1 /* 2 * 3 * Copyright (c) 2004-2006 Kip Macy 4 * All rights reserved. 5 * 6 * 7 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 8 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 9 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 10 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 11 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 12 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 13 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 14 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 15 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 16 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 17 */ 18 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 #include <sys/param.h> 24 #include <sys/systm.h> 25 #include <sys/sockio.h> 26 #include <sys/mbuf.h> 27 #include <sys/malloc.h> 28 #include <sys/module.h> 29 #include <sys/kernel.h> 30 #include <sys/socket.h> 31 #include <sys/sysctl.h> 32 #include <sys/queue.h> 33 #include <sys/lock.h> 34 #include <sys/sx.h> 35 36 #include <net/if.h> 37 #include <net/if_arp.h> 38 #include <net/ethernet.h> 39 #include <net/if_dl.h> 40 #include <net/if_media.h> 41 42 #include <net/bpf.h> 43 44 #include <net/if_types.h> 45 #include <net/if.h> 46 47 #include <netinet/in_systm.h> 48 #include <netinet/in.h> 49 #include <netinet/ip.h> 50 #include <netinet/if_ether.h> 51 #if __FreeBSD_version >= 700000 52 #include <netinet/tcp.h> 53 #include <netinet/tcp_lro.h> 54 #endif 55 56 #include <vm/vm.h> 57 #include <vm/pmap.h> 58 59 #include <machine/clock.h> /* for DELAY */ 60 #include <machine/bus.h> 61 #include <machine/resource.h> 62 #include <machine/frame.h> 63 #include <machine/vmparam.h> 64 65 #include <sys/bus.h> 66 #include <sys/rman.h> 67 68 #include <machine/intr_machdep.h> 69 70 #include <machine/xen/xen-os.h> 71 #include <machine/xen/xenfunc.h> 72 #include <xen/hypervisor.h> 73 #include <xen/xen_intr.h> 74 #include <xen/evtchn.h> 75 #include <xen/gnttab.h> 76 #include <xen/interface/memory.h> 77 #include <xen/interface/io/netif.h> 78 #include <xen/xenbus/xenbusvar.h> 79 80 #include <dev/xen/netfront/mbufq.h> 81 82 #include "xenbus_if.h" 83 84 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP | CSUM_TSO) 85 86 #define GRANT_INVALID_REF 0 87 88 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 89 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 90 91 #if __FreeBSD_version >= 700000 92 /* 93 * Should the driver do LRO on the RX end 94 * this can be toggled on the fly, but the 95 * interface must be reset (down/up) for it 96 * to take effect. 97 */ 98 static int xn_enable_lro = 1; 99 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 100 #else 101 102 #define IFCAP_TSO4 0 103 #define CSUM_TSO 0 104 105 #endif 106 107 #ifdef CONFIG_XEN 108 static int MODPARM_rx_copy = 0; 109 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0); 110 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)"); 111 static int MODPARM_rx_flip = 0; 112 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0); 113 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)"); 114 #else 115 static const int MODPARM_rx_copy = 1; 116 static const int MODPARM_rx_flip = 0; 117 #endif 118 119 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 120 #define RX_COPY_THRESHOLD 256 121 122 #define net_ratelimit() 0 123 124 struct netfront_info; 125 struct netfront_rx_info; 126 127 static void xn_txeof(struct netfront_info *); 128 static void xn_rxeof(struct netfront_info *); 129 static void network_alloc_rx_buffers(struct netfront_info *); 130 131 static void xn_tick_locked(struct netfront_info *); 132 static void xn_tick(void *); 133 134 static void xn_intr(void *); 135 static void xn_start_locked(struct ifnet *); 136 static void xn_start(struct ifnet *); 137 static int xn_ioctl(struct ifnet *, u_long, caddr_t); 138 static void xn_ifinit_locked(struct netfront_info *); 139 static void xn_ifinit(void *); 140 static void xn_stop(struct netfront_info *); 141 #ifdef notyet 142 static void xn_watchdog(struct ifnet *); 143 #endif 144 145 static void show_device(struct netfront_info *sc); 146 #ifdef notyet 147 static void netfront_closing(device_t dev); 148 #endif 149 static void netif_free(struct netfront_info *info); 150 static int netfront_detach(device_t dev); 151 152 static int talk_to_backend(device_t dev, struct netfront_info *info); 153 static int create_netdev(device_t dev); 154 static void netif_disconnect_backend(struct netfront_info *info); 155 static int setup_device(device_t dev, struct netfront_info *info); 156 static void end_access(int ref, void *page); 157 158 static int xn_ifmedia_upd(struct ifnet *ifp); 159 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 160 161 /* Xenolinux helper functions */ 162 int network_connect(struct netfront_info *); 163 164 static void xn_free_rx_ring(struct netfront_info *); 165 166 static void xn_free_tx_ring(struct netfront_info *); 167 168 static int xennet_get_responses(struct netfront_info *np, 169 struct netfront_rx_info *rinfo, RING_IDX rp, struct mbuf **list, 170 int *pages_flipped_p); 171 172 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 173 174 #define INVALID_P2M_ENTRY (~0UL) 175 176 /* 177 * Mbuf pointers. We need these to keep track of the virtual addresses 178 * of our mbuf chains since we can only convert from virtual to physical, 179 * not the other way around. The size must track the free index arrays. 180 */ 181 struct xn_chain_data { 182 struct mbuf *xn_tx_chain[NET_TX_RING_SIZE+1]; 183 int xn_tx_chain_cnt; 184 struct mbuf *xn_rx_chain[NET_RX_RING_SIZE+1]; 185 }; 186 187 188 struct net_device_stats 189 { 190 u_long rx_packets; /* total packets received */ 191 u_long tx_packets; /* total packets transmitted */ 192 u_long rx_bytes; /* total bytes received */ 193 u_long tx_bytes; /* total bytes transmitted */ 194 u_long rx_errors; /* bad packets received */ 195 u_long tx_errors; /* packet transmit problems */ 196 u_long rx_dropped; /* no space in linux buffers */ 197 u_long tx_dropped; /* no space available in linux */ 198 u_long multicast; /* multicast packets received */ 199 u_long collisions; 200 201 /* detailed rx_errors: */ 202 u_long rx_length_errors; 203 u_long rx_over_errors; /* receiver ring buff overflow */ 204 u_long rx_crc_errors; /* recved pkt with crc error */ 205 u_long rx_frame_errors; /* recv'd frame alignment error */ 206 u_long rx_fifo_errors; /* recv'r fifo overrun */ 207 u_long rx_missed_errors; /* receiver missed packet */ 208 209 /* detailed tx_errors */ 210 u_long tx_aborted_errors; 211 u_long tx_carrier_errors; 212 u_long tx_fifo_errors; 213 u_long tx_heartbeat_errors; 214 u_long tx_window_errors; 215 216 /* for cslip etc */ 217 u_long rx_compressed; 218 u_long tx_compressed; 219 }; 220 221 struct netfront_info { 222 223 struct ifnet *xn_ifp; 224 #if __FreeBSD_version >= 700000 225 struct lro_ctrl xn_lro; 226 #endif 227 228 struct net_device_stats stats; 229 u_int tx_full; 230 231 netif_tx_front_ring_t tx; 232 netif_rx_front_ring_t rx; 233 234 struct mtx tx_lock; 235 struct mtx rx_lock; 236 struct sx sc_lock; 237 238 u_int handle; 239 u_int irq; 240 u_int copying_receiver; 241 u_int carrier; 242 243 /* Receive-ring batched refills. */ 244 #define RX_MIN_TARGET 32 245 #define RX_MAX_TARGET NET_RX_RING_SIZE 246 int rx_min_target; 247 int rx_max_target; 248 int rx_target; 249 250 /* 251 * {tx,rx}_skbs store outstanding skbuffs. The first entry in each 252 * array is an index into a chain of free entries. 