xref: /freebsd/sys/dev/xen/netback/netback.c (revision f9b2a21c9eb4d2715be82dc9049eae29fdb40d17)
1 /*-
2  * Copyright (c) 2009-2011 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Alan Somers         (Spectra Logic Corporation)
32  *          John Suykerbuyk     (Spectra Logic Corporation)
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file netback.c
40  *
41  * \brief Device driver supporting the vending of network access
42  * 	  from this FreeBSD domain to other domains.
43  */
44 #include "opt_inet.h"
45 #include "opt_global.h"
46 
47 #include "opt_sctp.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 
52 #include <sys/bus.h>
53 #include <sys/module.h>
54 #include <sys/rman.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_arp.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/ip.h>
69 #include <netinet/if_ether.h>
70 #if __FreeBSD_version >= 700000
71 #include <netinet/tcp.h>
72 #endif
73 #include <netinet/ip_icmp.h>
74 #include <netinet/udp.h>
75 #include <machine/in_cksum.h>
76 
77 #include <vm/vm.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_kern.h>
81 
82 #include <machine/_inttypes.h>
83 
84 #include <xen/xen-os.h>
85 #include <xen/hypervisor.h>
86 #include <xen/xen_intr.h>
87 #include <xen/interface/io/netif.h>
88 #include <xen/xenbus/xenbusvar.h>
89 
90 #include <machine/xen/xenvar.h>
91 
92 /*--------------------------- Compile-time Tunables --------------------------*/
93 
94 /*---------------------------------- Macros ----------------------------------*/
95 /**
96  * Custom malloc type for all driver allocations.
97  */
98 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
99 
100 #define	XNB_SG	1	/* netback driver supports feature-sg */
101 #define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
102 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
103 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
104 
105 #undef XNB_DEBUG
106 #define	XNB_DEBUG /* hardcode on during development */
107 
108 #ifdef XNB_DEBUG
109 #define	DPRINTF(fmt, args...) \
110 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
111 #else
112 #define	DPRINTF(fmt, args...) do {} while (0)
113 #endif
114 
115 /* Default length for stack-allocated grant tables */
116 #define	GNTTAB_LEN	(64)
117 
118 /* Features supported by all backends.  TSO and LRO can be negotiated */
119 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
120 
121 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
122 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
123 
124 /**
125  * Two argument version of the standard macro.  Second argument is a tentative
126  * value of req_cons
127  */
128 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
129 	unsigned int req = (_r)->sring->req_prod - cons;          	\
130 	unsigned int rsp = RING_SIZE(_r) -                              \
131 	(cons - (_r)->rsp_prod_pvt);                          		\
132 	req < rsp ? req : rsp;                                          \
133 })
134 
135 #define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
136 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
137 
138 /**
139  * Predefined array type of grant table copy descriptors.  Used to pass around
140  * statically allocated memory structures.
141  */
142 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
143 
144 /*--------------------------- Forward Declarations ---------------------------*/
145 struct xnb_softc;
146 struct xnb_pkt;
147 
148 static void	xnb_attach_failed(struct xnb_softc *xnb,
149 				  int err, const char *fmt, ...)
150 				  __printflike(3,4);
151 static int	xnb_shutdown(struct xnb_softc *xnb);
152 static int	create_netdev(device_t dev);
153 static int	xnb_detach(device_t dev);
154 static int	xen_net_read_mac(device_t dev, uint8_t mac[]);
155 static int	xnb_ifmedia_upd(struct ifnet *ifp);
156 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
157 static void 	xnb_intr(void *arg);
158 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
159 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
160 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
161 			 struct mbuf **mbufc, struct ifnet *ifnet,
162 			 gnttab_copy_table gnttab);
163 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
164 			     const netif_tx_back_ring_t *tx_ring,
165 			     RING_IDX start);
166 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
167 			      netif_tx_back_ring_t *ring, int error);
168 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
169 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
170 				 const struct mbuf *mbufc,
171 				 gnttab_copy_table gnttab,
172 				 const netif_tx_back_ring_t *txb,
173 				 domid_t otherend_id);
174 static void	xnb_update_mbufc(struct mbuf *mbufc,
175 				 const gnttab_copy_table gnttab, int n_entries);
176 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
177 			      struct xnb_pkt *pkt,
178 			      RING_IDX start, int space);
179 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
180 				 const struct mbuf *mbufc,
181 				 gnttab_copy_table gnttab,
182 				 const netif_rx_back_ring_t *rxb,
183 				 domid_t otherend_id);
184 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
185 			      const gnttab_copy_table gnttab, int n_entries,
186 			      netif_rx_back_ring_t *ring);
187 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
188 static void	xnb_stop(struct xnb_softc*);
189 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
190 static void	xnb_start_locked(struct ifnet*);
191 static void	xnb_start(struct ifnet*);
192 static void	xnb_ifinit_locked(struct xnb_softc*);
193 static void	xnb_ifinit(void*);
194 #ifdef XNB_DEBUG
195 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
196 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
197 #endif
198 /*------------------------------ Data Structures -----------------------------*/
199 
200 
201 /**
202  * Representation of a xennet packet.  Simplified version of a packet as
203  * stored in the Xen tx ring.  Applicable to both RX and TX packets
204  */
205 struct xnb_pkt{
206 	/**
207 	 * Array index of the first data-bearing (eg, not extra info) entry
208 	 * for this packet
209 	 */
210 	RING_IDX	car;
211 
212 	/**
213 	 * Array index of the second data-bearing entry for this packet.
214 	 * Invalid if the packet has only one data-bearing entry.  If the
215 	 * packet has more than two data-bearing entries, then the second
216 	 * through the last will be sequential modulo the ring size
217 	 */
218 	RING_IDX	cdr;
219 
220 	/**
221 	 * Optional extra info.  Only valid if flags contains
222 	 * NETTXF_extra_info.  Note that extra.type will always be
223 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
224 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
225 	 */
226 	netif_extra_info_t extra;
227 
228 	/** Size of entire packet in bytes.       */
229 	uint16_t	size;
230 
231 	/** The size of the first entry's data in bytes */
232 	uint16_t	car_size;
233 
234 	/**
235 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
236 	 * not the same for TX and RX packets
237 	 */
238 	uint16_t	flags;
239 
240 	/**
241 	 * The number of valid data-bearing entries (either netif_tx_request's
242 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
243 	 * entire packet is invalid.
244 	 */
245 	uint16_t	list_len;
246 
247 	/** There was an error processing the packet */
248 	uint8_t		error;
249 };
250 
251 /** xnb_pkt method: initialize it */
252 static inline void
253 xnb_pkt_initialize(struct xnb_pkt *pxnb)
254 {
255 	bzero(pxnb, sizeof(*pxnb));
256 }
257 
258 /** xnb_pkt method: mark the packet as valid */
259 static inline void
260 xnb_pkt_validate(struct xnb_pkt *pxnb)
261 {
262 	pxnb->error = 0;
263 };
264 
265 /** xnb_pkt method: mark the packet as invalid */
266 static inline void
267 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
268 {
269 	pxnb->error = 1;
270 };
271 
272 /** xnb_pkt method: Check whether the packet is valid */
273 static inline int
274 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
275 {
276 	return (! pxnb->error);
277 }
278 
279 #ifdef XNB_DEBUG
280 /** xnb_pkt method: print the packet's contents in human-readable format*/
281 static void __unused
282 xnb_dump_pkt(const struct xnb_pkt *pkt) {
283 	if (pkt == NULL) {
284 	  DPRINTF("Was passed a null pointer.\n");
285 	  return;
286 	}
287 	DPRINTF("pkt address= %p\n", pkt);
288 	DPRINTF("pkt->size=%d\n", pkt->size);
289 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
290 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
291 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
292 	/* DPRINTF("pkt->extra");	TODO */
293 	DPRINTF("pkt->car=%d\n", pkt->car);
294 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
295 	DPRINTF("pkt->error=%d\n", pkt->error);
296 }
297 #endif /* XNB_DEBUG */
298 
299 static void
300 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
301 {
302 	if (txreq != NULL) {
303 		DPRINTF("netif_tx_request index =%u\n", idx);
304 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
305 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
306 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
307 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
308 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
309 	}
310 }
311 
312 
313 /**
314  * \brief Configuration data for a shared memory request ring
315  *        used to communicate with the front-end client of this
316  *        this driver.
317  */
318 struct xnb_ring_config {
319 	/**
320 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
321 	 * use different data structures, and that cannot be changed since it
322 	 * is part of the interdomain protocol.
323 	 */
324 	union{
325 		netif_rx_back_ring_t	  rx_ring;
326 		netif_tx_back_ring_t	  tx_ring;
327 	} back_ring;
328 
329 	/**
330 	 * The device bus address returned by the hypervisor when
331 	 * mapping the ring and required to unmap it when a connection
332 	 * is torn down.
