xref: /freebsd/sys/dev/xen/netback/netback_unit_tests.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009-2011 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Alan Somers         (Spectra Logic Corporation)
34  *          John Suykerbuyk     (Spectra Logic Corporation)
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /**
41  * \file netback_unit_tests.c
42  *
43  * \brief Unit tests for the Xen netback driver.
44  *
45  * Due to the driver's use of static functions, these tests cannot be compiled
46  * standalone; they must be #include'd from the driver's .c file.
47  */
48 
49 /** Helper macro used to snprintf to a buffer and update the buffer pointer */
50 #define	SNCATF(buffer, buflen, ...) do {				\
51 	size_t new_chars = snprintf(buffer, buflen, __VA_ARGS__);	\
52 	buffer += new_chars;						\
53 	/* be careful; snprintf's return value can be  > buflen */	\
54 	buflen -= MIN(buflen, new_chars);				\
55 } while (0)
56 
57 /* STRINGIFY and TOSTRING are used only to help turn __LINE__ into a string */
58 #define	STRINGIFY(x) #x
59 #define	TOSTRING(x) STRINGIFY(x)
60 
61 /**
62  * Writes an error message to buffer if cond is false
63  * Note the implied parameters buffer and
64  * buflen
65  */
66 #define	XNB_ASSERT(cond) ({						\
67 	int passed = (cond);						\
68 	char *_buffer = (buffer);					\
69 	size_t _buflen = (buflen);					\
70 	if (! passed) {							\
71 		strlcat(_buffer, __func__, _buflen);			\
72 		strlcat(_buffer, ":" TOSTRING(__LINE__) 		\
73 		  " Assertion Error: " #cond "\n", _buflen);		\
74 	}								\
75 	})
76 
77 /**
78  * The signature used by all testcases.  If the test writes anything
79  * to buffer, then it will be considered a failure
80  * \param buffer	Return storage for error messages
81  * \param buflen	The space available in the buffer
82  */
83 typedef void testcase_t(char *buffer, size_t buflen);
84 
85 /**
86  * Signature used by setup functions
87  * \return nonzero on error
88  */
89 typedef int setup_t(void);
90 
91 typedef void teardown_t(void);
92 
93 /** A simple test fixture comprising setup, teardown, and test */
94 struct test_fixture {
95 	/** Will be run before the test to allocate and initialize variables */
96 	setup_t *setup;
97 
98 	/** Will be run if setup succeeds */
99 	testcase_t *test;
100 
101 	/** Cleans up test data whether or not the setup succeeded */
102 	teardown_t *teardown;
103 };
104 
105 typedef struct test_fixture test_fixture_t;
106 
107 static int	xnb_get1pkt(struct xnb_pkt *pkt, size_t size, uint16_t flags);
108 static int	xnb_unit_test_runner(test_fixture_t const tests[], int ntests,
109 				     char *buffer, size_t buflen);
110 
111 static int __unused
112 null_setup(void) { return 0; }
113 
114 static void __unused
115 null_teardown(void) { }
116 
117 static setup_t setup_pvt_data;
118 static teardown_t teardown_pvt_data;
119 static testcase_t xnb_ring2pkt_emptyring;
120 static testcase_t xnb_ring2pkt_1req;
121 static testcase_t xnb_ring2pkt_2req;
122 static testcase_t xnb_ring2pkt_3req;
123 static testcase_t xnb_ring2pkt_extra;
124 static testcase_t xnb_ring2pkt_partial;
125 static testcase_t xnb_ring2pkt_wraps;
126 static testcase_t xnb_txpkt2rsp_emptypkt;
127 static testcase_t xnb_txpkt2rsp_1req;
128 static testcase_t xnb_txpkt2rsp_extra;
129 static testcase_t xnb_txpkt2rsp_long;
130 static testcase_t xnb_txpkt2rsp_invalid;
131 static testcase_t xnb_txpkt2rsp_error;
132 static testcase_t xnb_txpkt2rsp_wraps;
133 static testcase_t xnb_pkt2mbufc_empty;
134 static testcase_t xnb_pkt2mbufc_short;
135 static testcase_t xnb_pkt2mbufc_csum;
136 static testcase_t xnb_pkt2mbufc_1cluster;
137 static testcase_t xnb_pkt2mbufc_largecluster;
138 static testcase_t xnb_pkt2mbufc_2cluster;
139 static testcase_t xnb_txpkt2gnttab_empty;
140 static testcase_t xnb_txpkt2gnttab_short;
141 static testcase_t xnb_txpkt2gnttab_2req;
142 static testcase_t xnb_txpkt2gnttab_2cluster;
143 static testcase_t xnb_update_mbufc_short;
144 static testcase_t xnb_update_mbufc_2req;
145 static testcase_t xnb_update_mbufc_2cluster;
146 static testcase_t xnb_mbufc2pkt_empty;
147 static testcase_t xnb_mbufc2pkt_short;
148 static testcase_t xnb_mbufc2pkt_1cluster;
149 static testcase_t xnb_mbufc2pkt_2short;
150 static testcase_t xnb_mbufc2pkt_long;
151 static testcase_t xnb_mbufc2pkt_extra;
152 static testcase_t xnb_mbufc2pkt_nospace;
153 static testcase_t xnb_rxpkt2gnttab_empty;
154 static testcase_t xnb_rxpkt2gnttab_short;
155 static testcase_t xnb_rxpkt2gnttab_2req;
156 static testcase_t xnb_rxpkt2rsp_empty;
157 static testcase_t xnb_rxpkt2rsp_short;
158 static testcase_t xnb_rxpkt2rsp_extra;
159 static testcase_t xnb_rxpkt2rsp_2short;
160 static testcase_t xnb_rxpkt2rsp_2slots;
161 static testcase_t xnb_rxpkt2rsp_copyerror;
162 static testcase_t xnb_sscanf_llu;
163 static testcase_t xnb_sscanf_lld;
164 static testcase_t xnb_sscanf_hhu;
165 static testcase_t xnb_sscanf_hhd;
166 static testcase_t xnb_sscanf_hhn;
167 
168 #if defined(INET) || defined(INET6)
169 /* TODO: add test cases for xnb_add_mbuf_cksum for IPV6 tcp and udp */
170 static testcase_t xnb_add_mbuf_cksum_arp;
171 static testcase_t xnb_add_mbuf_cksum_tcp;
172 static testcase_t xnb_add_mbuf_cksum_udp;
173 static testcase_t xnb_add_mbuf_cksum_icmp;
174 static testcase_t xnb_add_mbuf_cksum_tcp_swcksum;
175 static void	xnb_fill_eh_and_ip(struct mbuf *m, uint16_t ip_len,
176 				   uint16_t ip_id, uint16_t ip_p,
177 				   uint16_t ip_off, uint16_t ip_sum);
178 static void	xnb_fill_tcp(struct mbuf *m);
179 #endif /* INET || INET6 */
180 
181 /** Private data used by unit tests */
182 static struct {
183 	gnttab_copy_table 	gnttab;
184 	netif_rx_back_ring_t	rxb;
185 	netif_rx_front_ring_t	rxf;
186 	netif_tx_back_ring_t	txb;
187 	netif_tx_front_ring_t	txf;
188 	struct ifnet*		ifp;
189 	netif_rx_sring_t*	rxs;
190 	netif_tx_sring_t*	txs;
191 } xnb_unit_pvt;
192 
193 static inline void safe_m_freem(struct mbuf **ppMbuf) {
194 	if (*ppMbuf != NULL) {
195 		m_freem(*ppMbuf);
196 		*ppMbuf = NULL;
197 	}
198 }
199 
200 /**
201  * The unit test runner.  It will run every supplied test and return an
202  * output message as a string
203  * \param tests		An array of tests.  Every test will be attempted.
204  * \param ntests	The length of tests
205  * \param buffer	Return storage for the result string
206  * \param buflen	The length of buffer
207  * \return		The number of tests that failed
208  */
209 static int
210 xnb_unit_test_runner(test_fixture_t const tests[], int ntests, char *buffer,
211     		     size_t buflen)
212 {
213 	int i;
214 	int n_passes;
215 	int n_failures = 0;
216 
217 	for (i = 0; i < ntests; i++) {
218 		int error = tests[i].setup();
219 		if (error != 0) {
220 			SNCATF(buffer, buflen,
221 			    "Setup failed for test idx %d\n", i);
222 			n_failures++;
223 		} else {
224 			size_t new_chars;
225 
226 			tests[i].test(buffer, buflen);
227 			new_chars = strnlen(buffer, buflen);
228 			buffer += new_chars;
229 			buflen -= new_chars;
230 
231 			if (new_chars > 0) {
232 				n_failures++;
233 			}
234 		}
235 		tests[i].teardown();
236 	}
237 
238 	n_passes = ntests - n_failures;
239 	if (n_passes > 0) {
240 		SNCATF(buffer, buflen, "%d Tests Passed\n", n_passes);
241 	}
242 	if (n_failures > 0) {
243 		SNCATF(buffer, buflen, "%d Tests FAILED\n", n_failures);
244 	}
245 
246 	return n_failures;
247 }
248 
249 /** Number of unit tests.  Must match the length of the tests array below */
250 #define	TOTAL_TESTS	(53)
251 /**
252  * Max memory available for returning results.  400 chars/test should give
253  * enough space for a five line error message for every test
254  */
255 #define	TOTAL_BUFLEN	(400 * TOTAL_TESTS + 2)
256 
257 /**
258  * Called from userspace by a sysctl.  Runs all internal unit tests, and
259  * returns the results to userspace as a string
260  * \param oidp	unused
261  * \param arg1	pointer to an xnb_softc for a specific xnb device
262  * \param arg2	unused
263  * \param req	sysctl access structure
264  * \return a string via the special SYSCTL_OUT macro.
265  */
266 
267 static int
268 xnb_unit_test_main(SYSCTL_HANDLER_ARGS) {
269 	test_fixture_t const tests[TOTAL_TESTS] = {
270 		{setup_pvt_data, xnb_ring2pkt_emptyring, teardown_pvt_data},
271 		{setup_pvt_data, xnb_ring2pkt_1req, teardown_pvt_data},
272 		{setup_pvt_data, xnb_ring2pkt_2req, teardown_pvt_data},
273 		{setup_pvt_data, xnb_ring2pkt_3req, teardown_pvt_data},
274 		{setup_pvt_data, xnb_ring2pkt_extra, teardown_pvt_data},
275 		{setup_pvt_data, xnb_ring2pkt_partial, teardown_pvt_data},
276 		{setup_pvt_data, xnb_ring2pkt_wraps, teardown_pvt_data},
277 		{setup_pvt_data, xnb_txpkt2rsp_emptypkt, teardown_pvt_data},
278 		{setup_pvt_data, xnb_txpkt2rsp_1req, teardown_pvt_data},
279 		{setup_pvt_data, xnb_txpkt2rsp_extra, teardown_pvt_data},
280 		{setup_pvt_data, xnb_txpkt2rsp_long, teardown_pvt_data},
281 		{setup_pvt_data, xnb_txpkt2rsp_invalid, teardown_pvt_data},
282 		{setup_pvt_data, xnb_txpkt2rsp_error, teardown_pvt_data},
283 		{setup_pvt_data, xnb_txpkt2rsp_wraps, teardown_pvt_data},
284 		{setup_pvt_data, xnb_pkt2mbufc_empty, teardown_pvt_data},
285 		{setup_pvt_data, xnb_pkt2mbufc_short, teardown_pvt_data},
286 		{setup_pvt_data, xnb_pkt2mbufc_csum, teardown_pvt_data},
287 		{setup_pvt_data, xnb_pkt2mbufc_1cluster, teardown_pvt_data},
288 		{setup_pvt_data, xnb_pkt2mbufc_largecluster, teardown_pvt_data},
289 		{setup_pvt_data, xnb_pkt2mbufc_2cluster, teardown_pvt_data},
290 		{setup_pvt_data, xnb_txpkt2gnttab_empty, teardown_pvt_data},
291 		{setup_pvt_data, xnb_txpkt2gnttab_short, teardown_pvt_data},
292 		{setup_pvt_data, xnb_txpkt2gnttab_2req, teardown_pvt_data},
293 		{setup_pvt_data, xnb_txpkt2gnttab_2cluster, teardown_pvt_data},
294 		{setup_pvt_data, xnb_update_mbufc_short, teardown_pvt_data},
295 		{setup_pvt_data, xnb_update_mbufc_2req, teardown_pvt_data},
296 		{setup_pvt_data, xnb_update_mbufc_2cluster, teardown_pvt_data},
297 		{setup_pvt_data, xnb_mbufc2pkt_empty, teardown_pvt_data},
298 		{setup_pvt_data, xnb_mbufc2pkt_short, teardown_pvt_data},
299 		{setup_pvt_data, xnb_mbufc2pkt_1cluster, teardown_pvt_data},
300 		{setup_pvt_data, xnb_mbufc2pkt_2short, teardown_pvt_data},
301 		{setup_pvt_data, xnb_mbufc2pkt_long, teardown_pvt_data},
302 		{setup_pvt_data, xnb_mbufc2pkt_extra, teardown_pvt_data},
303 		{setup_pvt_data, xnb_mbufc2pkt_nospace, teardown_pvt_data},
304 		{setup_pvt_data, xnb_rxpkt2gnttab_empty, teardown_pvt_data},
305 		{setup_pvt_data, xnb_rxpkt2gnttab_short, teardown_pvt_data},
306 		{setup_pvt_data, xnb_rxpkt2gnttab_2req, teardown_pvt_data},
307 		{setup_pvt_data, xnb_rxpkt2rsp_empty, teardown_pvt_data},
308 		{setup_pvt_data, xnb_rxpkt2rsp_short, teardown_pvt_data},
309 		{setup_pvt_data, xnb_rxpkt2rsp_extra, teardown_pvt_data},
310 		{setup_pvt_data, xnb_rxpkt2rsp_2short, teardown_pvt_data},
311 		{setup_pvt_data, xnb_rxpkt2rsp_2slots, teardown_pvt_data},
312 		{setup_pvt_data, xnb_rxpkt2rsp_copyerror, teardown_pvt_data},
313 #if defined(INET) || defined(INET6)
314 		{null_setup, xnb_add_mbuf_cksum_arp, null_teardown},
315 		{null_setup, xnb_add_mbuf_cksum_icmp, null_teardown},
316 		{null_setup, xnb_add_mbuf_cksum_tcp, null_teardown},
317 		{null_setup, xnb_add_mbuf_cksum_tcp_swcksum, null_teardown},
318 		{null_setup, xnb_add_mbuf_cksum_udp, null_teardown},
319 #endif
320 		{null_setup, xnb_sscanf_hhd, null_teardown},
321 		{null_setup, xnb_sscanf_hhu, null_teardown},
322 		{null_setup, xnb_sscanf_lld, null_teardown},
323 		{null_setup, xnb_sscanf_llu, null_teardown},
324 		{null_setup, xnb_sscanf_hhn, null_teardown},
325 	};
326 	/**
327 	 * results is static so that the data will persist after this function
328 	 * returns.  The sysctl code expects us to return a constant string.