253 */ 254 255 grant_ref_t gref_tx_head; 256 grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1]; 257 grant_ref_t gref_rx_head; 258 grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1]; 259 260 #define TX_MAX_TARGET min(NET_RX_RING_SIZE, 256) 261 device_t xbdev; 262 int tx_ring_ref; 263 int rx_ring_ref; 264 uint8_t mac[ETHER_ADDR_LEN]; 265 struct xn_chain_data xn_cdata; /* mbufs */ 266 struct mbuf_head xn_rx_batch; /* head of the batch queue */ 267 268 int xn_if_flags; 269 struct callout xn_stat_ch; 270 271 u_long rx_pfn_array[NET_RX_RING_SIZE]; 272 multicall_entry_t rx_mcl[NET_RX_RING_SIZE+1]; 273 mmu_update_t rx_mmu[NET_RX_RING_SIZE]; 274 struct ifmedia sc_media; 275 }; 276 277 #define rx_mbufs xn_cdata.xn_rx_chain 278 #define tx_mbufs xn_cdata.xn_tx_chain 279 280 #define XN_LOCK_INIT(_sc, _name) \ 281 mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \ 282 mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF); \ 283 sx_init(&(_sc)->sc_lock, #_name"_rx") 284 285 #define XN_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_lock) 286 #define XN_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_lock) 287 288 #define XN_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_lock) 289 #define XN_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_lock) 290 291 #define XN_LOCK(_sc) sx_xlock(&(_sc)->sc_lock); 292 #define XN_UNLOCK(_sc) sx_xunlock(&(_sc)->sc_lock); 293 294 #define XN_LOCK_ASSERT(_sc) sx_assert(&(_sc)->sc_lock, SX_LOCKED); 295 #define XN_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_lock, MA_OWNED); 296 #define XN_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_lock, MA_OWNED); 297 #define XN_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_lock); \ 298 mtx_destroy(&(_sc)->tx_lock); \ 299 sx_destroy(&(_sc)->sc_lock); 300 301 struct netfront_rx_info { 302 struct netif_rx_response rx; 303 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 304 }; 305 306 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 307 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 308 #define netfront_carrier_ok(netif) ((netif)->carrier) 309 310 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 311 312 313 314 /* 315 * Access macros for acquiring freeing slots in tx_skbs[]. 316 */ 317 318 static inline void 319 add_id_to_freelist(struct mbuf **list, unsigned short id) 320 { 321 KASSERT(id != 0, ("add_id_to_freelist: the head item (0) must always be free.")); 322 list[id] = list[0]; 323 list[0] = (void *)(u_long)id; 324 } 325 326 static inline unsigned short 327 get_id_from_freelist(struct mbuf **list) 328 { 329 u_int id = (u_int)(u_long)list[0]; 330 KASSERT(id != 0, ("get_id_from_freelist: the head item (0) must always remain free.")); 331 list[0] = list[id]; 332 return (id); 333 } 334 335 static inline int 336 xennet_rxidx(RING_IDX idx) 337 { 338 return idx & (NET_RX_RING_SIZE - 1); 339 } 340 341 static inline struct mbuf * 342 xennet_get_rx_mbuf(struct netfront_info *np, 343 RING_IDX ri) 344 { 345 int i = xennet_rxidx(ri); 346 struct mbuf *m; 347 348 m = np->rx_mbufs[i]; 349 np->rx_mbufs[i] = NULL; 350 return (m); 351 } 352 353 static inline grant_ref_t 354 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri) 355 { 356 int i = xennet_rxidx(ri); 357 grant_ref_t ref = np->grant_rx_ref[i]; 358 np->grant_rx_ref[i] = GRANT_INVALID_REF; 359 return ref; 360 } 361 362 #define IPRINTK(fmt, args...) \ 363 printf("[XEN] " fmt, ##args) 364 #define WPRINTK(fmt, args...) \ 365 printf("[XEN] " fmt, ##args) 366 #if 0 367 #define DPRINTK(fmt, args...) \ 368 printf("[XEN] %s: " fmt, __func__, ##args) 369 #else 370 #define DPRINTK(fmt, args...) 371 #endif 372 373 /** 374 * Read the 'mac' node at the given device's node in the store, and parse that 375 * as colon-separated octets, placing result the given mac array. mac must be 376 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 377 * Return 0 on success, or errno on error. 378 */ 379 static int 380 xen_net_read_mac(device_t dev, uint8_t mac[]) 381 { 382 int error, i; 383 char *s, *e, *macstr; 384 385 error = xenbus_read(XBT_NIL, xenbus_get_node(dev), "mac", NULL, 386 (void **) &macstr); 387 if (error) 388 return (error); 389 390 s = macstr; 391 for (i = 0; i < ETHER_ADDR_LEN; i++) { 392 mac[i] = strtoul(s, &e, 16); 393 if (s == e || (e[0] != ':' && e[0] != 0)) { 394 free(macstr, M_DEVBUF); 395 return (ENOENT); 396 } 397 s = &e[1]; 398 } 399 free(macstr, M_DEVBUF); 400 return (0); 401 } 402 403 /** 404 * Entry point to this code when a new device is created. Allocate the basic 405 * structures and the ring buffers for communication with the backend, and 406 * inform the backend of the appropriate details for those. Switch to 407 * Connected state. 408 */ 409 static int 410 netfront_probe(device_t dev) 411 { 412 413 if (!strcmp(xenbus_get_type(dev), "vif")) { 414 device_set_desc(dev, "Virtual Network Interface"); 415 return (0); 416 } 417 418 return (ENXIO); 419 } 420 421 static int 422 netfront_attach(device_t dev) 423 { 424 int err; 425 426 err = create_netdev(dev); 427 if (err) { 428 xenbus_dev_fatal(dev, err, "creating netdev"); 429 return err; 430 } 431 432 #if __FreeBSD_version >= 700000 433 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 434 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 435 OID_AUTO, "enable_lro", CTLTYPE_INT|CTLFLAG_RW, 436 &xn_enable_lro, 0, "Large Receive Offload"); 437 #endif 438 439 return 0; 440 } 441 442 443 /** 444 * We are reconnecting to the backend, due to a suspend/resume, or a backend 445 * driver restart. We tear down our netif structure and recreate it, but 446 * leave the device-layer structures intact so that this is transparent to the 447 * rest of the kernel. 448 */ 449 static int 450 netfront_resume(device_t dev) 451 { 452 struct netfront_info *info = device_get_softc(dev); 453 454 netif_disconnect_backend(info); 455 return (0); 456 } 457 458 459 /* Common code used when first setting up, and when resuming. */ 460 static int 461 talk_to_backend(device_t dev, struct netfront_info *info) 462 { 463 const char *message; 464 struct xenbus_transaction xbt; 465 const char *node = xenbus_get_node(dev); 466 int err; 467 468 err = xen_net_read_mac(dev, info->mac); 469 if (err) { 470 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 471 goto out; 472 } 473 474 /* Create shared ring, alloc event channel. */ 475 err = setup_device(dev, info); 476 if (err) 477 goto out; 478 479 again: 480 err = xenbus_transaction_start(&xbt); 481 if (err) { 482 xenbus_dev_fatal(dev, err, "starting transaction"); 483 goto destroy_ring; 484 } 485 err = xenbus_printf(xbt, node, "tx-ring-ref","%u", 486 info->tx_ring_ref); 487 if (err) { 488 message = "writing tx ring-ref"; 489 goto abort_transaction; 490 } 491 err = xenbus_printf(xbt, node, "rx-ring-ref","%u", 492 info->rx_ring_ref); 493 if (err) { 494 message = "writing rx ring-ref"; 495 goto abort_transaction; 496 } 497 err = xenbus_printf(xbt, node, 498 "event-channel", "%u", irq_to_evtchn_port(info->irq)); 499 if (err) { 500 message = "writing