1 /*- 2 * Copyright (c) 2004-2006 Kip Macy 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/sockio.h> 34 #include <sys/mbuf.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/sysctl.h> 40 #include <sys/queue.h> 41 #include <sys/lock.h> 42 #include <sys/sx.h> 43 44 #include <net/if.h> 45 #include <net/if_arp.h> 46 #include <net/ethernet.h> 47 #include <net/if_dl.h> 48 #include <net/if_media.h> 49 50 #include <net/bpf.h> 51 52 #include <net/if_types.h> 53 #include <net/if.h> 54 55 #include <netinet/in_systm.h> 56 #include <netinet/in.h> 57 #include <netinet/ip.h> 58 #include <netinet/if_ether.h> 59 #if __FreeBSD_version >= 700000 60 #include <netinet/tcp.h> 61 #include <netinet/tcp_lro.h> 62 #endif 63 64 #include <vm/vm.h> 65 #include <vm/pmap.h> 66 67 #include <machine/clock.h> /* for DELAY */ 68 #include <machine/bus.h> 69 #include <machine/resource.h> 70 #include <machine/frame.h> 71 #include <machine/vmparam.h> 72 73 #include <sys/bus.h> 74 #include <sys/rman.h> 75 76 #include <machine/intr_machdep.h> 77 78 #include <machine/xen/xen-os.h> 79 #include <machine/xen/xenfunc.h> 80 #include <machine/xen/xenvar.h> 81 #include <xen/hypervisor.h> 82 #include <xen/xen_intr.h> 83 #include <xen/evtchn.h> 84 #include <xen/gnttab.h> 85 #include <xen/interface/memory.h> 86 #include <xen/interface/io/netif.h> 87 #include <xen/xenbus/xenbusvar.h> 88 89 #include <dev/xen/netfront/mbufq.h> 90 91 #include "xenbus_if.h" 92 93 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP | CSUM_TSO) 94 95 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 96 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 97 98 #if __FreeBSD_version >= 700000 99 /* 100 * Should the driver do LRO on the RX end 101 * this can be toggled on the fly, but the 102 * interface must be reset (down/up) for it 103 * to take effect. 104 */ 105 static int xn_enable_lro = 1; 106 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 107 #else 108 109 #define IFCAP_TSO4 0 110 #define CSUM_TSO 0 111 112 #endif 113 114 #ifdef CONFIG_XEN 115 static int MODPARM_rx_copy = 0; 116 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0); 117 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)"); 118 static int MODPARM_rx_flip = 0; 119 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0); 120 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)"); 121 #else 122 static const int MODPARM_rx_copy = 1; 123 static const int MODPARM_rx_flip = 0; 124 #endif 125 126 /** 127 * \brief The maximum allowed data fragments in a single transmit 128 * request. 129 * 130 * This limit is imposed by the backend driver. We assume here that 131 * we are dealing with a Linux driver domain and have set our limit 132 * to mirror the Linux MAX_SKB_FRAGS constant. 133 */ 134 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 135 136 #define RX_COPY_THRESHOLD 256 137 138 #define net_ratelimit() 0 139 140 struct netfront_info; 141 struct netfront_rx_info; 142 143 static void xn_txeof(struct netfront_info *); 144 static void xn_rxeof(struct netfront_info *); 145 static void network_alloc_rx_buffers(struct netfront_info *); 146 147 static void xn_tick_locked(struct netfront_info *); 148 static void xn_tick(void *); 149 150 static void xn_intr(void *); 151 static inline int xn_count_frags(struct mbuf *m); 152 static int xn_assemble_tx_request(struct netfront_info *sc, 153 struct mbuf *m_head); 154 static void xn_start_locked(struct ifnet *); 155 static void xn_start(struct ifnet *); 156 static int xn_ioctl(struct ifnet *, u_long, caddr_t); 157 static void xn_ifinit_locked(struct netfront_info *); 158 static void xn_ifinit(void *); 159 static void xn_stop(struct netfront_info *); 160 #ifdef notyet 161 static void xn_watchdog(struct ifnet *); 162 #endif 163 164 static void show_device(struct netfront_info *sc); 165 #ifdef notyet 166 static void netfront_closing(device_t dev); 167 #endif 168 static void netif_free(struct netfront_info *info); 169 static int netfront_detach(device_t dev); 170 171 static int talk_to_backend(device_t dev, struct netfront_info *info); 172 static int create_netdev(device_t dev); 173 static void netif_disconnect_backend(struct netfront_info *info); 174 static int setup_device(device_t dev, struct netfront_info *info); 175 static void end_access(int ref, void *page); 176 177 static int xn_ifmedia_upd(struct ifnet *ifp); 178 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 179 180 /* Xenolinux helper functions */ 181 int network_connect(struct netfront_info *); 182 183 static void xn_free_rx_ring(struct netfront_info *); 184 185 static void xn_free_tx_ring(struct netfront_info *); 186 187 static int xennet_get_responses(struct netfront_info *np, 188 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 189 struct mbuf **list, int *pages_flipped_p); 190 191 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 192 193 #define INVALID_P2M_ENTRY (~0UL) 194 195 /* 196 * Mbuf pointers. We need these to keep track of the virtual addresses 197 * of our mbuf chains since we can only convert from virtual to physical, 198 * not the other way around. The size must track the free index arrays. 199 */ 200 struct xn_chain_data { 201 struct mbuf *xn_tx_chain[NET_TX_RING_SIZE+1]; 202 int xn_tx_chain_cnt; 203 struct mbuf *xn_rx_chain[NET_RX_RING_SIZE+1]; 204 }; 205 206 #define NUM_ELEMENTS(x) (sizeof(x)/sizeof(*x)) 207 208 struct net_device_stats 209 { 210 u_long rx_packets; /* total packets received */ 211 u_long tx_packets; /* total packets transmitted */ 212 u_long rx_bytes; /* total bytes received */ 213 u_long tx_bytes; /* total bytes transmitted */ 214 u_long rx_errors; /* bad packets received */ 215 u_long tx_errors; /* packet transmit problems */ 216 u_long rx_dropped; /* no space in linux buffers */ 217 u_long tx_dropped; /* no space available in linux */ 218 u_long multicast; /* multicast packets received */ 219 u_long collisions; 220 221 /* detailed rx_errors: */ 222 u_long rx_length_errors; 223 u_long rx_over_errors; /* receiver ring buff overflow */ 224 u_long rx_crc_errors; /* recved pkt with crc error */ 225 u_long rx_frame_errors; /* recv'd frame alignment error */ 226 u_long rx_fifo_errors; /* recv'r fifo overrun */ 227 u_long rx_missed_errors; /* receiver missed packet */ 228 229 /* detailed tx_errors */ 230 u_long tx_aborted_errors; 231 u_long tx_carrier_errors; 232 u_long tx_fifo_errors; 233 u_long tx_heartbeat_errors; 234 u_long tx_window_errors; 235 236 /* for cslip etc */ 237 u_long rx_compressed; 238 u_long tx_compressed; 239 }; 240 241 struct netfront_info { 242 243 struct ifnet *xn_ifp; 244 #if __FreeBSD_version >= 700000 245 struct lro_ctrl xn_lro; 246 #endif 247 248 struct net_device_stats stats; 249 u_int tx_full; 250 251 netif_tx_front_ring_t tx; 252 netif_rx_front_ring_t rx; 253 254 struct mtx tx_lock; 255 struct mtx rx_lock; 256 struct mtx sc_lock; 257 258 u_int handle; 259 u_int irq; 260 u_int copying_receiver; 261 u_int carrier; 262 263 /* Receive-ring batched refills. */ 264 #define RX_MIN_TARGET 32 265 #define RX_MAX_TARGET NET_RX_RING_SIZE 266 int rx_min_target; 267 int rx_max_target; 268 int rx_target; 269 270 grant_ref_t gref_tx_head; 271 grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1]; 272 grant_ref_t gref_rx_head; 273 grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1]; 274 275 device_t xbdev; 276 int tx_ring_ref; 277 int