1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2004-2006 Kip Macy 5 * Copyright (c) 2015 Wei Liu <wei.liu2@citrix.com> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 34 #include <sys/param.h> 35 #include <sys/sockio.h> 36 #include <sys/limits.h> 37 #include <sys/mbuf.h> 38 #include <sys/malloc.h> 39 #include <sys/module.h> 40 #include <sys/kernel.h> 41 #include <sys/socket.h> 42 #include <sys/sysctl.h> 43 #include <sys/taskqueue.h> 44 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_arp.h> 48 #include <net/ethernet.h> 49 #include <net/if_media.h> 50 #include <net/bpf.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/ip.h> 55 #include <netinet/if_ether.h> 56 #include <netinet/tcp.h> 57 #include <netinet/tcp_lro.h> 58 59 #include <vm/vm.h> 60 #include <vm/pmap.h> 61 62 #include <sys/bus.h> 63 64 #include <xen/xen-os.h> 65 #include <xen/hypervisor.h> 66 #include <xen/xen_intr.h> 67 #include <xen/gnttab.h> 68 #include <contrib/xen/memory.h> 69 #include <contrib/xen/io/netif.h> 70 #include <xen/xenbus/xenbusvar.h> 71 72 #include <machine/bus.h> 73 74 #include "xenbus_if.h" 75 76 /* Features supported by all backends. TSO and LRO can be negotiated */ 77 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 78 79 #define NET_TX_RING_SIZE __CONST_RING_SIZE(netif_tx, PAGE_SIZE) 80 #define NET_RX_RING_SIZE __CONST_RING_SIZE(netif_rx, PAGE_SIZE) 81 82 #define NET_RX_SLOTS_MIN (XEN_NETIF_NR_SLOTS_MIN + 1) 83 84 /* 85 * Should the driver do LRO on the RX end 86 * this can be toggled on the fly, but the 87 * interface must be reset (down/up) for it 88 * to take effect. 89 */ 90 static int xn_enable_lro = 1; 91 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 92 93 /* 94 * Number of pairs of queues. 95 */ 96 static unsigned long xn_num_queues = 4; 97 TUNABLE_ULONG("hw.xn.num_queues", &xn_num_queues); 98 99 /** 100 * \brief The maximum allowed data fragments in a single transmit 101 * request. 102 * 103 * This limit is imposed by the backend driver. We assume here that 104 * we are dealing with a Linux driver domain and have set our limit 105 * to mirror the Linux MAX_SKB_FRAGS constant. 106 */ 107 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 108 109 #define RX_COPY_THRESHOLD 256 110 111 #define net_ratelimit() 0 112 113 struct netfront_rxq; 114 struct netfront_txq; 115 struct netfront_info; 116 struct netfront_rx_info; 117 118 static void xn_txeof(struct netfront_txq *); 119 static void xn_rxeof(struct netfront_rxq *); 120 static void xn_alloc_rx_buffers(struct netfront_rxq *); 121 static void xn_alloc_rx_buffers_callout(void *arg); 122 123 static void xn_release_rx_bufs(struct netfront_rxq *); 124 static void xn_release_tx_bufs(struct netfront_txq *); 125 126 static void xn_rxq_intr(struct netfront_rxq *); 127 static void xn_txq_intr(struct netfront_txq *); 128 static void xn_intr(void *); 129 static int xn_assemble_tx_request(struct netfront_txq *, struct mbuf *); 130 static int xn_ioctl(if_t, u_long, caddr_t); 131 static void xn_ifinit_locked(struct netfront_info *); 132 static void xn_ifinit(void *); 133 static void xn_stop(struct netfront_info *); 134 static void xn_query_features(struct netfront_info *np); 135 static int xn_configure_features(struct netfront_info *np); 136 static void netif_free(struct netfront_info *info); 137 static int netfront_detach(device_t dev); 138 139 static int xn_txq_mq_start_locked(struct netfront_txq *, struct mbuf *); 140 static int xn_txq_mq_start(if_t, struct mbuf *); 141 142 static int talk_to_backend(device_t dev, struct netfront_info *info); 143 static int create_netdev(device_t dev); 144 static void netif_disconnect_backend(struct netfront_info *info); 145 static int setup_device(device_t dev, struct netfront_info *info, 146 unsigned long); 147 static int xn_ifmedia_upd(if_t ifp); 148 static void xn_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr); 149 150 static int xn_connect(struct netfront_info *); 151 static void xn_kick_rings(struct netfront_info *); 152 153 static int xn_get_responses(struct netfront_rxq *, 154 struct netfront_rx_info *, RING_IDX, RING_IDX *, 155 struct mbuf **); 156 157 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT) 158 159 #define INVALID_P2M_ENTRY (~0UL) 160 #define XN_QUEUE_NAME_LEN 8 /* xn{t,r}x_%u, allow for two digits */ 161 struct netfront_rxq { 162 struct netfront_info *info; 163 u_int id; 164 char name[XN_QUEUE_NAME_LEN]; 165 struct mtx lock; 166 167 int ring_ref; 168 netif_rx_front_ring_t ring; 169 xen_intr_handle_t xen_intr_handle; 170 171 grant_ref_t gref_head; 172 grant_ref_t grant_ref[NET_RX_RING_SIZE + 1]; 173 174 struct mbuf *mbufs[NET_RX_RING_SIZE + 1]; 175 176 struct lro_ctrl lro; 177 178 struct callout rx_refill; 179 }; 180 181 struct netfront_txq { 182 struct netfront_info *info; 183 u_int id; 184 char name[XN_QUEUE_NAME_LEN]; 185 struct mtx lock; 186 187 int ring_ref; 188 netif_tx_front_ring_t ring; 189 xen_intr_handle_t xen_intr_handle; 190 191 grant_ref_t gref_head; 192 grant_ref_t grant_ref[NET_TX_RING_SIZE + 1]; 193 194 struct mbuf *mbufs[NET_TX_RING_SIZE + 1]; 195 int mbufs_cnt; 196 struct buf_ring *br; 197 198 struct taskqueue *tq; 199 struct task defrtask; 200 201 bus_dma_segment_t segs[MAX_TX_REQ_FRAGS]; 202 struct mbuf_xennet { 203 struct m_tag tag; 204 bus_dma_tag_t dma_tag; 205 bus_dmamap_t dma_map; 206 struct netfront_txq *txq; 207 SLIST_ENTRY(mbuf_xennet) next; 208 u_int count; 209 } xennet_tag[NET_TX_RING_SIZE + 1]; 210 SLIST_HEAD(, mbuf_xennet) tags; 211 212 bool full; 213 }; 214 215 struct netfront_info { 216 if_t xn_ifp; 217 218 struct mtx sc_lock; 219 220 u_int num_queues; 221 struct netfront_rxq *rxq; 222 struct netfront_txq *txq; 223 224 u_int carrier; 225 u_int maxfrags; 226 227 device_t xbdev; 228 uint8_t mac[ETHER_ADDR_LEN]; 229 230 int xn_if_flags; 231 232 struct ifmedia sc_media; 233 234 bus_dma_tag_t dma_tag; 235 236 bool xn_reset; 237 }; 238 239 struct netfront_rx_info { 240 struct netif_rx_response rx; 241 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 242 }; 243 244 #define XN_RX_LOCK(_q) mtx_lock(&(_q)->lock) 245 #define XN_RX_UNLOCK(_q) mtx_unlock(&(_q)->lock) 246 247 #define XN_TX_LOCK(_q) mtx_lock(&(_q)->lock) 248 #define XN_TX_TRYLOCK(_q) mtx_trylock(&(_q)->lock) 249 #define XN_TX_UNLOCK(_q) mtx_unlock(&(_q)->lock) 250 251 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 252 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 253 254 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 255 #define XN_RX_LOCK_ASSERT(_q) mtx_assert(&(_q)->lock, MA_OWNED); 256 #define XN_TX_LOCK_ASSERT(_q) mtx_assert(&(_q)->lock, MA_OWNED); 257 258 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 259 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 260 #define netfront_carrier_ok(netif) ((netif)->carrier) 261 262 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 263 264 static inline void 265 add_id_to_freelist(struct mbuf **list, uintptr_t id) 266 { 267 268 KASSERT(id != 0, 269 ("%s: the head item (0) must always be free.", __func__)); 270 list[id] = list[0]; 271 list[0] = (struct mbuf *)id; 272 } 273 274 static inline unsigned short 275 get_id_from_freelist(struct mbuf **list) 276 { 277 uintptr_t id; 278 279 id = (uintptr_t)list[0]; 280 KASSERT(id != 0, 281 ("%s: the head item (0) must always remain free.", __func__)); 282 list[0] = list[id]; 283 return (id); 284 } 285 286 static inline int 287 xn_rxidx(RING_IDX idx) 288 { 289 290 return idx & (NET_RX_RING_SIZE - 1); 291 } 292 293 static inline struct mbuf * 294 xn_get_rx_mbuf(struct netfront_rxq *rxq, RING_IDX ri) 295 { 296 int i; 297 struct mbuf *m; 298 299 i = xn_rxidx(ri); 300 m = rxq->mbufs[i]; 301 rxq->mbufs[i] = NULL; 302 return (m); 303 } 304 305 static inline grant_ref_t 306 xn_get_rx_ref(struct netfront_rxq *rxq, RING_IDX ri) 307 { 308 int i = xn_rxidx(ri); 309 grant_ref_t ref = rxq->grant_ref[i]; 310 311 KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n")); 312 rxq->grant_ref[i] = GRANT_REF_INVALID; 313 return (ref); 314 } 315 316 #define MTAG_COOKIE 1218492000 317 #define MTAG_XENNET 0 318 319 static void