event-channel"; 501 goto abort_transaction; 502 } 503 err = xenbus_printf(xbt, node, "request-rx-copy", "%u", 504 info->copying_receiver); 505 if (err) { 506 message = "writing request-rx-copy"; 507 goto abort_transaction; 508 } 509 err = xenbus_printf(xbt, node, "feature-rx-notify", "%d", 1); 510 if (err) { 511 message = "writing feature-rx-notify"; 512 goto abort_transaction; 513 } 514 err = xenbus_printf(xbt, node, "feature-sg", "%d", 1); 515 if (err) { 516 message = "writing feature-sg"; 517 goto abort_transaction; 518 } 519 #if __FreeBSD_version >= 700000 520 err = xenbus_printf(xbt, node, "feature-gso-tcpv4", "%d", 1); 521 if (err) { 522 message = "writing feature-gso-tcpv4"; 523 goto abort_transaction; 524 } 525 #endif 526 527 err = xenbus_transaction_end(xbt, 0); 528 if (err) { 529 if (err == EAGAIN) 530 goto again; 531 xenbus_dev_fatal(dev, err, "completing transaction"); 532 goto destroy_ring; 533 } 534 535 return 0; 536 537 abort_transaction: 538 xenbus_transaction_end(xbt, 1); 539 xenbus_dev_fatal(dev, err, "%s", message); 540 destroy_ring: 541 netif_free(info); 542 out: 543 return err; 544 } 545 546 547 static int 548 setup_device(device_t dev, struct netfront_info *info) 549 { 550 netif_tx_sring_t *txs; 551 netif_rx_sring_t *rxs; 552 int error; 553 struct ifnet *ifp; 554 555 ifp = info->xn_ifp; 556 557 info->tx_ring_ref = GRANT_INVALID_REF; 558 info->rx_ring_ref = GRANT_INVALID_REF; 559 info->rx.sring = NULL; 560 info->tx.sring = NULL; 561 info->irq = 0; 562 563 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 564 if (!txs) { 565 error = ENOMEM; 566 xenbus_dev_fatal(dev, error, "allocating tx ring page"); 567 goto fail; 568 } 569 SHARED_RING_INIT(txs); 570 FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE); 571 error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref); 572 if (error) 573 goto fail; 574 575 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 576 if (!rxs) { 577 error = ENOMEM; 578 xenbus_dev_fatal(dev, error, "allocating rx ring page"); 579 goto fail; 580 } 581 SHARED_RING_INIT(rxs); 582 FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE); 583 584 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref); 585 if (error) 586 goto fail; 587 588 error = bind_listening_port_to_irqhandler(xenbus_get_otherend_id(dev), 589 "xn", xn_intr, info, INTR_TYPE_NET | INTR_MPSAFE, &info->irq); 590 591 if (error) { 592 xenbus_dev_fatal(dev, error, 593 "bind_evtchn_to_irqhandler failed"); 594 goto fail; 595 } 596 597 show_device(info); 598 599 return (0); 600 601 fail: 602 netif_free(info); 603 return (error); 604 } 605 606 /** 607 * If this interface has an ipv4 address, send an arp for it. This 608 * helps to get the network going again after migrating hosts. 609 */ 610 static void 611 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 612 { 613 struct ifnet *ifp; 614 struct ifaddr *ifa; 615 616 ifp = info->xn_ifp; 617 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 618 if (ifa->ifa_addr->sa_family == AF_INET) { 619 arp_ifinit(ifp, ifa); 620 } 621 } 622 } 623 624 /** 625 * Callback received when the backend's state changes. 626 */ 627 static int 628 netfront_backend_changed(device_t dev, XenbusState newstate) 629 { 630 struct netfront_info *sc = device_get_softc(dev); 631 632 DPRINTK("newstate=%d\n", newstate); 633 634 switch (newstate) { 635 case XenbusStateInitialising: 636 case XenbusStateInitialised: 637 case XenbusStateConnected: 638 case XenbusStateUnknown: 639 case XenbusStateClosed: 640 case XenbusStateReconfigured: 641 case XenbusStateReconfiguring: 642 break; 643 case XenbusStateInitWait: 644 if (xenbus_get_state(dev) != XenbusStateInitialising) 645 break; 646 if (network_connect(sc) != 0) 647 break; 648 xenbus_set_state(dev, XenbusStateConnected); 649 netfront_send_fake_arp(dev, sc); 650 break; 651 case XenbusStateClosing: 652 xenbus_set_state(dev, XenbusStateClosed); 653 break; 654 } 655 return (0); 656 } 657 658 static void 659 xn_free_rx_ring(struct netfront_info *sc) 660 { 661 #if 0 662 int i; 663 664 for (i = 0; i < NET_RX_RING_SIZE; i++) { 665 if (sc->xn_cdata.xn_rx_chain[i] != NULL) { 666 m_freem(sc->xn_cdata.xn_rx_chain[i]); 667 sc->xn_cdata.xn_rx_chain[i] = NULL; 668 } 669 } 670 671 sc->rx.rsp_cons = 0; 672 sc->xn_rx_if->req_prod = 0; 673 sc->xn_rx_if->event = sc->rx.rsp_cons ; 674 #endif 675 } 676 677 static void 678 xn_free_tx_ring(struct netfront_info *sc) 679 { 680 #if 0 681 int i; 682 683 for (i = 0; i < NET_TX_RING_SIZE; i++) { 684 if (sc->xn_cdata.xn_tx_chain[i] != NULL) { 685 m_freem(sc->xn_cdata.xn_tx_chain[i]); 686 sc->xn_cdata.xn_tx_chain[i] = NULL; 687 } 688 } 689 690 return; 691 #endif 692 } 693 694 /* 695 * Do some brief math on the number of descriptors available to 696 * determine how many slots are available. 697 * 698 * Firstly - wouldn't something with RING_FREE_REQUESTS() be more applicable? 699 * Secondly - MAX_SKB_FRAGS is a Linux construct which may not apply here. 700 * Thirdly - it isn't used here anyway; the magic constant '24' is possibly 701 * wrong? 702 * The "2" is presumably to ensure there are also enough slots available for 703 * the ring entries used for "options" (eg, the TSO entry before a packet 704 * is queued); I'm not sure why its 2 and not 1. Perhaps to make sure there's 705 * a "free" node in the tx mbuf list (node 0) to represent the freelist? 706 * 707 * This only figures out whether any xenbus ring descriptors are available; 708 * it doesn't at all reflect how many tx mbuf ring descriptors are also 709 * available. 710 */ 711 static inline int 712 netfront_tx_slot_available(struct netfront_info *np) 713 { 714 return ((np->tx.req_prod_pvt - np->tx.rsp_cons) < 715 (TX_MAX_TARGET - /* MAX_SKB_FRAGS */ 24 - 2)); 716 } 717 static void 718 netif_release_tx_bufs(struct netfront_info *np) 719 { 720 struct mbuf *m; 721 int i; 722 723 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 724 m = np->xn_cdata.xn_tx_chain[i]; 725 726 if (((u_long)m) < KERNBASE) 727 continue; 728 gnttab_grant_foreign_access_ref(np->grant_tx_ref[i], 729 xenbus_get_otherend_id(np->xbdev), 730 virt_to_mfn(mtod(m, vm_offset_t)), 731 GNTMAP_readonly); 732 gnttab_release_grant_reference(&np->gref_tx_head, 733 np->grant_tx_ref[i]); 734 np->grant_tx_ref[i] = GRANT_INVALID_REF; 735 add_id_to_freelist(np->tx_mbufs, i); 736 np->xn_cdata.xn_tx_chain_cnt--; 737 if (np->xn_cdata.xn_tx_chain_cnt < 0) { 738 panic("netif_release_tx_bufs: tx_chain_cnt must be >= 0"); 739 } 740 m_freem(m); 741 } 742 } 743 744 static void 745 network_alloc_rx_buffers(struct netfront_info *sc) 746 { 747 int otherend_id = xenbus_get_otherend_id(sc->xbdev); 748 unsigned short id; 749 struct mbuf *m_new; 750 int i, batch_target, notify; 751 RING_IDX req_prod; 752 struct xen_memory_reservation reservation; 753 grant_ref_t ref; 754 int nr_flips; 755 netif_rx_request_t *req; 756 vm_offset_t vaddr; 757 u_long pfn; 758 759 req_prod = sc->rx.req_prod_pvt; 760 761 if (unlikely(sc->carrier == 0)) 762 return; 763 764 /* 765 * Allocate skbuffs greedily, even though we batch updates to the 766 * receive ring. This creates a less bursty demand on the memory 767 * allocator, so should reduce the chance of failed allocation 768 * requests both for ourself and for other kernel subsystems. 