xref: /freebsd/sys/dev/xen/netfront/netfront.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*-
2  * Copyright (c) 2004-2006 Kip Macy
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/sockio.h>
36 #include <sys/mbuf.h>
37 #include <sys/malloc.h>
38 #include <sys/module.h>
39 #include <sys/kernel.h>
40 #include <sys/socket.h>
41 #include <sys/sysctl.h>
42 #include <sys/queue.h>
43 #include <sys/lock.h>
44 #include <sys/sx.h>
45 
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 
52 #include <net/bpf.h>
53 
54 #include <net/if_types.h>
55 #include <net/if.h>
56 
57 #include <netinet/in_systm.h>
58 #include <netinet/in.h>
59 #include <netinet/ip.h>
60 #include <netinet/if_ether.h>
61 #if __FreeBSD_version >= 700000
62 #include <netinet/tcp.h>
63 #include <netinet/tcp_lro.h>
64 #endif
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 
69 #include <machine/clock.h>      /* for DELAY */
70 #include <machine/bus.h>
71 #include <machine/resource.h>
72 #include <machine/frame.h>
73 #include <machine/vmparam.h>
74 
75 #include <sys/bus.h>
76 #include <sys/rman.h>
77 
78 #include <machine/intr_machdep.h>
79 
80 #include <machine/xen/xen-os.h>
81 #include <machine/xen/xenfunc.h>
82 #include <machine/xen/xenvar.h>
83 #include <xen/hypervisor.h>
84 #include <xen/xen_intr.h>
85 #include <xen/evtchn.h>
86 #include <xen/gnttab.h>
87 #include <xen/interface/memory.h>
88 #include <xen/interface/io/netif.h>
89 #include <xen/xenbus/xenbusvar.h>
90 
91 #include <dev/xen/netfront/mbufq.h>
92 
93 #include "xenbus_if.h"
94 
95 /* Features supported by all backends.  TSO and LRO can be negotiated */
96 #define XN_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
97 
98 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
99 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
100 
101 #if __FreeBSD_version >= 700000
102 /*
103  * Should the driver do LRO on the RX end
104  *  this can be toggled on the fly, but the
105  *  interface must be reset (down/up) for it
106  *  to take effect.
107  */
108 static int xn_enable_lro = 1;
109 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro);
110 #else
111 
112 #define IFCAP_TSO4	0
113 #define CSUM_TSO	0
114 
115 #endif
116 
117 #ifdef CONFIG_XEN
118 static int MODPARM_rx_copy = 0;
119 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0);
120 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)");
121 static int MODPARM_rx_flip = 0;
122 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0);
123 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)");
124 #else
125 static const int MODPARM_rx_copy = 1;
126 static const int MODPARM_rx_flip = 0;
127 #endif
128 
129 /**
130  * \brief The maximum allowed data fragments in a single transmit
131  *        request.
132  *
133  * This limit is imposed by the backend driver.  We assume here that
134  * we are dealing with a Linux driver domain and have set our limit
135  * to mirror the Linux MAX_SKB_FRAGS constant.
136  */
137 #define	MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2)
138 
139 #define RX_COPY_THRESHOLD 256
140 
141 #define net_ratelimit() 0
142 
143 struct netfront_info;
144 struct netfront_rx_info;
145 
146 static void xn_txeof(struct netfront_info *);
147 static void xn_rxeof(struct netfront_info *);
148 static void network_alloc_rx_buffers(struct netfront_info *);
149 
150 static void xn_tick_locked(struct netfront_info *);
151 static void xn_tick(void *);
152 
153 static void xn_intr(void *);
154 static inline int xn_count_frags(struct mbuf *m);
155 static int  xn_assemble_tx_request(struct netfront_info *sc,
156 				   struct mbuf *m_head);
157 static void xn_start_locked(struct ifnet *);
158 static void xn_start(struct ifnet *);
159 static int  xn_ioctl(struct ifnet *, u_long, caddr_t);
160 static void xn_ifinit_locked(struct netfront_info *);
161 static void xn_ifinit(void *);
162 static void xn_stop(struct netfront_info *);
163 static void xn_query_features(struct netfront_info *np);
164 static int  xn_configure_features(struct netfront_info *np);
165 #ifdef notyet
166 static void xn_watchdog(struct ifnet *);
167 #endif
168 
169 static void show_device(struct netfront_info *sc);
170 #ifdef notyet
171 static void netfront_closing(device_t dev);
172 #endif
173 static void netif_free(struct netfront_info *info);
174 static int netfront_detach(device_t dev);
175 
176 static int talk_to_backend(device_t dev, struct netfront_info *info);
177 static int create_netdev(device_t dev);
178 static void netif_disconnect_backend(struct netfront_info *info);
179 static int setup_device(device_t dev, struct netfront_info *info);
180 static void free_ring(int *ref, void *ring_ptr_ref);
181 
182 static int  xn_ifmedia_upd(struct ifnet *ifp);
183 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
184 
185 /* Xenolinux helper functions */
186 int network_connect(struct netfront_info *);
187 
188 static void xn_free_rx_ring(struct netfront_info *);
189 
190 static void xn_free_tx_ring(struct netfront_info *);
191 
192 static int xennet_get_responses(struct netfront_info *np,
193 	struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
194 	struct mbuf **list, int *pages_flipped_p);
195 
196 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
197 
198 #define INVALID_P2M_ENTRY (~0UL)
199 
200 /*
201  * Mbuf pointers. We need these to keep track of the virtual addresses
202  * of our mbuf chains since we can only convert from virtual to physical,
203  * not the other way around.  The size must track the free index arrays.
204  */
205 struct xn_chain_data {
206 	struct mbuf    *xn_tx_chain[NET_TX_RING_SIZE+1];
207 	int		xn_tx_chain_cnt;
208 	struct mbuf    *xn_rx_chain[NET_RX_RING_SIZE+1];
209 };
210 
211 #define NUM_ELEMENTS(x) (sizeof(x)/sizeof(*x))
212 
213 struct net_device_stats
214 {
215 	u_long	rx_packets;		/* total packets received	*/
216 	u_long	tx_packets;		/* total packets transmitted	*/
217 	u_long	rx_bytes;		/* total bytes received 	*/
218 	u_long	tx_bytes;		/* total bytes transmitted	*/
219 	u_long	rx_errors;		/* bad packets received		*/
220 	u_long	tx_errors;		/* packet transmit problems	*/
221 	u_long	rx_dropped;		/* no space in linux buffers	*/
222 	u_long	tx_dropped;		/* no space available in linux	*/
223 	u_long	multicast;		/* multicast packets received	*/
224 	u_long	collisions;
225 
226 	/* detailed rx_errors: */
227 	u_long	rx_length_errors;
228 	u_long	rx_over_errors;		/* receiver ring buff overflow	*/
229 	u_long	rx_crc_errors;		/* recved pkt with crc error	*/
230 	u_long	rx_frame_errors;	/* recv'd frame alignment error */
231 	u_long	rx_fifo_errors;		/* recv'r fifo overrun		*/
232 	u_long	rx_missed_errors;	/* receiver missed packet	*/
233 
234 	/* detailed tx_errors */
235 	u_long	tx_aborted_errors;
236 	u_long	tx_carrier_errors;
237 	u_long	tx_fifo_errors;
238 	u_long	tx_heartbeat_errors;
239 	u_long	tx_window_errors;
240 
241 	/* for cslip etc */
242 	u_long	rx_compressed;
243 	u_long	tx_compressed;
244 };
245 
246 struct netfront_info {
247 
248 	struct ifnet *xn_ifp;
249 #if __FreeBSD_version >= 700000
250 	struct lro_ctrl xn_lro;
251 #endif
252 
253 	struct net_device_stats stats;
254 	u_int tx_full;
255 
256 	netif_tx_front_ring_t tx;
257 	netif_rx_front_ring_t rx;
258 
259 	struct mtx   tx_lock;
260 	struct mtx   rx_lock;
261 	struct mtx   sc_lock;
262 
263 	u_int handle;
264 	u_int irq;
265 	u_int copying_receiver;
266 	u_int carrier;
267 	u_int maxfrags;
268 
269 	/* Receive-ring batched refills. */
270 #define RX_MIN_TARGET 32
271 #define RX_MAX_TARGET NET_RX_RING_SIZE
272 	int rx_min_target;
273 	int rx_max_target;
274 	int rx_target;
275 
276 	grant_ref_t gref_tx_head;
277 	grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1];
278 	grant_ref_t gref_rx_head;
279 	grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1];
280 
281 	device_t		xbdev;
282 	int			tx_ring_ref;
283 	int			rx_ring_ref;
284 	uint8_t			mac[ETHER_ADDR_LEN];
285 	struct xn_chain_data	xn_cdata;	/* mbufs */
286 	struct mbuf_head	xn_rx_batch;	/* head of the batch queue */
287 
288 	int			xn_if_flags;
289 	struct callout	        xn_stat_ch;
290 
291 	u_long			rx_pfn_array[NET_RX_RING_SIZE];
292 	multicall_entry_t	rx_mcl[NET_RX_RING_SIZE+1];
293 	mmu_update_t		rx_mmu[NET_RX_RING_SIZE];
294 	struct ifmedia		sc_media;
295 };
296 
297 #define rx_mbufs xn_cdata.xn_rx_chain
298 #define tx_mbufs xn_cdata.xn_tx_chain
299 
300 #define XN_LOCK_INIT(_sc, _name) \
301         mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \
302         mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF);  \
303         mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF)
304 
305 #define XN_RX_LOCK(_sc)           mtx_lock(&(_sc)->rx_lock)
306 #define XN_RX_UNLOCK(_sc)         mtx_unlock(&(_sc)->rx_lock)
307 
308 #define XN_TX_LOCK(_sc)           mtx_lock(&(_sc)->tx_lock)
309 #define XN_TX_UNLOCK(_sc)         mtx_unlock(&(_sc)->tx_lock)
310 
311 #define XN_LOCK(_sc)           mtx_lock(&(_sc)->sc_lock);
312 #define XN_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_lock);
313 
314 #define XN_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sc_lock, MA_OWNED);
315 #define XN_RX_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->rx_lock, MA_OWNED);
316 #define XN_TX_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->tx_lock, MA_OWNED);
317 #define XN_LOCK_DESTROY(_sc)   mtx_destroy(&(_sc)->rx_lock); \
318                                mtx_destroy(&(_sc)->tx_lock); \
319                                mtx_destroy(&(_sc)->sc_lock);
320 
321 struct netfront_rx_info {
322 	struct netif_rx_response rx;
323 	struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
324 };
325 
326 #define netfront_carrier_on(netif)	((netif)->carrier = 1)
327 #define netfront_carrier_off(netif)	((netif)->carrier = 0)
328 #define netfront_carrier_ok(netif)	((netif)->carrier)
329 
330 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */
331 
332 
333 
334 /*
335  * Access macros for acquiring freeing slots in tx_skbs[].