333 	 */
334 	uint64_t	bus_addr;
335 
336 	/** The pseudo-physical address where ring memory is mapped.*/
337 	uint64_t	gnt_addr;
338 
339 	/** KVA address where ring memory is mapped. */
340 	vm_offset_t	va;
341 
342 	/**
343 	 * Grant table handles, one per-ring page, returned by the
344 	 * hyperpervisor upon mapping of the ring and required to
345 	 * unmap it when a connection is torn down.
346 	 */
347 	grant_handle_t	handle;
348 
349 	/** The number of ring pages mapped for the current connection. */
350 	unsigned	ring_pages;
351 
352 	/**
353 	 * The grant references, one per-ring page, supplied by the
354 	 * front-end, allowing us to reference the ring pages in the
355 	 * front-end's domain and to map these pages into our own domain.
356 	 */
357 	grant_ref_t	ring_ref;
358 };
359 
360 /**
361  * Per-instance connection state flags.
362  */
363 typedef enum
364 {
365 	/** Communication with the front-end has been established. */
366 	XNBF_RING_CONNECTED    = 0x01,
367 
368 	/**
369 	 * Front-end requests exist in the ring and are waiting for
370 	 * xnb_xen_req objects to free up.
371 	 */
372 	XNBF_RESOURCE_SHORTAGE = 0x02,
373 
374 	/** Connection teardown has started. */
375 	XNBF_SHUTDOWN          = 0x04,
376 
377 	/** A thread is already performing shutdown processing. */
378 	XNBF_IN_SHUTDOWN       = 0x08
379 } xnb_flag_t;
380 
381 /**
382  * Types of rings.  Used for array indices and to identify a ring's control
383  * data structure type
384  */
385 typedef enum{
386 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
387 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
388 	XNB_NUM_RING_TYPES
389 } xnb_ring_type_t;
390 
391 /**
392  * Per-instance configuration data.
393  */
394 struct xnb_softc {
395 	/** NewBus device corresponding to this instance. */
396 	device_t		dev;
397 
398 	/* Media related fields */
399 
400 	/** Generic network media state */
401 	struct ifmedia		sc_media;
402 
403 	/** Media carrier info */
404 	struct ifnet 		*xnb_ifp;
405 
406 	/** Our own private carrier state */
407 	unsigned carrier;
408 
409 	/** Device MAC Address */
410 	uint8_t			mac[ETHER_ADDR_LEN];
411 
412 	/* Xen related fields */
413 
414 	/**
415 	 * \brief The netif protocol abi in effect.
416 	 *
417 	 * There are situations where the back and front ends can
418 	 * have a different, native abi (e.g. intel x86_64 and
419 	 * 32bit x86 domains on the same machine).  The back-end
420 	 * always accomodates the front-end's native abi.  That
421 	 * value is pulled from the XenStore and recorded here.
422 	 */
423 	int			abi;
424 
425 	/**
426 	 * Name of the bridge to which this VIF is connected, if any
427 	 * This field is dynamically allocated by xenbus and must be free()ed
428 	 * when no longer needed
429 	 */
430 	char			*bridge;
431 
432 	/** The interrupt driven even channel used to signal ring events. */
433 	evtchn_port_t		evtchn;
434 
435 	/** Xen device handle.*/
436 	long 			handle;
437 
438 	/** Handle to the communication ring event channel. */
439 	xen_intr_handle_t	xen_intr_handle;
440 
441 	/**
442 	 * \brief Cached value of the front-end's domain id.
443 	 *
444 	 * This value is used at once for each mapped page in
445 	 * a transaction.  We cache it to avoid incuring the
446 	 * cost of an ivar access every time this is needed.
447 	 */
448 	domid_t			otherend_id;
449 
450 	/**
451 	 * Undocumented frontend feature.  Has something to do with
452 	 * scatter/gather IO
453 	 */
454 	uint8_t			can_sg;
455 	/** Undocumented frontend feature */
456 	uint8_t			gso;
457 	/** Undocumented frontend feature */
458 	uint8_t			gso_prefix;
459 	/** Can checksum TCP/UDP over IPv4 */
460 	uint8_t			ip_csum;
461 
462 	/* Implementation related fields */
463 	/**
464 	 * Preallocated grant table copy descriptor for RX operations.
465 	 * Access must be protected by rx_lock
466 	 */
467 	gnttab_copy_table	rx_gnttab;
468 
469 	/**
470 	 * Preallocated grant table copy descriptor for TX operations.
471 	 * Access must be protected by tx_lock
472 	 */
473 	gnttab_copy_table	tx_gnttab;
474 
475 #ifdef XENHVM
476 	/**
477 	 * Resource representing allocated physical address space
478 	 * associated with our per-instance kva region.
479 	 */
480 	struct resource		*pseudo_phys_res;
481 
482 	/** Resource id for allocated physical address space. */
483 	int			pseudo_phys_res_id;
484 #endif
485 
486 	/** Ring mapping and interrupt configuration data. */
487 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
488 
489 	/**
490 	 * Global pool of kva used for mapping remote domain ring
491 	 * and I/O transaction data.
492 	 */
493 	vm_offset_t		kva;
494 
495 	/** Psuedo-physical address corresponding to kva. */
496 	uint64_t		gnt_base_addr;
497 
498 	/** Various configuration and state bit flags. */
499 	xnb_flag_t		flags;
500 
501 	/** Mutex protecting per-instance data in the receive path. */
502 	struct mtx		rx_lock;
503 
504 	/** Mutex protecting per-instance data in the softc structure. */
505 	struct mtx		sc_lock;
506 
507 	/** Mutex protecting per-instance data in the transmit path. */
508 	struct mtx		tx_lock;
509 
510 	/** The size of the global kva pool. */
511 	int			kva_size;
512 };
513 
514 /*---------------------------- Debugging functions ---------------------------*/
515 #ifdef XNB_DEBUG
516 static void __unused
517 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
518 {
519 	if (entry == NULL) {
520 		printf("NULL grant table pointer\n");
521 		return;
522 	}
523 
524 	if (entry->flags & GNTCOPY_dest_gref)
525 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
526 	else
527 		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
528 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
529 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
530 	if (entry->flags & GNTCOPY_source_gref)
531 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
532 	else
533 		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
534 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
535 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
536 	printf("gnttab len=\t%hu\n", entry->len);
537 	printf("gnttab flags=\t%hu\n", entry->flags);
538 	printf("gnttab status=\t%hd\n", entry->status);
539 }
540 
541 static int
542 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
543 {
544 	static char results[720];
545 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
546 	netif_rx_back_ring_t const* rxb =
547 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
548 	netif_tx_back_ring_t const* txb =
549 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
550 
551 	/* empty the result strings */
552 	results[0] = 0;
553 
554 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
555 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
556 
557 	snprintf(results, 720,
558 	    "\n\t%35s %18s\n"	/* TX, RX */
559 	    "\t%16s %18d %18d\n"	/* req_cons */
560 	    "\t%16s %18d %18d\n"	/* nr_ents */
561 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
562 	    "\t%16s %18p %18p\n"	/* sring */
563 	    "\t%16s %18d %18d\n"	/* req_prod */
564 	    "\t%16s %18d %18d\n"	/* req_event */
565 	    "\t%16s %18d %18d\n"	/* rsp_prod */
566 	    "\t%16s %18d %18d\n",	/* rsp_event */
567 	    "TX", "RX",
568 	    "req_cons", txb->req_cons, rxb->req_cons,
569 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
570 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
571 	    "sring", txb->sring, rxb->sring,
572 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
573 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
574 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
575 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
576 
577 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
578 }
579 
580 static void __unused
581 xnb_dump_mbuf(const struct mbuf *m)
582 {
583 	int len;
584 	uint8_t *d;
585 	if (m == NULL)
586 		return;
587 
588 	printf("xnb_dump_mbuf:\n");
589 	if (m->m_flags & M_PKTHDR) {
590 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
591 		       "tso_segsz=%5hd\n",
592 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
593 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
594 		printf("    rcvif=%16p,  len=%19d\n",
595 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
596 	}
597 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
598 	       m->m_next, m->m_nextpkt, m->m_data);
599 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
600 	       m->m_len, m->m_flags, m->m_type);
601 
602 	len = m->m_len;
603 	d = mtod(m, uint8_t*);
604 	while (len > 0) {
605 		int i;
606 		printf("                ");
607 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
608 			printf("%02hhx ", *(d++));
609 		}
610 		printf("\n");
611 	}
612 }
613 #endif /* XNB_DEBUG */
614 
615 /*------------------------ Inter-Domain Communication ------------------------*/
616 /**
617  * Free dynamically allocated KVA or pseudo-physical address allocations.
618  *
619  * \param xnb  Per-instance xnb configuration structure.
620  */
621 static void
622 xnb_free_communication_mem(struct xnb_softc *xnb)
623 {
624 	if (xnb->kva != 0) {
625 #ifndef XENHVM
626 		kva_free(xnb->kva, xnb->kva_size);
627 #else
628 		if (xnb->pseudo_phys_res != NULL) {
629 			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
630 			    xnb->pseudo_phys_res_id,
631 			    xnb->pseudo_phys_res);
632 			xnb->pseudo_phys_res = NULL;
633 		}
634 #endif /* XENHVM */
635 	}
636 	xnb->kva = 0;
637 	xnb->gnt_base_addr = 0;
638 }
639 
640 /**
641  * Cleanup all inter-domain communication mechanisms.
