1 /*- 2 * Copyright (c) 2004-2006 Kip Macy 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/sockio.h> 36 #include <sys/mbuf.h> 37 #include <sys/malloc.h> 38 #include <sys/module.h> 39 #include <sys/kernel.h> 40 #include <sys/socket.h> 41 #include <sys/sysctl.h> 42 #include <sys/queue.h> 43 #include <sys/lock.h> 44 #include <sys/sx.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_arp.h> 49 #include <net/ethernet.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 53 #include <net/bpf.h> 54 55 #include <net/if_types.h> 56 57 #include <netinet/in_systm.h> 58 #include <netinet/in.h> 59 #include <netinet/ip.h> 60 #include <netinet/if_ether.h> 61 #if __FreeBSD_version >= 700000 62 #include <netinet/tcp.h> 63 #include <netinet/tcp_lro.h> 64 #endif 65 66 #include <vm/vm.h> 67 #include <vm/pmap.h> 68 69 #include <machine/clock.h> /* for DELAY */ 70 #include <machine/bus.h> 71 #include <machine/resource.h> 72 #include <machine/frame.h> 73 #include <machine/vmparam.h> 74 75 #include <sys/bus.h> 76 #include <sys/rman.h> 77 78 #include <machine/intr_machdep.h> 79 80 #include <xen/xen-os.h> 81 #include <xen/hypervisor.h> 82 #include <xen/xen_intr.h> 83 #include <xen/gnttab.h> 84 #include <xen/interface/memory.h> 85 #include <xen/interface/io/netif.h> 86 #include <xen/xenbus/xenbusvar.h> 87 88 #include <machine/xen/xenvar.h> 89 90 #include <dev/xen/netfront/mbufq.h> 91 92 #include "xenbus_if.h" 93 94 /* Features supported by all backends. TSO and LRO can be negotiated */ 95 #define XN_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 96 97 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 98 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 99 100 #if __FreeBSD_version >= 700000 101 /* 102 * Should the driver do LRO on the RX end 103 * this can be toggled on the fly, but the 104 * interface must be reset (down/up) for it 105 * to take effect. 106 */ 107 static int xn_enable_lro = 1; 108 TUNABLE_INT("hw.xn.enable_lro", &xn_enable_lro); 109 #else 110 111 #define IFCAP_TSO4 0 112 #define CSUM_TSO 0 113 114 #endif 115 116 #ifdef CONFIG_XEN 117 static int MODPARM_rx_copy = 0; 118 module_param_named(rx_copy, MODPARM_rx_copy, bool, 0); 119 MODULE_PARM_DESC(rx_copy, "Copy packets from network card (rather than flip)"); 120 static int MODPARM_rx_flip = 0; 121 module_param_named(rx_flip, MODPARM_rx_flip, bool, 0); 122 MODULE_PARM_DESC(rx_flip, "Flip packets from network card (rather than copy)"); 123 #else 124 static const int MODPARM_rx_copy = 1; 125 static const int MODPARM_rx_flip = 0; 126 #endif 127 128 /** 129 * \brief The maximum allowed data fragments in a single transmit 130 * request. 131 * 132 * This limit is imposed by the backend driver. We assume here that 133 * we are dealing with a Linux driver domain and have set our limit 134 * to mirror the Linux MAX_SKB_FRAGS constant. 135 */ 136 #define MAX_TX_REQ_FRAGS (65536 / PAGE_SIZE + 2) 137 #define NF_TSO_MAXBURST ((IP_MAXPACKET / PAGE_SIZE) * MCLBYTES) 138 139 #define RX_COPY_THRESHOLD 256 140 141 #define net_ratelimit() 0 142 143 struct netfront_info; 144 struct netfront_rx_info; 145 146 static void xn_txeof(struct netfront_info *); 147 static void xn_rxeof(struct netfront_info *); 148 static void network_alloc_rx_buffers(struct netfront_info *); 149 150 static void xn_tick_locked(struct netfront_info *); 151 static void xn_tick(void *); 152 153 static void xn_intr(void *); 154 static inline int xn_count_frags(struct mbuf *m); 155 static int xn_assemble_tx_request(struct netfront_info *sc, 156 struct mbuf *m_head); 157 static void xn_start_locked(struct ifnet *); 158 static void xn_start(struct ifnet *); 159 static int xn_ioctl(struct ifnet *, u_long, caddr_t); 160 static void xn_ifinit_locked(struct netfront_info *); 161 static void xn_ifinit(void *); 162 static void xn_stop(struct netfront_info *); 163 static void xn_query_features(struct netfront_info *np); 164 static int xn_configure_features(struct netfront_info *np); 165 #ifdef notyet 166 static void xn_watchdog(struct ifnet *); 167 #endif 168 169 #ifdef notyet 170 static void netfront_closing(device_t dev); 171 #endif 172 static void netif_free(struct netfront_info *info); 173 static int netfront_detach(device_t dev); 174 175 static int talk_to_backend(device_t dev, struct netfront_info *info); 176 static int create_netdev(device_t dev); 177 static void netif_disconnect_backend(struct netfront_info *info); 178 static int setup_device(device_t dev, struct netfront_info *info); 179 static void free_ring(int *ref, void *ring_ptr_ref); 180 181 static int xn_ifmedia_upd(struct ifnet *ifp); 182 static void xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 183 184 /* Xenolinux helper functions */ 185 int network_connect(struct netfront_info *); 186 187 static void xn_free_rx_ring(struct netfront_info *); 188 189 static void xn_free_tx_ring(struct netfront_info *); 190 191 static int xennet_get_responses(struct netfront_info *np, 192 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 193 struct mbuf **list, int *pages_flipped_p); 194 195 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 196 197 #define INVALID_P2M_ENTRY (~0UL) 198 199 /* 200 * Mbuf pointers. We need these to keep track of the virtual addresses 201 * of our mbuf chains since we can only convert from virtual to physical, 202 * not the other way around. The size must track the free index arrays. 203 */ 204 struct xn_chain_data { 205 struct mbuf *xn_tx_chain[NET_TX_RING_SIZE+1]; 206 int xn_tx_chain_cnt; 207 struct mbuf *xn_rx_chain[NET_RX_RING_SIZE+1]; 208 }; 209 210 struct net_device_stats 211 { 212 u_long rx_packets; /* total packets received */ 213 u_long tx_packets; /* total packets transmitted */ 214 u_long rx_bytes; /* total bytes received */ 215 u_long tx_bytes; /* total bytes transmitted */ 216 u_long rx_errors; /* bad packets received */ 217 u_long tx_errors; /* packet transmit problems */ 218 u_long rx_dropped; /* no space in linux buffers */ 219 u_long tx_dropped; /* no space available in linux */ 220 u_long multicast; /* multicast packets received */ 221 u_long collisions; 222 223 /* detailed rx_errors: */ 224 u_long rx_length_errors; 225 u_long rx_over_errors; /* receiver ring buff overflow */ 226 u_long rx_crc_errors; /* recved pkt with crc error */ 227 u_long rx_frame_errors; /* recv'd frame alignment error */ 228 u_long rx_fifo_errors; /* recv'r fifo overrun */ 229 u_long rx_missed_errors; /* receiver missed packet */ 230 231 /* detailed tx_errors */ 232 u_long tx_aborted_errors; 233 u_long tx_carrier_errors; 234 u_long tx_fifo_errors; 235 u_long tx_heartbeat_errors; 236 u_long tx_window_errors; 237 238 /* for cslip etc */ 239 u_long rx_compressed; 240 u_long tx_compressed; 241 }; 242 243 struct netfront_info { 244 struct ifnet *xn_ifp; 245 #if __FreeBSD_version >= 700000 246 struct lro_ctrl xn_lro; 247 #endif 248 249 struct net_device_stats stats; 250 u_int tx_full; 251 252 netif_tx_front_ring_t tx; 253 netif_rx_front_ring_t rx; 254 255 struct mtx tx_lock; 256 struct mtx rx_lock; 257 struct mtx sc_lock; 258 259 xen_intr_handle_t xen_intr_handle; 260 u_int copying_receiver; 261 u_int carrier; 262 u_int maxfrags; 263 264 /* Receive-ring batched refills. */ 265 #define RX_MIN_TARGET 32 266 #define RX_MAX_TARGET NET_RX_RING_SIZE 267 int rx_min_target; 268 int rx_max_target; 269 int rx_target; 270 271 grant_ref_t gref_tx_head; 272 grant_ref_t grant_tx_ref[NET_TX_RING_SIZE + 1]; 273 grant_ref_t gref_rx_head; 274 grant_ref_t grant_rx_ref[NET_TX_RING_SIZE + 1]; 275 276 device_t xbdev; 277 int tx_ring_ref; 278 int rx_ring_ref; 279 uint8_t mac[ETHER_ADDR_LEN]; 280 struct xn_chain_data xn_cdata; /* mbufs */ 281 struct mbuf_head