rx_ring_ref; 278 uint8_t mac[ETHER_ADDR_LEN]; 279 struct xn_chain_data xn_cdata; /* mbufs */ 280 struct mbuf_head xn_rx_batch; /* head of the batch queue */ 281 282 int xn_if_flags; 283 struct callout xn_stat_ch; 284 285 u_long rx_pfn_array[NET_RX_RING_SIZE]; 286 multicall_entry_t rx_mcl[NET_RX_RING_SIZE+1]; 287 mmu_update_t rx_mmu[NET_RX_RING_SIZE]; 288 struct ifmedia sc_media; 289 }; 290 291 #define rx_mbufs xn_cdata.xn_rx_chain 292 #define tx_mbufs xn_cdata.xn_tx_chain 293 294 #define XN_LOCK_INIT(_sc, _name) \ 295 mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \ 296 mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF); \ 297 mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF) 298 299 #define XN_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_lock) 300 #define XN_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_lock) 301 302 #define XN_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_lock) 303 #define XN_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_lock) 304 305 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 306 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 307 308 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 309 #define XN_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_lock, MA_OWNED); 310 #define XN_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_lock, MA_OWNED); 311 #define XN_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_lock); \ 312 mtx_destroy(&(_sc)->tx_lock); \ 313 mtx_destroy(&(_sc)->sc_lock); 314 315 struct netfront_rx_info { 316 struct netif_rx_response rx; 317 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 318 }; 319 320 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 321 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 322 #define netfront_carrier_ok(netif) ((netif)->carrier) 323 324 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 325 326 327 328 /* 329 * Access macros for acquiring freeing slots in tx_skbs[]. 330 */ 331 332 static inline void 333 add_id_to_freelist(struct mbuf **list, uintptr_t id) 334 { 335 KASSERT(id != 0, 336 ("%s: the head item (0) must always be free.", __func__)); 337 list[id] = list[0]; 338 list[0] = (struct mbuf *)id; 339 } 340 341 static inline unsigned short 342 get_id_from_freelist(struct mbuf **list) 343 { 344 uintptr_t id; 345 346 id = (uintptr_t)list[0]; 347 KASSERT(id != 0, 348 ("%s: the head item (0) must always remain free.", __func__)); 349 list[0] = list[id]; 350 return (id); 351 } 352 353 static inline int 354 xennet_rxidx(RING_IDX idx) 355 { 356 return idx & (NET_RX_RING_SIZE - 1); 357 } 358 359 static inline struct mbuf * 360 xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri) 361 { 362 int i = xennet_rxidx(ri); 363 struct mbuf *m; 364 365 m = np->rx_mbufs[i]; 366 np->rx_mbufs[i] = NULL; 367 return (m); 368 } 369 370 static inline grant_ref_t 371 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri) 372 { 373 int i = xennet_rxidx(ri); 374 grant_ref_t ref = np->grant_rx_ref[i]; 375 KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n")); 376 np->grant_rx_ref[i] = GRANT_REF_INVALID; 377 return ref; 378 } 379 380 #define IPRINTK(fmt, args...) \ 381 printf("[XEN] " fmt, ##args) 382 #ifdef INVARIANTS 383 #define WPRINTK(fmt, args...) \ 384 printf("[XEN] " fmt, ##args) 385 #else 386 #define WPRINTK(fmt, args...) 387 #endif 388 #ifdef DEBUG 389 #define DPRINTK(fmt, args...) \ 390 printf("[XEN] %s: " fmt, __func__, ##args) 391 #else 392 #define DPRINTK(fmt, args...) 393 #endif 394 395 /** 396 * Read the 'mac' node at the given device's node in the store, and parse that 397 * as colon-separated octets, placing result the given mac array. mac must be 398 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 399 * Return 0 on success, or errno on error. 400 */ 401 static int 402 xen_net_read_mac(device_t dev, uint8_t mac[]) 403 { 404 int error, i; 405 char *s, *e, *macstr; 406 407 error = xs_read(XST_NIL, xenbus_get_node(dev), "mac", NULL, 408 (void **) &macstr); 409 if (error) 410 return (error); 411 412 s = macstr; 413 for (i = 0; i < ETHER_ADDR_LEN; i++) { 414 mac[i] = strtoul(s, &e, 16); 415 if (s == e || (e[0] != ':' && e[0] != 0)) { 416 free(macstr, M_XENBUS); 417 return (ENOENT); 418 } 419 s = &e[1]; 420 } 421 free(macstr, M_XENBUS); 422 return (0); 423 } 424 425 /** 426 * Entry point to this code when a new device is created. Allocate the basic 427 * structures and the ring buffers for communication with the backend, and 428 * inform the backend of the appropriate details for those. Switch to 429 * Connected state. 430 */ 431 static int 432 netfront_probe(device_t dev) 433 { 434 435 if (!strcmp(xenbus_get_type(dev), "vif")) { 436 device_set_desc(dev, "Virtual Network Interface"); 437 return (0); 438 } 439 440 return (ENXIO); 441 } 442 443 static int 444 netfront_attach(device_t dev) 445 { 446 int err; 447 448 err = create_netdev(dev); 449 if (err) { 450 xenbus_dev_fatal(dev, err, "creating netdev"); 451 return err; 452 } 453 454 #if __FreeBSD_version >= 700000 455 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 456 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 457 OID_AUTO, "enable_lro", CTLTYPE_INT|CTLFLAG_RW, 458 &xn_enable_lro, 0, "Large Receive Offload"); 459 #endif 460 461 return 0; 462 } 463 464 465 /** 466 * We are reconnecting to the backend, due to a suspend/resume, or a backend 467 * driver restart. We tear down our netif structure and recreate it, but 468 * leave the device-layer structures intact so that this is transparent to the 469 * rest of the kernel. 470 */ 471 static int 472 netfront_resume(device_t dev) 473 { 474 struct netfront_info *info = device_get_softc(dev); 475 476 netif_disconnect_backend(info); 477 return (0); 478 } 479 480 481 /* Common code used when first setting up, and when resuming. */ 482 static int 483 talk_to_backend(device_t dev, struct netfront_info *info) 484 { 485 const char *message; 486 struct xs_transaction xst; 487 const char *node = xenbus_get_node(dev); 488 int err; 489 490 err = xen_net_read_mac(dev, info->mac); 491 if (err) { 492 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 493 goto out; 494 } 495 496 /* Create shared ring, alloc event channel. */ 497 err = setup_device(dev, info); 498 if (err) 499 goto out; 500 501 again: 502 err = xs_transaction_start(&xst); 503 if (err) { 504 xenbus_dev_fatal(dev, err, "starting transaction"); 505 goto destroy_ring; 506 } 507 err = xs_printf(xst, node, "tx-ring-ref","%u", 508 info->tx_ring_ref); 509 if (err) { 510 message = "writing tx ring-ref"; 511 goto abort_transaction; 512 } 513 err = xs_printf(xst, node, "rx-ring-ref","%u", 514 info->rx_ring_ref); 515 if (err) { 516 message = "writing rx ring-ref"; 517 goto abort_transaction; 518 } 519 err = xs_printf(xst, node, 520 "event-channel", "%u", irq_to_evtchn_port(info->irq)); 521 if (err) { 522 message = "writing event-channel"; 523 goto abort_transaction; 524 } 525 err = xs_printf(xst, node, "request-rx-copy", "%u", 526 info->copying_receiver); 527 if (err) { 528 message = "writing request-rx-copy"; 529 goto abort_transaction; 530 } 531 err = xs_printf(xst, node, "feature-rx-notify", "%d", 1); 532 if (err) { 533 message = "writing feature-rx-notify"; 534 goto abort_transaction; 535 } 536 err = xs_printf(xst, node, "feature-sg", "%d", 1); 537 if (err) { 538 message = "writing feature-sg"; 