329 	 * \todo: the static variable is not thread safe.  Put a mutex around
330 	 * it.
331 	 */
332 	static char results[TOTAL_BUFLEN];
333 
334 	/* empty the result strings */
335 	results[0] = 0;
336 	xnb_unit_test_runner(tests, TOTAL_TESTS, results, TOTAL_BUFLEN);
337 
338 	return (SYSCTL_OUT(req, results, strnlen(results, TOTAL_BUFLEN)));
339 }
340 
341 static int
342 setup_pvt_data(void)
343 {
344 	int error = 0;
345 
346 	bzero(xnb_unit_pvt.gnttab, sizeof(xnb_unit_pvt.gnttab));
347 
348 	xnb_unit_pvt.txs = malloc(PAGE_SIZE, M_XENNETBACK, M_WAITOK|M_ZERO);
349 	if (xnb_unit_pvt.txs != NULL) {
350 		SHARED_RING_INIT(xnb_unit_pvt.txs);
351 		BACK_RING_INIT(&xnb_unit_pvt.txb, xnb_unit_pvt.txs, PAGE_SIZE);
352 		FRONT_RING_INIT(&xnb_unit_pvt.txf, xnb_unit_pvt.txs, PAGE_SIZE);
353 	} else {
354 		error = 1;
355 	}
356 
357 	xnb_unit_pvt.ifp = if_alloc(IFT_ETHER);
358 	if (xnb_unit_pvt.ifp == NULL) {
359 		error = 1;
360 	}
361 
362 	xnb_unit_pvt.rxs = malloc(PAGE_SIZE, M_XENNETBACK, M_WAITOK|M_ZERO);
363 	if (xnb_unit_pvt.rxs != NULL) {
364 		SHARED_RING_INIT(xnb_unit_pvt.rxs);
365 		BACK_RING_INIT(&xnb_unit_pvt.rxb, xnb_unit_pvt.rxs, PAGE_SIZE);
366 		FRONT_RING_INIT(&xnb_unit_pvt.rxf, xnb_unit_pvt.rxs, PAGE_SIZE);
367 	} else {
368 		error = 1;
369 	}
370 
371 	return error;
372 }
373 
374 static void
375 teardown_pvt_data(void)
376 {
377 	if (xnb_unit_pvt.txs != NULL) {
378 		free(xnb_unit_pvt.txs, M_XENNETBACK);
379 	}
380 	if (xnb_unit_pvt.rxs != NULL) {
381 		free(xnb_unit_pvt.rxs, M_XENNETBACK);
382 	}
383 	if (xnb_unit_pvt.ifp != NULL) {
384 		if_free(xnb_unit_pvt.ifp);
385 	}
386 }
387 
388 /**
389  * Verify that xnb_ring2pkt will not consume any requests from an empty ring
390  */
391 static void
392 xnb_ring2pkt_emptyring(char *buffer, size_t buflen)
393 {
394 	struct xnb_pkt pkt;
395 	int num_consumed;
396 
397 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
398 	                            xnb_unit_pvt.txb.req_cons);
399 	XNB_ASSERT(num_consumed == 0);
400 }
401 
402 /**
403  * Verify that xnb_ring2pkt can convert a single request packet correctly
404  */
405 static void
406 xnb_ring2pkt_1req(char *buffer, size_t buflen)
407 {
408 	struct xnb_pkt pkt;
409 	int num_consumed;
410 	struct netif_tx_request *req;
411 
412 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
413 	    xnb_unit_pvt.txf.req_prod_pvt);
414 
415 	req->flags = 0;
416 	req->size = 69;	/* arbitrary number for test */
417 	xnb_unit_pvt.txf.req_prod_pvt++;
418 
419 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
420 
421 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
422 	                            xnb_unit_pvt.txb.req_cons);
423 	XNB_ASSERT(num_consumed == 1);
424 	XNB_ASSERT(pkt.size == 69);
425 	XNB_ASSERT(pkt.car_size == 69);
426 	XNB_ASSERT(pkt.flags == 0);
427 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
428 	XNB_ASSERT(pkt.list_len == 1);
429 	XNB_ASSERT(pkt.car == 0);
430 }
431 
432 /**
433  * Verify that xnb_ring2pkt can convert a two request packet correctly.
434  * This tests handling of the MORE_DATA flag and cdr
435  */
436 static void
437 xnb_ring2pkt_2req(char *buffer, size_t buflen)
438 {
439 	struct xnb_pkt pkt;
440 	int num_consumed;
441 	struct netif_tx_request *req;
442 	RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt;
443 
444 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
445 	    xnb_unit_pvt.txf.req_prod_pvt);
446 	req->flags = NETTXF_more_data;
447 	req->size = 100;
448 	xnb_unit_pvt.txf.req_prod_pvt++;
449 
450 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
451 	    xnb_unit_pvt.txf.req_prod_pvt);
452 	req->flags = 0;
453 	req->size = 40;
454 	xnb_unit_pvt.txf.req_prod_pvt++;
455 
456 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
457 
458 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
459 	                            xnb_unit_pvt.txb.req_cons);
460 	XNB_ASSERT(num_consumed == 2);
461 	XNB_ASSERT(pkt.size == 100);
462 	XNB_ASSERT(pkt.car_size == 60);
463 	XNB_ASSERT(pkt.flags == 0);
464 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
465 	XNB_ASSERT(pkt.list_len == 2);
466 	XNB_ASSERT(pkt.car == start_idx);
467 	XNB_ASSERT(pkt.cdr == start_idx + 1);
468 }
469 
470 /**
471  * Verify that xnb_ring2pkt can convert a three request packet correctly
472  */
473 static void
474 xnb_ring2pkt_3req(char *buffer, size_t buflen)
475 {
476 	struct xnb_pkt pkt;
477 	int num_consumed;
478 	struct netif_tx_request *req;
479 	RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt;
480 
481 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
482 	    xnb_unit_pvt.txf.req_prod_pvt);
483 	req->flags = NETTXF_more_data;
484 	req->size = 200;
485 	xnb_unit_pvt.txf.req_prod_pvt++;
486 
487 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
488 	    xnb_unit_pvt.txf.req_prod_pvt);
489 	req->flags = NETTXF_more_data;
490 	req->size = 40;
491 	xnb_unit_pvt.txf.req_prod_pvt++;
492 
493 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
494 	    xnb_unit_pvt.txf.req_prod_pvt);
495 	req->flags = 0;
496 	req->size = 50;
497 	xnb_unit_pvt.txf.req_prod_pvt++;
498 
499 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
500 
501 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
502 	                            xnb_unit_pvt.txb.req_cons);
503 	XNB_ASSERT(num_consumed == 3);
504 	XNB_ASSERT(pkt.size == 200);
505 	XNB_ASSERT(pkt.car_size == 110);
506 	XNB_ASSERT(pkt.flags == 0);
507 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
508 	XNB_ASSERT(pkt.list_len == 3);
509 	XNB_ASSERT(pkt.car == start_idx);
510 	XNB_ASSERT(pkt.cdr == start_idx + 1);
511 	XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr + 1) == req);
512 }
513 
514 /**
515  * Verify that xnb_ring2pkt can read extra inf
516  */
517 static void
518 xnb_ring2pkt_extra(char *buffer, size_t buflen)
519 {
520 	struct xnb_pkt pkt;
521 	int num_consumed;
522 	struct netif_tx_request *req;
523 	struct netif_extra_info *ext;
524 	RING_IDX start_idx = xnb_unit_pvt.txf.req_prod_pvt;
525 
526 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
527 	    xnb_unit_pvt.txf.req_prod_pvt);
528 	req->flags = NETTXF_extra_info | NETTXF_more_data;
529 	req->size = 150;
530 	xnb_unit_pvt.txf.req_prod_pvt++;
531 
532 	ext = (struct netif_extra_info*) RING_GET_REQUEST(&xnb_unit_pvt.txf,
533 	    xnb_unit_pvt.txf.req_prod_pvt);
534 	ext->flags = 0;
535 	ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
536 	ext->u.gso.size = 250;
537 	ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
538 	ext->u.gso.features = 0;
539 	xnb_unit_pvt.txf.req_prod_pvt++;
540 
541 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
542 	    xnb_unit_pvt.txf.req_prod_pvt);
543 	req->flags = 0;
544 	req->size = 50;
545 	xnb_unit_pvt.txf.req_prod_pvt++;
546 
547 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
548 
549 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
550 	                            xnb_unit_pvt.txb.req_cons);
551 	XNB_ASSERT(num_consumed == 3);
552 	XNB_ASSERT(pkt.extra.flags == 0);
553 	XNB_ASSERT(pkt.extra.type == XEN_NETIF_EXTRA_TYPE_GSO);
554 	XNB_ASSERT(pkt.extra.u.gso.size == 250);
555 	XNB_ASSERT(pkt.extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4);
556 	XNB_ASSERT(pkt.size == 150);
557 	XNB_ASSERT(pkt.car_size == 100);
558 	XNB_ASSERT(pkt.flags == NETTXF_extra_info);
559 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
560 	XNB_ASSERT(pkt.list_len == 2);
561 	XNB_ASSERT(pkt.car == start_idx);
562 	XNB_ASSERT(pkt.cdr == start_idx + 2);
563 	XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr) == req);
564 }
565 
566 /**
567  * Verify that xnb_ring2pkt will consume no requests if the entire packet is
568  * not yet in the ring
569  */
570 static void
571 xnb_ring2pkt_partial(char *buffer, size_t buflen)
572 {
573 	struct xnb_pkt pkt;
574 	int num_consumed;
575 	struct netif_tx_request *req;
576 
577 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
578 	    xnb_unit_pvt.txf.req_prod_pvt);
579 	req->flags = NETTXF_more_data;
580 	req->size = 150;
581 	xnb_unit_pvt.txf.req_prod_pvt++;
582 
583 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
584 
585 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
586 	                            xnb_unit_pvt.txb.req_cons);
587 	XNB_ASSERT(num_consumed == 0);
588 	XNB_ASSERT(! xnb_pkt_is_valid(&pkt));
589 }
590 
591 /**
592  * Verity that xnb_ring2pkt can read a packet whose requests wrap around
593  * the end of the ring
594  */
595 static void
596 xnb_ring2pkt_wraps(char *buffer, size_t buflen)
597 {
598 	struct xnb_pkt pkt;
599 	int num_consumed;
600 	struct netif_tx_request *req;
601 	unsigned int rsize;
602 
603 	/*
604 	 * Manually tweak the ring indices to create a ring with no responses
605 	 * and the next request slot at position 2 from the end
606 	 */
607 	rsize = RING_SIZE(&xnb_unit_pvt.txf);
608 	xnb_unit_pvt.txf.req_prod_pvt = rsize - 2;
609 	xnb_unit_pvt.txf.rsp_cons = rsize - 2;
610 	xnb_unit_pvt.txs->req_prod = rsize - 2;
611 	xnb_unit_pvt.txs->req_event = rsize - 1;
612 	xnb_unit_pvt.txs->rsp_prod = rsize - 2;
613 	xnb_unit_pvt.txs->rsp_event = rsize - 1;
614 	xnb_unit_pvt.txb.rsp_prod_pvt = rsize - 2;
615 	xnb_unit_pvt.txb.req_cons = rsize - 2;
616 
617 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
618 	    xnb_unit_pvt.txf.req_prod_pvt);
619 	req->flags = NETTXF_more_data;
620 	req->size = 550;
621 	xnb_unit_pvt.txf.req_prod_pvt++;
622 
623 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
624 	    xnb_unit_pvt.txf.req_prod_pvt);
625 	req->flags = NETTXF_more_data;
626 	req->size = 100;
627 	xnb_unit_pvt.txf.req_prod_pvt++;
628 
629 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
630 	    xnb_unit_pvt.txf.req_prod_pvt);
631 	req->flags = 0;
632 	req->size = 50;
633 	xnb_unit_pvt.txf.req_prod_pvt++;
634 
635 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
636 
637 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
638 	                            xnb_unit_pvt.txb.req_cons);
639 	XNB_ASSERT(num_consumed == 3);
640 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
641 	XNB_ASSERT(pkt.list_len == 3);