xn_rx_batch; /* head of the batch queue */ 282 283 int xn_if_flags; 284 struct callout xn_stat_ch; 285 286 u_long rx_pfn_array[NET_RX_RING_SIZE]; 287 multicall_entry_t rx_mcl[NET_RX_RING_SIZE+1]; 288 mmu_update_t rx_mmu[NET_RX_RING_SIZE]; 289 struct ifmedia sc_media; 290 }; 291 292 #define rx_mbufs xn_cdata.xn_rx_chain 293 #define tx_mbufs xn_cdata.xn_tx_chain 294 295 #define XN_LOCK_INIT(_sc, _name) \ 296 mtx_init(&(_sc)->tx_lock, #_name"_tx", "network transmit lock", MTX_DEF); \ 297 mtx_init(&(_sc)->rx_lock, #_name"_rx", "network receive lock", MTX_DEF); \ 298 mtx_init(&(_sc)->sc_lock, #_name"_sc", "netfront softc lock", MTX_DEF) 299 300 #define XN_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_lock) 301 #define XN_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_lock) 302 303 #define XN_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_lock) 304 #define XN_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_lock) 305 306 #define XN_LOCK(_sc) mtx_lock(&(_sc)->sc_lock); 307 #define XN_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_lock); 308 309 #define XN_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->sc_lock, MA_OWNED); 310 #define XN_RX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->rx_lock, MA_OWNED); 311 #define XN_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_lock, MA_OWNED); 312 #define XN_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_lock); \ 313 mtx_destroy(&(_sc)->tx_lock); \ 314 mtx_destroy(&(_sc)->sc_lock); 315 316 struct netfront_rx_info { 317 struct netif_rx_response rx; 318 struct netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1]; 319 }; 320 321 #define netfront_carrier_on(netif) ((netif)->carrier = 1) 322 #define netfront_carrier_off(netif) ((netif)->carrier = 0) 323 #define netfront_carrier_ok(netif) ((netif)->carrier) 324 325 /* Access macros for acquiring freeing slots in xn_free_{tx,rx}_idxs[]. */ 326 327 static inline void 328 add_id_to_freelist(struct mbuf **list, uintptr_t id) 329 { 330 KASSERT(id != 0, 331 ("%s: the head item (0) must always be free.", __func__)); 332 list[id] = list[0]; 333 list[0] = (struct mbuf *)id; 334 } 335 336 static inline unsigned short 337 get_id_from_freelist(struct mbuf **list) 338 { 339 uintptr_t id; 340 341 id = (uintptr_t)list[0]; 342 KASSERT(id != 0, 343 ("%s: the head item (0) must always remain free.", __func__)); 344 list[0] = list[id]; 345 return (id); 346 } 347 348 static inline int 349 xennet_rxidx(RING_IDX idx) 350 { 351 return idx & (NET_RX_RING_SIZE - 1); 352 } 353 354 static inline struct mbuf * 355 xennet_get_rx_mbuf(struct netfront_info *np, RING_IDX ri) 356 { 357 int i = xennet_rxidx(ri); 358 struct mbuf *m; 359 360 m = np->rx_mbufs[i]; 361 np->rx_mbufs[i] = NULL; 362 return (m); 363 } 364 365 static inline grant_ref_t 366 xennet_get_rx_ref(struct netfront_info *np, RING_IDX ri) 367 { 368 int i = xennet_rxidx(ri); 369 grant_ref_t ref = np->grant_rx_ref[i]; 370 KASSERT(ref != GRANT_REF_INVALID, ("Invalid grant reference!\n")); 371 np->grant_rx_ref[i] = GRANT_REF_INVALID; 372 return ref; 373 } 374 375 #define IPRINTK(fmt, args...) \ 376 printf("[XEN] " fmt, ##args) 377 #ifdef INVARIANTS 378 #define WPRINTK(fmt, args...) \ 379 printf("[XEN] " fmt, ##args) 380 #else 381 #define WPRINTK(fmt, args...) 382 #endif 383 #ifdef DEBUG 384 #define DPRINTK(fmt, args...) \ 385 printf("[XEN] %s: " fmt, __func__, ##args) 386 #else 387 #define DPRINTK(fmt, args...) 388 #endif 389 390 /** 391 * Read the 'mac' node at the given device's node in the store, and parse that 392 * as colon-separated octets, placing result the given mac array. mac must be 393 * a preallocated array of length ETH_ALEN (as declared in linux/if_ether.h). 394 * Return 0 on success, or errno on error. 395 */ 396 static int 397 xen_net_read_mac(device_t dev, uint8_t mac[]) 398 { 399 int error, i; 400 char *s, *e, *macstr; 401 const char *path; 402 403 path = xenbus_get_node(dev); 404 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 405 if (error == ENOENT) { 406 /* 407 * Deal with missing mac XenStore nodes on devices with 408 * HVM emulation (the 'ioemu' configuration attribute) 409 * enabled. 410 * 411 * The HVM emulator may execute in a stub device model 412 * domain which lacks the permission, only given to Dom0, 413 * to update the guest's XenStore tree. For this reason, 414 * the HVM emulator doesn't even attempt to write the 415 * front-side mac node, even when operating in Dom0. 416 * However, there should always be a mac listed in the 417 * backend tree. Fallback to this version if our query 418 * of the front side XenStore location doesn't find 419 * anything. 420 */ 421 path = xenbus_get_otherend_path(dev); 422 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 423 } 424 if (error != 0) { 425 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 426 return (error); 427 } 428 429 s = macstr; 430 for (i = 0; i < ETHER_ADDR_LEN; i++) { 431 mac[i] = strtoul(s, &e, 16); 432 if (s == e || (e[0] != ':' && e[0] != 0)) { 433 free(macstr, M_XENBUS); 434 return (ENOENT); 435 } 436 s = &e[1]; 437 } 438 free(macstr, M_XENBUS); 439 return (0); 440 } 441 442 /** 443 * Entry point to this code when a new device is created. Allocate the basic 444 * structures and the ring buffers for communication with the backend, and 445 * inform the backend of the appropriate details for those. Switch to 446 * Connected state. 447 */ 448 static int 449 netfront_probe(device_t dev) 450 { 451 452 if (!strcmp(xenbus_get_type(dev), "vif")) { 453 device_set_desc(dev, "Virtual Network Interface"); 454 return (0); 455 } 456 457 return (ENXIO); 458 } 459 460 static int 461 netfront_attach(device_t dev) 462 { 463 int err; 464 465 err = create_netdev(dev); 466 if (err) { 467 xenbus_dev_fatal(dev, err, "creating netdev"); 468 return (err); 469 } 470 471 #if __FreeBSD_version >= 700000 472 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 473 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), 474 OID_AUTO, "enable_lro", CTLTYPE_INT|CTLFLAG_RW, 475 &xn_enable_lro, 0, "Large Receive Offload"); 476 #endif 477 478 return (0); 479 } 480 481 static int 482 netfront_suspend(device_t dev) 483 { 484 struct netfront_info *info = device_get_softc(dev); 485 486 XN_RX_LOCK(info); 487 XN_TX_LOCK(info); 488 netfront_carrier_off(info); 489 XN_TX_UNLOCK(info); 490 XN_RX_UNLOCK(info); 491 return (0); 492 } 493 494 /** 495 * We are reconnecting to the backend, due to a suspend/resume, or a backend 496 * driver restart. We tear down our netif structure and recreate it, but 497 * leave the device-layer structures intact so that this is transparent to the 498 * rest of the kernel. 