336  */
337 
338 static inline void
339 add_id_to_freelist(struct mbuf **list, uintptr_t id)
340 {
341 	KASSERT(id != 0,
342 		("%s: the head item (0) must always be free.", __func__));
343 	list[id] = list[0];
344 	list[0]  = (struct mbuf *)id;
345 }
346 
347 static inline unsigned short
348 get_id_from_freelist(struct mbuf **list)
349 {
350 	uintptr_t id;
351 
352 	id = (uintptr_t)list[0];
353 	KASSERT(id != 0,
354 		("%s: the head item (0) must always remain free.", __func__));
355 	list[0] = list[id];
356 	return (id);
357 }
358 
359 static inline int
360 xennet_rxidx(RING_IDX idx)
361 {
362 	return idx & (NET_RX_RING_SIZE - 1);
363 }
364 
365 static inline struct mbuf *
366 xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri)
367 {
368 	int i = xennet_rxidx(ri);
369 	struct mbuf *m;
370 
371 	m = np->rx_mbufs[i];
372 	np->rx_mbufs[i] = NULL;
373 	return (m);
374 }
375 
376 static inline grant_ref_t
377 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri)
378 {
379 	int i = xennet_rxidx(ri);
380 	grant_ref_t ref = np->grant_rx_ref[i];
381 	KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n"));
382 	np->grant_rx_ref[i] = GRANT_REF_INVALID;
383 	return ref;
384 }
385 
386 #define IPRINTK(fmt, args...) \
387     printf("[XEN] " fmt, ##args)
388 #ifdef INVARIANTS
389 #define WPRINTK(fmt, args...) \
390     printf("[XEN] " fmt, ##args)
391 #else
392 #define WPRINTK(fmt, args...)
393 #endif
394 #ifdef DEBUG
395 #define DPRINTK(fmt, args...) \
396     printf("[XEN] %s: " fmt, __func__, ##args)
397 #else
398 #define DPRINTK(fmt, args...)
399 #endif
400 
401 /**
402  * Read the 'mac' node at the given device's node in the store, and parse that
403  * as colon-separated octets, placing result the given mac array.  mac must be
404  * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h).
405  * Return 0 on success, or errno on error.
406  */
407 static int
408 xen_net_read_mac(device_t dev, uint8_t mac[])
409 {
410 	int error, i;
411 	char *s, *e, *macstr;
412 	const char *path;
413 
414 	path = xenbus_get_node(dev);
415 	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
416 	if (error == ENOENT) {
417 		/*
418 		 * Deal with missing mac XenStore nodes on devices with
419 		 * HVM emulation (the 'ioemu' configuration attribute)
420 		 * enabled.
421 		 *
422 		 * The HVM emulator may execute in a stub device model
423 		 * domain which lacks the permission, only given to Dom0,
424 		 * to update the guest's XenStore tree.  For this reason,
425 		 * the HVM emulator doesn't even attempt to write the
426 		 * front-side mac node, even when operating in Dom0.
427 		 * However, there should always be a mac listed in the
428 		 * backend tree.  Fallback to this version if our query
429 		 * of the front side XenStore location doesn't find
430 		 * anything.
431 		 */
432 		path = xenbus_get_otherend_path(dev);
433 		error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
434 	}
435 	if (error != 0) {
436 		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
437 		return (error);
438 	}
439 
440 	s = macstr;
441 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
442 		mac[i] = strtoul(s, &e, 16);
443 		if (s == e || (e[0] != ':' && e[0] != 0)) {
444 			free(macstr, M_XENBUS);
445 			return (ENOENT);
446 		}
447 		s = &e[1];
448 	}
449 	free(macstr, M_XENBUS);
450 	return (0);
451 }
452 
453 /**
454  * Entry point to this code when a new device is created.  Allocate the basic
455  * structures and the ring buffers for communication with the backend, and
456  * inform the backend of the appropriate details for those.  Switch to
457  * Connected state.
458  */
459 static int
460 netfront_probe(device_t dev)
461 {
462 
463 	if (!strcmp(xenbus_get_type(dev), "vif")) {
464 		device_set_desc(dev, "Virtual Network Interface");
465 		return (0);
466 	}
467 
468 	return (ENXIO);
469 }
470 
471 static int
472 netfront_attach(device_t dev)
473 {
474 	int err;
475 
476 	err = create_netdev(dev);
477 	if (err) {
478 		xenbus_dev_fatal(dev, err, "creating netdev");
479 		return (err);
480 	}
481 
482 #if __FreeBSD_version >= 700000
483 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
484 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
485 	    OID_AUTO, "enable_lro", CTLTYPE_INT|CTLFLAG_RW,
486 	    &xn_enable_lro, 0, "Large Receive Offload");
487 #endif
488 
489 	return (0);
490 }
491 
492 static int
493 netfront_suspend(device_t dev)
494 {
495 	struct netfront_info *info = device_get_softc(dev);
496 
497 	XN_RX_LOCK(info);
498 	XN_TX_LOCK(info);
499 	netfront_carrier_off(info);
500 	XN_TX_UNLOCK(info);
501 	XN_RX_UNLOCK(info);
502 	return (0);
503 }
504 
505 /**
506  * We are reconnecting to the backend, due to a suspend/resume, or a backend
507  * driver restart.  We tear down our netif structure and recreate it, but
508  * leave the device-layer structures intact so that this is transparent to the
509  * rest of the kernel.
510  */
511 static int
512 netfront_resume(device_t dev)
513 {
514 	struct netfront_info *info = device_get_softc(dev);
515 
516 	netif_disconnect_backend(info);
517 	return (0);
518 }
519 
520 
521 /* Common code used when first setting up, and when resuming. */
522 static int
523 talk_to_backend(device_t dev, struct netfront_info *info)
524 {
525 	const char *message;
526 	struct xs_transaction xst;
527 	const char *node = xenbus_get_node(dev);
528 	int err;
529 
530 	err = xen_net_read_mac(dev, info->mac);
531 	if (err) {
532 		xenbus_dev_fatal(dev, err, "parsing %s/mac", node);
533 		goto out;
534 	}
535 
536 	/* Create shared ring, alloc event channel. */
537 	err = setup_device(dev, info);
538 	if (err)
539 		goto out;
540 
541  again:
542 	err = xs_transaction_start(&xst);
543 	if (err) {
544 		xenbus_dev_fatal(dev, err, "starting transaction");
545 		goto destroy_ring;
546 	}
547 	err = xs_printf(xst, node, "tx-ring-ref","%u",
548 			info->tx_ring_ref);
549 	if (err) {
550 		message = "writing tx ring-ref";
551 		goto abort_transaction;
552 	}
553 	err = xs_printf(xst, node, "rx-ring-ref","%u",
554 			info->rx_ring_ref);
555 	if (err) {
556 		message = "writing rx ring-ref";
557 		goto abort_transaction;
558 	}
559 	err = xs_printf(xst, node,
560 			"event-channel", "%u", irq_to_evtchn_port(info->irq));
561 	if (err) {
562 		message = "writing event-channel";
563 		goto abort_transaction;
564 	}
565 	err = xs_printf(xst, node, "request-rx-copy", "%u",
566 			info->copying_receiver);
567 	if (err) {
568 		message = "writing request-rx-copy";
569 		goto abort_transaction;
570 	}
571 	err = xs_printf(xst, node, "feature-rx-notify", "%d", 1);
572 	if (err) {
573 		message = "writing feature-rx-notify";
574 		goto abort_transaction;
575 	}
576 	err = xs_printf(xst, node, "feature-sg", "%d", 1);
577 	if (err) {
578 		message = "writing feature-sg";
579 		goto abort_transaction;
580 	}
581 #if __FreeBSD_version >= 700000
582 	err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1);
583 	if (err) {
584 		message = "writing feature-gso-tcpv4";
585 		goto abort_transaction;
586 	}
587 #endif
588 
589 	err = xs_transaction_end(xst, 0);
590 	if (err) {
591 		if (err == EAGAIN)
592 			goto again;
593 		xenbus_dev_fatal(dev, err, "completing transaction");
594 		goto destroy_ring;
595 	}
596 
597 	return 0;
598 
599  abort_transaction:
600 	xs_transaction_end(xst, 1);
601 	xenbus_dev_fatal(dev, err, "%s", message);
602  destroy_ring:
603 	netif_free(info);
604  out:
605 	return err;
606 }
607 
608 
609 static int
610 setup_device(device_t dev, struct netfront_info *info)
611 {
612 	netif_tx_sring_t *txs;
613 	netif_rx_sring_t *rxs;
614 	int error;
615 	struct ifnet *ifp;
616 
617 	ifp = info->xn_ifp;
618 
619 	info->tx_ring_ref = GRANT_REF_INVALID;
620 	info->rx_ring_ref = GRANT_REF_INVALID;
621 	info->rx.sring = NULL;
622 	info->tx.sring = NULL;
623 	info->irq = 0;
624 
625 	txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO);
626 	if (!txs) {
627 		error = ENOMEM;
628 		xenbus_dev_fatal(dev, error, "allocating tx ring page");
629 		goto fail;
630 	}
631 	SHARED_RING_INIT(txs);
632 	FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE);
633 	error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref);
634 	if (error)
635 		goto fail;
636 
637 	rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO);
638 	if (!rxs) {
639 		error = ENOMEM;
640 		xenbus_dev_fatal(dev, error, "allocating rx ring page");
641 		goto fail;
642 	}
643 	SHARED_RING_INIT(rxs);
644 	FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE);
645 
646 	error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref);
647 	if (error)
648 		goto fail;
649 
650 	error = bind_listening_port_to_irqhandler(xenbus_get_otherend_id(dev),
651 	    "xn", xn_intr, info, INTR_TYPE_NET | INTR_MPSAFE, &info->irq);
652 
653 	if (error) {
654 		xenbus_dev_fatal(dev, error,
655 				 "bind_evtchn_to_irqhandler failed");
656 		goto fail;
657 	}
658 
659 	show_device(info);
660 
661 	return (0);
662 
663  fail:
664 	netif_free(info);
665 	return (error);
666 }
667 
668 #ifdef INET
669 /**
670  * If this interface has an ipv4 address, send an arp for it. This
671  * helps to get the network going again after migrating hosts.
