xref: /freebsd/sys/dev/xen/netfront/netfront.c (revision 55bce0c1203e70d8b62a3dedc9235ab39660c6f4)
1 /*-
2  * Copyright (c) 2004-2006 Kip Macy
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/malloc.h>
37 #include <sys/module.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/sysctl.h>
41 #include <sys/queue.h>
42 #include <sys/lock.h>
43 #include <sys/sx.h>
44 
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <net/bpf.h>
52 
53 #include <net/if_types.h>
54 #include <net/if.h>
55 
56 #include <netinet/in_systm.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/if_ether.h>
60 #if __FreeBSD_version >= 700000
61 #include <netinet/tcp.h>
62 #include <netinet/tcp_lro.h>
63 #endif
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 
68 #include <machine/clock.h>      /* for DELAY */
69 #include <machine/bus.h>
70 #include <machine/resource.h>
71 #include <machine/frame.h>
72 #include <machine/vmparam.h>
73 
74 #include <sys/bus.h>
75 #include <sys/rman.h>
76 
77 #include <machine/intr_machdep.h>
78 
79 #include <machine/xen/xen-os.h>
80 #include <machine/xen/xenfunc.h>
81 #include <machine/xen/xenvar.h>
82 #include <xen/hypervisor.h>
83 #include <xen/xen_intr.h>
84 #include <xen/evtchn.h>
85 #include <xen/gnttab.h>
86 #include <xen/interface/memory.h>
87 #include <xen/interface/io/netif.h>
88 #include <xen/xenbus/xenbusvar.h>
89 
90 #include <dev/xen/netfront/mbufq.h>
91 
92 #include "xenbus_if.h"
93 
94 /* Features supported by all backends.  TSO and LRO can be negotiated */
95 #define XN_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
96 
97 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
98 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
99 
100 #if __FreeBSD_version >= 700000
101 /*
102  * Should the driver do LRO on the RX end
103  *  this can be toggled on the fly, but the
104  *  interface must be reset (down/up) for it
105  *  to take effect.
106  */
107 static int xn_enable_lro = 1;
108 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro);
109 #else
110 
111 #define IFCAP_TSO4	0
112 #define CSUM_TSO	0
113 
114 #endif
115 
116 #ifdef CONFIG_XEN
117 static int MODPARM_rx_copy = 0;
118 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0);
119 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)");
120 static int MODPARM_rx_flip = 0;
121 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0);
122 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)");
123 #else
124 static const int MODPARM_rx_copy = 1;
125 static const int MODPARM_rx_flip = 0;
126 #endif
127 
128 /**
129  * \brief The maximum allowed data fragments in a single transmit
130  *        request.
131  *
132  * This limit is imposed by the backend driver.  We assume here that
133  * we are dealing with a Linux driver domain and have set our limit
134  * to mirror the Linux MAX_SKB_FRAGS constant.
135  */
136 #define	MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2)
137 #define	NF_TSO_MAXBURST ((IP_MAXPACKET / PAGE_SIZE) * MCLBYTES)
138 
139 #define RX_COPY_THRESHOLD 256
140 
141 #define net_ratelimit() 0
142 
143 struct netfront_info;
144 struct netfront_rx_info;
145 
146 static void xn_txeof(struct netfront_info *);
147 static void xn_rxeof(struct netfront_info *);
148 static void network_alloc_rx_buffers(struct netfront_info *);
149 
150 static void xn_tick_locked(struct netfront_info *);
151 static void xn_tick(void *);
152 
153 static void xn_intr(void *);
154 static inline int xn_count_frags(struct mbuf *m);
155 static int  xn_assemble_tx_request(struct netfront_info *sc,
156 				   struct mbuf *m_head);
157 static void xn_start_locked(struct ifnet *);
158 static void xn_start(struct ifnet *);
159 static int  xn_ioctl(struct ifnet *, u_long, caddr_t);
160 static void xn_ifinit_locked(struct netfront_info *);
161 static void xn_ifinit(void *);
162 static void xn_stop(struct netfront_info *);
163 static void xn_query_features(struct netfront_info *np);
164 static int  xn_configure_features(struct netfront_info *np);
165 #ifdef notyet
166 static void xn_watchdog(struct ifnet *);
167 #endif
168 
169 static void show_device(struct netfront_info *sc);
170 #ifdef notyet
171 static void netfront_closing(device_t dev);
172 #endif
173 static void netif_free(struct netfront_info *info);
174 static int netfront_detach(device_t dev);
175 
176 static int talk_to_backend(device_t dev, struct netfront_info *info);
177 static int create_netdev(device_t dev);
178 static void netif_disconnect_backend(struct netfront_info *info);
179 static int setup_device(device_t dev, struct netfront_info *info);
180 static void free_ring(int *ref, void *ring_ptr_ref);
181 
182 static int  xn_ifmedia_upd(struct ifnet *ifp);
183 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
184 
185 /* Xenolinux helper functions */
186 int network_connect(struct netfront_info *);
187 
188 static void xn_free_rx_ring(struct netfront_info *);
189 
190 static void xn_free_tx_ring(struct netfront_info *);
191 
192 static int xennet_get_responses(struct netfront_info *np,
193 	struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
194 	struct mbuf **list, int *pages_flipped_p);
195 
196 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
197 
198 #define INVALID_P2M_ENTRY (~0UL)
199 
200 /*
201  * Mbuf pointers. We need these to keep track of the virtual addresses
202  * of our mbuf chains since we can only convert from virtual to physical,
203  * not the other way around.  The size must track the free index arrays.
204  */
205 struct xn_chain_data {
206 	struct mbuf    *xn_tx_chain[NET_TX_RING_SIZE+1];
207 	int		xn_tx_chain_cnt;
208 	struct mbuf    *xn_rx_chain[NET_RX_RING_SIZE+1];
209 };
210 
211 struct net_device_stats
212 {
213 	u_long	rx_packets;		/* total packets received	*/
214 	u_long	tx_packets;		/* total packets transmitted	*/
215 	u_long	rx_bytes;		/* total bytes received 	*/
216 	u_long	tx_bytes;		/* total bytes transmitted	*/
217 	u_long	rx_errors;		/* bad packets received		*/
218 	u_long	tx_errors;		/* packet transmit problems	*/
219 	u_long	rx_dropped;		/* no space in linux buffers	*/
220 	u_long	tx_dropped;		/* no space available in linux	*/
221 	u_long	multicast;		/* multicast packets received	*/
222 	u_long	collisions;
223 
224 	/* detailed rx_errors: */
225 	u_long	rx_length_errors;
226 	u_long	rx_over_errors;		/* receiver ring buff overflow	*/
227 	u_long	rx_crc_errors;		/* recved pkt with crc error	*/
228 	u_long	rx_frame_errors;	/* recv'd frame alignment error */
229 	u_long	rx_fifo_errors;		/* recv'r fifo overrun		*/
230 	u_long	rx_missed_errors;	/* receiver missed packet	*/
231 
232 	/* detailed tx_errors */
233 	u_long	tx_aborted_errors;
234 	u_long	tx_carrier_errors;
235 	u_long	tx_fifo_errors;
236 	u_long	tx_heartbeat_errors;
237 	u_long	tx_window_errors;
238 
239 	/* for cslip etc */
240 	u_long	rx_compressed;
241 	u_long	tx_compressed;
242 };
243 
244 struct netfront_info {
245 	struct ifnet *xn_ifp;
246 #if __FreeBSD_version >= 700000
247 	struct lro_ctrl xn_lro;
248 #endif
249 
250 	struct net_device_stats stats;
251 	u_int tx_full;
252 
253 	netif_tx_front_ring_t tx;
254 	netif_rx_front_ring_t rx;
255 
256 	struct mtx   tx_lock;
257 	struct mtx   rx_lock;
258 	struct mtx   sc_lock;
259 
260 	u_int handle;
261 	u_int irq;
262 	u_int copying_receiver;
263 	u_int carrier;
264 	u_int maxfrags;
265 
266 	/* Receive-ring batched refills. */
267 #define RX_MIN_TARGET 32
268 #define RX_MAX_TARGET NET_RX_RING_SIZE
269 	int rx_min_target;
270 	int rx_max_target;
271 	int rx_target;
272 
273 	grant_ref_t gref_tx_head;
274 	grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1];
275 	grant_ref_t gref_rx_head;
276 	grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1];
277 
278 	device_t		xbdev;
279 	int			tx_ring_ref;
280 	int			rx_ring_ref;
281 	uint8_t			mac[ETHER_ADDR_LEN];
282 	struct xn_chain_data	xn_cdata;	/* mbufs */
283 	struct mbuf_head	xn_rx_batch;	/* head of the batch queue */
284 
285 	int			xn_if_flags;
286 	struct callout	        xn_stat_ch;
287 
288 	u_long			rx_pfn_array[NET_RX_RING_SIZE];
289 	multicall_entry_t	rx_mcl[NET_RX_RING_SIZE+1];
290 	mmu_update_t		rx_mmu[NET_RX_RING_SIZE];
291 	struct ifmedia		sc_media;
292 };
293 
294 #define rx_mbufs xn_cdata.xn_rx_chain
295 #define tx_mbufs xn_cdata.xn_tx_chain
296 
297 #define XN_LOCK_INIT(_sc, _name) \
298         mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \
299         mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF);  \
300         mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF)
301 
302 #define XN_RX_LOCK(_sc)           mtx_lock(&(_sc)->rx_lock)
303 #define XN_RX_UNLOCK(_sc)         mtx_unlock(&(_sc)->rx_lock)
304 
305 #define XN_TX_LOCK(_sc)           mtx_lock(&(_sc)->tx_lock)
306 #define XN_TX_UNLOCK(_sc)         mtx_unlock(&(_sc)->tx_lock)
307 
308 #define XN_LOCK(_sc)           mtx_lock(&(_sc)->sc_lock);
309 #define XN_UNLOCK(_sc)         mtx_unlock(&(_sc)->sc_lock);
310 
311 #define XN_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->sc_lock, MA_OWNED);
312 #define XN_RX_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->rx_lock, MA_OWNED);
313 #define XN_TX_LOCK_ASSERT(_sc)    mtx_assert(&(_sc)->tx_lock, MA_OWNED);
314 #define XN_LOCK_DESTROY(_sc)   mtx_destroy(&(_sc)->rx_lock); \
315                                mtx_destroy(&(_sc)->tx_lock); \
316                                mtx_destroy(&(_sc)->sc_lock);
317 
318 struct netfront_rx_info {
319 	struct netif_rx_response rx;
320 	struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
321 };
322 
323 #define netfront_carrier_on(netif)	((netif)->carrier = 1)
324 #define netfront_carrier_off(netif)	((netif)->carrier = 0)
325 #define netfront_carrier_ok(netif)	((netif)->carrier)
326 
327 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */
328 
329 static inline void
330 add_id_to_freelist(struct mbuf **list, uintptr_t id)
331 {
332 	KASSERT(id != 0,
333 		("%s: the head item (0) must always be free.", __func__));
334 	list[id] = list[0];
335 	list[0]  = (struct mbuf *)id;
336 }
337 
338 static inline unsigned short
339 get_id_from_freelist(struct mbuf **list)
340 {
341 	uintptr_t id;
342 
343 	id = (uintptr_t)list[0];
344 	KASSERT(id != 0,
345 		("%s: the head item (0) must always remain free.", __func__));
346 	list[0] = list[id];
347 	return (id);
348 }
349 
350 static inline int
351 xennet_rxidx(RING_IDX idx)
352 {
353 	return idx & (NET_RX_RING_SIZE - 1);
354 }
355 
356 static inline struct mbuf *
357 xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri)
358 {
359 	int i = xennet_rxidx(ri);
360 	struct mbuf *m;
361 
362 	m = np->rx_mbufs[i];
363 	np->rx_mbufs[i] = NULL;
364 	return (m);
365 }
366 
367 static inline grant_ref_t
368 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri)
369 {
370 	int i = xennet_rxidx(ri);
371 	grant_ref_t ref = np->grant_rx_ref[i];
372 	KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n"));
373 	np->grant_rx_ref[i] = GRANT_REF_INVALID;
374 	return ref;
375 }
376 
377 #define IPRINTK(fmt, args...) \
378     printf("[XEN] " fmt, ##args)
379 #ifdef INVARIANTS
380 #define WPRINTK(fmt, args...) \
381     printf("[XEN] " fmt, ##args)
382 #else
383 #define WPRINTK(fmt, args...)
