1 /*- 2 * Copyright (c) 2009-2011 Spectra Logic Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions, and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * substantially similar to the "NO WARRANTY" disclaimer below 13 * ("Disclaimer") and any redistribution must be conditioned upon 14 * including a substantially similar Disclaimer requirement for further 15 * binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGES. 29 * 30 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 31 * Alan Somers (Spectra Logic Corporation) 32 * John Suykerbuyk (Spectra Logic Corporation) 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /** 39 * \file netback_unit_tests.c 40 * 41 * \brief Unit tests for the Xen netback driver. 42 * 43 * Due to the driver's use of static functions, these tests cannot be compiled 44 * standalone; they must be #include'd from the driver's .c file. 45 */ 46 47 48 /** Helper macro used to snprintf to a buffer and update the buffer pointer */ 49 #define SNCATF(buffer, buflen, ...) do { \ 50 size_t new_chars = snprintf(buffer, buflen, __VA_ARGS__); \ 51 buffer += new_chars; \ 52 /* be careful; snprintf's return value can be > buflen */ \ 53 buflen -= MIN(buflen, new_chars); \ 54 } while (0) 55 56 /* STRINGIFY and TOSTRING are used only to help turn __LINE__ into a string */ 57 #define STRINGIFY(x) #x 58 #define TOSTRING(x) STRINGIFY(x) 59 60 /** 61 * Writes an error message to buffer if cond is false 62 * Note the implied parameters buffer and 63 * buflen 64 */ 65 #define XNB_ASSERT(cond) ({ \ 66 int passed = (cond); \ 67 char *_buffer = (buffer); \ 68 size_t _buflen = (buflen); \ 69 if (! passed) { \ 70 strlcat(_buffer, __func__, _buflen); \ 71 strlcat(_buffer, ":" TOSTRING(__LINE__) \ 72 " Assertion Error: " #cond "\n", _buflen); \ 73 } \ 74 }) 75 76 77 /** 78 * The signature used by all testcases. If the test writes anything 79 * to buffer, then it will be considered a failure 80 * \param buffer Return storage for error messages 81 * \param buflen The space available in the buffer 82 */ 83 typedef void testcase_t(char *buffer, size_t buflen); 84 85 /** 86 * Signature used by setup functions 87 * \return nonzero on error 88 */ 89 typedef int setup_t(void); 90 91 typedef void teardown_t(void); 92 93 /** A simple test fixture comprising setup, teardown, and test */ 94 struct test_fixture { 95 /** Will be run before the test to allocate and initialize variables */ 96 setup_t *setup; 97 98 /** Will be run if setup succeeds */ 99 testcase_t *test; 100 101 /** Cleans up test data whether or not the setup succeeded */ 102 teardown_t *teardown; 103 }; 104 105 typedef struct test_fixture test_fixture_t; 106 107 static int xnb_get1pkt(struct xnb_pkt *pkt, size_t size, uint16_t flags); 108 static int xnb_unit_test_runner(test_fixture_t const tests[], int ntests, 109 char *buffer, size_t buflen); 110 111 static int __unused 112 null_setup(void) { return 0; } 113 114 static void __unused 115 null_teardown(void) { } 116 117 static setup_t setup_pvt_data; 118 static teardown_t teardown_pvt_data; 119 static testcase_t xnb_ring2pkt_emptyring; 120 static testcase_t xnb_ring2pkt_1req; 121 static testcase_t xnb_ring2pkt_2req; 122 static testcase_t xnb_ring2pkt_3req; 123 static testcase_t xnb_ring2pkt_extra; 124 static testcase_t xnb_ring2pkt_partial; 125 static testcase_t xnb_ring2pkt_wraps; 126 static testcase_t xnb_txpkt2rsp_emptypkt; 127 static testcase_t xnb_txpkt2rsp_1req; 128 static testcase_t xnb_txpkt2rsp_extra; 129 static testcase_t xnb_txpkt2rsp_long; 130 static testcase_t xnb_txpkt2rsp_invalid; 131 static testcase_t xnb_txpkt2rsp_error; 132 static testcase_t xnb_txpkt2rsp_wraps; 133 static testcase_t xnb_pkt2mbufc_empty; 134 static testcase_t xnb_pkt2mbufc_short; 135 static testcase_t xnb_pkt2mbufc_csum; 136 static testcase_t xnb_pkt2mbufc_1cluster; 137 static testcase_t xnb_pkt2mbufc_largecluster; 138 static testcase_t xnb_pkt2mbufc_2cluster; 139 static testcase_t xnb_txpkt2gnttab_empty; 140 static testcase_t xnb_txpkt2gnttab_short; 141 static testcase_t xnb_txpkt2gnttab_2req; 142 static testcase_t xnb_txpkt2gnttab_2cluster; 143 static testcase_t xnb_update_mbufc_short; 144 static testcase_t xnb_update_mbufc_2req; 145 static testcase_t xnb_update_mbufc_2cluster; 146 static testcase_t xnb_mbufc2pkt_empty; 147 static testcase_t xnb_mbufc2pkt_short; 148 static testcase_t xnb_mbufc2pkt_1cluster; 149 static testcase_t xnb_mbufc2pkt_2short; 150 static testcase_t xnb_mbufc2pkt_long; 151 static testcase_t xnb_mbufc2pkt_extra; 152 static testcase_t xnb_mbufc2pkt_nospace; 153 static testcase_t xnb_rxpkt2gnttab_empty; 154 static testcase_t xnb_rxpkt2gnttab_short; 155 static testcase_t xnb_rxpkt2gnttab_2req; 156 static testcase_t xnb_rxpkt2rsp_empty; 157 static testcase_t xnb_rxpkt2rsp_short; 158 static testcase_t xnb_rxpkt2rsp_extra; 159 static testcase_t xnb_rxpkt2rsp_2short; 160 static testcase_t xnb_rxpkt2rsp_2slots; 161 static testcase_t xnb_rxpkt2rsp_copyerror; 162 static testcase_t xnb_sscanf_llu; 163 static testcase_t xnb_sscanf_lld; 164 static testcase_t xnb_sscanf_hhu; 165 static testcase_t xnb_sscanf_hhd; 166 static testcase_t xnb_sscanf_hhn; 167 168 #if defined(INET) || defined(INET6) 169 /* TODO: add test cases for xnb_add_mbuf_cksum for IPV6 tcp and udp */ 170 static testcase_t xnb_add_mbuf_cksum_arp; 171 static testcase_t xnb_add_mbuf_cksum_tcp; 172 static testcase_t xnb_add_mbuf_cksum_udp; 173 static testcase_t xnb_add_mbuf_cksum_icmp; 174 static testcase_t xnb_add_mbuf_cksum_tcp_swcksum; 175 static void xnb_fill_eh_and_ip(struct mbuf *m, uint16_t ip_len, 176 uint16_t ip_id, uint16_t ip_p, 177 uint16_t ip_off, uint16_t ip_sum); 178 static void xnb_fill_tcp(struct mbuf *m); 179 #endif /* INET || INET6 */ 180 181 /** Private data used by unit tests */ 182 static struct { 183 gnttab_copy_table gnttab; 184 netif_rx_back_ring_t rxb; 185 netif_rx_front_ring_t rxf; 186 netif_tx_back_ring_t txb; 187 netif_tx_front_ring_t txf; 188 struct ifnet* ifp; 189 netif_rx_sring_t* rxs; 190 netif_tx_sring_t* txs; 191 } xnb_unit_pvt; 192 193 static inline void safe_m_freem(struct mbuf **ppMbuf) { 194 if (*ppMbuf != NULL) { 195 m_freem(*ppMbuf); 196 *ppMbuf = NULL; 197 } 198 } 199 200 /** 201 * The unit test runner. It will run every supplied test and return an 202 * output message as a string 203 * \param tests An array of tests. Every test will be attempted. 204 * \param ntests The length of tests 205 * \param buffer Return storage for the result string 206 * \param buflen The length of buffer 207 * \return The number of tests that failed 208 */ 209 static int 210 xnb_unit_test_runner(test_fixture_t const tests[], int ntests, char *buffer, 211 size_t buflen) 212 { 213 int i; 214 int n_passes; 215 int n_failures = 0; 216 217 for (i = 0; i < ntests; i++) { 218 int error = tests[i].setup(); 219 if (error != 0) { 220 SNCATF(buffer, buflen, 221 "Setup failed for test idx %d\n", i); 222 n_failures++; 223 } else { 224 size_t new_chars; 225 226 tests[i].test(buffer, buflen); 227 new_chars = strnlen(buffer, buflen); 228 buffer += new_chars; 229 buflen -= new_chars; 230 231 if (new_chars > 0) { 232 n_failures++; 233 } 234 } 235 tests[i].teardown(); 236 } 237 238 n_passes = ntests - n_failures; 239 if (n_passes > 0) { 240 SNCATF(buffer, buflen, "%d Tests Passed\n", n_passes); 241 } 242 if (n_failures > 0) { 243 SNCATF(buffer, buflen, "%d Tests FAILED\n", n_failures); 244 } 245 246 return n_failures; 247 } 248 249 /** Number of unit tests. Must match the length of the tests array below */ 250 #define TOTAL_TESTS (53) 251 /** 252 * Max memory available for returning results. 400 chars/test should give 253 * enough space for a five line error message for every test 254 */ 255 #define TOTAL_BUFLEN (400 * TOTAL_TESTS + 2) 256 257 /** 258 * Called from userspace by a sysctl. Runs all internal unit tests, and 259 * returns the results to userspace as a string 260 * \param oidp unused 261 * \param arg1 pointer to an xnb_softc for a specific xnb device 262 * \param arg2 unused 263 * \param req sysctl access structure 264 * \return a string via the special SYSCTL_OUT macro. 265 */ 266 267 static int 268 xnb_unit_test_main(SYSCTL_HANDLER_ARGS) { 269 test_fixture_t const tests[TOTAL_TESTS] = { 270 {setup_pvt_data, xnb_ring2pkt_emptyring, teardown_pvt_data}, 271 {setup_pvt_data, xnb_ring2pkt_1req, teardown_pvt_data}, 272 {setup_pvt_data, xnb_ring2pkt_2req, teardown_pvt_data}, 273 {setup_pvt_data, xnb_ring2pkt_3req, teardown_pvt_data}, 274 {setup_pvt_data, xnb_ring2pkt_extra, teardown_pvt_data}, 275 {setup_pvt_data, xnb_ring2pkt_partial, teardown_pvt_data}, 276 {setup_pvt_data, xnb_ring2pkt_wraps, teardown_pvt_data}, 277 {setup_pvt_data, xnb_txpkt2rsp_emptypkt, teardown_pvt_data}, 278 {setup_pvt_data, xnb_txpkt2rsp_1req, teardown_pvt_data}, 279 {setup_pvt_data, xnb_txpkt2rsp_extra, teardown_pvt_data}, 280 {setup_pvt_data, xnb_txpkt2rsp_long, teardown_pvt_data}, 281 {setup_pvt_data, xnb_txpkt2rsp_invalid, teardown_pvt_data}, 282 {setup_pvt_data, xnb_txpkt2rsp_error, teardown_pvt_data}, 283 {setup_pvt_data, xnb_txpkt2rsp_wraps, teardown_pvt_data}, 284 {setup_pvt_data, xnb_pkt2mbufc_empty, teardown_pvt_data}, 285 {setup_pvt_data, xnb_pkt2mbufc_short, teardown_pvt_data}, 286 {setup_pvt_data, xnb_pkt2mbufc_csum, teardown_pvt_data}, 287 {setup_pvt_data, xnb_pkt2mbufc_1cluster, teardown_pvt_data}, 288 {setup_pvt_data, xnb_pkt2mbufc_largecluster, teardown_pvt_data}, 289 {setup_pvt_data, xnb_pkt2mbufc_2cluster, teardown_pvt_data}, 290 {setup_pvt_data, xnb_txpkt2gnttab_empty, teardown_pvt_data}, 291 {setup_pvt_data, xnb_txpkt2gnttab_short, teardown_pvt_data}, 292 {setup_pvt_data, xnb_txpkt2gnttab_2req, teardown_pvt_data}, 293 {setup_pvt_data, xnb_txpkt2gnttab_2cluster, teardown_pvt_data}, 294 {setup_pvt_data, xnb_update_mbufc_short, teardown_pvt_data}, 295 {setup_pvt_data, xnb_update_mbufc_2req, teardown_pvt_data}, 296 {setup_pvt_data, xnb_update_mbufc_2cluster, teardown_pvt_data}, 297 {setup_pvt_data, xnb_mbufc2pkt_empty, teardown_pvt_data}, 298 {setup_pvt_data, xnb_mbufc2pkt_short, teardown_pvt_data}, 299 {setup_pvt_data, xnb_mbufc2pkt_1cluster, teardown_pvt_data}, 300 {setup_pvt_data, xnb_mbufc2pkt_2short, teardown_pvt_data}, 301 {setup_pvt_data, xnb_mbufc2pkt_long, teardown_pvt_data}, 302 {setup_pvt_data, xnb_mbufc2pkt_extra, teardown_pvt_data}, 303 {setup_pvt_data, xnb_mbufc2pkt_nospace, teardown_pvt_data}, 304 {setup_pvt_data, xnb_rxpkt2gnttab_empty, teardown_pvt_data}, 305 {setup_pvt_data, xnb_rxpkt2gnttab_short, teardown_pvt_data}, 306 {setup_pvt_data, xnb_rxpkt2gnttab_2req, teardown_pvt_data}, 307 {setup_pvt_data, xnb_rxpkt2rsp_empty, teardown_pvt_data}, 308 {setup_pvt_data, xnb_rxpkt2rsp_short, teardown_pvt_data}, 309 {setup_pvt_data, xnb_rxpkt2rsp_extra, teardown_pvt_data}, 310 {setup_pvt_data, xnb_rxpkt2rsp_2short, teardown_pvt_data}, 311 {setup_pvt_data, xnb_rxpkt2rsp_2slots, teardown_pvt_data}, 312 {setup_pvt_data, xnb_rxpkt2rsp_copyerror, teardown_pvt_data}, 313 #if defined(INET) || defined(INET6) 314 {null_setup, xnb_add_mbuf_cksum_arp, null_teardown}, 315 {null_setup, xnb_add_mbuf_cksum_icmp, null_teardown}, 316 {null_setup, xnb_add_mbuf_cksum_tcp, null_teardown}, 317 {null_setup, xnb_add_mbuf_cksum_tcp_swcksum, null_teardown}, 318 {null_setup, xnb_add_mbuf_cksum_udp, null_teardown}, 319 #endif 320 {null_setup, xnb_sscanf_hhd, null_teardown}, 321 {null_setup, xnb_sscanf_hhu, null_teardown}, 322 {null_setup, xnb_sscanf_lld, null_teardown}, 323 {null_setup, xnb_sscanf_llu, null_teardown}, 324 {null_setup, xnb_sscanf_hhn, null_teardown}, 325 }; 326 /** 327 * results is static so that the data will persist after this function 328 * returns. The sysctl code expects us to return a constant string. 