr.tso_segsz; 1614 gso->u.gso.type = 1615 XEN_NETIF_GSO_TYPE_TCPV4; 1616 gso->u.gso.pad = 0; 1617 gso->u.gso.features = 0; 1618 1619 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1620 gso->flags = 0; 1621 } 1622 #endif 1623 } else { 1624 tx->size = m->m_len; 1625 } 1626 if (m->m_next) 1627 tx->flags |= NETTXF_more_data; 1628 1629 sc->tx.req_prod_pvt++; 1630 } 1631 BPF_MTAP(ifp, m_head); 1632 1633 sc->stats.tx_bytes += m_head->m_pkthdr.len; 1634 sc->stats.tx_packets++; 1635 1636 return (0); 1637 } 1638 1639 static void 1640 xn_start_locked(struct ifnet *ifp) 1641 { 1642 struct netfront_info *sc; 1643 struct mbuf *m_head; 1644 int notify; 1645 1646 sc = ifp->if_softc; 1647 1648 if (!netfront_carrier_ok(sc)) 1649 return; 1650 1651 /* 1652 * While we have enough transmit slots available for at least one 1653 * maximum-sized packet, pull mbufs off the queue and put them on 1654 * the transmit ring. 1655 */ 1656 while (xn_tx_slot_available(sc)) { 1657 IF_DEQUEUE(&ifp->if_snd, m_head); 1658 if (m_head == NULL) 1659 break; 1660 1661 if (xn_assemble_tx_request(sc, m_head) != 0) 1662 break; 1663 } 1664 1665 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify); 1666 if (notify) 1667 notify_remote_via_irq(sc->irq); 1668 1669 if (RING_FULL(&sc->tx)) { 1670 sc->tx_full = 1; 1671 #if 0 1672 netif_stop_queue(dev); 1673 #endif 1674 } 1675 } 1676 1677 1678 static void 1679 xn_start(struct ifnet *ifp) 1680 { 1681 struct netfront_info *sc; 1682 sc = ifp->if_softc; 1683 XN_TX_LOCK(sc); 1684 xn_start_locked(ifp); 1685 XN_TX_UNLOCK(sc); 1686 } 1687 1688 /* equivalent of network_open() in Linux */ 1689 static void 1690 xn_ifinit_locked(struct netfront_info *sc) 1691 { 1692 struct ifnet *ifp; 1693 1694 XN_LOCK_ASSERT(sc); 1695 1696 ifp = sc->xn_ifp; 1697 1698 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1699 return; 1700 1701 xn_stop(sc); 1702 1703 network_alloc_rx_buffers(sc); 1704 sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1; 1705 1706 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1707 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1708 if_link_state_change(ifp, LINK_STATE_UP); 1709 1710 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1711 1712 } 1713 1714 1715 static void 1716 xn_ifinit(void *xsc) 1717 { 1718 struct netfront_info *sc = xsc; 1719 1720 XN_LOCK(sc); 1721 xn_ifinit_locked(sc); 1722 XN_UNLOCK(sc); 1723 1724 } 1725 1726 1727 static int 1728 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1729 { 1730 struct netfront_info *sc = ifp->if_softc; 1731 struct ifreq *ifr = (struct ifreq *) data; 1732 struct ifaddr *ifa = (struct ifaddr *)data; 1733 1734 int mask, error = 0; 1735 switch(cmd) { 1736 case SIOCSIFADDR: 1737 case SIOCGIFADDR: 1738 XN_LOCK(sc); 1739 if (ifa->ifa_addr->sa_family == AF_INET) { 1740 ifp->if_flags |= IFF_UP; 1741 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1742 xn_ifinit_locked(sc); 1743 arp_ifinit(ifp, ifa); 1744 XN_UNLOCK(sc); 1745 } else { 1746 XN_UNLOCK(sc); 1747 error = ether_ioctl(ifp, cmd, data); 1748 } 1749 break; 1750 case SIOCSIFMTU: 1751 /* XXX can we alter the MTU on a VN ?*/ 1752 #ifdef notyet 1753 if (ifr->ifr_mtu > XN_JUMBO_MTU) 1754 error = EINVAL; 1755 else 1756 #endif 1757 { 1758 ifp->if_mtu = ifr->ifr_mtu; 1759 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1760 xn_ifinit(sc); 1761 } 1762 break; 1763 case SIOCSIFFLAGS: 1764 XN_LOCK(sc); 1765 if (ifp->if_flags & IFF_UP) { 1766 /* 1767 * If only the state of the PROMISC flag changed, 1768 * then just use the 'set promisc mode' command 1769 * instead of reinitializing the entire NIC. Doing 1770 * a full re-init means reloading the firmware and 1771 * waiting for it to start up, which may take a 1772 * second or two. 1773 */ 1774 #ifdef notyet 1775 /* No promiscuous mode with Xen */ 1776 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1777 ifp->if_flags & IFF_PROMISC && 1778 !