mbuf_grab(struct mbuf *m) 320 { 321 struct mbuf_xennet *ref; 322 323 ref = (struct mbuf_xennet *)m_tag_locate(m, MTAG_COOKIE, 324 MTAG_XENNET, NULL); 325 KASSERT(ref != NULL, ("Cannot find refcount")); 326 ref->count++; 327 } 328 329 static void mbuf_release(struct mbuf *m) 330 { 331 struct mbuf_xennet *ref; 332 333 ref = (struct mbuf_xennet *)m_tag_locate(m, MTAG_COOKIE, 334 MTAG_XENNET, NULL); 335 KASSERT(ref != NULL, ("Cannot find refcount")); 336 KASSERT(ref->count > 0, ("Invalid reference count")); 337 338 if (--ref->count == 0) 339 m_freem(m); 340 } 341 342 static void tag_free(struct m_tag *t) 343 { 344 struct mbuf_xennet *ref = (struct mbuf_xennet *)t; 345 346 KASSERT(ref->count == 0, ("Free mbuf tag with pending refcnt")); 347 bus_dmamap_sync(ref->dma_tag, ref->dma_map, BUS_DMASYNC_POSTWRITE); 348 bus_dmamap_destroy(ref->dma_tag, ref->dma_map); 349 SLIST_INSERT_HEAD(&ref->txq->tags, ref, next); 350 } 351 352 #define IPRINTK(fmt, args...) \ 353 printf("[XEN] " fmt, ##args) 354 #ifdef INVARIANTS 355 #define WPRINTK(fmt, args...) \ 356 printf("[XEN] " fmt, ##args) 357 #else 358 #define WPRINTK(fmt, args...) 359 #endif 360 #ifdef DEBUG 361 #define DPRINTK(fmt, args...) \ 362 printf("[XEN] %s: " fmt, __func__, ##args) 363 #else 364 #define DPRINTK(fmt, args...) 365 #endif 366 367 /** 368 * Read the 'mac' node at the given device's node in the store, and parse that 369 * as colon-separated octets, placing result the given mac array. mac must be 370 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 371 * Return 0 on success, or errno on error. 372 */ 373 static int 374 xen_net_read_mac(device_t dev, uint8_t mac[]) 375 { 376 int error, i; 377 char *s, *e, *macstr; 378 const char *path; 379 380 path = xenbus_get_node(dev); 381 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 382 if (error == ENOENT) { 383 /* 384 * Deal with missing mac XenStore nodes on devices with 385 * HVM emulation (the 'ioemu' configuration attribute) 386 * enabled. 387 * 388 * The HVM emulator may execute in a stub device model 389 * domain which lacks the permission, only given to Dom0, 390 * to update the guest's XenStore tree. For this reason, 391 * the HVM emulator doesn't even attempt to write the 392 * front-side mac node, even when operating in Dom0. 393 * However, there should always be a mac listed in the 394 * backend tree. Fallback to this version if our query 395 * of the front side XenStore location doesn't find 396 * anything. 397 */ 398 path = xenbus_get_otherend_path(dev); 399 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 400 } 401 if (error != 0) { 402 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 403 return (error); 404 } 405 406 s = macstr; 407 for (i = 0; i < ETHER_ADDR_LEN; i++) { 408 mac[i] = strtoul(s, &e, 16); 409 if (s == e || (e[0] != ':' && e[0] != 0)) { 410 free(macstr, M_XENBUS); 411 return (ENOENT); 412 } 413 s = &e[1]; 414 } 415 free(macstr, M_XENBUS); 416 return (0); 417 } 418 419 /** 420 * Entry point to this code when a new device is created. Allocate the basic 421 * structures and the ring buffers for communication with the backend, and 422 * inform the backend of the appropriate details for those. Switch to 423 * Connected state. 424 */ 425 static int 426 netfront_probe(device_t dev) 427 { 428 429 if (xen_pv_nics_disabled()) 430 return (ENXIO); 431 432 if (!strcmp(xenbus_get_type(dev), "vif")) { 433 device_set_desc(dev, "Virtual Network Interface"); 434 return (0); 435 } 436 437 return (ENXIO); 438 } 439 440 static int 441 netfront_attach(device_t dev) 442 { 443 int err; 444 445 err = create_netdev(dev); 446 if (err != 0) { 447 xenbus_dev_fatal(dev, err, "creating netdev"); 448 return (err); 449 } 450 451 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 452 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 453 OID_AUTO, "enable_lro", CTLFLAG_RW, 454 &xn_enable_lro, 0, "Large Receive Offload"); 455 456 SYSCTL_ADD_ULONG(device_get_sysctl_ctx(dev), 457 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 458 OID_AUTO, "num_queues", CTLFLAG_RD, 459 &xn_num_queues, "Number of pairs of queues"); 460 461 return (0); 462 } 463 464 static int 465 netfront_suspend(device_t dev) 466 { 467 struct netfront_info *np = device_get_softc(dev); 468 u_int i; 469 470 for (i = 0; i < np->num_queues; i++) { 471 XN_RX_LOCK(&np->rxq[i]); 472 XN_TX_LOCK(&np->txq[i]); 473 } 474 netfront_carrier_off(np); 475 for (i = 0; i < np->num_queues; i++) { 476 XN_RX_UNLOCK(&np->rxq[i]); 477 XN_TX_UNLOCK(&np->txq[i]); 478 } 479 return (0); 480 } 481 482 /** 483 * We are reconnecting to the backend, due to a suspend/resume, or a backend 484 * driver restart. We tear down our netif structure and recreate it, but 485 * leave the device-layer structures intact so that this is transparent to the 486 * rest of the kernel. 487 */ 488 static int 489 netfront_resume(device_t dev) 490 { 491 struct netfront_info *info = device_get_softc(dev); 492 u_int i; 493 494 if (xen_suspend_cancelled) { 495 for (i = 0; i < info->num_queues; i++) { 496 XN_RX_LOCK(&info->rxq[i]); 497 XN_TX_LOCK(&info->txq[i]); 498 } 499 netfront_carrier_on(info); 500 for (i = 0; i < info->num_queues; i++) { 501 XN_RX_UNLOCK(&info->rxq[i]); 502 XN_TX_UNLOCK(&info->txq[i]); 503 } 504 return (0); 505 } 506 507 netif_disconnect_backend(info); 508 return (0); 509 } 510 511 static int 512 write_queue_xenstore_keys(device_t dev, 513 struct netfront_rxq *rxq, 514 struct netfront_txq *txq, 515 struct xs_transaction *xst, bool hierarchy) 516 { 517 int err; 518 const char *message; 519 const char *node = xenbus_get_node(dev); 520 char *path; 521 size_t path_size; 522 523 KASSERT(rxq->id == txq->id, ("Mismatch between RX and TX queue ids")); 524 /* Split event channel support is not yet there. */ 525 KASSERT(rxq->xen_intr_handle == txq->xen_intr_handle, 526 ("Split event channels are not supported")); 527 528 if (hierarchy) { 529 path_size = strlen(node) + 10; 530 path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO); 531 snprintf(path, path_size, "%s/queue-%u", node, rxq->id); 532 } else { 533 path_size = strlen(node) + 1; 534 path = malloc(path_size, M_DEVBUF, M_WAITOK|M_ZERO); 535 snprintf(path, path_size, "%s", node); 536 } 537 538 err = xs_printf(*xst, path, "tx-ring-ref","%u", txq->ring_ref); 539 if (err != 0) { 540 message = "writing tx ring-ref"; 541 goto error; 542 } 543 err = xs_printf(*xst, path, "rx-ring-ref","%u", rxq->ring_ref); 544 if (err != 0) { 545 message = "writing rx ring-ref"; 546 goto error; 547 } 548 err = xs_printf(*xst, path, "event-channel", "%u", 549 xen_intr_port(rxq->xen_intr_handle)); 550 if (err != 0) { 551 message = "writing event-channel"; 552 goto error; 553 } 554 555 free(path, M_DEVBUF); 556 557 return (0); 558 559 error: 560 free(path, M_DEVBUF); 561 xenbus_dev_fatal(dev, err, "%s", message); 562 563 return (err); 564 } 565 566 /* Common code used when first setting up, and when resuming. */ 567 static int 568 talk_to_backend(device_t dev, struct netfront_info *info) 569 { 570 const char *message; 571 struct xs_transaction xst; 572 const char *node = xenbus_get_node(dev); 573 int err; 574 unsigned long num_queues, max_queues = 0; 575 unsigned int i; 576 577 err = xen_net_read_mac(dev, info->mac); 578 if (err != 0) { 579 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 580 goto out; 581 } 582 583 err = xs_scanf(XST_NIL, xenbus_get_otherend_path(info->xbdev), 584 "multi-queue-max-queues", NULL, "%lu", &max_queues); 585 if (err != 0) 586 max_queues = 1; 587 num_queues = xn_num_queues; 588 if (num_queues > max_queues) 589 num_queues = max_queues; 590 591 err = setup_device(dev, info, num_queues); 592 if (err != 0) 593 goto out; 594 595 again: 596 err = xs_transaction_start(&xst); 597 if (err != 0) { 598 xenbus_dev_fatal(dev, err, "starting transaction"); 599 goto free; 600 } 601 602 if (info->num_queues == 1) { 603 err = write_queue_xenstore_keys(dev, &info->rxq[0], 604 &info->txq[0], &xst, false); 605 if (err != 0) 606 goto abort_transaction_no_def_error; 607 } else { 608 err = xs_printf(xst, node, "multi-queue-num-queues", 609 "%u", info->num_queues); 610 