499 */ 500 static int 501 netfront_resume(device_t dev) 502 { 503 struct netfront_info *info = device_get_softc(dev); 504 505 netif_disconnect_backend(info); 506 return (0); 507 } 508 509 /* Common code used when first setting up, and when resuming. */ 510 static int 511 talk_to_backend(device_t dev, struct netfront_info *info) 512 { 513 const char *message; 514 struct xs_transaction xst; 515 const char *node = xenbus_get_node(dev); 516 int err; 517 518 err = xen_net_read_mac(dev, info->mac); 519 if (err) { 520 xenbus_dev_fatal(dev, err, "parsing %s/mac", node); 521 goto out; 522 } 523 524 /* Create shared ring, alloc event channel. */ 525 err = setup_device(dev, info); 526 if (err) 527 goto out; 528 529 again: 530 err = xs_transaction_start(&xst); 531 if (err) { 532 xenbus_dev_fatal(dev, err, "starting transaction"); 533 goto destroy_ring; 534 } 535 err = xs_printf(xst, node, "tx-ring-ref","%u", 536 info->tx_ring_ref); 537 if (err) { 538 message = "writing tx ring-ref"; 539 goto abort_transaction; 540 } 541 err = xs_printf(xst, node, "rx-ring-ref","%u", 542 info->rx_ring_ref); 543 if (err) { 544 message = "writing rx ring-ref"; 545 goto abort_transaction; 546 } 547 err = xs_printf(xst, node, 548 "event-channel", "%u", 549 xen_intr_port(info->xen_intr_handle)); 550 if (err) { 551 message = "writing event-channel"; 552 goto abort_transaction; 553 } 554 err = xs_printf(xst, node, "request-rx-copy", "%u", 555 info->copying_receiver); 556 if (err) { 557 message = "writing request-rx-copy"; 558 goto abort_transaction; 559 } 560 err = xs_printf(xst, node, "feature-rx-notify", "%d", 1); 561 if (err) { 562 message = "writing feature-rx-notify"; 563 goto abort_transaction; 564 } 565 err = xs_printf(xst, node, "feature-sg", "%d", 1); 566 if (err) { 567 message = "writing feature-sg"; 568 goto abort_transaction; 569 } 570 #if __FreeBSD_version >= 700000 571 err = xs_printf(xst, node, "feature-gso-tcpv4", "%d", 1); 572 if (err) { 573 message = "writing feature-gso-tcpv4"; 574 goto abort_transaction; 575 } 576 #endif 577 578 err = xs_transaction_end(xst, 0); 579 if (err) { 580 if (err == EAGAIN) 581 goto again; 582 xenbus_dev_fatal(dev, err, "completing transaction"); 583 goto destroy_ring; 584 } 585 586 return 0; 587 588 abort_transaction: 589 xs_transaction_end(xst, 1); 590 xenbus_dev_fatal(dev, err, "%s", message); 591 destroy_ring: 592 netif_free(info); 593 out: 594 return err; 595 } 596 597 static int 598 setup_device(device_t dev, struct netfront_info *info) 599 { 600 netif_tx_sring_t *txs; 601 netif_rx_sring_t *rxs; 602 int error; 603 struct ifnet *ifp; 604 605 ifp = info->xn_ifp; 606 607 info->tx_ring_ref = GRANT_REF_INVALID; 608 info->rx_ring_ref = GRANT_REF_INVALID; 609 info->rx.sring = NULL; 610 info->tx.sring = NULL; 611 612 txs = (netif_tx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 613 if (!txs) { 614 error = ENOMEM; 615 xenbus_dev_fatal(dev, error, "allocating tx ring page"); 616 goto fail; 617 } 618 SHARED_RING_INIT(txs); 619 FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE); 620 error = xenbus_grant_ring(dev, virt_to_mfn(txs), &info->tx_ring_ref); 621 if (error) 622 goto fail; 623 624 rxs = (netif_rx_sring_t *)malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT|M_ZERO); 625 if (!rxs) { 626 error = ENOMEM; 627 xenbus_dev_fatal(dev, error, "allocating rx ring page"); 628 goto fail; 629 } 630 SHARED_RING_INIT(rxs); 631 FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE); 632 633 error = xenbus_grant_ring(dev, virt_to_mfn(rxs), &info->rx_ring_ref); 634 if (error) 635 goto fail; 636 637 error = xen_intr_alloc_and_bind_local_port(dev, 638 xenbus_get_otherend_id(dev), /*filter*/NULL, xn_intr, info, 639 INTR_TYPE_NET | INTR_MPSAFE | INTR_ENTROPY, &info->xen_intr_handle); 640 641 if (error) { 642 xenbus_dev_fatal(dev, error, 643 "xen_intr_alloc_and_bind_local_port failed"); 644 goto fail; 645 } 646 647 return (0); 648 649 fail: 650 netif_free(info); 651 return (error); 652 } 653 654 #ifdef INET 655 /** 656 * If this interface has an ipv4 address, send an arp for it. This 657 * helps to get the network going again after migrating hosts. 658 */ 659 static void 660 netfront_send_fake_arp(device_t dev, struct netfront_info *info) 661 { 662 struct ifnet *ifp; 663 struct ifaddr *ifa; 664 665 ifp = info->xn_ifp; 666 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 667 if (ifa->ifa_addr->sa_family == AF_INET) { 668 arp_ifinit(ifp, ifa); 669 } 670 } 671 } 672 #endif 673 674 /** 675 * Callback received when the backend's state changes. 676 */ 677 static void 678 netfront_backend_changed(device_t dev, XenbusState newstate) 679 { 680 struct netfront_info *sc = device_get_softc(dev); 681 682 DPRINTK("newstate=%d\n", newstate); 683 684 switch (newstate) { 685 case XenbusStateInitialising: 686 case XenbusStateInitialised: 687 case XenbusStateConnected: 688 case XenbusStateUnknown: 689 case XenbusStateClosed: 690 case XenbusStateReconfigured: 691 case XenbusStateReconfiguring: 692 break; 693 case XenbusStateInitWait: 694 if (xenbus_get_state(dev) != XenbusStateInitialising) 695 break; 696 if (network_connect(sc) != 0) 697 break; 698 xenbus_set_state(dev, XenbusStateConnected); 699 #ifdef INET 700 netfront_send_fake_arp(dev, sc); 701 #endif 702 break; 703 case XenbusStateClosing: 704 xenbus_set_state(dev, XenbusStateClosed); 705 break; 706 } 707 } 708 709 static void 710 xn_free_rx_ring(struct netfront_info *sc) 711 { 712 #if 0 713 int i; 714 715 for (i = 0; i < NET_RX_RING_SIZE; i++) { 716 if (sc->xn_cdata.rx_mbufs[i] != NULL) { 717 m_freem(sc->rx_mbufs[i]); 718 sc->rx_mbufs[i] = NULL; 719 } 720 } 721 722 sc->rx.rsp_cons = 0; 723 sc->xn_rx_if->req_prod = 0; 724 sc->xn_rx_if->event = sc->rx.rsp_cons ; 725 #endif 726 } 727 728 static void 729 xn_free_tx_ring(struct netfront_info *sc) 730 { 731 #if 0 732 int i; 733 734 for (i = 0; i < NET_TX_RING_SIZE; i++) { 735 if (sc->tx_mbufs[i] != NULL) { 736 m_freem(sc->tx_mbufs[i]); 737 sc->xn_cdata.xn_tx_chain[i] = NULL; 738 } 739 } 740 741 return; 742 #endif 743 } 744 745 /** 746 * \brief Verify that there is sufficient space in the Tx ring 747 * buffer for a maximally sized request to be enqueued. 748 * 749 * A transmit request requires a transmit descriptor for each packet 750 * fragment, plus up to 2 entries for "options" (e.g. TSO). 751 */ 752 static inline int 753 xn_tx_slot_available(struct netfront_info *np) 754 { 755 return (RING_FREE_REQUESTS(&np->tx) > (MAX_TX_REQ_FRAGS + 2)); 756 } 757 758 static void 759 netif_release_tx_bufs(struct netfront_info *np) 760 { 761 int i; 762 763 for (i = 1; i <= NET_TX_RING_SIZE; i++) { 764 struct mbuf *m; 765 766 m = np->tx_mbufs[i]; 767 768 /* 769 * We assume that no kernel addresses are 770 * less than NET_TX_RING_SIZE. Any entry 771 * in the table that is below this number 772 * must be an index from free-list tracking. 773 */ 774 if (((uintptr_t)m) <= NET_TX_RING_SIZE) 775 continue; 776 gnttab_end_foreign_access_ref(np->grant_tx_ref[i]); 777 gnttab_release_grant_reference(&np->gref_tx_head, 778 np->grant_tx_ref[i]); 779 np->grant_tx_ref[i] = GRANT_REF_INVALID; 780 add_id_to_freelist(np->tx_mbufs, i); 781 np->xn_cdata.xn_tx_chain_cnt--; 782 if (np->xn_cdata.xn_tx_chain_cnt < 0) { 783 panic("%s: tx_chain_cnt must be >= 0", __func__); 784 } 785 m_free(m); 786 } 787 } 788 789 static void 790 network_alloc_rx_buffers(struct netfront_info *sc) 791 { 792 int otherend_id = xenbus_get_otherend_id(sc->xbdev); 793 unsigned short id; 794 struct mbuf *m_new; 795 int i, batch_target, notify; 796 RING_IDX req_prod; 797 struct xen_memory_reservation reservation; 798 grant_ref_t ref; 799 int nr_flips; 800 netif_rx_request_t *req; 801 vm_offset_t vaddr; 802 u_long pfn; 803 804 req_prod = sc->rx.req_prod_pvt; 805 806 if (__predict_false(sc->carrier == 0)) 807 return; 808 809 /* 810 * Allocate mbufs greedily, even though we batch updates to the 811 * receive ring. This creates a less bursty demand on the memory 812 * allocator, and so should reduce the chance of failed allocation 813 * requests both for ourself and for other kernel subsystems. 814 * 815 * Here we attempt to maintain rx_target buffers in flight, counting 816 * buffers that we have yet to process in the receive ring. 817 */ 818 batch_target = sc->rx_target - (req_prod - sc->rx.rsp_cons); 819 for (i = mbufq_len(&sc->xn_rx_batch); i < batch_target; i++) { 820 MGETHDR(m_new, M_NOWAIT, MT_DATA); 821 if (m_new == NULL) { 822 printf("%s: MGETHDR failed\n", __func__); 823 goto no_mbuf; 824 } 825 826 m_cljget(m_new, M_NOWAIT, MJUMPAGESIZE); 827 if ((m_new->m_flags & M_EXT) == 0) { 828 printf("%s: m_cljget failed\n", __func__); 829 m_freem(m_new); 830 831 no_mbuf: 832 if (i != 0) 833 goto refill; 834 /* 835 * XXX set timer 836 */ 837 break; 838 } 839 m_new->m_len = m_new->m_pkthdr.len = MJUMPAGESIZE; 840 841 /* queue the mbufs allocated */ 842 mbufq_tail(&sc->xn_rx_batch, m_new); 843 } 844 845 /* 846 * If we've allocated at least half of our target number of entries, 847 * submit them to the backend - we have enough to make the overhead 848 * of submission worthwhile. Otherwise wait for more mbufs and 849 * request entries to become available. 