(sc->xn_if_flags & IFF_PROMISC)) { 1779 XN_SETBIT(sc, XN_RX_MODE, 1780 XN_RXMODE_RX_PROMISC); 1781 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1782 !(ifp->if_flags & IFF_PROMISC) && 1783 sc->xn_if_flags & IFF_PROMISC) { 1784 XN_CLRBIT(sc, XN_RX_MODE, 1785 XN_RXMODE_RX_PROMISC); 1786 } else 1787 #endif 1788 xn_ifinit_locked(sc); 1789 } else { 1790 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1791 xn_stop(sc); 1792 } 1793 } 1794 sc->xn_if_flags = ifp->if_flags; 1795 XN_UNLOCK(sc); 1796 error = 0; 1797 break; 1798 case SIOCSIFCAP: 1799 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1800 if (mask & IFCAP_TXCSUM) { 1801 if (IFCAP_TXCSUM & ifp->if_capenable) { 1802 ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4); 1803 ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP 1804 | CSUM_IP | CSUM_TSO); 1805 } else { 1806 ifp->if_capenable |= IFCAP_TXCSUM; 1807 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP 1808 | CSUM_IP); 1809 } 1810 } 1811 if (mask & IFCAP_RXCSUM) { 1812 ifp->if_capenable ^= IFCAP_RXCSUM; 1813 } 1814 #if __FreeBSD_version >= 700000 1815 if (mask & IFCAP_TSO4) { 1816 if (IFCAP_TSO4 & ifp->if_capenable) { 1817 ifp->if_capenable &= ~IFCAP_TSO4; 1818 ifp->if_hwassist &= ~CSUM_TSO; 1819 } else if (IFCAP_TXCSUM & ifp->if_capenable) { 1820 ifp->if_capenable |= IFCAP_TSO4; 1821 ifp->if_hwassist |= CSUM_TSO; 1822 } else { 1823 IPRINTK("Xen requires tx checksum offload" 1824 " be enabled to use TSO\n"); 1825 error = EINVAL; 1826 } 1827 } 1828 if (mask & IFCAP_LRO) { 1829 ifp->if_capenable ^= IFCAP_LRO; 1830 1831 } 1832 #endif 1833 error = 0; 1834 break; 1835 case SIOCADDMULTI: 1836 case SIOCDELMULTI: 1837 #ifdef notyet 1838 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1839 XN_LOCK(sc); 1840 xn_setmulti(sc); 1841 XN_UNLOCK(sc); 1842 error = 0; 1843 } 1844 #endif 1845 /* FALLTHROUGH */ 1846 case SIOCSIFMEDIA: 1847 case SIOCGIFMEDIA: 1848 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1849 break; 1850 default: 1851 error = ether_ioctl(ifp, cmd, data); 1852 } 1853 1854 return (error); 1855 } 1856 1857 static void 1858 xn_stop(struct netfront_info *sc) 1859 { 1860 struct ifnet *ifp; 1861 1862 XN_LOCK_ASSERT(sc); 1863 1864 ifp = sc->xn_ifp; 1865 1866 callout_stop(&sc->xn_stat_ch); 1867 1868 xn_free_rx_ring(sc); 1869 xn_free_tx_ring(sc); 1870 1871 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1872 if_link_state_change(ifp, LINK_STATE_DOWN); 1873 } 1874 1875 /* START of Xenolinux helper functions adapted to FreeBSD */ 1876 int 1877 network_connect(struct netfront_info *np) 1878 { 1879 int i, requeue_idx, error; 1880 grant_ref_t ref; 1881 netif_rx_request_t *req; 1882 u_int feature_rx_copy, feature_rx_flip; 1883 1884 error = xenbus_scanf(XBT_NIL, xenbus_get_otherend_path(np->xbdev), 1885 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1886 if (error) 1887 feature_rx_copy = 0; 1888 error = xenbus_scanf(XBT_NIL, xenbus_get_otherend_path(np->xbdev), 1889 "feature-rx-flip", NULL, "%u", &feature_rx_flip); 1890 if (error) 1891 feature_rx_flip = 1; 1892 1893 /* 1894 * Copy packets on receive path if: 1895 * (a) This was requested by user, and the backend supports it; or 1896 * (b) Flipping was requested, but this is unsupported by the backend. 