642 	XNB_ASSERT(RING_GET_REQUEST(&xnb_unit_pvt.txb, pkt.cdr + 1) == req);
643 }
644 
645 /**
646  * xnb_txpkt2rsp should do nothing for an empty packet
647  */
648 static void
649 xnb_txpkt2rsp_emptypkt(char *buffer, size_t buflen)
650 {
651 	int num_consumed;
652 	struct xnb_pkt pkt;
653 	netif_tx_back_ring_t txb_backup = xnb_unit_pvt.txb;
654 	netif_tx_sring_t txs_backup = *xnb_unit_pvt.txs;
655 	pkt.list_len = 0;
656 
657 	/* must call xnb_ring2pkt just to intialize pkt */
658 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
659 	                            xnb_unit_pvt.txb.req_cons);
660 	xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
661 	XNB_ASSERT(
662 	    memcmp(&txb_backup, &xnb_unit_pvt.txb, sizeof(txb_backup)) == 0);
663 	XNB_ASSERT(
664 	    memcmp(&txs_backup, xnb_unit_pvt.txs, sizeof(txs_backup)) == 0);
665 }
666 
667 /**
668  * xnb_txpkt2rsp responding to one request
669  */
670 static void
671 xnb_txpkt2rsp_1req(char *buffer, size_t buflen)
672 {
673 	uint16_t num_consumed;
674 	struct xnb_pkt pkt;
675 	struct netif_tx_request *req;
676 	struct netif_tx_response *rsp;
677 
678 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
679 	    xnb_unit_pvt.txf.req_prod_pvt);
680 	req->size = 1000;
681 	req->flags = 0;
682 	xnb_unit_pvt.txf.req_prod_pvt++;
683 
684 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
685 
686 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
687 	                            xnb_unit_pvt.txb.req_cons);
688 	xnb_unit_pvt.txb.req_cons += num_consumed;
689 
690 	xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
691 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
692 
693 	XNB_ASSERT(
694 	    xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
695 	XNB_ASSERT(rsp->id == req->id);
696 	XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
697 };
698 
699 /**
700  * xnb_txpkt2rsp responding to 1 data request and 1 extra info
701  */
702 static void
703 xnb_txpkt2rsp_extra(char *buffer, size_t buflen)
704 {
705 	uint16_t num_consumed;
706 	struct xnb_pkt pkt;
707 	struct netif_tx_request *req;
708 	netif_extra_info_t *ext;
709 	struct netif_tx_response *rsp;
710 
711 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
712 	    xnb_unit_pvt.txf.req_prod_pvt);
713 	req->size = 1000;
714 	req->flags = NETTXF_extra_info;
715 	req->id = 69;
716 	xnb_unit_pvt.txf.req_prod_pvt++;
717 
718 	ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf,
719 	    xnb_unit_pvt.txf.req_prod_pvt);
720 	ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
721 	ext->flags = 0;
722 	xnb_unit_pvt.txf.req_prod_pvt++;
723 
724 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
725 
726 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
727 	                            xnb_unit_pvt.txb.req_cons);
728 	xnb_unit_pvt.txb.req_cons += num_consumed;
729 
730 	xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
731 
732 	XNB_ASSERT(
733 	    xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
734 
735 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
736 	XNB_ASSERT(rsp->id == req->id);
737 	XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
738 
739 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
740 	    xnb_unit_pvt.txf.rsp_cons + 1);
741 	XNB_ASSERT(rsp->status == NETIF_RSP_NULL);
742 };
743 
744 /**
745  * xnb_pkg2rsp responding to 3 data requests and 1 extra info
746  */
747 static void
748 xnb_txpkt2rsp_long(char *buffer, size_t buflen)
749 {
750 	uint16_t num_consumed;
751 	struct xnb_pkt pkt;
752 	struct netif_tx_request *req;
753 	netif_extra_info_t *ext;
754 	struct netif_tx_response *rsp;
755 
756 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
757 	    xnb_unit_pvt.txf.req_prod_pvt);
758 	req->size = 1000;
759 	req->flags = NETTXF_extra_info | NETTXF_more_data;
760 	req->id = 254;
761 	xnb_unit_pvt.txf.req_prod_pvt++;
762 
763 	ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf,
764 	    xnb_unit_pvt.txf.req_prod_pvt);
765 	ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
766 	ext->flags = 0;
767 	xnb_unit_pvt.txf.req_prod_pvt++;
768 
769 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
770 	    xnb_unit_pvt.txf.req_prod_pvt);
771 	req->size = 300;
772 	req->flags = NETTXF_more_data;
773 	req->id = 1034;
774 	xnb_unit_pvt.txf.req_prod_pvt++;
775 
776 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
777 	    xnb_unit_pvt.txf.req_prod_pvt);
778 	req->size = 400;
779 	req->flags = 0;
780 	req->id = 34;
781 	xnb_unit_pvt.txf.req_prod_pvt++;
782 
783 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
784 
785 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
786 	                            xnb_unit_pvt.txb.req_cons);
787 	xnb_unit_pvt.txb.req_cons += num_consumed;
788 
789 	xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
790 
791 	XNB_ASSERT(
792 	    xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
793 
794 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
795 	XNB_ASSERT(rsp->id ==
796 	    RING_GET_REQUEST(&xnb_unit_pvt.txf, 0)->id);
797 	XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
798 
799 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
800 	    xnb_unit_pvt.txf.rsp_cons + 1);
801 	XNB_ASSERT(rsp->status == NETIF_RSP_NULL);
802 
803 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
804 	    xnb_unit_pvt.txf.rsp_cons + 2);
805 	XNB_ASSERT(rsp->id ==
806 	    RING_GET_REQUEST(&xnb_unit_pvt.txf, 2)->id);
807 	XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
808 
809 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
810 	    xnb_unit_pvt.txf.rsp_cons + 3);
811 	XNB_ASSERT(rsp->id ==
812 	    RING_GET_REQUEST(&xnb_unit_pvt.txf, 3)->id);
813 	XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
814 }
815 
816 /**
817  * xnb_txpkt2rsp responding to an invalid packet.
818  * Note: this test will result in an error message being printed to the console
819  * such as:
820  * xnb(xnb_ring2pkt:1306): Unknown extra info type 255.  Discarding packet
821  */
822 static void
823 xnb_txpkt2rsp_invalid(char *buffer, size_t buflen)
824 {
825 	uint16_t num_consumed;
826 	struct xnb_pkt pkt;
827 	struct netif_tx_request *req;
828 	netif_extra_info_t *ext;
829 	struct netif_tx_response *rsp;
830 
831 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
832 	    xnb_unit_pvt.txf.req_prod_pvt);
833 	req->size = 1000;
834 	req->flags = NETTXF_extra_info;
835 	req->id = 69;
836 	xnb_unit_pvt.txf.req_prod_pvt++;
837 
838 	ext = (netif_extra_info_t*) RING_GET_REQUEST(&xnb_unit_pvt.txf,
839 	    xnb_unit_pvt.txf.req_prod_pvt);
840 	ext->type = 0xFF;	/* Invalid extra type */
841 	ext->flags = 0;
842 	xnb_unit_pvt.txf.req_prod_pvt++;
843 
844 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
845 
846 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
847 	                            xnb_unit_pvt.txb.req_cons);
848 	xnb_unit_pvt.txb.req_cons += num_consumed;
849 	XNB_ASSERT(! xnb_pkt_is_valid(&pkt));
850 
851 	xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
852 
853 	XNB_ASSERT(
854 	    xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
855 
856 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
857 	XNB_ASSERT(rsp->id == req->id);
858 	XNB_ASSERT(rsp->status == NETIF_RSP_ERROR);
859 
860 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
861 	    xnb_unit_pvt.txf.rsp_cons + 1);
862 	XNB_ASSERT(rsp->status == NETIF_RSP_NULL);
863 };
864 
865 /**
866  * xnb_txpkt2rsp responding to one request which caused an error
867  */
868 static void
869 xnb_txpkt2rsp_error(char *buffer, size_t buflen)
870 {
871 	uint16_t num_consumed;
872 	struct xnb_pkt pkt;
873 	struct netif_tx_request *req;
874 	struct netif_tx_response *rsp;
875 
876 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
877 	    xnb_unit_pvt.txf.req_prod_pvt);
878 	req->size = 1000;
879 	req->flags = 0;
880 	xnb_unit_pvt.txf.req_prod_pvt++;
881 
882 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
883 
884 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
885 	                            xnb_unit_pvt.txb.req_cons);
886 	xnb_unit_pvt.txb.req_cons += num_consumed;
887 
888 	xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 1);
889 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb, xnb_unit_pvt.txf.rsp_cons);
890 
891 	XNB_ASSERT(
892 	    xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
893 	XNB_ASSERT(rsp->id == req->id);
894 	XNB_ASSERT(rsp->status == NETIF_RSP_ERROR);
895 };
896 
897 /**
898  * xnb_txpkt2rsp's responses wrap around the end of the ring
899  */
900 static void
901 xnb_txpkt2rsp_wraps(char *buffer, size_t buflen)
902 {
903 	struct xnb_pkt pkt;
904 	int num_consumed;
905 	struct netif_tx_request *req;
906 	struct netif_tx_response *rsp;
907 	unsigned int rsize;
908 
909 	/*
910 	 * Manually tweak the ring indices to create a ring with no responses
911 	 * and the next request slot at position 2 from the end
912 	 */
913 	rsize = RING_SIZE(&xnb_unit_pvt.txf);
914 	xnb_unit_pvt.txf.req_prod_pvt = rsize - 2;
915 	xnb_unit_pvt.txf.rsp_cons = rsize - 2;
916 	xnb_unit_pvt.txs->req_prod = rsize - 2;
917 	xnb_unit_pvt.txs->req_event = rsize - 1;
918 	xnb_unit_pvt.txs->rsp_prod = rsize - 2;
919 	xnb_unit_pvt.txs->rsp_event = rsize - 1;
920 	xnb_unit_pvt.txb.rsp_prod_pvt = rsize - 2;
921 	xnb_unit_pvt.txb.req_cons = rsize - 2;
922 
923 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
924 	    xnb_unit_pvt.txf.req_prod_pvt);
925 	req->flags = NETTXF_more_data;
926 	req->size = 550;
927 	req->id = 1;
928 	xnb_unit_pvt.txf.req_prod_pvt++;
929 
930 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
931 	    xnb_unit_pvt.txf.req_prod_pvt);
932 	req->flags = NETTXF_more_data;
933 	req->size = 100;
934 	req->id = 2;
935 	xnb_unit_pvt.txf.req_prod_pvt++;
936 
937 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
938 	    xnb_unit_pvt.txf.req_prod_pvt);
939 	req->flags = 0;
940 	req->size = 50;
941 	req->id = 3;
942 	xnb_unit_pvt.txf.req_prod_pvt++;
943 
944 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
945 
946 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
947 	                            xnb_unit_pvt.txb.req_cons);