850 */ 851 if (i < (sc->rx_target/2)) { 852 if (req_prod >sc->rx.sring->req_prod) 853 goto push; 854 return; 855 } 856 857 /* 858 * Double floating fill target if we risked having the backend 859 * run out of empty buffers for receive traffic. We define "running 860 * low" as having less than a fourth of our target buffers free 861 * at the time we refilled the queue. 862 */ 863 if ((req_prod - sc->rx.sring->rsp_prod) < (sc->rx_target / 4)) { 864 sc->rx_target *= 2; 865 if (sc->rx_target > sc->rx_max_target) 866 sc->rx_target = sc->rx_max_target; 867 } 868 869 refill: 870 for (nr_flips = i = 0; ; i++) { 871 if ((m_new = mbufq_dequeue(&sc->xn_rx_batch)) == NULL) 872 break; 873 874 m_new->m_ext.ext_arg1 = (vm_paddr_t *)(uintptr_t)( 875 vtophys(m_new->m_ext.ext_buf) >> PAGE_SHIFT); 876 877 id = xennet_rxidx(req_prod + i); 878 879 KASSERT(sc->rx_mbufs[id] == NULL, ("non-NULL xm_rx_chain")); 880 sc->rx_mbufs[id] = m_new; 881 882 ref = gnttab_claim_grant_reference(&sc->gref_rx_head); 883 KASSERT(ref != GNTTAB_LIST_END, 884 ("reserved grant references exhuasted")); 885 sc->grant_rx_ref[id] = ref; 886 887 vaddr = mtod(m_new, vm_offset_t); 888 pfn = vtophys(vaddr) >> PAGE_SHIFT; 889 req = RING_GET_REQUEST(&sc->rx, req_prod + i); 890 891 if (sc->copying_receiver == 0) { 892 gnttab_grant_foreign_transfer_ref(ref, 893 otherend_id, pfn); 894 sc->rx_pfn_array[nr_flips] = PFNTOMFN(pfn); 895 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 896 /* Remove this page before passing 897 * back to Xen. 898 */ 899 set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 900 MULTI_update_va_mapping(&sc->rx_mcl[i], 901 vaddr, 0, 0); 902 } 903 nr_flips++; 904 } else { 905 gnttab_grant_foreign_access_ref(ref, 906 otherend_id, 907 PFNTOMFN(pfn), 0); 908 } 909 req->id = id; 910 req->gref = ref; 911 912 sc->rx_pfn_array[i] = 913 vtomach(mtod(m_new,vm_offset_t)) >> PAGE_SHIFT; 914 } 915 916 KASSERT(i, ("no mbufs processed")); /* should have returned earlier */ 917 KASSERT(mbufq_len(&sc->xn_rx_batch) == 0, ("not all mbufs processed")); 918 /* 919 * We may have allocated buffers which have entries outstanding 920 * in the page * update queue -- make sure we flush those first! 921 */ 922 PT_UPDATES_FLUSH(); 923 if (nr_flips != 0) { 924 #ifdef notyet 925 /* Tell the ballon driver what is going on. */ 926 balloon_update_driver_allowance(i); 927 #endif 928 set_xen_guest_handle(reservation.extent_start, sc->rx_pfn_array); 929 reservation.nr_extents = i; 930 reservation.extent_order = 0; 931 reservation.address_bits = 0; 932 reservation.domid = DOMID_SELF; 933 934 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 935 /* After all PTEs have been zapped, flush the TLB. */ 936 sc->rx_mcl[i-1].args[MULTI_UVMFLAGS_INDEX] = 937 UVMF_TLB_FLUSH|UVMF_ALL; 938 939 /* Give away a batch of pages. */ 940 sc->rx_mcl[i].op = __HYPERVISOR_memory_op; 941 sc->rx_mcl[i].args[0] = XENMEM_decrease_reservation; 942 sc->rx_mcl[i].args[1] = (u_long)&reservation; 943 /* Zap PTEs and give away pages in one big multicall. */ 944 (void)HYPERVISOR_multicall(sc->rx_mcl, i+1); 945 946 if (__predict_false(sc->rx_mcl[i].result != i || 947 HYPERVISOR_memory_op(XENMEM_decrease_reservation, 948 &reservation) != i)) 949 panic("%s: unable to reduce memory " 950 "reservation\n", __func__); 951 } 952 } else { 953 wmb(); 954 } 955 956 /* Above is a suitable barrier to ensure backend will see requests. */ 957 sc->rx.req_prod_pvt = req_prod + i; 958 push: 959 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->rx, notify); 960 if (notify) 961 xen_intr_signal(sc->xen_intr_handle); 962 } 963 964 static void 965 xn_rxeof(struct netfront_info *np) 966 { 967 struct ifnet *ifp; 968 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 969 struct lro_ctrl *lro = &np->xn_lro; 970 struct lro_entry *queued; 971 #endif 972 struct netfront_rx_info rinfo; 973 struct netif_rx_response *rx = &rinfo.rx; 974 struct netif_extra_info *extras = rinfo.extras; 975 RING_IDX i, rp; 976 multicall_entry_t *mcl; 977 struct mbuf *m; 978 struct mbuf_head rxq, errq; 979 int err, pages_flipped = 0, work_to_do; 980 981 do { 982 XN_RX_LOCK_ASSERT(np); 983 if (!netfront_carrier_ok(np)) 984 return; 985 986 mbufq_init(&errq); 987 mbufq_init(&rxq); 988 989 ifp = np->xn_ifp; 990 991 rp = np->rx.sring->rsp_prod; 992 rmb(); /* Ensure we see queued responses up to 'rp'. */ 993 994 i = np->rx.rsp_cons; 995 while ((i != rp)) { 996 memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx)); 997 memset(extras, 0, sizeof(rinfo.extras)); 998 999 m = NULL; 1000 err = xennet_get_responses(np, &rinfo, rp, &i, &m, 1001 &pages_flipped); 1002 1003 if (__predict_false(err)) { 1004 if (m) 1005 mbufq_tail(&errq, m); 1006 np->stats.rx_errors++; 1007 continue; 1008 } 1009 1010 m->m_pkthdr.rcvif = ifp; 1011 if ( rx->flags & NETRXF_data_validated ) { 1012 /* Tell the stack the checksums are okay */ 1013 /* 1014 * XXX this isn't necessarily the case - need to add 1015 * check 1016 */ 1017 1018 m->m_pkthdr.csum_flags |= 1019 (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID 1020 | CSUM_PSEUDO_HDR); 1021 m->m_pkthdr.csum_data = 0xffff; 1022 } 1023 1024 np->stats.rx_packets++; 1025 np->stats.rx_bytes += m->m_pkthdr.len; 1026 1027 mbufq_tail(&rxq, m); 1028 np->rx.rsp_cons = i; 1029 } 1030 1031 if (pages_flipped) { 1032 /* Some pages are no longer absent... */ 1033 #ifdef notyet 1034 balloon_update_driver_allowance(-pages_flipped); 1035 #endif 1036 /* Do all the remapping work, and M->P updates, in one big 1037 * hypercall. 1038 */ 1039 if (!!xen_feature(XENFEAT_auto_translated_physmap)) { 1040 mcl = np->rx_mcl + pages_flipped; 1041 mcl->op = __HYPERVISOR_mmu_update; 1042 mcl->args[0] = (u_long)np->rx_mmu; 1043 mcl->args[1] = pages_flipped; 1044 mcl->args[2] = 0; 1045 mcl->args[3] = DOMID_SELF; 1046 (void)HYPERVISOR_multicall(np->rx_mcl, 1047 pages_flipped + 1); 1048 } 1049 } 1050 1051 while ((m = mbufq_dequeue(&errq))) 1052 m_freem(m); 1053 1054 /* 1055 * Process all the mbufs after the remapping is complete. 1056 * Break the mbuf chain first though. 1057 */ 1058 while ((m = mbufq_dequeue(&rxq)) != NULL) { 1059 ifp->if_ipackets++; 1060 1061 /* 1062 * Do we really need to drop the rx lock? 1063 */ 1064 XN_RX_UNLOCK(np); 1065 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1066 /* Use LRO if possible */ 1067 if ((ifp->if_capenable & IFCAP_LRO) == 0 || 1068 lro->lro_cnt == 0 || tcp_lro_rx(lro, m, 0)) { 1069 /* 1070 * If LRO fails, pass up to the stack 1071 * directly. 