539 goto abort_transaction; 540 } 541 #if __FreeBSD_version >= 700000 542 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1); 543 if (err) { 544 message = "writing feature-gso-tcpv4"; 545 goto abort_transaction; 546 } 547 #endif 548 549 err = xs_transaction_end(xst, 0); 550 if (err) { 551 if (err == EAGAIN) 552 goto again; 553 xenbus_dev_fatal(dev, err, "completing transaction"); 554 goto destroy_ring; 555 } 556 557 return 0; 558 559 abort_transaction: 560 xs_transaction_end(xst, 1); 561 xenbus_dev_fatal(dev, err, "%s", message); 562 destroy_ring: 563 netif_free(info); 564 out: 565 return err; 566 } 567 568 569 static int 570 setup_device(device_t dev, struct netfront_info *info) 571 { 572 netif_tx_sring_t *txs; 573 netif_rx_sring_t *rxs; 574 int error; 575 struct ifnet *ifp; 576 577 ifp = info->xn_ifp; 578 579 info->tx_ring_ref = GRANT_REF_INVALID; 580 info->rx_ring_ref = GRANT_REF_INVALID; 581 info->rx.sring = NULL; 582 info->tx.sring = NULL; 583 info->irq = 0; 584 585 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 586 if (!txs) { 587 error = ENOMEM; 588 xenbus_dev_fatal(dev, error, "allocating tx ring page"); 589 goto fail; 590 } 591 SHARED_RING_INIT(txs); 592 FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE); 593 error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref); 594 if (error) 595 goto fail; 596 597 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 598 if (!rxs) { 599 error = ENOMEM; 600 xenbus_dev_fatal(dev, error, "allocating rx ring page"); 601 goto fail; 602 } 603 SHARED_RING_INIT(rxs); 604 FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE); 605 606 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref); 607 if (error) 608 goto fail; 609 610 error = bind_listening_port_to_irqhandler(xenbus_get_otherend_id(dev), 611 "xn", xn_intr, info, INTR_TYPE_NET | INTR_MPSAFE, &info->irq); 612 613 if (error) { 614 xenbus_dev_fatal(dev, error, 615 "bind_evtchn_to_irqhandler failed"); 616 goto fail; 617 } 618 619 show_device(info); 620 621 return (0); 622 623 fail: 624 netif_free(info); 625 return (error); 626 } 627 628 /** 629 * If this interface has an ipv4 address, send an arp for it. This 630 * helps to get the network going again after migrating hosts. 631 */ 632 static void 633 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 634 { 635 struct ifnet *ifp; 636 struct ifaddr *ifa; 637 638 ifp = info->xn_ifp; 639 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 640 if (ifa->ifa_addr->sa_family == AF_INET) { 641 arp_ifinit(ifp, ifa); 642 } 643 } 644 } 645 646 /** 647 * Callback received when the backend's state changes. 648 */ 649 static int 650 netfront_backend_changed(device_t dev, XenbusState newstate) 651 { 652 struct netfront_info *sc = device_get_softc(dev); 653 654 DPRINTK("newstate=%d\n", newstate); 655 656 switch (newstate) { 657 case XenbusStateInitialising: 658 case XenbusStateInitialised: 659 case XenbusStateConnected: 660 case XenbusStateUnknown: 661 case XenbusStateClosed: 662 case XenbusStateReconfigured: 663 case XenbusStateReconfiguring: 664 break; 665 case XenbusStateInitWait: 666 if (xenbus_get_state(dev) != XenbusStateInitialising) 667 break; 668 if (network_connect(sc) != 0) 669 break; 670 xenbus_set_state(dev, XenbusStateConnected); 671 netfront_send_fake_arp(dev, sc); 672 break; 673 case XenbusStateClosing: 674 xenbus_set_state(dev, XenbusStateClosed); 675 break; 676 } 677 return (0); 678 } 679 680 static void 681 xn_free_rx_ring(struct netfront_info *sc) 682 { 683 #if 0 684 int i; 685 686 for (i = 0; i < NET_RX_RING_SIZE; i++) { 687 if (sc->xn_cdata.rx_mbufs[i] != NULL) { 688 m_freem(sc->rx_mbufs[i]); 689 sc->rx_mbufs[i] = NULL; 690 } 691 } 692 693 sc->rx.rsp_cons = 0; 694 sc->xn_rx_if->req_prod = 0; 695 sc->xn_rx_if->event = sc->rx.rsp_cons ; 696 #endif 697 } 698 699 static void 700 xn_free_tx_ring(struct netfront_info *sc) 701 { 702 #if 0 703 int i; 704 705 for (i = 0; i < NET_TX_RING_SIZE; i++) { 706 if (sc->tx_mbufs[i] != NULL) { 707 m_freem(sc->tx_mbufs[i]); 708 sc->xn_cdata.xn_tx_chain[i] = NULL; 709 } 710 } 711 712 return; 713 #endif 714 } 715 716 /** 717 * \brief Verify that there is sufficient space in the Tx ring 718 * buffer for a maximally sized request to be enqueued. 719 * 720 * A transmit request requires a transmit descriptor for each packet 721 * fragment, plus up to 2 entries for "options" (e.g. TSO). 722 */ 723 static inline int 724 xn_tx_slot_available(struct netfront_info *np) 725 { 726 return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2)); 727 } 728 729 static void 730 netif_release_tx_bufs(struct netfront_info *np) 731 { 732 int i; 733 734 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 735 struct mbuf *m; 736 737 m = np->tx_mbufs[i]; 738 739 /* 740 * We assume that no kernel addresses are 741 * less than NET_TX_RING_SIZE. Any entry 742 * in the table that is below this number 743 * must be an index from free-list tracking. 744 */ 745 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 746 continue; 747 gnttab_grant_foreign_access_ref(np->grant_tx_ref[i], 748 xenbus_get_otherend_id(np->xbdev), 749 virt_to_mfn(mtod(m, vm_offset_t)), 750 GNTMAP_readonly); 751 gnttab_release_grant_reference(&np->gref_tx_head, 752 np->grant_tx_ref[i]); 753 np->grant_tx_ref[i] = GRANT_REF_INVALID; 754 add_id_to_freelist(np->tx_mbufs, i); 755 np->xn_cdata.xn_tx_chain_cnt--; 756 if (np->xn_cdata.xn_tx_chain_cnt < 0) { 757 panic("netif_release_tx_bufs: tx_chain_cnt must be >= 0"); 758 } 759 m_freem(m); 760 } 761 } 762 763 static void 764 network_alloc_rx_buffers(struct netfront_info *sc) 765 { 766 int otherend_id = xenbus_get_otherend_id(sc->xbdev); 767 unsigned short id; 768 struct mbuf *m_new; 769 int i, batch_target, notify; 770 RING_IDX req_prod; 771 struct xen_memory_reservation reservation; 772 grant_ref_t ref; 773 int nr_flips; 774 netif_rx_request_t *req; 775 vm_offset_t vaddr; 776 u_long pfn; 777 778 req_prod = sc->rx.req_prod_pvt; 779 780 if (unlikely(sc->carrier == 0)) 781 return; 782 783 /* 784 * Allocate mbufs greedily, even though we batch updates to the 785 * receive ring. This creates a less bursty demand on the memory 786 * allocator, and so should reduce the chance of failed allocation 787 * requests both for ourself and for other kernel subsystems. 788 * 789 * Here we attempt to maintain rx_target buffers in flight, counting 790 * buffers that we have yet to process in the receive ring. 791 */ 792 batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons); 793 for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) { 794 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 795 if (m_new == NULL) { 796 printf("%s: MGETHDR failed\n", __func__); 797 goto no_mbuf; 798 } 799 800 m_cljget(m_new, M_DONTWAIT, MJUMPAGESIZE); 801 if ((m_new->m_flags & M_EXT) == 0) { 802 printf("%s: m_cljget failed\n", __func__); 803 m_freem(m_new); 804 805 no_mbuf: 806 if (i != 0) 807 goto refill; 808 /* 809 * XXX set timer 810 */ 811 break; 812 } 813 m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE; 814 815 /* queue the mbufs allocated */ 816 mbufq_tail(&sc->xn_rx_batch, m_new); 817 } 818 819 /* 820 * If we've allocated at least half of our target number of entries, 821 * submit them to the backend - we have enough to make the overhead 822 * of submission worthwhile. Otherwise wait for more mbufs and 823 * request entries to become available. 