329 * \todo: the static variable is not thread safe. Put a mutex around 330 * it. 331 */ 332 static char results[TOTAL_BUFLEN]; 333 334 /* empty the result strings */ 335 results[0] = 0; 336 xnb_unit_test_runner(tests, TOTAL_TESTS, results, TOTAL_BUFLEN); 337 338 return (SYSCTL_OUT(req, results, strnlen(results, TOTAL_BUFLEN))); 339 } 340 341 static int 342 setup_pvt_data(void) 343 { 344 int error = 0; 345 346 bzero(xnb_unit_pvt.gnttab, sizeof(xnb_unit_pvt.gnttab)); 347 348 xnb_unit_pvt.txs = malloc(PAGE_SIZE, M_XENNETBACK, M_WAITOK|M_ZERO); 349 if (xnb_unit_pvt.txs != NULL) { 350 SHARED_RING_INIT(xnb_unit_pvt.txs); 351 BACK_RING_INIT(&xnb_unit_pvt.txb, xnb_unit_pvt.txs, PAGE_SIZE); 352 FRONT_RING_INIT(&xnb_unit_pvt.txf, xnb_unit_pvt.txs, PAGE_SIZE); 353 } else { 354 error = 1; 355 } 356 357 xnb_unit_pvt.ifp = if_alloc(IFT_ETHER); 358 if (xnb_unit_pvt.ifp == NULL) { 359 error = 1; 360 } 361 362 xnb_unit_pvt.rxs = malloc(PAGE_SIZE, M_XENNETBACK, M_WAITOK|M_ZERO); 363 if (xnb_unit_pvt.rxs != NULL) { 364 SHARED_RING_INIT(xnb_unit_pvt.rxs); 365 BACK_RING_INIT(&xnb_unit_pvt.rxb, xnb_unit_pvt.rxs, PAGE_SIZE); 366 FRONT_RING_INIT(&xnb_unit_pvt.rxf, xnb_unit_pvt.rxs, PAGE_SIZE); 367 } else { 368 error = 1; 369 } 370 371 return error; 372 } 373 374 static void 375 teardown_pvt_data(void) 376 { 377 if (xnb_unit_pvt.txs != NULL) { 378 free(xnb_unit_pvt.txs, M_XENNETBACK); 379 } 380 if (xnb_unit_pvt.rxs != NULL) { 381 free(xnb_unit_pvt.rxs, M_XENNETBACK); 382 } 383 if (xnb_unit_pvt.ifp != NULL) { 384 if_free(xnb_unit_pvt.ifp); 385 } 386 } 387 388 /** 389 * Verify that xnb_ring2pkt will not consume any requests from an empty ring 390 */ 391 static void 392 xnb_ring2pkt_emptyring(char *buffer, size_t buflen) 393 { 394 struct xnb_pkt pkt; 395 int num_consumed; 396 397 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 398 xnb_unit_pvt.txb.req_cons); 399 XNB_ASSERT(num_consumed == 0); 400 } 401 402 /** 403 * Verify that xnb_ring2pkt can convert a single request packet correctly 404 */ 405 static void 406 xnb_ring2pkt_1req(char *buffer, size_t buflen) 407 { 408 struct xnb_pkt pkt; 409 int num_consumed; 410 struct netif_tx_request *req; 411 412 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 413 xnb_unit_pvt.txf.req_prod_pvt); 414 415 req->flags = 0; 416 req->size = 69; /* arbitrary number for test */ 417 xnb_unit_pvt.txf.req_prod_pvt++; 418 419 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 420 421 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 422 xnb_unit_pvt.txb.req_cons); 423 XNB_ASSERT(num_consumed == 1); 424 XNB_ASSERT(pkt.size == 69); 425 XNB_ASSERT(pkt.car_size == 69); 426 XNB_ASSERT(pkt.flags == 0); 427 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 428 XNB_ASSERT(pkt.list_len == 1); 429 XNB_ASSERT(pkt.car == 0); 430 } 431 432 /** 433 * Verify that xnb_ring2pkt can convert a two request packet correctly. 434 * This tests handling of the MORE_DATA flag and cdr 435 */ 436 static void 437 xnb_ring2pkt_2req(char *buffer, size_t buflen) 438 { 439 struct xnb_pkt pkt; 440 int num_consumed; 441 struct netif_tx_request *req; 442 RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt; 443 444 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 445 xnb_unit_pvt.txf.req_prod_pvt); 446 req->flags = NETTXF_more_data; 447 req->size = 100; 448 xnb_unit_pvt.txf.req_prod_pvt++; 449 450 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 451 xnb_unit_pvt.txf.req_prod_pvt); 452 req->flags = 0; 453 req->size = 40; 454 xnb_unit_pvt.txf.req_prod_pvt++; 455 456 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 457 458 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 459 xnb_unit_pvt.txb.req_cons); 460 XNB_ASSERT(num_consumed == 2); 461 XNB_ASSERT(pkt.size == 100); 462 XNB_ASSERT(pkt.car_size == 60); 463 XNB_ASSERT(pkt.flags == 0); 464 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 465 XNB_ASSERT(pkt.list_len == 2); 466 XNB_ASSERT(pkt.car == start_idx); 467 XNB_ASSERT(pkt.cdr == start_idx + 1); 468 } 469 470 /** 471 * Verify that xnb_ring2pkt can convert a three request packet correctly 472 */ 473 static void 474 xnb_ring2pkt_3req(char *buffer, size_t buflen) 475 { 476 struct xnb_pkt pkt; 477 int num_consumed; 478 struct netif_tx_request *req; 479 RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt; 480 481 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 482 xnb_unit_pvt.txf.req_prod_pvt); 483 req->flags = NETTXF_more_data; 484 req->size = 200; 485 xnb_unit_pvt.txf.req_prod_pvt++; 486 487 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 488 xnb_unit_pvt.txf.req_prod_pvt); 489 req->flags = NETTXF_more_data; 490 req->size = 40; 491 xnb_unit_pvt.txf.req_prod_pvt++; 492 493 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 494 xnb_unit_pvt.txf.req_prod_pvt); 495 req->flags = 0; 496 req->size = 50; 497 xnb_unit_pvt.txf.req_prod_pvt++; 498 499 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 500 501 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 502 xnb_unit_pvt.txb.req_cons); 503 XNB_ASSERT(num_consumed == 3); 504 XNB_ASSERT(pkt.size == 200); 505 XNB_ASSERT(pkt.car_size == 110); 506 XNB_ASSERT(pkt.flags == 0); 507 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 508 XNB_ASSERT(pkt.list_len == 3); 509 XNB_ASSERT(pkt.car == start_idx); 510 XNB_ASSERT(pkt.cdr == start_idx + 1); 511 XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr + 1) == req); 512 } 513 514 /** 515 * Verify that xnb_ring2pkt can read extra inf 516 */ 517 static void 518 xnb_ring2pkt_extra(char *buffer, size_t buflen) 519 { 520 struct xnb_pkt pkt; 521 int num_consumed; 522 struct netif_tx_request *req; 523 struct netif_extra_info *ext; 524 RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt; 525 526 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 527 xnb_unit_pvt.txf.req_prod_pvt); 528 req->flags = NETTXF_extra_info | NETTXF_more_data; 529 req->size = 150; 530 xnb_unit_pvt.txf.req_prod_pvt++; 531 532 ext = (struct netif_extra_info*) RING_GET_REQUEST(&xnb_unit_pvt.txf, 533 xnb_unit_pvt.txf.req_prod_pvt); 534 ext->flags = 0; 535 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 536 ext->u.gso.size = 250; 537 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 538 ext->u.gso.features = 0; 539 xnb_unit_pvt.txf.req_prod_pvt++; 540 541 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 542 xnb_unit_pvt.txf.req_prod_pvt); 543 req->flags = 0; 544 req->size = 50; 545 xnb_unit_pvt.txf.req_prod_pvt++; 546 547 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 548 549 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 550 xnb_unit_pvt.txb.req_cons); 551 XNB_ASSERT(num_consumed == 3); 552 XNB_ASSERT(pkt.extra.flags == 0); 553 XNB_ASSERT(pkt.extra.type == XEN_NETIF_EXTRA_TYPE_GSO); 554 XNB_ASSERT(pkt.extra.u.gso.size == 250); 555 XNB_ASSERT(pkt.extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4); 556 XNB_ASSERT(pkt.size == 150); 557 XNB_ASSERT(pkt.car_size == 100); 558 XNB_ASSERT(pkt.flags == NETTXF_extra_info); 559 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 560 XNB_ASSERT(pkt.list_len == 2); 561 XNB_ASSERT(pkt.car == start_idx); 562 XNB_ASSERT(pkt.cdr == start_idx + 2); 563 XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr) == req); 564 } 565 566 /** 567 * Verify that xnb_ring2pkt will consume no requests if the entire packet is 568 * not yet in the ring 569 */ 570 static void 571 xnb_ring2pkt_partial(char *buffer, size_t buflen) 572 { 573 struct xnb_pkt pkt; 574 int num_consumed; 575 struct netif_tx_request *req; 576 577 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 578 xnb_unit_pvt.txf.req_prod_pvt); 579 req->flags = NETTXF_more_data; 580 req->size = 150; 581 xnb_unit_pvt.txf.req_prod_pvt++; 582 583 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 584 585 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 586 xnb_unit_pvt.txb.req_cons); 587 XNB_ASSERT(num_consumed == 0); 588 XNB_ASSERT(! xnb_pkt_is_valid(&pkt)); 589 } 590 591 /** 592 * Verity that xnb_ring2pkt can read a packet whose requests wrap around 593 * the end of the ring 594 */ 595 static void 596 xnb_ring2pkt_wraps(char *buffer, size_t buflen) 597 { 598 struct xnb_pkt pkt; 599 int num_consumed; 600 struct netif_tx_request *req; 601 unsigned int rsize; 602 603 /* 604 * Manually tweak the ring indices to create a ring with no responses 605 * and the next request slot at position 2 from the end 606 */ 607 rsize = RING_SIZE(&xnb_unit_pvt.txf); 608 xnb_unit_pvt.txf.req_prod_pvt = rsize - 2; 609 xnb_unit_pvt.txf.rsp_cons = rsize - 2; 610 xnb_unit_pvt.txs->req_prod = rsize - 2; 611 xnb_unit_pvt.txs->req_event = rsize - 1; 612 xnb_unit_pvt.txs->rsp_prod = rsize - 2; 613 xnb_unit_pvt.txs->rsp_event = rsize - 1; 614 xnb_unit_pvt.txb.rsp_prod_pvt = rsize - 2; 615 