672  */
673 static void
674 netfront_send_fake_arp(device_t dev, struct netfront_info *info)
675 {
676 	struct ifnet *ifp;
677 	struct ifaddr *ifa;
678 
679 	ifp = info->xn_ifp;
680 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
681 		if (ifa->ifa_addr->sa_family == AF_INET) {
682 			arp_ifinit(ifp, ifa);
683 		}
684 	}
685 }
686 #endif
687 
688 /**
689  * Callback received when the backend's state changes.
690  */
691 static void
692 netfront_backend_changed(device_t dev, XenbusState newstate)
693 {
694 	struct netfront_info *sc = device_get_softc(dev);
695 
696 	DPRINTK("newstate=%d\n", newstate);
697 
698 	switch (newstate) {
699 	case XenbusStateInitialising:
700 	case XenbusStateInitialised:
701 	case XenbusStateConnected:
702 	case XenbusStateUnknown:
703 	case XenbusStateClosed:
704 	case XenbusStateReconfigured:
705 	case XenbusStateReconfiguring:
706 		break;
707 	case XenbusStateInitWait:
708 		if (xenbus_get_state(dev) != XenbusStateInitialising)
709 			break;
710 		if (network_connect(sc) != 0)
711 			break;
712 		xenbus_set_state(dev, XenbusStateConnected);
713 #ifdef INET
714 		netfront_send_fake_arp(dev, sc);
715 #endif
716 		break;
717 	case XenbusStateClosing:
718 		xenbus_set_state(dev, XenbusStateClosed);
719 		break;
720 	}
721 }
722 
723 static void
724 xn_free_rx_ring(struct netfront_info *sc)
725 {
726 #if 0
727 	int i;
728 
729 	for (i = 0; i < NET_RX_RING_SIZE; i++) {
730 		if (sc->xn_cdata.rx_mbufs[i] != NULL) {
731 			m_freem(sc->rx_mbufs[i]);
732 			sc->rx_mbufs[i] = NULL;
733 		}
734 	}
735 
736 	sc->rx.rsp_cons = 0;
737 	sc->xn_rx_if->req_prod = 0;
738 	sc->xn_rx_if->event = sc->rx.rsp_cons ;
739 #endif
740 }
741 
742 static void
743 xn_free_tx_ring(struct netfront_info *sc)
744 {
745 #if 0
746 	int i;
747 
748 	for (i = 0; i < NET_TX_RING_SIZE; i++) {
749 		if (sc->tx_mbufs[i] != NULL) {
750 			m_freem(sc->tx_mbufs[i]);
751 			sc->xn_cdata.xn_tx_chain[i] = NULL;
752 		}
753 	}
754 
755 	return;
756 #endif
757 }
758 
759 /**
760  * \brief Verify that there is sufficient space in the Tx ring
761  *        buffer for a maximally sized request to be enqueued.
762  *
763  * A transmit request requires a transmit descriptor for each packet
764  * fragment, plus up to 2 entries for "options" (e.g. TSO).
765  */
766 static inline int
767 xn_tx_slot_available(struct netfront_info *np)
768 {
769 	return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2));
770 }
771 
772 static void
773 netif_release_tx_bufs(struct netfront_info *np)
774 {
775 	int i;
776 
777 	for (i = 1; i <= NET_TX_RING_SIZE; i++) {
778 		struct mbuf *m;
779 
780 		m = np->tx_mbufs[i];
781 
782 		/*
783 		 * We assume that no kernel addresses are
784 		 * less than NET_TX_RING_SIZE.  Any entry
785 		 * in the table that is below this number
786 		 * must be an index from free-list tracking.
787 		 */
788 		if (((uintptr_t)m) <= NET_TX_RING_SIZE)
789 			continue;
790 		gnttab_end_foreign_access_ref(np->grant_tx_ref[i]);
791 		gnttab_release_grant_reference(&np->gref_tx_head,
792 		    np->grant_tx_ref[i]);
793 		np->grant_tx_ref[i] = GRANT_REF_INVALID;
794 		add_id_to_freelist(np->tx_mbufs, i);
795 		np->xn_cdata.xn_tx_chain_cnt--;
796 		if (np->xn_cdata.xn_tx_chain_cnt < 0) {
797 			panic("netif_release_tx_bufs: tx_chain_cnt must be >= 0");
798 		}
799 		m_free(m);
800 	}
801 }
802 
803 static void
804 network_alloc_rx_buffers(struct netfront_info *sc)
805 {
806 	int otherend_id = xenbus_get_otherend_id(sc->xbdev);
807 	unsigned short id;
808 	struct mbuf *m_new;
809 	int i, batch_target, notify;
810 	RING_IDX req_prod;
811 	struct xen_memory_reservation reservation;
812 	grant_ref_t ref;
813 	int nr_flips;
814 	netif_rx_request_t *req;
815 	vm_offset_t vaddr;
816 	u_long pfn;
817 
818 	req_prod = sc->rx.req_prod_pvt;
819 
820 	if (unlikely(sc->carrier == 0))
821 		return;
822 
823 	/*
824 	 * Allocate mbufs greedily, even though we batch updates to the
825 	 * receive ring. This creates a less bursty demand on the memory
826 	 * allocator, and so should reduce the chance of failed allocation
827 	 * requests both for ourself and for other kernel subsystems.
828 	 *
829 	 * Here we attempt to maintain rx_target buffers in flight, counting
830 	 * buffers that we have yet to process in the receive ring.
831 	 */
832 	batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons);
833 	for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) {
834 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
835 		if (m_new == NULL) {
836 			printf("%s: MGETHDR failed\n", __func__);
837 			goto no_mbuf;
838 		}
839 
840 		m_cljget(m_new, M_DONTWAIT, MJUMPAGESIZE);
841 		if ((m_new->m_flags & M_EXT) == 0) {
842 			printf("%s: m_cljget failed\n", __func__);
843 			m_freem(m_new);
844 
845 no_mbuf:
846 			if (i != 0)
847 				goto refill;
848 			/*
849 			 * XXX set timer
850 			 */
851 			break;
852 		}
853 		m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE;
854 
855 		/* queue the mbufs allocated */
856 		mbufq_tail(&sc->xn_rx_batch, m_new);
857 	}
858 
859 	/*
860 	 * If we've allocated at least half of our target number of entries,
861 	 * submit them to the backend - we have enough to make the overhead
862 	 * of submission worthwhile.  Otherwise wait for more mbufs and
863 	 * request entries to become available.
864 	 */
865 	if (i < (sc->rx_target/2)) {
866 		if (req_prod >sc->rx.sring->req_prod)
867 			goto push;
868 		return;
869 	}
870 
871 	/*
872 	 * Double floating fill target if we risked having the backend
873 	 * run out of empty buffers for receive traffic.  We define "running
874 	 * low" as having less than a fourth of our target buffers free
875 	 * at the time we refilled the queue.
876 	 */
877 	if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) {
878 		sc->rx_target *= 2;
879 		if (sc->rx_target > sc->rx_max_target)
880 			sc->rx_target = sc->rx_max_target;
881 	}
882 
883 refill:
884 	for (nr_flips = i = 0; ; i++) {
885 		if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL)
886 			break;
887 
888 		m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)(
889 				vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT);
890 
891 		id = xennet_rxidx(req_prod + i);
892 
893 		KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain"));
894 		sc->rx_mbufs[id] = m_new;
895 
896 		ref = gnttab_claim_grant_reference(&sc->gref_rx_head);
897 		KASSERT(ref != GNTTAB_LIST_END,
898 			("reserved grant references exhuasted"));
899 		sc->grant_rx_ref[id] = ref;
900 
901 		vaddr = mtod(m_new, vm_offset_t);
902 		pfn = vtophys(vaddr) >> PAGE_SHIFT;
903 		req = RING_GET_REQUEST(&sc->rx, req_prod + i);
904 
905 		if (sc->copying_receiver == 0) {
906 			gnttab_grant_foreign_transfer_ref(ref,
907 			    otherend_id, pfn);
908 			sc->rx_pfn_array[nr_flips] = PFNTOMFN(pfn);
909 			if (!xen_feature(XENFEAT_auto_translated_physmap)) {
910 				/* Remove this page before passing
911 				 * back to Xen.