824 */ 825 if (i < (sc->rx_target/2)) { 826 if (req_prod >sc->rx.sring->req_prod) 827 goto push; 828 return; 829 } 830 831 /* 832 * Double floating fill target if we risked having the backend 833 * run out of empty buffers for receive traffic. We define "running 834 * low" as having less than a fourth of our target buffers free 835 * at the time we refilled the queue. 836 */ 837 if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) { 838 sc->rx_target *= 2; 839 if (sc->rx_target > sc->rx_max_target) 840 sc->rx_target = sc->rx_max_target; 841 } 842 843 refill: 844 for (nr_flips = i = 0; ; i++) { 845 if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL) 846 break; 847 848 m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)( 849 vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT); 850 851 id = xennet_rxidx(req_prod + i); 852 853 KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain")); 854 sc->rx_mbufs[id] = m_new; 855 856 ref = gnttab_claim_grant_reference(&sc->gref_rx_head); 857 KASSERT(ref != GNTTAB_LIST_END, 858 ("reserved grant references exhuasted")); 859 sc->grant_rx_ref[id] = ref; 860 861 vaddr = mtod(m_new, vm_offset_t); 862 pfn = vtophys(vaddr) >> PAGE_SHIFT; 863 req = RING_GET_REQUEST(&sc->rx, req_prod + i); 864 865 if (sc->copying_receiver == 0) { 866 gnttab_grant_foreign_transfer_ref(ref, 867 otherend_id, pfn); 868 sc->rx_pfn_array[nr_flips] = PFNTOMFN(pfn); 869 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 870 /* Remove this page before passing 871 * back to Xen. 872 */ 873 set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 874 MULTI_update_va_mapping(&sc->rx_mcl[i], 875 vaddr, 0, 0); 876 } 877 nr_flips++; 878 } else { 879 gnttab_grant_foreign_access_ref(ref, 880 otherend_id, 881 PFNTOMFN(pfn), 0); 882 } 883 req->id = id; 884 req->gref = ref; 885 886 sc->rx_pfn_array[i] = 887 vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT; 888 } 889 890 KASSERT(i, ("no mbufs processed")); /* should have returned earlier */ 891 KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed")); 892 /* 893 * We may have allocated buffers which have entries outstanding 894 * in the page * update queue -- make sure we flush those first! 895 */ 896 PT_UPDATES_FLUSH(); 897 if (nr_flips != 0) { 898 #ifdef notyet 899 /* Tell the ballon driver what is going on. */ 900 balloon_update_driver_allowance(i); 901 #endif 902 set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array); 903 reservation.nr_extents = i; 904 reservation.extent_order = 0; 905 reservation.address_bits = 0; 906 reservation.domid = DOMID_SELF; 907 908 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 909 910 /* After all PTEs have been zapped, flush the TLB. */ 911 sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] = 912 UVMF_TLB_FLUSH|UVMF_ALL; 913 914 /* Give away a batch of pages. */ 915 sc->rx_mcl[i].op = __HYPERVISOR_memory_op; 916 sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation; 917 sc->rx_mcl[i].args[1] = (u_long)&reservation; 918 /* Zap PTEs and give away pages in one big multicall. */ 919 (void)HYPERVISOR_multicall(sc->rx_mcl, i+1); 920 921 /* Check return status of HYPERVISOR_dom_mem_op(). */ 922 if (unlikely(sc->rx_mcl[i].result != i)) 923 panic("Unable to reduce memory reservation\n"); 924 } else { 925 if (HYPERVISOR_memory_op( 926 XENMEM_decrease_reservation, &reservation) 927 != i) 928 panic("Unable to reduce memory " 929 "reservation\n"); 930 } 931 } else { 932 wmb(); 933 } 934 935 /* Above is a suitable barrier to ensure backend will see requests. */ 936 sc->rx.req_prod_pvt = req_prod + i; 937 push: 938 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify); 939 if (notify) 940 notify_remote_via_irq(sc->irq); 941 } 942 943 static void 944 xn_rxeof(struct netfront_info *np) 945 { 946 struct ifnet *ifp; 947 #if __FreeBSD_version >= 700000 948 struct lro_ctrl *lro = &np->xn_lro; 949 struct lro_entry *queued; 950 #endif 951 struct netfront_rx_info rinfo; 952 struct netif_rx_response *rx = &rinfo.rx; 953 struct netif_extra_info *extras = rinfo.extras; 954 RING_IDX i, rp; 955 multicall_entry_t *mcl; 956 struct mbuf *m; 957 struct mbuf_head rxq, errq; 958 int err, pages_flipped = 0, work_to_do; 959 960 do { 961 XN_RX_LOCK_ASSERT(np); 962 if (!netfront_carrier_ok(np)) 963 return; 964 965 mbufq_init(&errq); 966 mbufq_init(&rxq); 967 968 ifp = np->xn_ifp; 969 970 rp = np->rx.sring->rsp_prod; 971 rmb(); /* Ensure we see queued responses up to 'rp'. */ 972 973 i = np->rx.rsp_cons; 974 while ((i != rp)) { 975 memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx)); 976 memset(extras, 0, sizeof(rinfo.extras)); 977 978 m = NULL; 979 err = xennet_get_responses(np, &rinfo, rp, &i, &m, 980 &pages_flipped); 981 982 if (unlikely(err)) { 983 if (m) 984 mbufq_tail(&errq, m); 985 np->stats.rx_errors++; 986 continue; 987 } 988 989 m->m_pkthdr.rcvif = ifp; 990 if ( rx->flags & NETRXF_data_validated ) { 991 /* Tell the stack the checksums are okay */ 992 /* 993 * XXX this isn't necessarily the case - need to add 994 * check 995 */ 996 997 m->m_pkthdr.csum_flags |= 998 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID 999 | CSUM_PSEUDO_HDR); 1000 m->m_pkthdr.csum_data = 0xffff; 1001 } 1002 1003 np->stats.rx_packets++; 1004 np->stats.rx_bytes += m->m_pkthdr.len; 1005 1006 mbufq_tail(&rxq, m); 1007 np->rx.rsp_cons = i; 1008 } 1009 1010 if (pages_flipped) { 1011 /* Some pages are no longer absent... */ 1012 #ifdef notyet 1013 balloon_update_driver_allowance(-pages_flipped); 1014 #endif 1015 /* Do all the remapping work, and M->P updates, in one big 1016 * hypercall. 1017 */ 1018 if (!!xen_feature(XENFEAT_auto_translated_physmap)) { 1019 mcl = np->rx_mcl + pages_flipped; 1020 mcl->op = __HYPERVISOR_mmu_update; 1021 mcl->args[0] = (u_long)np->rx_mmu; 1022 mcl->args[1] = pages_flipped; 1023 mcl->args[2] = 0; 1024 mcl->args[3] = DOMID_SELF; 1025 (void)HYPERVISOR_multicall(np->rx_mcl, 1026 pages_flipped + 1); 1027 } 1028 } 1029 1030 while ((m = mbufq_dequeue(&errq))) 1031 m_freem(m); 1032 1033 /* 1034 * Process all the mbufs after the remapping is complete. 1035 * Break the mbuf chain first though. 1036 */ 1037 while ((m = mbufq_dequeue(&rxq)) != NULL) { 1038 ifp->if_ipackets++; 1039 1040 /* 1041 * Do we really need to drop the rx lock? 1042 */ 1043 XN_RX_UNLOCK(np); 1044 #if __FreeBSD_version >= 700000 1045 /* Use LRO if possible */ 1046 if ((ifp->if_capenable & IFCAP_LRO) == 0 || 1047 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1048 /* 1049 * If LRO fails, pass up to the stack 1050 * directly. 1051 */ 1052 (*ifp->if_input)(ifp, m); 1053 } 1054 #else 1055 (*ifp->if_input)(ifp, m); 1056 #endif 1057 XN_RX_LOCK(np); 1058 } 1059 1060 np->rx.rsp_cons = i; 1061 1062 #if __FreeBSD_version >= 700000 1063 /* 1064 * Flush any outstanding LRO work 1065 */ 1066 while (!SLIST_EMPTY(&lro->lro_active)) { 1067 queued = SLIST_FIRST(&lro->lro_active); 1068 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1069 tcp_lro_flush(lro, queued); 1070 } 1071 #endif 1072 1073 #if 0 1074 /* If we get a callback with very few responses, reduce fill target. */ 1075 /* NB. Note exponential increase, linear decrease. */ 1076 if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) > 1077 ((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target)) 1078 np->rx_target = np->rx_min_target; 1079 #endif 1080 1081 network_alloc_rx_buffers(np); 1082 1083 RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do); 1084 } while (work_to_do); 1085 } 1086 1087 static void 1088 xn_txeof(struct netfront_info *np) 1089 { 1090 RING_IDX i, prod; 1091 unsigned short id; 1092 struct ifnet *ifp; 1093 netif_tx_response_t *txr; 1094 struct mbuf *m; 1095 1096 XN_TX_LOCK_ASSERT(np); 1097 1098 if (!netfront_carrier_ok(np)) 1099 return; 1100 1101 ifp = np->xn_ifp; 1102 1103 do { 1104 prod = np->tx.sring->rsp_prod; 1105 rmb(); /* Ensure we see responses up to 'rp'. */ 1106 1107 for (i = np->tx.rsp_cons; i != prod; i++) { 1108 txr = RING_GET_RESPONSE(&np->tx, i); 1109 if (txr->status == NETIF_RSP_NULL) 1110 continue; 1111 1112 if (txr->status != NETIF_RSP_OKAY) { 1113 printf("%s: WARNING: response is %d!