xnb_unit_pvt.txb.req_cons = rsize - 2; 616 617 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 618 xnb_unit_pvt.txf.req_prod_pvt); 619 req->flags = NETTXF_more_data; 620 req->size = 550; 621 xnb_unit_pvt.txf.req_prod_pvt++; 622 623 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 624 xnb_unit_pvt.txf.req_prod_pvt); 625 req->flags = NETTXF_more_data; 626 req->size = 100; 627 xnb_unit_pvt.txf.req_prod_pvt++; 628 629 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 630 xnb_unit_pvt.txf.req_prod_pvt); 631 req->flags = 0; 632 req->size = 50; 633 xnb_unit_pvt.txf.req_prod_pvt++; 634 635 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 636 637 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 638 xnb_unit_pvt.txb.req_cons); 639 XNB_ASSERT(num_consumed == 3); 640 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 641 XNB_ASSERT(pkt.list_len == 3); 642 XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr + 1) == req); 643 } 644 645 646 /** 647 * xnb_txpkt2rsp should do nothing for an empty packet 648 */ 649 static void 650 xnb_txpkt2rsp_emptypkt(char *buffer, size_t buflen) 651 { 652 int num_consumed; 653 struct xnb_pkt pkt; 654 netif_tx_back_ring_t txb_backup = xnb_unit_pvt.txb; 655 netif_tx_sring_t txs_backup = *xnb_unit_pvt.txs; 656 pkt.list_len = 0; 657 658 /* must call xnb_ring2pkt just to intialize pkt */ 659 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 660 xnb_unit_pvt.txb.req_cons); 661 xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0); 662 XNB_ASSERT( 663 memcmp(&txb_backup, &xnb_unit_pvt.txb, sizeof(txb_backup)) == 0); 664 XNB_ASSERT( 665 memcmp(&txs_backup, xnb_unit_pvt.txs, sizeof(txs_backup)) == 0); 666 } 667 668 /** 669 * xnb_txpkt2rsp responding to one request 670 */ 671 static void 672 xnb_txpkt2rsp_1req(char *buffer, size_t buflen) 673 { 674 uint16_t num_consumed; 675 struct xnb_pkt pkt; 676 struct netif_tx_request *req; 677 struct netif_tx_response *rsp; 678 679 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 680 xnb_unit_pvt.txf.req_prod_pvt); 681 req->size = 1000; 682 req->flags = 0; 683 xnb_unit_pvt.txf.req_prod_pvt++; 684 685 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 686 687 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 688 xnb_unit_pvt.txb.req_cons); 689 xnb_unit_pvt.txb.req_cons += num_consumed; 690 691 xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0); 692 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons); 693 694 XNB_ASSERT( 695 xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod); 696 XNB_ASSERT(rsp->id == req->id); 697 XNB_ASSERT(rsp->status == NETIF_RSP_OKAY); 698 }; 699 700 /** 701 * xnb_txpkt2rsp responding to 1 data request and 1 extra info 702 */ 703 static void 704 xnb_txpkt2rsp_extra(char *buffer, size_t buflen) 705 { 706 uint16_t num_consumed; 707 struct xnb_pkt pkt; 708 struct netif_tx_request *req; 709 netif_extra_info_t *ext; 710 struct netif_tx_response *rsp; 711 712 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 713 xnb_unit_pvt.txf.req_prod_pvt); 714 req->size = 1000; 715 req->flags = NETTXF_extra_info; 716 req->id = 69; 717 xnb_unit_pvt.txf.req_prod_pvt++; 718 719 ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf, 720 xnb_unit_pvt.txf.req_prod_pvt); 721 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 722 ext->flags = 0; 723 xnb_unit_pvt.txf.req_prod_pvt++; 724 725 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 726 727 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 728 xnb_unit_pvt.txb.req_cons); 729 xnb_unit_pvt.txb.req_cons += num_consumed; 730 731 xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0); 732 733 XNB_ASSERT( 734 xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod); 735 736 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons); 737 XNB_ASSERT(rsp->id == req->id); 738 XNB_ASSERT(rsp->status == NETIF_RSP_OKAY); 739 740 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, 741 xnb_unit_pvt.txf.rsp_cons + 1); 742 XNB_ASSERT(rsp->status == NETIF_RSP_NULL); 743 }; 744 745 /** 746 * xnb_pkg2rsp responding to 3 data requests and 1 extra info 747 */ 748 static void 749 xnb_txpkt2rsp_long(char *buffer, size_t buflen) 750 { 751 uint16_t num_consumed; 752 struct xnb_pkt pkt; 753 struct netif_tx_request *req; 754 netif_extra_info_t *ext; 755 struct netif_tx_response *rsp; 756 757 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 758 xnb_unit_pvt.txf.req_prod_pvt); 759 req->size = 1000; 760 req->flags = NETTXF_extra_info | NETTXF_more_data; 761 req->id = 254; 762 xnb_unit_pvt.txf.req_prod_pvt++; 763 764 ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf, 765 xnb_unit_pvt.txf.req_prod_pvt); 766 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 767 ext->flags = 0; 768 xnb_unit_pvt.txf.req_prod_pvt++; 769 770 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 771 xnb_unit_pvt.txf.req_prod_pvt); 772 req->size = 300; 773 req->flags = NETTXF_more_data; 774 req->id = 1034; 775 xnb_unit_pvt.txf.req_prod_pvt++; 776 777 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 778 xnb_unit_pvt.txf.req_prod_pvt); 779 req->size = 400; 780 req->flags = 0; 781 req->id = 34; 782 xnb_unit_pvt.txf.req_prod_pvt++; 783 784 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 785 786 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 787 xnb_unit_pvt.txb.req_cons); 788 xnb_unit_pvt.txb.req_cons += num_consumed; 789 790 xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0); 791 792 XNB_ASSERT( 793 xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod); 794 795 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons); 796 XNB_ASSERT(rsp->id == 797 RING_GET_REQUEST(&xnb_unit_pvt.txf, 0)->id); 798 XNB_ASSERT(rsp->status == NETIF_RSP_OKAY); 799 800 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, 801 xnb_unit_pvt.txf.rsp_cons + 1); 802 XNB_ASSERT(rsp->status == NETIF_RSP_NULL); 803 804 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, 805 xnb_unit_pvt.txf.rsp_cons + 2); 806 XNB_ASSERT(rsp->id == 807 RING_GET_REQUEST(&xnb_unit_pvt.txf, 2)->id); 808 XNB_ASSERT(rsp->status == NETIF_RSP_OKAY); 809 810 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, 811 xnb_unit_pvt.txf.rsp_cons + 3); 812 XNB_ASSERT(rsp->id == 813 RING_GET_REQUEST(&xnb_unit_pvt.txf, 3)->id); 814 XNB_ASSERT(rsp->status == NETIF_RSP_OKAY); 815 } 816 817 /** 818 * xnb_txpkt2rsp responding to an invalid packet. 819 * Note: this test will result in an error message being printed to the console 820 * such as: 821 * xnb(xnb_ring2pkt:1306): Unknown extra info type 255. Discarding packet 822 */ 823 static void 824 xnb_txpkt2rsp_invalid(char *buffer, size_t buflen) 825 { 826 uint16_t num_consumed; 827 struct xnb_pkt pkt; 828 struct netif_tx_request *req; 829 netif_extra_info_t *ext; 830 struct netif_tx_response *rsp; 831 832 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 833 xnb_unit_pvt.txf.req_prod_pvt); 834 req->size = 1000; 835 req->flags = NETTXF_extra_info; 836 req->id = 69; 837 xnb_unit_pvt.txf.req_prod_pvt++; 838 839 ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf, 840 xnb_unit_pvt.txf.req_prod_pvt); 841 ext->type = 0xFF; /* Invalid extra type */ 842 ext->flags = 0; 843 xnb_unit_pvt.txf.req_prod_pvt++; 844 845 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 846 847 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 848 xnb_unit_pvt.txb.req_cons); 849 xnb_unit_pvt.txb.req_cons += num_consumed; 850 XNB_ASSERT(! xnb_pkt_is_valid(&pkt)); 851 852 xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0); 853 854 XNB_ASSERT( 855 xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod); 856 857 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons); 858 XNB_ASSERT(rsp->id == req->id); 859 XNB_ASSERT(rsp->status == NETIF_RSP_ERROR); 860 861 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, 862 xnb_unit_pvt.txf.rsp_cons + 1); 863 XNB_ASSERT(rsp->status == NETIF_RSP_NULL); 864 }; 865 866 /** 867 * xnb_txpkt2rsp responding to one request which caused an error 868 */ 869 static void 870 xnb_txpkt2rsp_error(char *buffer, size_t buflen) 871 { 872 uint16_t num_consumed; 873 struct xnb_pkt pkt; 874 struct netif_tx_request *req; 875 struct netif_tx_response *rsp; 876 877 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 878 xnb_unit_pvt.txf.req_prod_pvt); 879 req->size = 1000; 880 req->flags = 0; 881 xnb_unit_pvt.txf.req_prod_pvt++; 882 883 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 884 885 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 886 xnb_unit_pvt.txb.req_cons); 887 xnb_unit_pvt.txb.req_cons += num_consumed; 888 889 xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 1); 890 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons); 891 892 XNB_ASSERT( 893 xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod); 894 XNB_ASSERT(rsp->id == req->id); 895 XNB_ASSERT(rsp->status == NETIF_RSP_ERROR); 896 }; 897 898 /** 899 * xnb_txpkt2rsp's responses wrap around the end of the ring 900 */ 901 static void 902 xnb_txpkt2rsp_wraps(char *buffer, size_t buflen) 903 { 904 struct xnb_pkt pkt; 905 int num_consumed; 906 struct netif_tx_request *req; 907 struct netif_tx_response *rsp; 908 unsigned int rsize; 909 910 /* 911 * Manually tweak the ring indices to create a ring with no responses 912 * and the next request slot at position 2 from the end 913 */ 914 rsize = RING_SIZE(&xnb_unit_pvt.txf); 915 xnb_unit_pvt.txf.req_prod_pvt = rsize - 2; 916 xnb_unit_pvt.txf.rsp_cons = rsize - 2; 917 xnb_unit_pvt.txs->req_prod = rsize - 2; 918 xnb_unit_pvt.txs->req_event = rsize - 1; 919 xnb_unit_pvt.txs->rsp_prod = rsize - 2; 920 xnb_unit_pvt.txs->rsp_event = rsize - 1; 921 xnb_unit_pvt.txb.rsp_prod_pvt = rsize - 2; 922 xnb_unit_pvt.txb.req_cons = rsize - 2; 923 924 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 925 xnb_unit_pvt.txf.req_prod_pvt); 926 req->flags = NETTXF_more_data; 927 req->size = 550; 928 req->id = 1; 929 xnb_unit_pvt.txf.req_prod_pvt++; 930 931 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 932 xnb_unit_pvt.txf.req_prod_pvt); 933 req->flags = NETTXF_more_data; 934 req->size = 100; 935 req->id = 2; 936 xnb_unit_pvt.txf.req_prod_pvt++; 937 938 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 939 xnb_unit_pvt.txf.req_prod_pvt); 940 req->flags = 0; 941 req->size = 50; 942 req->id = 3; 943 xnb_unit_pvt.txf.req_prod_pvt++; 944 945 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 946 947 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 948 xnb_unit_pvt.txb.req_cons); 949 950 xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0); 951 952 XNB_ASSERT( 953 xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod); 954 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, 955 xnb_unit_pvt.txf.rsp_cons + 2); 956 XNB_ASSERT(rsp->id == req->id); 957 XNB_ASSERT(rsp->status == NETIF_RSP_OKAY); 958 } 959 960 961 /** 962 * Helper function used to setup pkt2mbufc tests 963 * \param size size in bytes of the single request to push to the ring 964 * \param flags optional flags to put in the netif request 965 * \param[out] pkt the returned packet object 966 * \return number of requests consumed from the ring 967 */ 968 static int 969 xnb_get1pkt(struct xnb_pkt *pkt, size_t size, uint16_t flags) 970 { 971 struct netif_tx_request *req; 972 973 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 974 xnb_unit_pvt.txf.req_prod_pvt); 975 req->flags = flags; 976 req->size = size; 977 xnb_unit_pvt.txf.req_prod_pvt++; 978 979 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 980 981 return xnb_ring2pkt(pkt, &xnb_unit_pvt.txb, 982 xnb_unit_pvt.txb.req_cons); 983 } 984 985 /** 986 * xnb_pkt2mbufc on an empty packet 987 */ 988 static void 989 xnb_pkt2mbufc_empty(char *buffer, size_t buflen) 990 { 991 int num_consumed; 992 struct xnb_pkt pkt; 993 struct mbuf *pMbuf; 994 pkt.list_len = 0; 995 996 /* must call xnb_ring2pkt just to intialize pkt */ 997 num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, 998 xnb_unit_pvt.txb.req_cons); 999 pkt.size = 0; 1000 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1001 safe_m_freem(&pMbuf); 1002 } 1003 1004 /** 1005 * xnb_pkt2mbufc on short packet that can fit in an mbuf internal buffer 1006 */ 1007 static void 1008 xnb_pkt2mbufc_short(char *buffer, size_t buflen) 1009 { 1010 const size_t size = MINCLSIZE - 1; 1011 struct xnb_pkt pkt; 1012 struct mbuf *pMbuf; 1013 1014 xnb_get1pkt(&pkt, size, 0); 1015 1016 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1017 XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size); 1018 safe_m_freem(&pMbuf); 1019 } 1020 1021 /** 1022 * xnb_pkt2mbufc on short packet whose checksum was validated by the netfron 1023 */ 1024 static void 1025 xnb_pkt2mbufc_csum(char *buffer, size_t buflen) 1026 { 1027 const size_t size = MINCLSIZE - 1; 1028 struct xnb_pkt pkt; 1029 struct mbuf *pMbuf; 1030 1031 xnb_get1pkt(&pkt, size, NETTXF_data_validated); 1032 1033 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1034 XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size); 1035 XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_IP_CHECKED); 1036 XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_IP_VALID); 1037 XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_DATA_VALID); 1038 XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR); 1039 safe_m_freem(&pMbuf); 1040 } 1041 1042 /** 1043 * xnb_pkt2mbufc on packet that can fit in one cluster 1044 */ 1045 static void 1046 xnb_pkt2mbufc_1cluster(char *buffer, size_t buflen) 1047 { 1048 const size_t size = MINCLSIZE; 1049 struct xnb_pkt pkt; 1050 struct mbuf *pMbuf; 1051 1052 xnb_get1pkt(&pkt, size, 0); 1053 1054 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1055 XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size); 1056 safe_m_freem(&pMbuf); 1057 } 1058 1059 /** 1060 * xnb_pkt2mbufc on packet that cannot fit in one regular cluster 1061 */ 1062 static void 1063 xnb_pkt2mbufc_largecluster(char *buffer, size_t buflen) 1064 { 1065 const size_t size = MCLBYTES + 1; 1066 struct xnb_pkt pkt; 1067 struct mbuf *pMbuf; 1068 1069 xnb_get1pkt(&pkt, size, 0); 1070 1071 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1072 XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size); 1073 safe_m_freem(&pMbuf); 1074 } 1075 1076 /** 1077 * xnb_pkt2mbufc on packet that cannot fit in one clusters 1078 */ 1079 static void 1080 xnb_pkt2mbufc_2cluster(char *buffer, size_t buflen) 1081 { 1082 const size_t size = 2 * MCLBYTES + 1; 1083 size_t space = 0; 1084 struct xnb_pkt pkt; 1085 struct mbuf *pMbuf; 1086 struct mbuf *m; 1087 1088 xnb_get1pkt(&pkt, size, 0); 1089 1090 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1091 1092 for (m = pMbuf; m != NULL; m = m->m_next) { 1093 space += M_TRAILINGSPACE(m); 1094 } 1095 XNB_ASSERT(space >= size); 1096 safe_m_freem(&pMbuf); 1097 } 1098 1099 /** 1100 * xnb_txpkt2gnttab on an empty packet. Should return empty gnttab 1101 */ 1102 static void 1103 xnb_txpkt2gnttab_empty(char *buffer, size_t buflen) 1104 { 1105 int n_entries; 1106 struct xnb_pkt pkt; 1107 struct mbuf *pMbuf; 1108 pkt.list_len = 0; 1109 1110 /* must call xnb_ring2pkt just to intialize pkt */ 1111 xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons); 1112 pkt.size = 0; 1113 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1114 n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab, 1115 &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED); 1116 XNB_ASSERT(n_entries == 0); 1117 safe_m_freem(&pMbuf); 1118 } 1119 1120 /** 1121 * xnb_txpkt2gnttab on a short packet, that can fit in one mbuf internal buffer 1122 * and has one request 1123 */ 1124 static void 1125 xnb_txpkt2gnttab_short(char *buffer, size_t buflen) 1126 { 1127 const size_t size = MINCLSIZE - 1; 1128 int n_entries; 1129 struct xnb_pkt pkt; 1130 struct mbuf *pMbuf; 1131 1132 struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 1133 xnb_unit_pvt.txf.req_prod_pvt); 1134 req->flags = 0; 1135 req->size = size; 1136 req->gref = 7; 1137 req->offset = 17; 1138 xnb_unit_pvt.txf.req_prod_pvt++; 1139 1140 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 1141 1142 xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons); 1143 1144 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1145 n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab, 1146 &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED); 1147 XNB_ASSERT(n_entries == 1); 1148 XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == size); 1149 /* flags should indicate gref's for source */ 1150 XNB_ASSERT(xnb_unit_pvt.gnttab[0].flags & GNTCOPY_source_gref); 1151 XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == req->offset); 1152 XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.domid == DOMID_SELF); 1153 XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset( 1154 mtod(pMbuf, vm_offset_t))); 1155 XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.u.gmfn == 1156 virt_to_mfn(mtod(pMbuf, vm_offset_t))); 1157 XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.domid == DOMID_FIRST_RESERVED); 1158 safe_m_freem(&pMbuf); 1159 } 1160 1161 /** 1162 * xnb_txpkt2gnttab on a packet with two requests, that can fit into a single 1163 * mbuf cluster 1164 */ 1165 static void 1166 xnb_txpkt2gnttab_2req(char *buffer, size_t buflen) 1167 { 1168 int n_entries; 1169 struct xnb_pkt pkt; 1170 struct mbuf *pMbuf; 1171 1172 struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 1173 xnb_unit_pvt.txf.req_prod_pvt); 1174 req->flags = NETTXF_more_data; 1175 req->size = 1900; 1176 req->gref = 7; 1177 req->offset = 0; 1178 xnb_unit_pvt.txf.req_prod_pvt++; 1179 1180 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 1181 xnb_unit_pvt.txf.req_prod_pvt); 1182 req->flags = 0; 1183 req->size = 500; 1184 req->gref = 8; 1185 req->offset = 0; 1186 xnb_unit_pvt.txf.req_prod_pvt++; 1187 1188 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 1189 1190 xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons); 1191 1192 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1193 n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab, 1194 &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED); 1195 1196 XNB_ASSERT(n_entries == 2); 1197 XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == 1400); 1198 XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset( 1199 mtod(pMbuf, vm_offset_t))); 1200 1201 XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == 500); 1202 XNB_ASSERT(xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset( 1203 mtod(pMbuf, vm_offset_t) + 1400)); 1204 safe_m_freem(&pMbuf); 1205 } 1206 1207 /** 1208 * xnb_txpkt2gnttab on a single request that spans two mbuf clusters 1209 */ 1210 static void 1211 xnb_txpkt2gnttab_2cluster(char *buffer, size_t buflen) 1212 { 1213 int n_entries; 1214 struct xnb_pkt pkt; 1215 struct mbuf *pMbuf; 1216 const uint16_t data_this_transaction = (MCLBYTES*2) + 1; 1217 1218 struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 1219 xnb_unit_pvt.txf.req_prod_pvt); 1220 req->flags = 0; 1221 req->size = data_this_transaction; 1222 req->gref = 8; 1223 req->offset = 0; 1224 xnb_unit_pvt.txf.req_prod_pvt++; 1225 1226 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 1227 xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons); 1228 1229 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1230 n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab, 1231 &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED); 1232 1233 if (M_TRAILINGSPACE(pMbuf) == MCLBYTES) { 1234 /* there should be three mbufs and three gnttab entries */ 1235 XNB_ASSERT(n_entries == 3); 1236 XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == MCLBYTES); 1237 XNB_ASSERT( 1238 xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset( 1239 mtod(pMbuf, vm_offset_t))); 1240 XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == 0); 1241 1242 XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == MCLBYTES); 1243 XNB_ASSERT( 1244 xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset( 1245 mtod(pMbuf->m_next, vm_offset_t))); 1246 XNB_ASSERT(xnb_unit_pvt.gnttab[1].source.offset == MCLBYTES); 1247 1248 XNB_ASSERT(xnb_unit_pvt.gnttab[2].len == 1); 1249 XNB_ASSERT( 1250 xnb_unit_pvt.gnttab[2].dest.offset == virt_to_offset( 1251 mtod(pMbuf->m_next, vm_offset_t))); 1252 XNB_ASSERT(xnb_unit_pvt.gnttab[2].source.offset == 2 * 1253 MCLBYTES); 1254 } else if (M_TRAILINGSPACE(pMbuf) == 2 * MCLBYTES) { 1255 /* there should be two mbufs and two gnttab entries */ 1256 