if (err != 0) { 611 message = "writing multi-queue-num-queues"; 612 goto abort_transaction; 613 } 614 615 for (i = 0; i < info->num_queues; i++) { 616 err = write_queue_xenstore_keys(dev, &info->rxq[i], 617 &info->txq[i], &xst, true); 618 if (err != 0) 619 goto abort_transaction_no_def_error; 620 } 621 } 622 623 err = xs_printf(xst, node, "request-rx-copy", "%u", 1); 624 if (err != 0) { 625 message = "writing request-rx-copy"; 626 goto abort_transaction; 627 } 628 err = xs_printf(xst, node, "feature-rx-notify", "%d", 1); 629 if (err != 0) { 630 message = "writing feature-rx-notify"; 631 goto abort_transaction; 632 } 633 err = xs_printf(xst, node, "feature-sg", "%d", 1); 634 if (err != 0) { 635 message = "writing feature-sg"; 636 goto abort_transaction; 637 } 638 if ((if_getcapenable(info->xn_ifp) & IFCAP_LRO) != 0) { 639 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1); 640 if (err != 0) { 641 message = "writing feature-gso-tcpv4"; 642 goto abort_transaction; 643 } 644 } 645 if ((if_getcapenable(info->xn_ifp) & IFCAP_RXCSUM) == 0) { 646 err = xs_printf(xst, node, "feature-no-csum-offload", "%d", 1); 647 if (err != 0) { 648 message = "writing feature-no-csum-offload"; 649 goto abort_transaction; 650 } 651 } 652 653 err = xs_transaction_end(xst, 0); 654 if (err != 0) { 655 if (err == EAGAIN) 656 goto again; 657 xenbus_dev_fatal(dev, err, "completing transaction"); 658 goto free; 659 } 660 661 return 0; 662 663 abort_transaction: 664 xenbus_dev_fatal(dev, err, "%s", message); 665 abort_transaction_no_def_error: 666 xs_transaction_end(xst, 1); 667 free: 668 netif_free(info); 669 out: 670 return (err); 671 } 672 673 static void 674 xn_rxq_intr(struct netfront_rxq *rxq) 675 { 676 677 XN_RX_LOCK(rxq); 678 xn_rxeof(rxq); 679 XN_RX_UNLOCK(rxq); 680 } 681 682 static void 683 xn_txq_start(struct netfront_txq *txq) 684 { 685 struct netfront_info *np = txq->info; 686 if_t ifp = np->xn_ifp; 687 688 XN_TX_LOCK_ASSERT(txq); 689 if (!drbr_empty(ifp, txq->br)) 690 xn_txq_mq_start_locked(txq, NULL); 691 } 692 693 static void 694 xn_txq_intr(struct netfront_txq *txq) 695 { 696 697 XN_TX_LOCK(txq); 698 if (RING_HAS_UNCONSUMED_RESPONSES(&txq->ring)) 699 xn_txeof(txq); 700 xn_txq_start(txq); 701 XN_TX_UNLOCK(txq); 702 } 703 704 static void 705 xn_txq_tq_deferred(void *xtxq, int pending) 706 { 707 struct netfront_txq *txq = xtxq; 708 709 XN_TX_LOCK(txq); 710 xn_txq_start(txq); 711 XN_TX_UNLOCK(txq); 712 } 713 714 static void 715 disconnect_rxq(struct netfront_rxq *rxq) 716 { 717 718 xn_release_rx_bufs(rxq); 719 gnttab_free_grant_references(rxq->gref_head); 720 gnttab_end_foreign_access(rxq->ring_ref, NULL); 721 /* 722 * No split event channel support at the moment, handle will 723 * be unbound in tx. So no need to call xen_intr_unbind here, 724 * but we do want to reset the handler to 0. 725 */ 726 rxq->xen_intr_handle = 0; 727 } 728 729 static void 730 destroy_rxq(struct netfront_rxq *rxq) 731 { 732 733 callout_drain(&rxq->rx_refill); 734 free(rxq->ring.sring, M_DEVBUF); 735 } 736 737 static void 738 destroy_rxqs(struct netfront_info *np) 739 { 740 int i; 741 742 for (i = 0; i < np->num_queues; i++) 743 destroy_rxq(&np->rxq[i]); 744 745 free(np->rxq, M_DEVBUF); 746 np->rxq = NULL; 747 } 748 749 static int 750 setup_rxqs(device_t dev, struct netfront_info *info, 751 unsigned long num_queues) 752 { 753 int q, i; 754 int error; 755 netif_rx_sring_t *rxs; 756 struct netfront_rxq *rxq; 757 758 info->rxq = malloc(sizeof(struct netfront_rxq) * num_queues, 759 M_DEVBUF, M_WAITOK|M_ZERO); 760 761 for (q = 0; q < num_queues; q++) { 762 rxq = &info->rxq[q]; 763 764 rxq->id = q; 765 rxq->info = info; 766 rxq->ring_ref = GRANT_REF_INVALID; 767 rxq->ring.sring = NULL; 768 snprintf(rxq->name, XN_QUEUE_NAME_LEN, "xnrx_%u", q); 769 mtx_init(&rxq->lock, rxq->name, "netfront receive lock", 770 MTX_DEF); 771 772 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 773 rxq->mbufs[i] = NULL; 774 rxq->grant_ref[i] = GRANT_REF_INVALID; 775 } 776 777 /* Start resources allocation */ 778 779 if (gnttab_alloc_grant_references(NET_RX_RING_SIZE, 780 &rxq->gref_head) != 0) { 781 device_printf(dev, "allocating rx gref"); 782 error = ENOMEM; 783 goto fail; 784 } 785 786 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, 787 M_WAITOK|M_ZERO); 788 SHARED_RING_INIT(rxs); 789 FRONT_RING_INIT(&rxq->ring, rxs, PAGE_SIZE); 790 791 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), 792 &rxq->ring_ref); 793 if (error != 0) { 794 device_printf(dev, "granting rx ring page"); 795 goto fail_grant_ring; 796 } 797 798 callout_init(&rxq->rx_refill, 1); 799 } 800 801 return (0); 802 803 fail_grant_ring: 804 gnttab_free_grant_references(rxq->gref_head); 805 free(rxq->ring.sring, M_DEVBUF); 806 fail: 807 for (; q >= 0; q--) { 808 disconnect_rxq(&info->rxq[q]); 809 destroy_rxq(&info->rxq[q]); 810 } 811 812 free(info->rxq, M_DEVBUF); 813 return (error); 814 } 815 816 static void 817 disconnect_txq(struct netfront_txq *txq) 818 { 819 820 xn_release_tx_bufs(txq); 821 gnttab_free_grant_references(txq->gref_head); 822 gnttab_end_foreign_access(txq->ring_ref, NULL); 823 xen_intr_unbind(&txq->xen_intr_handle); 824 } 825 826 static void 827 destroy_txq(struct netfront_txq *txq) 828 { 829 unsigned int i; 830 831 free(txq->ring.sring, M_DEVBUF); 832 buf_ring_free(txq->br, M_DEVBUF); 833 taskqueue_drain_all(txq->tq); 834 taskqueue_free(txq->tq); 835 836 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 837 bus_dmamap_destroy(txq->info->dma_tag, 838 txq->xennet_tag[i].dma_map); 839 txq->xennet_tag[i].dma_map = NULL; 840 } 841 } 842 843 static void 844 destroy_txqs(struct netfront_info *np) 845 { 846 int i; 847 848 for (i = 0; i < np->num_queues; i++) 849 destroy_txq(&np->txq[i]); 850 851 free(np->txq, M_DEVBUF); 852 np->txq = NULL; 853 } 854 855 static int 856 setup_txqs(device_t dev, struct netfront_info *info, 857 unsigned long num_queues) 858 { 859 int q, i; 860 int error; 861 netif_tx_sring_t *txs; 862 struct netfront_txq *txq; 863 864 info->txq = malloc(sizeof(struct netfront_txq) * num_queues, 865 M_DEVBUF, M_WAITOK|M_ZERO); 866 867 for (q = 0; q < num_queues; q++) { 868 txq = &info->txq[q]; 869 870 txq->id = q; 871 txq->info = info; 872 873 txq->ring_ref = GRANT_REF_INVALID; 874 txq->ring.sring = NULL; 875 876 snprintf(txq->name, XN_QUEUE_NAME_LEN, "xntx_%u", q); 877 878 mtx_init(&txq->lock, txq->name, "netfront transmit lock", 879 MTX_DEF); 880 SLIST_INIT(&txq->tags); 881 882 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 883 txq->mbufs[i] = (void *) ((u_long) i+1); 884 txq->grant_ref[i] = GRANT_REF_INVALID; 885 txq->xennet_tag[i].txq = txq; 886 txq->xennet_tag[i].dma_tag = info->dma_tag; 887 error = bus_dmamap_create(info->dma_tag, 0, 888 &txq->xennet_tag[i].dma_map); 889 if (error != 0) { 890 device_printf(dev, 891 "failed to allocate dma map\n"); 892 goto fail; 893 } 894 m_tag_setup(&txq->xennet_tag[i].tag, 895 MTAG_COOKIE, MTAG_XENNET, 896 sizeof(txq->xennet_tag[i]) - 897 sizeof(txq->xennet_tag[i].tag)); 898 txq->xennet_tag[i].tag.m_tag_free = &tag_free; 899 SLIST_INSERT_HEAD(&txq->tags, &txq->xennet_tag[i], 900 next); 901 } 902 txq->mbufs[NET_TX_RING_SIZE] = (void *)0; 903 904 /* Start resources allocation. */ 905 906 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 907 &txq->gref_head) != 0) { 908 device_printf(dev, "failed to allocate tx grant refs\n"); 909 error = ENOMEM; 910 goto fail; 911 } 912 913 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, 914 M_WAITOK|M_ZERO); 915 SHARED_RING_INIT(txs); 916 FRONT_RING_INIT(&txq->ring, txs, PAGE_SIZE); 917 918 error = xenbus_grant_ring(dev, virt_to_mfn(txs), 919 &txq->ring_ref); 920 if (error != 0) { 921 device_printf(dev, "failed to grant tx ring\n"); 922 goto fail_grant_ring; 923 } 924 925 txq->br = buf_ring_alloc(NET_TX_RING_SIZE, M_DEVBUF, 926 M_WAITOK, &txq->lock); 927 TASK_INIT(&txq->defrtask, 0, xn_txq_tq_deferred, txq); 928 929 txq->tq = taskqueue_create(txq->name, M_WAITOK, 930 taskqueue_thread_enqueue, &txq->tq); 931 932 error = taskqueue_start_threads(&txq->tq, 1, PI_NET, 933 "%s txq %d", device_get_nameunit(dev), txq->id); 934 