\n", 1114 __func__, txr->status); 1115 } 1116 id = txr->id; 1117 m = np->tx_mbufs[id]; 1118 KASSERT(m != NULL, ("mbuf not found in xn_tx_chain")); 1119 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1120 ("mbuf already on the free list, but we're " 1121 "trying to free it again!")); 1122 M_ASSERTVALID(m); 1123 1124 /* 1125 * Increment packet count if this is the last 1126 * mbuf of the chain. 1127 */ 1128 if (!m->m_next) 1129 ifp->if_opackets++; 1130 if (unlikely(gnttab_query_foreign_access( 1131 np->grant_tx_ref[id]) != 0)) { 1132 panic("grant id %u still in use by the backend", 1133 id); 1134 } 1135 gnttab_end_foreign_access_ref( 1136 np->grant_tx_ref[id]); 1137 gnttab_release_grant_reference( 1138 &np->gref_tx_head, np->grant_tx_ref[id]); 1139 np->grant_tx_ref[id] = GRANT_REF_INVALID; 1140 1141 np->tx_mbufs[id] = NULL; 1142 add_id_to_freelist(np->tx_mbufs, id); 1143 np->xn_cdata.xn_tx_chain_cnt--; 1144 m_free(m); 1145 /* Only mark the queue active if we've freed up at least one slot to try */ 1146 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1147 } 1148 np->tx.rsp_cons = prod; 1149 1150 /* 1151 * Set a new event, then check for race with update of 1152 * tx_cons. Note that it is essential to schedule a 1153 * callback, no matter how few buffers are pending. Even if 1154 * there is space in the transmit ring, higher layers may 1155 * be blocked because too much data is outstanding: in such 1156 * cases notification from Xen is likely to be the only kick 1157 * that we'll get. 1158 */ 1159 np->tx.sring->rsp_event = 1160 prod + ((np->tx.sring->req_prod - prod) >> 1) + 1; 1161 1162 mb(); 1163 } while (prod != np->tx.sring->rsp_prod); 1164 1165 if (np->tx_full && 1166 ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1167 np->tx_full = 0; 1168 #if 0 1169 if (np->user_state == UST_OPEN) 1170 netif_wake_queue(dev); 1171 #endif 1172 } 1173 1174 } 1175 1176 static void 1177 xn_intr(void *xsc) 1178 { 1179 struct netfront_info *np = xsc; 1180 struct ifnet *ifp = np->xn_ifp; 1181 1182 #if 0 1183 if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod && 1184 likely(netfront_carrier_ok(np)) && 1185 ifp->if_drv_flags & IFF_DRV_RUNNING)) 1186 return; 1187 #endif 1188 if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) { 1189 XN_TX_LOCK(np); 1190 xn_txeof(np); 1191 XN_TX_UNLOCK(np); 1192 } 1193 1194 XN_RX_LOCK(np); 1195 xn_rxeof(np); 1196 XN_RX_UNLOCK(np); 1197 1198 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1199 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1200 xn_start(ifp); 1201 } 1202 1203 1204 static void 1205 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m, 1206 grant_ref_t ref) 1207 { 1208 int new = xennet_rxidx(np->rx.req_prod_pvt); 1209 1210 KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL")); 1211 np->rx_mbufs[new] = m; 1212 np->grant_rx_ref[new] = ref; 1213 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new; 1214 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref; 1215 np->rx.req_prod_pvt++; 1216 } 1217 1218 static int 1219 xennet_get_extras(struct netfront_info *np, 1220 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1221 { 1222 struct netif_extra_info *extra; 1223 1224 int err = 0; 1225 1226 do { 1227 struct mbuf *m; 1228 grant_ref_t ref; 1229 1230 if (unlikely(*cons + 1 == rp)) { 1231 #if 0 1232 if (net_ratelimit()) 1233 WPRINTK("Missing extra info\n"); 1234 #endif 1235 err = EINVAL; 1236 break; 1237 } 1238 1239 extra = (struct netif_extra_info *) 1240 RING_GET_RESPONSE(&np->rx, ++(*cons)); 1241 1242 if (unlikely(!extra->type || 1243 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1244 #if 0 1245 if (net_ratelimit()) 1246 WPRINTK("Invalid extra type: %d\n", 1247 extra->type); 1248 #endif 1249 err = EINVAL; 1250 } else { 1251 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1252 } 1253 1254 m = xennet_get_rx_mbuf(np, *cons); 1255 ref = xennet_get_rx_ref(np, *cons); 1256 xennet_move_rx_slot(np, m, ref); 1257 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1258 1259 return err; 1260 } 1261 1262 static int 1263 xennet_get_responses(struct netfront_info *np, 1264 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1265 struct mbuf **list, 1266 int *pages_flipped_p) 1267 { 1268 int pages_flipped = *pages_flipped_p; 1269 struct mmu_update *mmu; 1270 struct multicall_entry *mcl; 1271 struct netif_rx_response *rx = &rinfo->rx; 1272 struct netif_extra_info *extras = rinfo->extras; 1273 struct mbuf *m, *m0, *m_prev; 1274 grant_ref_t ref = xennet_get_rx_ref(np, *cons); 1275 RING_IDX ref_cons = *cons; 1276 int frags = 1; 1277 int err = 0; 1278 u_long ret; 1279 1280 m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons); 1281 1282 1283 if (rx->flags & NETRXF_extra_info) { 1284 err = xennet_get_extras(np, extras, rp, cons); 1285 } 1286 1287 1288 if (m0 != NULL) { 1289 m0->m_pkthdr.len = 0; 1290 m0->m_next = NULL; 1291 } 1292 1293 for (;;) { 1294 u_long mfn; 1295 1296 #if 0 1297 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1298 rx->status, rx->offset, frags); 1299 #endif 1300 if (unlikely(rx->status < 0 || 1301 rx->offset + rx->status > PAGE_SIZE)) { 1302 1303 #if 0 1304 if (net_ratelimit()) 1305 WPRINTK("rx->offset: %x, size: %u\n", 1306 rx->offset, rx->status); 1307 #endif 1308 xennet_move_rx_slot(np, m, ref); 1309 if (m0 == m) 1310 m0 = NULL; 1311 m = NULL; 1312 err = EINVAL; 1313 goto next_skip_queue; 1314 } 1315 1316 /* 1317 * This definitely indicates a bug, either in this driver or in 1318 * the backend driver. In future this should flag the bad 1319 * situation to the system controller to reboot the backed. 1320 */ 1321 if (ref == GRANT_REF_INVALID) { 1322 1323 #if 0 1324 if (net_ratelimit()) 1325 WPRINTK("Bad rx response id %d.\n", rx->id); 1326 #endif 1327 printf("%s: Bad rx response id %d.\n", __func__,rx->id); 1328 err = EINVAL; 1329 goto next; 1330 } 1331 1332 if (!np->copying_receiver) { 1333 /* Memory pressure, insufficient buffer 1334 * headroom, ... 1335 */ 1336 if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) { 1337 WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n", 1338 rx->id, rx->status); 1339 xennet_move_rx_slot(np, m, ref); 1340 err = ENOMEM; 1341 goto next; 1342 } 1343 1344 if (!xen_feature( XENFEAT_auto_translated_physmap)) { 1345 /* Remap the page. */ 1346 void *vaddr = mtod(m, void *); 1347 uint32_t pfn; 1348 1349 mcl = np->rx_mcl + pages_flipped; 1350 mmu = np->rx_mmu + pages_flipped; 1351 1352 MULTI_update_va_mapping(mcl, (u_long)vaddr, 1353 (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW | 1354 PG_V | PG_M | PG_A, 0); 1355 pfn = (uintptr_t)m->m_ext.ext_arg1; 1356 mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) | 1357 MMU_MACHPHYS_UPDATE; 1358 mmu->val = pfn; 1359 1360 set_phys_to_machine(pfn, mfn); 1361 } 1362 pages_flipped++; 1363 } else { 1364 ret = gnttab_end_foreign_access_ref(ref); 1365 KASSERT(ret, ("ret != 0")); 1366 } 1367 1368 gnttab_release_grant_reference(&np->gref_rx_head, ref); 1369 1370 next: 1371 if (m == NULL) 1372 break; 1373 1374 m->m_len = rx->status; 1375 m->m_data += rx->offset; 1376 m0->m_pkthdr.len += rx->status; 1377 1378 next_skip_queue: 1379 if (!