769 */ 770 batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons); 771 for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) { 772 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 773 if (m_new == NULL) 774 goto no_mbuf; 775 776 m_cljget(m_new, M_DONTWAIT, MJUMPAGESIZE); 777 if ((m_new->m_flags & M_EXT) == 0) { 778 m_freem(m_new); 779 780 no_mbuf: 781 if (i != 0) 782 goto refill; 783 /* 784 * XXX set timer 785 */ 786 break; 787 } 788 m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE; 789 790 /* queue the mbufs allocated */ 791 mbufq_tail(&sc->xn_rx_batch, m_new); 792 } 793 794 /* Is the batch large enough to be worthwhile? */ 795 if (i < (sc->rx_target/2)) { 796 if (req_prod >sc->rx.sring->req_prod) 797 goto push; 798 return; 799 } 800 /* Adjust floating fill target if we risked running out of buffers. */ 801 if ( ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) && 802 ((sc->rx_target *= 2) > sc->rx_max_target) ) 803 sc->rx_target = sc->rx_max_target; 804 805 refill: 806 for (nr_flips = i = 0; ; i++) { 807 if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL) 808 break; 809 810 m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)( 811 vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT); 812 813 id = xennet_rxidx(req_prod + i); 814 815 KASSERT(sc->xn_cdata.xn_rx_chain[id] == NULL, 816 ("non-NULL xm_rx_chain")); 817 sc->xn_cdata.xn_rx_chain[id] = m_new; 818 819 ref = gnttab_claim_grant_reference(&sc->gref_rx_head); 820 KASSERT((short)ref >= 0, ("negative ref")); 821 sc->grant_rx_ref[id] = ref; 822 823 vaddr = mtod(m_new, vm_offset_t); 824 pfn = vtophys(vaddr) >> PAGE_SHIFT; 825 req = RING_GET_REQUEST(&sc->rx, req_prod + i); 826 827 if (sc->copying_receiver == 0) { 828 gnttab_grant_foreign_transfer_ref(ref, 829 otherend_id, pfn); 830 sc->rx_pfn_array[nr_flips] = PFNTOMFN(pfn); 831 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 832 /* Remove this page before passing 833 * back to Xen. 834 */ 835 set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 836 MULTI_update_va_mapping(&sc->rx_mcl[i], 837 vaddr, 0, 0); 838 } 839 nr_flips++; 840 } else { 841 gnttab_grant_foreign_access_ref(ref, 842 otherend_id, 843 PFNTOMFN(pfn), 0); 844 } 845 req->id = id; 846 req->gref = ref; 847 848 sc->rx_pfn_array[i] = 849 vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT; 850 } 851 852 KASSERT(i, ("no mbufs processed")); /* should have returned earlier */ 853 KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed")); 854 /* 855 * We may have allocated buffers which have entries outstanding 856 * in the page * update queue -- make sure we flush those first! 857 */ 858 PT_UPDATES_FLUSH(); 859 if (nr_flips != 0) { 860 #ifdef notyet 861 /* Tell the ballon driver what is going on. */ 862 balloon_update_driver_allowance(i); 863 #endif 864 set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array); 865 reservation.nr_extents = i; 866 reservation.extent_order = 0; 867 reservation.address_bits = 0; 868 reservation.domid = DOMID_SELF; 869 870 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 871 872 /* After all PTEs have been zapped, flush the TLB. */ 873 sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] = 874 UVMF_TLB_FLUSH|UVMF_ALL; 875 876 /* Give away a batch of pages. */ 877 sc->rx_mcl[i].op = __HYPERVISOR_memory_op; 878 sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation; 879 sc->rx_mcl[i].args[1] = (u_long)&reservation; 880 /* Zap PTEs and give away pages in one big multicall. */ 881 (void)HYPERVISOR_multicall(sc->rx_mcl, i+1); 882 883 /* Check return status of HYPERVISOR_dom_mem_op(). */ 884 if (unlikely(sc->rx_mcl[i].result != i)) 885 panic("Unable to reduce memory reservation\n"); 886 } else { 887 if (HYPERVISOR_memory_op( 888 XENMEM_decrease_reservation, &reservation) 889 != i) 890 panic("Unable to reduce memory " 891 "reservation\n"); 892 } 893 } else { 894 wmb(); 895 } 896 897 /* Above is a suitable barrier to ensure backend will see requests. */ 898 sc->rx.req_prod_pvt = req_prod + i; 899 push: 900 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify); 901 if (notify) 902 notify_remote_via_irq(sc->irq); 903 } 904 905 static void 906 xn_rxeof(struct netfront_info *np) 907 { 908 struct ifnet *ifp; 909 #if __FreeBSD_version >= 700000 910 struct lro_ctrl *lro = &np->xn_lro; 911 struct lro_entry *queued; 912 #endif 913 struct netfront_rx_info rinfo; 914 struct netif_rx_response *rx = &rinfo.rx; 915 struct netif_extra_info *extras = rinfo.extras; 916 RING_IDX i, rp; 917 multicall_entry_t *mcl; 918 struct mbuf *m; 919 struct mbuf_head rxq, errq; 920 int err, pages_flipped = 0, work_to_do; 921 922 do { 923 XN_RX_LOCK_ASSERT(np); 924 if (!netfront_carrier_ok(np)) 925 return; 926 927 mbufq_init(&errq); 928 mbufq_init(&rxq); 929 930 ifp = np->xn_ifp; 931 932 rp = np->rx.sring->rsp_prod; 933 rmb(); /* Ensure we see queued responses up to 'rp'. */ 934 935 i = np->rx.rsp_cons; 936 while ((i != rp)) { 937 memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx)); 938 memset(extras, 0, sizeof(rinfo.extras)); 939 940 m = NULL; 941 err = xennet_get_responses(np, &rinfo, rp, &m, 942 &pages_flipped); 943 944 if (unlikely(err)) { 945 if (m) 946 mbufq_tail(&errq, m); 947 np->stats.rx_errors++; 948 i = np->rx.rsp_cons; 949 continue; 950 } 951 952 m->m_pkthdr.rcvif = ifp; 953 if ( rx->flags & NETRXF_data_validated ) { 954 /* Tell the stack the checksums are okay */ 955 /* 956 * XXX this isn't necessarily the case - need to add 957 * check 958 */ 959 960 m->m_pkthdr.csum_flags |= 961 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID 962 | CSUM_PSEUDO_HDR); 963 m->m_pkthdr.csum_data = 0xffff; 964 } 965 966 np->stats.rx_packets++; 967 np->stats.rx_bytes += m->m_pkthdr.len; 968 969 mbufq_tail(&rxq, m); 970 np->rx.rsp_cons = ++i; 971 } 972 973 if (pages_flipped) { 974 /* Some pages are no longer absent... */ 975 #ifdef notyet 976 balloon_update_driver_allowance(-pages_flipped); 977 #endif 978 /* Do all the remapping work, and M->P updates, in one big 979 * hypercall. 980 */ 981 if (!!xen_feature(XENFEAT_auto_translated_physmap)) { 982 mcl = np->rx_mcl + pages_flipped; 983 mcl->op = __HYPERVISOR_mmu_update; 984 mcl->args[0] = (u_long)np->rx_mmu; 985 mcl->args[1] = pages_flipped; 986 mcl->args[2] = 0; 987 mcl->args[3] = DOMID_SELF; 988 (void)HYPERVISOR_multicall(np->rx_mcl, 989 pages_flipped + 1); 990 } 991 } 992 993 while ((m = mbufq_dequeue(&errq))) 994 m_freem(m); 995 996 /* 997 * Process all the mbufs after the remapping is complete. 998 * Break the mbuf chain first though. 999 */ 1000 while ((m = mbufq_dequeue(&rxq)) != NULL) { 1001 ifp->if_ipackets++; 1002 1003 /* 1004 * Do we really need to drop the rx lock? 1005 */ 1006 XN_RX_UNLOCK(np); 1007 #if __FreeBSD_version >= 700000 1008 /* Use LRO if possible */ 1009 if ((ifp->if_capenable & IFCAP_LRO) == 0 || 1010 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1011 /* 1012 * If LRO fails, pass up to the stack 1013 * directly. 