948 
949 	xnb_txpkt2rsp(&pkt, &xnb_unit_pvt.txb, 0);
950 
951 	XNB_ASSERT(
952 	    xnb_unit_pvt.txb.rsp_prod_pvt == xnb_unit_pvt.txs->req_prod);
953 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.txb,
954 	    xnb_unit_pvt.txf.rsp_cons + 2);
955 	XNB_ASSERT(rsp->id == req->id);
956 	XNB_ASSERT(rsp->status == NETIF_RSP_OKAY);
957 }
958 
959 /**
960  * Helper function used to setup pkt2mbufc tests
961  * \param size     size in bytes of the single request to push to the ring
962  * \param flags		optional flags to put in the netif request
963  * \param[out] pkt the returned packet object
964  * \return number of requests consumed from the ring
965  */
966 static int
967 xnb_get1pkt(struct xnb_pkt *pkt, size_t size, uint16_t flags)
968 {
969 	struct netif_tx_request *req;
970 
971 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
972 	    xnb_unit_pvt.txf.req_prod_pvt);
973 	req->flags = flags;
974 	req->size = size;
975 	xnb_unit_pvt.txf.req_prod_pvt++;
976 
977 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
978 
979 	return xnb_ring2pkt(pkt, &xnb_unit_pvt.txb,
980 	                            xnb_unit_pvt.txb.req_cons);
981 }
982 
983 /**
984  * xnb_pkt2mbufc on an empty packet
985  */
986 static void
987 xnb_pkt2mbufc_empty(char *buffer, size_t buflen)
988 {
989 	int num_consumed;
990 	struct xnb_pkt pkt;
991 	struct mbuf *pMbuf;
992 	pkt.list_len = 0;
993 
994 	/* must call xnb_ring2pkt just to intialize pkt */
995 	num_consumed = xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb,
996 	                            xnb_unit_pvt.txb.req_cons);
997 	pkt.size = 0;
998 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
999 	safe_m_freem(&pMbuf);
1000 }
1001 
1002 /**
1003  * xnb_pkt2mbufc on short packet that can fit in an mbuf internal buffer
1004  */
1005 static void
1006 xnb_pkt2mbufc_short(char *buffer, size_t buflen)
1007 {
1008 	const size_t size = MINCLSIZE - 1;
1009 	struct xnb_pkt pkt;
1010 	struct mbuf *pMbuf;
1011 
1012 	xnb_get1pkt(&pkt, size, 0);
1013 
1014 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1015 	XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size);
1016 	safe_m_freem(&pMbuf);
1017 }
1018 
1019 /**
1020  * xnb_pkt2mbufc on short packet whose checksum was validated by the netfron
1021  */
1022 static void
1023 xnb_pkt2mbufc_csum(char *buffer, size_t buflen)
1024 {
1025 	const size_t size = MINCLSIZE - 1;
1026 	struct xnb_pkt pkt;
1027 	struct mbuf *pMbuf;
1028 
1029 	xnb_get1pkt(&pkt, size, NETTXF_data_validated);
1030 
1031 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1032 	XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size);
1033 	XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_IP_CHECKED);
1034 	XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_IP_VALID);
1035 	XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_DATA_VALID);
1036 	XNB_ASSERT(pMbuf->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR);
1037 	safe_m_freem(&pMbuf);
1038 }
1039 
1040 /**
1041  * xnb_pkt2mbufc on packet that can fit in one cluster
1042  */
1043 static void
1044 xnb_pkt2mbufc_1cluster(char *buffer, size_t buflen)
1045 {
1046 	const size_t size = MINCLSIZE;
1047 	struct xnb_pkt pkt;
1048 	struct mbuf *pMbuf;
1049 
1050 	xnb_get1pkt(&pkt, size, 0);
1051 
1052 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1053 	XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size);
1054 	safe_m_freem(&pMbuf);
1055 }
1056 
1057 /**
1058  * xnb_pkt2mbufc on packet that cannot fit in one regular cluster
1059  */
1060 static void
1061 xnb_pkt2mbufc_largecluster(char *buffer, size_t buflen)
1062 {
1063 	const size_t size = MCLBYTES + 1;
1064 	struct xnb_pkt pkt;
1065 	struct mbuf *pMbuf;
1066 
1067 	xnb_get1pkt(&pkt, size, 0);
1068 
1069 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1070 	XNB_ASSERT(M_TRAILINGSPACE(pMbuf) >= size);
1071 	safe_m_freem(&pMbuf);
1072 }
1073 
1074 /**
1075  * xnb_pkt2mbufc on packet that cannot fit in one clusters
1076  */
1077 static void
1078 xnb_pkt2mbufc_2cluster(char *buffer, size_t buflen)
1079 {
1080 	const size_t size = 2 * MCLBYTES + 1;
1081 	size_t space = 0;
1082 	struct xnb_pkt pkt;
1083 	struct mbuf *pMbuf;
1084 	struct mbuf *m;
1085 
1086 	xnb_get1pkt(&pkt, size, 0);
1087 
1088 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1089 
1090 	for (m = pMbuf; m != NULL; m = m->m_next) {
1091 		space += M_TRAILINGSPACE(m);
1092 	}
1093 	XNB_ASSERT(space >= size);
1094 	safe_m_freem(&pMbuf);
1095 }
1096 
1097 /**
1098  * xnb_txpkt2gnttab on an empty packet.  Should return empty gnttab
1099  */
1100 static void
1101 xnb_txpkt2gnttab_empty(char *buffer, size_t buflen)
1102 {
1103 	int n_entries;
1104 	struct xnb_pkt pkt;
1105 	struct mbuf *pMbuf;
1106 	pkt.list_len = 0;
1107 
1108 	/* must call xnb_ring2pkt just to intialize pkt */
1109 	xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
1110 	pkt.size = 0;
1111 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1112 	n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
1113 	    &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
1114 	XNB_ASSERT(n_entries == 0);
1115 	safe_m_freem(&pMbuf);
1116 }
1117 
1118 /**
1119  * xnb_txpkt2gnttab on a short packet, that can fit in one mbuf internal buffer
1120  * and has one request
1121  */
1122 static void
1123 xnb_txpkt2gnttab_short(char *buffer, size_t buflen)
1124 {
1125 	const size_t size = MINCLSIZE - 1;
1126 	int n_entries;
1127 	struct xnb_pkt pkt;
1128 	struct mbuf *pMbuf;
1129 
1130 	struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
1131 	    xnb_unit_pvt.txf.req_prod_pvt);
1132 	req->flags = 0;
1133 	req->size = size;
1134 	req->gref = 7;
1135 	req->offset = 17;
1136 	xnb_unit_pvt.txf.req_prod_pvt++;
1137 
1138 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
1139 
1140 	xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
1141 
1142 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1143 	n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
1144 	    &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
1145 	XNB_ASSERT(n_entries == 1);
1146 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == size);
1147 	/* flags should indicate gref's for source */
1148 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].flags & GNTCOPY_source_gref);
1149 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == req->offset);
1150 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.domid == DOMID_SELF);
1151 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset(
1152 	      mtod(pMbuf, vm_offset_t)));
1153 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.u.gmfn ==
1154 		virt_to_mfn(mtod(pMbuf, vm_offset_t)));
1155 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.domid == DOMID_FIRST_RESERVED);
1156 	safe_m_freem(&pMbuf);
1157 }
1158 
1159 /**
1160  * xnb_txpkt2gnttab on a packet with two requests, that can fit into a single
1161  * mbuf cluster
1162  */
1163 static void
1164 xnb_txpkt2gnttab_2req(char *buffer, size_t buflen)
1165 {
1166 	int n_entries;
1167 	struct xnb_pkt pkt;
1168 	struct mbuf *pMbuf;
1169 
1170 	struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
1171 	    xnb_unit_pvt.txf.req_prod_pvt);
1172 	req->flags = NETTXF_more_data;
1173 	req->size = 1900;
1174 	req->gref = 7;
1175 	req->offset = 0;
1176 	xnb_unit_pvt.txf.req_prod_pvt++;
1177 
1178 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
1179 	    xnb_unit_pvt.txf.req_prod_pvt);
1180 	req->flags = 0;
1181 	req->size = 500;
1182 	req->gref = 8;
1183 	req->offset = 0;
1184 	xnb_unit_pvt.txf.req_prod_pvt++;
1185 
1186 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
1187 
1188 	xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
1189 
1190 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1191 	n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
1192 	    &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
1193 
1194 	XNB_ASSERT(n_entries == 2);
1195 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == 1400);
1196 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset(
1197 	      mtod(pMbuf, vm_offset_t)));
1198 
1199 	XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == 500);
1200 	XNB_ASSERT(xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset(
1201 	      mtod(pMbuf, vm_offset_t) + 1400));
1202 	safe_m_freem(&pMbuf);
1203 }
1204 
1205 /**
1206  * xnb_txpkt2gnttab on a single request that spans two mbuf clusters
1207  */
1208 static void
1209 xnb_txpkt2gnttab_2cluster(char *buffer, size_t buflen)
1210 {
1211 	int n_entries;
1212 	struct xnb_pkt pkt;
1213 	struct mbuf *pMbuf;
1214 	const uint16_t data_this_transaction = (MCLBYTES*2) + 1;
1215 
1216 	struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
1217 	    xnb_unit_pvt.txf.req_prod_pvt);
1218 	req->flags = 0;
1219 	req->size = data_this_transaction;
1220 	req->gref = 8;
1221 	req->offset = 0;
1222 	xnb_unit_pvt.txf.req_prod_pvt++;
1223 
1224 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
1225 	xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
1226 
1227 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1228 	XNB_ASSERT(pMbuf != NULL);
1229 	if (pMbuf == NULL)
1230 		return;
1231 
1232 	n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
1233 	    &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
1234 
1235 	if (M_TRAILINGSPACE(pMbuf) == MCLBYTES) {
1236 		/* there should be three mbufs and three gnttab entries */
1237 		XNB_ASSERT(n_entries == 3);
1238 		XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == MCLBYTES);
1239 		XNB_ASSERT(
1240 		    xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset(
1241 		      mtod(pMbuf, vm_offset_t)));
1242 		XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == 0);
1243 
1244 		XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == MCLBYTES);
1245 		XNB_ASSERT(
1246 		    xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset(
1247 		      mtod(pMbuf->m_next, vm_offset_t)));
1248 		XNB_ASSERT(xnb_unit_pvt.gnttab[1].source.offset == MCLBYTES);
1249 
1250 		XNB_ASSERT(xnb_unit_pvt.gnttab[2].len == 1);
1251 		XNB_ASSERT(