(rx->flags & NETRXF_more_data)) 1380 break; 1381 1382 if (*cons + frags == rp) { 1383 if (net_ratelimit()) 1384 WPRINTK("Need more frags\n"); 1385 err = ENOENT; 1386 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1387 __func__, *cons, frags, rp); 1388 break; 1389 } 1390 /* 1391 * Note that m can be NULL, if rx->status < 0 or if 1392 * rx->offset + rx->status > PAGE_SIZE above. 1393 */ 1394 m_prev = m; 1395 1396 rx = RING_GET_RESPONSE(&np->rx, *cons + frags); 1397 m = xennet_get_rx_mbuf(np, *cons + frags); 1398 1399 /* 1400 * m_prev == NULL can happen if rx->status < 0 or if 1401 * rx->offset + * rx->status > PAGE_SIZE above. 1402 */ 1403 if (m_prev != NULL) 1404 m_prev->m_next = m; 1405 1406 /* 1407 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1408 * rx->status > PAGE_SIZE above. 1409 */ 1410 if (m0 == NULL) 1411 m0 = m; 1412 m->m_next = NULL; 1413 ref = xennet_get_rx_ref(np, *cons + frags); 1414 ref_cons = *cons + frags; 1415 frags++; 1416 } 1417 *list = m0; 1418 *cons += frags; 1419 *pages_flipped_p = pages_flipped; 1420 1421 return (err); 1422 } 1423 1424 static void 1425 xn_tick_locked(struct netfront_info *sc) 1426 { 1427 XN_RX_LOCK_ASSERT(sc); 1428 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1429 1430 /* XXX placeholder for printing debug information */ 1431 1432 } 1433 1434 1435 static void 1436 xn_tick(void *xsc) 1437 { 1438 struct netfront_info *sc; 1439 1440 sc = xsc; 1441 XN_RX_LOCK(sc); 1442 xn_tick_locked(sc); 1443 XN_RX_UNLOCK(sc); 1444 1445 } 1446 1447 /** 1448 * \brief Count the number of fragments in an mbuf chain. 1449 * 1450 * Surprisingly, there isn't an M* macro for this. 1451 */ 1452 static inline int 1453 xn_count_frags(struct mbuf *m) 1454 { 1455 int nfrags; 1456 1457 for (nfrags = 0; m != NULL; m = m->m_next) 1458 nfrags++; 1459 1460 return (nfrags); 1461 } 1462 1463 /** 1464 * Given an mbuf chain, make sure we have enough room and then push 1465 * it onto the transmit ring. 1466 */ 1467 static int 1468 xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head) 1469 { 1470 struct ifnet *ifp; 1471 struct mbuf *m; 1472 u_int nfrags; 1473 netif_extra_info_t *extra; 1474 int otherend_id; 1475 1476 ifp = sc->xn_ifp; 1477 1478 /** 1479 * Defragment the mbuf if necessary. 1480 */ 1481 nfrags = xn_count_frags(m_head); 1482 1483 /* 1484 * Check to see whether this request is longer than netback 1485 * can handle, and try to defrag it. 1486 */ 1487 /** 1488 * It is a bit lame, but the netback driver in Linux can't 1489 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of 1490 * the Linux network stack. 1491 */ 1492 if (nfrags > MAX_TX_REQ_FRAGS) { 1493 m = m_defrag(m_head, M_DONTWAIT); 1494 if (!m) { 1495 /* 1496 * Defrag failed, so free the mbuf and 1497 * therefore drop the packet. 1498 */ 1499 m_freem(m_head); 1500 return (EMSGSIZE); 1501 } 1502 m_head = m; 1503 } 1504 1505 /* Determine how many fragments now exist */ 1506 nfrags = xn_count_frags(m_head); 1507 1508 /* 1509 * Check to see whether the defragmented packet has too many 1510 * segments for the Linux netback driver. 1511 */ 1512 /** 1513 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1514 * of mbufs longer than Linux can handle. Make sure we don't 1515 * pass a too-long chain over to the other side by dropping the 1516 * packet. It doesn't look like there is currently a way to 1517 * tell the TCP stack to generate a shorter chain of packets. 1518 */ 1519 if (nfrags > MAX_TX_REQ_FRAGS) { 1520 #ifdef DEBUG 1521 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback " 1522 "won't be able to handle it, dropping\n", 1523 __func__, nfrags, MAX_TX_REQ_FRAGS); 1524 #endif 1525 m_freem(m_head); 1526 return (EMSGSIZE); 1527 } 1528 1529 /* 1530 * This check should be redundant. We've already verified that we 1531 * have enough slots in the ring to handle a packet of maximum 1532 * size, and that our packet is less than the maximum size. Keep 1533 * it in here as an assert for now just to make certain that 1534 * xn_tx_chain_cnt is accurate. 1535 */ 1536 KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE, 1537 ("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1538 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt, 1539 (int) nfrags, (int) NET_TX_RING_SIZE)); 1540 1541 /* 1542 * Start packing the mbufs in this chain into 1543 * the fragment pointers. Stop when we run out 1544 * of fragments or hit the end of the mbuf chain. 1545 */ 1546 m = m_head; 1547 extra = NULL; 1548 otherend_id = xenbus_get_otherend_id(sc->xbdev); 1549 for (m = m_head; m; m = m->m_next) { 1550 netif_tx_request_t *tx; 1551 uintptr_t id; 1552 grant_ref_t ref; 1553 u_long mfn; /* XXX Wrong type? */ 1554 1555 tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt); 1556 id = get_id_from_freelist(sc->tx_mbufs); 1557 if (id == 0) 1558 panic("xn_start_locked: was allocated the freelist head!\n"); 1559 sc->xn_cdata.xn_tx_chain_cnt++; 1560 if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE) 1561 panic("xn_start_locked: tx_chain_cnt must be <= NET_TX_RING_SIZE\n"); 1562 sc->tx_mbufs[id] = m; 1563 tx->id = id; 1564 ref = gnttab_claim_grant_reference(&sc->gref_tx_head); 1565 KASSERT((short)ref >= 0, ("Negative ref")); 1566 mfn = virt_to_mfn(mtod(m, vm_offset_t)); 1567 gnttab_grant_foreign_access_ref(ref, otherend_id, 1568 mfn, GNTMAP_readonly); 1569 tx->gref = sc->grant_tx_ref[id] = ref; 1570 tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1); 1571 tx->flags = 0; 1572 if (m == m_head) { 1573 /* 1574 * The first fragment has the entire packet 1575 * size, subsequent fragments have just the 1576 * fragment size. The backend works out the 1577 * true size of the first fragment by 1578 * subtracting the sizes of the other 1579 * fragments. 1580 */ 1581 tx->size = m->m_pkthdr.len; 1582 1583 /* 1584 * The first fragment contains the checksum flags 1585 * and is optionally followed by extra data for 1586 * TSO etc. 1587 */ 1588 /** 1589 * CSUM_TSO requires checksum offloading. 1590 * Some versions of FreeBSD fail to 1591 * set CSUM_TCP in the CSUM_TSO case, 1592 * so we have to test for CSUM_TSO 1593 * explicitly. 