384 #endif
385 #ifdef DEBUG
386 #define DPRINTK(fmt, args...) \
387     printf("[XEN] %s: " fmt, __func__, ##args)
388 #else
389 #define DPRINTK(fmt, args...)
390 #endif
391 
392 /**
393  * Read the 'mac' node at the given device's node in the store, and parse that
394  * as colon-separated octets, placing result the given mac array.  mac must be
395  * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h).
396  * Return 0 on success, or errno on error.
397  */
398 static int
399 xen_net_read_mac(device_t dev, uint8_t mac[])
400 {
401 	int error, i;
402 	char *s, *e, *macstr;
403 	const char *path;
404 
405 	path = xenbus_get_node(dev);
406 	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
407 	if (error == ENOENT) {
408 		/*
409 		 * Deal with missing mac XenStore nodes on devices with
410 		 * HVM emulation (the 'ioemu' configuration attribute)
411 		 * enabled.
412 		 *
413 		 * The HVM emulator may execute in a stub device model
414 		 * domain which lacks the permission, only given to Dom0,
415 		 * to update the guest's XenStore tree.  For this reason,
416 		 * the HVM emulator doesn't even attempt to write the
417 		 * front-side mac node, even when operating in Dom0.
418 		 * However, there should always be a mac listed in the
419 		 * backend tree.  Fallback to this version if our query
420 		 * of the front side XenStore location doesn't find
421 		 * anything.
422 		 */
423 		path = xenbus_get_otherend_path(dev);
424 		error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
425 	}
426 	if (error != 0) {
427 		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
428 		return (error);
429 	}
430 
431 	s = macstr;
432 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
433 		mac[i] = strtoul(s, &e, 16);
434 		if (s == e || (e[0] != ':' && e[0] != 0)) {
435 			free(macstr, M_XENBUS);
436 			return (ENOENT);
437 		}
438 		s = &e[1];
439 	}
440 	free(macstr, M_XENBUS);
441 	return (0);
442 }
443 
444 /**
445  * Entry point to this code when a new device is created.  Allocate the basic
446  * structures and the ring buffers for communication with the backend, and
447  * inform the backend of the appropriate details for those.  Switch to
448  * Connected state.
449  */
450 static int
451 netfront_probe(device_t dev)
452 {
453 
454 	if (!strcmp(xenbus_get_type(dev), "vif")) {
455 		device_set_desc(dev, "Virtual Network Interface");
456 		return (0);
457 	}
458 
459 	return (ENXIO);
460 }
461 
462 static int
463 netfront_attach(device_t dev)
464 {
465 	int err;
466 
467 	err = create_netdev(dev);
468 	if (err) {
469 		xenbus_dev_fatal(dev, err, "creating netdev");
470 		return (err);
471 	}
472 
473 #if __FreeBSD_version >= 700000
474 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
475 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
476 	    OID_AUTO, "enable_lro", CTLTYPE_INT|CTLFLAG_RW,
477 	    &xn_enable_lro, 0, "Large Receive Offload");
478 #endif
479 
480 	return (0);
481 }
482 
483 static int
484 netfront_suspend(device_t dev)
485 {
486 	struct netfront_info *info = device_get_softc(dev);
487 
488 	XN_RX_LOCK(info);
489 	XN_TX_LOCK(info);
490 	netfront_carrier_off(info);
491 	XN_TX_UNLOCK(info);
492 	XN_RX_UNLOCK(info);
493 	return (0);
494 }
495 
496 /**
497  * We are reconnecting to the backend, due to a suspend/resume, or a backend
498  * driver restart.  We tear down our netif structure and recreate it, but
499  * leave the device-layer structures intact so that this is transparent to the
500  * rest of the kernel.
501  */
502 static int
503 netfront_resume(device_t dev)
504 {
505 	struct netfront_info *info = device_get_softc(dev);
506 
507 	netif_disconnect_backend(info);
508 	return (0);
509 }
510 
511 /* Common code used when first setting up, and when resuming. */
512 static int
513 talk_to_backend(device_t dev, struct netfront_info *info)
514 {
515 	const char *message;
516 	struct xs_transaction xst;
517 	const char *node = xenbus_get_node(dev);
518 	int err;
519 
520 	err = xen_net_read_mac(dev, info->mac);
521 	if (err) {
522 		xenbus_dev_fatal(dev, err, "parsing %s/mac", node);
523 		goto out;
524 	}
525 
526 	/* Create shared ring, alloc event channel. */
527 	err = setup_device(dev, info);
528 	if (err)
529 		goto out;
530 
531  again:
532 	err = xs_transaction_start(&xst);
533 	if (err) {
534 		xenbus_dev_fatal(dev, err, "starting transaction");
535 		goto destroy_ring;
536 	}
537 	err = xs_printf(xst, node, "tx-ring-ref","%u",
538 			info->tx_ring_ref);
539 	if (err) {
540 		message = "writing tx ring-ref";
541 		goto abort_transaction;
542 	}
543 	err = xs_printf(xst, node, "rx-ring-ref","%u",
544 			info->rx_ring_ref);
545 	if (err) {
546 		message = "writing rx ring-ref";
547 		goto abort_transaction;
548 	}
549 	err = xs_printf(xst, node,
550 			"event-channel", "%u", irq_to_evtchn_port(info->irq));
551 	if (err) {
552 		message = "writing event-channel";
553 		goto abort_transaction;
554 	}
555 	err = xs_printf(xst, node, "request-rx-copy", "%u",
556 			info->copying_receiver);
557 	if (err) {
558 		message = "writing request-rx-copy";
559 		goto abort_transaction;
560 	}
561 	err = xs_printf(xst, node, "feature-rx-notify", "%d", 1);
562 	if (err) {
563 		message = "writing feature-rx-notify";
564 		goto abort_transaction;
565 	}
566 	err = xs_printf(xst, node, "feature-sg", "%d", 1);
567 	if (err) {
568 		message = "writing feature-sg";
569 		goto abort_transaction;
570 	}
571 #if __FreeBSD_version >= 700000
572 	err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1);
573 	if (err) {
574 		message = "writing feature-gso-tcpv4";
575 		goto abort_transaction;
576 	}
577 #endif
578 
579 	err = xs_transaction_end(xst, 0);
580 	if (err) {
581 		if (err == EAGAIN)
582 			goto again;
583 		xenbus_dev_fatal(dev, err, "completing transaction");
584 		goto destroy_ring;
585 	}
586 
587 	return 0;
588 
589  abort_transaction:
590 	xs_transaction_end(xst, 1);
591 	xenbus_dev_fatal(dev, err, "%s", message);
592  destroy_ring:
593 	netif_free(info);
594  out:
595 	return err;
596 }
597 
598 static int
599 setup_device(device_t dev, struct netfront_info *info)
600 {
601 	netif_tx_sring_t *txs;
602 	netif_rx_sring_t *rxs;
603 	int error;
604 	struct ifnet *ifp;
605 
606 	ifp = info->xn_ifp;
607 
608 	info->tx_ring_ref = GRANT_REF_INVALID;
609 	info->rx_ring_ref = GRANT_REF_INVALID;
610 	info->rx.sring = NULL;
611 	info->tx.sring = NULL;
612 	info->irq = 0;
613 
614 	txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO);
615 	if (!txs) {
616 		error = ENOMEM;
617 		xenbus_dev_fatal(dev, error, "allocating tx ring page");
618 		goto fail;
619 	}
620 	SHARED_RING_INIT(txs);
621 	FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE);
622 	error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref);
623 	if (error)
624 		goto fail;
625 
626 	rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO);
627 	if (!rxs) {
628 		error = ENOMEM;
629 		xenbus_dev_fatal(dev, error, "allocating rx ring page");
630 		goto fail;
631 	}
632 	SHARED_RING_INIT(rxs);
633 	FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE);
634 
635 	error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref);
636 	if (error)
637 		goto fail;
638 
639 	error = bind_listening_port_to_irqhandler(xenbus_get_otherend_id(dev),
640 	    "xn", xn_intr, info, INTR_TYPE_NET | INTR_MPSAFE, &info->irq);
641 
642 	if (error) {
643 		xenbus_dev_fatal(dev, error,
644 				 "bind_evtchn_to_irqhandler failed");
645 		goto fail;
646 	}
647 
648 	show_device(info);
649 
650 	return (0);
651 
652  fail:
653 	netif_free(info);
654 	return (error);
655 }
656 
657 #ifdef INET
658 /**
659  * If this interface has an ipv4 address, send an arp for it. This
660  * helps to get the network going again after migrating hosts.