1252 		    xnb_unit_pvt.gnttab[2].dest.offset == virt_to_offset(
1253 		      mtod(pMbuf->m_next, vm_offset_t)));
1254 		XNB_ASSERT(xnb_unit_pvt.gnttab[2].source.offset == 2 *
1255 			    MCLBYTES);
1256 	} else if (M_TRAILINGSPACE(pMbuf) == 2 * MCLBYTES) {
1257 		/* there should be two mbufs and two gnttab entries */
1258 		XNB_ASSERT(n_entries == 2);
1259 		XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == 2 * MCLBYTES);
1260 		XNB_ASSERT(
1261 		    xnb_unit_pvt.gnttab[0].dest.offset == virt_to_offset(
1262 		      mtod(pMbuf, vm_offset_t)));
1263 		XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == 0);
1264 
1265 		XNB_ASSERT(xnb_unit_pvt.gnttab[1].len == 1);
1266 		XNB_ASSERT(
1267 		    xnb_unit_pvt.gnttab[1].dest.offset == virt_to_offset(
1268 		      mtod(pMbuf->m_next, vm_offset_t)));
1269 		XNB_ASSERT(
1270 		    xnb_unit_pvt.gnttab[1].source.offset == 2 * MCLBYTES);
1271 
1272 	} else {
1273 		/* should never get here */
1274 		XNB_ASSERT(0);
1275 	}
1276 	m_freem(pMbuf);
1277 }
1278 
1279 /**
1280  * xnb_update_mbufc on a short packet that only has one gnttab entry
1281  */
1282 static void
1283 xnb_update_mbufc_short(char *buffer, size_t buflen)
1284 {
1285 	const size_t size = MINCLSIZE - 1;
1286 	int n_entries;
1287 	struct xnb_pkt pkt;
1288 	struct mbuf *pMbuf;
1289 
1290 	struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
1291 	    xnb_unit_pvt.txf.req_prod_pvt);
1292 	req->flags = 0;
1293 	req->size = size;
1294 	req->gref = 7;
1295 	req->offset = 17;
1296 	xnb_unit_pvt.txf.req_prod_pvt++;
1297 
1298 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
1299 
1300 	xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
1301 
1302 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1303 	n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
1304 	    &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
1305 
1306 	/* Update grant table's status fields as the hypervisor call would */
1307 	xnb_unit_pvt.gnttab[0].status = GNTST_okay;
1308 
1309 	xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries);
1310 	XNB_ASSERT(pMbuf->m_len == size);
1311 	XNB_ASSERT(pMbuf->m_pkthdr.len == size);
1312 	safe_m_freem(&pMbuf);
1313 }
1314 
1315 /**
1316  * xnb_update_mbufc on a packet with two requests, that can fit into a single
1317  * mbuf cluster
1318  */
1319 static void
1320 xnb_update_mbufc_2req(char *buffer, size_t buflen)
1321 {
1322 	int n_entries;
1323 	struct xnb_pkt pkt;
1324 	struct mbuf *pMbuf;
1325 
1326 	struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
1327 	    xnb_unit_pvt.txf.req_prod_pvt);
1328 	req->flags = NETTXF_more_data;
1329 	req->size = 1900;
1330 	req->gref = 7;
1331 	req->offset = 0;
1332 	xnb_unit_pvt.txf.req_prod_pvt++;
1333 
1334 	req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
1335 	    xnb_unit_pvt.txf.req_prod_pvt);
1336 	req->flags = 0;
1337 	req->size = 500;
1338 	req->gref = 8;
1339 	req->offset = 0;
1340 	xnb_unit_pvt.txf.req_prod_pvt++;
1341 
1342 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
1343 
1344 	xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
1345 
1346 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1347 	n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
1348 	    &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
1349 
1350 	/* Update grant table's status fields as the hypervisor call would */
1351 	xnb_unit_pvt.gnttab[0].status = GNTST_okay;
1352 	xnb_unit_pvt.gnttab[1].status = GNTST_okay;
1353 
1354 	xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries);
1355 	XNB_ASSERT(n_entries == 2);
1356 	XNB_ASSERT(pMbuf->m_pkthdr.len == 1900);
1357 	XNB_ASSERT(pMbuf->m_len == 1900);
1358 
1359 	safe_m_freem(&pMbuf);
1360 }
1361 
1362 /**
1363  * xnb_update_mbufc on a single request that spans two mbuf clusters
1364  */
1365 static void
1366 xnb_update_mbufc_2cluster(char *buffer, size_t buflen)
1367 {
1368 	int i;
1369 	int n_entries;
1370 	struct xnb_pkt pkt;
1371 	struct mbuf *pMbuf;
1372 	const uint16_t data_this_transaction = (MCLBYTES*2) + 1;
1373 
1374 	struct netif_tx_request *req = RING_GET_REQUEST(&xnb_unit_pvt.txf,
1375 	    xnb_unit_pvt.txf.req_prod_pvt);
1376 	req->flags = 0;
1377 	req->size = data_this_transaction;
1378 	req->gref = 8;
1379 	req->offset = 0;
1380 	xnb_unit_pvt.txf.req_prod_pvt++;
1381 
1382 	RING_PUSH_REQUESTS(&xnb_unit_pvt.txf);
1383 	xnb_ring2pkt(&pkt, &xnb_unit_pvt.txb, xnb_unit_pvt.txb.req_cons);
1384 
1385 	pMbuf = xnb_pkt2mbufc(&pkt, xnb_unit_pvt.ifp);
1386 	n_entries = xnb_txpkt2gnttab(&pkt, pMbuf, xnb_unit_pvt.gnttab,
1387 	    &xnb_unit_pvt.txb, DOMID_FIRST_RESERVED);
1388 
1389 	/* Update grant table's status fields */
1390 	for (i = 0; i < n_entries; i++) {
1391 		xnb_unit_pvt.gnttab[0].status = GNTST_okay;
1392 	}
1393 	xnb_update_mbufc(pMbuf, xnb_unit_pvt.gnttab, n_entries);
1394 
1395 	if (n_entries == 3) {
1396 		/* there should be three mbufs and three gnttab entries */
1397 		XNB_ASSERT(pMbuf->m_pkthdr.len == data_this_transaction);
1398 		XNB_ASSERT(pMbuf->m_len == MCLBYTES);
1399 		XNB_ASSERT(pMbuf->m_next->m_len == MCLBYTES);
1400 		XNB_ASSERT(pMbuf->m_next->m_next->m_len == 1);
1401 	} else if (n_entries == 2) {
1402 		/* there should be two mbufs and two gnttab entries */
1403 		XNB_ASSERT(n_entries == 2);
1404 		XNB_ASSERT(pMbuf->m_pkthdr.len == data_this_transaction);
1405 		XNB_ASSERT(pMbuf->m_len == 2 * MCLBYTES);
1406 		XNB_ASSERT(pMbuf->m_next->m_len == 1);
1407 	} else {
1408 		/* should never get here */
1409 		XNB_ASSERT(0);
1410 	}
1411 	safe_m_freem(&pMbuf);
1412 }
1413 
1414 /** xnb_mbufc2pkt on an empty mbufc */
1415 static void
1416 xnb_mbufc2pkt_empty(char *buffer, size_t buflen) {
1417 	struct xnb_pkt pkt;
1418 	int free_slots = 64;
1419 	struct mbuf *mbuf;
1420 
1421 	mbuf = m_get(M_WAITOK, MT_DATA);
1422 	/*
1423 	 * note: it is illegal to set M_PKTHDR on a mbuf with no data.  Doing so
1424 	 * will cause m_freem to segfault
1425 	 */
1426 	XNB_ASSERT(mbuf->m_len == 0);
1427 
1428 	xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots);
1429 	XNB_ASSERT(! xnb_pkt_is_valid(&pkt));
1430 
1431 	safe_m_freem(&mbuf);
1432 }
1433 
1434 /** xnb_mbufc2pkt on a short mbufc */
1435 static void
1436 xnb_mbufc2pkt_short(char *buffer, size_t buflen) {
1437 	struct xnb_pkt pkt;
1438 	size_t size = 128;
1439 	int free_slots = 64;
1440 	RING_IDX start = 9;
1441 	struct mbuf *mbuf;
1442 
1443 	mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
1444 	mbuf->m_flags |= M_PKTHDR;
1445 	mbuf->m_pkthdr.len = size;
1446 	mbuf->m_len = size;
1447 
1448 	xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
1449 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
1450 	XNB_ASSERT(pkt.size == size);
1451 	XNB_ASSERT(pkt.car_size == size);
1452 	XNB_ASSERT(! (pkt.flags &
1453 	      (NETRXF_more_data | NETRXF_extra_info)));
1454 	XNB_ASSERT(pkt.list_len == 1);
1455 	XNB_ASSERT(pkt.car == start);
1456 
1457 	safe_m_freem(&mbuf);
1458 }
1459 
1460 /** xnb_mbufc2pkt on a single mbuf with an mbuf cluster */
1461 static void
1462 xnb_mbufc2pkt_1cluster(char *buffer, size_t buflen) {
1463 	struct xnb_pkt pkt;
1464 	size_t size = MCLBYTES;
1465 	int free_slots = 32;
1466 	RING_IDX start = 12;
1467 	struct mbuf *mbuf;
1468 
1469 	mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
1470 	mbuf->m_flags |= M_PKTHDR;
1471 	mbuf->m_pkthdr.len = size;
1472 	mbuf->m_len = size;
1473 
1474 	xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
1475 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
1476 	XNB_ASSERT(pkt.size == size);
1477 	XNB_ASSERT(pkt.car_size == size);
1478 	XNB_ASSERT(! (pkt.flags &
1479 	      (NETRXF_more_data | NETRXF_extra_info)));
1480 	XNB_ASSERT(pkt.list_len == 1);
1481 	XNB_ASSERT(pkt.car == start);
1482 
1483 	safe_m_freem(&mbuf);
1484 }
1485 
1486 /** xnb_mbufc2pkt on a two-mbuf chain with short data regions */
1487 static void
1488 xnb_mbufc2pkt_2short(char *buffer, size_t buflen) {
1489 	struct xnb_pkt pkt;
1490 	size_t size1 = MHLEN - 5;
1491 	size_t size2 = MHLEN - 15;
1492 	int free_slots = 32;
1493 	RING_IDX start = 14;
1494 	struct mbuf *mbufc, *mbufc2;
1495 
1496 	mbufc = m_getm(NULL, size1, M_WAITOK, MT_DATA);
1497 	XNB_ASSERT(mbufc != NULL);
1498 	if (mbufc == NULL)
1499 		return;
1500 	mbufc->m_flags |= M_PKTHDR;
1501 
1502 	mbufc2 = m_getm(mbufc, size2, M_WAITOK, MT_DATA);
1503 	XNB_ASSERT(mbufc2 != NULL);
1504 	if (mbufc2 == NULL) {
1505 		safe_m_freem(&mbufc);
1506 		return;
1507 	}
1508 	mbufc2->m_pkthdr.len = size1 + size2;
1509 	mbufc2->m_len = size1;
1510 
1511 	xnb_mbufc2pkt(mbufc2, &pkt, start, free_slots);
1512 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
1513 	XNB_ASSERT(pkt.size == size1 + size2);
1514 	XNB_ASSERT(pkt.car == start);
1515 	/*
1516 	 * The second m_getm may allocate a new mbuf and append
1517 	 * it to the chain, or it may simply extend the first mbuf.
1518 	 */
1519 	if (mbufc2->m_next != NULL) {
1520 		XNB_ASSERT(pkt.car_size == size1);
1521 		XNB_ASSERT(pkt.list_len == 1);
1522 		XNB_ASSERT(pkt.cdr == start + 1);
1523 	}
1524 
1525 	safe_m_freem(&mbufc2);
1526 }
1527 
1528 /** xnb_mbufc2pkt on a mbuf chain with >1 mbuf cluster */
1529 static void
1530 xnb_mbufc2pkt_long(char *buffer, size_t buflen) {
1531 	struct xnb_pkt pkt;
1532 	size_t size = 14 * MCLBYTES / 3;
1533 	size_t size_remaining;
1534 	int free_slots = 15;
1535 	RING_IDX start = 3;
1536 	struct mbuf *mbufc, *m;
1537 
1538 	mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA);
1539 	XNB_ASSERT(mbufc != NULL);
1540 	if (mbufc == NULL)
1541 		return;
1542 	mbufc->m_flags |= M_PKTHDR;
1543 
1544 	mbufc->m_pkthdr.len = size;
1545 	size_remaining = size;
1546 	for (m = mbufc; m != NULL; m = m->m_next) {
1547 		m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining);
1548 		size_remaining -= m->m_len;
1549 	}
1550 
1551 	xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
1552 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
1553 	XNB_ASSERT(pkt.size == size);
1554 	XNB_ASSERT(pkt.car == start);
1555 	XNB_ASSERT(pkt.car_size = mbufc->m_len);
1556 	/*
1557 	 * There should be >1 response in the packet, and there is no
1558 	 * extra info.