1072 */ 1073 (*ifp->if_input)(ifp, m); 1074 } 1075 #else 1076 (*ifp->if_input)(ifp, m); 1077 #endif 1078 XN_RX_LOCK(np); 1079 } 1080 1081 np->rx.rsp_cons = i; 1082 1083 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 1084 /* 1085 * Flush any outstanding LRO work 1086 */ 1087 while (!SLIST_EMPTY(&lro->lro_active)) { 1088 queued = SLIST_FIRST(&lro->lro_active); 1089 SLIST_REMOVE_HEAD(&lro->lro_active, next); 1090 tcp_lro_flush(lro, queued); 1091 } 1092 #endif 1093 1094 #if 0 1095 /* If we get a callback with very few responses, reduce fill target. */ 1096 /* NB. Note exponential increase, linear decrease. */ 1097 if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) > 1098 ((3*np->rx_target) / 4)) && (--np->rx_target < np->rx_min_target)) 1099 np->rx_target = np->rx_min_target; 1100 #endif 1101 1102 network_alloc_rx_buffers(np); 1103 1104 RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, work_to_do); 1105 } while (work_to_do); 1106 } 1107 1108 static void 1109 xn_txeof(struct netfront_info *np) 1110 { 1111 RING_IDX i, prod; 1112 unsigned short id; 1113 struct ifnet *ifp; 1114 netif_tx_response_t *txr; 1115 struct mbuf *m; 1116 1117 XN_TX_LOCK_ASSERT(np); 1118 1119 if (!netfront_carrier_ok(np)) 1120 return; 1121 1122 ifp = np->xn_ifp; 1123 1124 do { 1125 prod = np->tx.sring->rsp_prod; 1126 rmb(); /* Ensure we see responses up to 'rp'. */ 1127 1128 for (i = np->tx.rsp_cons; i != prod; i++) { 1129 txr = RING_GET_RESPONSE(&np->tx, i); 1130 if (txr->status == NETIF_RSP_NULL) 1131 continue; 1132 1133 if (txr->status != NETIF_RSP_OKAY) { 1134 printf("%s: WARNING: response is %d!\n", 1135 __func__, txr->status); 1136 } 1137 id = txr->id; 1138 m = np->tx_mbufs[id]; 1139 KASSERT(m != NULL, ("mbuf not found in xn_tx_chain")); 1140 KASSERT((uintptr_t)m > NET_TX_RING_SIZE, 1141 ("mbuf already on the free list, but we're " 1142 "trying to free it again!")); 1143 M_ASSERTVALID(m); 1144 1145 /* 1146 * Increment packet count if this is the last 1147 * mbuf of the chain. 1148 */ 1149 if (!m->m_next) 1150 ifp->if_opackets++; 1151 if (__predict_false(gnttab_query_foreign_access( 1152 np->grant_tx_ref[id]) != 0)) { 1153 panic("%s: grant id %u still in use by the " 1154 "backend", __func__, id); 1155 } 1156 gnttab_end_foreign_access_ref( 1157 np->grant_tx_ref[id]); 1158 gnttab_release_grant_reference( 1159 &np->gref_tx_head, np->grant_tx_ref[id]); 1160 np->grant_tx_ref[id] = GRANT_REF_INVALID; 1161 1162 np->tx_mbufs[id] = NULL; 1163 add_id_to_freelist(np->tx_mbufs, id); 1164 np->xn_cdata.xn_tx_chain_cnt--; 1165 m_free(m); 1166 /* Only mark the queue active if we've freed up at least one slot to try */ 1167 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1168 } 1169 np->tx.rsp_cons = prod; 1170 1171 /* 1172 * Set a new event, then check for race with update of 1173 * tx_cons. Note that it is essential to schedule a 1174 * callback, no matter how few buffers are pending. Even if 1175 * there is space in the transmit ring, higher layers may 1176 * be blocked because too much data is outstanding: in such 1177 * cases notification from Xen is likely to be the only kick 1178 * that we'll get. 1179 */ 1180 np->tx.sring->rsp_event = 1181 prod + ((np->tx.sring->req_prod - prod) >> 1) + 1; 1182 1183 mb(); 1184 } while (prod != np->tx.sring->rsp_prod); 1185 1186 if (np->tx_full && 1187 ((np->tx.sring->req_prod - prod) < NET_TX_RING_SIZE)) { 1188 np->tx_full = 0; 1189 #if 0 1190 if (np->user_state == UST_OPEN) 1191 netif_wake_queue(dev); 1192 #endif 1193 } 1194 } 1195 1196 static void 1197 xn_intr(void *xsc) 1198 { 1199 struct netfront_info *np = xsc; 1200 struct ifnet *ifp = np->xn_ifp; 1201 1202 #if 0 1203 if (!(np->rx.rsp_cons != np->rx.sring->rsp_prod && 1204 likely(netfront_carrier_ok(np)) && 1205 ifp->if_drv_flags & IFF_DRV_RUNNING)) 1206 return; 1207 #endif 1208 if (RING_HAS_UNCONSUMED_RESPONSES(&np->tx)) { 1209 XN_TX_LOCK(np); 1210 xn_txeof(np); 1211 XN_TX_UNLOCK(np); 1212 } 1213 1214 XN_RX_LOCK(np); 1215 xn_rxeof(np); 1216 XN_RX_UNLOCK(np); 1217 1218 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1219 !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1220 xn_start(ifp); 1221 } 1222 1223 static void 1224 xennet_move_rx_slot(struct netfront_info *np, struct mbuf *m, 1225 grant_ref_t ref) 1226 { 1227 int new = xennet_rxidx(np->rx.req_prod_pvt); 1228 1229 KASSERT(np->rx_mbufs[new] == NULL, ("rx_mbufs != NULL")); 1230 np->rx_mbufs[new] = m; 1231 np->grant_rx_ref[new] = ref; 1232 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new; 1233 RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref; 1234 np->rx.req_prod_pvt++; 1235 } 1236 1237 static int 1238 xennet_get_extras(struct netfront_info *np, 1239 struct netif_extra_info *extras, RING_IDX rp, RING_IDX *cons) 1240 { 1241 struct netif_extra_info *extra; 1242 1243 int err = 0; 1244 1245 do { 1246 struct mbuf *m; 1247 grant_ref_t ref; 1248 1249 if (__predict_false(*cons + 1 == rp)) { 1250 #if 0 1251 if (net_ratelimit()) 1252 WPRINTK("Missing extra info\n"); 1253 #endif 1254 err = EINVAL; 1255 break; 1256 } 1257 1258 extra = (struct netif_extra_info *) 1259 RING_GET_RESPONSE(&np->rx, ++(*cons)); 1260 1261 if (__predict_false(!extra->type || 1262 extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) { 1263 #if 0 1264 if (net_ratelimit()) 1265 WPRINTK("Invalid extra type: %d\n", 1266 extra->type); 1267 #endif 1268 err = EINVAL; 1269 } else { 1270 memcpy(&extras[extra->type - 1], extra, sizeof(*extra)); 1271 } 1272 1273 m = xennet_get_rx_mbuf(np, *cons); 1274 ref = xennet_get_rx_ref(np, *cons); 1275 xennet_move_rx_slot(np, m, ref); 1276 } while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE); 1277 1278 return err; 1279 } 1280 1281 static int 1282 xennet_get_responses(struct netfront_info *np, 1283 struct netfront_rx_info *rinfo, RING_IDX rp, RING_IDX *cons, 1284 struct mbuf **list, 1285 int *pages_flipped_p) 1286 { 1287 int pages_flipped = *pages_flipped_p; 1288 struct mmu_update *mmu; 1289 struct multicall_entry *mcl; 1290 struct netif_rx_response *rx = &rinfo->rx; 1291 struct netif_extra_info *extras = rinfo->extras; 1292 struct mbuf *m, *m0, *m_prev; 1293 grant_ref_t ref = xennet_get_rx_ref(np, *cons); 1294 RING_IDX ref_cons = *cons; 1295 int frags = 1; 1296 int err = 0; 1297 u_long ret; 1298 1299 m0 = m = m_prev = xennet_get_rx_mbuf(np, *cons); 1300 1301 if (rx->flags & NETRXF_extra_info) { 1302 err = xennet_get_extras(np, extras, rp, cons); 1303 } 1304 1305 if (m0 != NULL) { 1306 m0->m_pkthdr.len = 0; 1307 m0->m_next = NULL; 1308 } 1309 1310 for (;;) { 1311 u_long mfn; 1312 1313 #if 0 1314 DPRINTK("rx->status=%hd rx->offset=%hu frags=%u\n", 1315 rx->status, rx->offset, frags); 1316 #endif 1317 if (__predict_false(rx->status < 0 || 1318 rx->offset + rx->status > PAGE_SIZE)) { 1319 1320 #if 0 1321 if (net_ratelimit()) 1322 WPRINTK("rx->offset: %x, size: %u\n", 1323 rx->offset, rx->status); 1324 #endif 1325 xennet_move_rx_slot(np, m, ref); 1326 if (m0 == m) 1327 m0 = NULL; 1328 m = NULL; 1329 err = EINVAL; 1330 goto next_skip_queue; 1331 } 1332 1333 /* 1334 * This definitely indicates a bug, either in this driver or in 1335 * the backend driver. In future this should flag the bad 1336 * situation to the system controller to reboot the backed. 1337 */ 1338 if (ref == GRANT_REF_INVALID) { 1339 1340 #if 0 1341 if (net_ratelimit()) 1342 WPRINTK("Bad rx response id %d.\n", rx->id); 1343 #endif 1344 printf("%s: Bad rx response id %d.\n", __func__,rx->id); 1345 err = EINVAL; 1346 goto next; 1347 } 1348 1349 if (!np->copying_receiver) { 1350 /* Memory pressure, insufficient buffer 1351 * headroom, ... 1352 */ 1353 if (!(mfn = gnttab_end_foreign_transfer_ref(ref))) { 1354 WPRINTK("Unfulfilled rx req (id=%d, st=%d).\n", 1355 rx->id, rx->status); 1356 xennet_move_rx_slot(np, m, ref); 1357 err = ENOMEM; 1358 goto next; 1359 } 1360 1361 if (!xen_feature( XENFEAT_auto_translated_physmap)) { 1362 /* Remap the page. */ 1363 void *vaddr = mtod(m, void *); 1364 uint32_t pfn; 1365 1366 mcl = np->rx_mcl + pages_flipped; 1367 mmu = np->rx_mmu + pages_flipped; 1368 1369 MULTI_update_va_mapping(mcl, (u_long)vaddr, 1370 (((vm_paddr_t)mfn) << PAGE_SHIFT) | PG_RW | 1371 PG_V | PG_M | PG_A, 0); 1372 pfn = (uintptr_t)m->m_ext.ext_arg1; 1373 mmu->ptr = ((vm_paddr_t)mfn << PAGE_SHIFT) | 1374 MMU_MACHPHYS_UPDATE; 1375 mmu->val = pfn; 1376 1377 set_phys_to_machine(pfn, mfn); 1378 } 1379 pages_flipped++; 1380 } else { 1381 ret = gnttab_end_foreign_access_ref(ref); 1382 KASSERT(ret, ("ret != 0")); 1383 } 1384 1385 gnttab_release_grant_reference(&np->gref_rx_head, ref); 1386 1387 next: 1388 if (m == NULL) 1389 break; 1390 1391 m->m_len = rx->status; 1392 m->m_data += rx->offset; 1393 m0->m_pkthdr.len += rx->status; 1394 1395 next_skip_queue: 1396 if (!