661  */
662 static void
663 netfront_send_fake_arp(device_t dev, struct netfront_info *info)
664 {
665 	struct ifnet *ifp;
666 	struct ifaddr *ifa;
667 
668 	ifp = info->xn_ifp;
669 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
670 		if (ifa->ifa_addr->sa_family == AF_INET) {
671 			arp_ifinit(ifp, ifa);
672 		}
673 	}
674 }
675 #endif
676 
677 /**
678  * Callback received when the backend's state changes.
679  */
680 static void
681 netfront_backend_changed(device_t dev, XenbusState newstate)
682 {
683 	struct netfront_info *sc = device_get_softc(dev);
684 
685 	DPRINTK("newstate=%d\n", newstate);
686 
687 	switch (newstate) {
688 	case XenbusStateInitialising:
689 	case XenbusStateInitialised:
690 	case XenbusStateConnected:
691 	case XenbusStateUnknown:
692 	case XenbusStateClosed:
693 	case XenbusStateReconfigured:
694 	case XenbusStateReconfiguring:
695 		break;
696 	case XenbusStateInitWait:
697 		if (xenbus_get_state(dev) != XenbusStateInitialising)
698 			break;
699 		if (network_connect(sc) != 0)
700 			break;
701 		xenbus_set_state(dev, XenbusStateConnected);
702 #ifdef INET
703 		netfront_send_fake_arp(dev, sc);
704 #endif
705 		break;
706 	case XenbusStateClosing:
707 		xenbus_set_state(dev, XenbusStateClosed);
708 		break;
709 	}
710 }
711 
712 static void
713 xn_free_rx_ring(struct netfront_info *sc)
714 {
715 #if 0
716 	int i;
717 
718 	for (i = 0; i < NET_RX_RING_SIZE; i++) {
719 		if (sc->xn_cdata.rx_mbufs[i] != NULL) {
720 			m_freem(sc->rx_mbufs[i]);
721 			sc->rx_mbufs[i] = NULL;
722 		}
723 	}
724 
725 	sc->rx.rsp_cons = 0;
726 	sc->xn_rx_if->req_prod = 0;
727 	sc->xn_rx_if->event = sc->rx.rsp_cons ;
728 #endif
729 }
730 
731 static void
732 xn_free_tx_ring(struct netfront_info *sc)
733 {
734 #if 0
735 	int i;
736 
737 	for (i = 0; i < NET_TX_RING_SIZE; i++) {
738 		if (sc->tx_mbufs[i] != NULL) {
739 			m_freem(sc->tx_mbufs[i]);
740 			sc->xn_cdata.xn_tx_chain[i] = NULL;
741 		}
742 	}
743 
744 	return;
745 #endif
746 }
747 
748 /**
749  * \brief Verify that there is sufficient space in the Tx ring
750  *        buffer for a maximally sized request to be enqueued.
751  *
752  * A transmit request requires a transmit descriptor for each packet
753  * fragment, plus up to 2 entries for "options" (e.g. TSO).
754  */
755 static inline int
756 xn_tx_slot_available(struct netfront_info *np)
757 {
758 	return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2));
759 }
760 
761 static void
762 netif_release_tx_bufs(struct netfront_info *np)
763 {
764 	int i;
765 
766 	for (i = 1; i <= NET_TX_RING_SIZE; i++) {
767 		struct mbuf *m;
768 
769 		m = np->tx_mbufs[i];
770 
771 		/*
772 		 * We assume that no kernel addresses are
773 		 * less than NET_TX_RING_SIZE.  Any entry
774 		 * in the table that is below this number
775 		 * must be an index from free-list tracking.
776 		 */
777 		if (((uintptr_t)m) <= NET_TX_RING_SIZE)
778 			continue;
779 		gnttab_end_foreign_access_ref(np->grant_tx_ref[i]);
780 		gnttab_release_grant_reference(&np->gref_tx_head,
781 		    np->grant_tx_ref[i]);
782 		np->grant_tx_ref[i] = GRANT_REF_INVALID;
783 		add_id_to_freelist(np->tx_mbufs, i);
784 		np->xn_cdata.xn_tx_chain_cnt--;
785 		if (np->xn_cdata.xn_tx_chain_cnt < 0) {
786 			panic("%s: tx_chain_cnt must be >= 0", __func__);
787 		}
788 		m_free(m);
789 	}
790 }
791 
792 static void
793 network_alloc_rx_buffers(struct netfront_info *sc)
794 {
795 	int otherend_id = xenbus_get_otherend_id(sc->xbdev);
796 	unsigned short id;
797 	struct mbuf *m_new;
798 	int i, batch_target, notify;
799 	RING_IDX req_prod;
800 	struct xen_memory_reservation reservation;
801 	grant_ref_t ref;
802 	int nr_flips;
803 	netif_rx_request_t *req;
804 	vm_offset_t vaddr;
805 	u_long pfn;
806 
807 	req_prod = sc->rx.req_prod_pvt;
808 
809 	if (unlikely(sc->carrier == 0))
810 		return;
811 
812 	/*
813 	 * Allocate mbufs greedily, even though we batch updates to the
814 	 * receive ring. This creates a less bursty demand on the memory
815 	 * allocator, and so should reduce the chance of failed allocation
816 	 * requests both for ourself and for other kernel subsystems.
817 	 *
818 	 * Here we attempt to maintain rx_target buffers in flight, counting
819 	 * buffers that we have yet to process in the receive ring.
820 	 */
821 	batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons);
822 	for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) {
823 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
824 		if (m_new == NULL) {
825 			printf("%s: MGETHDR failed\n", __func__);
826 			goto no_mbuf;
827 		}
828 
829 		m_cljget(m_new, M_NOWAIT, MJUMPAGESIZE);
830 		if ((m_new->m_flags & M_EXT) == 0) {
831 			printf("%s: m_cljget failed\n", __func__);
832 			m_freem(m_new);
833 
834 no_mbuf:
835 			if (i != 0)
836 				goto refill;
837 			/*
838 			 * XXX set timer
839 			 */
840 			break;
841 		}
842 		m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE;
843 
844 		/* queue the mbufs allocated */
845 		mbufq_tail(&sc->xn_rx_batch, m_new);
846 	}
847 
848 	/*
849 	 * If we've allocated at least half of our target number of entries,
850 	 * submit them to the backend - we have enough to make the overhead
851 	 * of submission worthwhile.  Otherwise wait for more mbufs and
852 	 * request entries to become available.
853 	 */
854 	if (i < (sc->rx_target/2)) {
855 		if (req_prod >sc->rx.sring->req_prod)
856 			goto push;
857 		return;
858 	}
859 
860 	/*
861 	 * Double floating fill target if we risked having the backend
862 	 * run out of empty buffers for receive traffic.  We define "running
863 	 * low" as having less than a fourth of our target buffers free
864 	 * at the time we refilled the queue.
865 	 */
866 	if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) {
867 		sc->rx_target *= 2;
868 		if (sc->rx_target > sc->rx_max_target)
869 			sc->rx_target = sc->rx_max_target;
870 	}
871 
872 refill:
873 	for (nr_flips = i = 0; ; i++) {
874 		if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL)
875 			break;
876 
877 		m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)(
878 				vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT);
879 
880 		id = xennet_rxidx(req_prod + i);
881 
882 		KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain"));
883 		sc->rx_mbufs[id] = m_new;
884 
885 		ref = gnttab_claim_grant_reference(&sc->gref_rx_head);
886 		KASSERT(ref != GNTTAB_LIST_END,
887 			("reserved grant references exhuasted"));
888 		sc->grant_rx_ref[id] = ref;
889 
890 		vaddr = mtod(m_new, vm_offset_t);
891 		pfn = vtophys(vaddr) >> PAGE_SHIFT;
892 		req = RING_GET_REQUEST(&sc->rx, req_prod + i);
893 
894 		if (sc->copying_receiver == 0) {
895 			gnttab_grant_foreign_transfer_ref(ref,
896 			    otherend_id, pfn);
897 			sc->rx_pfn_array[nr_flips] = PFNTOMFN(pfn);
898 			if (!xen_feature(XENFEAT_auto_translated_physmap)) {
899 				/* Remove this page before passing
900 				 * back to Xen.