1014 */ 1015 (*ifp->if_input)(ifp, m); 1016 } 1017 #else 1018 (*ifp->if_input)(ifp, m); 1019 #endif 1020 XN_RX_LOCK(np); 1021 } 1022 1023 np->rx.rsp_cons = i; 1024 1025 #if __FreeBSD_version >= 700000 1026 /* 1027 * Flush any outstanding LRO work 1028 */ 1029 while (!SLIST_EMPTY(&lro->lro_active)) { 1030 queued = SLIST_FIRST(&lro->lro_active); 1031 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1032 tcp_lro_flush(lro, queued); 1033 } 1034 #endif 1035 1036 #if 0 1037 /* If we get a callback with very few responses, reduce fill target. */ 1038 /* NB. Note exponential increase, linear decrease. */ 1039 if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) > 1040 ((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target)) 1041 np->rx_target = np->rx_min_target; 1042 #endif 1043 1044 network_alloc_rx_buffers(np); 1045 1046 RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do); 1047 } while (work_to_do); 1048 } 1049 1050 static void 1051 xn_txeof(struct netfront_info *np) 1052 { 1053 RING_IDX i, prod; 1054 unsigned short id; 1055 struct ifnet *ifp; 1056 netif_tx_response_t *txr; 1057 struct mbuf *m; 1058 1059 XN_TX_LOCK_ASSERT(np); 1060 1061 if (!netfront_carrier_ok(np)) 1062 return; 1063 1064 ifp = np->xn_ifp; 1065 1066 do { 1067 prod = np->tx.sring->rsp_prod; 1068 rmb(); /* Ensure we see responses up to 'rp'. */ 1069 1070 for (i = np->tx.rsp_cons; i != prod; i++) { 1071 txr = RING_GET_RESPONSE(&np->tx, i); 1072 if (txr->status == NETIF_RSP_NULL) 1073 continue; 1074 1075 id = txr->id; 1076 m = np->xn_cdata.xn_tx_chain[id]; 1077 KASSERT(m != NULL, ("mbuf not found in xn_tx_chain")); 1078 M_ASSERTVALID(m); 1079 1080 /* 1081 * Increment packet count if this is the last 1082 * mbuf of the chain. 1083 */ 1084 if (!m->m_next) 1085 ifp->if_opackets++; 1086 if (unlikely(gnttab_query_foreign_access( 1087 np->grant_tx_ref[id]) != 0)) { 1088 printf("network_tx_buf_gc: warning " 1089 "-- grant still in use by backend " 1090 "domain.\n"); 1091 goto out; 1092 } 1093 gnttab_end_foreign_access_ref( 1094 np->grant_tx_ref[id]); 1095 gnttab_release_grant_reference( 1096 &np->gref_tx_head, np->grant_tx_ref[id]); 1097 np->grant_tx_ref[id] = GRANT_INVALID_REF; 1098 1099 np->xn_cdata.xn_tx_chain[id] = NULL; 1100 add_id_to_freelist(np->xn_cdata.xn_tx_chain, id); 1101 np->xn_cdata.xn_tx_chain_cnt--; 1102 if (np->xn_cdata.xn_tx_chain_cnt < 0) { 1103 panic("netif_release_tx_bufs: tx_chain_cnt must be >= 0"); 1104 } 1105 m_free(m); 1106 /* Only mark the queue active if we've freed up at least one slot to try */ 1107 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1108 } 1109 np->tx.rsp_cons = prod; 1110 1111 /* 1112 * Set a new event, then check for race with update of 1113 * tx_cons. Note that it is essential to schedule a 1114 * callback, no matter how few buffers are pending. Even if 1115 * there is space in the transmit ring, higher layers may 1116 * be blocked because too much data is outstanding: in such 1117 * cases notification from Xen is likely to be the only kick 1118 * that we'll get. 1119 */ 1120 np->tx.sring->rsp_event = 1121 prod + ((np->tx.sring->req_prod - prod) >> 1) + 1; 1122 1123 mb(); 1124 } while (prod != np->tx.sring->rsp_prod); 1125 1126 out: 1127 if (np->tx_full && 1128 ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1129 np->tx_full = 0; 1130 #if 0 1131 if (np->user_state == UST_OPEN) 1132 netif_wake_queue(dev); 1133 #endif 1134 } 1135 1136 } 1137 1138 static void 1139 xn_intr(void *xsc) 1140 { 1141 struct netfront_info *np = xsc; 1142 struct ifnet *ifp = np->xn_ifp; 1143 1144 #if 0 1145 if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod && 1146 likely(netfront_carrier_ok(np)) && 1147 ifp->if_drv_flags & IFF_DRV_RUNNING)) 1148 return; 1149 #endif 1150 if (np->tx.rsp_cons != np->tx.sring->rsp_prod) { 1151 XN_TX_LOCK(np); 1152 xn_txeof(np); 1153 XN_TX_UNLOCK(np); 1154 } 1155 1156 XN_RX_LOCK(np); 1157 xn_rxeof(np); 1158 XN_RX_UNLOCK(np); 1159 1160 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1161 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1162 xn_start(ifp); 1163 } 1164 1165 1166 static void 1167 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m, 1168 grant_ref_t ref) 1169 { 1170 int new = xennet_rxidx(np->rx.req_prod_pvt); 1171 1172 KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL")); 1173 np->rx_mbufs[new] = m; 1174 np->grant_rx_ref[new] = ref; 1175 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new; 1176 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref; 1177 np->rx.req_prod_pvt++; 1178 } 1179 1180 static int 1181 xennet_get_extras(struct netfront_info *np, 1182 struct netif_extra_info *extras, RING_IDX rp) 1183 { 1184 struct netif_extra_info *extra; 1185 RING_IDX cons = np->rx.rsp_cons; 1186 1187 int err = 0; 1188 1189 do { 1190 struct mbuf *m; 1191 grant_ref_t ref; 1192 1193 if (unlikely(cons + 1 == rp)) { 1194 #if 0 1195 if (net_ratelimit()) 1196 WPRINTK("Missing extra info\n"); 1197 #endif 1198 err = -EINVAL; 1199 break; 1200 } 1201 1202 extra = (struct netif_extra_info *) 1203 RING_GET_RESPONSE(&np->rx, ++cons); 1204 1205 if (unlikely(!extra->type || 1206 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1207 #if 0 1208 if (net_ratelimit()) 1209 WPRINTK("Invalid extra type: %d\n", 1210 extra->type); 1211 #endif 1212 err = -EINVAL; 1213 } else { 1214 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1215 } 1216 1217 m = xennet_get_rx_mbuf(np, cons); 1218 ref = xennet_get_rx_ref(np, cons); 1219 xennet_move_rx_slot(np, m, ref); 1220 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1221 1222 np->rx.rsp_cons = cons; 1223 return err; 1224 } 1225 1226 static int 1227 xennet_get_responses(struct netfront_info *np, 1228 struct netfront_rx_info *rinfo, RING_IDX rp, 1229 struct mbuf **list, 1230 int *pages_flipped_p) 1231 { 1232 int pages_flipped = *pages_flipped_p; 1233 struct mmu_update *mmu; 1234 struct multicall_entry *mcl; 1235 struct netif_rx_response *rx = &rinfo->rx; 1236 struct netif_extra_info *extras = rinfo->extras; 1237 RING_IDX cons = np->rx.rsp_cons; 1238 struct mbuf *m, *m0, *m_prev; 1239 grant_ref_t ref = xennet_get_rx_ref(np, cons); 1240 int max = 5 /* MAX_SKB_FRAGS + (rx->status <= RX_COPY_THRESHOLD) */; 1241 int frags = 1; 1242 int err = 0; 1243 u_long ret; 1244 1245 m0 = m = m_prev = xennet_get_rx_mbuf(np, cons); 1246 1247 1248 if (rx->flags & NETRXF_extra_info) { 1249 err = xennet_get_extras(np, extras, rp); 1250 cons = np->rx.rsp_cons; 1251 } 1252 1253 1254 if (m0 != NULL) { 1255 m0->m_pkthdr.len = 0; 1256 m0->m_next = NULL; 1257 } 1258 1259 for (;;) { 1260 u_long mfn; 1261 1262 #if 0 1263 printf("rx->status=%hd rx->offset=%hu frags=%u\n", 1264 rx->status, rx->offset, frags); 1265 #endif 1266 if (unlikely(rx->status < 0 || 1267 rx->offset + rx->status > PAGE_SIZE)) { 1268 #if 0 1269 if (net_ratelimit()) 1270 WPRINTK("rx->offset: %x, size: %u\n", 1271 rx->offset, rx->status); 1272 #endif 1273 xennet_move_rx_slot(np, m, ref); 1274 err = -EINVAL; 1275 goto next; 1276 } 1277 1278 /* 1279 * This definitely indicates a bug, either in this driver or in 1280 * the backend driver. In future this should flag the bad 1281 * situation to the system controller to reboot the backed. 1282 */ 1283 if (ref == GRANT_INVALID_REF) { 1284 #if 0 1285 if (net_ratelimit()) 1286 WPRINTK("Bad rx response id %d.\n", rx->id); 1287 #endif 1288 err = -EINVAL; 1289 goto next; 1290 } 1291 1292 if (!np->copying_receiver) { 1293 /* Memory pressure, insufficient buffer 1294 * headroom, ... 1295 */ 1296 if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) { 1297 if (net_ratelimit()) 1298 WPRINTK("Unfulfilled rx req " 1299 "(id=%d, st=%d).