642  *
643  * \param xnb  Per-instance xnb configuration structure.
644  */
645 static int
646 xnb_disconnect(struct xnb_softc *xnb)
647 {
648 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
649 	int error;
650 	int i;
651 
652 	xen_intr_unbind(xnb->xen_intr_handle);
653 
654 	/*
655 	 * We may still have another thread currently processing requests.  We
656 	 * must acquire the rx and tx locks to make sure those threads are done,
657 	 * but we can release those locks as soon as we acquire them, because no
658 	 * more interrupts will be arriving.
659 	 */
660 	mtx_lock(&xnb->tx_lock);
661 	mtx_unlock(&xnb->tx_lock);
662 	mtx_lock(&xnb->rx_lock);
663 	mtx_unlock(&xnb->rx_lock);
664 
665 	/* Free malloc'd softc member variables */
666 	if (xnb->bridge != NULL)
667 		free(xnb->bridge, M_XENSTORE);
668 
669 	/* All request processing has stopped, so unmap the rings */
670 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
671 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
672 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
673 		gnts[i].handle = xnb->ring_configs[i].handle;
674 	}
675 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
676 					  XNB_NUM_RING_TYPES);
677 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
678 
679 	xnb_free_communication_mem(xnb);
680 	/*
681 	 * Zero the ring config structs because the pointers, handles, and
682 	 * grant refs contained therein are no longer valid.
683 	 */
684 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
685 	    sizeof(struct xnb_ring_config));
686 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
687 	    sizeof(struct xnb_ring_config));
688 
689 	xnb->flags &= ~XNBF_RING_CONNECTED;
690 	return (0);
691 }
692 
693 /**
694  * Map a single shared memory ring into domain local address space and
695  * initialize its control structure
696  *
697  * \param xnb	Per-instance xnb configuration structure
698  * \param ring_type	Array index of this ring in the xnb's array of rings
699  * \return 	An errno
700  */
701 static int
702 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
703 {
704 	struct gnttab_map_grant_ref gnt;
705 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
706 	int error;
707 
708 	/* TX ring type = 0, RX =1 */
709 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
710 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
711 
712 	gnt.host_addr = ring->gnt_addr;
713 	gnt.flags     = GNTMAP_host_map;
714 	gnt.ref       = ring->ring_ref;
715 	gnt.dom       = xnb->otherend_id;
716 
717 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
718 	if (error != 0)
719 		panic("netback: Ring page grant table op failed (%d)", error);
720 
721 	if (gnt.status != 0) {
722 		ring->va = 0;
723 		error = EACCES;
724 		xenbus_dev_fatal(xnb->dev, error,
725 				 "Ring shared page mapping failed. "
726 				 "Status %d.", gnt.status);
727 	} else {
728 		ring->handle = gnt.handle;
729 		ring->bus_addr = gnt.dev_bus_addr;
730 
731 		if (ring_type == XNB_RING_TYPE_TX) {
732 			BACK_RING_INIT(&ring->back_ring.tx_ring,
733 			    (netif_tx_sring_t*)ring->va,
734 			    ring->ring_pages * PAGE_SIZE);
735 		} else if (ring_type == XNB_RING_TYPE_RX) {
736 			BACK_RING_INIT(&ring->back_ring.rx_ring,
737 			    (netif_rx_sring_t*)ring->va,
738 			    ring->ring_pages * PAGE_SIZE);
739 		} else {
740 			xenbus_dev_fatal(xnb->dev, error,
741 				 "Unknown ring type %d", ring_type);
742 		}
743 	}
744 
745 	return error;
746 }
747 
748 /**
749  * Setup the shared memory rings and bind an interrupt to the event channel
750  * used to notify us of ring changes.
751  *
752  * \param xnb  Per-instance xnb configuration structure.
753  */
754 static int
755 xnb_connect_comms(struct xnb_softc *xnb)
756 {
757 	int	error;
758 	xnb_ring_type_t i;
759 
760 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
761 		return (0);
762 
763 	/*
764 	 * Kva for our rings are at the tail of the region of kva allocated
765 	 * by xnb_alloc_communication_mem().
766 	 */
767 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
768 		error = xnb_connect_ring(xnb, i);
769 		if (error != 0)
770 	  		return error;
771 	}
772 
773 	xnb->flags |= XNBF_RING_CONNECTED;
774 
775 	error = xen_intr_bind_remote_port(xnb->dev,
776 					  xnb->otherend_id,
777 					  xnb->evtchn,
778 					  /*filter*/NULL,
779 					  xnb_intr, /*arg*/xnb,
780 					  INTR_TYPE_BIO | INTR_MPSAFE,
781 					  &xnb->xen_intr_handle);
782 	if (error != 0) {
783 		(void)xnb_disconnect(xnb);
784 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
785 		return (error);
786 	}
787 
788 	DPRINTF("rings connected!\n");
789 
790 	return (0);
791 }
792 
793 /**
794  * Size KVA and pseudo-physical address allocations based on negotiated
795  * values for the size and number of I/O requests, and the size of our
796  * communication ring.
797  *
798  * \param xnb  Per-instance xnb configuration structure.
799  *
800  * These address spaces are used to dynamically map pages in the
801  * front-end's domain into our own.
802  */
803 static int
804 xnb_alloc_communication_mem(struct xnb_softc *xnb)
805 {
806 	xnb_ring_type_t i;
807 
808 	xnb->kva_size = 0;
809 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
810 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
811 	}
812 #ifndef XENHVM
813 	xnb->kva = kva_alloc(xnb->kva_size);
814 	if (xnb->kva == 0)
815 		return (ENOMEM);
816 	xnb->gnt_base_addr = xnb->kva;
817 #else /* defined XENHVM */
818 	/*
819 	 * Reserve a range of pseudo physical memory that we can map
820 	 * into kva.  These pages will only be backed by machine
821 	 * pages ("real memory") during the lifetime of front-end requests
822 	 * via grant table operations.  We will map the netif tx and rx rings
823 	 * into this space.
824 	 */
825 	xnb->pseudo_phys_res_id = 0;
826 	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
827 						  &xnb->pseudo_phys_res_id,
828 						  0, ~0, xnb->kva_size,
829 						  RF_ACTIVE);
830 	if (xnb->pseudo_phys_res == NULL) {
831 		xnb->kva = 0;
832 		return (ENOMEM);
833 	}
834 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
835 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
836 #endif /* !defined XENHVM */
837 	return (0);
838 }
839 
840 /**
841  * Collect information from the XenStore related to our device and its frontend
842  *
843  * \param xnb  Per-instance xnb configuration structure.
844  */
845 static int
846 xnb_collect_xenstore_info(struct xnb_softc *xnb)
847 {
848 	/**
849 	 * \todo Linux collects the following info.  We should collect most
850 	 * of this, too:
851 	 * "feature-rx-notify"
852 	 */
853 	const char *otherend_path;
854 	const char *our_path;
855 	int err;
856 	unsigned int rx_copy, bridge_len;
857 	uint8_t no_csum_offload;
858 
859 	otherend_path = xenbus_get_otherend_path(xnb->dev);
860 	our_path = xenbus_get_node(xnb->dev);
861 
862 	/* Collect the critical communication parameters */
863 	err = xs_gather(XST_NIL, otherend_path,
864 	    "tx-ring-ref", "%l" PRIu32,
865 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
866 	    "rx-ring-ref", "%l" PRIu32,
867 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
868 	    "event-channel", "%" PRIu32, &xnb->evtchn,
869 	    NULL);
870 	if (err != 0) {
871 		xenbus_dev_fatal(xnb->dev, err,
872 				 "Unable to retrieve ring information from "
873 				 "frontend %s.  Unable to connect.",
874 				 otherend_path);
875 		return (err);
876 	}
877 
878 	/* Collect the handle from xenstore */
879 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
880 	if (err != 0) {
881 		xenbus_dev_fatal(xnb->dev, err,
882 		    "Error reading handle from frontend %s.  "
883 		    "Unable to connect.", otherend_path);
884 	}
885 
886 	/*
887 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
888 	 * throw it away
889 	 */
890 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
891 		      (void**)&xnb->bridge);
892 	if (err != 0)
893 		xnb->bridge = NULL;
894 
895 	/*
896 	 * Does the frontend request that we use rx copy?  If not, return an
897 	 * error because this driver only supports rx copy.