901 				 */
902 				set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
903 				MULTI_update_va_mapping(&sc->rx_mcl[i],
904 				    vaddr, 0, 0);
905 			}
906 			nr_flips++;
907 		} else {
908 			gnttab_grant_foreign_access_ref(ref,
909 			    otherend_id,
910 			    PFNTOMFN(pfn), 0);
911 		}
912 		req->id = id;
913 		req->gref = ref;
914 
915 		sc->rx_pfn_array[i] =
916 		    vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT;
917 	}
918 
919 	KASSERT(i, ("no mbufs processed")); /* should have returned earlier */
920 	KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed"));
921 	/*
922 	 * We may have allocated buffers which have entries outstanding
923 	 * in the page * update queue -- make sure we flush those first!
924 	 */
925 	PT_UPDATES_FLUSH();
926 	if (nr_flips != 0) {
927 #ifdef notyet
928 		/* Tell the ballon driver what is going on. */
929 		balloon_update_driver_allowance(i);
930 #endif
931 		set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array);
932 		reservation.nr_extents   = i;
933 		reservation.extent_order = 0;
934 		reservation.address_bits = 0;
935 		reservation.domid        = DOMID_SELF;
936 
937 		if (!xen_feature(XENFEAT_auto_translated_physmap)) {
938 			/* After all PTEs have been zapped, flush the TLB. */
939 			sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] =
940 			    UVMF_TLB_FLUSH|UVMF_ALL;
941 
942 			/* Give away a batch of pages. */
943 			sc->rx_mcl[i].op = __HYPERVISOR_memory_op;
944 			sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation;
945 			sc->rx_mcl[i].args[1] =  (u_long)&reservation;
946 			/* Zap PTEs and give away pages in one big multicall. */
947 			(void)HYPERVISOR_multicall(sc->rx_mcl, i+1);
948 
949 			if (unlikely(sc->rx_mcl[i].result != i ||
950 			    HYPERVISOR_memory_op(XENMEM_decrease_reservation,
951 			    &reservation) != i))
952 				panic("%s: unable to reduce memory "
953 				    "reservation\n", __func__);
954 		}
955 	} else {
956 		wmb();
957 	}
958 
959 	/* Above is a suitable barrier to ensure backend will see requests. */
960 	sc->rx.req_prod_pvt = req_prod + i;
961 push:
962 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify);
963 	if (notify)
964 		notify_remote_via_irq(sc->irq);
965 }
966 
967 static void
968 xn_rxeof(struct netfront_info *np)
969 {
970 	struct ifnet *ifp;
971 #if __FreeBSD_version >= 700000
972 	struct lro_ctrl *lro = &np->xn_lro;
973 	struct lro_entry *queued;
974 #endif
975 	struct netfront_rx_info rinfo;
976 	struct netif_rx_response *rx = &rinfo.rx;
977 	struct netif_extra_info *extras = rinfo.extras;
978 	RING_IDX i, rp;
979 	multicall_entry_t *mcl;
980 	struct mbuf *m;
981 	struct mbuf_head rxq, errq;
982 	int err, pages_flipped = 0, work_to_do;
983 
984 	do {
985 		XN_RX_LOCK_ASSERT(np);
986 		if (!netfront_carrier_ok(np))
987 			return;
988 
989 		mbufq_init(&errq);
990 		mbufq_init(&rxq);
991 
992 		ifp = np->xn_ifp;
993 
994 		rp = np->rx.sring->rsp_prod;
995 		rmb();	/* Ensure we see queued responses up to 'rp'. */
996 
997 		i = np->rx.rsp_cons;
998 		while ((i != rp)) {
999 			memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx));
1000 			memset(extras, 0, sizeof(rinfo.extras));
1001 
1002 			m = NULL;
1003 			err = xennet_get_responses(np, &rinfo, rp, &i, &m,
1004 			    &pages_flipped);
1005 
1006 			if (unlikely(err)) {
1007 				if (m)
1008 					mbufq_tail(&errq, m);
1009 				np->stats.rx_errors++;
1010 				continue;
1011 			}
1012 
1013 			m->m_pkthdr.rcvif = ifp;
1014 			if ( rx->flags & NETRXF_data_validated ) {
1015 				/* Tell the stack the checksums are okay */
1016 				/*
1017 				 * XXX this isn't necessarily the case - need to add
1018 				 * check
1019 				 */
1020 
1021 				m->m_pkthdr.csum_flags |=
1022 					(CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID
1023 					    | CSUM_PSEUDO_HDR);
1024 				m->m_pkthdr.csum_data = 0xffff;
1025 			}
1026 
1027 			np->stats.rx_packets++;
1028 			np->stats.rx_bytes += m->m_pkthdr.len;
1029 
1030 			mbufq_tail(&rxq, m);
1031 			np->rx.rsp_cons = i;
1032 		}
1033 
1034 		if (pages_flipped) {
1035 			/* Some pages are no longer absent... */
1036 #ifdef notyet
1037 			balloon_update_driver_allowance(-pages_flipped);
1038 #endif
1039 			/* Do all the remapping work, and M->P updates, in one big
1040 			 * hypercall.
1041 			 */
1042 			if (!!xen_feature(XENFEAT_auto_translated_physmap)) {
1043 				mcl = np->rx_mcl + pages_flipped;
1044 				mcl->op = __HYPERVISOR_mmu_update;
1045 				mcl->args[0] = (u_long)np->rx_mmu;
1046 				mcl->args[1] = pages_flipped;
1047 				mcl->args[2] = 0;
1048 				mcl->args[3] = DOMID_SELF;
1049 				(void)HYPERVISOR_multicall(np->rx_mcl,
1050 				    pages_flipped + 1);
1051 			}
1052 		}
1053 
1054 		while ((m = mbufq_dequeue(&errq)))
1055 			m_freem(m);
1056 
1057 		/*
1058 		 * Process all the mbufs after the remapping is complete.
1059 		 * Break the mbuf chain first though.
1060 		 */
1061 		while ((m = mbufq_dequeue(&rxq)) != NULL) {
1062 			ifp->if_ipackets++;
1063 
1064 			/*
1065 			 * Do we really need to drop the rx lock?
1066 			 */
1067 			XN_RX_UNLOCK(np);
1068 #if __FreeBSD_version >= 700000
1069 			/* Use LRO if possible */
1070 			if ((ifp->if_capenable & IFCAP_LRO) == 0 ||
1071 			    lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) {
1072 				/*
1073 				 * If LRO fails, pass up to the stack
1074 				 * directly.
1075 				 */
1076 				(*ifp->if_input)(ifp, m);
1077 			}
1078 #else
1079 			(*ifp->if_input)(ifp, m);
1080 #endif
1081 			XN_RX_LOCK(np);
1082 		}
1083 
1084 		np->rx.rsp_cons = i;
1085 
1086 #if __FreeBSD_version >= 700000
1087 		/*
1088 		 * Flush any outstanding LRO work
1089 		 */
1090 		while (!SLIST_EMPTY(&lro->lro_active)) {
1091 			queued = SLIST_FIRST(&lro->lro_active);
1092 			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1093 			tcp_lro_flush(lro, queued);
1094 		}
1095 #endif
1096 
1097 #if 0
1098 		/* If we get a callback with very few responses, reduce fill target. */
1099 		/* NB. Note exponential increase, linear decrease. */
1100 		if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) >
1101 			((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target))
1102 			np->rx_target = np->rx_min_target;
1103 #endif
1104 
1105 		network_alloc_rx_buffers(np);
1106 
1107 		RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do);
1108 	} while (work_to_do);
1109 }
1110 
1111 static void
1112 xn_txeof(struct netfront_info *np)
1113 {
1114 	RING_IDX i, prod;
1115 	unsigned short id;
1116 	struct ifnet *ifp;
1117 	netif_tx_response_t *txr;
1118 	struct mbuf *m;
1119 
1120 	XN_TX_LOCK_ASSERT(np);
1121 
1122 	if (!netfront_carrier_ok(np))
1123 		return;
1124 
1125 	ifp = np->xn_ifp;
1126 
1127 	do {
1128 		prod = np->tx.sring->rsp_prod;
1129 		rmb(); /* Ensure we see responses up to 'rp'. */
1130 
1131 		for (i = np->tx.rsp_cons; i != prod; i++) {
1132 			txr = RING_GET_RESPONSE(&np->tx, i);
1133 			if (txr->status == NETIF_RSP_NULL)
1134 				continue;
1135 
1136 			if (txr->status != NETIF_RSP_OKAY) {
1137 				printf("%s: WARNING: response is %d!\n",
1138 				       __func__, txr->status);
1139 			}
1140 			id = txr->id;
1141 			m = np->tx_mbufs[id];
1142 			KASSERT(m != NULL, ("mbuf not found in xn_tx_chain"));
1143 			KASSERT((uintptr_t)m > NET_TX_RING_SIZE,
1144 				("mbuf already on the free list, but we're "
1145 				"trying to free it again!"));
1146 			M_ASSERTVALID(m);
1147 
1148 			/*
1149 			 * Increment packet count if this is the last
1150 			 * mbuf of the chain.