1897 */ 1898 np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) || 1899 (MODPARM_rx_flip && !feature_rx_flip)); 1900 1901 /* Recovery procedure: */ 1902 error = talk_to_backend(np->xbdev, np); 1903 if (error) 1904 return (error); 1905 1906 /* Step 1: Reinitialise variables. */ 1907 netif_release_tx_bufs(np); 1908 1909 /* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */ 1910 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1911 struct mbuf *m; 1912 u_long pfn; 1913 1914 if (np->rx_mbufs[i] == NULL) 1915 continue; 1916 1917 m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i); 1918 ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i); 1919 1920 req = RING_GET_REQUEST(&np->rx, requeue_idx); 1921 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1922 1923 if (!np->copying_receiver) { 1924 gnttab_grant_foreign_transfer_ref(ref, 1925 xenbus_get_otherend_id(np->xbdev), 1926 pfn); 1927 } else { 1928 gnttab_grant_foreign_access_ref(ref, 1929 xenbus_get_otherend_id(np->xbdev), 1930 PFNTOMFN(pfn), 0); 1931 } 1932 req->gref = ref; 1933 req->id = requeue_idx; 1934 1935 requeue_idx++; 1936 } 1937 1938 np->rx.req_prod_pvt = requeue_idx; 1939 1940 /* Step 3: All public and private state should now be sane. Get 1941 * ready to start sending and receiving packets and give the driver 1942 * domain a kick because we've probably just requeued some 1943 * packets. 1944 */ 1945 netfront_carrier_on(np); 1946 notify_remote_via_irq(np->irq); 1947 XN_TX_LOCK(np); 1948 xn_txeof(np); 1949 XN_TX_UNLOCK(np); 1950 network_alloc_rx_buffers(np); 1951 1952 return (0); 1953 } 1954 1955 static void 1956 show_device(struct netfront_info *sc) 1957 { 1958 #ifdef DEBUG 1959 if (sc) { 1960 IPRINTK("<vif handle=%u %s(%s) evtchn=%u irq=%u tx=%p rx=%p>\n", 1961 sc->xn_ifno, 1962 be_state_name[sc->xn_backend_state], 1963 sc->xn_user_state ? "open" : "closed", 1964 sc->xn_evtchn, 1965 sc->xn_irq, 1966 sc->xn_tx_if, 1967 sc->xn_rx_if); 1968 } else { 1969 IPRINTK("<vif NULL>\n"); 1970 } 1971 #endif 1972 } 1973 1974 /** Create a network device. 1975 * @param handle device handle 1976 */ 1977 int 1978 create_netdev(device_t dev) 1979 { 1980 int i; 1981 struct netfront_info *np; 1982 int err; 1983 struct ifnet *ifp; 1984 1985 np = device_get_softc(dev); 1986 1987 np->xbdev = dev; 1988 1989 XN_LOCK_INIT(np, xennetif); 1990 1991 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 1992 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1993 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 1994 1995 np->rx_target = RX_MIN_TARGET; 1996 np->rx_min_target = RX_MIN_TARGET; 1997 np->rx_max_target = RX_MAX_TARGET; 1998 1999 /* Initialise {tx,rx}_skbs to be a free chain containing every entry. */ 2000 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 2001 np->tx_mbufs[i] = (void *) ((u_long) i+1); 2002 np->grant_tx_ref[i] = GRANT_INVALID_REF; 2003 } 2004 np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0; 2005 2006 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 2007 2008 np->rx_mbufs[i] = NULL; 2009 np->grant_rx_ref[i] = GRANT_INVALID_REF; 2010 } 2011 /* A grant for every tx ring slot */ 2012 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 2013 &np->gref_tx_head) != 0) { 2014 IPRINTK("#### netfront can't alloc tx grant refs\n"); 2015 err = ENOMEM; 2016 goto exit; 2017 } 2018 /* A grant for every rx ring slot */ 2019 if (gnttab_alloc_grant_references(RX_MAX_TARGET, 2020 &np->gref_rx_head) != 0) { 2021 WPRINTK("#### netfront can't alloc rx grant refs\n"); 2022 gnttab_free_grant_references(np->gref_tx_head); 2023 err = ENOMEM; 2024 goto exit; 2025 } 2026 2027 err = xen_net_read_mac(dev, np->mac); 2028 if (err) { 2029 xenbus_dev_fatal(dev, err, "parsing %s/mac", 2030 xenbus_get_node(dev)); 2031 goto out; 2032 } 2033 2034 /* Set up ifnet structure */ 2035 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2036 ifp->if_softc = np; 2037 if_initname(ifp, "xn", device_get_unit(dev)); 2038 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2039 ifp->if_ioctl = xn_ioctl; 2040 ifp->if_output = ether_output; 2041 