(rx->flags & NETRXF_more_data)) 1397 break; 1398 1399 if (*cons + frags == rp) { 1400 if (net_ratelimit()) 1401 WPRINTK("Need more frags\n"); 1402 err = ENOENT; 1403 printf("%s: cons %u frags %u rp %u, not enough frags\n", 1404 __func__, *cons, frags, rp); 1405 break; 1406 } 1407 /* 1408 * Note that m can be NULL, if rx->status < 0 or if 1409 * rx->offset + rx->status > PAGE_SIZE above. 1410 */ 1411 m_prev = m; 1412 1413 rx = RING_GET_RESPONSE(&np->rx, *cons + frags); 1414 m = xennet_get_rx_mbuf(np, *cons + frags); 1415 1416 /* 1417 * m_prev == NULL can happen if rx->status < 0 or if 1418 * rx->offset + * rx->status > PAGE_SIZE above. 1419 */ 1420 if (m_prev != NULL) 1421 m_prev->m_next = m; 1422 1423 /* 1424 * m0 can be NULL if rx->status < 0 or if * rx->offset + 1425 * rx->status > PAGE_SIZE above. 1426 */ 1427 if (m0 == NULL) 1428 m0 = m; 1429 m->m_next = NULL; 1430 ref = xennet_get_rx_ref(np, *cons + frags); 1431 ref_cons = *cons + frags; 1432 frags++; 1433 } 1434 *list = m0; 1435 *cons += frags; 1436 *pages_flipped_p = pages_flipped; 1437 1438 return (err); 1439 } 1440 1441 static void 1442 xn_tick_locked(struct netfront_info *sc) 1443 { 1444 XN_RX_LOCK_ASSERT(sc); 1445 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1446 1447 /* XXX placeholder for printing debug information */ 1448 } 1449 1450 static void 1451 xn_tick(void *xsc) 1452 { 1453 struct netfront_info *sc; 1454 1455 sc = xsc; 1456 XN_RX_LOCK(sc); 1457 xn_tick_locked(sc); 1458 XN_RX_UNLOCK(sc); 1459 } 1460 1461 /** 1462 * \brief Count the number of fragments in an mbuf chain. 1463 * 1464 * Surprisingly, there isn't an M* macro for this. 1465 */ 1466 static inline int 1467 xn_count_frags(struct mbuf *m) 1468 { 1469 int nfrags; 1470 1471 for (nfrags = 0; m != NULL; m = m->m_next) 1472 nfrags++; 1473 1474 return (nfrags); 1475 } 1476 1477 /** 1478 * Given an mbuf chain, make sure we have enough room and then push 1479 * it onto the transmit ring. 1480 */ 1481 static int 1482 xn_assemble_tx_request(struct netfront_info *sc, struct mbuf *m_head) 1483 { 1484 struct ifnet *ifp; 1485 struct mbuf *m; 1486 u_int nfrags; 1487 netif_extra_info_t *extra; 1488 int otherend_id; 1489 1490 ifp = sc->xn_ifp; 1491 1492 /** 1493 * Defragment the mbuf if necessary. 1494 */ 1495 nfrags = xn_count_frags(m_head); 1496 1497 /* 1498 * Check to see whether this request is longer than netback 1499 * can handle, and try to defrag it. 1500 */ 1501 /** 1502 * It is a bit lame, but the netback driver in Linux can't 1503 * deal with nfrags > MAX_TX_REQ_FRAGS, which is a quirk of 1504 * the Linux network stack. 1505 */ 1506 if (nfrags > sc->maxfrags) { 1507 m = m_defrag(m_head, M_NOWAIT); 1508 if (!m) { 1509 /* 1510 * Defrag failed, so free the mbuf and 1511 * therefore drop the packet. 1512 */ 1513 m_freem(m_head); 1514 return (EMSGSIZE); 1515 } 1516 m_head = m; 1517 } 1518 1519 /* Determine how many fragments now exist */ 1520 nfrags = xn_count_frags(m_head); 1521 1522 /* 1523 * Check to see whether the defragmented packet has too many 1524 * segments for the Linux netback driver. 1525 */ 1526 /** 1527 * The FreeBSD TCP stack, with TSO enabled, can produce a chain 1528 * of mbufs longer than Linux can handle. Make sure we don't 1529 * pass a too-long chain over to the other side by dropping the 1530 * packet. It doesn't look like there is currently a way to 1531 * tell the TCP stack to generate a shorter chain of packets. 1532 */ 1533 if (nfrags > MAX_TX_REQ_FRAGS) { 1534 #ifdef DEBUG 1535 printf("%s: nfrags %d > MAX_TX_REQ_FRAGS %d, netback " 1536 "won't be able to handle it, dropping\n", 1537 __func__, nfrags, MAX_TX_REQ_FRAGS); 1538 #endif 1539 m_freem(m_head); 1540 return (EMSGSIZE); 1541 } 1542 1543 /* 1544 * This check should be redundant. We've already verified that we 1545 * have enough slots in the ring to handle a packet of maximum 1546 * size, and that our packet is less than the maximum size. Keep 1547 * it in here as an assert for now just to make certain that 1548 * xn_tx_chain_cnt is accurate. 1549 */ 1550 KASSERT((sc->xn_cdata.xn_tx_chain_cnt + nfrags) <= NET_TX_RING_SIZE, 1551 ("%s: xn_tx_chain_cnt (%d) + nfrags (%d) > NET_TX_RING_SIZE " 1552 "(%d)!", __func__, (int) sc->xn_cdata.xn_tx_chain_cnt, 1553 (int) nfrags, (int) NET_TX_RING_SIZE)); 1554 1555 /* 1556 * Start packing the mbufs in this chain into 1557 * the fragment pointers. Stop when we run out 1558 * of fragments or hit the end of the mbuf chain. 1559 */ 1560 m = m_head; 1561 extra = NULL; 1562 otherend_id = xenbus_get_otherend_id(sc->xbdev); 1563 for (m = m_head; m; m = m->m_next) { 1564 netif_tx_request_t *tx; 1565 uintptr_t id; 1566 grant_ref_t ref; 1567 u_long mfn; /* XXX Wrong type? */ 1568 1569 tx = RING_GET_REQUEST(&sc->tx, sc->tx.req_prod_pvt); 1570 id = get_id_from_freelist(sc->tx_mbufs); 1571 if (id == 0) 1572 panic("%s: was allocated the freelist head!\n", 1573 __func__); 1574 sc->xn_cdata.xn_tx_chain_cnt++; 1575 if (sc->xn_cdata.xn_tx_chain_cnt > NET_TX_RING_SIZE) 1576 panic("%s: tx_chain_cnt must be <= NET_TX_RING_SIZE\n", 1577 __func__); 1578 sc->tx_mbufs[id] = m; 1579 tx->id = id; 1580 ref = gnttab_claim_grant_reference(&sc->gref_tx_head); 1581 KASSERT((short)ref >= 0, ("Negative ref")); 1582 mfn = virt_to_mfn(mtod(m, vm_offset_t)); 1583 gnttab_grant_foreign_access_ref(ref, otherend_id, 1584 mfn, GNTMAP_readonly); 1585 tx->gref = sc->grant_tx_ref[id] = ref; 1586 tx->offset = mtod(m, vm_offset_t) & (PAGE_SIZE - 1); 1587 tx->flags = 0; 1588 if (m == m_head) { 1589 /* 1590 * The first fragment has the entire packet 1591 * size, subsequent fragments have just the 1592 * fragment size. The backend works out the 1593 * true size of the first fragment by 1594 * subtracting the sizes of the other 1595 * fragments. 1596 */ 1597 tx->size = m->m_pkthdr.len; 1598 1599 /* 1600 * The first fragment contains the checksum flags 1601 * and is optionally followed by extra data for 1602 * TSO etc. 1603 */ 1604 /** 1605 * CSUM_TSO requires checksum offloading. 1606 * Some versions of FreeBSD fail to 1607 * set CSUM_TCP in the CSUM_TSO case, 1608 * so we have to test for CSUM_TSO 1609 * explicitly. 1610 */ 1611 if (m->m_pkthdr.csum_flags 1612 & (CSUM_DELAY_DATA | CSUM_TSO)) { 1613 tx->flags |= (NETTXF_csum_blank 1614 | NETTXF_data_validated); 1615 } 1616 #if __FreeBSD_version >= 700000 1617 if (m->m_pkthdr.csum_flags & CSUM_TSO) { 1618 struct netif_extra_info *gso = 1619 (struct netif_extra_info *) 1620 RING_GET_REQUEST(&sc->tx, 1621 ++sc->tx.req_prod_pvt); 1622 1623 tx->flags |= NETTXF_extra_info; 1624 1625 gso->u.gso.size = m->m_pkthdr.tso_segsz; 1626 gso->u.gso.type = 1627 XEN_NETIF_GSO_TYPE_TCPV4; 1628 gso->u.gso.pad = 0; 1629 gso->u.gso.features = 0; 1630 1631 gso->type = XEN_NETIF_EXTRA_TYPE_GSO; 1632 gso->flags = 0; 1633 } 1634 #endif 1635 } else { 1636 tx->size = m->m_len; 1637 } 1638 if (m->m_next) 1639 tx->flags |= NETTXF_more_data; 1640 1641 sc->tx.req_prod_pvt++; 1642 } 1643 BPF_MTAP(ifp, m_head); 1644 1645 sc->stats.tx_bytes += m_head->m_pkthdr.len; 1646 sc->stats.tx_packets++; 1647 1648 return (0); 1649 } 1650 1651 static void 1652 xn_start_locked(struct ifnet *ifp) 1653 { 1654 struct netfront_info *sc; 1655 struct mbuf *m_head; 1656 int notify; 1657 1658 sc = ifp->if_softc; 1659 1660 if (!netfront_carrier_ok(sc)) 1661 return; 1662 1663 /* 1664 * While we