898 	 */
899 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
900 		       "%" PRIu32, &rx_copy);
901 	if (err == ENOENT) {
902 		err = 0;
903 	 	rx_copy = 0;
904 	}
905 	if (err < 0) {
906 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
907 				 otherend_path);
908 		return err;
909 	}
910 	/**
911 	 * \todo: figure out the exact meaning of this feature, and when
912 	 * the frontend will set it to true.  It should be set to true
913 	 * at some point
914 	 */
915 /*        if (!rx_copy)*/
916 /*          return EOPNOTSUPP;*/
917 
918 	/** \todo Collect the rx notify feature */
919 
920 	/*  Collect the feature-sg. */
921 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
922 		     "%hhu", &xnb->can_sg) < 0)
923 		xnb->can_sg = 0;
924 
925 	/* Collect remaining frontend features */
926 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
927 		     "%hhu", &xnb->gso) < 0)
928 		xnb->gso = 0;
929 
930 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
931 		     "%hhu", &xnb->gso_prefix) < 0)
932 		xnb->gso_prefix = 0;
933 
934 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
935 		     "%hhu", &no_csum_offload) < 0)
936 		no_csum_offload = 0;
937 	xnb->ip_csum = (no_csum_offload == 0);
938 
939 	return (0);
940 }
941 
942 /**
943  * Supply information about the physical device to the frontend
944  * via XenBus.
945  *
946  * \param xnb  Per-instance xnb configuration structure.
947  */
948 static int
949 xnb_publish_backend_info(struct xnb_softc *xnb)
950 {
951 	struct xs_transaction xst;
952 	const char *our_path;
953 	int error;
954 
955 	our_path = xenbus_get_node(xnb->dev);
956 
957 	do {
958 		error = xs_transaction_start(&xst);
959 		if (error != 0) {
960 			xenbus_dev_fatal(xnb->dev, error,
961 					 "Error publishing backend info "
962 					 "(start transaction)");
963 			break;
964 		}
965 
966 		error = xs_printf(xst, our_path, "feature-sg",
967 				  "%d", XNB_SG);
968 		if (error != 0)
969 			break;
970 
971 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
972 				  "%d", XNB_GSO_TCPV4);
973 		if (error != 0)
974 			break;
975 
976 		error = xs_printf(xst, our_path, "feature-rx-copy",
977 				  "%d", XNB_RX_COPY);
978 		if (error != 0)
979 			break;
980 
981 		error = xs_printf(xst, our_path, "feature-rx-flip",
982 				  "%d", XNB_RX_FLIP);
983 		if (error != 0)
984 			break;
985 
986 		error = xs_transaction_end(xst, 0);
987 		if (error != 0 && error != EAGAIN) {
988 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
989 			break;
990 		}
991 
992 	} while (error == EAGAIN);
993 
994 	return (error);
995 }
996 
997 /**
998  * Connect to our netfront peer now that it has completed publishing
999  * its configuration into the XenStore.
1000  *
1001  * \param xnb  Per-instance xnb configuration structure.
1002  */
1003 static void
1004 xnb_connect(struct xnb_softc *xnb)
1005 {
1006 	int	error;
1007 
1008 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1009 		return;
1010 
1011 	if (xnb_collect_xenstore_info(xnb) != 0)
1012 		return;
1013 
1014 	xnb->flags &= ~XNBF_SHUTDOWN;
1015 
1016 	/* Read front end configuration. */
1017 
1018 	/* Allocate resources whose size depends on front-end configuration. */
1019 	error = xnb_alloc_communication_mem(xnb);
1020 	if (error != 0) {
1021 		xenbus_dev_fatal(xnb->dev, error,
1022 				 "Unable to allocate communication memory");
1023 		return;
1024 	}
1025 
1026 	/*
1027 	 * Connect communication channel.
1028 	 */
1029 	error = xnb_connect_comms(xnb);
1030 	if (error != 0) {
1031 		/* Specific errors are reported by xnb_connect_comms(). */
1032 		return;
1033 	}
1034 	xnb->carrier = 1;
1035 
1036 	/* Ready for I/O. */
1037 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1038 }
1039 
1040 /*-------------------------- Device Teardown Support -------------------------*/
1041 /**
1042  * Perform device shutdown functions.
1043  *
1044  * \param xnb  Per-instance xnb configuration structure.
1045  *
1046  * Mark this instance as shutting down, wait for any active requests
1047  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1048  * a thread invoking our detach method) that detach can now proceed.
1049  */
1050 static int
1051 xnb_shutdown(struct xnb_softc *xnb)
1052 {
1053 	/*
1054 	 * Due to the need to drop our mutex during some
1055 	 * xenbus operations, it is possible for two threads
1056 	 * to attempt to close out shutdown processing at
1057 	 * the same time.  Tell the caller that hits this
1058 	 * race to try back later.
1059 	 */
1060 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1061 		return (EAGAIN);
1062 
1063 	xnb->flags |= XNBF_SHUTDOWN;
1064 
1065 	xnb->flags |= XNBF_IN_SHUTDOWN;
1066 
1067 	mtx_unlock(&xnb->sc_lock);
1068 	/* Free the network interface */
1069 	xnb->carrier = 0;
1070 	if (xnb->xnb_ifp != NULL) {
1071 		ether_ifdetach(xnb->xnb_ifp);
1072 		if_free(xnb->xnb_ifp);
1073 		xnb->xnb_ifp = NULL;
1074 	}
1075 	mtx_lock(&xnb->sc_lock);
1076 
1077 	xnb_disconnect(xnb);
1078 
1079 	mtx_unlock(&xnb->sc_lock);
1080 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1081 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1082 	mtx_lock(&xnb->sc_lock);
1083 
1084 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1085 
1086 
1087 	/* Indicate to xnb_detach() that is it safe to proceed. */
1088 	wakeup(xnb);
1089 
1090 	return (0);
1091 }
1092 
1093 /**
1094  * Report an attach time error to the console and Xen, and cleanup
1095  * this instance by forcing immediate detach processing.
1096  *
1097  * \param xnb  Per-instance xnb configuration structure.
1098  * \param err  Errno describing the error.
1099  * \param fmt  Printf style format and arguments
1100  */
1101 static void
1102 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1103 {
1104 	va_list ap;
1105 	va_list ap_hotplug;
1106 
1107 	va_start(ap, fmt);
1108 	va_copy(ap_hotplug, ap);
1109 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1110 		  "hotplug-error", fmt, ap_hotplug);
1111 	va_end(ap_hotplug);
1112 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1113 		  "hotplug-status", "error");
1114 
1115 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1116 	va_end(ap);
1117 
1118 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1119 		  "online", "0");
1120 	xnb_detach(xnb->dev);
1121 }
1122 
1123 /*---------------------------- NewBus Entrypoints ----------------------------*/
1124 /**
1125  * Inspect a XenBus device and claim it if is of the appropriate type.
1126  *
1127  * \param dev  NewBus device object representing a candidate XenBus device.
1128  *
1129  * \return  0 for success, errno codes for failure.
1130  */
1131 static int
1132 xnb_probe(device_t dev)
1133 {
1134 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1135 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1136 		    devclass_get_name(device_get_devclass(dev)));
1137 		device_set_desc(dev, "Backend Virtual Network Device");
1138 		device_quiet(dev);
1139 		return (0);
1140 	}
1141 	return (ENXIO);
1142 }
1143 
1144 /**
1145  * Setup sysctl variables to control various Network Back parameters.
1146  *
1147  * \param xnb  Xen Net Back softc.
1148  *
1149  */
1150 static void
1151 xnb_setup_sysctl(struct xnb_softc *xnb)
1152 {
1153 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1154 	struct sysctl_oid      *sysctl_tree = NULL;
1155 
1156 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1157 	if (sysctl_ctx == NULL)
1158 		return;
1159 
1160 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1161 	if (sysctl_tree == NULL)
1162 		return;
1163 
1164 #ifdef XNB_DEBUG
1165 	SYSCTL_ADD_PROC(sysctl_ctx,
1166 			SYSCTL_CHILDREN(sysctl_tree),
1167 			OID_AUTO,
1168 			"unit_test_results",
1169 			CTLTYPE_STRING | CTLFLAG_RD,
1170 			xnb,
1171 			0,
1172 			xnb_unit_test_main,
1173 			"A",
1174 			"Results of builtin unit tests");
1175 
1176 	SYSCTL_ADD_PROC(sysctl_ctx,
1177 			SYSCTL_CHILDREN(sysctl_tree),
1178 			OID_AUTO,
1179 			"dump_rings",
1180 			CTLTYPE_STRING | CTLFLAG_RD,
1181 			xnb,
1182 			0,
1183 			xnb_dump_rings,
1184 			"A",
1185 			"Xennet Back Rings");
1186 #endif /* XNB_DEBUG */
1187 }
1188 
1189 /**
1190  * Create a network device.