if (error != 0) { 935 device_printf(dev, "failed to start tx taskq %d\n", 936 txq->id); 937 goto fail_start_thread; 938 } 939 940 error = xen_intr_alloc_and_bind_local_port(dev, 941 xenbus_get_otherend_id(dev), /* filter */ NULL, xn_intr, 942 &info->txq[q], INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, 943 &txq->xen_intr_handle); 944 945 if (error != 0) { 946 device_printf(dev, "xen_intr_alloc_and_bind_local_port failed\n"); 947 goto fail_bind_port; 948 } 949 } 950 951 return (0); 952 953 fail_bind_port: 954 taskqueue_drain_all(txq->tq); 955 fail_start_thread: 956 buf_ring_free(txq->br, M_DEVBUF); 957 taskqueue_free(txq->tq); 958 gnttab_end_foreign_access(txq->ring_ref, NULL); 959 fail_grant_ring: 960 gnttab_free_grant_references(txq->gref_head); 961 free(txq->ring.sring, M_DEVBUF); 962 fail: 963 for (; q >= 0; q--) { 964 disconnect_txq(&info->txq[q]); 965 destroy_txq(&info->txq[q]); 966 } 967 968 free(info->txq, M_DEVBUF); 969 return (error); 970 } 971 972 static int 973 setup_device(device_t dev, struct netfront_info *info, 974 unsigned long num_queues) 975 { 976 int error; 977 int q; 978 979 if (info->txq) 980 destroy_txqs(info); 981 982 if (info->rxq) 983 destroy_rxqs(info); 984 985 info->num_queues = 0; 986 987 error = setup_rxqs(dev, info, num_queues); 988 if (error != 0) 989 goto out; 990 error = setup_txqs(dev, info, num_queues); 991 if (error != 0) 992 goto out; 993 994 info->num_queues = num_queues; 995 996 /* No split event channel at the moment. */ 997 for (q = 0; q < num_queues; q++) 998 info->rxq[q].xen_intr_handle = info->txq[q].xen_intr_handle; 999 1000 return (0); 1001 1002 out: 1003 KASSERT(error != 0, ("Error path taken without providing an error code")); 1004 return (error); 1005 } 1006 1007 #ifdef INET 1008 static u_int 1009 netfront_addr_cb(void *arg, struct ifaddr *a, u_int count) 1010 { 1011 arp_ifinit((if_t)arg, a); 1012 return (1); 1013 } 1014 /** 1015 * If this interface has an ipv4 address, send an arp for it. This 1016 * helps to get the network going again after migrating hosts. 1017 */ 1018 static void 1019 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 1020 { 1021 if_t ifp; 1022 1023 ifp = info->xn_ifp; 1024 if_foreach_addr_type(ifp, AF_INET, netfront_addr_cb, ifp); 1025 } 1026 #endif 1027 1028 /** 1029 * Callback received when the backend's state changes. 1030 */ 1031 static void 1032 netfront_backend_changed(device_t dev, XenbusState newstate) 1033 { 1034 struct netfront_info *sc = device_get_softc(dev); 1035 1036 DPRINTK("newstate=%d\n", newstate); 1037 1038 CURVNET_SET(if_getvnet(sc->xn_ifp)); 1039 1040 switch (newstate) { 1041 case XenbusStateInitialising: 1042 case XenbusStateInitialised: 1043 case XenbusStateUnknown: 1044 case XenbusStateReconfigured: 1045 case XenbusStateReconfiguring: 1046 break; 1047 case XenbusStateInitWait: 1048 if (xenbus_get_state(dev) != XenbusStateInitialising) 1049 break; 1050 if (xn_connect(sc) != 0) 1051 break; 1052 /* Switch to connected state before kicking the rings. */ 1053 xenbus_set_state(sc->xbdev, XenbusStateConnected); 1054 xn_kick_rings(sc); 1055 break; 1056 case XenbusStateClosing: 1057 xenbus_set_state(dev, XenbusStateClosed); 1058 break; 1059 case XenbusStateClosed: 1060 if (sc->xn_reset) { 1061 netif_disconnect_backend(sc); 1062 xenbus_set_state(dev, XenbusStateInitialising); 1063 sc->xn_reset = false; 1064 } 1065 break; 1066 case XenbusStateConnected: 1067 #ifdef INET 1068 netfront_send_fake_arp(dev, sc); 1069 #endif 1070 break; 1071 } 1072 1073 CURVNET_RESTORE(); 1074 } 1075 1076 /** 1077 * \brief Verify that there is sufficient space in the Tx ring 1078 * buffer for a maximally sized request to be enqueued. 1079 * 1080 * A transmit request requires a transmit descriptor for each packet 1081 * fragment, plus up to 2 entries for "options" (e.g. TSO). 1082 */ 1083 static inline int 1084 xn_tx_slot_available(struct netfront_txq *txq) 1085 { 1086 1087 return (RING_FREE_REQUESTS(&txq->ring) > (MAX_TX_REQ_FRAGS + 2)); 1088 } 1089 1090 static void 1091 xn_release_tx_bufs(struct netfront_txq *txq) 1092 { 1093 int i; 1094 1095 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 1096 struct mbuf *m; 1097 1098 m = txq->mbufs[i]; 1099 1100 /* 1101 * We assume that no kernel addresses are 1102 * less than NET_TX_RING_SIZE. Any entry 1103 * in the table that is below this number 1104 * must be an index from free-list tracking. 1105 */ 1106 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 1107 continue; 1108 gnttab_end_foreign_access_ref(txq->grant_ref[i]); 1109 gnttab_release_grant_reference(&txq->gref_head, 1110 txq->grant_ref[i]); 1111 txq->grant_ref[i] = GRANT_REF_INVALID; 1112 add_id_to_freelist(txq->mbufs, i); 1113 txq->mbufs_cnt--; 1114 if (txq->mbufs_cnt < 0) { 1115 panic("%s: tx_chain_cnt must be >= 0", __func__); 1116 } 1117 mbuf_release(m); 1118 } 1119 } 1120 1121 static struct mbuf * 1122 xn_alloc_one_rx_buffer(struct netfront_rxq *rxq) 1123 { 1124 struct mbuf *m; 1125 1126 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1127 if (m == NULL) 1128 return NULL; 1129 m->m_len = m->m_pkthdr.len = MJUMPAGESIZE; 1130 1131 return (m); 1132 } 1133 1134 static void 1135 xn_alloc_rx_buffers(struct netfront_rxq *rxq) 1136 { 1137 RING_IDX req_prod; 1138 int notify; 1139 1140 XN_RX_LOCK_ASSERT(rxq); 1141 1142 if (__predict_false(rxq->info->carrier == 0)) 1143 return; 1144 1145 for (req_prod = rxq->ring.req_prod_pvt; 1146 req_prod - rxq->ring.rsp_cons < NET_RX_RING_SIZE; 1147 req_prod++) { 1148 struct mbuf *m; 1149 unsigned short id; 1150 grant_ref_t ref; 1151 struct netif_rx_request *req; 1152 unsigned long pfn; 1153 1154 m = xn_alloc_one_rx_buffer(rxq); 1155 if (m == NULL) 1156 break; 1157 1158 id = xn_rxidx(req_prod); 1159 1160 KASSERT(rxq->mbufs[id] == NULL, ("non-NULL xn_rx_chain")); 1161 rxq->mbufs[id] = m; 1162 1163 ref = gnttab_claim_grant_reference(&rxq->gref_head); 1164 KASSERT(ref != GNTTAB_LIST_END, 1165 ("reserved grant references exhuasted")); 1166 rxq->grant_ref[id] = ref; 1167 1168 pfn = atop(vtophys(mtod(m, vm_offset_t))); 1169 req = RING_GET_REQUEST(&rxq->ring, req_prod); 1170 1171 gnttab_grant_foreign_access_ref(ref, 1172 xenbus_get_otherend_id(rxq->info->xbdev), pfn, 0); 1173 req->id = id; 1174 req->gref = ref; 1175 } 1176 1177 rxq->ring.req_prod_pvt = req_prod; 1178 1179 /* Not enough requests? Try again later. */ 1180 if (req_prod - rxq->ring.rsp_cons < NET_RX_SLOTS_MIN) { 1181 callout_reset_curcpu(&rxq->rx_refill, hz/10, 1182 xn_alloc_rx_buffers_callout, rxq); 1183 return; 1184 } 1185 1186 wmb(); /* barrier so backend seens requests */ 1187 1188 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rxq->ring, notify); 1189 if (notify) 1190 xen_intr_signal(rxq->xen_intr_handle); 1191 } 1192 1193 static void xn_alloc_rx_buffers_callout(void *arg) 1194 { 1195 struct netfront_rxq *rxq; 1196 1197 rxq = (struct netfront_rxq *)arg; 1198 XN_RX_LOCK(rxq); 1199 xn_alloc_rx_buffers(rxq); 1200 XN_RX_UNLOCK(rxq); 1201 } 1202 1203 static void 1204 xn_release_rx_bufs(struct netfront_rxq *rxq) 1205 { 1206 int i, ref; 1207 struct mbuf *m; 1208 1209 for (i = 0; i < NET_RX_RING_SIZE; i++) { 1210 m = rxq->mbufs[i]; 1211 1212 if (m == NULL) 1213 continue; 1214 1215 ref = rxq->grant_ref[i]; 1216 if (ref == GRANT_REF_INVALID) 1217 continue; 1218 1219 gnttab_end_foreign_access_ref(ref); 1220 gnttab_release_grant_reference(&rxq->gref_head, ref); 1221 rxq->mbufs[i] = NULL; 1222 rxq->grant_ref[i] = GRANT_REF_INVALID; 1223 m_freem(m); 1224 } 1225 } 1226 1227 static void 1228 xn_rxeof(struct netfront_rxq *rxq) 1229 { 1230 if_t ifp; 1231 struct netfront_info *np = rxq->info; 1232 #if (defined(INET) || defined(INET6)) 1233 struct lro_ctrl *lro = &rxq->lro; 1234 #endif 1235 struct netfront_rx_info rinfo; 1236 struct netif_rx_response *rx = &rinfo.rx; 1237 struct netif_extra_info *extras = rinfo.extras; 1238 RING_IDX i, rp; 1239 struct mbuf *m; 1240 struct mbufq mbufq_rxq, mbufq_errq; 1241 int err, work_to_do; 1242 1243 XN_RX_LOCK_ASSERT(rxq); 1244 1245 if (!netfront_carrier_ok(np)) 1246 return; 1247 1248 /* XXX: there should be some sane limit. */ 1249 mbufq_init(&mbufq_errq, INT_MAX); 1250 mbufq_init(&mbufq_rxq, INT_MAX); 1251 1252 ifp = np->xn_ifp; 1253 1254 do { 1255 rp = rxq->ring.sring->rsp_prod; 1256 rmb(); /* Ensure we see queued responses up to 'rp'. */ 1257 1258 i = rxq->ring.rsp_cons; 1259 while ((i != rp)) { 1260 memcpy(rx, RING_GET_RESPONSE(&rxq->ring, i), sizeof(*rx)); 1261 memset(extras, 0, sizeof(rinfo.extras)); 1262 1263 m = NULL; 1264 err = xn_get_responses(rxq, &rinfo, rp, &i, &m); 1265 1266 if (__predict_false(err)) { 1267 if (m) 1268 (void )mbufq_enqueue(&mbufq_errq, m); 1269 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1270 continue; 1271 } 1272 1273 m->m_pkthdr.rcvif = ifp; 1274 if (rx->flags & NETRXF_data_validated) { 1275 /* 1276 * According to mbuf(9) the correct way to tell 1277 * the stack that the checksum of an inbound 1278 * packet is correct, without it actually being 1279 * present (because the underlying interface 1280 * doesn't provide it), is to set the 1281 * CSUM_DATA_VALID and CSUM_PSEUDO_HDR flags, 1282 * and the csum_data field to 0xffff. 