have enough transmit slots available for at least one 1665 * maximum-sized packet, pull mbufs off the queue and put them on 1666 * the transmit ring. 1667 */ 1668 while (xn_tx_slot_available(sc)) { 1669 IF_DEQUEUE(&ifp->if_snd, m_head); 1670 if (m_head == NULL) 1671 break; 1672 1673 if (xn_assemble_tx_request(sc, m_head) != 0) 1674 break; 1675 } 1676 1677 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->tx, notify); 1678 if (notify) 1679 xen_intr_signal(sc->xen_intr_handle); 1680 1681 if (RING_FULL(&sc->tx)) { 1682 sc->tx_full = 1; 1683 #if 0 1684 netif_stop_queue(dev); 1685 #endif 1686 } 1687 } 1688 1689 static void 1690 xn_start(struct ifnet *ifp) 1691 { 1692 struct netfront_info *sc; 1693 sc = ifp->if_softc; 1694 XN_TX_LOCK(sc); 1695 xn_start_locked(ifp); 1696 XN_TX_UNLOCK(sc); 1697 } 1698 1699 /* equivalent of network_open() in Linux */ 1700 static void 1701 xn_ifinit_locked(struct netfront_info *sc) 1702 { 1703 struct ifnet *ifp; 1704 1705 XN_LOCK_ASSERT(sc); 1706 1707 ifp = sc->xn_ifp; 1708 1709 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1710 return; 1711 1712 xn_stop(sc); 1713 1714 network_alloc_rx_buffers(sc); 1715 sc->rx.sring->rsp_event = sc->rx.rsp_cons + 1; 1716 1717 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1718 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1719 if_link_state_change(ifp, LINK_STATE_UP); 1720 1721 callout_reset(&sc->xn_stat_ch, hz, xn_tick, sc); 1722 } 1723 1724 static void 1725 xn_ifinit(void *xsc) 1726 { 1727 struct netfront_info *sc = xsc; 1728 1729 XN_LOCK(sc); 1730 xn_ifinit_locked(sc); 1731 XN_UNLOCK(sc); 1732 } 1733 1734 static int 1735 xn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1736 { 1737 struct netfront_info *sc = ifp->if_softc; 1738 struct ifreq *ifr = (struct ifreq *) data; 1739 #ifdef INET 1740 struct ifaddr *ifa = (struct ifaddr *)data; 1741 #endif 1742 1743 int mask, error = 0; 1744 switch(cmd) { 1745 case SIOCSIFADDR: 1746 case SIOCGIFADDR: 1747 #ifdef INET 1748 XN_LOCK(sc); 1749 if (ifa->ifa_addr->sa_family == AF_INET) { 1750 ifp->if_flags |= IFF_UP; 1751 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) 1752 xn_ifinit_locked(sc); 1753 arp_ifinit(ifp, ifa); 1754 XN_UNLOCK(sc); 1755 } else { 1756 XN_UNLOCK(sc); 1757 #endif 1758 error = ether_ioctl(ifp, cmd, data); 1759 #ifdef INET 1760 } 1761 #endif 1762 break; 1763 case SIOCSIFMTU: 1764 /* XXX can we alter the MTU on a VN ?*/ 1765 #ifdef notyet 1766 if (ifr->ifr_mtu > XN_JUMBO_MTU) 1767 error = EINVAL; 1768 else 1769 #endif 1770 { 1771 ifp->if_mtu = ifr->ifr_mtu; 1772 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1773 xn_ifinit(sc); 1774 } 1775 break; 1776 case SIOCSIFFLAGS: 1777 XN_LOCK(sc); 1778 if (ifp->if_flags & IFF_UP) { 1779 /* 1780 * If only the state of the PROMISC flag changed, 1781 * then just use the 'set promisc mode' command 1782 * instead of reinitializing the entire NIC. Doing 1783 * a full re-init means reloading the firmware and 1784 * waiting for it to start up, which may take a 1785 * second or two. 1786 */ 1787 #ifdef notyet 1788 /* No promiscuous mode with Xen */ 1789 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1790 ifp->if_flags & IFF_PROMISC && 1791 !(sc->xn_if_flags & IFF_PROMISC)) { 1792 XN_SETBIT(sc, XN_RX_MODE, 1793 XN_RXMODE_RX_PROMISC); 1794 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1795 !(ifp->if_flags & IFF_PROMISC) && 1796 sc->xn_if_flags & IFF_PROMISC) { 1797 XN_CLRBIT(sc, XN_RX_MODE, 1798 XN_RXMODE_RX_PROMISC); 1799 } else 1800 #endif 1801 xn_ifinit_locked(sc); 1802 } else { 1803 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1804 xn_stop(sc); 1805 } 1806 } 1807 sc->xn_if_flags = ifp->if_flags; 1808 XN_UNLOCK(sc); 1809 error = 0; 1810 break; 1811 case SIOCSIFCAP: 1812 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1813 if (mask & IFCAP_TXCSUM) { 1814 if (IFCAP_TXCSUM & ifp->if_capenable) { 1815 ifp->if_capenable &= ~(IFCAP_TXCSUM|IFCAP_TSO4); 1816 ifp->if_hwassist &= ~(CSUM_TCP | CSUM_UDP 1817 | CSUM_IP | CSUM_TSO); 1818 } else { 1819 ifp->if_capenable |= IFCAP_TXCSUM; 1820 ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP 1821 | CSUM_IP); 1822 } 1823 } 1824 if (mask & IFCAP_RXCSUM) { 1825 ifp->if_capenable ^= IFCAP_RXCSUM; 1826 } 1827 #if __FreeBSD_version >= 700000 1828 if (mask & IFCAP_TSO4) { 1829 if (IFCAP_TSO4 & ifp->if_capenable) { 1830 ifp->if_capenable &= ~IFCAP_TSO4; 1831 ifp->if_hwassist &= ~CSUM_TSO; 1832 } else if (IFCAP_TXCSUM & ifp->if_capenable) { 1833 ifp->if_capenable |= IFCAP_TSO4; 1834 ifp->if_hwassist |= CSUM_TSO; 1835 } else { 1836 IPRINTK("Xen requires tx checksum offload" 1837 " be enabled to use TSO\n"); 1838 error = EINVAL; 1839 } 1840 } 1841 if (mask & IFCAP_LRO) { 1842 ifp->if_capenable ^= IFCAP_LRO; 1843 1844 } 1845 #endif 1846 error = 0; 1847 break; 1848 case SIOCADDMULTI: 1849 case SIOCDELMULTI: 1850 #ifdef notyet 1851 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1852 XN_LOCK(sc); 1853 xn_setmulti(sc); 1854 XN_UNLOCK(sc); 1855 error = 0; 1856 } 1857 #endif 1858 /* FALLTHROUGH */ 1859 case SIOCSIFMEDIA: 1860 case SIOCGIFMEDIA: 1861 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 1862 break; 1863 default: 1864 error = ether_ioctl(ifp, cmd, data); 1865 } 1866 1867 return (error); 1868 } 1869 1870 static void 1871 xn_stop(struct netfront_info *sc) 1872 { 1873 struct ifnet *ifp; 1874 1875 XN_LOCK_ASSERT(sc); 1876 1877 ifp = sc->xn_ifp; 1878 1879 callout_stop(&sc->xn_stat_ch); 1880 1881 xn_free_rx_ring(sc); 1882 xn_free_tx_ring(sc); 1883 1884 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1885 if_link_state_change(ifp, LINK_STATE_DOWN); 1886 } 1887 1888 /* START of Xenolinux helper functions adapted to FreeBSD */ 1889 int 1890 network_connect(struct netfront_info *np) 1891 { 1892 int i, requeue_idx, error; 1893 grant_ref_t ref; 1894 netif_rx_request_t *req; 1895 u_int feature_rx_copy, feature_rx_flip; 1896 1897 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1898 "feature-rx-copy", NULL, "%u", &feature_rx_copy); 1899 if (error) 1900 feature_rx_copy = 0; 1901 error = xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1902 "feature-rx-flip", NULL, "%u", &feature_rx_flip); 1903 if (error) 1904 feature_rx_flip = 1; 1905 1906 /* 1907 * Copy packets on receive path if: 1908 * (a) This was requested by user, and the backend supports it; or 1909 * (b) Flipping was requested, but this is unsupported by the backend. 1910 */ 1911 np->copying_receiver = ((MODPARM_rx_copy && feature_rx_copy) || 1912 (MODPARM_rx_flip && !feature_rx_flip)); 1913 1914 /* Recovery procedure: */ 1915 error = talk_to_backend(np->xbdev, np); 1916 if (error) 1917 return (error); 1918 1919 /* Step 1: Reinitialise variables. */ 1920 xn_query_features(np); 1921 xn_configure_features(np); 1922 netif_release_tx_bufs(np); 1923 1924 /* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */ 1925 for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) { 1926 struct mbuf *m; 1927 u_long pfn; 1928 1929 if (np->rx_mbufs[i] == NULL) 1930 continue; 1931 1932 m = np->rx_mbufs[requeue_idx] = xennet_get_rx_mbuf(np, i); 1933 ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i); 1934 1935 req = RING_GET_REQUEST(&np->rx, requeue_idx); 1936 pfn = vtophys(mtod(m, vm_offset_t)) >> PAGE_SHIFT; 1937 1938 if (!np->copying_receiver) { 1939 gnttab_grant_foreign_transfer_ref(ref, 1940 xenbus_get_otherend_id(np->xbdev), 1941 pfn); 1942 } else { 1943 gnttab_grant_foreign_access_ref(ref, 1944 xenbus_get_otherend_id(np->xbdev), 1945 PFNTOMFN(pfn), 0); 1946 } 1947 req->gref = ref; 1948 req->id = requeue_idx; 1949 1950 requeue_idx++; 1951 } 1952 1953 np->rx.req_prod_pvt = requeue_idx; 1954 1955 /* Step 3: All public and private state should now be sane. Get 1956 * ready to start sending and receiving packets and give the driver 1957 * domain a kick because we've probably just requeued some 1958 * packets. 