912 				 */
913 				set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
914 				MULTI_update_va_mapping(&sc->rx_mcl[i],
915 				    vaddr, 0, 0);
916 			}
917 			nr_flips++;
918 		} else {
919 			gnttab_grant_foreign_access_ref(ref,
920 			    otherend_id,
921 			    PFNTOMFN(pfn), 0);
922 		}
923 		req->id = id;
924 		req->gref = ref;
925 
926 		sc->rx_pfn_array[i] =
927 		    vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT;
928 	}
929 
930 	KASSERT(i, ("no mbufs processed")); /* should have returned earlier */
931 	KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed"));
932 	/*
933 	 * We may have allocated buffers which have entries outstanding
934 	 * in the page * update queue -- make sure we flush those first!
935 	 */
936 	PT_UPDATES_FLUSH();
937 	if (nr_flips != 0) {
938 #ifdef notyet
939 		/* Tell the ballon driver what is going on. */
940 		balloon_update_driver_allowance(i);
941 #endif
942 		set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array);
943 		reservation.nr_extents   = i;
944 		reservation.extent_order = 0;
945 		reservation.address_bits = 0;
946 		reservation.domid        = DOMID_SELF;
947 
948 		if (!xen_feature(XENFEAT_auto_translated_physmap)) {
949 
950 			/* After all PTEs have been zapped, flush the TLB. */
951 			sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] =
952 			    UVMF_TLB_FLUSH|UVMF_ALL;
953 
954 			/* Give away a batch of pages. */
955 			sc->rx_mcl[i].op = __HYPERVISOR_memory_op;
956 			sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation;
957 			sc->rx_mcl[i].args[1] =  (u_long)&reservation;
958 			/* Zap PTEs and give away pages in one big multicall. */
959 			(void)HYPERVISOR_multicall(sc->rx_mcl, i+1);
960 
961 			/* Check return status of HYPERVISOR_dom_mem_op(). */
962 			if (unlikely(sc->rx_mcl[i].result != i))
963 				panic("Unable to reduce memory reservation\n");
964 			} else {
965 				if (HYPERVISOR_memory_op(
966 				    XENMEM_decrease_reservation, &reservation)
967 				    != i)
968 					panic("Unable to reduce memory "
969 					    "reservation\n");
970 		}
971 	} else {
972 		wmb();
973 	}
974 
975 	/* Above is a suitable barrier to ensure backend will see requests. */
976 	sc->rx.req_prod_pvt = req_prod + i;
977 push:
978 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify);
979 	if (notify)
980 		notify_remote_via_irq(sc->irq);
981 }
982 
983 static void
984 xn_rxeof(struct netfront_info *np)
985 {
986 	struct ifnet *ifp;
987 #if __FreeBSD_version >= 700000
988 	struct lro_ctrl *lro = &np->xn_lro;
989 	struct lro_entry *queued;
990 #endif
991 	struct netfront_rx_info rinfo;
992 	struct netif_rx_response *rx = &rinfo.rx;
993 	struct netif_extra_info *extras = rinfo.extras;
994 	RING_IDX i, rp;
995 	multicall_entry_t *mcl;
996 	struct mbuf *m;
997 	struct mbuf_head rxq, errq;
998 	int err, pages_flipped = 0, work_to_do;
999 
1000 	do {
1001 		XN_RX_LOCK_ASSERT(np);
1002 		if (!netfront_carrier_ok(np))
1003 			return;
1004 
1005 		mbufq_init(&errq);
1006 		mbufq_init(&rxq);
1007 
1008 		ifp = np->xn_ifp;
1009 
1010 		rp = np->rx.sring->rsp_prod;
1011 		rmb();	/* Ensure we see queued responses up to 'rp'. */
1012 
1013 		i = np->rx.rsp_cons;
1014 		while ((i != rp)) {
1015 			memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx));
1016 			memset(extras, 0, sizeof(rinfo.extras));
1017 
1018 			m = NULL;
1019 			err = xennet_get_responses(np, &rinfo, rp, &i, &m,
1020 			    &pages_flipped);
1021 
1022 			if (unlikely(err)) {
1023 				if (m)
1024 					mbufq_tail(&errq, m);
1025 				np->stats.rx_errors++;
1026 				continue;
1027 			}
1028 
1029 			m->m_pkthdr.rcvif = ifp;
1030 			if ( rx->flags & NETRXF_data_validated ) {
1031 				/* Tell the stack the checksums are okay */
1032 				/*
1033 				 * XXX this isn't necessarily the case - need to add
1034 				 * check
1035 				 */
1036 
1037 				m->m_pkthdr.csum_flags |=
1038 					(CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID
1039 					    | CSUM_PSEUDO_HDR);
1040 				m->m_pkthdr.csum_data = 0xffff;
1041 			}
1042 
1043 			np->stats.rx_packets++;
1044 			np->stats.rx_bytes += m->m_pkthdr.len;
1045 
1046 			mbufq_tail(&rxq, m);
1047 			np->rx.rsp_cons = i;
1048 		}
1049 
1050 		if (pages_flipped) {
1051 			/* Some pages are no longer absent... */
1052 #ifdef notyet
1053 			balloon_update_driver_allowance(-pages_flipped);
1054 #endif
1055 			/* Do all the remapping work, and M->P updates, in one big
1056 			 * hypercall.
1057 			 */
1058 			if (!!xen_feature(XENFEAT_auto_translated_physmap)) {
1059 				mcl = np->rx_mcl + pages_flipped;
1060 				mcl->op = __HYPERVISOR_mmu_update;
1061 				mcl->args[0] = (u_long)np->rx_mmu;
1062 				mcl->args[1] = pages_flipped;
1063 				mcl->args[2] = 0;
1064 				mcl->args[3] = DOMID_SELF;
1065 				(void)HYPERVISOR_multicall(np->rx_mcl,
1066 				    pages_flipped + 1);
1067 			}
1068 		}
1069 
1070 		while ((m = mbufq_dequeue(&errq)))
1071 			m_freem(m);
1072 
1073 		/*
1074 		 * Process all the mbufs after the remapping is complete.
1075 		 * Break the mbuf chain first though.
1076 		 */
1077 		while ((m = mbufq_dequeue(&rxq)) != NULL) {
1078 			ifp->if_ipackets++;
1079 
1080 			/*
1081 			 * Do we really need to drop the rx lock?
1082 			 */
1083 			XN_RX_UNLOCK(np);
1084 #if __FreeBSD_version >= 700000
1085 			/* Use LRO if possible */
1086 			if ((ifp->if_capenable & IFCAP_LRO) == 0 ||
1087 			    lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) {
1088 				/*
1089 				 * If LRO fails, pass up to the stack
1090 				 * directly.
1091 				 */
1092 				(*ifp->if_input)(ifp, m);
1093 			}
1094 #else
1095 			(*ifp->if_input)(ifp, m);
1096 #endif
1097 			XN_RX_LOCK(np);
1098 		}
1099 
1100 		np->rx.rsp_cons = i;
1101 
1102 #if __FreeBSD_version >= 700000
1103 		/*
1104 		 * Flush any outstanding LRO work
1105 		 */
1106 		while (!SLIST_EMPTY(&lro->lro_active)) {
1107 			queued = SLIST_FIRST(&lro->lro_active);
1108 			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1109 			tcp_lro_flush(lro, queued);
1110 		}
1111 #endif
1112 
1113 #if 0
1114 		/* If we get a callback with very few responses, reduce fill target. */
1115 		/* NB. Note exponential increase, linear decrease. */
1116 		if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) >
1117 			((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target))
1118 			np->rx_target = np->rx_min_target;
1119 #endif
1120 
1121 		network_alloc_rx_buffers(np);
1122 
1123 		RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do);
1124 	} while (work_to_do);
1125 }
1126 
1127 static void
1128 xn_txeof(struct netfront_info *np)
1129 {
1130 	RING_IDX i, prod;
1131 	unsigned short id;
1132 	struct ifnet *ifp;
1133 	netif_tx_response_t *txr;
1134 	struct mbuf *m;
1135 
1136 	XN_TX_LOCK_ASSERT(np);
1137 
1138 	if (!netfront_carrier_ok(np))
1139 		return;
1140 
1141 	ifp = np->xn_ifp;
1142 
1143 	do {
1144 		prod = np->tx.sring->rsp_prod;
1145 		rmb(); /* Ensure we see responses up to 'rp'. */
1146 
1147 		for (i = np->tx.rsp_cons; i != prod; i++) {
1148 			txr = RING_GET_RESPONSE(&np->tx, i);
1149 			if (txr->status == NETIF_RSP_NULL)
1150 				continue;
1151 
1152 			if (txr->status != NETIF_RSP_OKAY) {
1153 				printf("%s: WARNING: response is %d!\n",
1154 				       __func__, txr->status);
1155 			}
1156 			id = txr->id;
1157 			m = np->tx_mbufs[id];
1158 			KASSERT(m != NULL, ("mbuf not found in xn_tx_chain"));
1159 			KASSERT((uintptr_t)m > NET_TX_RING_SIZE,
1160 				("mbuf already on the free list, but we're "
1161 				"trying to free it again!"));
1162 			M_ASSERTVALID(m);
1163 
1164 			/*
1165 			 * Increment packet count if this is the last
1166 			 * mbuf of the chain.