\n", 1300 rx->id, rx->status); 1301 xennet_move_rx_slot(np, m, ref); 1302 err = -ENOMEM; 1303 goto next; 1304 } 1305 1306 if (!xen_feature( XENFEAT_auto_translated_physmap)) { 1307 /* Remap the page. */ 1308 void *vaddr = mtod(m, void *); 1309 uint32_t pfn; 1310 1311 mcl = np->rx_mcl + pages_flipped; 1312 mmu = np->rx_mmu + pages_flipped; 1313 1314 MULTI_update_va_mapping(mcl, (u_long)vaddr, 1315 (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW | 1316 PG_V | PG_M | PG_A, 0); 1317 pfn = (uintptr_t)m->m_ext.ext_arg1; 1318 mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) | 1319 MMU_MACHPHYS_UPDATE; 1320 mmu->val = pfn; 1321 1322 set_phys_to_machine(pfn, mfn); 1323 } 1324 pages_flipped++; 1325 } else { 1326 ret = gnttab_end_foreign_access_ref(ref); 1327 KASSERT(ret, ("ret != 0")); 1328 } 1329 1330 gnttab_release_grant_reference(&np->gref_rx_head, ref); 1331 1332 next: 1333 if (m == NULL) 1334 break; 1335 1336 m->m_len = rx->status; 1337 m->m_data += rx->offset; 1338 m0->m_pkthdr.len += rx->status; 1339 1340 if (!(rx->flags & NETRXF_more_data)) 1341 break; 1342 1343 if (cons + frags == rp) { 1344 if (net_ratelimit()) 1345 WPRINTK("Need more frags\n"); 1346 err = -ENOENT; 1347 break; 1348 } 1349 m_prev = m; 1350 1351 rx = RING_GET_RESPONSE(&np->rx, cons + frags); 1352 m = xennet_get_rx_mbuf(np, cons + frags); 1353 1354 m_prev->m_next = m; 1355 m->m_next = NULL; 1356 ref = xennet_get_rx_ref(np, cons + frags); 1357 frags++; 1358 } 1359 *list = m0; 1360 1361 if (unlikely(frags > max)) { 1362 if (net_ratelimit()) 1363 WPRINTK("Too many frags\n"); 1364 err = -E2BIG; 1365 } 1366 1367 if (unlikely(err)) 1368 np->rx.rsp_cons = cons + frags; 1369 1370 *pages_flipped_p = pages_flipped; 1371 1372 return err; 1373 } 1374 1375 static void 1376 xn_tick_locked(struct netfront_info *sc) 1377 { 1378 XN_RX_LOCK_ASSERT(sc); 1379 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1380 1381 /* XXX placeholder for printing debug information */ 1382 1383 } 1384 1385 1386 static void 1387 xn_tick(void *xsc) 1388 { 1389 struct netfront_info *sc; 1390 1391 sc = xsc; 1392 XN_RX_LOCK(sc); 1393 xn_tick_locked(sc); 1394 XN_RX_UNLOCK(sc); 1395 1396 } 1397 static void 1398 xn_start_locked(struct ifnet *ifp) 1399 { 1400 int otherend_id; 1401 unsigned short id; 1402 struct mbuf *m_head, *m; 1403 struct netfront_info *sc; 1404 netif_tx_request_t *tx; 1405 netif_extra_info_t *extra; 1406 RING_IDX i; 1407 grant_ref_t ref; 1408 u_long mfn, tx_bytes; 1409 int notify, nfrags; 1410 1411 sc = ifp->if_softc; 1412 otherend_id = xenbus_get_otherend_id(sc->xbdev); 1413 tx_bytes = 0; 1414 1415 if (!netfront_carrier_ok(sc)) 1416 return; 1417 1418 for (i = sc->tx.req_prod_pvt; TRUE; i++) { 1419 IF_DEQUEUE(&ifp->if_snd, m_head); 1420 if (m_head == NULL) 1421 break; 1422 1423 /* 1424 * netfront_tx_slot_available() tries to do some math to 1425 * ensure that there'll be enough xenbus ring slots available 1426 * for the maximum number of packet fragments (and a couple more 1427 * for what I guess are TSO and other ring entry items.) 1428 */ 1429 if (!netfront_tx_slot_available(sc)) { 1430 IF_PREPEND(&ifp->if_snd, m_head); 1431 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1432 break; 1433 } 1434 1435 /* 1436 * Defragment the mbuf if necessary. 1437 */ 1438 for (m = m_head, nfrags = 0; m; m = m->m_next) 1439 nfrags++; 1440 if (nfrags > MAX_SKB_FRAGS) { 1441 m = m_defrag(m_head, M_DONTWAIT); 1442 if (!m) { 1443 m_freem(m_head); 1444 break; 1445 } 1446 m_head = m; 1447 } 1448 1449 /* Determine how many fragments now exist */ 1450 for (m = m_head, nfrags = 0; m; m = m->m_next) 1451 nfrags++; 1452 1453 /* 1454 * Don't attempt to queue this packet if there aren't 1455 * enough free entries in the chain. 1456 * 1457 * There isn't a 1:1 correspondance between the mbuf TX ring 1458 * and the xenbus TX ring. 1459 * xn_txeof() may need to be called to free up some slots. 1460 * 1461 * It is quite possible that this can be later eliminated if 1462 * it turns out that partial * packets can be pushed into 1463 * the ringbuffer, with fragments pushed in when further slots 1464 * free up. 1465 * 1466 * It is also quite possible that the driver will lock up 1467 * if the TX queue fills up with no RX traffic, and 1468 * the mbuf ring is exhausted. The queue may need 1469 * a swift kick to continue. 1470 */ 1471 1472 /* 1473 * It is not +1 like the allocation because we need to keep 1474 * slot [0] free for the freelist head 1475 */ 1476 if (sc->xn_cdata.xn_tx_chain_cnt + nfrags >= NET_TX_RING_SIZE) { 1477 printf("xn_start_locked: xn_tx_chain_cnt (%d) + nfrags %d >= NET_TX_RING_SIZE (%d); must be full!\n", 1478 (int) sc->xn_cdata.xn_tx_chain_cnt, 1479 (int) nfrags, (int) NET_TX_RING_SIZE); 1480 IF_PREPEND(&ifp->if_snd, m_head); 1481 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1482 break; 1483 } 1484 1485 /* 1486 * Make sure there's actually space available in the 1487 * Xen TX ring for this. Overcompensate for the possibility 1488 * of having a TCP offload fragment just in case for now 1489 * (the +1) rather than adding logic to accurately calculate 1490 * the required size. 1491 */ 1492 if (RING_FREE_REQUESTS(&sc->tx) < (nfrags + 1)) { 1493 printf("xn_start_locked: free ring slots (%d) < (nfrags + 1) (%d); must be full!\n", 1494 (int) RING_FREE_REQUESTS(&sc->tx), 1495 (int) (nfrags + 1)); 1496 IF_PREPEND(&ifp->if_snd, m_head); 1497 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1498 break; 1499 } 1500 1501 /* 1502 * Start packing the mbufs in this chain into 1503 * the fragment pointers. Stop when we run out 1504 * of fragments or hit the end of the mbuf chain. 1505 */ 1506 m = m_head; 1507 extra = NULL; 1508 for (m = m_head; m; m = m->m_next) { 1509 tx = RING_GET_REQUEST(&sc->tx, i); 1510 id = get_id_from_freelist(sc->xn_cdata.xn_tx_chain); 1511 if (id == 0) 1512 panic("xn_start_locked: was allocated the freelist head!\n"); 1513 sc->xn_cdata.xn_tx_chain_cnt++; 1514 if (sc->xn_cdata.xn_tx_chain_cnt >= NET_TX_RING_SIZE+1) 1515 panic("xn_start_locked: tx_chain_cnt must be < NET_TX_RING_SIZE+1\n"); 1516 sc->xn_cdata.xn_tx_chain[id] = m; 1517 tx->id = id; 1518 ref = gnttab_claim_grant_reference(&sc->gref_tx_head); 1519 KASSERT((short)ref >= 0, ("Negative ref")); 1520 mfn = virt_to_mfn(mtod(m, vm_offset_t)); 1521 gnttab_grant_foreign_access_ref(ref, otherend_id, 1522 mfn, GNTMAP_readonly); 1523 tx->gref = sc->grant_tx_ref[id] = ref; 1524 tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1); 1525 tx->flags = 0; 1526 if (m == m_head) { 1527 /* 1528 * The first fragment has the entire packet 1529 * size, subsequent fragments have just the 1530 * fragment size. The backend works out the 1531 * true size of the first fragment by 1532 * subtracting the sizes of the other 1533 * fragments. 