1283 */ 1284 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID 1285 | CSUM_PSEUDO_HDR); 1286 m->m_pkthdr.csum_data = 0xffff; 1287 } 1288 if ((rx->flags & NETRXF_extra_info) != 0 && 1289 (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type == 1290 XEN_NETIF_EXTRA_TYPE_GSO)) { 1291 m->m_pkthdr.tso_segsz = 1292 extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].u.gso.size; 1293 m->m_pkthdr.csum_flags |= CSUM_TSO; 1294 } 1295 1296 (void )mbufq_enqueue(&mbufq_rxq, m); 1297 } 1298 1299 rxq->ring.rsp_cons = i; 1300 1301 xn_alloc_rx_buffers(rxq); 1302 1303 RING_FINAL_CHECK_FOR_RESPONSES(&rxq->ring, work_to_do); 1304 } while (work_to_do); 1305 1306 mbufq_drain(&mbufq_errq); 1307 /* 1308 * Process all the mbufs after the remapping is complete. 1309 * Break the mbuf chain first though. 1310 */ 1311 while ((m = mbufq_dequeue(&mbufq_rxq)) != NULL) { 1312 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1313 #if (defined(INET) || defined(INET6)) 1314 /* Use LRO if possible */ 1315 if ((if_getcapenable(ifp) & IFCAP_LRO) == 0 || 1316 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1317 /* 1318 * If LRO fails, pass up to the stack 1319 * directly. 1320 */ 1321 if_input(ifp, m); 1322 } 1323 #else 1324 if_input(ifp, m); 1325 #endif 1326 } 1327 1328 #if (defined(INET) || defined(INET6)) 1329 /* 1330 * Flush any outstanding LRO work 1331 */ 1332 tcp_lro_flush_all(lro); 1333 #endif 1334 } 1335 1336 static void 1337 xn_txeof(struct netfront_txq *txq) 1338 { 1339 RING_IDX i, prod; 1340 unsigned short id; 1341 if_t ifp; 1342 netif_tx_response_t *txr; 1343 struct mbuf *m; 1344 struct netfront_info *np = txq->info; 1345 1346 XN_TX_LOCK_ASSERT(txq); 1347 1348 if (!netfront_carrier_ok(np)) 1349 return; 1350 1351 ifp = np->xn_ifp; 1352 1353 do { 1354 prod = txq->ring.sring->rsp_prod; 1355 rmb(); /* Ensure we see responses up to 'rp'. */ 1356 1357 for (i = txq->ring.rsp_cons; i != prod; i++) { 1358 txr = RING_GET_RESPONSE(&txq->ring, i); 1359 if (txr->status == NETIF_RSP_NULL) 1360 continue; 1361 1362 if (txr->status != NETIF_RSP_OKAY) { 1363 printf("%s: WARNING: response is %d!\n", 1364 __func__, txr->status); 1365 } 1366 id = txr->id; 1367 m = txq->mbufs[id]; 1368 KASSERT(m != NULL, ("mbuf not found in chain")); 1369 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1370 ("mbuf already on the free list, but we're " 1371 "trying to free it again!")); 1372 M_ASSERTVALID(m); 1373 1374 if (__predict_false(gnttab_query_foreign_access( 1375 txq->grant_ref[id]) != 0)) { 1376 panic("%s: grant id %u still in use by the " 1377 "backend", __func__, id); 1378 } 1379 gnttab_end_foreign_access_ref(txq->grant_ref[id]); 1380 gnttab_release_grant_reference( 1381 &txq->gref_head, txq->grant_ref[id]); 1382 txq->grant_ref[id] = GRANT_REF_INVALID; 1383 1384 txq->mbufs[id] = NULL; 1385 add_id_to_freelist(txq->mbufs, id); 1386 txq->mbufs_cnt--; 1387 mbuf_release(m); 1388 /* Only mark the txq active if we've freed up at least one slot to try */ 1389 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 1390 } 1391 txq->ring.rsp_cons = prod; 1392 1393 /* 1394 * Set a new event, then check for race with update of 1395 * tx_cons. Note that it is essential to schedule a 1396 * callback, no matter how few buffers are pending. Even if 1397 * there is space in the transmit ring, higher layers may 1398 * be blocked because too much data is outstanding: in such 1399 * cases notification from Xen is likely to be the only kick 1400 * that we'll get. 1401 */ 1402 txq->ring.sring->rsp_event = 1403 prod + ((txq->ring.sring->req_prod - prod) >> 1) + 1; 1404 1405 mb(); 1406 } while (prod != txq->ring.sring->rsp_prod); 1407 1408 if (txq->full && 1409 ((txq->ring.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1410 txq->full = false; 1411 xn_txq_start(txq); 1412 } 1413 } 1414 1415 static void 1416 xn_intr(void *xsc) 1417 { 1418 struct netfront_txq *txq = xsc; 1419 struct netfront_info *np = txq->info; 1420 struct netfront_rxq *rxq = &np->rxq[txq->id]; 1421 1422 /* kick both tx and rx */ 1423 xn_rxq_intr(rxq); 1424 xn_txq_intr(txq); 1425 } 1426 1427 static void 1428 xn_move_rx_slot(struct netfront_rxq *rxq, struct mbuf *m, 1429 grant_ref_t ref) 1430 { 1431 int new = xn_rxidx(rxq->ring.req_prod_pvt); 1432 1433 KASSERT(rxq->mbufs[new] == NULL, ("mbufs != NULL")); 1434 rxq->mbufs[new] = m; 1435 rxq->grant_ref[new] = ref; 1436 RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->id = new; 1437 RING_GET_REQUEST(&rxq->ring, rxq->ring.req_prod_pvt)->gref = ref; 1438 rxq->ring.req_prod_pvt++; 1439 } 1440 1441 static int 1442 xn_get_extras(struct netfront_rxq *rxq, 1443 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1444 { 1445 struct netif_extra_info *extra; 1446 1447 int err = 0; 1448 1449 do { 1450 struct mbuf *m; 1451 grant_ref_t ref; 1452 1453 if (__predict_false(*cons + 1 == rp)) { 1454 err = EINVAL; 1455 break; 1456 } 1457 1458 extra = (struct netif_extra_info *) 1459 RING_GET_RESPONSE(&rxq->ring, ++(*cons)); 1460 1461 if (__predict_false(!extra->type || 1462 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1463 err = EINVAL; 1464 } else { 1465 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1466 } 1467 1468 m = xn_get_rx_mbuf(rxq, *cons); 1469 ref = xn_get_rx_ref(rxq, *cons); 1470 xn_move_rx_slot(rxq, m, ref); 1471 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1472 1473 return err; 1474 } 1475 1476 static int 1477 xn_get_responses(struct netfront_rxq *rxq, 1478 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1479 struct mbuf **list) 1480 { 1481 struct netif_rx_response *rx = &rinfo->rx; 1482 struct netif_extra_info *extras = rinfo->extras; 1483 struct mbuf *m, *m0, *m_prev; 1484 grant_ref_t ref = xn_get_rx_ref(rxq, *cons); 1485 int frags = 1; 1486 int err = 0; 1487 u_long ret __diagused; 1488 1489 m0 = m = m_prev = xn_get_rx_mbuf(rxq, *cons); 1490 1491 if (rx->flags & NETRXF_extra_info) { 1492 err = xn_get_extras(rxq, extras, rp, cons); 1493 } 1494 1495 if (m0 != NULL) { 1496 m0->m_pkthdr.len = 0; 1497 m0->m_next = NULL; 1498 } 1499 1500 for (;;) { 1501 #if 0 1502 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1503 rx->status, rx->offset, frags); 1504 #endif 1505 if (__predict_false(rx->status < 0 || 1506 rx->offset + rx->status > PAGE_SIZE)) { 1507 xn_move_rx_slot(rxq, m, ref); 1508 if (m0 == m) 1509 m0 = NULL; 1510 m = NULL; 1511 err = EINVAL; 1512 goto next_skip_queue; 1513 } 1514 1515 /* 1516 * This definitely indicates a bug, either in this driver or in 1517 * the backend driver. In future this should flag the bad 1518 * situation to the system controller to reboot the backed. 1519 */ 1520 if (ref == GRANT_REF_INVALID) { 1521 printf("%s: Bad rx response id %d.\n", __func__, rx->id); 1522 err = EINVAL; 1523 goto next; 1524 } 1525 1526 ret = gnttab_end_foreign_access_ref(ref); 1527 KASSERT(ret, ("Unable to end access to grant references")); 1528 1529 gnttab_release_grant_reference(&rxq->gref_head, ref); 1530 1531 next: 1532 if (m == NULL) 1533 break; 1534 1535 m->m_len = rx->status; 1536 m->m_data += rx->offset; 1537 m0->m_pkthdr.len += rx->status; 1538 1539 next_skip_queue: 1540 if (!