1559 	 */
1560 	XNB_ASSERT(! (pkt.flags & NETRXF_extra_info));
1561 	XNB_ASSERT(pkt.cdr == pkt.car + 1);
1562 
1563 	safe_m_freem(&mbufc);
1564 }
1565 
1566 /** xnb_mbufc2pkt on a mbuf chain with >1 mbuf cluster and extra info */
1567 static void
1568 xnb_mbufc2pkt_extra(char *buffer, size_t buflen) {
1569 	struct xnb_pkt pkt;
1570 	size_t size = 14 * MCLBYTES / 3;
1571 	size_t size_remaining;
1572 	int free_slots = 15;
1573 	RING_IDX start = 3;
1574 	struct mbuf *mbufc, *m;
1575 
1576 	mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA);
1577 	XNB_ASSERT(mbufc != NULL);
1578 	if (mbufc == NULL)
1579 		return;
1580 
1581 	mbufc->m_flags |= M_PKTHDR;
1582 	mbufc->m_pkthdr.len = size;
1583 	mbufc->m_pkthdr.csum_flags |= CSUM_TSO;
1584 	mbufc->m_pkthdr.tso_segsz = TCP_MSS - 40;
1585 	size_remaining = size;
1586 	for (m = mbufc; m != NULL; m = m->m_next) {
1587 		m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining);
1588 		size_remaining -= m->m_len;
1589 	}
1590 
1591 	xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
1592 	XNB_ASSERT(xnb_pkt_is_valid(&pkt));
1593 	XNB_ASSERT(pkt.size == size);
1594 	XNB_ASSERT(pkt.car == start);
1595 	XNB_ASSERT(pkt.car_size = mbufc->m_len);
1596 	/* There should be >1 response in the packet, there is extra info */
1597 	XNB_ASSERT(pkt.flags & NETRXF_extra_info);
1598 	XNB_ASSERT(pkt.flags & NETRXF_data_validated);
1599 	XNB_ASSERT(pkt.cdr == pkt.car + 2);
1600 	XNB_ASSERT(pkt.extra.u.gso.size = mbufc->m_pkthdr.tso_segsz);
1601 	XNB_ASSERT(pkt.extra.type == XEN_NETIF_EXTRA_TYPE_GSO);
1602 	XNB_ASSERT(! (pkt.extra.flags & XEN_NETIF_EXTRA_FLAG_MORE));
1603 
1604 	safe_m_freem(&mbufc);
1605 }
1606 
1607 /** xnb_mbufc2pkt with insufficient space in the ring */
1608 static void
1609 xnb_mbufc2pkt_nospace(char *buffer, size_t buflen) {
1610 	struct xnb_pkt pkt;
1611 	size_t size = 14 * MCLBYTES / 3;
1612 	size_t size_remaining;
1613 	int free_slots = 2;
1614 	RING_IDX start = 3;
1615 	struct mbuf *mbufc, *m;
1616 	int error;
1617 
1618 	mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA);
1619 	XNB_ASSERT(mbufc != NULL);
1620 	if (mbufc == NULL)
1621 		return;
1622 	mbufc->m_flags |= M_PKTHDR;
1623 
1624 	mbufc->m_pkthdr.len = size;
1625 	size_remaining = size;
1626 	for (m = mbufc; m != NULL; m = m->m_next) {
1627 		m->m_len = MAX(M_TRAILINGSPACE(m), size_remaining);
1628 		size_remaining -= m->m_len;
1629 	}
1630 
1631 	error = xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
1632 	XNB_ASSERT(error == EAGAIN);
1633 	XNB_ASSERT(! xnb_pkt_is_valid(&pkt));
1634 
1635 	safe_m_freem(&mbufc);
1636 }
1637 
1638 /**
1639  * xnb_rxpkt2gnttab on an empty packet.  Should return empty gnttab
1640  */
1641 static void
1642 xnb_rxpkt2gnttab_empty(char *buffer, size_t buflen)
1643 {
1644 	struct xnb_pkt pkt;
1645 	int nr_entries;
1646 	int free_slots = 60;
1647 	struct mbuf *mbuf;
1648 
1649 	mbuf = m_get(M_WAITOK, MT_DATA);
1650 
1651 	xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots);
1652 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
1653 			&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
1654 
1655 	XNB_ASSERT(nr_entries == 0);
1656 
1657 	safe_m_freem(&mbuf);
1658 }
1659 
1660 /** xnb_rxpkt2gnttab on a short packet without extra data */
1661 static void
1662 xnb_rxpkt2gnttab_short(char *buffer, size_t buflen) {
1663 	struct xnb_pkt pkt;
1664 	int nr_entries;
1665 	size_t size = 128;
1666 	int free_slots = 60;
1667 	RING_IDX start = 9;
1668 	struct netif_rx_request *req;
1669 	struct mbuf *mbuf;
1670 
1671 	mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
1672 	mbuf->m_flags |= M_PKTHDR;
1673 	mbuf->m_pkthdr.len = size;
1674 	mbuf->m_len = size;
1675 
1676 	xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
1677 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf,
1678 			       xnb_unit_pvt.txf.req_prod_pvt);
1679 	req->gref = 7;
1680 
1681 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
1682 				      &xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
1683 
1684 	XNB_ASSERT(nr_entries == 1);
1685 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].len == size);
1686 	/* flags should indicate gref's for dest */
1687 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].flags & GNTCOPY_dest_gref);
1688 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.offset == 0);
1689 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.domid == DOMID_SELF);
1690 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.offset == virt_to_offset(
1691 		   mtod(mbuf, vm_offset_t)));
1692 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].source.u.gmfn ==
1693 		   virt_to_mfn(mtod(mbuf, vm_offset_t)));
1694 	XNB_ASSERT(xnb_unit_pvt.gnttab[0].dest.domid == DOMID_FIRST_RESERVED);
1695 
1696 	safe_m_freem(&mbuf);
1697 }
1698 
1699 /**
1700  * xnb_rxpkt2gnttab on a packet with two different mbufs in a single chai
1701  */
1702 static void
1703 xnb_rxpkt2gnttab_2req(char *buffer, size_t buflen)
1704 {
1705 	struct xnb_pkt pkt;
1706 	int nr_entries;
1707 	int i, num_mbufs;
1708 	size_t total_granted_size = 0;
1709 	size_t size = MJUMPAGESIZE + 1;
1710 	int free_slots = 60;
1711 	RING_IDX start = 11;
1712 	struct netif_rx_request *req;
1713 	struct mbuf *mbuf, *m;
1714 
1715 	mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
1716 	mbuf->m_flags |= M_PKTHDR;
1717 	mbuf->m_pkthdr.len = size;
1718 	mbuf->m_len = size;
1719 
1720 	xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
1721 
1722 	for (i = 0, m=mbuf; m != NULL; i++, m = m->m_next) {
1723 		req = RING_GET_REQUEST(&xnb_unit_pvt.rxf,
1724 		    xnb_unit_pvt.txf.req_prod_pvt);
1725 		req->gref = i;
1726 		req->id = 5;
1727 	}
1728 	num_mbufs = i;
1729 
1730 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
1731 			&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
1732 
1733 	XNB_ASSERT(nr_entries >= num_mbufs);
1734 	for (i = 0; i < nr_entries; i++) {
1735 		int end_offset = xnb_unit_pvt.gnttab[i].len +
1736 			xnb_unit_pvt.gnttab[i].dest.offset;
1737 		XNB_ASSERT(end_offset <= PAGE_SIZE);
1738 		total_granted_size += xnb_unit_pvt.gnttab[i].len;
1739 	}
1740 	XNB_ASSERT(total_granted_size == size);
1741 }
1742 
1743 /**
1744  * xnb_rxpkt2rsp on an empty packet.  Shouldn't make any response
1745  */
1746 static void
1747 xnb_rxpkt2rsp_empty(char *buffer, size_t buflen)
1748 {
1749 	struct xnb_pkt pkt;
1750 	int nr_entries;
1751 	int nr_reqs;
1752 	int free_slots = 60;
1753 	netif_rx_back_ring_t rxb_backup = xnb_unit_pvt.rxb;
1754 	netif_rx_sring_t rxs_backup = *xnb_unit_pvt.rxs;
1755 	struct mbuf *mbuf;
1756 
1757 	mbuf = m_get(M_WAITOK, MT_DATA);
1758 
1759 	xnb_mbufc2pkt(mbuf, &pkt, 0, free_slots);
1760 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
1761 			&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
1762 
1763 	nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
1764 	    &xnb_unit_pvt.rxb);
1765 	XNB_ASSERT(nr_reqs == 0);
1766 	XNB_ASSERT(
1767 	    memcmp(&rxb_backup, &xnb_unit_pvt.rxb, sizeof(rxb_backup)) == 0);
1768 	XNB_ASSERT(
1769 	    memcmp(&rxs_backup, xnb_unit_pvt.rxs, sizeof(rxs_backup)) == 0);
1770 
1771 	safe_m_freem(&mbuf);
1772 }
1773 
1774 /**
1775  * xnb_rxpkt2rsp on a short packet with no extras
1776  */
1777 static void
1778 xnb_rxpkt2rsp_short(char *buffer, size_t buflen)
1779 {
1780 	struct xnb_pkt pkt;
1781 	int nr_entries, nr_reqs;
1782 	size_t size = 128;
1783 	int free_slots = 60;
1784 	RING_IDX start = 5;
1785 	struct netif_rx_request *req;
1786 	struct netif_rx_response *rsp;
1787 	struct mbuf *mbuf;
1788 
1789 	mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
1790 	mbuf->m_flags |= M_PKTHDR;
1791 	mbuf->m_pkthdr.len = size;
1792 	mbuf->m_len = size;
1793 
1794 	xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
1795 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
1796 	req->gref = 7;
1797 	xnb_unit_pvt.rxb.req_cons = start;
1798 	xnb_unit_pvt.rxb.rsp_prod_pvt = start;
1799 	xnb_unit_pvt.rxs->req_prod = start + 1;
1800 	xnb_unit_pvt.rxs->rsp_prod = start;
1801 
1802 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
1803 			&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
1804 
1805 	nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
1806 	    &xnb_unit_pvt.rxb);
1807 
1808 	XNB_ASSERT(nr_reqs == 1);
1809 	XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 1);
1810 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
1811 	XNB_ASSERT(rsp->id == req->id);
1812 	XNB_ASSERT(rsp->offset == 0);
1813 	XNB_ASSERT((rsp->flags & (NETRXF_more_data | NETRXF_extra_info)) == 0);
1814 	XNB_ASSERT(rsp->status == size);
1815 
1816 	safe_m_freem(&mbuf);
1817 }
1818 
1819 /**
1820  * xnb_rxpkt2rsp with extra data
1821  */
1822 static void
1823 xnb_rxpkt2rsp_extra(char *buffer, size_t buflen)
1824 {
1825 	struct xnb_pkt pkt;
1826 	int nr_entries, nr_reqs;
1827 	size_t size = 14;
1828 	int free_slots = 15;
1829 	RING_IDX start = 3;
1830 	uint16_t id = 49;
1831 	uint16_t gref = 65;
1832 	uint16_t mss = TCP_MSS - 40;
1833 	struct mbuf *mbufc;
1834 	struct netif_rx_request *req;
1835 	struct netif_rx_response *rsp;
1836 	struct netif_extra_info *ext;
1837 
1838 	mbufc = m_getm(NULL, size, M_WAITOK, MT_DATA);
1839 	XNB_ASSERT(mbufc != NULL);
1840 	if (mbufc == NULL)
1841 		return;
1842 
1843 	mbufc->m_flags |= M_PKTHDR;
1844 	mbufc->m_pkthdr.len = size;
1845 	mbufc->m_pkthdr.csum_flags |= CSUM_TSO;
1846 	mbufc->m_pkthdr.tso_segsz = mss;
1847 	mbufc->m_len = size;
1848 
1849 	xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
1850 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
1851 	req->id = id;
1852 	req->gref = gref;
1853 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1);
1854 	req->id = id + 1;
1855 	req->gref = gref + 1;
1856 	xnb_unit_pvt.rxb.req_cons = start;
1857 	xnb_unit_pvt.rxb.rsp_prod_pvt = start;
1858 	xnb_unit_pvt.rxs->req_prod = start + 2;
1859 	xnb_unit_pvt.rxs->rsp_prod = start;
1860 
1861 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbufc, xnb_unit_pvt.gnttab,
1862 			&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
1863 
1864 	nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
1865 	    &xnb_unit_pvt.rxb);
1866 
1867 	XNB_ASSERT(nr_reqs == 2);
1868 	XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 2);
1869 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
1870 	XNB_ASSERT(rsp->id == id);
1871 	XNB_ASSERT((rsp->flags & NETRXF_more_data) == 0);
1872 	XNB_ASSERT((rsp->flags & NETRXF_extra_info));
1873 	XNB_ASSERT((rsp->flags & NETRXF_data_validated));
1874 	XNB_ASSERT((rsp->flags & NETRXF_csum_blank));
1875 	XNB_ASSERT(rsp->status == size);
1876 
1877 	ext = (struct netif_extra_info*)
1878 		RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start + 1);
1879 	XNB_ASSERT(ext->type == XEN_NETIF_EXTRA_TYPE_GSO);
1880 	XNB_ASSERT(! (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE));
1881 	XNB_ASSERT(ext->u.gso.size == mss);
1882 	XNB_ASSERT(ext->u.gso.type == XEN_NETIF_EXTRA_TYPE_GSO);
1883 
1884 	safe_m_freem(&mbufc);
1885 }
1886 
1887 /**
1888  * xnb_rxpkt2rsp on a packet with more than a pages's worth of data.  It should