1594 */ 1595 if (m->m_pkthdr.csum_flags 1596 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1597 tx->flags |= (NETTXF_csum_blank 1598 | NETTXF_data_validated); 1599 } 1600 #if __FreeBSD_version >= 700000 1601 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1602 struct netif_extra_info *gso = 1603 (struct netif_extra_info *) 1604 RING_GET_REQUEST(&sc->tx, 1605 ++sc->tx.req_prod_pvt); 1606 1607 tx->flags |= NETTXF_extra_info; 1608 1609 gso->u.gso.size = m->m_pkthdr.tso_segsz; 1610 gso->u.gso.type = 1611 XEN_NETIF_GSO_TYPE_TCPV4; 1612 gso->u.gso.pad = 0; 1613 gso->u.gso.features = 0; 1614 1615 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1616 gso->flags = 0; 1617 } 1618 #endif 1619 } else { 1620 tx->size = m->m_len; 1621 } 1622 if (m->m_next) 1623 tx->flags |= NETTXF_more_data; 1624 1625 sc->tx.req_prod_pvt++; 1626 } 1627 BPF_MTAP(ifp, m_head); 1628 1629 sc->stats.tx_bytes += m_head->m_pkthdr.len; 1630 sc->stats.tx_packets++; 1631 1632 return (0); 1633 } 1634 1635 static void 1636 xn_start_locked(struct ifnet *ifp) 1637 { 1638 struct netfront_info *sc; 1639 struct mbuf *m_head; 1640 int notify; 1641 1642 sc = ifp->if_softc; 1643 1644 if (!netfront_carrier_ok(sc)) 1645 return; 1646 1647 /* 1648 * While we have enough transmit slots available for at least one 1649 * maximum-sized packet, pull mbufs off the queue and put them on 1650 * the transmit ring. 1651 */ 1652 while (xn_tx_slot_available(sc)) { 1653 IF_DEQUEUE(&ifp->if_snd, m_head); 1654 if (m_head == NULL) 1655 break; 1656 1657 if (xn_assemble_tx_request(sc, m_head) != 0) 1658 break; 1659 } 1660 1661 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify); 1662 if (notify) 1663 notify_remote_via_irq(sc->irq); 1664 1665 if (RING_FULL(&sc->tx)) { 1666 sc->tx_full = 1; 1667 #if 0 1668 netif_stop_queue(dev); 1669 #endif 1670 } 1671 } 1672 1673 1674 static void 1675 xn_start(struct ifnet *ifp) 1676 { 1677 struct netfront_info *sc; 1678 sc = ifp->if_softc; 1679 XN_TX_LOCK(sc); 1680 xn_start_locked(ifp); 1681 XN_TX_UNLOCK(sc); 1682 } 1683 1684 /* equivalent of network_open() in Linux */ 1685 static void 1686 xn_ifinit_locked(struct netfront_info *sc) 1687 { 1688 struct ifnet *ifp; 1689 1690 XN_LOCK_ASSERT(sc); 1691 1692 ifp = sc->xn_ifp; 1693 1694 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1695 return; 1696 1697 xn_stop(sc); 1698 1699 network_alloc_rx_buffers(sc); 1700 sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1; 1701 1702 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1703 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1704 if_link_state_change(ifp, LINK_STATE_UP); 1705 1706 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1707 1708 } 1709 1710 1711 static void 1712 xn_ifinit(void *xsc) 1713 { 1714 struct netfront_info *sc = xsc; 1715 1716 XN_LOCK(sc); 1717 xn_ifinit_locked(sc); 1718 XN_UNLOCK(sc); 1719 1720 } 1721 1722 1723 static int 1724 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1725 { 1726 struct netfront_info *sc = ifp->if_softc; 1727 struct ifreq *ifr = (struct ifreq *) data; 1728 struct ifaddr *ifa = (struct ifaddr *)data; 1729 1730 int mask, error = 0; 1731 switch(cmd) { 1732 case SIOCSIFADDR: 1733 case SIOCGIFADDR: 1734 XN_LOCK(sc); 1735 if (ifa->ifa_addr->sa_family == AF_INET) { 1736 ifp->if_flags |= IFF_UP; 1737 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1738 xn_ifinit_locked(sc); 1739 arp_ifinit(ifp, ifa); 1740 XN_UNLOCK(sc); 1741 } else { 1742 XN_UNLOCK(sc); 1743 error = ether_ioctl(ifp, cmd, data); 1744 } 1745 break; 1746 case SIOCSIFMTU: 1747 /* XXX can we alter the MTU on a VN ?*/ 1748 #ifdef notyet 1749 if (ifr->ifr_mtu > XN_JUMBO_MTU) 1750 error = EINVAL; 1751 else 1752 #endif 1753 { 1754 ifp->if_mtu = ifr->ifr_mtu; 1755 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1756 xn_ifinit(sc); 1757 } 1758 break; 1759 case SIOCSIFFLAGS: 1760 XN_LOCK(sc); 1761 if (ifp->if_flags & IFF_UP) { 1762 /* 1763 * If only the state of the PROMISC flag changed, 1764 * then just use the 'set promisc mode' command 1765 * instead of reinitializing the entire NIC. Doing 1766 * a full re-init means reloading the firmware and 1767 * waiting for it to start up, which may take a 1768 * second or two. 1769 */ 1770 #ifdef notyet 1771 /* No promiscuous mode with Xen */ 1772 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1773 ifp->if_flags & IFF_PROMISC && 1774 !(sc->xn_if_flags & IFF_PROMISC)) { 1775 XN_SETBIT(sc, XN_RX_MODE, 1776 XN_RXMODE_RX_PROMISC); 1777 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1778 !(ifp->if_flags & IFF_PROMISC) && 1779 sc->xn_if_flags & IFF_PROMISC) { 1780 XN_CLRBIT(sc, XN_RX_MODE, 1781 XN_RXMODE_RX_PROMISC); 1782 } else 1783 #endif 1784 xn_ifinit_locked(sc); 1785 } else { 1786 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1787 xn_stop(sc); 1788 } 1789 } 1790 sc->xn_if_flags = ifp->if_flags; 1791 XN_UNLOCK(sc); 1792 error = 0; 1793 break; 1794 case SIOCSIFCAP: 1795 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1796 if (mask & IFCAP_TXCSUM) { 1797 if (IFCAP_TXCSUM & ifp->if_capenable) { 1798 ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4); 1799 ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP 1800 | CSUM_IP | CSUM_TSO); 1801 } else { 1802 ifp->if_capenable |= IFCAP_TXCSUM; 1803 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP 1804 | CSUM_IP); 1805 } 1806 } 1807 if (mask & IFCAP_RXCSUM) { 1808 ifp->if_capenable ^= IFCAP_RXCSUM; 1809 } 1810 #if __FreeBSD_version >= 700000 1811 if (mask & IFCAP_TSO4) { 1812 if (IFCAP_TSO4 & ifp->if_capenable) { 1813 ifp->if_capenable &= ~IFCAP_TSO4; 1814 ifp->if_hwassist &= ~CSUM_TSO; 1815 } else if (IFCAP_TXCSUM & ifp->if_capenable) { 1816 ifp->if_capenable |= IFCAP_TSO4; 1817 ifp->if_hwassist |= CSUM_TSO; 1818 } else { 1819 IPRINTK("Xen requires tx checksum offload" 1820 " be enabled to use TSO\n"); 1821 error = EINVAL; 1822 } 1823 } 1824 if (mask & IFCAP_LRO) { 1825 ifp->if_capenable ^= IFCAP_LRO; 1826 1827 } 1828 #endif 1829 error = 0; 1830 break; 1831 case SIOCADDMULTI: 1832 case SIOCDELMULTI: 1833 #ifdef notyet 1834 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1835 XN_LOCK(sc); 1836 xn_setmulti(sc); 1837 XN_UNLOCK(sc); 1838 error = 0; 1839 } 1840 #endif 1841 /* FALLTHROUGH */ 1842 case SIOCSIFMEDIA: 1843 case SIOCGIFMEDIA: 1844 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1845 break; 1846 default: 1847 error = ether_ioctl(ifp, cmd, data); 1848 } 1849 1850 return (error); 1851 } 1852 1853 static void 1854 xn_stop(struct netfront_info *sc) 1855 { 1856 struct ifnet *ifp; 1857 1858 XN_LOCK_ASSERT(sc); 1859 1860 ifp = sc->xn_ifp; 1861 1862 callout_stop(&sc->xn_stat_ch); 1863 1864 xn_free_rx_ring(sc); 1865 xn_free_tx_ring(sc); 1866 1867 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1868 if_link_state_change(ifp, LINK_STATE_DOWN); 1869 } 1870 1871 /* START of Xenolinux helper functions adapted to FreeBSD */ 1872 int 1873 network_connect(struct netfront_info *np) 1874 { 1875 int i, requeue_idx, error; 1876 grant_ref_t ref; 1877 netif_rx_request_t *req; 1878 u_int feature_rx_copy, feature_rx_flip; 1879 1880 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1881 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1882 if (error) 1883 feature_rx_copy = 0; 1884 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1885 "feature-rx-flip", NULL, "%u", &feature_rx_flip); 1886 if (error) 1887 feature_rx_flip = 1; 1888 1889 /* 1890 * Copy packets on receive path if: 1891 * (a) This was requested by user, and the backend supports it; or 1892 * (b) Flipping was requested, but this is unsupported by the backend. 