1167 			 */
1168 			if (!m->m_next)
1169 				ifp->if_opackets++;
1170 			if (unlikely(gnttab_query_foreign_access(
1171 			    np->grant_tx_ref[id]) != 0)) {
1172 				panic("grant id %u still in use by the backend",
1173 				      id);
1174 			}
1175 			gnttab_end_foreign_access_ref(
1176 				np->grant_tx_ref[id]);
1177 			gnttab_release_grant_reference(
1178 				&np->gref_tx_head, np->grant_tx_ref[id]);
1179 			np->grant_tx_ref[id] = GRANT_REF_INVALID;
1180 
1181 			np->tx_mbufs[id] = NULL;
1182 			add_id_to_freelist(np->tx_mbufs, id);
1183 			np->xn_cdata.xn_tx_chain_cnt--;
1184 			m_free(m);
1185 			/* Only mark the queue active if we've freed up at least one slot to try */
1186 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1187 		}
1188 		np->tx.rsp_cons = prod;
1189 
1190 		/*
1191 		 * Set a new event, then check for race with update of
1192 		 * tx_cons. Note that it is essential to schedule a
1193 		 * callback, no matter how few buffers are pending. Even if
1194 		 * there is space in the transmit ring, higher layers may
1195 		 * be blocked because too much data is outstanding: in such
1196 		 * cases notification from Xen is likely to be the only kick
1197 		 * that we'll get.
1198 		 */
1199 		np->tx.sring->rsp_event =
1200 		    prod + ((np->tx.sring->req_prod - prod) >> 1) + 1;
1201 
1202 		mb();
1203 	} while (prod != np->tx.sring->rsp_prod);
1204 
1205 	if (np->tx_full &&
1206 	    ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) {
1207 		np->tx_full = 0;
1208 #if 0
1209 		if (np->user_state == UST_OPEN)
1210 			netif_wake_queue(dev);
1211 #endif
1212 	}
1213 
1214 }
1215 
1216 static void
1217 xn_intr(void *xsc)
1218 {
1219 	struct netfront_info *np = xsc;
1220 	struct ifnet *ifp = np->xn_ifp;
1221 
1222 #if 0
1223 	if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod &&
1224 	    likely(netfront_carrier_ok(np)) &&
1225 	    ifp->if_drv_flags & IFF_DRV_RUNNING))
1226 		return;
1227 #endif
1228 	if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) {
1229 		XN_TX_LOCK(np);
1230 		xn_txeof(np);
1231 		XN_TX_UNLOCK(np);
1232 	}
1233 
1234 	XN_RX_LOCK(np);
1235 	xn_rxeof(np);
1236 	XN_RX_UNLOCK(np);
1237 
1238 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1239 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1240 		xn_start(ifp);
1241 }
1242 
1243 
1244 static void
1245 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m,
1246 	grant_ref_t ref)
1247 {
1248 	int new = xennet_rxidx(np->rx.req_prod_pvt);
1249 
1250 	KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL"));
1251 	np->rx_mbufs[new] = m;
1252 	np->grant_rx_ref[new] = ref;
1253 	RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new;
1254 	RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref;
1255 	np->rx.req_prod_pvt++;
1256 }
1257 
1258 static int
1259 xennet_get_extras(struct netfront_info *np,
1260     struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons)
1261 {
1262 	struct netif_extra_info *extra;
1263 
1264 	int err = 0;
1265 
1266 	do {
1267 		struct mbuf *m;
1268 		grant_ref_t ref;
1269 
1270 		if (unlikely(*cons + 1 == rp)) {
1271 #if 0
1272 			if (net_ratelimit())
1273 				WPRINTK("Missing extra info\n");
1274 #endif
1275 			err = EINVAL;
1276 			break;
1277 		}
1278 
1279 		extra = (struct netif_extra_info *)
1280 		RING_GET_RESPONSE(&np->rx, ++(*cons));
1281 
1282 		if (unlikely(!extra->type ||
1283 			extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1284 #if 0
1285 			if (net_ratelimit())
1286 				WPRINTK("Invalid extra type: %d\n",
1287 					extra->type);
1288 #endif
1289 			err = EINVAL;
1290 		} else {
1291 			memcpy(&extras[extra->type - 1], extra, sizeof(*extra));
1292 		}
1293 
1294 		m = xennet_get_rx_mbuf(np, *cons);
1295 		ref = xennet_get_rx_ref(np, *cons);
1296 		xennet_move_rx_slot(np, m, ref);
1297 	} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
1298 
1299 	return err;
1300 }
1301 
1302 static int
1303 xennet_get_responses(struct netfront_info *np,
1304 	struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
1305 	struct mbuf  **list,
1306 	int *pages_flipped_p)
1307 {
1308 	int pages_flipped = *pages_flipped_p;
1309 	struct mmu_update *mmu;
1310 	struct multicall_entry *mcl;
1311 	struct netif_rx_response *rx = &rinfo->rx;
1312 	struct netif_extra_info *extras = rinfo->extras;
1313 	struct mbuf *m, *m0, *m_prev;
1314 	grant_ref_t ref = xennet_get_rx_ref(np, *cons);
1315 	RING_IDX ref_cons = *cons;
1316 	int frags = 1;
1317 	int err = 0;
1318 	u_long ret;
1319 
1320 	m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons);
1321 
1322 
1323 	if (rx->flags & NETRXF_extra_info) {
1324 		err = xennet_get_extras(np, extras, rp, cons);
1325 	}
1326 
1327 
1328 	if (m0 != NULL) {
1329 		m0->m_pkthdr.len = 0;
1330 		m0->m_next = NULL;
1331 	}
1332 
1333 	for (;;) {
1334 		u_long mfn;
1335 
1336 #if 0
1337 		DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n",
1338 			rx->status, rx->offset, frags);
1339 #endif
1340 		if (unlikely(rx->status < 0 ||
1341 			rx->offset + rx->status > PAGE_SIZE)) {
1342 
1343 #if 0
1344 			if (net_ratelimit())
1345 				WPRINTK("rx->offset: %x, size: %u\n",
1346 					rx->offset, rx->status);
1347 #endif
1348 			xennet_move_rx_slot(np, m, ref);
1349 			if (m0 == m)
1350 				m0 = NULL;
1351 			m = NULL;
1352 			err = EINVAL;
1353 			goto next_skip_queue;
1354 		}
1355 
1356 		/*
1357 		 * This definitely indicates a bug, either in this driver or in
1358 		 * the backend driver. In future this should flag the bad
1359 		 * situation to the system controller to reboot the backed.
1360 		 */
1361 		if (ref == GRANT_REF_INVALID) {
1362 
1363 #if 0
1364 			if (net_ratelimit())
1365 				WPRINTK("Bad rx response id %d.\n", rx->id);
1366 #endif
1367 			printf("%s: Bad rx response id %d.\n", __func__,rx->id);
1368 			err = EINVAL;
1369 			goto next;
1370 		}
1371 
1372 		if (!np->copying_receiver) {
1373 			/* Memory pressure, insufficient buffer
1374 			 * headroom, ...
1375 			 */
1376 			if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) {
1377 				WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n",
1378 					rx->id, rx->status);
1379 				xennet_move_rx_slot(np, m, ref);
1380 				err = ENOMEM;
1381 				goto next;
1382 			}
1383 
1384 			if (!xen_feature( XENFEAT_auto_translated_physmap)) {
1385 				/* Remap the page. */
1386 				void *vaddr = mtod(m, void *);
1387 				uint32_t pfn;
1388 
1389 				mcl = np->rx_mcl + pages_flipped;
1390 				mmu = np->rx_mmu + pages_flipped;
1391 
1392 				MULTI_update_va_mapping(mcl, (u_long)vaddr,
1393 				    (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW |
1394 				    PG_V | PG_M | PG_A, 0);
1395 				pfn = (uintptr_t)m->m_ext.ext_arg1;
1396 				mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) |
1397 				    MMU_MACHPHYS_UPDATE;
1398 				mmu->val = pfn;
1399 
1400 				set_phys_to_machine(pfn, mfn);
1401 			}
1402 			pages_flipped++;
1403 		} else {
1404 			ret = gnttab_end_foreign_access_ref(ref);
1405 			KASSERT(ret, ("ret != 0"));
1406 		}
1407 
1408 		gnttab_release_grant_reference(&np->gref_rx_head, ref);
1409 
1410 next:
1411 		if (m == NULL)
1412 			break;
1413 
1414 		m->m_len = rx->status;
1415 		m->m_data += rx->offset;
1416 		m0->m_pkthdr.len += rx->status;
1417 
1418 next_skip_queue:
1419 		if (!(rx->flags & NETRXF_more_data))
1420 			break;
1421 
1422 		if (*cons + frags == rp) {
1423 			if (net_ratelimit())
1424 				WPRINTK("Need more frags\n");
1425 			err = ENOENT;
1426 			printf("%s: cons %u frags %u rp %u, not enough frags\n",
1427 			       __func__, *cons, frags, rp);
1428 			break;
1429 		}
1430 		/*
1431 		 * Note that m can be NULL, if rx->status < 0 or if
1432 		 * rx->offset + rx->status > PAGE_SIZE above.
1433 		 */
1434 		m_prev = m;
1435 
1436 		rx = RING_GET_RESPONSE(&np->rx, *cons + frags);
1437 		m = xennet_get_rx_mbuf(np, *cons + frags);
1438 
1439 		/*
1440 		 * m_prev == NULL can happen if rx->status < 0 or if
1441 		 * rx->offset + * rx->status > PAGE_SIZE above.