XNB_ASSERT(n_entries == 2); 1257 XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == 2 * MCLBYTES); 1258 XNB_ASSERT( 1259 xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset( 1260 mtod(pMbuf, vm_offset_t))); 1261 XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == 0); 1262 1263 XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == 1); 1264 XNB_ASSERT( 1265 xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset( 1266 mtod(pMbuf->m_next, vm_offset_t))); 1267 XNB_ASSERT( 1268 xnb_unit_pvt.gnttab[1].source.offset == 2 * MCLBYTES); 1269 1270 } else { 1271 /* should never get here */ 1272 XNB_ASSERT(0); 1273 } 1274 if (pMbuf != NULL) 1275 m_freem(pMbuf); 1276 } 1277 1278 1279 /** 1280 * xnb_update_mbufc on a short packet that only has one gnttab entry 1281 */ 1282 static void 1283 xnb_update_mbufc_short(char *buffer, size_t buflen) 1284 { 1285 const size_t size = MINCLSIZE - 1; 1286 int n_entries; 1287 struct xnb_pkt pkt; 1288 struct mbuf *pMbuf; 1289 1290 struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 1291 xnb_unit_pvt.txf.req_prod_pvt); 1292 req->flags = 0; 1293 req->size = size; 1294 req->gref = 7; 1295 req->offset = 17; 1296 xnb_unit_pvt.txf.req_prod_pvt++; 1297 1298 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 1299 1300 xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons); 1301 1302 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1303 n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab, 1304 &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED); 1305 1306 /* Update grant table's status fields as the hypervisor call would */ 1307 xnb_unit_pvt.gnttab[0].status = GNTST_okay; 1308 1309 xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries); 1310 XNB_ASSERT(pMbuf->m_len == size); 1311 XNB_ASSERT(pMbuf->m_pkthdr.len == size); 1312 safe_m_freem(&pMbuf); 1313 } 1314 1315 /** 1316 * xnb_update_mbufc on a packet with two requests, that can fit into a single 1317 * mbuf cluster 1318 */ 1319 static void 1320 xnb_update_mbufc_2req(char *buffer, size_t buflen) 1321 { 1322 int n_entries; 1323 struct xnb_pkt pkt; 1324 struct mbuf *pMbuf; 1325 1326 struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 1327 xnb_unit_pvt.txf.req_prod_pvt); 1328 req->flags = NETTXF_more_data; 1329 req->size = 1900; 1330 req->gref = 7; 1331 req->offset = 0; 1332 xnb_unit_pvt.txf.req_prod_pvt++; 1333 1334 req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 1335 xnb_unit_pvt.txf.req_prod_pvt); 1336 req->flags = 0; 1337 req->size = 500; 1338 req->gref = 8; 1339 req->offset = 0; 1340 xnb_unit_pvt.txf.req_prod_pvt++; 1341 1342 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 1343 1344 xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons); 1345 1346 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1347 n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab, 1348 &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED); 1349 1350 /* Update grant table's status fields as the hypervisor call would */ 1351 xnb_unit_pvt.gnttab[0].status = GNTST_okay; 1352 xnb_unit_pvt.gnttab[1].status = GNTST_okay; 1353 1354 xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries); 1355 XNB_ASSERT(n_entries == 2); 1356 XNB_ASSERT(pMbuf->m_pkthdr.len == 1900); 1357 XNB_ASSERT(pMbuf->m_len == 1900); 1358 1359 safe_m_freem(&pMbuf); 1360 } 1361 1362 /** 1363 * xnb_update_mbufc on a single request that spans two mbuf clusters 1364 */ 1365 static void 1366 xnb_update_mbufc_2cluster(char *buffer, size_t buflen) 1367 { 1368 int i; 1369 int n_entries; 1370 struct xnb_pkt pkt; 1371 struct mbuf *pMbuf; 1372 const uint16_t data_this_transaction = (MCLBYTES*2) + 1; 1373 1374 struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf, 1375 xnb_unit_pvt.txf.req_prod_pvt); 1376 req->flags = 0; 1377 req->size = data_this_transaction; 1378 req->gref = 8; 1379 req->offset = 0; 1380 xnb_unit_pvt.txf.req_prod_pvt++; 1381 1382 RING_PUSH_REQUESTS(&xnb_unit_pvt.txf); 1383 xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons); 1384 1385 pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp); 1386 n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab, 1387 &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED); 1388 1389 /* Update grant table's status fields */ 1390 for (i = 0; i < n_entries; i++) { 1391 xnb_unit_pvt.gnttab[0].status = GNTST_okay; 1392 } 1393 xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries); 1394 1395 if (n_entries == 3) { 1396 /* there should be three mbufs and three gnttab entries */ 1397 XNB_ASSERT(pMbuf->m_pkthdr.len == data_this_transaction); 1398 XNB_ASSERT(pMbuf->m_len == MCLBYTES); 1399 XNB_ASSERT(pMbuf->m_next->m_len == MCLBYTES); 1400 XNB_ASSERT(pMbuf->m_next->m_next->m_len == 1); 1401 } else if (n_entries == 2) { 1402 /* there should be two mbufs and two gnttab entries */ 1403 XNB_ASSERT(n_entries == 2); 1404 XNB_ASSERT(pMbuf->m_pkthdr.len == data_this_transaction); 1405 XNB_ASSERT(pMbuf->m_len == 2 * MCLBYTES); 1406 XNB_ASSERT(pMbuf->m_next->m_len == 1); 1407 } else { 1408 /* should never get here */ 1409 XNB_ASSERT(0); 1410 } 1411 safe_m_freem(&pMbuf); 1412 } 1413 1414 /** xnb_mbufc2pkt on an empty mbufc */ 1415 static void 1416 xnb_mbufc2pkt_empty(char *buffer, size_t buflen) { 1417 struct xnb_pkt pkt; 1418 int free_slots = 64; 1419 struct mbuf *mbuf; 1420 1421 mbuf = m_get(M_WAITOK, MT_DATA); 1422 /* 1423 * note: it is illegal to set M_PKTHDR on a mbuf with no data. Doing so 1424 * will cause m_freem to segfault 1425 */ 1426 XNB_ASSERT(mbuf->m_len == 0); 1427 1428 xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots); 1429 XNB_ASSERT(! xnb_pkt_is_valid(&pkt)); 1430 1431 safe_m_freem(&mbuf); 1432 } 1433 1434 /** xnb_mbufc2pkt on a short mbufc */ 1435 static void 1436 xnb_mbufc2pkt_short(char *buffer, size_t buflen) { 1437 struct xnb_pkt pkt; 1438 size_t size = 128; 1439 int free_slots = 64; 1440 RING_IDX start = 9; 1441 struct mbuf *mbuf; 1442 1443 mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA); 1444 mbuf->m_flags |= M_PKTHDR; 1445 mbuf->m_pkthdr.len = size; 1446 mbuf->m_len = size; 1447 1448 xnb_mbufc2pkt(mbuf, &pkt, start, free_slots); 1449 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 1450 XNB_ASSERT(pkt.size == size); 1451 XNB_ASSERT(pkt.car_size == size); 1452 XNB_ASSERT(! (pkt.flags & 1453 (NETRXF_more_data | NETRXF_extra_info))); 1454 XNB_ASSERT(pkt.list_len == 1); 1455 XNB_ASSERT(pkt.car == start); 1456 1457 safe_m_freem(&mbuf); 1458 } 1459 1460 /** xnb_mbufc2pkt on a single mbuf with an mbuf cluster */ 1461 static void 1462 xnb_mbufc2pkt_1cluster(char *buffer, size_t buflen) { 1463 struct xnb_pkt pkt; 1464 size_t size = MCLBYTES; 1465 int free_slots = 32; 1466 RING_IDX start = 12; 1467 struct mbuf *mbuf; 1468 1469 mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA); 1470 mbuf->m_flags |= M_PKTHDR; 1471 mbuf->m_pkthdr.len = size; 1472 mbuf->m_len = size; 1473 1474 xnb_mbufc2pkt(mbuf, &pkt, start, free_slots); 1475 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 1476 XNB_ASSERT(pkt.size == size); 1477 XNB_ASSERT(pkt.car_size == size); 1478 XNB_ASSERT(! (pkt.flags & 1479 (NETRXF_more_data | NETRXF_extra_info))); 1480 XNB_ASSERT(pkt.list_len == 1); 1481 XNB_ASSERT(pkt.car == start); 1482 1483 safe_m_freem(&mbuf); 1484 } 1485 1486 /** xnb_mbufc2pkt on a two-mbuf chain with short data regions */ 1487 static void 1488 xnb_mbufc2pkt_2short(char *buffer, size_t buflen) { 1489 struct xnb_pkt pkt; 1490 size_t size1 = MHLEN - 5; 1491 size_t size2 = MHLEN - 15; 1492 int free_slots = 32; 1493 RING_IDX start = 14; 1494 struct mbuf *mbufc, *mbufc2; 1495 1496 mbufc = m_getm(NULL, size1, M_WAITOK, MT_DATA); 1497 mbufc->m_flags |= M_PKTHDR; 1498 if (mbufc == NULL) { 1499 XNB_ASSERT(mbufc != NULL); 1500 return; 1501 } 1502 1503 mbufc2 = m_getm(mbufc, size2, M_WAITOK, MT_DATA); 1504 if (mbufc2 == NULL) { 1505 XNB_ASSERT(mbufc2 != NULL); 1506 safe_m_freem(&mbufc); 1507 return; 1508 } 1509 mbufc2->m_pkthdr.len = size1 + size2; 1510 mbufc2->m_len = size1; 1511 1512 xnb_mbufc2pkt(mbufc2, &pkt, start, free_slots); 1513 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 1514 XNB_ASSERT(pkt.size == size1 + size2); 1515 XNB_ASSERT(pkt.car == start); 1516 /* 1517 * The second m_getm may allocate a new mbuf and append 1518 * it to the chain, or it may simply extend the first mbuf. 1519 */ 1520 if (mbufc2->m_next != NULL) { 1521 XNB_ASSERT(pkt.car_size == size1); 1522 XNB_ASSERT(pkt.list_len == 1); 1523 XNB_ASSERT(pkt.cdr == start + 1); 1524 } 1525 1526 safe_m_freem(&mbufc2); 1527 } 1528 1529 /** xnb_mbufc2pkt on a mbuf chain with >1 mbuf cluster */ 1530 static void 1531 xnb_mbufc2pkt_long(char *buffer, size_t buflen) { 1532 struct xnb_pkt pkt; 1533 size_t size = 14 * MCLBYTES / 3; 1534 size_t size_remaining; 1535 int free_slots = 15; 1536 RING_IDX start = 3; 1537 struct mbuf *mbufc, *m; 1538 1539 mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA); 1540 mbufc->m_flags |= M_PKTHDR; 1541 if (mbufc == NULL) { 1542 XNB_ASSERT(mbufc != NULL); 1543 return; 1544 } 1545 1546 mbufc->m_pkthdr.len = size; 1547 size_remaining = size; 1548 for (m = mbufc; m != NULL; m = m->m_next) { 1549 m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining); 1550 size_remaining -= m->m_len; 1551 } 1552 1553 xnb_mbufc2pkt(mbufc, &pkt, start, free_slots); 1554 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 1555 XNB_ASSERT(pkt.size == size); 1556 XNB_ASSERT(pkt.car == start); 1557 XNB_ASSERT(pkt.car_size = mbufc->m_len); 1558 /* 1559 * There should be >1 response in the packet, and there is no 1560 * extra info. 1561 */ 1562 XNB_ASSERT(! (pkt.flags & NETRXF_extra_info)); 1563 XNB_ASSERT(pkt.cdr == pkt.car + 1); 1564 1565 safe_m_freem(&mbufc); 1566 } 1567 1568 /** xnb_mbufc2pkt on a mbuf chain with >1 mbuf cluster and extra info */ 1569 static void 1570 xnb_mbufc2pkt_extra(char *buffer, size_t buflen) { 1571 struct xnb_pkt pkt; 1572 size_t size = 14 * MCLBYTES / 3; 1573 size_t size_remaining; 1574 int free_slots = 15; 1575 RING_IDX start = 3; 1576 struct mbuf *mbufc, *m; 1577 1578 mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA); 1579 if (mbufc == NULL) { 1580 XNB_ASSERT(mbufc != NULL); 1581 return; 1582 } 1583 1584 mbufc->m_flags |= M_PKTHDR; 1585 mbufc->m_pkthdr.len = size; 