ifp->if_start = xn_start; 2042 #ifdef notyet 2043 ifp->if_watchdog = xn_watchdog; 2044 #endif 2045 ifp->if_init = xn_ifinit; 2046 ifp->if_mtu = ETHERMTU; 2047 ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1; 2048 2049 ifp->if_hwassist = XN_CSUM_FEATURES; 2050 ifp->if_capabilities = IFCAP_HWCSUM; 2051 #if __FreeBSD_version >= 700000 2052 ifp->if_capabilities |= IFCAP_TSO4; 2053 if (xn_enable_lro) { 2054 int err = tcp_lro_init(&np->xn_lro); 2055 if (err) { 2056 device_printf(dev, "LRO initialization failed\n"); 2057 goto exit; 2058 } 2059 np->xn_lro.ifp = ifp; 2060 ifp->if_capabilities |= IFCAP_LRO; 2061 } 2062 #endif 2063 ifp->if_capenable = ifp->if_capabilities; 2064 2065 ether_ifattach(ifp, np->mac); 2066 callout_init(&np->xn_stat_ch, CALLOUT_MPSAFE); 2067 netfront_carrier_off(np); 2068 2069 return (0); 2070 2071 exit: 2072 gnttab_free_grant_references(np->gref_tx_head); 2073 out: 2074 panic("do something smart"); 2075 2076 } 2077 2078 /** 2079 * Handle the change of state of the backend to Closing. We must delete our 2080 * device-layer structures now, to ensure that writes are flushed through to 2081 * the backend. Once is this done, we can switch to Closed in 2082 * acknowledgement. 2083 */ 2084 #if 0 2085 static void 2086 netfront_closing(device_t dev) 2087 { 2088 #if 0 2089 struct netfront_info *info = dev->dev_driver_data; 2090 2091 DPRINTK("netfront_closing: %s removed\n", dev->nodename); 2092 2093 close_netdev(info); 2094 #endif 2095 xenbus_switch_state(dev, XenbusStateClosed); 2096 } 2097 #endif 2098 2099 static int 2100 netfront_detach(device_t dev) 2101 { 2102 struct netfront_info *info = device_get_softc(dev); 2103 2104 DPRINTK("%s\n", xenbus_get_node(dev)); 2105 2106 netif_free(info); 2107 2108 return 0; 2109 } 2110 2111 static void 2112 netif_free(struct netfront_info *info) 2113 { 2114 netif_disconnect_backend(info); 2115 #if 0 2116 close_netdev(info); 2117 #endif 2118 } 2119 2120 static void 2121 netif_disconnect_backend(struct netfront_info *info) 2122 { 2123 XN_RX_LOCK(info); 2124 XN_TX_LOCK(info); 2125 netfront_carrier_off(info); 2126 XN_TX_UNLOCK(info); 2127 XN_RX_UNLOCK(info); 2128 2129 end_access(info->tx_ring_ref, info->tx.sring); 2130 end_access(info->rx_ring_ref, info->rx.sring); 2131 info->tx_ring_ref = GRANT_INVALID_REF; 2132 info->rx_ring_ref = GRANT_INVALID_REF; 2133 info->tx.sring = NULL; 2134 info->rx.sring = NULL; 2135 2136 if (info->irq) 2137 unbind_from_irqhandler(info->irq); 2138 2139 info->irq = 0; 2140 } 2141 2142 2143 static void 2144 end_access(int ref, void *page) 2145 { 2146 if (ref != GRANT_INVALID_REF) 2147 gnttab_end_foreign_access(ref, page); 2148 } 2149 2150 static int 2151 xn_ifmedia_upd(struct ifnet *ifp) 2152 { 2153 return (0); 2154 } 2155 2156 static void 2157 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2158 { 2159 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2160 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2161 } 2162 2163 /* ** Driver registration ** */ 2164 static device_method_t netfront_methods[] = { 2165 /* Device interface */ 2166 DEVMETHOD(device_probe, netfront_probe), 2167 DEVMETHOD(device_attach, netfront_attach), 2168 DEVMETHOD(device_detach, netfront_detach), 2169 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2170 DEVMETHOD(device_suspend, bus_generic_suspend), 2171 DEVMETHOD(device_resume, netfront_resume), 2172 2173 /* Xenbus interface */ 2174 DEVMETHOD(xenbus_backend_changed, netfront_backend_changed), 2175 2176 { 0, 0 } 2177 }; 2178 2179 static driver_t netfront_driver = { 2180 "xn", 2181 netfront_methods, 2182 sizeof(struct netfront_info), 2183 }; 2184 devclass_t netfront_devclass; 2185 2186 DRIVER_MODULE(xe, xenbus, netfront_driver, netfront_devclass, 0, 0); 2187