1889  * generate two response slot
1890  */
1891 static void
1892 xnb_rxpkt2rsp_2slots(char *buffer, size_t buflen)
1893 {
1894 	struct xnb_pkt pkt;
1895 	int nr_entries, nr_reqs;
1896 	size_t size = PAGE_SIZE + 100;
1897 	int free_slots = 3;
1898 	uint16_t id1 = 17;
1899 	uint16_t id2 = 37;
1900 	uint16_t gref1 = 24;
1901 	uint16_t gref2 = 34;
1902 	RING_IDX start = 15;
1903 	struct netif_rx_request *req;
1904 	struct netif_rx_response *rsp;
1905 	struct mbuf *mbuf;
1906 
1907 	mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
1908 	mbuf->m_flags |= M_PKTHDR;
1909 	mbuf->m_pkthdr.len = size;
1910 	if (mbuf->m_next != NULL) {
1911 		size_t first_len = MIN(M_TRAILINGSPACE(mbuf), size);
1912 		mbuf->m_len = first_len;
1913 		mbuf->m_next->m_len = size - first_len;
1914 
1915 	} else {
1916 		mbuf->m_len = size;
1917 	}
1918 
1919 	xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
1920 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
1921 	req->gref = gref1;
1922 	req->id = id1;
1923 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1);
1924 	req->gref = gref2;
1925 	req->id = id2;
1926 	xnb_unit_pvt.rxb.req_cons = start;
1927 	xnb_unit_pvt.rxb.rsp_prod_pvt = start;
1928 	xnb_unit_pvt.rxs->req_prod = start + 2;
1929 	xnb_unit_pvt.rxs->rsp_prod = start;
1930 
1931 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
1932 			&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
1933 
1934 	nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
1935 	    &xnb_unit_pvt.rxb);
1936 
1937 	XNB_ASSERT(nr_reqs == 2);
1938 	XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 2);
1939 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
1940 	XNB_ASSERT(rsp->id == id1);
1941 	XNB_ASSERT(rsp->offset == 0);
1942 	XNB_ASSERT((rsp->flags & NETRXF_extra_info) == 0);
1943 	XNB_ASSERT(rsp->flags & NETRXF_more_data);
1944 	XNB_ASSERT(rsp->status == PAGE_SIZE);
1945 
1946 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start + 1);
1947 	XNB_ASSERT(rsp->id == id2);
1948 	XNB_ASSERT(rsp->offset == 0);
1949 	XNB_ASSERT((rsp->flags & NETRXF_extra_info) == 0);
1950 	XNB_ASSERT(! (rsp->flags & NETRXF_more_data));
1951 	XNB_ASSERT(rsp->status == size - PAGE_SIZE);
1952 
1953 	safe_m_freem(&mbuf);
1954 }
1955 
1956 /** xnb_rxpkt2rsp on a grant table with two sub-page entries */
1957 static void
1958 xnb_rxpkt2rsp_2short(char *buffer, size_t buflen) {
1959 	struct xnb_pkt pkt;
1960 	int nr_reqs, nr_entries;
1961 	size_t size1 = MHLEN - 5;
1962 	size_t size2 = MHLEN - 15;
1963 	int free_slots = 32;
1964 	RING_IDX start = 14;
1965 	uint16_t id = 47;
1966 	uint16_t gref = 54;
1967 	struct netif_rx_request *req;
1968 	struct netif_rx_response *rsp;
1969 	struct mbuf *mbufc;
1970 
1971 	mbufc = m_getm(NULL, size1, M_WAITOK, MT_DATA);
1972 	XNB_ASSERT(mbufc != NULL);
1973 	if (mbufc == NULL)
1974 		return;
1975 	mbufc->m_flags |= M_PKTHDR;
1976 
1977 	m_getm(mbufc, size2, M_WAITOK, MT_DATA);
1978 	XNB_ASSERT(mbufc->m_next != NULL);
1979 	mbufc->m_pkthdr.len = size1 + size2;
1980 	mbufc->m_len = size1;
1981 	mbufc->m_next->m_len = size2;
1982 
1983 	xnb_mbufc2pkt(mbufc, &pkt, start, free_slots);
1984 
1985 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
1986 	req->gref = gref;
1987 	req->id = id;
1988 	xnb_unit_pvt.rxb.req_cons = start;
1989 	xnb_unit_pvt.rxb.rsp_prod_pvt = start;
1990 	xnb_unit_pvt.rxs->req_prod = start + 1;
1991 	xnb_unit_pvt.rxs->rsp_prod = start;
1992 
1993 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbufc, xnb_unit_pvt.gnttab,
1994 			&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
1995 
1996 	nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
1997 	    &xnb_unit_pvt.rxb);
1998 
1999 	XNB_ASSERT(nr_entries == 2);
2000 	XNB_ASSERT(nr_reqs == 1);
2001 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
2002 	XNB_ASSERT(rsp->id == id);
2003 	XNB_ASSERT(rsp->status == size1 + size2);
2004 	XNB_ASSERT(rsp->offset == 0);
2005 	XNB_ASSERT(! (rsp->flags & (NETRXF_more_data | NETRXF_extra_info)));
2006 
2007 	safe_m_freem(&mbufc);
2008 }
2009 
2010 /**
2011  * xnb_rxpkt2rsp on a long packet with a hypervisor gnttab_copy error
2012  * Note: this test will result in an error message being printed to the console
2013  * such as:
2014  * xnb(xnb_rxpkt2rsp:1720): Got error -1 for hypervisor gnttab_copy status
2015  */
2016 static void
2017 xnb_rxpkt2rsp_copyerror(char *buffer, size_t buflen)
2018 {
2019 	struct xnb_pkt pkt;
2020 	int nr_entries, nr_reqs;
2021 	int id = 7;
2022 	int gref = 42;
2023 	uint16_t canary = 6859;
2024 	size_t size = 7 * MCLBYTES;
2025 	int free_slots = 9;
2026 	RING_IDX start = 2;
2027 	struct netif_rx_request *req;
2028 	struct netif_rx_response *rsp;
2029 	struct mbuf *mbuf;
2030 
2031 	mbuf = m_getm(NULL, size, M_WAITOK, MT_DATA);
2032 	mbuf->m_flags |= M_PKTHDR;
2033 	mbuf->m_pkthdr.len = size;
2034 	mbuf->m_len = size;
2035 
2036 	xnb_mbufc2pkt(mbuf, &pkt, start, free_slots);
2037 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start);
2038 	req->gref = gref;
2039 	req->id = id;
2040 	xnb_unit_pvt.rxb.req_cons = start;
2041 	xnb_unit_pvt.rxb.rsp_prod_pvt = start;
2042 	xnb_unit_pvt.rxs->req_prod = start + 1;
2043 	xnb_unit_pvt.rxs->rsp_prod = start;
2044 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1);
2045 	req->gref = canary;
2046 	req->id = canary;
2047 
2048 	nr_entries = xnb_rxpkt2gnttab(&pkt, mbuf, xnb_unit_pvt.gnttab,
2049 			&xnb_unit_pvt.rxb, DOMID_FIRST_RESERVED);
2050 	/* Inject the error*/
2051 	xnb_unit_pvt.gnttab[2].status = GNTST_general_error;
2052 
2053 	nr_reqs = xnb_rxpkt2rsp(&pkt, xnb_unit_pvt.gnttab, nr_entries,
2054 	    &xnb_unit_pvt.rxb);
2055 
2056 	XNB_ASSERT(nr_reqs == 1);
2057 	XNB_ASSERT(xnb_unit_pvt.rxb.rsp_prod_pvt == start + 1);
2058 	rsp = RING_GET_RESPONSE(&xnb_unit_pvt.rxb, start);
2059 	XNB_ASSERT(rsp->id == id);
2060 	XNB_ASSERT(rsp->status == NETIF_RSP_ERROR);
2061 	req = RING_GET_REQUEST(&xnb_unit_pvt.rxf, start + 1);
2062 	XNB_ASSERT(req->gref == canary);
2063 	XNB_ASSERT(req->id == canary);
2064 
2065 	safe_m_freem(&mbuf);
2066 }
2067 
2068 #if defined(INET) || defined(INET6)
2069 /**
2070  * xnb_add_mbuf_cksum on an ARP request packet
2071  */
2072 static void
2073 xnb_add_mbuf_cksum_arp(char *buffer, size_t buflen)
2074 {
2075 	const size_t pkt_len = sizeof(struct ether_header) +
2076 		sizeof(struct ether_arp);
2077 	struct mbuf *mbufc;
2078 	struct ether_header *eh;
2079 	struct ether_arp *ep;
2080 	unsigned char pkt_orig[pkt_len];
2081 
2082 	mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
2083 	/* Fill in an example arp request */
2084 	eh = mtod(mbufc, struct ether_header*);
2085 	eh->ether_dhost[0] = 0xff;
2086 	eh->ether_dhost[1] = 0xff;
2087 	eh->ether_dhost[2] = 0xff;
2088 	eh->ether_dhost[3] = 0xff;
2089 	eh->ether_dhost[4] = 0xff;
2090 	eh->ether_dhost[5] = 0xff;
2091 	eh->ether_shost[0] = 0x00;
2092 	eh->ether_shost[1] = 0x15;
2093 	eh->ether_shost[2] = 0x17;
2094 	eh->ether_shost[3] = 0xe9;
2095 	eh->ether_shost[4] = 0x30;
2096 	eh->ether_shost[5] = 0x68;
2097 	eh->ether_type = htons(ETHERTYPE_ARP);
2098 	ep = (struct ether_arp*)(eh + 1);
2099 	ep->ea_hdr.ar_hrd = htons(ARPHRD_ETHER);
2100 	ep->ea_hdr.ar_pro = htons(ETHERTYPE_IP);
2101 	ep->ea_hdr.ar_hln = 6;
2102 	ep->ea_hdr.ar_pln = 4;
2103 	ep->ea_hdr.ar_op = htons(ARPOP_REQUEST);
2104 	ep->arp_sha[0] = 0x00;
2105 	ep->arp_sha[1] = 0x15;
2106 	ep->arp_sha[2] = 0x17;
2107 	ep->arp_sha[3] = 0xe9;
2108 	ep->arp_sha[4] = 0x30;
2109 	ep->arp_sha[5] = 0x68;
2110 	ep->arp_spa[0] = 0xc0;
2111 	ep->arp_spa[1] = 0xa8;
2112 	ep->arp_spa[2] = 0x0a;
2113 	ep->arp_spa[3] = 0x04;
2114 	bzero(&(ep->arp_tha), ETHER_ADDR_LEN);
2115 	ep->arp_tpa[0] = 0xc0;
2116 	ep->arp_tpa[1] = 0xa8;
2117 	ep->arp_tpa[2] = 0x0a;
2118 	ep->arp_tpa[3] = 0x06;
2119 
2120 	/* fill in the length field */
2121 	mbufc->m_len = pkt_len;
2122 	mbufc->m_pkthdr.len = pkt_len;
2123 	/* indicate that the netfront uses hw-assisted checksums */
2124 	mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID   |
2125 				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2126 
2127 	/* Make a backup copy of the packet */
2128 	bcopy(mtod(mbufc, const void*), pkt_orig, pkt_len);
2129 
2130 	/* Function under test */
2131 	xnb_add_mbuf_cksum(mbufc);
2132 
2133 	/* Verify that the packet's data did not change */
2134 	XNB_ASSERT(bcmp(mtod(mbufc, const void*), pkt_orig, pkt_len) == 0);
2135 	m_freem(mbufc);
2136 }
2137 
2138 /**
2139  * Helper function that populates the ethernet header and IP header used by
2140  * some of the xnb_add_mbuf_cksum unit tests.  m must already be allocated
2141  * and must be large enough
2142  */
2143 static void
2144 xnb_fill_eh_and_ip(struct mbuf *m, uint16_t ip_len, uint16_t ip_id,
2145 		   uint16_t ip_p, uint16_t ip_off, uint16_t ip_sum)
2146 {
2147 	struct ether_header *eh;
2148 	struct ip *iph;
2149 
2150 	eh = mtod(m, struct ether_header*);
2151 	eh->ether_dhost[0] = 0x00;
2152 	eh->ether_dhost[1] = 0x16;
2153 	eh->ether_dhost[2] = 0x3e;
2154 	eh->ether_dhost[3] = 0x23;
2155 	eh->ether_dhost[4] = 0x50;
2156 	eh->ether_dhost[5] = 0x0b;
2157 	eh->ether_shost[0] = 0x00;
2158 	eh->ether_shost[1] = 0x16;
2159 	eh->ether_shost[2] = 0x30;
2160 	eh->ether_shost[3] = 0x00;
2161 	eh->ether_shost[4] = 0x00;
2162 	eh->ether_shost[5] = 0x00;
2163 	eh->ether_type = htons(ETHERTYPE_IP);
2164 	iph = (struct ip*)(eh + 1);
2165 	iph->ip_hl = 0x5;	/* 5 dwords == 20 bytes */
2166 	iph->ip_v = 4;		/* IP v4 */
2167 	iph->ip_tos = 0;
2168 	iph->ip_len = htons(ip_len);
2169 	iph->ip_id = htons(ip_id);
2170 	iph->ip_off = htons(ip_off);
2171 	iph->ip_ttl = 64;
2172 	iph->ip_p = ip_p;
2173 	iph->ip_sum = htons(ip_sum);
2174 	iph->ip_src.s_addr = htonl(0xc0a80a04);
2175 	iph->ip_dst.s_addr = htonl(0xc0a80a05);
2176 }
2177 
2178 /**
2179  * xnb_add_mbuf_cksum on an ICMP packet, based on a tcpdump of an actual
2180  * ICMP packet
2181  */
2182 static void
2183 xnb_add_mbuf_cksum_icmp(char *buffer, size_t buflen)
2184 {
2185 	const size_t icmp_len = 64;	/* set by ping(1) */
2186 	const size_t pkt_len = sizeof(struct ether_header) +
2187 		sizeof(struct ip) + icmp_len;
2188 	struct mbuf *mbufc;
2189 	struct ether_header *eh;
2190 	struct ip *iph;
2191 	struct icmp *icmph;
2192 	unsigned char pkt_orig[icmp_len];
2193 	uint32_t *tv_field;
2194 	uint8_t *data_payload;
2195 	int i;
2196 	const uint16_t ICMP_CSUM = 0xaed7;
2197 	const uint16_t IP_CSUM = 0xe533;
2198 
2199 	mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
2200 	/* Fill in an example ICMP ping request */
2201 	eh = mtod(mbufc, struct ether_header*);
2202 	xnb_fill_eh_and_ip(mbufc, 84, 28, IPPROTO_ICMP, 0, 0);
2203 	iph = (struct ip*)(eh + 1);
2204 	icmph = (struct icmp*)(iph + 1);
2205 	icmph->icmp_type = ICMP_ECHO;
2206 	icmph->icmp_code = 0;
2207 	icmph->icmp_cksum = htons(ICMP_CSUM);
2208 	icmph->icmp_id = htons(31492);
2209 	icmph->icmp_seq = htons(0);
2210 	/*
2211 	 * ping(1) uses bcopy to insert a native-endian timeval after icmp_seq.
2212 	 * For this test, we will set the bytes individually for portability.