1586 mbufc->m_pkthdr.csum_flags |= CSUM_TSO; 1587 mbufc->m_pkthdr.tso_segsz = TCP_MSS - 40; 1588 size_remaining = size; 1589 for (m = mbufc; m != NULL; m = m->m_next) { 1590 m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining); 1591 size_remaining -= m->m_len; 1592 } 1593 1594 xnb_mbufc2pkt(mbufc, &pkt, start, free_slots); 1595 XNB_ASSERT(xnb_pkt_is_valid(&pkt)); 1596 XNB_ASSERT(pkt.size == size); 1597 XNB_ASSERT(pkt.car == start); 1598 XNB_ASSERT(pkt.car_size = mbufc->m_len); 1599 /* There should be >1 response in the packet, there is extra info */ 1600 XNB_ASSERT(pkt.flags & NETRXF_extra_info); 1601 XNB_ASSERT(pkt.flags & NETRXF_data_validated); 1602 XNB_ASSERT(pkt.cdr == pkt.car + 2); 1603 XNB_ASSERT(pkt.extra.u.gso.size = mbufc->m_pkthdr.tso_segsz); 1604 XNB_ASSERT(pkt.extra.type == XEN_NETIF_EXTRA_TYPE_GSO); 1605 XNB_ASSERT(! (pkt.extra.flags & XEN_NETIF_EXTRA_FLAG_MORE)); 1606 1607 safe_m_freem(&mbufc); 1608 } 1609 1610 /** xnb_mbufc2pkt with insufficient space in the ring */ 1611 static void 1612 xnb_mbufc2pkt_nospace(char *buffer, size_t buflen) { 1613 struct xnb_pkt pkt; 1614 size_t size = 14 * MCLBYTES / 3; 1615 size_t size_remaining; 1616 int free_slots = 2; 1617 RING_IDX start = 3; 1618 struct mbuf *mbufc, *m; 1619 int error; 1620 1621 mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA); 1622 mbufc->m_flags |= M_PKTHDR; 1623 if (mbufc == NULL) { 1624 XNB_ASSERT(mbufc != NULL); 1625 return; 1626 } 1627 1628 mbufc->m_pkthdr.len = size; 1629 size_remaining = size; 1630 for (m = mbufc; m != NULL; m = m->m_next) { 1631 m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining); 1632 size_remaining -= m->m_len; 1633 } 1634 1635 error = xnb_mbufc2pkt(mbufc, &pkt, start, free_slots); 1636 XNB_ASSERT(error == EAGAIN); 1637 XNB_ASSERT(! xnb_pkt_is_valid(&pkt)); 1638 1639 safe_m_freem(&mbufc); 1640 } 1641 1642 /** 1643 * xnb_rxpkt2gnttab on an empty packet. Should return empty gnttab 1644 */ 1645 static void 1646 xnb_rxpkt2gnttab_empty(char *buffer, size_t buflen) 1647 { 1648 struct xnb_pkt pkt; 1649 int nr_entries; 1650 int free_slots = 60; 1651 struct mbuf *mbuf; 1652 1653 mbuf = m_get(M_WAITOK, MT_DATA); 1654 1655 xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots); 1656 nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab, 1657 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 1658 1659 XNB_ASSERT(nr_entries == 0); 1660 1661 safe_m_freem(&mbuf); 1662 } 1663 1664 /** xnb_rxpkt2gnttab on a short packet without extra data */ 1665 static void 1666 xnb_rxpkt2gnttab_short(char *buffer, size_t buflen) { 1667 struct xnb_pkt pkt; 1668 int nr_entries; 1669 size_t size = 128; 1670 int free_slots = 60; 1671 RING_IDX start = 9; 1672 struct netif_rx_request *req; 1673 struct mbuf *mbuf; 1674 1675 mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA); 1676 mbuf->m_flags |= M_PKTHDR; 1677 mbuf->m_pkthdr.len = size; 1678 mbuf->m_len = size; 1679 1680 xnb_mbufc2pkt(mbuf, &pkt, start, free_slots); 1681 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, 1682 xnb_unit_pvt.txf.req_prod_pvt); 1683 req->gref = 7; 1684 1685 nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab, 1686 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 1687 1688 XNB_ASSERT(nr_entries == 1); 1689 XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == size); 1690 /* flags should indicate gref's for dest */ 1691 XNB_ASSERT(xnb_unit_pvt.gnttab[0].flags & GNTCOPY_dest_gref); 1692 XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == 0); 1693 XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.domid == DOMID_SELF); 1694 XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == virt_to_offset( 1695 mtod(mbuf, vm_offset_t))); 1696 XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.u.gmfn == 1697 virt_to_mfn(mtod(mbuf, vm_offset_t))); 1698 XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.domid == DOMID_FIRST_RESERVED); 1699 1700 safe_m_freem(&mbuf); 1701 } 1702 1703 /** 1704 * xnb_rxpkt2gnttab on a packet with two different mbufs in a single chai 1705 */ 1706 static void 1707 xnb_rxpkt2gnttab_2req(char *buffer, size_t buflen) 1708 { 1709 struct xnb_pkt pkt; 1710 int nr_entries; 1711 int i, num_mbufs; 1712 size_t total_granted_size = 0; 1713 size_t size = MJUMPAGESIZE + 1; 1714 int free_slots = 60; 1715 RING_IDX start = 11; 1716 struct netif_rx_request *req; 1717 struct mbuf *mbuf, *m; 1718 1719 mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA); 1720 mbuf->m_flags |= M_PKTHDR; 1721 mbuf->m_pkthdr.len = size; 1722 mbuf->m_len = size; 1723 1724 xnb_mbufc2pkt(mbuf, &pkt, start, free_slots); 1725 1726 for (i = 0, m=mbuf; m != NULL; i++, m = m->m_next) { 1727 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, 1728 xnb_unit_pvt.txf.req_prod_pvt); 1729 req->gref = i; 1730 req->id = 5; 1731 } 1732 num_mbufs = i; 1733 1734 nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab, 1735 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 1736 1737 XNB_ASSERT(nr_entries >= num_mbufs); 1738 for (i = 0; i < nr_entries; i++) { 1739 int end_offset = xnb_unit_pvt.gnttab[i].len + 1740 xnb_unit_pvt.gnttab[i].dest.offset; 1741 XNB_ASSERT(end_offset <= PAGE_SIZE); 1742 total_granted_size += xnb_unit_pvt.gnttab[i].len; 1743 } 1744 XNB_ASSERT(total_granted_size == size); 1745 } 1746 1747 /** 1748 * xnb_rxpkt2rsp on an empty packet. Shouldn't make any response 1749 */ 1750 static void 1751 xnb_rxpkt2rsp_empty(char *buffer, size_t buflen) 1752 { 1753 struct xnb_pkt pkt; 1754 int nr_entries; 1755 int nr_reqs; 1756 int free_slots = 60; 1757 netif_rx_back_ring_t rxb_backup = xnb_unit_pvt.rxb; 1758 netif_rx_sring_t rxs_backup = *xnb_unit_pvt.rxs; 1759 struct mbuf *mbuf; 1760 1761 mbuf = m_get(M_WAITOK, MT_DATA); 1762 1763 xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots); 1764 nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab, 1765 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 1766 1767 nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries, 1768 &xnb_unit_pvt.rxb); 1769 XNB_ASSERT(nr_reqs == 0); 1770 XNB_ASSERT( 1771 memcmp(&rxb_backup, &xnb_unit_pvt.rxb, sizeof(rxb_backup)) == 0); 1772 XNB_ASSERT( 1773 memcmp(&rxs_backup, xnb_unit_pvt.rxs, sizeof(rxs_backup)) == 0); 1774 1775 safe_m_freem(&mbuf); 1776 } 1777 1778 /** 1779 * xnb_rxpkt2rsp on a short packet with no extras 1780 */ 1781 static void 1782 xnb_rxpkt2rsp_short(char *buffer, size_t buflen) 1783 { 1784 struct xnb_pkt pkt; 1785 int nr_entries, nr_reqs; 1786 size_t size = 128; 1787 int free_slots = 60; 1788 RING_IDX start = 5; 1789 struct netif_rx_request *req; 1790 struct netif_rx_response *rsp; 1791 struct mbuf *mbuf; 1792 1793 mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA); 1794 mbuf->m_flags |= M_PKTHDR; 1795 mbuf->m_pkthdr.len = size; 1796 mbuf->m_len = size; 1797 1798 xnb_mbufc2pkt(mbuf, &pkt, start, free_slots); 1799 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start); 1800 req->gref = 7; 1801 xnb_unit_pvt.rxb.req_cons = start; 1802 xnb_unit_pvt.rxb.rsp_prod_pvt = start; 1803 xnb_unit_pvt.rxs->req_prod = start + 1; 1804 xnb_unit_pvt.rxs->rsp_prod = start; 1805 1806 nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab, 1807 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 1808 1809 nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries, 1810 &xnb_unit_pvt.rxb); 1811 1812 XNB_ASSERT(nr_reqs == 1); 1813 XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 1); 1814 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start); 1815 XNB_ASSERT(rsp->id == req->id); 1816 XNB_ASSERT(rsp->offset == 0); 1817 XNB_ASSERT((rsp->flags & (NETRXF_more_data | NETRXF_extra_info)) == 0); 1818 XNB_ASSERT(rsp->status == size); 1819 1820 safe_m_freem(&mbuf); 1821 } 1822 1823 /** 1824 * xnb_rxpkt2rsp with extra data 1825 */ 1826 static void 1827 xnb_rxpkt2rsp_extra(char *buffer, size_t buflen) 1828 { 1829 struct xnb_pkt pkt; 1830 int nr_entries, nr_reqs; 1831 size_t size = 14; 1832 int free_slots = 15; 1833 RING_IDX start = 3; 1834 uint16_t id = 49; 1835 uint16_t gref = 65; 1836 uint16_t mss = TCP_MSS - 40; 1837 struct mbuf *mbufc; 1838 struct netif_rx_request *req; 1839 struct netif_rx_response *rsp; 1840 struct netif_extra_info *ext; 1841 1842 mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA); 1843 if (mbufc == NULL) { 1844 XNB_ASSERT(mbufc != NULL); 1845 return; 1846 } 1847 1848 mbufc->m_flags |= M_PKTHDR; 1849 mbufc->m_pkthdr.len = size; 1850 mbufc->m_pkthdr.csum_flags |= CSUM_TSO; 1851 mbufc->m_pkthdr.tso_segsz = mss; 1852 mbufc->m_len = size; 1853 1854 xnb_mbufc2pkt(mbufc, &pkt, start, free_slots); 1855 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start); 1856 req->id = id; 1857 req->gref = gref; 1858 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1); 1859 req->id = id + 1; 1860 req->gref = gref + 1; 1861 xnb_unit_pvt.rxb.req_cons = start; 1862 xnb_unit_pvt.rxb.rsp_prod_pvt = start; 1863 xnb_unit_pvt.rxs->req_prod = start + 2; 1864 xnb_unit_pvt.rxs->rsp_prod = start; 1865 1866 nr_entries = xnb_rxpkt2gnttab(&pkt, mbufc, xnb_unit_pvt.gnttab, 1867 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 1868 1869 nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries, 1870 &xnb_unit_pvt.rxb); 1871 1872 XNB_ASSERT(nr_reqs == 2); 1873 XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 2); 1874 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start); 1875 XNB_ASSERT(rsp->id == id); 1876 XNB_ASSERT((rsp->flags & NETRXF_more_data) == 0); 1877 XNB_ASSERT((rsp->flags & NETRXF_extra_info)); 1878 XNB_ASSERT((rsp->flags & NETRXF_data_validated)); 1879 XNB_ASSERT((rsp->flags & NETRXF_csum_blank)); 1880 XNB_ASSERT(rsp->status == size); 1881 1882 ext = (struct netif_extra_info*) 1883 RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start + 1); 1884 XNB_ASSERT(ext->type == XEN_NETIF_EXTRA_TYPE_GSO); 1885 XNB_ASSERT(! (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE)); 1886 XNB_ASSERT(ext->u.gso.size == mss); 1887 XNB_ASSERT(ext->u.gso.type == XEN_NETIF_EXTRA_TYPE_GSO); 1888 1889 safe_m_freem(&mbufc); 1890 } 1891 1892 /** 1893 * xnb_rxpkt2rsp on a packet with more than a pages's worth of data. It should 1894 * generate two response slot 1895 */ 1896 static void 1897 xnb_rxpkt2rsp_2slots(char *buffer, size_t