(rx->flags & NETRXF_more_data)) 1541 break; 1542 1543 if (*cons + frags == rp) { 1544 if (net_ratelimit()) 1545 WPRINTK("Need more frags\n"); 1546 err = ENOENT; 1547 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1548 __func__, *cons, frags, rp); 1549 break; 1550 } 1551 /* 1552 * Note that m can be NULL, if rx->status < 0 or if 1553 * rx->offset + rx->status > PAGE_SIZE above. 1554 */ 1555 m_prev = m; 1556 1557 rx = RING_GET_RESPONSE(&rxq->ring, *cons + frags); 1558 m = xn_get_rx_mbuf(rxq, *cons + frags); 1559 1560 /* 1561 * m_prev == NULL can happen if rx->status < 0 or if 1562 * rx->offset + * rx->status > PAGE_SIZE above. 1563 */ 1564 if (m_prev != NULL) 1565 m_prev->m_next = m; 1566 1567 /* 1568 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1569 * rx->status > PAGE_SIZE above. 1570 */ 1571 if (m0 == NULL) 1572 m0 = m; 1573 m->m_next = NULL; 1574 ref = xn_get_rx_ref(rxq, *cons + frags); 1575 frags++; 1576 } 1577 *list = m0; 1578 *cons += frags; 1579 1580 return (err); 1581 } 1582 1583 /** 1584 * Given an mbuf chain, make sure we have enough room and then push 1585 * it onto the transmit ring. 1586 */ 1587 static int 1588 xn_assemble_tx_request(struct netfront_txq *txq, struct mbuf *m_head) 1589 { 1590 struct netfront_info *np = txq->info; 1591 if_t ifp = np->xn_ifp; 1592 int otherend_id, error, nfrags; 1593 bus_dma_segment_t *segs = txq->segs; 1594 struct mbuf_xennet *tag; 1595 bus_dmamap_t map; 1596 unsigned int i; 1597 1598 KASSERT(!SLIST_EMPTY(&txq->tags), ("no tags available")); 1599 tag = SLIST_FIRST(&txq->tags); 1600 SLIST_REMOVE_HEAD(&txq->tags, next); 1601 KASSERT(tag->count == 0, ("tag already in-use")); 1602 map = tag->dma_map; 1603 error = bus_dmamap_load_mbuf_sg(np->dma_tag, map, m_head, segs, 1604 &nfrags, 0); 1605 if (error == EFBIG || nfrags > np->maxfrags) { 1606 struct mbuf *m; 1607 1608 bus_dmamap_unload(np->dma_tag, map); 1609 m = m_defrag(m_head, M_NOWAIT); 1610 if (!m) { 1611 /* 1612 * Defrag failed, so free the mbuf and 1613 * therefore drop the packet. 1614 */ 1615 SLIST_INSERT_HEAD(&txq->tags, tag, next); 1616 m_freem(m_head); 1617 return (EMSGSIZE); 1618 } 1619 m_head = m; 1620 error = bus_dmamap_load_mbuf_sg(np->dma_tag, map, m_head, segs, 1621 &nfrags, 0); 1622 if (error != 0 || nfrags > np->maxfrags) { 1623 bus_dmamap_unload(np->dma_tag, map); 1624 SLIST_INSERT_HEAD(&txq->tags, tag, next); 1625 m_freem(m_head); 1626 return (error ?: EFBIG); 1627 } 1628 } else if (error != 0) { 1629 SLIST_INSERT_HEAD(&txq->tags, tag, next); 1630 m_freem(m_head); 1631 return (error); 1632 } 1633 1634 /** 1635 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1636 * of mbufs longer than Linux can handle. Make sure we don't 1637 * pass a too-long chain over to the other side by dropping the 1638 * packet. It doesn't look like there is currently a way to 1639 * tell the TCP stack to generate a shorter chain of packets. 1640 */ 1641 if (nfrags > MAX_TX_REQ_FRAGS) { 1642 #ifdef DEBUG 1643 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback " 1644 "won't be able to handle it, dropping\n", 1645 __func__, nfrags, MAX_TX_REQ_FRAGS); 1646 #endif 1647 SLIST_INSERT_HEAD(&txq->tags, tag, next); 1648 bus_dmamap_unload(np->dma_tag, map); 1649 m_freem(m_head); 1650 return (EMSGSIZE); 1651 } 1652 1653 /* 1654 * This check should be redundant. We've already verified that we 1655 * have enough slots in the ring to handle a packet of maximum 1656 * size, and that our packet is less than the maximum size. Keep 1657 * it in here as an assert for now just to make certain that 1658 * chain_cnt is accurate. 1659 */ 1660 KASSERT((txq->mbufs_cnt + nfrags) <= NET_TX_RING_SIZE, 1661 ("%s: chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1662 "(%d)!", __func__, (int) txq->mbufs_cnt, 1663 (int) nfrags, (int) NET_TX_RING_SIZE)); 1664 1665 /* 1666 * Start packing the mbufs in this chain into 1667 * the fragment pointers. Stop when we run out 1668 * of fragments or hit the end of the mbuf chain. 1669 */ 1670 otherend_id = xenbus_get_otherend_id(np->xbdev); 1671 m_tag_prepend(m_head, &tag->tag); 1672 for (i = 0; i < nfrags; i++) { 1673 netif_tx_request_t *tx; 1674 uintptr_t id; 1675 grant_ref_t ref; 1676 u_long mfn; /* XXX Wrong type? */ 1677 1678 tx = RING_GET_REQUEST(&txq->ring, txq->ring.req_prod_pvt); 1679 id = get_id_from_freelist(txq->mbufs); 1680 if (id == 0) 1681 panic("%s: was allocated the freelist head!\n", 1682 __func__); 1683 txq->mbufs_cnt++; 1684 if (txq->mbufs_cnt > NET_TX_RING_SIZE) 1685 panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n", 1686 __func__); 1687 mbuf_grab(m_head); 1688 txq->mbufs[id] = m_head; 1689 tx->id = id; 1690 ref = gnttab_claim_grant_reference(&txq->gref_head); 1691 KASSERT((short)ref >= 0, ("Negative ref")); 1692 mfn = atop(segs[i].ds_addr); 1693 gnttab_grant_foreign_access_ref(ref, otherend_id, 1694 mfn, GNTMAP_readonly); 1695 tx->gref = txq->grant_ref[id] = ref; 1696 tx->offset = segs[i].ds_addr & PAGE_MASK; 1697 KASSERT(tx->offset + segs[i].ds_len <= PAGE_SIZE, 1698 ("mbuf segment crosses a page boundary")); 1699 tx->flags = 0; 1700 if (i == 0) { 1701 /* 1702 * The first fragment has the entire packet 1703 * size, subsequent fragments have just the 1704 * fragment size. The backend works out the 1705 * true size of the first fragment by 1706 * subtracting the sizes of the other 1707 * fragments. 1708 */ 1709 tx->size = m_head->m_pkthdr.len; 1710 1711 /* 1712 * The first fragment contains the checksum flags 1713 * and is optionally followed by extra data for 1714 * TSO etc. 1715 */ 1716 /** 1717 * CSUM_TSO requires checksum offloading. 1718 * Some versions of FreeBSD fail to 1719 * set CSUM_TCP in the CSUM_TSO case, 1720 * so we have to test for CSUM_TSO 1721 * explicitly. 1722 */ 1723 if (m_head->m_pkthdr.csum_flags 1724 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1725 tx->flags |= (NETTXF_csum_blank 1726 | NETTXF_data_validated); 1727 } 1728 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { 1729 struct netif_extra_info *gso = 1730 (struct netif_extra_info *) 1731 RING_GET_REQUEST(&txq->ring, 1732 ++txq->ring.req_prod_pvt); 1733 1734 tx->flags |= NETTXF_extra_info; 1735 1736 gso->u.gso.size = m_head->m_pkthdr.tso_segsz; 1737 gso->u.gso.type = 1738 XEN_NETIF_GSO_TYPE_TCPV4; 1739 gso->u.gso.pad = 0; 1740 gso->u.gso.features = 0; 1741 1742 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1743 gso->flags = 0; 1744 } 1745 } else { 1746 tx->size = segs[i].ds_len; 1747 } 1748 if (i != nfrags - 1) 1749 tx->flags |= NETTXF_more_data; 1750 1751 txq->ring.req_prod_pvt++; 1752 } 1753 bus_dmamap_sync(np->dma_tag, map, BUS_DMASYNC_PREWRITE); 1754 BPF_MTAP(ifp, m_head); 1755 1756 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1757 if_inc_counter(ifp, IFCOUNTER_OBYTES, m_head->m_pkthdr.len); 1758 if (m_head->m_flags & M_MCAST) 1759 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 1760 1761 xn_txeof(txq); 1762 1763 return (0); 1764 } 1765 1766 /* equivalent of network_open() in Linux */ 1767 static void 1768 xn_ifinit_locked(struct netfront_info *np) 1769 { 1770 if_t ifp; 1771 int i; 1772 struct netfront_rxq *rxq; 1773 1774 XN_LOCK_ASSERT(np); 1775 1776 ifp = np->xn_ifp; 1777 1778 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING || !netfront_carrier_ok(np)) 1779 return; 1780 1781 xn_stop(np); 1782 1783 for (i = 0; i < np->num_queues; i++) { 1784 rxq = &np->rxq[i]; 1785 XN_RX_LOCK(rxq); 1786 xn_alloc_rx_buffers(rxq); 1787 rxq->ring.sring->rsp_event = rxq->ring.rsp_cons + 1; 1788 if (RING_HAS_UNCONSUMED_RESPONSES(&rxq->ring)) 1789 xn_rxeof(rxq); 1790 XN_RX_UNLOCK(rxq); 1791 } 1792 1793 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 1794 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 1795 if_link_state_change(ifp, LINK_STATE_UP); 1796 } 1797 1798 static void 1799 xn_ifinit(void *xsc) 1800 { 1801 struct netfront_info *sc = xsc; 1802 1803 XN_LOCK(sc); 1804 xn_ifinit_locked(sc); 1805 XN_UNLOCK(sc); 1806 } 1807 1808 static int 1809 xn_ioctl(if_t ifp, u_long cmd, caddr_t data) 1810 { 1811 struct netfront_info *sc = if_getsoftc(ifp); 1812 struct ifreq *ifr = (struct ifreq *) data; 1813 device_t dev; 1814 #ifdef INET 1815 struct ifaddr *ifa = (struct ifaddr *)data; 1816 #endif 1817 int mask, error = 0, reinit; 1818 1819 dev = sc->xbdev; 1820 1821 switch(cmd) { 1822 case SIOCSIFADDR: 1823 #ifdef INET 1824 XN_LOCK(sc); 1825 if (ifa->ifa_addr->sa_family == AF_INET) { 1826 if_setflagbits(ifp, IFF_UP, 0); 1827 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 1828 xn_ifinit_locked(sc); 1829 arp_ifinit(ifp, ifa); 1830 XN_UNLOCK(sc); 1831 } else { 1832 XN_UNLOCK(sc); 1833 #endif 1834 error = ether_ioctl(ifp, cmd, data); 1835 #ifdef INET 1836 } 1837 #endif 1838 break; 1839 case SIOCSIFMTU: 1840 if (if_getmtu(ifp) == ifr->ifr_mtu) 1841 break; 1842 1843 if_setmtu(ifp, ifr->ifr_mtu); 1844 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1845 xn_ifinit(sc); 1846 break; 1847 case SIOCSIFFLAGS: 1848 XN_LOCK(sc); 1849 if (if_getflags(ifp) & IFF_UP) { 1850 /* 1851 * If only the state of the PROMISC flag changed, 1852 * then just use the 'set promisc mode' command 1853 * instead of reinitializing the entire NIC. Doing 1854 * a full re-init means reloading the firmware and 1855 * waiting for it to start up, which may take a 1856 * second or two. 1857 */ 1858 xn_ifinit_locked(sc); 1859 } else { 1860 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 1861 xn_stop(sc); 1862 } 1863 } 1864 sc->xn_if_flags = if_getflags(ifp); 1865 XN_UNLOCK(sc); 1866 break; 1867 case SIOCSIFCAP: 1868 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 1869 reinit = 0; 1870 1871 if (mask & IFCAP_TXCSUM) { 1872 if_togglecapenable(ifp, IFCAP_TXCSUM); 1873 if_togglehwassist(ifp, XN_CSUM_FEATURES); 1874 } 1875 if (mask & IFCAP_TSO4) { 1876 if_togglecapenable(ifp, IFCAP_TSO4); 1877 if_togglehwassist(ifp, CSUM_TSO); 1878 } 1879 1880 if (mask & (IFCAP_RXCSUM | IFCAP_LRO)) { 1881 /* These Rx features require us to renegotiate. */ 1882 reinit = 1; 1883 1884 if (mask & IFCAP_RXCSUM) 1885 if_togglecapenable(ifp, IFCAP_RXCSUM); 1886 if (mask & IFCAP_LRO) 1887 if_togglecapenable(ifp, IFCAP_LRO); 1888 } 1889 1890 if (reinit == 0) 1891 break; 1892 1893 /* 1894 * We must reset the interface so the backend picks up the 1895 * new features. 1896 */ 1897 device_printf(sc->xbdev, 1898 "performing interface reset due to feature change\n"); 1899 XN_LOCK(sc); 1900 netfront_carrier_off(sc); 1901 sc->xn_reset = true; 1902 /* 1903 * NB: the pending packet queue is not flushed, since 1904 * the interface should still support the old options. 1905 */ 1906 XN_UNLOCK(sc); 1907 /* 1908 * Delete the xenstore nodes that export features. 1909 * 1910 * NB: There's a xenbus state called 1911 * "XenbusStateReconfiguring", which is what we should set 1912 * here. Sadly none of the backends know how to handle it, 1913 * and simply disconnect from the frontend, so we will just 1914 * switch back to XenbusStateInitialising in order to force 1915 * a reconnection. 1916 */ 1917 xs_rm(XST_NIL, xenbus_get_node(dev), "feature-gso-tcpv4"); 1918 xs_rm(XST_NIL, xenbus_get_node(dev), "feature-no-csum-offload"); 1919 xenbus_set_state(dev, XenbusStateClosing); 1920 1921 /* 1922 * Wait for the frontend to reconnect before returning 1923 * from the ioctl. 30s should be more than enough for any 1924 * sane backend to reconnect. 1925 */ 1926 error = tsleep(sc, 0, "xn_rst", 30*hz); 1927 break; 1928 case SIOCADDMULTI: 1929 case SIOCDELMULTI: 1930 break; 1931 case SIOCSIFMEDIA: 1932 case SIOCGIFMEDIA: 1933 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1934 break; 1935 default: 1936 error = ether_ioctl(ifp, cmd, data); 1937 } 1938 1939 return (error); 1940 } 1941 1942 static void 1943 xn_stop(struct netfront_info *sc) 1944 { 1945 if_t ifp; 1946 1947 XN_LOCK_ASSERT(sc); 1948 1949 ifp = sc->xn_ifp; 1950 1951 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1952 if_link_state_change(ifp, LINK_STATE_DOWN); 1953 } 1954 1955 static void 1956 xn_rebuild_rx_bufs(struct netfront_rxq *rxq) 1957 { 1958 int requeue_idx, i; 1959 grant_ref_t ref; 1960 netif_rx_request_t *req; 1961 1962 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1963 struct mbuf *m; 1964 u_long pfn; 1965 1966 if (rxq->mbufs[i] == NULL) 1967 continue; 1968 1969 m = rxq->mbufs[requeue_idx] = xn_get_rx_mbuf(rxq, i); 1970 ref = rxq->grant_ref[requeue_idx] = xn_get_rx_ref(rxq, i); 1971 1972 req = RING_GET_REQUEST(&rxq->ring, requeue_idx); 1973 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1974 1975 gnttab_grant_foreign_access_ref(ref, 1976 xenbus_get_otherend_id(rxq->info->xbdev), 1977 pfn, 0); 1978 1979 req->gref = ref; 1980 req->id = requeue_idx; 1981 1982 requeue_idx++; 1983 } 1984 1985 rxq->ring.req_prod_pvt = requeue_idx; 1986 } 1987 1988 /* START of Xenolinux helper functions adapted to FreeBSD */ 1989 static int 1990 xn_connect(struct netfront_info *np) 1991 { 1992 int i, error; 1993 u_int feature_rx_copy; 1994 struct netfront_rxq *rxq; 1995 struct netfront_txq *txq; 1996 1997 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1998 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1999 if (error != 0) 2000 feature_rx_copy = 0; 2001 2002 /* We only support rx copy. */ 2003 if (!feature_rx_copy) 2004 return (EPROTONOSUPPORT); 2005 2006 /* Recovery procedure: */ 2007 error = talk_to_backend(np->xbdev, np); 2008 if (error != 0) 2009 return (error); 2010 2011 /* Step 1: Reinitialise variables. */ 2012 xn_query_features(np); 2013 xn_configure_features(np); 2014 2015 /* Step 2: Release TX buffer */ 2016 for (i = 0; i < np->num_queues; i++) { 2017 txq = &np->txq[i]; 2018 xn_release_tx_bufs(txq); 2019 } 2020 2021 /* Step 3: Rebuild the RX buffer freelist and the RX ring itself. */ 2022 for (i = 0; i < np->num_queues; i++) { 2023 rxq = &np->rxq[i]; 2024 xn_rebuild_rx_bufs(rxq); 2025 } 2026 2027 /* Step 4: All public and private state should now be sane. Get 2028 * ready to start sending and receiving packets and give the driver 2029 * domain a kick because we've probably just requeued some 2030 * packets. 2031 */ 2032 netfront_carrier_on(np); 2033 wakeup(np); 2034 2035 return (0); 2036 } 2037 2038 static void 2039 xn_kick_rings(struct netfront_info *np) 2040 { 2041 struct netfront_rxq *rxq; 2042 struct netfront_txq *txq; 2043 int i; 2044 2045 for (i = 0; i < np->num_queues; i++) { 2046 txq = &np->txq[i]; 2047 rxq = &np->rxq[i]; 2048 xen_intr_signal(txq->xen_intr_handle); 2049 XN_TX_LOCK(txq); 2050 xn_txeof(txq); 2051 XN_TX_UNLOCK(txq); 2052 XN_RX_LOCK(rxq); 2053 xn_alloc_rx_buffers(rxq); 2054 XN_RX_UNLOCK(rxq); 2055 } 2056 } 2057 2058 static void 2059 xn_query_features(struct netfront_info *np) 2060 { 2061 int val; 2062 2063 device_printf(np->xbdev, "backend features:"); 2064 2065 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 2066 "feature-sg", NULL, "%d", &val) != 0) 2067 val = 0; 2068 2069 np->maxfrags = 1; 2070 if (val) { 2071 np->maxfrags = MAX_TX_REQ_FRAGS; 2072 printf(" feature-sg"); 2073 } 2074 2075 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 2076 "feature-gso-tcpv4", NULL, "%d", &val) != 0) 2077 val = 0; 2078 2079 if_setcapabilitiesbit(np->xn_ifp, 0, IFCAP_TSO4 | IFCAP_LRO); 2080 if (val) { 2081 if_setcapabilitiesbit(np->xn_ifp, IFCAP_TSO4 | IFCAP_LRO, 0); 2082 printf(" feature-gso-tcp4"); 2083 } 2084 2085 /* 2086 * HW CSUM offload is assumed to be available unless 2087 * feature-no-csum-offload is set in xenstore. 