1534 */ 1535 tx->size = m->m_pkthdr.len; 1536 1537 /* 1538 * The first fragment contains the 1539 * checksum flags and is optionally 1540 * followed by extra data for TSO etc. 1541 */ 1542 if (m->m_pkthdr.csum_flags 1543 & CSUM_DELAY_DATA) { 1544 tx->flags |= (NETTXF_csum_blank 1545 | NETTXF_data_validated); 1546 } 1547 #if __FreeBSD_version >= 700000 1548 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1549 struct netif_extra_info *gso = 1550 (struct netif_extra_info *) 1551 RING_GET_REQUEST(&sc->tx, ++i); 1552 1553 if (extra) 1554 extra->flags |= XEN_NETIF_EXTRA_FLAG_MORE; 1555 else 1556 tx->flags |= NETTXF_extra_info; 1557 1558 gso->u.gso.size = m->m_pkthdr.tso_segsz; 1559 gso->u.gso.type = 1560 XEN_NETIF_GSO_TYPE_TCPV4; 1561 gso->u.gso.pad = 0; 1562 gso->u.gso.features = 0; 1563 1564 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1565 gso->flags = 0; 1566 extra = gso; 1567 } 1568 #endif 1569 } else { 1570 tx->size = m->m_len; 1571 } 1572 if (m->m_next) { 1573 tx->flags |= NETTXF_more_data; 1574 i++; 1575 } 1576 } 1577 1578 BPF_MTAP(ifp, m_head); 1579 1580 sc->stats.tx_bytes += m_head->m_pkthdr.len; 1581 sc->stats.tx_packets++; 1582 } 1583 1584 sc->tx.req_prod_pvt = i; 1585 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify); 1586 if (notify) 1587 notify_remote_via_irq(sc->irq); 1588 1589 xn_txeof(sc); 1590 1591 if (RING_FULL(&sc->tx)) { 1592 sc->tx_full = 1; 1593 #if 0 1594 netif_stop_queue(dev); 1595 #endif 1596 } 1597 1598 return; 1599 } 1600 1601 static void 1602 xn_start(struct ifnet *ifp) 1603 { 1604 struct netfront_info *sc; 1605 sc = ifp->if_softc; 1606 XN_TX_LOCK(sc); 1607 xn_start_locked(ifp); 1608 XN_TX_UNLOCK(sc); 1609 } 1610 1611 /* equivalent of network_open() in Linux */ 1612 static void 1613 xn_ifinit_locked(struct netfront_info *sc) 1614 { 1615 struct ifnet *ifp; 1616 1617 XN_LOCK_ASSERT(sc); 1618 1619 ifp = sc->xn_ifp; 1620 1621 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1622 return; 1623 1624 xn_stop(sc); 1625 1626 network_alloc_rx_buffers(sc); 1627 sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1; 1628 1629 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1630 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1631 if_link_state_change(ifp, LINK_STATE_UP); 1632 1633 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1634 1635 } 1636 1637 1638 static void 1639 xn_ifinit(void *xsc) 1640 { 1641 struct netfront_info *sc = xsc; 1642 1643 XN_LOCK(sc); 1644 xn_ifinit_locked(sc); 1645 XN_UNLOCK(sc); 1646 1647 } 1648 1649 1650 static int 1651 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1652 { 1653 struct netfront_info *sc = ifp->if_softc; 1654 struct ifreq *ifr = (struct ifreq *) data; 1655 struct ifaddr *ifa = (struct ifaddr *)data; 1656 1657 int mask, error = 0; 1658 switch(cmd) { 1659 case SIOCSIFADDR: 1660 case SIOCGIFADDR: 1661 XN_LOCK(sc); 1662 if (ifa->ifa_addr->sa_family == AF_INET) { 1663 ifp->if_flags |= IFF_UP; 1664 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1665 xn_ifinit_locked(sc); 1666 arp_ifinit(ifp, ifa); 1667 XN_UNLOCK(sc); 1668 } else { 1669 XN_UNLOCK(sc); 1670 error = ether_ioctl(ifp, cmd, data); 1671 } 1672 break; 1673 case SIOCSIFMTU: 1674 /* XXX can we alter the MTU on a VN ?*/ 1675 #ifdef notyet 1676 if (ifr->ifr_mtu > XN_JUMBO_MTU) 1677 error = EINVAL; 1678 else 1679 #endif 1680 { 1681 ifp->if_mtu = ifr->ifr_mtu; 1682 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1683 xn_ifinit(sc); 1684 } 1685 break; 1686 case SIOCSIFFLAGS: 1687 XN_LOCK(sc); 1688 if (ifp->if_flags & IFF_UP) { 1689 /* 1690 * If only the state of the PROMISC flag changed, 1691 * then just use the 'set promisc mode' command 1692 * instead of reinitializing the entire NIC. Doing 1693 * a full re-init means reloading the firmware and 1694 * waiting for it to start up, which may take a 1695 * second or two. 1696 */ 1697 #ifdef notyet 1698 /* No promiscuous mode with Xen */ 1699 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1700 ifp->if_flags & IFF_PROMISC && 1701 !(sc->xn_if_flags & IFF_PROMISC)) { 1702 XN_SETBIT(sc, XN_RX_MODE, 1703 XN_RXMODE_RX_PROMISC); 1704 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1705 !(ifp->if_flags & IFF_PROMISC) && 1706 sc->xn_if_flags & IFF_PROMISC) { 1707 XN_CLRBIT(sc, XN_RX_MODE, 1708 XN_RXMODE_RX_PROMISC); 1709 } else 1710 #endif 1711 xn_ifinit_locked(sc); 1712 } else { 1713 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1714 xn_stop(sc); 1715 } 1716 } 1717 sc->xn_if_flags = ifp->if_flags; 1718 XN_UNLOCK(sc); 1719 error = 0; 1720 break; 1721 case SIOCSIFCAP: 1722 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1723 if (mask & IFCAP_TXCSUM) { 1724 if (IFCAP_TXCSUM & ifp->if_capenable) { 1725 ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4); 1726 ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP 1727 | CSUM_IP | CSUM_TSO); 1728 } else { 1729 ifp->if_capenable |= IFCAP_TXCSUM; 1730 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP 1731 | CSUM_IP); 1732 } 1733 } 1734 if (mask & IFCAP_RXCSUM) { 1735 ifp->if_capenable ^= IFCAP_RXCSUM; 1736 } 1737 #if __FreeBSD_version >= 700000 1738 if (mask & IFCAP_TSO4) { 1739 if (IFCAP_TSO4 & ifp->if_capenable) { 1740 ifp->if_capenable &= ~IFCAP_TSO4; 1741 ifp->if_hwassist &= ~CSUM_TSO; 1742 } else if (IFCAP_TXCSUM & ifp->if_capenable) { 1743 ifp->if_capenable |= IFCAP_TSO4; 1744 ifp->if_hwassist |= CSUM_TSO; 1745 } else { 1746 IPRINTK("Xen requires tx checksum offload" 1747 " be enabled to use TSO\n"); 1748 error = EINVAL; 1749 } 1750 } 1751 if (mask & IFCAP_LRO) { 1752 ifp->if_capenable ^= IFCAP_LRO; 1753 1754 } 1755 #endif 1756 error = 0; 1757 break; 1758 case SIOCADDMULTI: 1759 case SIOCDELMULTI: 1760 #ifdef notyet 1761 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1762 XN_LOCK(sc); 1763 xn_setmulti(sc); 1764 XN_UNLOCK(sc); 1765 error = 0; 1766 } 1767 #endif 1768 /* FALLTHROUGH */ 1769 case SIOCSIFMEDIA: 1770 case SIOCGIFMEDIA: 1771 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1772 break; 1773 default: 1774 error = ether_ioctl(ifp, cmd, data); 1775 } 1776 1777 return (error); 1778 } 1779 1780 static void 1781 xn_stop(struct netfront_info *sc) 1782 { 1783 struct ifnet *ifp; 1784 1785 XN_LOCK_ASSERT(sc); 1786 1787 ifp = sc->xn_ifp; 1788 1789 callout_stop(&sc->xn_stat_ch); 1790 1791 xn_free_rx_ring(sc); 1792 xn_free_tx_ring(sc); 1793 1794 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1795 if_link_state_change(ifp, LINK_STATE_DOWN); 1796 } 1797 1798 /* START of Xenolinux helper functions adapted to FreeBSD */ 1799 int 1800 network_connect(struct netfront_info *np) 1801 { 1802 int i, requeue_idx, error; 1803 grant_ref_t ref; 1804 netif_rx_request_t *req; 1805 u_int feature_rx_copy, feature_rx_flip; 1806 1807 error = xenbus_scanf(XBT_NIL, xenbus_get_otherend_path(np->xbdev), 1808 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1809 if (error) 1810 feature_rx_copy = 0; 1811 error = xenbus_scanf(XBT_NIL, xenbus_get_otherend_path(np->xbdev), 1812 "feature-rx-flip", NULL, "%u", &feature_rx_flip); 1813 if (error) 1814 feature_rx_flip = 1; 1815 1816 /* 1817 * Copy packets on receive path if: 1818 * (a) This was requested by user, and the backend supports it; or 1819 * (b) Flipping was requested, but this is unsupported by the backend. 