buflen) 1898 { 1899 struct xnb_pkt pkt; 1900 int nr_entries, nr_reqs; 1901 size_t size = PAGE_SIZE + 100; 1902 int free_slots = 3; 1903 uint16_t id1 = 17; 1904 uint16_t id2 = 37; 1905 uint16_t gref1 = 24; 1906 uint16_t gref2 = 34; 1907 RING_IDX start = 15; 1908 struct netif_rx_request *req; 1909 struct netif_rx_response *rsp; 1910 struct mbuf *mbuf; 1911 1912 mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA); 1913 mbuf->m_flags |= M_PKTHDR; 1914 mbuf->m_pkthdr.len = size; 1915 if (mbuf->m_next != NULL) { 1916 size_t first_len = MIN(M_TRAILINGSPACE(mbuf), size); 1917 mbuf->m_len = first_len; 1918 mbuf->m_next->m_len = size - first_len; 1919 1920 } else { 1921 mbuf->m_len = size; 1922 } 1923 1924 xnb_mbufc2pkt(mbuf, &pkt, start, free_slots); 1925 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start); 1926 req->gref = gref1; 1927 req->id = id1; 1928 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1); 1929 req->gref = gref2; 1930 req->id = id2; 1931 xnb_unit_pvt.rxb.req_cons = start; 1932 xnb_unit_pvt.rxb.rsp_prod_pvt = start; 1933 xnb_unit_pvt.rxs->req_prod = start + 2; 1934 xnb_unit_pvt.rxs->rsp_prod = start; 1935 1936 nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab, 1937 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 1938 1939 nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries, 1940 &xnb_unit_pvt.rxb); 1941 1942 XNB_ASSERT(nr_reqs == 2); 1943 XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 2); 1944 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start); 1945 XNB_ASSERT(rsp->id == id1); 1946 XNB_ASSERT(rsp->offset == 0); 1947 XNB_ASSERT((rsp->flags & NETRXF_extra_info) == 0); 1948 XNB_ASSERT(rsp->flags & NETRXF_more_data); 1949 XNB_ASSERT(rsp->status == PAGE_SIZE); 1950 1951 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start + 1); 1952 XNB_ASSERT(rsp->id == id2); 1953 XNB_ASSERT(rsp->offset == 0); 1954 XNB_ASSERT((rsp->flags & NETRXF_extra_info) == 0); 1955 XNB_ASSERT(! (rsp->flags & NETRXF_more_data)); 1956 XNB_ASSERT(rsp->status == size - PAGE_SIZE); 1957 1958 safe_m_freem(&mbuf); 1959 } 1960 1961 /** xnb_rxpkt2rsp on a grant table with two sub-page entries */ 1962 static void 1963 xnb_rxpkt2rsp_2short(char *buffer, size_t buflen) { 1964 struct xnb_pkt pkt; 1965 int nr_reqs, nr_entries; 1966 size_t size1 = MHLEN - 5; 1967 size_t size2 = MHLEN - 15; 1968 int free_slots = 32; 1969 RING_IDX start = 14; 1970 uint16_t id = 47; 1971 uint16_t gref = 54; 1972 struct netif_rx_request *req; 1973 struct netif_rx_response *rsp; 1974 struct mbuf *mbufc; 1975 1976 mbufc = m_getm(NULL, size1, M_WAITOK, MT_DATA); 1977 mbufc->m_flags |= M_PKTHDR; 1978 if (mbufc == NULL) { 1979 XNB_ASSERT(mbufc != NULL); 1980 return; 1981 } 1982 1983 m_getm(mbufc, size2, M_WAITOK, MT_DATA); 1984 XNB_ASSERT(mbufc->m_next != NULL); 1985 mbufc->m_pkthdr.len = size1 + size2; 1986 mbufc->m_len = size1; 1987 mbufc->m_next->m_len = size2; 1988 1989 xnb_mbufc2pkt(mbufc, &pkt, start, free_slots); 1990 1991 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start); 1992 req->gref = gref; 1993 req->id = id; 1994 xnb_unit_pvt.rxb.req_cons = start; 1995 xnb_unit_pvt.rxb.rsp_prod_pvt = start; 1996 xnb_unit_pvt.rxs->req_prod = start + 1; 1997 xnb_unit_pvt.rxs->rsp_prod = start; 1998 1999 nr_entries = xnb_rxpkt2gnttab(&pkt, mbufc, xnb_unit_pvt.gnttab, 2000 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 2001 2002 nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries, 2003 &xnb_unit_pvt.rxb); 2004 2005 XNB_ASSERT(nr_entries == 2); 2006 XNB_ASSERT(nr_reqs == 1); 2007 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start); 2008 XNB_ASSERT(rsp->id == id); 2009 XNB_ASSERT(rsp->status == size1 + size2); 2010 XNB_ASSERT(rsp->offset == 0); 2011 XNB_ASSERT(! (rsp->flags & (NETRXF_more_data | NETRXF_extra_info))); 2012 2013 safe_m_freem(&mbufc); 2014 } 2015 2016 /** 2017 * xnb_rxpkt2rsp on a long packet with a hypervisor gnttab_copy error 2018 * Note: this test will result in an error message being printed to the console 2019 * such as: 2020 * xnb(xnb_rxpkt2rsp:1720): Got error -1 for hypervisor gnttab_copy status 2021 */ 2022 static void 2023 xnb_rxpkt2rsp_copyerror(char *buffer, size_t buflen) 2024 { 2025 struct xnb_pkt pkt; 2026 int nr_entries, nr_reqs; 2027 int id = 7; 2028 int gref = 42; 2029 uint16_t canary = 6859; 2030 size_t size = 7 * MCLBYTES; 2031 int free_slots = 9; 2032 RING_IDX start = 2; 2033 struct netif_rx_request *req; 2034 struct netif_rx_response *rsp; 2035 struct mbuf *mbuf; 2036 2037 mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA); 2038 mbuf->m_flags |= M_PKTHDR; 2039 mbuf->m_pkthdr.len = size; 2040 mbuf->m_len = size; 2041 2042 xnb_mbufc2pkt(mbuf, &pkt, start, free_slots); 2043 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start); 2044 req->gref = gref; 2045 req->id = id; 2046 xnb_unit_pvt.rxb.req_cons = start; 2047 xnb_unit_pvt.rxb.rsp_prod_pvt = start; 2048 xnb_unit_pvt.rxs->req_prod = start + 1; 2049 xnb_unit_pvt.rxs->rsp_prod = start; 2050 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1); 2051 req->gref = canary; 2052 req->id = canary; 2053 2054 nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab, 2055 &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED); 2056 /* Inject the error*/ 2057 xnb_unit_pvt.gnttab[2].status = GNTST_general_error; 2058 2059 nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries, 2060 &xnb_unit_pvt.rxb); 2061 2062 XNB_ASSERT(nr_reqs == 1); 2063 XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 1); 2064 rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start); 2065 XNB_ASSERT(rsp->id == id); 2066 XNB_ASSERT(rsp->status == NETIF_RSP_ERROR); 2067 req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1); 2068 XNB_ASSERT(req->gref == canary); 2069 XNB_ASSERT(req->id == canary); 2070 2071 safe_m_freem(&mbuf); 2072 } 2073 2074 #if defined(INET) || defined(INET6) 2075 /** 2076 * xnb_add_mbuf_cksum on an ARP request packet 2077 */ 2078 static void 2079 xnb_add_mbuf_cksum_arp(char *buffer, size_t buflen) 2080 { 2081 const size_t pkt_len = sizeof(struct ether_header) + 2082 sizeof(struct ether_arp); 2083 struct mbuf *mbufc; 2084 struct ether_header *eh; 2085 struct ether_arp *ep; 2086 unsigned char pkt_orig[pkt_len]; 2087 2088 mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA); 2089 /* Fill in an example arp request */ 2090 eh = mtod(mbufc, struct ether_header*); 2091 eh->ether_dhost[0] = 0xff; 2092 eh->ether_dhost[1] = 0xff; 2093 eh->ether_dhost[2] = 0xff; 2094 eh->ether_dhost[3] = 0xff; 2095 eh->ether_dhost[4] = 0xff; 2096 eh->ether_dhost[5] = 0xff; 2097 eh->ether_shost[0] = 0x00; 2098 eh->ether_shost[1] = 0x15; 2099 eh->ether_shost[2] = 0x17; 2100 eh->ether_shost[3] = 0xe9; 2101 eh->ether_shost[4] = 0x30; 2102 eh->ether_shost[5] = 0x68; 2103 eh->ether_type = htons(ETHERTYPE_ARP); 2104 ep = (struct ether_arp*)(eh + 1); 2105 ep->ea_hdr.ar_hrd = htons(ARPHRD_ETHER); 2106 ep->ea_hdr.ar_pro = htons(ETHERTYPE_IP); 2107 ep->ea_hdr.ar_hln = 6; 2108 ep->ea_hdr.ar_pln = 4; 2109 ep->ea_hdr.ar_op = htons(ARPOP_REQUEST); 2110 ep->arp_sha[0] = 0x00; 2111 ep->arp_sha[1] = 0x15; 2112 ep->arp_sha[2] = 0x17; 2113 ep->arp_sha[3] = 0xe9; 2114 ep->arp_sha[4] = 0x30; 2115 ep->arp_sha[5] = 0x68; 2116 ep->arp_spa[0] = 0xc0; 2117 ep->arp_spa[1] = 0xa8; 2118 ep->arp_spa[2] = 0x0a; 2119 ep->arp_spa[3] = 0x04; 2120 bzero(&(ep->arp_tha), ETHER_ADDR_LEN); 2121 ep->arp_tpa[0] = 0xc0; 2122 ep->arp_tpa[1] = 0xa8; 2123 ep->arp_tpa[2] = 0x0a; 2124 ep->arp_tpa[3] = 0x06; 2125 2126 /* fill in the length field */ 2127 mbufc->m_len = pkt_len; 2128 mbufc->m_pkthdr.len = pkt_len; 2129 /* indicate that the netfront uses hw-assisted checksums */ 2130 mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID | 2131 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2132 2133 /* Make a backup copy of the packet */ 2134 bcopy(mtod(mbufc, const void*), pkt_orig, pkt_len); 2135 2136 /* Function under test */ 2137 xnb_add_mbuf_cksum(mbufc); 2138 2139 /* Verify that the packet's data did not change */ 2140 XNB_ASSERT(bcmp(mtod(mbufc, const void*), pkt_orig, pkt_len) == 0); 2141 m_freem(mbufc); 2142 } 2143 2144 /** 2145 * Helper function that populates the ethernet header and IP header used by 2146 * some of the xnb_add_mbuf_cksum unit tests. m must already be allocated 2147 * and must be large enough 2148 */ 2149 static void 2150 xnb_fill_eh_and_ip(struct mbuf *m, uint16_t ip_len, uint16_t ip_id, 2151 uint16_t ip_p, uint16_t ip_off, uint16_t ip_sum) 2152 { 2153 struct ether_header *eh; 2154 struct ip *iph; 2155 2156 eh = mtod(m, struct ether_header*); 2157 eh->ether_dhost[0] = 0x00; 2158 eh->ether_dhost[1] = 0x16; 2159 eh->ether_dhost[2] = 0x3e; 2160 eh->ether_dhost[3] = 0x23; 2161 eh->ether_dhost[4] = 0x50; 2162 eh->ether_dhost[5] = 0x0b; 2163 eh->ether_shost[0] = 0x00; 2164 eh->ether_shost[1] = 0x16; 2165 eh->ether_shost[2] = 0x30; 2166 eh->ether_shost[3] = 0x00; 2167 eh->ether_shost[4] = 0x00; 2168 eh->ether_shost[5] = 0x00; 2169 eh->ether_type = htons(ETHERTYPE_IP); 2170 iph = (struct ip*)(eh + 1); 2171 iph->ip_hl = 0x5; /* 5 dwords == 20 bytes */ 2172 iph->ip_v = 4; /* IP v4 */ 2173 iph->ip_tos = 0; 2174 iph->ip_len = htons(ip_len); 2175 iph->ip_id = htons(ip_id); 2176 iph->ip_off = htons(ip_off); 2177 iph->ip_ttl = 64; 2178 iph->ip_p = ip_p; 2179 iph->ip_sum = htons(ip_sum); 2180 iph->ip_src.s_addr = htonl(0xc0a80a04); 2181 iph->ip_dst.s_addr = htonl(0xc0a80a05); 2182 } 2183 2184 /** 2185 * xnb_add_mbuf_cksum on an ICMP packet, based on a tcpdump of an actual 2186 * ICMP packet 2187 */ 2188 static void 2189 xnb_add_mbuf_cksum_icmp(char *buffer, size_t buflen) 2190 { 2191 const size_t icmp_len = 64; /* set by ping(1) */ 2192 const size_t pkt_len = sizeof(struct ether_header) + 2193 sizeof(struct ip) + icmp_len; 2194 struct mbuf *mbufc; 2195 struct ether_header *eh; 2196 struct ip *iph; 2197 struct icmp *icmph; 2198 unsigned char pkt_orig[icmp_len]; 2199 uint32_t *tv_field; 2200 uint8_t *data_payload; 2201 int i; 2202 const uint16_t ICMP_CSUM = 0xaed7; 2203 const uint16_t IP_CSUM = 0xe533; 2204 2205 mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA); 2206 /* Fill in an example ICMP ping request */ 2207 eh = mtod(mbufc, struct ether_header*); 2208 xnb_fill_eh_and_ip(mbufc, 84, 28, IPPROTO_ICMP, 0, 0); 2209 iph = (struct ip*)(eh + 1); 2210 icmph = (struct icmp*)(iph + 1); 2211 icmph->icmp_type = ICMP_ECHO; 2212 icmph->icmp_code = 0; 2213 icmph->icmp_cksum = htons(ICMP_CSUM); 2214 icmph->icmp_id = htons(31492); 2215 icmph->icmp_seq = htons(0); 2216 /* 2217 * ping(1) uses bcopy to insert a native-endian timeval after icmp_seq. 2218 * For this test, we will set the bytes individually for portability. 