1893 */ 1894 np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) || 1895 (MODPARM_rx_flip && !feature_rx_flip)); 1896 1897 /* Recovery procedure: */ 1898 error = talk_to_backend(np->xbdev, np); 1899 if (error) 1900 return (error); 1901 1902 /* Step 1: Reinitialise variables. */ 1903 netif_release_tx_bufs(np); 1904 1905 /* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */ 1906 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1907 struct mbuf *m; 1908 u_long pfn; 1909 1910 if (np->rx_mbufs[i] == NULL) 1911 continue; 1912 1913 m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i); 1914 ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i); 1915 1916 req = RING_GET_REQUEST(&np->rx, requeue_idx); 1917 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1918 1919 if (!np->copying_receiver) { 1920 gnttab_grant_foreign_transfer_ref(ref, 1921 xenbus_get_otherend_id(np->xbdev), 1922 pfn); 1923 } else { 1924 gnttab_grant_foreign_access_ref(ref, 1925 xenbus_get_otherend_id(np->xbdev), 1926 PFNTOMFN(pfn), 0); 1927 } 1928 req->gref = ref; 1929 req->id = requeue_idx; 1930 1931 requeue_idx++; 1932 } 1933 1934 np->rx.req_prod_pvt = requeue_idx; 1935 1936 /* Step 3: All public and private state should now be sane. Get 1937 * ready to start sending and receiving packets and give the driver 1938 * domain a kick because we've probably just requeued some 1939 * packets. 1940 */ 1941 netfront_carrier_on(np); 1942 notify_remote_via_irq(np->irq); 1943 XN_TX_LOCK(np); 1944 xn_txeof(np); 1945 XN_TX_UNLOCK(np); 1946 network_alloc_rx_buffers(np); 1947 1948 return (0); 1949 } 1950 1951 static void 1952 show_device(struct netfront_info *sc) 1953 { 1954 #ifdef DEBUG 1955 if (sc) { 1956 IPRINTK("<vif handle=%u %s(%s) evtchn=%u irq=%u tx=%p rx=%p>\n", 1957 sc->xn_ifno, 1958 be_state_name[sc->xn_backend_state], 1959 sc->xn_user_state ? "open" : "closed", 1960 sc->xn_evtchn, 1961 sc->xn_irq, 1962 sc->xn_tx_if, 1963 sc->xn_rx_if); 1964 } else { 1965 IPRINTK("<vif NULL>\n"); 1966 } 1967 #endif 1968 } 1969 1970 /** Create a network device. 1971 * @param handle device handle 1972 */ 1973 int 1974 create_netdev(device_t dev) 1975 { 1976 int i; 1977 struct netfront_info *np; 1978 int err; 1979 struct ifnet *ifp; 1980 1981 np = device_get_softc(dev); 1982 1983 np->xbdev = dev; 1984 1985 XN_LOCK_INIT(np, xennetif); 1986 1987 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 1988 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1989 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 1990 1991 np->rx_target = RX_MIN_TARGET; 1992 np->rx_min_target = RX_MIN_TARGET; 1993 np->rx_max_target = RX_MAX_TARGET; 1994 1995 /* Initialise {tx,rx}_skbs to be a free chain containing every entry. */ 1996 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 1997 np->tx_mbufs[i] = (void *) ((u_long) i+1); 1998 np->grant_tx_ref[i] = GRANT_REF_INVALID; 1999 } 2000 np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0; 2001 2002 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 2003 2004 np->rx_mbufs[i] = NULL; 2005 np->grant_rx_ref[i] = GRANT_REF_INVALID; 2006 } 2007 /* A grant for every tx ring slot */ 2008 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 2009 &np->gref_tx_head) != 0) { 2010 IPRINTK("#### netfront can't alloc tx grant refs\n"); 2011 err = ENOMEM; 2012 goto exit; 2013 } 2014 /* A grant for every rx ring slot */ 2015 if (gnttab_alloc_grant_references(RX_MAX_TARGET, 2016 &np->gref_rx_head) != 0) { 2017 WPRINTK("#### netfront can't alloc rx grant refs\n"); 2018 gnttab_free_grant_references(np->gref_tx_head); 2019 err = ENOMEM; 2020 goto exit; 2021 } 2022 2023 err = xen_net_read_mac(dev, np->mac); 2024 if (err) { 2025 xenbus_dev_fatal(dev, err, "parsing %s/mac", 2026 xenbus_get_node(dev)); 2027 goto out; 2028 } 2029 2030 /* Set up ifnet structure */ 2031 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2032 ifp->if_softc = np; 2033 if_initname(ifp, "xn", device_get_unit(dev)); 2034 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2035 ifp->if_ioctl = xn_ioctl; 2036 ifp->if_output = ether_output; 2037 ifp->if_start = xn_start; 2038 #ifdef notyet 2039 ifp->if_watchdog = xn_watchdog; 2040 #endif 2041 ifp->if_init = xn_ifinit; 2042 ifp->if_mtu = ETHERMTU; 2043 ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1; 2044 2045 ifp->if_hwassist = XN_CSUM_FEATURES; 2046 ifp->if_capabilities = IFCAP_HWCSUM; 2047 #if __FreeBSD_version >= 700000 2048 ifp->if_capabilities |= IFCAP_TSO4; 2049 if (xn_enable_lro) { 2050 int err = tcp_lro_init(&np->xn_lro); 2051 if (err) { 2052 device_printf(dev, "LRO initialization failed\n"); 2053 goto exit; 2054 } 2055 np->xn_lro.ifp = ifp; 2056 ifp->if_capabilities |= IFCAP_LRO; 2057 } 2058 #endif 2059 ifp->if_capenable = ifp->if_capabilities; 2060 2061 ether_ifattach(ifp, np->mac); 2062 callout_init(&np->xn_stat_ch, CALLOUT_MPSAFE); 2063 netfront_carrier_off(np); 2064 2065 return (0); 2066 2067 exit: 2068 gnttab_free_grant_references(np->gref_tx_head); 2069 out: 2070 panic("do something smart"); 2071 2072 } 2073 2074 /** 2075 * Handle the change of state of the backend to Closing. We must delete our 2076 * device-layer structures now, to ensure that writes are flushed through to 2077 * the backend. Once is this done, we can switch to Closed in 2078 * acknowledgement. 2079 */ 2080 #if 0 2081 static void 2082 netfront_closing(device_t dev) 2083 { 2084 #if 0 2085 struct netfront_info *info = dev->dev_driver_data; 2086 2087 DPRINTK("netfront_closing: %s removed\n", dev->nodename); 2088 2089 close_netdev(info); 2090 #endif 2091 xenbus_switch_state(dev, XenbusStateClosed); 2092 } 2093 #endif 2094 2095 static int 2096 netfront_detach(device_t dev) 2097 { 2098 struct netfront_info *info = device_get_softc(dev); 2099 2100 DPRINTK("%s\n", xenbus_get_node(dev)); 2101 2102 netif_free(info); 2103 2104 return 0; 2105 } 2106 2107 static void 2108 netif_free(struct netfront_info *info) 2109 { 2110 netif_disconnect_backend(info); 2111 #if 0 2112 close_netdev(info); 2113 #endif 2114 } 2115 2116 static void 2117 netif_disconnect_backend(struct netfront_info *info) 2118 { 2119 XN_RX_LOCK(info); 2120 XN_TX_LOCK(info); 2121 netfront_carrier_off(info); 2122 XN_TX_UNLOCK(info); 2123 XN_RX_UNLOCK(info); 2124 2125 end_access(info->tx_ring_ref, info->tx.sring); 2126 end_access(info->rx_ring_ref, info->rx.sring); 2127 info->tx_ring_ref = GRANT_REF_INVALID; 2128 info->rx_ring_ref = GRANT_REF_INVALID; 2129 info->tx.sring = NULL; 2130 info->rx.sring = NULL; 2131 2132 if (info->irq) 2133 unbind_from_irqhandler(info->irq); 2134 2135 info->irq = 0; 2136 } 2137 2138 2139 static void 2140 end_access(int ref, void *page) 2141 { 2142 if (ref != GRANT_REF_INVALID) 2143 gnttab_end_foreign_access(ref, page); 2144 } 2145 2146 static int 2147 xn_ifmedia_upd(struct ifnet *ifp) 2148 { 2149 return (0); 2150 } 2151 2152 static void 2153 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2154 { 2155 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2156 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2157 } 2158 2159 /* ** Driver registration ** */ 2160 static device_method_t netfront_methods[] = { 2161 /* Device interface */ 2162 DEVMETHOD(device_probe, netfront_probe), 2163 DEVMETHOD(device_attach, netfront_attach), 2164 DEVMETHOD(device_detach, netfront_detach), 2165 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2166 DEVMETHOD(device_suspend, bus_generic_suspend), 2167 DEVMETHOD(device_resume, netfront_resume), 2168 2169 /* Xenbus interface */ 2170 DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed), 2171 2172 { 0, 0 } 2173 }; 2174 2175 static driver_t netfront_driver = { 2176 "xn", 2177 netfront_methods, 2178 sizeof(struct netfront_info), 2179 }; 2180 devclass_t netfront_devclass; 2181 2182 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, 0, 0); 2183