1442 		 */
1443 		if (m_prev != NULL)
1444 			m_prev->m_next = m;
1445 
1446 		/*
1447 		 * m0 can be NULL if rx->status < 0 or if * rx->offset +
1448 		 * rx->status > PAGE_SIZE above.
1449 		 */
1450 		if (m0 == NULL)
1451 			m0 = m;
1452 		m->m_next = NULL;
1453 		ref = xennet_get_rx_ref(np, *cons + frags);
1454 		ref_cons = *cons + frags;
1455 		frags++;
1456 	}
1457 	*list = m0;
1458 	*cons += frags;
1459 	*pages_flipped_p = pages_flipped;
1460 
1461 	return (err);
1462 }
1463 
1464 static void
1465 xn_tick_locked(struct netfront_info *sc)
1466 {
1467 	XN_RX_LOCK_ASSERT(sc);
1468 	callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc);
1469 
1470 	/* XXX placeholder for printing debug information */
1471 
1472 }
1473 
1474 
1475 static void
1476 xn_tick(void *xsc)
1477 {
1478 	struct netfront_info *sc;
1479 
1480 	sc = xsc;
1481 	XN_RX_LOCK(sc);
1482 	xn_tick_locked(sc);
1483 	XN_RX_UNLOCK(sc);
1484 
1485 }
1486 
1487 /**
1488  * \brief Count the number of fragments in an mbuf chain.
1489  *
1490  * Surprisingly, there isn't an M* macro for this.
1491  */
1492 static inline int
1493 xn_count_frags(struct mbuf *m)
1494 {
1495 	int nfrags;
1496 
1497 	for (nfrags = 0; m != NULL; m = m->m_next)
1498 		nfrags++;
1499 
1500 	return (nfrags);
1501 }
1502 
1503 /**
1504  * Given an mbuf chain, make sure we have enough room and then push
1505  * it onto the transmit ring.
1506  */
1507 static int
1508 xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head)
1509 {
1510 	struct ifnet *ifp;
1511 	struct mbuf *m;
1512 	u_int nfrags;
1513 	netif_extra_info_t *extra;
1514 	int otherend_id;
1515 
1516 	ifp = sc->xn_ifp;
1517 
1518 	/**
1519 	 * Defragment the mbuf if necessary.
1520 	 */
1521 	nfrags = xn_count_frags(m_head);
1522 
1523 	/*
1524 	 * Check to see whether this request is longer than netback
1525 	 * can handle, and try to defrag it.
1526 	 */
1527 	/**
1528 	 * It is a bit lame, but the netback driver in Linux can't
1529 	 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of
1530 	 * the Linux network stack.
1531 	 */
1532 	if (nfrags > sc->maxfrags) {
1533 		m = m_defrag(m_head, M_DONTWAIT);
1534 		if (!m) {
1535 			/*
1536 			 * Defrag failed, so free the mbuf and
1537 			 * therefore drop the packet.
1538 			 */
1539 			m_freem(m_head);
1540 			return (EMSGSIZE);
1541 		}
1542 		m_head = m;
1543 	}
1544 
1545 	/* Determine how many fragments now exist */
1546 	nfrags = xn_count_frags(m_head);
1547 
1548 	/*
1549 	 * Check to see whether the defragmented packet has too many
1550 	 * segments for the Linux netback driver.
1551 	 */
1552 	/**
1553 	 * The FreeBSD TCP stack, with TSO enabled, can produce a chain
1554 	 * of mbufs longer than Linux can handle.  Make sure we don't
1555 	 * pass a too-long chain over to the other side by dropping the
1556 	 * packet.  It doesn't look like there is currently a way to
1557 	 * tell the TCP stack to generate a shorter chain of packets.
1558 	 */
1559 	if (nfrags > MAX_TX_REQ_FRAGS) {
1560 #ifdef DEBUG
1561 		printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback "
1562 		       "won't be able to handle it, dropping\n",
1563 		       __func__, nfrags, MAX_TX_REQ_FRAGS);
1564 #endif
1565 		m_freem(m_head);
1566 		return (EMSGSIZE);
1567 	}
1568 
1569 	/*
1570 	 * This check should be redundant.  We've already verified that we
1571 	 * have enough slots in the ring to handle a packet of maximum
1572 	 * size, and that our packet is less than the maximum size.  Keep
1573 	 * it in here as an assert for now just to make certain that
1574 	 * xn_tx_chain_cnt is accurate.
1575 	 */
1576 	KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE,
1577 		("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE "
1578 		 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt,
1579                     (int) nfrags, (int) NET_TX_RING_SIZE));
1580 
1581 	/*
1582 	 * Start packing the mbufs in this chain into
1583 	 * the fragment pointers. Stop when we run out
1584 	 * of fragments or hit the end of the mbuf chain.
1585 	 */
1586 	m = m_head;
1587 	extra = NULL;
1588 	otherend_id = xenbus_get_otherend_id(sc->xbdev);
1589 	for (m = m_head; m; m = m->m_next) {
1590 		netif_tx_request_t *tx;
1591 		uintptr_t id;
1592 		grant_ref_t ref;
1593 		u_long mfn; /* XXX Wrong type? */
1594 
1595 		tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt);
1596 		id = get_id_from_freelist(sc->tx_mbufs);
1597 		if (id == 0)
1598 			panic("xn_start_locked: was allocated the freelist head!\n");
1599 		sc->xn_cdata.xn_tx_chain_cnt++;
1600 		if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE)
1601 			panic("xn_start_locked: tx_chain_cnt must be <= NET_TX_RING_SIZE\n");
1602 		sc->tx_mbufs[id] = m;
1603 		tx->id = id;
1604 		ref = gnttab_claim_grant_reference(&sc->gref_tx_head);
1605 		KASSERT((short)ref >= 0, ("Negative ref"));
1606 		mfn = virt_to_mfn(mtod(m, vm_offset_t));
1607 		gnttab_grant_foreign_access_ref(ref, otherend_id,
1608 		    mfn, GNTMAP_readonly);
1609 		tx->gref = sc->grant_tx_ref[id] = ref;
1610 		tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1);
1611 		tx->flags = 0;
1612 		if (m == m_head) {
1613 			/*
1614 			 * The first fragment has the entire packet
1615 			 * size, subsequent fragments have just the
1616 			 * fragment size. The backend works out the
1617 			 * true size of the first fragment by
1618 			 * subtracting the sizes of the other
1619 			 * fragments.
1620 			 */
1621 			tx->size = m->m_pkthdr.len;
1622 
1623 			/*
1624 			 * The first fragment contains the checksum flags
1625 			 * and is optionally followed by extra data for
1626 			 * TSO etc.
1627 			 */
1628 			/**
1629 			 * CSUM_TSO requires checksum offloading.
1630 			 * Some versions of FreeBSD fail to
1631 			 * set CSUM_TCP in the CSUM_TSO case,
1632 			 * so we have to test for CSUM_TSO
1633 			 * explicitly.
1634 			 */
1635 			if (m->m_pkthdr.csum_flags
1636 			    & (CSUM_DELAY_DATA | CSUM_TSO)) {
1637 				tx->flags |= (NETTXF_csum_blank
1638 				    | NETTXF_data_validated);
1639 			}
1640 #if __FreeBSD_version >= 700000
1641 			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1642 				struct netif_extra_info *gso =
1643 					(struct netif_extra_info *)
1644 					RING_GET_REQUEST(&sc->tx,
1645 							 ++sc->tx.req_prod_pvt);
1646 
1647 				tx->flags |= NETTXF_extra_info;
1648 
1649 				gso->u.gso.size = m->m_pkthdr.tso_segsz;
1650 				gso->u.gso.type =
1651 					XEN_NETIF_GSO_TYPE_TCPV4;
1652 				gso->u.gso.pad = 0;
1653 				gso->u.gso.features = 0;
1654 
1655 				gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
1656 				gso->flags = 0;
1657 			}
1658 #endif
1659 		} else {
1660 			tx->size = m->m_len;
1661 		}
1662 		if (m->m_next)
1663 			tx->flags |= NETTXF_more_data;
1664 
1665 		sc->tx.req_prod_pvt++;
1666 	}
1667 	BPF_MTAP(ifp, m_head);
1668 
1669 	sc->stats.tx_bytes += m_head->m_pkthdr.len;
1670 	sc->stats.tx_packets++;
1671 
1672 	return (0);
1673 }
1674 
1675 static void
1676 xn_start_locked(struct ifnet *ifp)
1677 {
1678 	struct netfront_info *sc;
1679 	struct mbuf *m_head;
1680 	int notify;
1681 
1682 	sc = ifp->if_softc;
1683 
1684 	if (!netfront_carrier_ok(sc))
1685 		return;
1686 
1687 	/*
1688 	 * While we have enough transmit slots available for at least one
1689 	 * maximum-sized packet, pull mbufs off the queue and put them on
1690 	 * the transmit ring.