1151 			 */
1152 			if (!m->m_next)
1153 				ifp->if_opackets++;
1154 			if (unlikely(gnttab_query_foreign_access(
1155 			    np->grant_tx_ref[id]) != 0)) {
1156 				panic("%s: grant id %u still in use by the "
1157 				    "backend", __func__, id);
1158 			}
1159 			gnttab_end_foreign_access_ref(
1160 				np->grant_tx_ref[id]);
1161 			gnttab_release_grant_reference(
1162 				&np->gref_tx_head, np->grant_tx_ref[id]);
1163 			np->grant_tx_ref[id] = GRANT_REF_INVALID;
1164 
1165 			np->tx_mbufs[id] = NULL;
1166 			add_id_to_freelist(np->tx_mbufs, id);
1167 			np->xn_cdata.xn_tx_chain_cnt--;
1168 			m_free(m);
1169 			/* Only mark the queue active if we've freed up at least one slot to try */
1170 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1171 		}
1172 		np->tx.rsp_cons = prod;
1173 
1174 		/*
1175 		 * Set a new event, then check for race with update of
1176 		 * tx_cons. Note that it is essential to schedule a
1177 		 * callback, no matter how few buffers are pending. Even if
1178 		 * there is space in the transmit ring, higher layers may
1179 		 * be blocked because too much data is outstanding: in such
1180 		 * cases notification from Xen is likely to be the only kick
1181 		 * that we'll get.
1182 		 */
1183 		np->tx.sring->rsp_event =
1184 		    prod + ((np->tx.sring->req_prod - prod) >> 1) + 1;
1185 
1186 		mb();
1187 	} while (prod != np->tx.sring->rsp_prod);
1188 
1189 	if (np->tx_full &&
1190 	    ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) {
1191 		np->tx_full = 0;
1192 #if 0
1193 		if (np->user_state == UST_OPEN)
1194 			netif_wake_queue(dev);
1195 #endif
1196 	}
1197 }
1198 
1199 static void
1200 xn_intr(void *xsc)
1201 {
1202 	struct netfront_info *np = xsc;
1203 	struct ifnet *ifp = np->xn_ifp;
1204 
1205 #if 0
1206 	if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod &&
1207 	    likely(netfront_carrier_ok(np)) &&
1208 	    ifp->if_drv_flags & IFF_DRV_RUNNING))
1209 		return;
1210 #endif
1211 	if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) {
1212 		XN_TX_LOCK(np);
1213 		xn_txeof(np);
1214 		XN_TX_UNLOCK(np);
1215 	}
1216 
1217 	XN_RX_LOCK(np);
1218 	xn_rxeof(np);
1219 	XN_RX_UNLOCK(np);
1220 
1221 	if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1222 	    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1223 		xn_start(ifp);
1224 }
1225 
1226 static void
1227 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m,
1228 	grant_ref_t ref)
1229 {
1230 	int new = xennet_rxidx(np->rx.req_prod_pvt);
1231 
1232 	KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL"));
1233 	np->rx_mbufs[new] = m;
1234 	np->grant_rx_ref[new] = ref;
1235 	RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new;
1236 	RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref;
1237 	np->rx.req_prod_pvt++;
1238 }
1239 
1240 static int
1241 xennet_get_extras(struct netfront_info *np,
1242     struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons)
1243 {
1244 	struct netif_extra_info *extra;
1245 
1246 	int err = 0;
1247 
1248 	do {
1249 		struct mbuf *m;
1250 		grant_ref_t ref;
1251 
1252 		if (unlikely(*cons + 1 == rp)) {
1253 #if 0
1254 			if (net_ratelimit())
1255 				WPRINTK("Missing extra info\n");
1256 #endif
1257 			err = EINVAL;
1258 			break;
1259 		}
1260 
1261 		extra = (struct netif_extra_info *)
1262 		RING_GET_RESPONSE(&np->rx, ++(*cons));
1263 
1264 		if (unlikely(!extra->type ||
1265 			extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
1266 #if 0
1267 			if (net_ratelimit())
1268 				WPRINTK("Invalid extra type: %d\n",
1269 					extra->type);
1270 #endif
1271 			err = EINVAL;
1272 		} else {
1273 			memcpy(&extras[extra->type - 1], extra, sizeof(*extra));
1274 		}
1275 
1276 		m = xennet_get_rx_mbuf(np, *cons);
1277 		ref = xennet_get_rx_ref(np, *cons);
1278 		xennet_move_rx_slot(np, m, ref);
1279 	} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
1280 
1281 	return err;
1282 }
1283 
1284 static int
1285 xennet_get_responses(struct netfront_info *np,
1286 	struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons,
1287 	struct mbuf  **list,
1288 	int *pages_flipped_p)
1289 {
1290 	int pages_flipped = *pages_flipped_p;
1291 	struct mmu_update *mmu;
1292 	struct multicall_entry *mcl;
1293 	struct netif_rx_response *rx = &rinfo->rx;
1294 	struct netif_extra_info *extras = rinfo->extras;
1295 	struct mbuf *m, *m0, *m_prev;
1296 	grant_ref_t ref = xennet_get_rx_ref(np, *cons);
1297 	RING_IDX ref_cons = *cons;
1298 	int frags = 1;
1299 	int err = 0;
1300 	u_long ret;
1301 
1302 	m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons);
1303 
1304 	if (rx->flags & NETRXF_extra_info) {
1305 		err = xennet_get_extras(np, extras, rp, cons);
1306 	}
1307 
1308 	if (m0 != NULL) {
1309 		m0->m_pkthdr.len = 0;
1310 		m0->m_next = NULL;
1311 	}
1312 
1313 	for (;;) {
1314 		u_long mfn;
1315 
1316 #if 0
1317 		DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n",
1318 			rx->status, rx->offset, frags);
1319 #endif
1320 		if (unlikely(rx->status < 0 ||
1321 			rx->offset + rx->status > PAGE_SIZE)) {
1322 
1323 #if 0
1324 			if (net_ratelimit())
1325 				WPRINTK("rx->offset: %x, size: %u\n",
1326 					rx->offset, rx->status);
1327 #endif
1328 			xennet_move_rx_slot(np, m, ref);
1329 			if (m0 == m)
1330 				m0 = NULL;
1331 			m = NULL;
1332 			err = EINVAL;
1333 			goto next_skip_queue;
1334 		}
1335 
1336 		/*
1337 		 * This definitely indicates a bug, either in this driver or in
1338 		 * the backend driver. In future this should flag the bad
1339 		 * situation to the system controller to reboot the backed.
1340 		 */
1341 		if (ref == GRANT_REF_INVALID) {
1342 
1343 #if 0
1344 			if (net_ratelimit())
1345 				WPRINTK("Bad rx response id %d.\n", rx->id);
1346 #endif
1347 			printf("%s: Bad rx response id %d.\n", __func__,rx->id);
1348 			err = EINVAL;
1349 			goto next;
1350 		}
1351 
1352 		if (!np->copying_receiver) {
1353 			/* Memory pressure, insufficient buffer
1354 			 * headroom, ...
1355 			 */
1356 			if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) {
1357 				WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n",
1358 					rx->id, rx->status);
1359 				xennet_move_rx_slot(np, m, ref);
1360 				err = ENOMEM;
1361 				goto next;
1362 			}
1363 
1364 			if (!xen_feature( XENFEAT_auto_translated_physmap)) {
1365 				/* Remap the page. */
1366 				void *vaddr = mtod(m, void *);
1367 				uint32_t pfn;
1368 
1369 				mcl = np->rx_mcl + pages_flipped;
1370 				mmu = np->rx_mmu + pages_flipped;
1371 
1372 				MULTI_update_va_mapping(mcl, (u_long)vaddr,
1373 				    (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW |
1374 				    PG_V | PG_M | PG_A, 0);
1375 				pfn = (uintptr_t)m->m_ext.ext_arg1;
1376 				mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) |
1377 				    MMU_MACHPHYS_UPDATE;
1378 				mmu->val = pfn;
1379 
1380 				set_phys_to_machine(pfn, mfn);
1381 			}
1382 			pages_flipped++;
1383 		} else {
1384 			ret = gnttab_end_foreign_access_ref(ref);
1385 			KASSERT(ret, ("ret != 0"));
1386 		}
1387 
1388 		gnttab_release_grant_reference(&np->gref_rx_head, ref);
1389 
1390 next:
1391 		if (m == NULL)
1392 			break;
1393 
1394 		m->m_len = rx->status;
1395 		m->m_data += rx->offset;
1396 		m0->m_pkthdr.len += rx->status;
1397 
1398 next_skip_queue:
1399 		if (!(rx->flags & NETRXF_more_data))
1400 			break;
1401 
1402 		if (*cons + frags == rp) {
1403 			if (net_ratelimit())
1404 				WPRINTK("Need more frags\n");
1405 			err = ENOENT;
1406 			printf("%s: cons %u frags %u rp %u, not enough frags\n",
1407 			       __func__, *cons, frags, rp);
1408 			break;
1409 		}
1410 		/*
1411 		 * Note that m can be NULL, if rx->status < 0 or if
1412 		 * rx->offset + rx->status > PAGE_SIZE above.
1413 		 */
1414 		m_prev = m;
1415 
1416 		rx = RING_GET_RESPONSE(&np->rx, *cons + frags);
1417 		m = xennet_get_rx_mbuf(np, *cons + frags);
1418 
1419 		/*
1420 		 * m_prev == NULL can happen if rx->status < 0 or if
1421 		 * rx->offset + * rx->status > PAGE_SIZE above.
1422 		 */
1423 		if (m_prev != NULL)
1424 			m_prev->m_next = m;
1425 
1426 		/*
1427 		 * m0 can be NULL if rx->status < 0 or if * rx->offset +
1428 		 * rx->status > PAGE_SIZE above.