1191  * @param handle device handle
1192  */
1193 int
1194 create_netdev(device_t dev)
1195 {
1196 	struct ifnet *ifp;
1197 	struct xnb_softc *xnb;
1198 	int err = 0;
1199 
1200 	xnb = device_get_softc(dev);
1201 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1202 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1203 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1204 
1205 	xnb->dev = dev;
1206 
1207 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1208 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1209 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1210 
1211 	err = xen_net_read_mac(dev, xnb->mac);
1212 	if (err == 0) {
1213 		/* Set up ifnet structure */
1214 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1215 		ifp->if_softc = xnb;
1216 		if_initname(ifp, "xnb",  device_get_unit(dev));
1217 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1218 		ifp->if_ioctl = xnb_ioctl;
1219 		ifp->if_output = ether_output;
1220 		ifp->if_start = xnb_start;
1221 #ifdef notyet
1222 		ifp->if_watchdog = xnb_watchdog;
1223 #endif
1224 		ifp->if_init = xnb_ifinit;
1225 		ifp->if_mtu = ETHERMTU;
1226 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1227 
1228 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1229 		ifp->if_capabilities = IFCAP_HWCSUM;
1230 		ifp->if_capenable = IFCAP_HWCSUM;
1231 
1232 		ether_ifattach(ifp, xnb->mac);
1233 		xnb->carrier = 0;
1234 	}
1235 
1236 	return err;
1237 }
1238 
1239 /**
1240  * Attach to a XenBus device that has been claimed by our probe routine.
1241  *
1242  * \param dev  NewBus device object representing this Xen Net Back instance.
1243  *
1244  * \return  0 for success, errno codes for failure.
1245  */
1246 static int
1247 xnb_attach(device_t dev)
1248 {
1249 	struct xnb_softc *xnb;
1250 	int	error;
1251 	xnb_ring_type_t	i;
1252 
1253 	error = create_netdev(dev);
1254 	if (error != 0) {
1255 		xenbus_dev_fatal(dev, error, "creating netdev");
1256 		return (error);
1257 	}
1258 
1259 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1260 
1261 	/*
1262 	 * Basic initialization.
1263 	 * After this block it is safe to call xnb_detach()
1264 	 * to clean up any allocated data for this instance.
1265 	 */
1266 	xnb = device_get_softc(dev);
1267 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1268 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1269 		xnb->ring_configs[i].ring_pages = 1;
1270 	}
1271 
1272 	/*
1273 	 * Setup sysctl variables.
1274 	 */
1275 	xnb_setup_sysctl(xnb);
1276 
1277 	/* Update hot-plug status to satisfy xend. */
1278 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1279 			  "hotplug-status", "connected");
1280 	if (error != 0) {
1281 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1282 				  xenbus_get_node(xnb->dev));
1283 		return (error);
1284 	}
1285 
1286 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1287 		/*
1288 		 * If we can't publish our data, we cannot participate
1289 		 * in this connection, and waiting for a front-end state
1290 		 * change will not help the situation.
1291 		 */
1292 		xnb_attach_failed(xnb, error,
1293 		    "Publishing backend status for %s",
1294 				  xenbus_get_node(xnb->dev));
1295 		return error;
1296 	}
1297 
1298 	/* Tell the front end that we are ready to connect. */
1299 	xenbus_set_state(dev, XenbusStateInitWait);
1300 
1301 	return (0);
1302 }
1303 
1304 /**
1305  * Detach from a net back device instance.
1306  *
1307  * \param dev  NewBus device object representing this Xen Net Back instance.
1308  *
1309  * \return  0 for success, errno codes for failure.
1310  *
1311  * \note A net back device may be detached at any time in its life-cycle,
1312  *       including part way through the attach process.  For this reason,
1313  *       initialization order and the intialization state checks in this
1314  *       routine must be carefully coupled so that attach time failures
1315  *       are gracefully handled.
1316  */
1317 static int
1318 xnb_detach(device_t dev)
1319 {
1320 	struct xnb_softc *xnb;
1321 
1322 	DPRINTF("\n");
1323 
1324 	xnb = device_get_softc(dev);
1325 	mtx_lock(&xnb->sc_lock);
1326 	while (xnb_shutdown(xnb) == EAGAIN) {
1327 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1328 		       "xnb_shutdown", 0);
1329 	}
1330 	mtx_unlock(&xnb->sc_lock);
1331 	DPRINTF("\n");
1332 
1333 	mtx_destroy(&xnb->tx_lock);
1334 	mtx_destroy(&xnb->rx_lock);
1335 	mtx_destroy(&xnb->sc_lock);
1336 	return (0);
1337 }
1338 
1339 /**
1340  * Prepare this net back device for suspension of this VM.
1341  *
1342  * \param dev  NewBus device object representing this Xen net Back instance.
1343  *
1344  * \return  0 for success, errno codes for failure.
1345  */
1346 static int
1347 xnb_suspend(device_t dev)
1348 {
1349 	return (0);
1350 }
1351 
1352 /**
1353  * Perform any processing required to recover from a suspended state.
1354  *
1355  * \param dev  NewBus device object representing this Xen Net Back instance.
1356  *
1357  * \return  0 for success, errno codes for failure.
1358  */
1359 static int
1360 xnb_resume(device_t dev)
1361 {
1362 	return (0);
1363 }
1364 
1365 /**
1366  * Handle state changes expressed via the XenStore by our front-end peer.
1367  *
1368  * \param dev             NewBus device object representing this Xen
1369  *                        Net Back instance.
1370  * \param frontend_state  The new state of the front-end.
1371  *
1372  * \return  0 for success, errno codes for failure.
1373  */
1374 static void
1375 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1376 {
1377 	struct xnb_softc *xnb;
1378 
1379 	xnb = device_get_softc(dev);
1380 
1381 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1382 	        xenbus_strstate(frontend_state),
1383 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1384 
1385 	switch (frontend_state) {
1386 	case XenbusStateInitialising:
1387 		break;
1388 	case XenbusStateInitialised:
1389 	case XenbusStateConnected:
1390 		xnb_connect(xnb);
1391 		break;
1392 	case XenbusStateClosing:
1393 	case XenbusStateClosed:
1394 		mtx_lock(&xnb->sc_lock);
1395 		xnb_shutdown(xnb);
1396 		mtx_unlock(&xnb->sc_lock);
1397 		if (frontend_state == XenbusStateClosed)
1398 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1399 		break;
1400 	default:
1401 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1402 				 frontend_state);
1403 		break;
1404 	}
1405 }
1406 
1407 
1408 /*---------------------------- Request Processing ----------------------------*/
1409 /**
1410  * Interrupt handler bound to the shared ring's event channel.
1411  * Entry point for the xennet transmit path in netback
1412  * Transfers packets from the Xen ring to the host's generic networking stack
1413  *
1414  * \param arg  Callback argument registerd during event channel
1415  *             binding - the xnb_softc for this instance.
1416  */
1417 static void
1418 xnb_intr(void *arg)
1419 {
1420 	struct xnb_softc *xnb;
1421 	struct ifnet *ifp;
1422 	netif_tx_back_ring_t *txb;
1423 	RING_IDX req_prod_local;
1424 
1425 	xnb = (struct xnb_softc *)arg;
1426 	ifp = xnb->xnb_ifp;
1427 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1428 
1429 	mtx_lock(&xnb->tx_lock);
1430 	do {
1431 		int notify;
1432 		req_prod_local = txb->sring->req_prod;
1433 		xen_rmb();
1434 
1435 		for (;;) {
1436 			struct mbuf *mbufc;
1437 			int err;
1438 
1439 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1440 			    	       xnb->tx_gnttab);
1441 			if (err || (mbufc == NULL))
1442 				break;
1443 
1444 			/* Send the packet to the generic network stack */
1445 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1446 		}
1447 
1448 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1449 		if (notify != 0)
1450 			xen_intr_signal(xnb->xen_intr_handle);
1451 
1452 		txb->sring->req_event = txb->req_cons + 1;
1453 		xen_mb();
1454 	} while (txb->sring->req_prod != req_prod_local) ;
1455 	mtx_unlock(&xnb->tx_lock);
1456 
1457 	xnb_start(ifp);
1458 }
1459 
1460 
1461 /**
1462  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1463  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1464  * \param[out]	pkt	The returned packet.  If there is an error building
1465  * 			the packet, pkt.list_len will be set to 0.
1466  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1467  * \param[in]	start	The ring index of the first potential request
1468  * \return		The number of requests consumed to build this packet
1469  */
1470 static int
1471 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1472 	     RING_IDX start)
1473 {
1474 	/*
1475 	 * Outline:
1476 	 * 1) Initialize pkt
1477 	 * 2) Read the first request of the packet
1478 	 * 3) Read the extras
1479 	 * 4) Set cdr
1480 	 * 5) Loop on the remainder of the packet
1481 	 * 6) Finalize pkt (stuff like car_size and list_len)
1482 	 */
1483 	int idx = start;
1484 	int discard = 0;	/* whether to discard the packet */
1485 	int more_data = 0;	/* there are more request past the last one */
1486 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1487 
1488 	xnb_pkt_initialize(pkt);
1489 
1490 	/* Read the first request */
1491 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1492 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1493 		pkt->size = tx->size;
1494 		pkt->flags = tx->flags & ~NETTXF_more_data;
1495 		more_data = tx->flags & NETTXF_more_data;
1496 		pkt->list_len++;
1497 		pkt->car = idx;
1498 		idx++;
1499 	}
1500 
1501 	/* Read the extra info */
1502 	if ((pkt->flags & NETTXF_extra_info) &&
1503 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1504 		netif_extra_info_t *ext =
1505 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1506 		pkt->extra.type = ext->type;
1507 		switch (pkt->extra.type) {
1508 			case XEN_NETIF_EXTRA_TYPE_GSO:
1509 				pkt->extra.u.gso = ext->u.gso;
1510 				break;
1511 			default:
1512 				/*
1513 				 * The reference Linux netfront driver will
1514 				 * never set any other extra.type.  So we don't
1515 				 * know what to do with it.  Let's print an
1516 				 * error, then consume and discard the packet
1517 				 */
1518 				printf("xnb(%s:%d): Unknown extra info type %d."