1691 	 */
1692 	while (xn_tx_slot_available(sc)) {
1693 		IF_DEQUEUE(&ifp->if_snd, m_head);
1694 		if (m_head == NULL)
1695 			break;
1696 
1697 		if (xn_assemble_tx_request(sc, m_head) != 0)
1698 			break;
1699 	}
1700 
1701 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify);
1702 	if (notify)
1703 		notify_remote_via_irq(sc->irq);
1704 
1705 	if (RING_FULL(&sc->tx)) {
1706 		sc->tx_full = 1;
1707 #if 0
1708 		netif_stop_queue(dev);
1709 #endif
1710 	}
1711 }
1712 
1713 
1714 static void
1715 xn_start(struct ifnet *ifp)
1716 {
1717 	struct netfront_info *sc;
1718 	sc = ifp->if_softc;
1719 	XN_TX_LOCK(sc);
1720 	xn_start_locked(ifp);
1721 	XN_TX_UNLOCK(sc);
1722 }
1723 
1724 /* equivalent of network_open() in Linux */
1725 static void
1726 xn_ifinit_locked(struct netfront_info *sc)
1727 {
1728 	struct ifnet *ifp;
1729 
1730 	XN_LOCK_ASSERT(sc);
1731 
1732 	ifp = sc->xn_ifp;
1733 
1734 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1735 		return;
1736 
1737 	xn_stop(sc);
1738 
1739 	network_alloc_rx_buffers(sc);
1740 	sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1;
1741 
1742 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1743 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1744 	if_link_state_change(ifp, LINK_STATE_UP);
1745 
1746 	callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc);
1747 
1748 }
1749 
1750 
1751 static void
1752 xn_ifinit(void *xsc)
1753 {
1754 	struct netfront_info *sc = xsc;
1755 
1756 	XN_LOCK(sc);
1757 	xn_ifinit_locked(sc);
1758 	XN_UNLOCK(sc);
1759 
1760 }
1761 
1762 
1763 static int
1764 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1765 {
1766 	struct netfront_info *sc = ifp->if_softc;
1767 	struct ifreq *ifr = (struct ifreq *) data;
1768 #ifdef INET
1769 	struct ifaddr *ifa = (struct ifaddr *)data;
1770 #endif
1771 
1772 	int mask, error = 0;
1773 	switch(cmd) {
1774 	case SIOCSIFADDR:
1775 	case SIOCGIFADDR:
1776 #ifdef INET
1777 		XN_LOCK(sc);
1778 		if (ifa->ifa_addr->sa_family == AF_INET) {
1779 			ifp->if_flags |= IFF_UP;
1780 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1781 				xn_ifinit_locked(sc);
1782 			arp_ifinit(ifp, ifa);
1783 			XN_UNLOCK(sc);
1784 		} else {
1785 			XN_UNLOCK(sc);
1786 #endif
1787 			error = ether_ioctl(ifp, cmd, data);
1788 #ifdef INET
1789 		}
1790 #endif
1791 		break;
1792 	case SIOCSIFMTU:
1793 		/* XXX can we alter the MTU on a VN ?*/
1794 #ifdef notyet
1795 		if (ifr->ifr_mtu > XN_JUMBO_MTU)
1796 			error = EINVAL;
1797 		else
1798 #endif
1799 		{
1800 			ifp->if_mtu = ifr->ifr_mtu;
1801 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1802 			xn_ifinit(sc);
1803 		}
1804 		break;
1805 	case SIOCSIFFLAGS:
1806 		XN_LOCK(sc);
1807 		if (ifp->if_flags & IFF_UP) {
1808 			/*
1809 			 * If only the state of the PROMISC flag changed,
1810 			 * then just use the 'set promisc mode' command
1811 			 * instead of reinitializing the entire NIC. Doing
1812 			 * a full re-init means reloading the firmware and
1813 			 * waiting for it to start up, which may take a
1814 			 * second or two.
1815 			 */
1816 #ifdef notyet
1817 			/* No promiscuous mode with Xen */
1818 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1819 			    ifp->if_flags & IFF_PROMISC &&
1820 			    !(sc->xn_if_flags & IFF_PROMISC)) {
1821 				XN_SETBIT(sc, XN_RX_MODE,
1822 					  XN_RXMODE_RX_PROMISC);
1823 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1824 				   !(ifp->if_flags & IFF_PROMISC) &&
1825 				   sc->xn_if_flags & IFF_PROMISC) {
1826 				XN_CLRBIT(sc, XN_RX_MODE,
1827 					  XN_RXMODE_RX_PROMISC);
1828 			} else
1829 #endif
1830 				xn_ifinit_locked(sc);
1831 		} else {
1832 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1833 				xn_stop(sc);
1834 			}
1835 		}
1836 		sc->xn_if_flags = ifp->if_flags;
1837 		XN_UNLOCK(sc);
1838 		error = 0;
1839 		break;
1840 	case SIOCSIFCAP:
1841 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1842 		if (mask & IFCAP_TXCSUM) {
1843 			if (IFCAP_TXCSUM & ifp->if_capenable) {
1844 				ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4);
1845 				ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP
1846 				    | CSUM_IP | CSUM_TSO);
1847 			} else {
1848 				ifp->if_capenable |= IFCAP_TXCSUM;
1849 				ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP
1850 				    | CSUM_IP);
1851 			}
1852 		}
1853 		if (mask & IFCAP_RXCSUM) {
1854 			ifp->if_capenable ^= IFCAP_RXCSUM;
1855 		}
1856 #if __FreeBSD_version >= 700000
1857 		if (mask & IFCAP_TSO4) {
1858 			if (IFCAP_TSO4 & ifp->if_capenable) {
1859 				ifp->if_capenable &= ~IFCAP_TSO4;
1860 				ifp->if_hwassist &= ~CSUM_TSO;
1861 			} else if (IFCAP_TXCSUM & ifp->if_capenable) {
1862 				ifp->if_capenable |= IFCAP_TSO4;
1863 				ifp->if_hwassist |= CSUM_TSO;
1864 			} else {
1865 				IPRINTK("Xen requires tx checksum offload"
1866 				    " be enabled to use TSO\n");
1867 				error = EINVAL;
1868 			}
1869 		}
1870 		if (mask & IFCAP_LRO) {
1871 			ifp->if_capenable ^= IFCAP_LRO;
1872 
1873 		}
1874 #endif
1875 		error = 0;
1876 		break;
1877 	case SIOCADDMULTI:
1878 	case SIOCDELMULTI:
1879 #ifdef notyet
1880 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1881 			XN_LOCK(sc);
1882 			xn_setmulti(sc);
1883 			XN_UNLOCK(sc);
1884 			error = 0;
1885 		}
1886 #endif
1887 		/* FALLTHROUGH */
1888 	case SIOCSIFMEDIA:
1889 	case SIOCGIFMEDIA:
1890 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1891 		break;
1892 	default:
1893 		error = ether_ioctl(ifp, cmd, data);
1894 	}
1895 
1896 	return (error);
1897 }
1898 
1899 static void
1900 xn_stop(struct netfront_info *sc)
1901 {
1902 	struct ifnet *ifp;
1903 
1904 	XN_LOCK_ASSERT(sc);
1905 
1906 	ifp = sc->xn_ifp;
1907 
1908 	callout_stop(&sc->xn_stat_ch);
1909 
1910 	xn_free_rx_ring(sc);
1911 	xn_free_tx_ring(sc);
1912 
1913 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1914 	if_link_state_change(ifp, LINK_STATE_DOWN);
1915 }
1916 
1917 /* START of Xenolinux helper functions adapted to FreeBSD */
1918 int
1919 network_connect(struct netfront_info *np)
1920 {
1921 	int i, requeue_idx, error;
1922 	grant_ref_t ref;
1923 	netif_rx_request_t *req;
1924 	u_int feature_rx_copy, feature_rx_flip;
1925 
1926 	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1927 	    "feature-rx-copy", NULL, "%u", &feature_rx_copy);
1928 	if (error)
1929 		feature_rx_copy = 0;
1930 	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1931 	    "feature-rx-flip", NULL, "%u", &feature_rx_flip);
1932 	if (error)
1933 		feature_rx_flip = 1;
1934 
1935 	/*
1936 	 * Copy packets on receive path if:
1937 	 *  (a) This was requested by user, and the backend supports it; or
1938 	 *  (b) Flipping was requested, but this is unsupported by the backend.
1939 	 */
1940 	np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) ||
1941 				(MODPARM_rx_flip && !feature_rx_flip));
1942 
1943 	/* Recovery procedure: */
1944 	error = talk_to_backend(np->xbdev, np);
1945 	if (error)
1946 		return (error);
1947 
1948 	/* Step 1: Reinitialise variables. */
1949 	xn_query_features(np);
1950 	xn_configure_features(np);
1951 	netif_release_tx_bufs(np);
1952 
1953 	/* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */
1954 	for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
1955 		struct mbuf *m;
1956 		u_long pfn;
1957 
1958 		if (np->rx_mbufs[i] == NULL)
1959 			continue;
1960 
1961 		m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i);
1962 		ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i);
1963 
1964 		req = RING_GET_REQUEST(&np->rx, requeue_idx);
1965 		pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT;
1966 
1967 		if (!np->copying_receiver) {
1968 			gnttab_grant_foreign_transfer_ref(ref,
1969 			    xenbus_get_otherend_id(np->xbdev),
1970 			    pfn);
1971 		} else {
1972 			gnttab_grant_foreign_access_ref(ref,
1973 			    xenbus_get_otherend_id(np->xbdev),
1974 			    PFNTOMFN(pfn), 0);
1975 		}
1976 		req->gref = ref;
1977 		req->id   = requeue_idx;
1978 
1979 		requeue_idx++;
1980 	}
1981 
1982 	np->rx.req_prod_pvt = requeue_idx;
1983 
1984 	/* Step 3: All public and private state should now be sane.  Get
1985 	 * ready to start sending and receiving packets and give the driver
1986 	 * domain a kick because we've probably just requeued some
1987 	 * packets.