1429 		 */
1430 		if (m0 == NULL)
1431 			m0 = m;
1432 		m->m_next = NULL;
1433 		ref = xennet_get_rx_ref(np, *cons + frags);
1434 		ref_cons = *cons + frags;
1435 		frags++;
1436 	}
1437 	*list = m0;
1438 	*cons += frags;
1439 	*pages_flipped_p = pages_flipped;
1440 
1441 	return (err);
1442 }
1443 
1444 static void
1445 xn_tick_locked(struct netfront_info *sc)
1446 {
1447 	XN_RX_LOCK_ASSERT(sc);
1448 	callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc);
1449 
1450 	/* XXX placeholder for printing debug information */
1451 }
1452 
1453 static void
1454 xn_tick(void *xsc)
1455 {
1456 	struct netfront_info *sc;
1457 
1458 	sc = xsc;
1459 	XN_RX_LOCK(sc);
1460 	xn_tick_locked(sc);
1461 	XN_RX_UNLOCK(sc);
1462 }
1463 
1464 /**
1465  * \brief Count the number of fragments in an mbuf chain.
1466  *
1467  * Surprisingly, there isn't an M* macro for this.
1468  */
1469 static inline int
1470 xn_count_frags(struct mbuf *m)
1471 {
1472 	int nfrags;
1473 
1474 	for (nfrags = 0; m != NULL; m = m->m_next)
1475 		nfrags++;
1476 
1477 	return (nfrags);
1478 }
1479 
1480 /**
1481  * Given an mbuf chain, make sure we have enough room and then push
1482  * it onto the transmit ring.
1483  */
1484 static int
1485 xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head)
1486 {
1487 	struct ifnet *ifp;
1488 	struct mbuf *m;
1489 	u_int nfrags;
1490 	netif_extra_info_t *extra;
1491 	int otherend_id;
1492 
1493 	ifp = sc->xn_ifp;
1494 
1495 	/**
1496 	 * Defragment the mbuf if necessary.
1497 	 */
1498 	nfrags = xn_count_frags(m_head);
1499 
1500 	/*
1501 	 * Check to see whether this request is longer than netback
1502 	 * can handle, and try to defrag it.
1503 	 */
1504 	/**
1505 	 * It is a bit lame, but the netback driver in Linux can't
1506 	 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of
1507 	 * the Linux network stack.
1508 	 */
1509 	if (nfrags > sc->maxfrags) {
1510 		m = m_defrag(m_head, M_NOWAIT);
1511 		if (!m) {
1512 			/*
1513 			 * Defrag failed, so free the mbuf and
1514 			 * therefore drop the packet.
1515 			 */
1516 			m_freem(m_head);
1517 			return (EMSGSIZE);
1518 		}
1519 		m_head = m;
1520 	}
1521 
1522 	/* Determine how many fragments now exist */
1523 	nfrags = xn_count_frags(m_head);
1524 
1525 	/*
1526 	 * Check to see whether the defragmented packet has too many
1527 	 * segments for the Linux netback driver.
1528 	 */
1529 	/**
1530 	 * The FreeBSD TCP stack, with TSO enabled, can produce a chain
1531 	 * of mbufs longer than Linux can handle.  Make sure we don't
1532 	 * pass a too-long chain over to the other side by dropping the
1533 	 * packet.  It doesn't look like there is currently a way to
1534 	 * tell the TCP stack to generate a shorter chain of packets.
1535 	 */
1536 	if (nfrags > MAX_TX_REQ_FRAGS) {
1537 #ifdef DEBUG
1538 		printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback "
1539 		       "won't be able to handle it, dropping\n",
1540 		       __func__, nfrags, MAX_TX_REQ_FRAGS);
1541 #endif
1542 		m_freem(m_head);
1543 		return (EMSGSIZE);
1544 	}
1545 
1546 	/*
1547 	 * This check should be redundant.  We've already verified that we
1548 	 * have enough slots in the ring to handle a packet of maximum
1549 	 * size, and that our packet is less than the maximum size.  Keep
1550 	 * it in here as an assert for now just to make certain that
1551 	 * xn_tx_chain_cnt is accurate.
1552 	 */
1553 	KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE,
1554 		("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE "
1555 		 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt,
1556                     (int) nfrags, (int) NET_TX_RING_SIZE));
1557 
1558 	/*
1559 	 * Start packing the mbufs in this chain into
1560 	 * the fragment pointers. Stop when we run out
1561 	 * of fragments or hit the end of the mbuf chain.
1562 	 */
1563 	m = m_head;
1564 	extra = NULL;
1565 	otherend_id = xenbus_get_otherend_id(sc->xbdev);
1566 	for (m = m_head; m; m = m->m_next) {
1567 		netif_tx_request_t *tx;
1568 		uintptr_t id;
1569 		grant_ref_t ref;
1570 		u_long mfn; /* XXX Wrong type? */
1571 
1572 		tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt);
1573 		id = get_id_from_freelist(sc->tx_mbufs);
1574 		if (id == 0)
1575 			panic("%s: was allocated the freelist head!\n",
1576 			    __func__);
1577 		sc->xn_cdata.xn_tx_chain_cnt++;
1578 		if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE)
1579 			panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n",
1580 			    __func__);
1581 		sc->tx_mbufs[id] = m;
1582 		tx->id = id;
1583 		ref = gnttab_claim_grant_reference(&sc->gref_tx_head);
1584 		KASSERT((short)ref >= 0, ("Negative ref"));
1585 		mfn = virt_to_mfn(mtod(m, vm_offset_t));
1586 		gnttab_grant_foreign_access_ref(ref, otherend_id,
1587 		    mfn, GNTMAP_readonly);
1588 		tx->gref = sc->grant_tx_ref[id] = ref;
1589 		tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1);
1590 		tx->flags = 0;
1591 		if (m == m_head) {
1592 			/*
1593 			 * The first fragment has the entire packet
1594 			 * size, subsequent fragments have just the
1595 			 * fragment size. The backend works out the
1596 			 * true size of the first fragment by
1597 			 * subtracting the sizes of the other
1598 			 * fragments.
1599 			 */
1600 			tx->size = m->m_pkthdr.len;
1601 
1602 			/*
1603 			 * The first fragment contains the checksum flags
1604 			 * and is optionally followed by extra data for
1605 			 * TSO etc.
1606 			 */
1607 			/**
1608 			 * CSUM_TSO requires checksum offloading.
1609 			 * Some versions of FreeBSD fail to
1610 			 * set CSUM_TCP in the CSUM_TSO case,
1611 			 * so we have to test for CSUM_TSO
1612 			 * explicitly.
1613 			 */
1614 			if (m->m_pkthdr.csum_flags
1615 			    & (CSUM_DELAY_DATA | CSUM_TSO)) {
1616 				tx->flags |= (NETTXF_csum_blank
1617 				    | NETTXF_data_validated);
1618 			}
1619 #if __FreeBSD_version >= 700000
1620 			if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1621 				struct netif_extra_info *gso =
1622 					(struct netif_extra_info *)
1623 					RING_GET_REQUEST(&sc->tx,
1624 							 ++sc->tx.req_prod_pvt);
1625 
1626 				tx->flags |= NETTXF_extra_info;
1627 
1628 				gso->u.gso.size = m->m_pkthdr.tso_segsz;
1629 				gso->u.gso.type =
1630 					XEN_NETIF_GSO_TYPE_TCPV4;
1631 				gso->u.gso.pad = 0;
1632 				gso->u.gso.features = 0;
1633 
1634 				gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
1635 				gso->flags = 0;
1636 			}
1637 #endif
1638 		} else {
1639 			tx->size = m->m_len;
1640 		}
1641 		if (m->m_next)
1642 			tx->flags |= NETTXF_more_data;
1643 
1644 		sc->tx.req_prod_pvt++;
1645 	}
1646 	BPF_MTAP(ifp, m_head);
1647 
1648 	sc->stats.tx_bytes += m_head->m_pkthdr.len;
1649 	sc->stats.tx_packets++;
1650 
1651 	return (0);
1652 }
1653 
1654 static void
1655 xn_start_locked(struct ifnet *ifp)
1656 {
1657 	struct netfront_info *sc;
1658 	struct mbuf *m_head;
1659 	int notify;
1660 
1661 	sc = ifp->if_softc;
1662 
1663 	if (!netfront_carrier_ok(sc))
1664 		return;
1665 
1666 	/*
1667 	 * While we have enough transmit slots available for at least one
1668 	 * maximum-sized packet, pull mbufs off the queue and put them on
1669 	 * the transmit ring.