1519 				       "  Discarding packet\n",
1520 				       __func__, __LINE__, pkt->extra.type);
1521 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1522 				    start));
1523 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1524 				    idx));
1525 				discard = 1;
1526 				break;
1527 		}
1528 
1529 		pkt->extra.flags = ext->flags;
1530 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1531 			/*
1532 			 * The reference linux netfront driver never sets this
1533 			 * flag (nor does any other known netfront).  So we
1534 			 * will discard the packet.
1535 			 */
1536 			printf("xnb(%s:%d): Request sets "
1537 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1538 			    "that\n", __func__, __LINE__);
1539 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1540 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1541 			discard = 1;
1542 		}
1543 
1544 		idx++;
1545 	}
1546 
1547 	/* Set cdr.  If there is not more data, cdr is invalid */
1548 	pkt->cdr = idx;
1549 
1550 	/* Loop on remainder of packet */
1551 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1552 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1553 		pkt->list_len++;
1554 		cdr_size += tx->size;
1555 		if (tx->flags & ~NETTXF_more_data) {
1556 			/* There should be no other flags set at this point */
1557 			printf("xnb(%s:%d): Request sets unknown flags %d "
1558 			    "after the 1st request in the packet.\n",
1559 			    __func__, __LINE__, tx->flags);
1560 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1561 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1562 		}
1563 
1564 		more_data = tx->flags & NETTXF_more_data;
1565 		idx++;
1566 	}
1567 
1568 	/* Finalize packet */
1569 	if (more_data != 0) {
1570 		/* The ring ran out of requests before finishing the packet */
1571 		xnb_pkt_invalidate(pkt);
1572 		idx = start;	/* tell caller that we consumed no requests */
1573 	} else {
1574 		/* Calculate car_size */
1575 		pkt->car_size = pkt->size - cdr_size;
1576 	}
1577 	if (discard != 0) {
1578 		xnb_pkt_invalidate(pkt);
1579 	}
1580 
1581 	return idx - start;
1582 }
1583 
1584 
1585 /**
1586  * Respond to all the requests that constituted pkt.  Builds the responses and
1587  * writes them to the ring, but doesn't push them to the shared ring.
1588  * \param[in] pkt	the packet that needs a response
1589  * \param[in] error	true if there was an error handling the packet, such
1590  * 			as in the hypervisor copy op or mbuf allocation
1591  * \param[out] ring	Responses go here
1592  */
1593 static void
1594 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1595 	      int error)
1596 {
1597 	/*
1598 	 * Outline:
1599 	 * 1) Respond to the first request
1600 	 * 2) Respond to the extra info reques
1601 	 * Loop through every remaining request in the packet, generating
1602 	 * responses that copy those requests' ids and sets the status
1603 	 * appropriately.
1604 	 */
1605 	netif_tx_request_t *tx;
1606 	netif_tx_response_t *rsp;
1607 	int i;
1608 	uint16_t status;
1609 
1610 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1611 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1612 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1613 	    ("Cannot respond to ring requests out of order"));
1614 
1615 	if (pkt->list_len >= 1) {
1616 		uint16_t id;
1617 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1618 		id = tx->id;
1619 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1620 		rsp->id = id;
1621 		rsp->status = status;
1622 		ring->rsp_prod_pvt++;
1623 
1624 		if (pkt->flags & NETRXF_extra_info) {
1625 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1626 			rsp->status = NETIF_RSP_NULL;
1627 			ring->rsp_prod_pvt++;
1628 		}
1629 	}
1630 
1631 	for (i=0; i < pkt->list_len - 1; i++) {
1632 		uint16_t id;
1633 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1634 		id = tx->id;
1635 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1636 		rsp->id = id;
1637 		rsp->status = status;
1638 		ring->rsp_prod_pvt++;
1639 	}
1640 }
1641 
1642 /**
1643  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1644  * in the mbuf chain, but does not copy the data.  The returned chain must be
1645  * free()'d when no longer needed
1646  * \param[in]	pkt	A packet to model the mbuf chain after
1647  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1648  * 		NULL on failure
1649  */
1650 static struct mbuf*
1651 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1652 {
1653 	/**
1654 	 * \todo consider using a memory pool for mbufs instead of
1655 	 * reallocating them for every packet
1656 	 */
1657 	/** \todo handle extra data */
1658 	struct mbuf *m;
1659 
1660 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1661 
1662 	if (m != NULL) {
1663 		m->m_pkthdr.rcvif = ifp;
1664 		if (pkt->flags & NETTXF_data_validated) {
1665 			/*
1666 			 * We lie to the host OS and always tell it that the
1667 			 * checksums are ok, because the packet is unlikely to
1668 			 * get corrupted going across domains.
1669 			 */
1670 			m->m_pkthdr.csum_flags = (
1671 				CSUM_IP_CHECKED |
1672 				CSUM_IP_VALID   |
1673 				CSUM_DATA_VALID |
1674 				CSUM_PSEUDO_HDR
1675 				);
1676 			m->m_pkthdr.csum_data = 0xffff;
1677 		}
1678 	}
1679 	return m;
1680 }
1681 
1682 /**
1683  * Build a gnttab_copy table that can be used to copy data from a pkt
1684  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1685  * the packet side.
1686  * \param[in]	pkt	pkt's associated requests form the src for
1687  * 			the copy operation
1688  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1689  * \param[out]  gnttab	Storage for the returned grant table
1690  * \param[in]	txb	Pointer to the backend ring structure
1691  * \param[in]	otherend_id	The domain ID of the other end of the copy
1692  * \return 		The number of gnttab entries filled
1693  */
1694 static int
1695 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1696 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1697 		 domid_t otherend_id)
1698 {
1699 
1700 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1701 	int gnt_idx = 0;		/* index into grant table */
1702 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1703 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1704 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1705 	/* size in bytes that still needs to be represented in the table */
1706 	uint16_t size_remaining = pkt->size;
1707 
1708 	while (size_remaining > 0) {
1709 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1710 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1711 		const size_t req_size =
1712 			r_idx == pkt->car ? pkt->car_size : txq->size;
1713 		const size_t pkt_space = req_size - r_ofs;
1714 		/*
1715 		 * space is the largest amount of data that can be copied in the
1716 		 * grant table's next entry
1717 		 */
1718 		const size_t space = MIN(pkt_space, mbuf_space);
1719 
1720 		/* TODO: handle this error condition without panicking */
1721 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1722 
1723 		gnttab[gnt_idx].source.u.ref = txq->gref;
1724 		gnttab[gnt_idx].source.domid = otherend_id;
1725 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1726 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1727 		    mtod(mbuf, vm_offset_t) + m_ofs);
1728 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1729 		    mtod(mbuf, vm_offset_t) + m_ofs);
1730 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1731 		gnttab[gnt_idx].len = space;
1732 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1733 
1734 		gnt_idx++;
1735 		r_ofs += space;
1736 		m_ofs += space;
1737 		size_remaining -= space;
1738 		if (req_size - r_ofs <= 0) {
1739 			/* Must move to the next tx request */
1740 			r_ofs = 0;
1741 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1742 		}
1743 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1744 			/* Must move to the next mbuf */
1745 			m_ofs = 0;
1746 			mbuf = mbuf->m_next;
1747 		}
1748 	}
1749 
1750 	return gnt_idx;
1751 }
1752 
1753 /**
1754  * Check the status of the grant copy operations, and update mbufs various
1755  * non-data fields to reflect the data present.
1756  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1757  * 			the correct length, and data should already be present
1758  * \param[in] gnttab	A grant table for a just completed copy op
1759  * \param[in] n_entries The number of valid entries in the grant table
1760  */
1761 static void
1762 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1763     		 int n_entries)
1764 {
1765 	struct mbuf *mbuf = mbufc;
1766 	int i;
1767 	size_t total_size = 0;
1768 
1769 	for (i = 0; i < n_entries; i++) {
1770 		KASSERT(gnttab[i].status == GNTST_okay,
1771 		    ("Some gnttab_copy entry had error status %hd\n",
1772 		    gnttab[i].status));
1773 
1774 		mbuf->m_len += gnttab[i].len;
1775 		total_size += gnttab[i].len;
1776 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1777 			mbuf = mbuf->m_next;
1778 		}
1779 	}
1780 	mbufc->m_pkthdr.len = total_size;
1781 
1782 	xnb_add_mbuf_cksum(mbufc);
1783 }
1784 
1785 /**
1786  * Dequeue at most one packet from the shared ring
1787  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1788  * 			its private indices will be updated.  But the indices
1789  * 			will not be pushed to the shared ring.