2088 */ 2089 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 2090 "feature-no-csum-offload", NULL, "%d", &val) != 0) 2091 val = 0; 2092 2093 if_setcapabilitiesbit(np->xn_ifp, IFCAP_HWCSUM, 0); 2094 if (val) { 2095 if_setcapabilitiesbit(np->xn_ifp, 0, IFCAP_HWCSUM); 2096 printf(" feature-no-csum-offload"); 2097 } 2098 2099 printf("\n"); 2100 } 2101 2102 static int 2103 xn_configure_features(struct netfront_info *np) 2104 { 2105 int err, cap_enabled; 2106 #if (defined(INET) || defined(INET6)) 2107 int i; 2108 #endif 2109 if_t ifp; 2110 2111 ifp = np->xn_ifp; 2112 err = 0; 2113 2114 if ((if_getcapenable(ifp) & if_getcapabilities(ifp)) == if_getcapenable(ifp)) { 2115 /* Current options are available, no need to do anything. */ 2116 return (0); 2117 } 2118 2119 /* Try to preserve as many options as possible. */ 2120 cap_enabled = if_getcapenable(ifp); 2121 if_setcapenable(ifp, 0); 2122 if_sethwassist(ifp, 0); 2123 2124 #if (defined(INET) || defined(INET6)) 2125 if ((cap_enabled & IFCAP_LRO) != 0) 2126 for (i = 0; i < np->num_queues; i++) 2127 tcp_lro_free(&np->rxq[i].lro); 2128 if (xn_enable_lro && 2129 (if_getcapabilities(ifp) & cap_enabled & IFCAP_LRO) != 0) { 2130 if_setcapenablebit(ifp, IFCAP_LRO, 0); 2131 for (i = 0; i < np->num_queues; i++) { 2132 err = tcp_lro_init(&np->rxq[i].lro); 2133 if (err != 0) { 2134 device_printf(np->xbdev, 2135 "LRO initialization failed\n"); 2136 if_setcapenablebit(ifp, 0, IFCAP_LRO); 2137 break; 2138 } 2139 np->rxq[i].lro.ifp = ifp; 2140 } 2141 } 2142 if ((if_getcapabilities(ifp) & cap_enabled & IFCAP_TSO4) != 0) { 2143 if_setcapenablebit(ifp, IFCAP_TSO4, 0); 2144 if_sethwassistbits(ifp, CSUM_TSO, 0); 2145 } 2146 #endif 2147 if ((if_getcapabilities(ifp) & cap_enabled & IFCAP_TXCSUM) != 0) { 2148 if_setcapenablebit(ifp, IFCAP_TXCSUM, 0); 2149 if_sethwassistbits(ifp, XN_CSUM_FEATURES, 0); 2150 } 2151 if ((if_getcapabilities(ifp) & cap_enabled & IFCAP_RXCSUM) != 0) 2152 if_setcapenablebit(ifp, IFCAP_RXCSUM, 0); 2153 2154 return (err); 2155 } 2156 2157 static int 2158 xn_txq_mq_start_locked(struct netfront_txq *txq, struct mbuf *m) 2159 { 2160 struct netfront_info *np; 2161 if_t ifp; 2162 struct buf_ring *br; 2163 int error, notify; 2164 2165 np = txq->info; 2166 br = txq->br; 2167 ifp = np->xn_ifp; 2168 error = 0; 2169 2170 XN_TX_LOCK_ASSERT(txq); 2171 2172 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 2173 !netfront_carrier_ok(np)) { 2174 if (m != NULL) 2175 error = drbr_enqueue(ifp, br, m); 2176 return (error); 2177 } 2178 2179 if (m != NULL) { 2180 error = drbr_enqueue(ifp, br, m); 2181 if (error != 0) 2182 return (error); 2183 } 2184 2185 while ((m = drbr_peek(ifp, br)) != NULL) { 2186 if (!xn_tx_slot_available(txq)) { 2187 drbr_putback(ifp, br, m); 2188 break; 2189 } 2190 2191 error = xn_assemble_tx_request(txq, m); 2192 /* xn_assemble_tx_request always consumes the mbuf*/ 2193 if (error != 0) { 2194 drbr_advance(ifp, br); 2195 break; 2196 } 2197 2198 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&txq->ring, notify); 2199 if (notify) 2200 xen_intr_signal(txq->xen_intr_handle); 2201 2202 drbr_advance(ifp, br); 2203 } 2204 2205 if (RING_FULL(&txq->ring)) 2206 txq->full = true; 2207 2208 return (0); 2209 } 2210 2211 static int 2212 xn_txq_mq_start(if_t ifp, struct mbuf *m) 2213 { 2214 struct netfront_info *np; 2215 struct netfront_txq *txq; 2216 int i, npairs, error; 2217 2218 np = if_getsoftc(ifp); 2219 npairs = np->num_queues; 2220 2221 if (!netfront_carrier_ok(np)) 2222 return (ENOBUFS); 2223 2224 KASSERT(npairs != 0, ("called with 0 available queues")); 2225 2226 /* check if flowid is set */ 2227 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2228 i = m->m_pkthdr.flowid % npairs; 2229 else 2230 i = curcpu % npairs; 2231 2232 txq = &np->txq[i]; 2233 2234 if (XN_TX_TRYLOCK(txq) != 0) { 2235 error = xn_txq_mq_start_locked(txq, m); 2236 XN_TX_UNLOCK(txq); 2237 } else { 2238 error = drbr_enqueue(ifp, txq->br, m); 2239 taskqueue_enqueue(txq->tq, &txq->defrtask); 2240 } 2241 2242 return (error); 2243 } 2244 2245 static void 2246 xn_qflush(if_t ifp) 2247 { 2248 struct netfront_info *np; 2249 struct netfront_txq *txq; 2250 struct mbuf *m; 2251 int i; 2252 2253 np = if_getsoftc(ifp); 2254 2255 for (i = 0; i < np->num_queues; i++) { 2256 txq = &np->txq[i]; 2257 2258 XN_TX_LOCK(txq); 2259 while ((m = buf_ring_dequeue_sc(txq->br)) != NULL) 2260 m_freem(m); 2261 XN_TX_UNLOCK(txq); 2262 } 2263 2264 if_qflush(ifp); 2265 } 2266 2267 /** 2268 * Create a network device. 2269 * @param dev Newbus device representing this virtual NIC. 2270 */ 2271 int 2272 create_netdev(device_t dev) 2273 { 2274 struct netfront_info *np; 2275 int err, cap_enabled; 2276 if_t ifp; 2277 2278 np = device_get_softc(dev); 2279 2280 np->xbdev = dev; 2281 2282 mtx_init(&np->sc_lock, "xnsc", "netfront softc lock", MTX_DEF); 2283 2284 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 2285 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 2286 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 2287 2288 err = xen_net_read_mac(dev, np->mac); 2289 if (err != 0) 2290 goto error; 2291 2292 /* Set up ifnet structure */ 2293 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2294 if_setsoftc(ifp, np); 2295 if_initname(ifp, "xn", device_get_unit(dev)); 2296 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2297 if_setioctlfn(ifp, xn_ioctl); 2298 2299 if_settransmitfn(ifp, xn_txq_mq_start); 2300 if_setqflushfn(ifp, xn_qflush); 2301 2302 if_setinitfn(ifp, xn_ifinit); 2303 2304 if_sethwassist(ifp, XN_CSUM_FEATURES); 2305 /* Enable all supported features at device creation. */ 2306 if_setcapabilities(ifp, IFCAP_HWCSUM|IFCAP_TSO4|IFCAP_LRO); 2307 cap_enabled = if_getcapabilities(ifp); 2308 if (!xn_enable_lro) { 2309 cap_enabled &= ~IFCAP_LRO; 2310 } 2311 if_setcapenable(ifp, cap_enabled); 2312 2313 if_sethwtsomax(ifp, 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); 2314 if_sethwtsomaxsegcount(ifp, MAX_TX_REQ_FRAGS); 2315 if_sethwtsomaxsegsize(ifp, PAGE_SIZE); 2316 2317 ether_ifattach(ifp, np->mac); 2318 netfront_carrier_off(np); 2319 2320 err = bus_dma_tag_create( 2321 bus_get_dma_tag(dev), /* parent */ 2322 1, PAGE_SIZE, /* algnmnt, boundary */ 2323 BUS_SPACE_MAXADDR, /* lowaddr */ 2324 BUS_SPACE_MAXADDR, /* highaddr */ 2325 NULL, NULL, /* filter, filterarg */ 2326 PAGE_SIZE * MAX_TX_REQ_FRAGS, /* max request size */ 2327 MAX_TX_REQ_FRAGS, /* max segments */ 2328 PAGE_SIZE, /* maxsegsize */ 2329 BUS_DMA_ALLOCNOW, /* flags */ 2330 NULL, NULL, /* lockfunc, lockarg */ 2331 &np->dma_tag); 2332 2333 return (err); 2334 2335 error: 2336 KASSERT(err != 0, ("Error path with no error code specified")); 2337 return (err); 2338 } 2339 2340 static int 2341 netfront_detach(device_t dev) 2342 { 2343 struct netfront_info *info = device_get_softc(dev); 2344 2345 DPRINTK("%s\n", xenbus_get_node(dev)); 2346 2347 netif_free(info); 2348 2349 return 0; 2350 } 2351 2352 static void 2353 netif_free(struct netfront_info *np) 2354 { 2355 2356 XN_LOCK(np); 2357 xn_stop(np); 2358 XN_UNLOCK(np); 2359 netif_disconnect_backend(np); 2360 ether_ifdetach(np->xn_ifp); 2361 free(np->rxq, M_DEVBUF); 2362 free(np->txq, M_DEVBUF); 2363 if_free(np->xn_ifp); 2364 np->xn_ifp = NULL; 2365 ifmedia_removeall(&np->sc_media); 2366 bus_dma_tag_destroy(np->dma_tag); 2367 } 2368 2369 static void 2370 netif_disconnect_backend(struct netfront_info *np) 2371 { 2372 u_int i; 2373 2374 for (i = 0; i < np->num_queues; i++) { 2375 XN_RX_LOCK(&np->rxq[i]); 2376 XN_TX_LOCK(&np->txq[i]); 2377 } 2378 netfront_carrier_off(np); 2379 for (i = 0; i < np->num_queues; i++) { 2380 XN_RX_UNLOCK(&np->rxq[i]); 2381 XN_TX_UNLOCK(&np->txq[i]); 2382 } 2383 2384 for (i = 0; i < np->num_queues; i++) { 2385 disconnect_rxq(&np->rxq[i]); 2386 disconnect_txq(&np->txq[i]); 2387 } 2388 } 2389 2390 static int 2391 xn_ifmedia_upd(if_t ifp) 2392 { 2393 2394 return (0); 2395 } 2396 2397 static void 2398 xn_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2399 { 2400 2401 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2402 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2403 } 2404 2405 /* ** Driver registration ** */ 2406 static device_method_t netfront_methods[] = { 2407 /* Device interface */ 2408 DEVMETHOD(device_probe, netfront_probe), 2409 DEVMETHOD(device_attach, netfront_attach), 2410 DEVMETHOD(device_detach, netfront_detach), 2411 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2412 DEVMETHOD(device_suspend, netfront_suspend), 2413 DEVMETHOD(device_resume, netfront_resume), 2414 2415 /* Xenbus interface */ 2416 DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed), 2417 2418 DEVMETHOD_END 2419 }; 2420 2421 static driver_t netfront_driver = { 2422 "xn", 2423 netfront_methods, 2424 sizeof(struct netfront_info), 2425 }; 2426 2427 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, NULL, NULL); 2428