1820 */ 1821 np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) || 1822 (MODPARM_rx_flip && !feature_rx_flip)); 1823 1824 XN_LOCK(np); 1825 /* Recovery procedure: */ 1826 error = talk_to_backend(np->xbdev, np); 1827 if (error) 1828 return (error); 1829 1830 /* Step 1: Reinitialise variables. */ 1831 netif_release_tx_bufs(np); 1832 1833 /* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */ 1834 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1835 struct mbuf *m; 1836 u_long pfn; 1837 1838 if (np->rx_mbufs[i] == NULL) 1839 continue; 1840 1841 m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i); 1842 ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i); 1843 req = RING_GET_REQUEST(&np->rx, requeue_idx); 1844 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1845 1846 if (!np->copying_receiver) { 1847 gnttab_grant_foreign_transfer_ref(ref, 1848 xenbus_get_otherend_id(np->xbdev), 1849 pfn); 1850 } else { 1851 gnttab_grant_foreign_access_ref(ref, 1852 xenbus_get_otherend_id(np->xbdev), 1853 PFNTOMFN(pfn), 0); 1854 } 1855 req->gref = ref; 1856 req->id = requeue_idx; 1857 1858 requeue_idx++; 1859 } 1860 1861 np->rx.req_prod_pvt = requeue_idx; 1862 1863 /* Step 3: All public and private state should now be sane. Get 1864 * ready to start sending and receiving packets and give the driver 1865 * domain a kick because we've probably just requeued some 1866 * packets. 1867 */ 1868 netfront_carrier_on(np); 1869 notify_remote_via_irq(np->irq); 1870 XN_TX_LOCK(np); 1871 xn_txeof(np); 1872 XN_TX_UNLOCK(np); 1873 network_alloc_rx_buffers(np); 1874 XN_UNLOCK(np); 1875 1876 return (0); 1877 } 1878 1879 static void 1880 show_device(struct netfront_info *sc) 1881 { 1882 #ifdef DEBUG 1883 if (sc) { 1884 IPRINTK("<vif handle=%u %s(%s) evtchn=%u irq=%u tx=%p rx=%p>\n", 1885 sc->xn_ifno, 1886 be_state_name[sc->xn_backend_state], 1887 sc->xn_user_state ? "open" : "closed", 1888 sc->xn_evtchn, 1889 sc->xn_irq, 1890 sc->xn_tx_if, 1891 sc->xn_rx_if); 1892 } else { 1893 IPRINTK("<vif NULL>\n"); 1894 } 1895 #endif 1896 } 1897 1898 /** Create a network device. 1899 * @param handle device handle 1900 */ 1901 int 1902 create_netdev(device_t dev) 1903 { 1904 int i; 1905 struct netfront_info *np; 1906 int err; 1907 struct ifnet *ifp; 1908 1909 np = device_get_softc(dev); 1910 1911 np->xbdev = dev; 1912 1913 XN_LOCK_INIT(np, xennetif); 1914 1915 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 1916 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1917 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 1918 1919 np->rx_target = RX_MIN_TARGET; 1920 np->rx_min_target = RX_MIN_TARGET; 1921 np->rx_max_target = RX_MAX_TARGET; 1922 1923 /* Initialise {tx,rx}_skbs to be a free chain containing every entry. */ 1924 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 1925 np->tx_mbufs[i] = (void *) ((u_long) i+1); 1926 np->grant_tx_ref[i] = GRANT_INVALID_REF; 1927 } 1928 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 1929 np->rx_mbufs[i] = NULL; 1930 np->grant_rx_ref[i] = GRANT_INVALID_REF; 1931 } 1932 /* A grant for every tx ring slot */ 1933 if (gnttab_alloc_grant_references(TX_MAX_TARGET, 1934 &np->gref_tx_head) < 0) { 1935 printf("#### netfront can't alloc tx grant refs\n"); 1936 err = ENOMEM; 1937 goto exit; 1938 } 1939 /* A grant for every rx ring slot */ 1940 if (gnttab_alloc_grant_references(RX_MAX_TARGET, 1941 &np->gref_rx_head) < 0) { 1942 printf("#### netfront can't alloc rx grant refs\n"); 1943 gnttab_free_grant_references(np->gref_tx_head); 1944 err = ENOMEM; 1945 goto exit; 1946 } 1947 1948 err = xen_net_read_mac(dev, np->mac); 1949 if (err) { 1950 xenbus_dev_fatal(dev, err, "parsing %s/mac", 1951 xenbus_get_node(dev)); 1952 goto out; 1953 } 1954 1955 /* Set up ifnet structure */ 1956 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 1957 ifp->if_softc = np; 1958 if_initname(ifp, "xn", device_get_unit(dev)); 1959 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1960 ifp->if_ioctl = xn_ioctl; 1961 ifp->if_output = ether_output; 1962 ifp->if_start = xn_start; 1963 ifp->if_init = xn_ifinit; 1964 ifp->if_mtu = ETHERMTU; 1965 ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1; 1966 1967 ifp->if_hwassist = XN_CSUM_FEATURES; 1968 ifp->if_capabilities = IFCAP_HWCSUM; 1969 #if __FreeBSD_version >= 700000 1970 ifp->if_capabilities |= IFCAP_TSO4; 1971 if (xn_enable_lro) { 1972 int err = tcp_lro_init(&np->xn_lro); 1973 if (err) { 1974 device_printf(dev, "LRO initialization failed\n"); 1975 goto exit; 1976 } 1977 np->xn_lro.ifp = ifp; 1978 ifp->if_capabilities |= IFCAP_LRO; 1979 } 1980 #endif 1981 ifp->if_capenable = ifp->if_capabilities; 1982 1983 ether_ifattach(ifp, np->mac); 1984 callout_init(&np->xn_stat_ch, CALLOUT_MPSAFE); 1985 netfront_carrier_off(np); 1986 1987 return (0); 1988 1989 exit: 1990 gnttab_free_grant_references(np->gref_tx_head); 1991 out: 1992 panic("do something smart"); 1993 1994 } 1995 1996 /** 1997 * Handle the change of state of the backend to Closing. We must delete our 1998 * device-layer structures now, to ensure that writes are flushed through to 1999 * the backend. Once is this done, we can switch to Closed in 2000 * acknowledgement. 2001 */ 2002 #if 0 2003 static void 2004 netfront_closing(device_t dev) 2005 { 2006 #if 0 2007 struct netfront_info *info = dev->dev_driver_data; 2008 2009 DPRINTK("netfront_closing: %s removed\n", dev->nodename); 2010 2011 close_netdev(info); 2012 #endif 2013 xenbus_switch_state(dev, XenbusStateClosed); 2014 } 2015 #endif 2016 2017 static int 2018 netfront_detach(device_t dev) 2019 { 2020 struct netfront_info *info = device_get_softc(dev); 2021 2022 DPRINTK("%s\n", xenbus_get_node(dev)); 2023 2024 netif_free(info); 2025 2026 return 0; 2027 } 2028 2029 static void 2030 netif_free(struct netfront_info *info) 2031 { 2032 netif_disconnect_backend(info); 2033 #if 0 2034 close_netdev(info); 2035 #endif 2036 } 2037 2038 static void 2039 netif_disconnect_backend(struct netfront_info *info) 2040 { 2041 XN_RX_LOCK(info); 2042 XN_TX_LOCK(info); 2043 netfront_carrier_off(info); 2044 XN_TX_UNLOCK(info); 2045 XN_RX_UNLOCK(info); 2046 2047 end_access(info->tx_ring_ref, info->tx.sring); 2048 end_access(info->rx_ring_ref, info->rx.sring); 2049 info->tx_ring_ref = GRANT_INVALID_REF; 2050 info->rx_ring_ref = GRANT_INVALID_REF; 2051 info->tx.sring = NULL; 2052 info->rx.sring = NULL; 2053 2054 if (info->irq) 2055 unbind_from_irqhandler(info->irq); 2056 2057 info->irq = 0; 2058 } 2059 2060 2061 static void 2062 end_access(int ref, void *page) 2063 { 2064 if (ref != GRANT_INVALID_REF) 2065 gnttab_end_foreign_access(ref, page); 2066 } 2067 2068 static int 2069 xn_ifmedia_upd(struct ifnet *ifp) 2070 { 2071 return (0); 2072 } 2073 2074 static void 2075 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2076 { 2077 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2078 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2079 } 2080 2081 /* ** Driver registration ** */ 2082 static device_method_t netfront_methods[] = { 2083 /* Device interface */ 2084 DEVMETHOD(device_probe, netfront_probe), 2085 DEVMETHOD(device_attach, netfront_attach), 2086 DEVMETHOD(device_detach, netfront_detach), 2087 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2088 DEVMETHOD(device_suspend, bus_generic_suspend), 2089 DEVMETHOD(device_resume, netfront_resume), 2090 2091 /* Xenbus interface */ 2092 DEVMETHOD(xenbus_backend_changed, netfront_backend_changed), 2093 2094 { 0, 0 } 2095 }; 2096 2097 static driver_t netfront_driver = { 2098 "xn", 2099 netfront_methods, 2100 sizeof(struct netfront_info), 2101 }; 2102 devclass_t netfront_devclass; 2103 2104 DRIVER_MODULE(xe, xenbus, netfront_driver, netfront_devclass, 0, 0); 2105