1790  * \param[in] ifnet	Interface to which the packet will be sent
1791  * \param[in] otherend	Domain ID of the other end of the ring
1792  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1793  * 			networking stack
1794  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1795  * 			this a function parameter so that we will take less
1796  * 			stack space.
1797  * \return		An error code
1798  */
1799 static int
1800 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1801 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1802 {
1803 	struct xnb_pkt pkt;
1804 	/* number of tx requests consumed to build the last packet */
1805 	int num_consumed;
1806 	int nr_ents;
1807 
1808 	*mbufc = NULL;
1809 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1810 	if (num_consumed == 0)
1811 		return 0;	/* Nothing to receive */
1812 
1813 	/* update statistics independent of errors */
1814 	ifnet->if_ipackets++;
1815 
1816 	/*
1817 	 * if we got here, then 1 or more requests was consumed, but the packet
1818 	 * is not necessarily valid.
1819 	 */
1820 	if (xnb_pkt_is_valid(&pkt) == 0) {
1821 		/* got a garbage packet, respond and drop it */
1822 		xnb_txpkt2rsp(&pkt, txb, 1);
1823 		txb->req_cons += num_consumed;
1824 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1825 				num_consumed);
1826 		ifnet->if_ierrors++;
1827 		return EINVAL;
1828 	}
1829 
1830 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1831 
1832 	if (*mbufc == NULL) {
1833 		/*
1834 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1835 		 * not consume the requests
1836 		 */
1837 		xnb_txpkt2rsp(&pkt, txb, 1);
1838 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1839 		    num_consumed);
1840 		ifnet->if_iqdrops++;
1841 		return ENOMEM;
1842 	}
1843 
1844 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1845 
1846 	if (nr_ents > 0) {
1847 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1848 		    gnttab, nr_ents);
1849 		KASSERT(hv_ret == 0,
1850 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1851 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1852 	}
1853 
1854 	xnb_txpkt2rsp(&pkt, txb, 0);
1855 	txb->req_cons += num_consumed;
1856 	return 0;
1857 }
1858 
1859 /**
1860  * Create an xnb_pkt based on the contents of an mbuf chain.
1861  * \param[in] mbufc	mbuf chain to transform into a packet
1862  * \param[out] pkt	Storage for the newly generated xnb_pkt
1863  * \param[in] start	The ring index of the first available slot in the rx
1864  * 			ring
1865  * \param[in] space	The number of free slots in the rx ring
1866  * \retval 0		Success
1867  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1868  * \retval EAGAIN	There was not enough space in the ring to queue the
1869  * 			packet
1870  */
1871 static int
1872 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1873 	      RING_IDX start, int space)
1874 {
1875 
1876 	int retval = 0;
1877 
1878 	if ((mbufc == NULL) ||
1879 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1880 	     (mbufc->m_pkthdr.len == 0)) {
1881 		xnb_pkt_invalidate(pkt);
1882 		retval = EINVAL;
1883 	} else {
1884 		int slots_required;
1885 
1886 		xnb_pkt_validate(pkt);
1887 		pkt->flags = 0;
1888 		pkt->size = mbufc->m_pkthdr.len;
1889 		pkt->car = start;
1890 		pkt->car_size = mbufc->m_len;
1891 
1892 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1893 			pkt->flags |= NETRXF_extra_info;
1894 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1895 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1896 			pkt->extra.u.gso.pad = 0;
1897 			pkt->extra.u.gso.features = 0;
1898 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1899 			pkt->extra.flags = 0;
1900 			pkt->cdr = start + 2;
1901 		} else {
1902 			pkt->cdr = start + 1;
1903 		}
1904 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1905 			pkt->flags |=
1906 			    (NETRXF_csum_blank | NETRXF_data_validated);
1907 		}
1908 
1909 		/*
1910 		 * Each ring response can have up to PAGE_SIZE of data.
1911 		 * Assume that we can defragment the mbuf chain efficiently
1912 		 * into responses so that each response but the last uses all
1913 		 * PAGE_SIZE bytes.
1914 		 */
1915 		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1916 
1917 		if (pkt->list_len > 1) {
1918 			pkt->flags |= NETRXF_more_data;
1919 		}
1920 
1921 		slots_required = pkt->list_len +
1922 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1923 		if (slots_required > space) {
1924 			xnb_pkt_invalidate(pkt);
1925 			retval = EAGAIN;
1926 		}
1927 	}
1928 
1929 	return retval;
1930 }
1931 
1932 /**
1933  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1934  * to the frontend's shared buffers.  Does not actually perform the copy.
1935  * Always uses gref's on the other end's side.
1936  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1937  * 			operatoin
1938  * \param[in]	mbufc	The source for the copy operation
1939  * \param[out]	gnttab	Storage for the returned grant table
1940  * \param[in]	rxb	Pointer to the backend ring structure
1941  * \param[in]	otherend_id	The domain ID of the other end of the copy
1942  * \return 		The number of gnttab entries filled
1943  */
1944 static int
1945 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1946 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1947 		 domid_t otherend_id)
1948 {
1949 
1950 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1951 	int gnt_idx = 0;		/* index into grant table */
1952 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1953 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1954 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1955 	/* size in bytes that still needs to be represented in the table */
1956 	uint16_t size_remaining;
1957 
1958 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1959 
1960 	while (size_remaining > 0) {
1961 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1962 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1963 		/* Xen shared pages have an implied size of PAGE_SIZE */
1964 		const size_t req_size = PAGE_SIZE;
1965 		const size_t pkt_space = req_size - r_ofs;
1966 		/*
1967 		 * space is the largest amount of data that can be copied in the
1968 		 * grant table's next entry
1969 		 */
1970 		const size_t space = MIN(pkt_space, mbuf_space);
1971 
1972 		/* TODO: handle this error condition without panicing */
1973 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1974 
1975 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1976 		gnttab[gnt_idx].dest.domid = otherend_id;
1977 		gnttab[gnt_idx].dest.offset = r_ofs;
1978 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1979 		    mtod(mbuf, vm_offset_t) + m_ofs);
1980 		gnttab[gnt_idx].source.offset = virt_to_offset(
1981 		    mtod(mbuf, vm_offset_t) + m_ofs);
1982 		gnttab[gnt_idx].source.domid = DOMID_SELF;
1983 		gnttab[gnt_idx].len = space;
1984 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1985 
1986 		gnt_idx++;
1987 
1988 		r_ofs += space;
1989 		m_ofs += space;
1990 		size_remaining -= space;
1991 		if (req_size - r_ofs <= 0) {
1992 			/* Must move to the next rx request */
1993 			r_ofs = 0;
1994 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1995 		}
1996 		if (mbuf->m_len - m_ofs <= 0) {
1997 			/* Must move to the next mbuf */
1998 			m_ofs = 0;
1999 			mbuf = mbuf->m_next;
2000 		}
2001 	}
2002 
2003 	return gnt_idx;
2004 }
2005 
2006 /**
2007  * Generates responses for all the requests that constituted pkt.  Builds
2008  * responses and writes them to the ring, but doesn't push the shared ring
2009  * indices.
2010  * \param[in] pkt	the packet that needs a response
2011  * \param[in] gnttab	The grant copy table corresponding to this packet.
2012  * 			Used to determine how many rsp->netif_rx_response_t's to
2013  * 			generate.
2014  * \param[in] n_entries	Number of relevant entries in the grant table
2015  * \param[out] ring	Responses go here
2016  * \return		The number of RX requests that were consumed to generate
2017  * 			the responses
2018  */
2019 static int
2020 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2021     	      int n_entries, netif_rx_back_ring_t *ring)
2022 {
2023 	/*
2024 	 * This code makes the following assumptions:
2025 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2026 	 *	* The entries in gnttab are grouped by their grefs: any two
2027 	 *	   entries with the same gref must be adjacent
2028 	 */
2029 	int error = 0;
2030 	int gnt_idx, i;
2031 	int n_responses = 0;
2032 	grant_ref_t last_gref = GRANT_REF_INVALID;
2033 	RING_IDX r_idx;
2034 
2035 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2036 
2037 	/*
2038 	 * In the event of an error, we only need to send one response to the
2039 	 * netfront.  In that case, we musn't write any data to the responses
2040 	 * after the one we send.  So we must loop all the way through gnttab
2041 	 * looking for errors before we generate any responses
2042 	 *
2043 	 * Since we're looping through the grant table anyway, we'll count the
2044 	 * number of different gref's in it, which will tell us how many
2045 	 * responses to generate
2046 	 */
2047 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2048 		int16_t status = gnttab[gnt_idx].status;
2049 		if (status != GNTST_okay) {
2050 			DPRINTF(
2051 			    "Got error %d for hypervisor gnttab_copy status\n",
2052 			    status);
2053 			error = 1;
2054 			break;
2055 		}
2056 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2057 			n_responses++;
2058 			last_gref = gnttab[gnt_idx].dest.u.ref;
2059 		}
2060 	}
2061 
2062 	if (error != 0) {
2063 		uint16_t id;
2064 		netif_rx_response_t *rsp;
2065 
2066 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2067 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2068 		rsp->id = id;
2069 		rsp->status = NETIF_RSP_ERROR;
2070 		n_responses = 1;
2071 	} else {
2072 		gnt_idx = 0;
2073 		const int has_extra = pkt->flags & NETRXF_extra_info;
2074 		if (has_extra != 0)
2075 			n_responses++;
2076 
2077 		for (i = 0; i < n_responses; i++) {
2078 			netif_rx_request_t rxq;
2079 			netif_rx_response_t *rsp;
2080 
2081 			r_idx = ring->rsp_prod_pvt + i;
2082 			/*
2083 			 * We copy the structure of rxq instead of making a
2084 			 * pointer because it shares the same memory as rsp.