2213 	 */
2214 	tv_field = (uint32_t*)(&(icmph->icmp_hun));
2215 	tv_field[0] = 0x4f02cfac;
2216 	tv_field[1] = 0x0007c46a;
2217 	/*
2218 	 * Remainder of packet is an incrmenting 8 bit integer, starting with 8
2219 	 */
2220 	data_payload = (uint8_t*)(&tv_field[2]);
2221 	for (i = 8; i < 37; i++) {
2222 		*data_payload++ = i;
2223 	}
2224 
2225 	/* fill in the length field */
2226 	mbufc->m_len = pkt_len;
2227 	mbufc->m_pkthdr.len = pkt_len;
2228 	/* indicate that the netfront uses hw-assisted checksums */
2229 	mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID   |
2230 				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2231 
2232 	bcopy(mtod(mbufc, const void*), pkt_orig, icmp_len);
2233 	/* Function under test */
2234 	xnb_add_mbuf_cksum(mbufc);
2235 
2236 	/* Check the IP checksum */
2237 	XNB_ASSERT(iph->ip_sum == htons(IP_CSUM));
2238 
2239 	/* Check that the ICMP packet did not change */
2240 	XNB_ASSERT(bcmp(icmph, pkt_orig, icmp_len));
2241 	m_freem(mbufc);
2242 }
2243 
2244 /**
2245  * xnb_add_mbuf_cksum on a UDP packet, based on a tcpdump of an actual
2246  * UDP packet
2247  */
2248 static void
2249 xnb_add_mbuf_cksum_udp(char *buffer, size_t buflen)
2250 {
2251 	const size_t udp_len = 16;
2252 	const size_t pkt_len = sizeof(struct ether_header) +
2253 		sizeof(struct ip) + udp_len;
2254 	struct mbuf *mbufc;
2255 	struct ether_header *eh;
2256 	struct ip *iph;
2257 	struct udphdr *udp;
2258 	uint8_t *data_payload;
2259 	const uint16_t IP_CSUM = 0xe56b;
2260 	const uint16_t UDP_CSUM = 0xdde2;
2261 
2262 	mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
2263 	/* Fill in an example UDP packet made by 'uname | nc -u <host> 2222 */
2264 	eh = mtod(mbufc, struct ether_header*);
2265 	xnb_fill_eh_and_ip(mbufc, 36, 4, IPPROTO_UDP, 0, 0xbaad);
2266 	iph = (struct ip*)(eh + 1);
2267 	udp = (struct udphdr*)(iph + 1);
2268 	udp->uh_sport = htons(0x51ae);
2269 	udp->uh_dport = htons(0x08ae);
2270 	udp->uh_ulen = htons(udp_len);
2271 	udp->uh_sum = htons(0xbaad);  /* xnb_add_mbuf_cksum will fill this in */
2272 	data_payload = (uint8_t*)(udp + 1);
2273 	data_payload[0] = 'F';
2274 	data_payload[1] = 'r';
2275 	data_payload[2] = 'e';
2276 	data_payload[3] = 'e';
2277 	data_payload[4] = 'B';
2278 	data_payload[5] = 'S';
2279 	data_payload[6] = 'D';
2280 	data_payload[7] = '\n';
2281 
2282 	/* fill in the length field */
2283 	mbufc->m_len = pkt_len;
2284 	mbufc->m_pkthdr.len = pkt_len;
2285 	/* indicate that the netfront uses hw-assisted checksums */
2286 	mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID   |
2287 				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2288 
2289 	/* Function under test */
2290 	xnb_add_mbuf_cksum(mbufc);
2291 
2292 	/* Check the checksums */
2293 	XNB_ASSERT(iph->ip_sum == htons(IP_CSUM));
2294 	XNB_ASSERT(udp->uh_sum == htons(UDP_CSUM));
2295 
2296 	m_freem(mbufc);
2297 }
2298 
2299 /**
2300  * Helper function that populates a TCP packet used by all of the
2301  * xnb_add_mbuf_cksum tcp unit tests.  m must already be allocated and must be
2302  * large enough
2303  */
2304 static void
2305 xnb_fill_tcp(struct mbuf *m)
2306 {
2307 	struct ether_header *eh;
2308 	struct ip *iph;
2309 	struct tcphdr *tcp;
2310 	uint32_t *options;
2311 	uint8_t *data_payload;
2312 
2313 	/* Fill in an example TCP packet made by 'uname | nc <host> 2222' */
2314 	eh = mtod(m, struct ether_header*);
2315 	xnb_fill_eh_and_ip(m, 60, 8, IPPROTO_TCP, IP_DF, 0);
2316 	iph = (struct ip*)(eh + 1);
2317 	tcp = (struct tcphdr*)(iph + 1);
2318 	tcp->th_sport = htons(0x9cd9);
2319 	tcp->th_dport = htons(2222);
2320 	tcp->th_seq = htonl(0x00f72b10);
2321 	tcp->th_ack = htonl(0x7f37ba6c);
2322 	tcp->th_x2 = 0;
2323 	tcp->th_off = 8;
2324 	tcp->th_flags = 0x18;
2325 	tcp->th_win = htons(0x410);
2326 	/* th_sum is incorrect; will be inserted by function under test */
2327 	tcp->th_sum = htons(0xbaad);
2328 	tcp->th_urp = htons(0);
2329 	/*
2330 	 * The following 12 bytes of options encode:
2331 	 * [nop, nop, TS val 33247 ecr 3457687679]
2332 	 */
2333 	options = (uint32_t*)(tcp + 1);
2334 	options[0] = htonl(0x0101080a);
2335 	options[1] = htonl(0x000081df);
2336 	options[2] = htonl(0xce18207f);
2337 	data_payload = (uint8_t*)(&options[3]);
2338 	data_payload[0] = 'F';
2339 	data_payload[1] = 'r';
2340 	data_payload[2] = 'e';
2341 	data_payload[3] = 'e';
2342 	data_payload[4] = 'B';
2343 	data_payload[5] = 'S';
2344 	data_payload[6] = 'D';
2345 	data_payload[7] = '\n';
2346 }
2347 
2348 /**
2349  * xnb_add_mbuf_cksum on a TCP packet, based on a tcpdump of an actual TCP
2350  * packet
2351  */
2352 static void
2353 xnb_add_mbuf_cksum_tcp(char *buffer, size_t buflen)
2354 {
2355 	const size_t payload_len = 8;
2356 	const size_t tcp_options_len = 12;
2357 	const size_t pkt_len = sizeof(struct ether_header) + sizeof(struct ip) +
2358 	    sizeof(struct tcphdr) + tcp_options_len + payload_len;
2359 	struct mbuf *mbufc;
2360 	struct ether_header *eh;
2361 	struct ip *iph;
2362 	struct tcphdr *tcp;
2363 	const uint16_t IP_CSUM = 0xa55a;
2364 	const uint16_t TCP_CSUM = 0x2f64;
2365 
2366 	mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
2367 	/* Fill in an example TCP packet made by 'uname | nc <host> 2222' */
2368 	xnb_fill_tcp(mbufc);
2369 	eh = mtod(mbufc, struct ether_header*);
2370 	iph = (struct ip*)(eh + 1);
2371 	tcp = (struct tcphdr*)(iph + 1);
2372 
2373 	/* fill in the length field */
2374 	mbufc->m_len = pkt_len;
2375 	mbufc->m_pkthdr.len = pkt_len;
2376 	/* indicate that the netfront uses hw-assisted checksums */
2377 	mbufc->m_pkthdr.csum_flags = CSUM_IP_CHECKED | CSUM_IP_VALID   |
2378 				CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2379 
2380 	/* Function under test */
2381 	xnb_add_mbuf_cksum(mbufc);
2382 
2383 	/* Check the checksums */
2384 	XNB_ASSERT(iph->ip_sum == htons(IP_CSUM));
2385 	XNB_ASSERT(tcp->th_sum == htons(TCP_CSUM));
2386 
2387 	m_freem(mbufc);
2388 }
2389 
2390 /**
2391  * xnb_add_mbuf_cksum on a TCP packet that does not use HW assisted checksums
2392  */
2393 static void
2394 xnb_add_mbuf_cksum_tcp_swcksum(char *buffer, size_t buflen)
2395 {
2396 	const size_t payload_len = 8;
2397 	const size_t tcp_options_len = 12;
2398 	const size_t pkt_len = sizeof(struct ether_header) + sizeof(struct ip) +
2399 	    sizeof(struct tcphdr) + tcp_options_len + payload_len;
2400 	struct mbuf *mbufc;
2401 	struct ether_header *eh;
2402 	struct ip *iph;
2403 	struct tcphdr *tcp;
2404 	/* Use deliberately bad checksums, and verify that they don't get */
2405 	/* corrected by xnb_add_mbuf_cksum */
2406 	const uint16_t IP_CSUM = 0xdead;
2407 	const uint16_t TCP_CSUM = 0xbeef;
2408 
2409 	mbufc = m_getm(NULL, pkt_len, M_WAITOK, MT_DATA);
2410 	/* Fill in an example TCP packet made by 'uname | nc <host> 2222' */
2411 	xnb_fill_tcp(mbufc);
2412 	eh = mtod(mbufc, struct ether_header*);
2413 	iph = (struct ip*)(eh + 1);
2414 	iph->ip_sum = htons(IP_CSUM);
2415 	tcp = (struct tcphdr*)(iph + 1);
2416 	tcp->th_sum = htons(TCP_CSUM);
2417 
2418 	/* fill in the length field */
2419 	mbufc->m_len = pkt_len;
2420 	mbufc->m_pkthdr.len = pkt_len;
2421 	/* indicate that the netfront does not use hw-assisted checksums */
2422 	mbufc->m_pkthdr.csum_flags = 0;
2423 
2424 	/* Function under test */
2425 	xnb_add_mbuf_cksum(mbufc);
2426 
2427 	/* Check that the checksums didn't change */
2428 	XNB_ASSERT(iph->ip_sum == htons(IP_CSUM));
2429 	XNB_ASSERT(tcp->th_sum == htons(TCP_CSUM));
2430 
2431 	m_freem(mbufc);
2432 }
2433 #endif /* INET || INET6 */
2434 
2435 /**
2436  * sscanf on unsigned chars
2437  */
2438 static void
2439 xnb_sscanf_hhu(char *buffer, size_t buflen)
2440 {
2441 	const char mystr[] = "137";
2442 	uint8_t dest[12];
2443 	int i;
2444 
2445 	for (i = 0; i < 12; i++)
2446 		dest[i] = 'X';
2447 
2448 	XNB_ASSERT(sscanf(mystr, "%hhu", &dest[4]) == 1);
2449 	for (i = 0; i < 12; i++)
2450 		XNB_ASSERT(dest[i] == (i == 4 ? 137 : 'X'));
2451 }
2452 
2453 /**
2454  * sscanf on signed chars
2455  */
2456 static void
2457 xnb_sscanf_hhd(char *buffer, size_t buflen)
2458 {
2459 	const char mystr[] = "-27";
2460 	int8_t dest[12];
2461 	int i;
2462 
2463 	for (i = 0; i < 12; i++)
2464 		dest[i] = 'X';
2465 
2466 	XNB_ASSERT(sscanf(mystr, "%hhd", &dest[4]) == 1);
2467 	for (i = 0; i < 12; i++)
2468 		XNB_ASSERT(dest[i] == (i == 4 ? -27 : 'X'));
2469 }
2470 
2471 /**
2472  * sscanf on signed long longs
2473  */
2474 static void
2475 xnb_sscanf_lld(char *buffer, size_t buflen)
2476 {
2477 	const char mystr[] = "-123456789012345";	/* about -2**47 */
2478 	long long dest[3];
2479 	int i;
2480 
2481 	for (i = 0; i < 3; i++)
2482 		dest[i] = (long long)0xdeadbeefdeadbeef;
2483 
2484 	XNB_ASSERT(sscanf(mystr, "%lld", &dest[1]) == 1);
2485 	for (i = 0; i < 3; i++)
2486 		XNB_ASSERT(dest[i] == (i != 1 ? (long long)0xdeadbeefdeadbeef :
2487 		    -123456789012345));
2488 }
2489 
2490 /**
2491  * sscanf on unsigned long longs
2492  */
2493 static void
2494 xnb_sscanf_llu(char *buffer, size_t buflen)
2495 {
2496 	const char mystr[] = "12802747070103273189";
2497 	unsigned long long dest[3];
2498 	int i;
2499 
2500 	for (i = 0; i < 3; i++)
2501 		dest[i] = (long long)0xdeadbeefdeadbeef;
2502 
2503 	XNB_ASSERT(sscanf(mystr, "%llu", &dest[1]) == 1);
2504 	for (i = 0; i < 3; i++)
2505 		XNB_ASSERT(dest[i] == (i != 1 ? (long long)0xdeadbeefdeadbeef :
2506 		    12802747070103273189ull));
2507 }
2508 
2509 /**
2510  * sscanf on unsigned short short n's
2511  */
2512 static void
2513 xnb_sscanf_hhn(char *buffer, size_t buflen)
2514 {
2515 	const char mystr[] =
2516 	    "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
2517 	    "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
2518 	    "404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f";
2519 	unsigned char dest[12];
2520 	int i;
2521 
2522 	for (i = 0; i < 12; i++)
2523 		dest[i] = (unsigned char)'X';
2524 
2525 	XNB_ASSERT(sscanf(mystr,
2526 	    "000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"
2527 	    "202122232425262728292a2b2c2d2e2f303132333435363738393a3b3c3d3e3f"
2528 	    "404142434445464748494a4b4c4d4e4f%hhn", &dest[4]) == 0);
2529 	for (i = 0; i < 12; i++)
2530 		XNB_ASSERT(dest[i] == (i == 4 ? 160 : 'X'));
2531 }
2532