2219 */ 2220 tv_field = (uint32_t*)(&(icmph->icmp_hun)); 2221 tv_field[0] = 0x4f02cfac; 2222 tv_field[1] = 0x0007c46a; 2223 /* 2224 * Remainder of packet is an incrmenting 8 bit integer, starting with 8 2225 */ 2226 data_payload = (uint8_t*)(&tv_field[2]); 2227 for (i = 8; i < 37; i++) { 2228 *data_payload++ = i; 2229 } 2230 2231 /* fill in the length field */ 2232 mbufc->m_len = pkt_len; 2233 mbufc->m_pkthdr.len = pkt_len; 2234 /* indicate that the netfront uses hw-assisted checksums */ 2235 mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID | 2236 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2237 2238 bcopy(mtod(mbufc, const void*), pkt_orig, icmp_len); 2239 /* Function under test */ 2240 xnb_add_mbuf_cksum(mbufc); 2241 2242 /* Check the IP checksum */ 2243 XNB_ASSERT(iph->ip_sum == htons(IP_CSUM)); 2244 2245 /* Check that the ICMP packet did not change */ 2246 XNB_ASSERT(bcmp(icmph, pkt_orig, icmp_len)); 2247 m_freem(mbufc); 2248 } 2249 2250 /** 2251 * xnb_add_mbuf_cksum on a UDP packet, based on a tcpdump of an actual 2252 * UDP packet 2253 */ 2254 static void 2255 xnb_add_mbuf_cksum_udp(char *buffer, size_t buflen) 2256 { 2257 const size_t udp_len = 16; 2258 const size_t pkt_len = sizeof(struct ether_header) + 2259 sizeof(struct ip) + udp_len; 2260 struct mbuf *mbufc; 2261 struct ether_header *eh; 2262 struct ip *iph; 2263 struct udphdr *udp; 2264 uint8_t *data_payload; 2265 const uint16_t IP_CSUM = 0xe56b; 2266 const uint16_t UDP_CSUM = 0xdde2; 2267 2268 mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA); 2269 /* Fill in an example UDP packet made by 'uname | nc -u <host> 2222 */ 2270 eh = mtod(mbufc, struct ether_header*); 2271 xnb_fill_eh_and_ip(mbufc, 36, 4, IPPROTO_UDP, 0, 0xbaad); 2272 iph = (struct ip*)(eh + 1); 2273 udp = (struct udphdr*)(iph + 1); 2274 udp->uh_sport = htons(0x51ae); 2275 udp->uh_dport = htons(0x08ae); 2276 udp->uh_ulen = htons(udp_len); 2277 udp->uh_sum = htons(0xbaad); /* xnb_add_mbuf_cksum will fill this in */ 2278 data_payload = (uint8_t*)(udp + 1); 2279 data_payload[0] = 'F'; 2280 data_payload[1] = 'r'; 2281 data_payload[2] = 'e'; 2282 data_payload[3] = 'e'; 2283 data_payload[4] = 'B'; 2284 data_payload[5] = 'S'; 2285 data_payload[6] = 'D'; 2286 data_payload[7] = '\n'; 2287 2288 /* fill in the length field */ 2289 mbufc->m_len = pkt_len; 2290 mbufc->m_pkthdr.len = pkt_len; 2291 /* indicate that the netfront uses hw-assisted checksums */ 2292 mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID | 2293 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2294 2295 /* Function under test */ 2296 xnb_add_mbuf_cksum(mbufc); 2297 2298 /* Check the checksums */ 2299 XNB_ASSERT(iph->ip_sum == htons(IP_CSUM)); 2300 XNB_ASSERT(udp->uh_sum == htons(UDP_CSUM)); 2301 2302 m_freem(mbufc); 2303 } 2304 2305 /** 2306 * Helper function that populates a TCP packet used by all of the 2307 * xnb_add_mbuf_cksum tcp unit tests. m must already be allocated and must be 2308 * large enough 2309 */ 2310 static void 2311 xnb_fill_tcp(struct mbuf *m) 2312 { 2313 struct ether_header *eh; 2314 struct ip *iph; 2315 struct tcphdr *tcp; 2316 uint32_t *options; 2317 uint8_t *data_payload; 2318 2319 /* Fill in an example TCP packet made by 'uname | nc <host> 2222' */ 2320 eh = mtod(m, struct ether_header*); 2321 xnb_fill_eh_and_ip(m, 60, 8, IPPROTO_TCP, IP_DF, 0); 2322 iph = (struct ip*)(eh + 1); 2323 tcp = (struct tcphdr*)(iph + 1); 2324 tcp->th_sport = htons(0x9cd9); 2325 tcp->th_dport = htons(2222); 2326 tcp->th_seq = htonl(0x00f72b10); 2327 tcp->th_ack = htonl(0x7f37ba6c); 2328 tcp->th_x2 = 0; 2329 tcp->th_off = 8; 2330 tcp->th_flags = 0x18; 2331 tcp->th_win = htons(0x410); 2332 /* th_sum is incorrect; will be inserted by function under test */ 2333 tcp->th_sum = htons(0xbaad); 2334 tcp->th_urp = htons(0); 2335 /* 2336 * The following 12 bytes of options encode: 2337 * [nop, nop, TS val 33247 ecr 3457687679] 2338 */ 2339 options = (uint32_t*)(tcp + 1); 2340 options[0] = htonl(0x0101080a); 2341 options[1] = htonl(0x000081df); 2342 options[2] = htonl(0xce18207f); 2343 data_payload = (uint8_t*)(&options[3]); 2344 data_payload[0] = 'F'; 2345 data_payload[1] = 'r'; 2346 data_payload[2] = 'e'; 2347 data_payload[3] = 'e'; 2348 data_payload[4] = 'B'; 2349 data_payload[5] = 'S'; 2350 data_payload[6] = 'D'; 2351 data_payload[7] = '\n'; 2352 } 2353 2354 /** 2355 * xnb_add_mbuf_cksum on a TCP packet, based on a tcpdump of an actual TCP 2356 * packet 2357 */ 2358 static void 2359 xnb_add_mbuf_cksum_tcp(char *buffer, size_t buflen) 2360 { 2361 const size_t payload_len = 8; 2362 const size_t tcp_options_len = 12; 2363 const size_t pkt_len = sizeof(struct ether_header) + sizeof(struct ip) + 2364 sizeof(struct tcphdr) + tcp_options_len + payload_len; 2365 struct mbuf *mbufc; 2366 struct ether_header *eh; 2367 struct ip *iph; 2368 struct tcphdr *tcp; 2369 const uint16_t IP_CSUM = 0xa55a; 2370 const uint16_t TCP_CSUM = 0x2f64; 2371 2372 mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA); 2373 /* Fill in an example TCP packet made by 'uname | nc <host> 2222' */ 2374 xnb_fill_tcp(mbufc); 2375 eh = mtod(mbufc, struct ether_header*); 2376 iph = (struct ip*)(eh + 1); 2377 tcp = (struct tcphdr*)(iph + 1); 2378 2379 /* fill in the length field */ 2380 mbufc->m_len = pkt_len; 2381 mbufc->m_pkthdr.len = pkt_len; 2382 /* indicate that the netfront uses hw-assisted checksums */ 2383 mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID | 2384 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2385 2386 /* Function under test */ 2387 xnb_add_mbuf_cksum(mbufc); 2388 2389 /* Check the checksums */ 2390 XNB_ASSERT(iph->ip_sum == htons(IP_CSUM)); 2391 XNB_ASSERT(tcp->th_sum == htons(TCP_CSUM)); 2392 2393 m_freem(mbufc); 2394 } 2395 2396 /** 2397 * xnb_add_mbuf_cksum on a TCP packet that does not use HW assisted checksums 2398 */ 2399 static void 2400 xnb_add_mbuf_cksum_tcp_swcksum(char *buffer, size_t buflen) 2401 { 2402 const size_t payload_len = 8; 2403 const size_t tcp_options_len = 12; 2404 const size_t pkt_len = sizeof(struct ether_header) + sizeof(struct ip) + 2405 sizeof(struct tcphdr) + tcp_options_len + payload_len; 2406 struct mbuf *mbufc; 2407 struct ether_header *eh; 2408 struct ip *iph; 2409 struct tcphdr *tcp; 2410 /* Use deliberately bad checksums, and verify that they don't get */ 2411 /* corrected by xnb_add_mbuf_cksum */ 2412 const uint16_t IP_CSUM = 0xdead; 2413 const uint16_t TCP_CSUM = 0xbeef; 2414 2415 mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA); 2416 /* Fill in an example TCP packet made by 'uname | nc <host> 2222' */ 2417 xnb_fill_tcp(mbufc); 2418 eh = mtod(mbufc, struct ether_header*); 2419 iph = (struct ip*)(eh + 1); 2420 iph->ip_sum = htons(IP_CSUM); 2421 tcp = (struct tcphdr*)(iph + 1); 2422 tcp->th_sum = htons(TCP_CSUM); 2423 2424 /* fill in the length field */ 2425 mbufc->m_len = pkt_len; 2426 mbufc->m_pkthdr.len = pkt_len; 2427 /* indicate that the netfront does not use hw-assisted checksums */ 2428 mbufc->m_pkthdr.csum_flags = 0; 2429 2430 /* Function under test */ 2431 xnb_add_mbuf_cksum(mbufc); 2432 2433 /* Check that the checksums didn't change */ 2434 XNB_ASSERT(iph->ip_sum == htons(IP_CSUM)); 2435 XNB_ASSERT(tcp->th_sum == htons(TCP_CSUM)); 2436 2437 m_freem(mbufc); 2438 } 2439 #endif /* INET || INET6 */ 2440 2441 /** 2442 * sscanf on unsigned chars 2443 */ 2444 static void 2445 xnb_sscanf_hhu(char *buffer, size_t buflen) 2446 { 2447 const char mystr[] = "137"; 2448 uint8_t dest[12]; 2449 int i; 2450 2451 for (i = 0; i < 12; i++) 2452 dest[i] = 'X'; 2453 2454 sscanf(mystr, "%hhu", &dest[4]); 2455 for (i = 0; i < 12; i++) 2456 XNB_ASSERT(dest[i] == (i == 4 ? 137 : 'X')); 2457 } 2458 2459 /** 2460 * sscanf on signed chars 2461 */ 2462 static void 2463 xnb_sscanf_hhd(char *buffer, size_t buflen) 2464 { 2465 const char mystr[] = "-27"; 2466 int8_t dest[12]; 2467 int i; 2468 2469 for (i = 0; i < 12; i++) 2470 dest[i] = 'X'; 2471 2472 sscanf(mystr, "%hhd", &dest[4]); 2473 for (i = 0; i < 12; i++) 2474 XNB_ASSERT(dest[i] == (i == 4 ? -27 : 'X')); 2475 } 2476 2477 /** 2478 * sscanf on signed long longs 2479 */ 2480 static void 2481 xnb_sscanf_lld(char *buffer, size_t buflen) 2482 { 2483 const char mystr[] = "-123456789012345"; /* about -2**47 */ 2484 long long dest[3]; 2485 int i; 2486 2487 for (i = 0; i < 3; i++) 2488 dest[i] = (long long)0xdeadbeefdeadbeef; 2489 2490 sscanf(mystr, "%lld", &dest[1]); 2491 for (i = 0; i < 3; i++) 2492 XNB_ASSERT(dest[i] == (i != 1 ? (long long)0xdeadbeefdeadbeef : 2493 -123456789012345)); 2494 } 2495 2496 /** 2497 * sscanf on unsigned long longs 2498 */ 2499 static void 2500 xnb_sscanf_llu(char *buffer, size_t buflen) 2501 { 2502 const char mystr[] = "12802747070103273189"; 2503 unsigned long long dest[3]; 2504 int i; 2505 2506 for (i = 0; i < 3; i++) 2507 dest[i] = (long long)0xdeadbeefdeadbeef; 2508 2509 sscanf(mystr, "%llu", &dest[1]); 2510 for (i = 0; i < 3; i++) 2511 XNB_ASSERT(dest[i] == (i != 1 ? (long long)0xdeadbeefdeadbeef : 2512 12802747070103273189ull)); 2513 } 2514 2515 /** 2516 * sscanf on unsigned short short n's 2517 */ 2518 static void 2519 xnb_sscanf_hhn(char *buffer, size_t buflen) 2520 { 2521 const char mystr[] = 2522 "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f" 2523 "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f" 2524 "404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f"; 2525 unsigned char dest[12]; 2526 int i; 2527 2528 for (i = 0; i < 12; i++) 2529 dest[i] = (unsigned char)'X'; 2530 2531 sscanf(mystr, 2532 "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f" 2533 "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f" 2534 "404142434445464748494a4b4c4d4e4f%hhn", &dest[4]); 2535 for (i = 0; i < 12; i++) 2536 XNB_ASSERT(dest[i] == (i == 4 ? 160 : 'X')); 2537 } 2538