1988 	 */
1989 	netfront_carrier_on(np);
1990 	notify_remote_via_irq(np->irq);
1991 	XN_TX_LOCK(np);
1992 	xn_txeof(np);
1993 	XN_TX_UNLOCK(np);
1994 	network_alloc_rx_buffers(np);
1995 
1996 	return (0);
1997 }
1998 
1999 static void
2000 show_device(struct netfront_info *sc)
2001 {
2002 #ifdef DEBUG
2003 	if (sc) {
2004 		IPRINTK("<vif handle=%u %s(%s) evtchn=%u irq=%u tx=%p rx=%p>\n",
2005 			sc->xn_ifno,
2006 			be_state_name[sc->xn_backend_state],
2007 			sc->xn_user_state ? "open" : "closed",
2008 			sc->xn_evtchn,
2009 			sc->xn_irq,
2010 			sc->xn_tx_if,
2011 			sc->xn_rx_if);
2012 	} else {
2013 		IPRINTK("<vif NULL>\n");
2014 	}
2015 #endif
2016 }
2017 
2018 static void
2019 xn_query_features(struct netfront_info *np)
2020 {
2021 	int val;
2022 
2023 	device_printf(np->xbdev, "backend features:");
2024 
2025 	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2026 		"feature-sg", NULL, "%d", &val) < 0)
2027 		val = 0;
2028 
2029 	np->maxfrags = 1;
2030 	if (val) {
2031 		np->maxfrags = MAX_TX_REQ_FRAGS;
2032 		printf(" feature-sg");
2033 	}
2034 
2035 	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2036 		"feature-gso-tcpv4", NULL, "%d", &val) < 0)
2037 		val = 0;
2038 
2039 	np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO);
2040 	if (val) {
2041 		np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO;
2042 		printf(" feature-gso-tcp4");
2043 	}
2044 
2045 	printf("\n");
2046 }
2047 
2048 static int
2049 xn_configure_features(struct netfront_info *np)
2050 {
2051 	int err;
2052 
2053 	err = 0;
2054 #if __FreeBSD_version >= 700000
2055 	if ((np->xn_ifp->if_capenable & IFCAP_LRO) != 0)
2056 		tcp_lro_free(&np->xn_lro);
2057 #endif
2058     	np->xn_ifp->if_capenable =
2059 	    np->xn_ifp->if_capabilities & ~(IFCAP_LRO|IFCAP_TSO4);
2060 	np->xn_ifp->if_hwassist &= ~CSUM_TSO;
2061 #if __FreeBSD_version >= 700000
2062 	if (xn_enable_lro && (np->xn_ifp->if_capabilities & IFCAP_LRO) != 0) {
2063 		err = tcp_lro_init(&np->xn_lro);
2064 		if (err) {
2065 			device_printf(np->xbdev, "LRO initialization failed\n");
2066 		} else {
2067 			np->xn_lro.ifp = np->xn_ifp;
2068 			np->xn_ifp->if_capenable |= IFCAP_LRO;
2069 		}
2070 	}
2071 	if ((np->xn_ifp->if_capabilities & IFCAP_TSO4) != 0) {
2072 		np->xn_ifp->if_capenable |= IFCAP_TSO4;
2073 		np->xn_ifp->if_hwassist |= CSUM_TSO;
2074 	}
2075 #endif
2076 	return (err);
2077 }
2078 
2079 /** Create a network device.
2080  * @param handle device handle
2081  */
2082 int
2083 create_netdev(device_t dev)
2084 {
2085 	int i;
2086 	struct netfront_info *np;
2087 	int err;
2088 	struct ifnet *ifp;
2089 
2090 	np = device_get_softc(dev);
2091 
2092 	np->xbdev         = dev;
2093 
2094 	XN_LOCK_INIT(np, xennetif);
2095 
2096 	ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts);
2097 	ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
2098 	ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL);
2099 
2100 	np->rx_target     = RX_MIN_TARGET;
2101 	np->rx_min_target = RX_MIN_TARGET;
2102 	np->rx_max_target = RX_MAX_TARGET;
2103 
2104 	/* Initialise {tx,rx}_skbs to be a free chain containing every entry. */
2105 	for (i = 0; i <= NET_TX_RING_SIZE; i++) {
2106 		np->tx_mbufs[i] = (void *) ((u_long) i+1);
2107 		np->grant_tx_ref[i] = GRANT_REF_INVALID;
2108 	}
2109 	np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0;
2110 
2111 	for (i = 0; i <= NET_RX_RING_SIZE; i++) {
2112 
2113 		np->rx_mbufs[i] = NULL;
2114 		np->grant_rx_ref[i] = GRANT_REF_INVALID;
2115 	}
2116 	/* A grant for every tx ring slot */
2117 	if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
2118 					  &np->gref_tx_head) != 0) {
2119 		IPRINTK("#### netfront can't alloc tx grant refs\n");
2120 		err = ENOMEM;
2121 		goto exit;
2122 	}
2123 	/* A grant for every rx ring slot */
2124 	if (gnttab_alloc_grant_references(RX_MAX_TARGET,
2125 					  &np->gref_rx_head) != 0) {
2126 		WPRINTK("#### netfront can't alloc rx grant refs\n");
2127 		gnttab_free_grant_references(np->gref_tx_head);
2128 		err = ENOMEM;
2129 		goto exit;
2130 	}
2131 
2132 	err = xen_net_read_mac(dev, np->mac);
2133 	if (err)
2134 		goto out;
2135 
2136 	/* Set up ifnet structure */
2137 	ifp = np->xn_ifp = if_alloc(IFT_ETHER);
2138     	ifp->if_softc = np;
2139     	if_initname(ifp, "xn",  device_get_unit(dev));
2140     	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2141     	ifp->if_ioctl = xn_ioctl;
2142     	ifp->if_output = ether_output;
2143     	ifp->if_start = xn_start;
2144 #ifdef notyet
2145     	ifp->if_watchdog = xn_watchdog;
2146 #endif
2147     	ifp->if_init = xn_ifinit;
2148     	ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1;
2149 
2150     	ifp->if_hwassist = XN_CSUM_FEATURES;
2151     	ifp->if_capabilities = IFCAP_HWCSUM;
2152 
2153     	ether_ifattach(ifp, np->mac);
2154     	callout_init(&np->xn_stat_ch, CALLOUT_MPSAFE);
2155 	netfront_carrier_off(np);
2156 
2157 	return (0);
2158 
2159 exit:
2160 	gnttab_free_grant_references(np->gref_tx_head);
2161 out:
2162 	return (err);
2163 }
2164 
2165 /**
2166  * Handle the change of state of the backend to Closing.  We must delete our
2167  * device-layer structures now, to ensure that writes are flushed through to
2168  * the backend.  Once is this done, we can switch to Closed in
2169  * acknowledgement.
2170  */
2171 #if 0
2172 static void
2173 netfront_closing(device_t dev)
2174 {
2175 #if 0
2176 	struct netfront_info *info = dev->dev_driver_data;
2177 
2178 	DPRINTK("netfront_closing: %s removed\n", dev->nodename);
2179 
2180 	close_netdev(info);
2181 #endif
2182 	xenbus_switch_state(dev, XenbusStateClosed);
2183 }
2184 #endif
2185 
2186 static int
2187 netfront_detach(device_t dev)
2188 {
2189 	struct netfront_info *info = device_get_softc(dev);
2190 
2191 	DPRINTK("%s\n", xenbus_get_node(dev));
2192 
2193 	netif_free(info);
2194 
2195 	return 0;
2196 }
2197 
2198 static void
2199 netif_free(struct netfront_info *info)
2200 {
2201 	netif_disconnect_backend(info);
2202 #if 0
2203 	close_netdev(info);
2204 #endif
2205 }
2206 
2207 static void
2208 netif_disconnect_backend(struct netfront_info *info)
2209 {
2210 	XN_RX_LOCK(info);
2211 	XN_TX_LOCK(info);
2212 	netfront_carrier_off(info);
2213 	XN_TX_UNLOCK(info);
2214 	XN_RX_UNLOCK(info);
2215 
2216 	free_ring(&info->tx_ring_ref, &info->tx.sring);
2217 	free_ring(&info->rx_ring_ref, &info->rx.sring);
2218 
2219 	if (info->irq)
2220 		unbind_from_irqhandler(info->irq);
2221 
2222 	info->irq = 0;
2223 }
2224 
2225 static void
2226 free_ring(int *ref, void *ring_ptr_ref)
2227 {
2228 	void **ring_ptr_ptr = ring_ptr_ref;
2229 
2230 	if (*ref != GRANT_REF_INVALID) {
2231 		/* This API frees the associated storage. */
2232 		gnttab_end_foreign_access(*ref, *ring_ptr_ptr);
2233 		*ref = GRANT_REF_INVALID;
2234 	}
2235 	*ring_ptr_ptr = NULL;
2236 }
2237 
2238 static int
2239 xn_ifmedia_upd(struct ifnet *ifp)
2240 {
2241 	return (0);
2242 }
2243 
2244 static void
2245 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2246 {
2247 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2248 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2249 }
2250 
2251 /* ** Driver registration ** */
2252 static device_method_t netfront_methods[] = {
2253 	/* Device interface */
2254 	DEVMETHOD(device_probe,         netfront_probe),
2255 	DEVMETHOD(device_attach,        netfront_attach),
2256 	DEVMETHOD(device_detach,        netfront_detach),
2257 	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
2258 	DEVMETHOD(device_suspend,       netfront_suspend),
2259 	DEVMETHOD(device_resume,        netfront_resume),
2260 
2261 	/* Xenbus interface */
2262 	DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed),
2263 
2264 	{ 0, 0 }
2265 };
2266 
2267 static driver_t netfront_driver = {
2268 	"xn",
2269 	netfront_methods,
2270 	sizeof(struct netfront_info),
2271 };
2272 devclass_t netfront_devclass;
2273 
2274 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, 0, 0);
2275