1670 	 */
1671 	while (xn_tx_slot_available(sc)) {
1672 		IF_DEQUEUE(&ifp->if_snd, m_head);
1673 		if (m_head == NULL)
1674 			break;
1675 
1676 		if (xn_assemble_tx_request(sc, m_head) != 0)
1677 			break;
1678 	}
1679 
1680 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify);
1681 	if (notify)
1682 		notify_remote_via_irq(sc->irq);
1683 
1684 	if (RING_FULL(&sc->tx)) {
1685 		sc->tx_full = 1;
1686 #if 0
1687 		netif_stop_queue(dev);
1688 #endif
1689 	}
1690 }
1691 
1692 static void
1693 xn_start(struct ifnet *ifp)
1694 {
1695 	struct netfront_info *sc;
1696 	sc = ifp->if_softc;
1697 	XN_TX_LOCK(sc);
1698 	xn_start_locked(ifp);
1699 	XN_TX_UNLOCK(sc);
1700 }
1701 
1702 /* equivalent of network_open() in Linux */
1703 static void
1704 xn_ifinit_locked(struct netfront_info *sc)
1705 {
1706 	struct ifnet *ifp;
1707 
1708 	XN_LOCK_ASSERT(sc);
1709 
1710 	ifp = sc->xn_ifp;
1711 
1712 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1713 		return;
1714 
1715 	xn_stop(sc);
1716 
1717 	network_alloc_rx_buffers(sc);
1718 	sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1;
1719 
1720 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1721 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1722 	if_link_state_change(ifp, LINK_STATE_UP);
1723 
1724 	callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc);
1725 }
1726 
1727 static void
1728 xn_ifinit(void *xsc)
1729 {
1730 	struct netfront_info *sc = xsc;
1731 
1732 	XN_LOCK(sc);
1733 	xn_ifinit_locked(sc);
1734 	XN_UNLOCK(sc);
1735 }
1736 
1737 static int
1738 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1739 {
1740 	struct netfront_info *sc = ifp->if_softc;
1741 	struct ifreq *ifr = (struct ifreq *) data;
1742 #ifdef INET
1743 	struct ifaddr *ifa = (struct ifaddr *)data;
1744 #endif
1745 
1746 	int mask, error = 0;
1747 	switch(cmd) {
1748 	case SIOCSIFADDR:
1749 	case SIOCGIFADDR:
1750 #ifdef INET
1751 		XN_LOCK(sc);
1752 		if (ifa->ifa_addr->sa_family == AF_INET) {
1753 			ifp->if_flags |= IFF_UP;
1754 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1755 				xn_ifinit_locked(sc);
1756 			arp_ifinit(ifp, ifa);
1757 			XN_UNLOCK(sc);
1758 		} else {
1759 			XN_UNLOCK(sc);
1760 #endif
1761 			error = ether_ioctl(ifp, cmd, data);
1762 #ifdef INET
1763 		}
1764 #endif
1765 		break;
1766 	case SIOCSIFMTU:
1767 		/* XXX can we alter the MTU on a VN ?*/
1768 #ifdef notyet
1769 		if (ifr->ifr_mtu > XN_JUMBO_MTU)
1770 			error = EINVAL;
1771 		else
1772 #endif
1773 		{
1774 			ifp->if_mtu = ifr->ifr_mtu;
1775 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1776 			xn_ifinit(sc);
1777 		}
1778 		break;
1779 	case SIOCSIFFLAGS:
1780 		XN_LOCK(sc);
1781 		if (ifp->if_flags & IFF_UP) {
1782 			/*
1783 			 * If only the state of the PROMISC flag changed,
1784 			 * then just use the 'set promisc mode' command
1785 			 * instead of reinitializing the entire NIC. Doing
1786 			 * a full re-init means reloading the firmware and
1787 			 * waiting for it to start up, which may take a
1788 			 * second or two.
1789 			 */
1790 #ifdef notyet
1791 			/* No promiscuous mode with Xen */
1792 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1793 			    ifp->if_flags & IFF_PROMISC &&
1794 			    !(sc->xn_if_flags & IFF_PROMISC)) {
1795 				XN_SETBIT(sc, XN_RX_MODE,
1796 					  XN_RXMODE_RX_PROMISC);
1797 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1798 				   !(ifp->if_flags & IFF_PROMISC) &&
1799 				   sc->xn_if_flags & IFF_PROMISC) {
1800 				XN_CLRBIT(sc, XN_RX_MODE,
1801 					  XN_RXMODE_RX_PROMISC);
1802 			} else
1803 #endif
1804 				xn_ifinit_locked(sc);
1805 		} else {
1806 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1807 				xn_stop(sc);
1808 			}
1809 		}
1810 		sc->xn_if_flags = ifp->if_flags;
1811 		XN_UNLOCK(sc);
1812 		error = 0;
1813 		break;
1814 	case SIOCSIFCAP:
1815 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1816 		if (mask & IFCAP_TXCSUM) {
1817 			if (IFCAP_TXCSUM & ifp->if_capenable) {
1818 				ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4);
1819 				ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP
1820 				    | CSUM_IP | CSUM_TSO);
1821 			} else {
1822 				ifp->if_capenable |= IFCAP_TXCSUM;
1823 				ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP
1824 				    | CSUM_IP);
1825 			}
1826 		}
1827 		if (mask & IFCAP_RXCSUM) {
1828 			ifp->if_capenable ^= IFCAP_RXCSUM;
1829 		}
1830 #if __FreeBSD_version >= 700000
1831 		if (mask & IFCAP_TSO4) {
1832 			if (IFCAP_TSO4 & ifp->if_capenable) {
1833 				ifp->if_capenable &= ~IFCAP_TSO4;
1834 				ifp->if_hwassist &= ~CSUM_TSO;
1835 			} else if (IFCAP_TXCSUM & ifp->if_capenable) {
1836 				ifp->if_capenable |= IFCAP_TSO4;
1837 				ifp->if_hwassist |= CSUM_TSO;
1838 			} else {
1839 				IPRINTK("Xen requires tx checksum offload"
1840 				    " be enabled to use TSO\n");
1841 				error = EINVAL;
1842 			}
1843 		}
1844 		if (mask & IFCAP_LRO) {
1845 			ifp->if_capenable ^= IFCAP_LRO;
1846 
1847 		}
1848 #endif
1849 		error = 0;
1850 		break;
1851 	case SIOCADDMULTI:
1852 	case SIOCDELMULTI:
1853 #ifdef notyet
1854 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1855 			XN_LOCK(sc);
1856 			xn_setmulti(sc);
1857 			XN_UNLOCK(sc);
1858 			error = 0;
1859 		}
1860 #endif
1861 		/* FALLTHROUGH */
1862 	case SIOCSIFMEDIA:
1863 	case SIOCGIFMEDIA:
1864 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1865 		break;
1866 	default:
1867 		error = ether_ioctl(ifp, cmd, data);
1868 	}
1869 
1870 	return (error);
1871 }
1872 
1873 static void
1874 xn_stop(struct netfront_info *sc)
1875 {
1876 	struct ifnet *ifp;
1877 
1878 	XN_LOCK_ASSERT(sc);
1879 
1880 	ifp = sc->xn_ifp;
1881 
1882 	callout_stop(&sc->xn_stat_ch);
1883 
1884 	xn_free_rx_ring(sc);
1885 	xn_free_tx_ring(sc);
1886 
1887 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1888 	if_link_state_change(ifp, LINK_STATE_DOWN);
1889 }
1890 
1891 /* START of Xenolinux helper functions adapted to FreeBSD */
1892 int
1893 network_connect(struct netfront_info *np)
1894 {
1895 	int i, requeue_idx, error;
1896 	grant_ref_t ref;
1897 	netif_rx_request_t *req;
1898 	u_int feature_rx_copy, feature_rx_flip;
1899 
1900 	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1901 	    "feature-rx-copy", NULL, "%u", &feature_rx_copy);
1902 	if (error)
1903 		feature_rx_copy = 0;
1904 	error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
1905 	    "feature-rx-flip", NULL, "%u", &feature_rx_flip);
1906 	if (error)
1907 		feature_rx_flip = 1;
1908 
1909 	/*
1910 	 * Copy packets on receive path if:
1911 	 *  (a) This was requested by user, and the backend supports it; or
1912 	 *  (b) Flipping was requested, but this is unsupported by the backend.
1913 	 */
1914 	np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) ||
1915 				(MODPARM_rx_flip && !feature_rx_flip));
1916 
1917 	/* Recovery procedure: */
1918 	error = talk_to_backend(np->xbdev, np);
1919 	if (error)
1920 		return (error);
1921 
1922 	/* Step 1: Reinitialise variables. */
1923 	xn_query_features(np);
1924 	xn_configure_features(np);
1925 	netif_release_tx_bufs(np);
1926 
1927 	/* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */
1928 	for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
1929 		struct mbuf *m;
1930 		u_long pfn;
1931 
1932 		if (np->rx_mbufs[i] == NULL)
1933 			continue;
1934 
1935 		m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i);
1936 		ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i);
1937 
1938 		req = RING_GET_REQUEST(&np->rx, requeue_idx);
1939 		pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT;
1940 
1941 		if (!np->copying_receiver) {
1942 			gnttab_grant_foreign_transfer_ref(ref,
1943 			    xenbus_get_otherend_id(np->xbdev),
1944 			    pfn);
1945 		} else {
1946 			gnttab_grant_foreign_access_ref(ref,
1947 			    xenbus_get_otherend_id(np->xbdev),
1948 			    PFNTOMFN(pfn), 0);
1949 		}
1950 		req->gref = ref;
1951 		req->id   = requeue_idx;
1952 
1953 		requeue_idx++;
1954 	}
1955 
1956 	np->rx.req_prod_pvt = requeue_idx;
1957 
1958 	/* Step 3: All public and private state should now be sane.  Get
1959 	 * ready to start sending and receiving packets and give the driver
1960 	 * domain a kick because we've probably just requeued some
1961 	 * packets.