1959 */ 1960 netfront_carrier_on(np); 1961 xen_intr_signal(np->xen_intr_handle); 1962 XN_TX_LOCK(np); 1963 xn_txeof(np); 1964 XN_TX_UNLOCK(np); 1965 network_alloc_rx_buffers(np); 1966 1967 return (0); 1968 } 1969 1970 static void 1971 xn_query_features(struct netfront_info *np) 1972 { 1973 int val; 1974 1975 device_printf(np->xbdev, "backend features:"); 1976 1977 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1978 "feature-sg", NULL, "%d", &val) < 0) 1979 val = 0; 1980 1981 np->maxfrags = 1; 1982 if (val) { 1983 np->maxfrags = MAX_TX_REQ_FRAGS; 1984 printf(" feature-sg"); 1985 } 1986 1987 if (xs_scanf(XST_NIL, xenbus_get_otherend_path(np->xbdev), 1988 "feature-gso-tcpv4", NULL, "%d", &val) < 0) 1989 val = 0; 1990 1991 np->xn_ifp->if_capabilities &= ~(IFCAP_TSO4|IFCAP_LRO); 1992 if (val) { 1993 np->xn_ifp->if_capabilities |= IFCAP_TSO4|IFCAP_LRO; 1994 printf(" feature-gso-tcp4"); 1995 } 1996 1997 printf("\n"); 1998 } 1999 2000 static int 2001 xn_configure_features(struct netfront_info *np) 2002 { 2003 int err; 2004 2005 err = 0; 2006 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 2007 if ((np->xn_ifp->if_capenable & IFCAP_LRO) != 0) 2008 tcp_lro_free(&np->xn_lro); 2009 #endif 2010 np->xn_ifp->if_capenable = 2011 np->xn_ifp->if_capabilities & ~(IFCAP_LRO|IFCAP_TSO4); 2012 np->xn_ifp->if_hwassist &= ~CSUM_TSO; 2013 #if __FreeBSD_version >= 700000 && (defined(INET) || defined(INET6)) 2014 if (xn_enable_lro && (np->xn_ifp->if_capabilities & IFCAP_LRO) != 0) { 2015 err = tcp_lro_init(&np->xn_lro); 2016 if (err) { 2017 device_printf(np->xbdev, "LRO initialization failed\n"); 2018 } else { 2019 np->xn_lro.ifp = np->xn_ifp; 2020 np->xn_ifp->if_capenable |= IFCAP_LRO; 2021 } 2022 } 2023 if ((np->xn_ifp->if_capabilities & IFCAP_TSO4) != 0) { 2024 np->xn_ifp->if_capenable |= IFCAP_TSO4; 2025 np->xn_ifp->if_hwassist |= CSUM_TSO; 2026 } 2027 #endif 2028 return (err); 2029 } 2030 2031 /** 2032 * Create a network device. 2033 * @param dev Newbus device representing this virtual NIC. 2034 */ 2035 int 2036 create_netdev(device_t dev) 2037 { 2038 int i; 2039 struct netfront_info *np; 2040 int err; 2041 struct ifnet *ifp; 2042 2043 np = device_get_softc(dev); 2044 2045 np->xbdev = dev; 2046 2047 XN_LOCK_INIT(np, xennetif); 2048 2049 ifmedia_init(&np->sc_media, 0, xn_ifmedia_upd, xn_ifmedia_sts); 2050 ifmedia_add(&np->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 2051 ifmedia_set(&np->sc_media, IFM_ETHER|IFM_MANUAL); 2052 2053 np->rx_target = RX_MIN_TARGET; 2054 np->rx_min_target = RX_MIN_TARGET; 2055 np->rx_max_target = RX_MAX_TARGET; 2056 2057 /* Initialise {tx,rx}_skbs to be a free chain containing every entry. */ 2058 for (i = 0; i <= NET_TX_RING_SIZE; i++) { 2059 np->tx_mbufs[i] = (void *) ((u_long) i+1); 2060 np->grant_tx_ref[i] = GRANT_REF_INVALID; 2061 } 2062 np->tx_mbufs[NET_TX_RING_SIZE] = (void *)0; 2063 2064 for (i = 0; i <= NET_RX_RING_SIZE; i++) { 2065 2066 np->rx_mbufs[i] = NULL; 2067 np->grant_rx_ref[i] = GRANT_REF_INVALID; 2068 } 2069 /* A grant for every tx ring slot */ 2070 if (gnttab_alloc_grant_references(NET_TX_RING_SIZE, 2071 &np->gref_tx_head) != 0) { 2072 IPRINTK("#### netfront can't alloc tx grant refs\n"); 2073 err = ENOMEM; 2074 goto exit; 2075 } 2076 /* A grant for every rx ring slot */ 2077 if (gnttab_alloc_grant_references(RX_MAX_TARGET, 2078 &np->gref_rx_head) != 0) { 2079 WPRINTK("#### netfront can't alloc rx grant refs\n"); 2080 gnttab_free_grant_references(np->gref_tx_head); 2081 err = ENOMEM; 2082 goto exit; 2083 } 2084 2085 err = xen_net_read_mac(dev, np->mac); 2086 if (err) 2087 goto out; 2088 2089 /* Set up ifnet structure */ 2090 ifp = np->xn_ifp = if_alloc(IFT_ETHER); 2091 ifp->if_softc = np; 2092 if_initname(ifp, "xn", device_get_unit(dev)); 2093 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2094 ifp->if_ioctl = xn_ioctl; 2095 ifp->if_output = ether_output; 2096 ifp->if_start = xn_start; 2097 #ifdef notyet 2098 ifp->if_watchdog = xn_watchdog; 2099 #endif 2100 ifp->if_init = xn_ifinit; 2101 ifp->if_snd.ifq_maxlen = NET_TX_RING_SIZE - 1; 2102 2103 ifp->if_hwassist = XN_CSUM_FEATURES; 2104 ifp->if_capabilities = IFCAP_HWCSUM; 2105 ifp->if_hw_tsomax = NF_TSO_MAXBURST; 2106 2107 ether_ifattach(ifp, np->mac); 2108 callout_init(&np->xn_stat_ch, CALLOUT_MPSAFE); 2109 netfront_carrier_off(np); 2110 2111 return (0); 2112 2113 exit: 2114 gnttab_free_grant_references(np->gref_tx_head); 2115 out: 2116 return (err); 2117 } 2118 2119 /** 2120 * Handle the change of state of the backend to Closing. We must delete our 2121 * device-layer structures now, to ensure that writes are flushed through to 2122 * the backend. Once is this done, we can switch to Closed in 2123 * acknowledgement. 2124 */ 2125 #if 0 2126 static void 2127 netfront_closing(device_t dev) 2128 { 2129 #if 0 2130 struct netfront_info *info = dev->dev_driver_data; 2131 2132 DPRINTK("netfront_closing: %s removed\n", dev->nodename); 2133 2134 close_netdev(info); 2135 #endif 2136 xenbus_switch_state(dev, XenbusStateClosed); 2137 } 2138 #endif 2139 2140 static int 2141 netfront_detach(device_t dev) 2142 { 2143 struct netfront_info *info = device_get_softc(dev); 2144 2145 DPRINTK("%s\n", xenbus_get_node(dev)); 2146 2147 netif_free(info); 2148 2149 return 0; 2150 } 2151 2152 static void 2153 netif_free(struct netfront_info *info) 2154 { 2155 XN_LOCK(info); 2156 xn_stop(info); 2157 XN_UNLOCK(info); 2158 callout_drain(&info->xn_stat_ch); 2159 netif_disconnect_backend(info); 2160 if (info->xn_ifp != NULL) { 2161 ether_ifdetach(info->xn_ifp); 2162 if_free(info->xn_ifp); 2163 info->xn_ifp = NULL; 2164 } 2165 ifmedia_removeall(&info->sc_media); 2166 } 2167 2168 static void 2169 netif_disconnect_backend(struct netfront_info *info) 2170 { 2171 XN_RX_LOCK(info); 2172 XN_TX_LOCK(info); 2173 netfront_carrier_off(info); 2174 XN_TX_UNLOCK(info); 2175 XN_RX_UNLOCK(info); 2176 2177 free_ring(&info->tx_ring_ref, &info->tx.sring); 2178 free_ring(&info->rx_ring_ref, &info->rx.sring); 2179 2180 xen_intr_unbind(&info->xen_intr_handle); 2181 } 2182 2183 static void 2184 free_ring(int *ref, void *ring_ptr_ref) 2185 { 2186 void **ring_ptr_ptr = ring_ptr_ref; 2187 2188 if (*ref != GRANT_REF_INVALID) { 2189 /* This API frees the associated storage. */ 2190 gnttab_end_foreign_access(*ref, *ring_ptr_ptr); 2191 *ref = GRANT_REF_INVALID; 2192 } 2193 *ring_ptr_ptr = NULL; 2194 } 2195 2196 static int 2197 xn_ifmedia_upd(struct ifnet *ifp) 2198 { 2199 return (0); 2200 } 2201 2202 static void 2203 xn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2204 { 2205 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2206 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2207 } 2208 2209 /* ** Driver registration ** */ 2210 static device_method_t netfront_methods[] = { 2211 /* Device interface */ 2212 DEVMETHOD(device_probe, netfront_probe), 2213 DEVMETHOD(device_attach, netfront_attach), 2214 DEVMETHOD(device_detach, netfront_detach), 2215 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2216 DEVMETHOD(device_suspend, netfront_suspend), 2217 DEVMETHOD(device_resume, netfront_resume), 2218 2219 /* Xenbus interface */ 2220 DEVMETHOD(xenbus_otherend_changed, netfront_backend_changed), 2221 2222 DEVMETHOD_END 2223 }; 2224 2225 static driver_t netfront_driver = { 2226 "xn", 2227 netfront_methods, 2228 sizeof(struct netfront_info), 2229 }; 2230 devclass_t netfront_devclass; 2231 2232 DRIVER_MODULE(xe, xenbusb_front, netfront_driver, netfront_devclass, NULL, 2233 NULL); 2234