1962 	 */
1963 	netfront_carrier_on(np);
1964 	notify_remote_via_irq(np->irq);
1965 	XN_TX_LOCK(np);
1966 	xn_txeof(np);
1967 	XN_TX_UNLOCK(np);
1968 	network_alloc_rx_buffers(np);
1969 
1970 	return (0);
1971 }
1972 
1973 static void
1974 show_device(struct netfront_info *sc)
1975 {
1976 #ifdef DEBUG
1977 	if (sc) {
1978 		IPRINTK("<vif handle=%u %s(%s) evtchn=%u irq=%u tx=%p rx=%p>\n",
1979 			sc->xn_ifno,
1980 			be_state_name[sc->xn_backend_state],
1981 			sc->xn_user_state ? "open" : "closed",
1982 			sc->xn_evtchn,
1983 			sc->xn_irq,
1984 			sc->xn_tx_if,
1985 			sc->xn_rx_if);
1986 	} else {
1987 		IPRINTK("<vif NULL>\n");
1988 	}
1989 #endif
1990 }
1991 
1992 static void
1993 xn_query_features(struct netfront_info *np)
1994 {
1995 	int val;
1996 
1997 	device_printf(np->xbdev, "backend features:");
1998 
1999 	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2000 		"feature-sg", NULL, "%d", &val) < 0)
2001 		val = 0;
2002 
2003 	np->maxfrags = 1;
2004 	if (val) {
2005 		np->maxfrags = MAX_TX_REQ_FRAGS;
2006 		printf(" feature-sg");
2007 	}
2008 
2009 	if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev),
2010 		"feature-gso-tcpv4", NULL, "%d", &val) < 0)
2011 		val = 0;
2012 
2013 	np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO);
2014 	if (val) {
2015 		np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO;
2016 		printf(" feature-gso-tcp4");
2017 	}
2018 
2019 	printf("\n");
2020 }
2021 
2022 static int
2023 xn_configure_features(struct netfront_info *np)
2024 {
2025 	int err;
2026 
2027 	err = 0;
2028 #if __FreeBSD_version >= 700000
2029 	if ((np->xn_ifp->if_capenable & IFCAP_LRO) != 0)
2030 		tcp_lro_free(&np->xn_lro);
2031 #endif
2032     	np->xn_ifp->if_capenable =
2033 	    np->xn_ifp->if_capabilities & ~(IFCAP_LRO|IFCAP_TSO4);
2034 	np->xn_ifp->if_hwassist &= ~CSUM_TSO;
2035 #if __FreeBSD_version >= 700000
2036 	if (xn_enable_lro && (np->xn_ifp->if_capabilities & IFCAP_LRO) != 0) {
2037 		err = tcp_lro_init(&np->xn_lro);
2038 		if (err) {
2039 			device_printf(np->xbdev, "LRO initialization failed\n");
2040 		} else {
2041 			np->xn_lro.ifp = np->xn_ifp;
2042 			np->xn_ifp->if_capenable |= IFCAP_LRO;
2043 		}
2044 	}
2045 	if ((np->xn_ifp->if_capabilities & IFCAP_TSO4) != 0) {
2046 		np->xn_ifp->if_capenable |= IFCAP_TSO4;
2047 		np->xn_ifp->if_hwassist |= CSUM_TSO;
2048 	}
2049 #endif
2050 	return (err);
2051 }
2052 
2053 /** Create a network device.
2054  * @param handle device handle
2055  */
2056 int
2057 create_netdev(device_t dev)
2058 {
2059 	int i;
2060 	struct netfront_info *np;
2061 	int err;
2062 	struct ifnet *ifp;
2063 
2064 	np = device_get_softc(dev);
2065 
2066 	np->xbdev         = dev;
2067 
2068 	XN_LOCK_INIT(np, xennetif);
2069 
2070 	ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts);
2071 	ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
2072 	ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL);
2073 
2074 	np->rx_target     = RX_MIN_TARGET;
2075 	np->rx_min_target = RX_MIN_TARGET;
2076 	np->rx_max_target = RX_MAX_TARGET;
2077 
2078 	/* Initialise {tx,rx}_skbs to be a free chain containing every entry. */
2079 	for (i = 0; i <= NET_TX_RING_SIZE; i++) {
2080 		np->tx_mbufs[i] = (void *) ((u_long) i+1);
2081 		np->grant_tx_ref[i] = GRANT_REF_INVALID;
2082 	}
2083 	np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0;
2084 
2085 	for (i = 0; i <= NET_RX_RING_SIZE; i++) {
2086 
2087 		np->rx_mbufs[i] = NULL;
2088 		np->grant_rx_ref[i] = GRANT_REF_INVALID;
2089 	}
2090 	/* A grant for every tx ring slot */
2091 	if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
2092 					  &np->gref_tx_head) != 0) {
2093 		IPRINTK("#### netfront can't alloc tx grant refs\n");
2094 		err = ENOMEM;
2095 		goto exit;
2096 	}
2097 	/* A grant for every rx ring slot */
2098 	if (gnttab_alloc_grant_references(RX_MAX_TARGET,
2099 					  &np->gref_rx_head) != 0) {
2100 		WPRINTK("#### netfront can't alloc rx grant refs\n");
2101 		gnttab_free_grant_references(np->gref_tx_head);
2102 		err = ENOMEM;
2103 		goto exit;
2104 	}
2105 
2106 	err = xen_net_read_mac(dev, np->mac);
2107 	if (err)
2108 		goto out;
2109 
2110 	/* Set up ifnet structure */
2111 	ifp = np->xn_ifp = if_alloc(IFT_ETHER);
2112     	ifp->if_softc = np;
2113     	if_initname(ifp, "xn",  device_get_unit(dev));
2114     	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2115     	ifp->if_ioctl = xn_ioctl;
2116     	ifp->if_output = ether_output;
2117     	ifp->if_start = xn_start;
2118 #ifdef notyet
2119     	ifp->if_watchdog = xn_watchdog;
2120 #endif
2121     	ifp->if_init = xn_ifinit;
2122     	ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1;
2123 
2124     	ifp->if_hwassist = XN_CSUM_FEATURES;
2125     	ifp->if_capabilities = IFCAP_HWCSUM;
2126 	ifp->if_hw_tsomax = NF_TSO_MAXBURST;
2127 
2128     	ether_ifattach(ifp, np->mac);
2129     	callout_init(&np->xn_stat_ch, CALLOUT_MPSAFE);
2130 	netfront_carrier_off(np);
2131 
2132 	return (0);
2133 
2134 exit:
2135 	gnttab_free_grant_references(np->gref_tx_head);
2136 out:
2137 	return (err);
2138 }
2139 
2140 /**
2141  * Handle the change of state of the backend to Closing.  We must delete our
2142  * device-layer structures now, to ensure that writes are flushed through to
2143  * the backend.  Once is this done, we can switch to Closed in
2144  * acknowledgement.
2145  */
2146 #if 0
2147 static void
2148 netfront_closing(device_t dev)
2149 {
2150 #if 0
2151 	struct netfront_info *info = dev->dev_driver_data;
2152 
2153 	DPRINTK("netfront_closing: %s removed\n", dev->nodename);
2154 
2155 	close_netdev(info);
2156 #endif
2157 	xenbus_switch_state(dev, XenbusStateClosed);
2158 }
2159 #endif
2160 
2161 static int
2162 netfront_detach(device_t dev)
2163 {
2164 	struct netfront_info *info = device_get_softc(dev);
2165 
2166 	DPRINTK("%s\n", xenbus_get_node(dev));
2167 
2168 	netif_free(info);
2169 
2170 	return 0;
2171 }
2172 
2173 static void
2174 netif_free(struct netfront_info *info)
2175 {
2176 	XN_LOCK(info);
2177 	xn_stop(info);
2178 	XN_UNLOCK(info);
2179 	callout_drain(&info->xn_stat_ch);
2180 	netif_disconnect_backend(info);
2181 	if (info->xn_ifp != NULL) {
2182 		ether_ifdetach(info->xn_ifp);
2183 		if_free(info->xn_ifp);
2184 		info->xn_ifp = NULL;
2185 	}
2186 	ifmedia_removeall(&info->sc_media);
2187 }
2188 
2189 static void
2190 netif_disconnect_backend(struct netfront_info *info)
2191 {
2192 	XN_RX_LOCK(info);
2193 	XN_TX_LOCK(info);
2194 	netfront_carrier_off(info);
2195 	XN_TX_UNLOCK(info);
2196 	XN_RX_UNLOCK(info);
2197 
2198 	free_ring(&info->tx_ring_ref, &info->tx.sring);
2199 	free_ring(&info->rx_ring_ref, &info->rx.sring);
2200 
2201 	if (info->irq)
2202 		unbind_from_irqhandler(info->irq);
2203 
2204 	info->irq = 0;
2205 }
2206 
2207 static void
2208 free_ring(int *ref, void *ring_ptr_ref)
2209 {
2210 	void **ring_ptr_ptr = ring_ptr_ref;
2211 
2212 	if (*ref != GRANT_REF_INVALID) {
2213 		/* This API frees the associated storage. */
2214 		gnttab_end_foreign_access(*ref, *ring_ptr_ptr);
2215 		*ref = GRANT_REF_INVALID;
2216 	}
2217 	*ring_ptr_ptr = NULL;
2218 }
2219 
2220 static int
2221 xn_ifmedia_upd(struct ifnet *ifp)
2222 {
2223 	return (0);
2224 }
2225 
2226 static void
2227 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2228 {
2229 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2230 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2231 }
2232 
2233 /* ** Driver registration ** */
2234 static device_method_t netfront_methods[] = {
2235 	/* Device interface */
2236 	DEVMETHOD(device_probe,         netfront_probe),
2237 	DEVMETHOD(device_attach,        netfront_attach),
2238 	DEVMETHOD(device_detach,        netfront_detach),
2239 	DEVMETHOD(device_shutdown,      bus_generic_shutdown),
2240 	DEVMETHOD(device_suspend,       netfront_suspend),
2241 	DEVMETHOD(device_resume,        netfront_resume),
2242 
2243 	/* Xenbus interface */
2244 	DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed),
2245 
2246 	DEVMETHOD_END
2247 };
2248 
2249 static driver_t netfront_driver = {
2250 	"xn",
2251 	netfront_methods,
2252 	sizeof(struct netfront_info),
2253 };
2254 devclass_t netfront_devclass;
2255 
2256 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL,
2257     NULL);
2258