2085 			 */
2086 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2087 			rsp = RING_GET_RESPONSE(ring, r_idx);
2088 			if (has_extra && (i == 1)) {
2089 				netif_extra_info_t *ext =
2090 					(netif_extra_info_t*)rsp;
2091 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2092 				ext->flags = 0;
2093 				ext->u.gso.size = pkt->extra.u.gso.size;
2094 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2095 				ext->u.gso.pad = 0;
2096 				ext->u.gso.features = 0;
2097 			} else {
2098 				rsp->id = rxq.id;
2099 				rsp->status = GNTST_okay;
2100 				rsp->offset = 0;
2101 				rsp->flags = 0;
2102 				if (i < pkt->list_len - 1)
2103 					rsp->flags |= NETRXF_more_data;
2104 				if ((i == 0) && has_extra)
2105 					rsp->flags |= NETRXF_extra_info;
2106 				if ((i == 0) &&
2107 					(pkt->flags & NETRXF_data_validated)) {
2108 					rsp->flags |= NETRXF_data_validated;
2109 					rsp->flags |= NETRXF_csum_blank;
2110 				}
2111 				rsp->status = 0;
2112 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2113 				    gnt_idx++) {
2114 					rsp->status += gnttab[gnt_idx].len;
2115 				}
2116 			}
2117 		}
2118 	}
2119 
2120 	ring->req_cons += n_responses;
2121 	ring->rsp_prod_pvt += n_responses;
2122 	return n_responses;
2123 }
2124 
2125 /**
2126  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2127  * in the chain must start with a struct ether_header.
2128  *
2129  * XXX This function will perform incorrectly on UDP packets that are split up
2130  * into multiple ethernet frames.
2131  */
2132 static void
2133 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2134 {
2135 	struct ether_header *eh;
2136 	struct ip *iph;
2137 	uint16_t ether_type;
2138 
2139 	eh = mtod(mbufc, struct ether_header*);
2140 	ether_type = ntohs(eh->ether_type);
2141 	if (ether_type != ETHERTYPE_IP) {
2142 		/* Nothing to calculate */
2143 		return;
2144 	}
2145 
2146 	iph = (struct ip*)(eh + 1);
2147 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2148 		iph->ip_sum = 0;
2149 		iph->ip_sum = in_cksum_hdr(iph);
2150 	}
2151 
2152 	switch (iph->ip_p) {
2153 	case IPPROTO_TCP:
2154 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2155 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2156 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2157 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2158 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2159 			th->th_sum = in_cksum_skip(mbufc,
2160 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2161 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2162 		}
2163 		break;
2164 	case IPPROTO_UDP:
2165 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2166 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2167 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2168 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2169 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2170 			uh->uh_sum = in_cksum_skip(mbufc,
2171 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2172 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2173 		}
2174 		break;
2175 	default:
2176 		break;
2177 	}
2178 }
2179 
2180 static void
2181 xnb_stop(struct xnb_softc *xnb)
2182 {
2183 	struct ifnet *ifp;
2184 
2185 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2186 	ifp = xnb->xnb_ifp;
2187 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2188 	if_link_state_change(ifp, LINK_STATE_DOWN);
2189 }
2190 
2191 static int
2192 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2193 {
2194 	struct xnb_softc *xnb = ifp->if_softc;
2195 	struct ifreq *ifr = (struct ifreq*) data;
2196 #ifdef INET
2197 	struct ifaddr *ifa = (struct ifaddr*)data;
2198 #endif
2199 	int error = 0;
2200 
2201 	switch (cmd) {
2202 		case SIOCSIFFLAGS:
2203 			mtx_lock(&xnb->sc_lock);
2204 			if (ifp->if_flags & IFF_UP) {
2205 				xnb_ifinit_locked(xnb);
2206 			} else {
2207 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2208 					xnb_stop(xnb);
2209 				}
2210 			}
2211 			/*
2212 			 * Note: netfront sets a variable named xn_if_flags
2213 			 * here, but that variable is never read
2214 			 */
2215 			mtx_unlock(&xnb->sc_lock);
2216 			break;
2217 		case SIOCSIFADDR:
2218 		case SIOCGIFADDR:
2219 #ifdef INET
2220 			mtx_lock(&xnb->sc_lock);
2221 			if (ifa->ifa_addr->sa_family == AF_INET) {
2222 				ifp->if_flags |= IFF_UP;
2223 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2224 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2225 							IFF_DRV_OACTIVE);
2226 					if_link_state_change(ifp,
2227 							LINK_STATE_DOWN);
2228 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2229 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2230 					if_link_state_change(ifp,
2231 					    LINK_STATE_UP);
2232 				}
2233 				arp_ifinit(ifp, ifa);
2234 				mtx_unlock(&xnb->sc_lock);
2235 			} else {
2236 				mtx_unlock(&xnb->sc_lock);
2237 #endif
2238 				error = ether_ioctl(ifp, cmd, data);
2239 #ifdef INET
2240 			}
2241 #endif
2242 			break;
2243 		case SIOCSIFCAP:
2244 			mtx_lock(&xnb->sc_lock);
2245 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2246 				ifp->if_capenable |= IFCAP_TXCSUM;
2247 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2248 			} else {
2249 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2250 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2251 			}
2252 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2253 				ifp->if_capenable |= IFCAP_RXCSUM;
2254 			} else {
2255 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2256 			}
2257 			/*
2258 			 * TODO enable TSO4 and LRO once we no longer need
2259 			 * to calculate checksums in software
2260 			 */
2261 #if 0
2262 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2263 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2264 					printf("xnb: Xen netif requires that "
2265 						"TXCSUM be enabled in order "
2266 						"to use TSO4\n");
2267 					error = EINVAL;
2268 				} else {
2269 					ifp->if_capenable |= IFCAP_TSO4;
2270 					ifp->if_hwassist |= CSUM_TSO;
2271 				}
2272 			} else {
2273 				ifp->if_capenable &= ~(IFCAP_TSO4);
2274 				ifp->if_hwassist &= ~(CSUM_TSO);
2275 			}
2276 			if (ifr->ifreqcap |= IFCAP_LRO) {
2277 				ifp->if_capenable |= IFCAP_LRO;
2278 			} else {
2279 				ifp->if_capenable &= ~(IFCAP_LRO);
2280 			}
2281 #endif
2282 			mtx_unlock(&xnb->sc_lock);
2283 			break;
2284 		case SIOCSIFMTU:
2285 			ifp->if_mtu = ifr->ifr_mtu;
2286 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2287 			xnb_ifinit(xnb);
2288 			break;
2289 		case SIOCADDMULTI:
2290 		case SIOCDELMULTI:
2291 		case SIOCSIFMEDIA:
2292 		case SIOCGIFMEDIA:
2293 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2294 			break;
2295 		default:
2296 			error = ether_ioctl(ifp, cmd, data);
2297 			break;
2298 	}
2299 	return (error);
2300 }
2301 
2302 static void
2303 xnb_start_locked(struct ifnet *ifp)
2304 {
2305 	netif_rx_back_ring_t *rxb;
2306 	struct xnb_softc *xnb;
2307 	struct mbuf *mbufc;
2308 	RING_IDX req_prod_local;
2309 
2310 	xnb = ifp->if_softc;
2311 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2312 
2313 	if (!xnb->carrier)
2314 		return;
2315 
2316 	do {
2317 		int out_of_space = 0;
2318 		int notify;
2319 		req_prod_local = rxb->sring->req_prod;
2320 		xen_rmb();
2321 		for (;;) {
2322 			int error;
2323 
2324 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2325 			if (mbufc == NULL)
2326 				break;
2327 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2328 			    		 xnb->rx_gnttab);
2329 			switch (error) {
2330 				case EAGAIN:
2331 					/*
2332 					 * Insufficient space in the ring.
2333 					 * Requeue pkt and send when space is
2334 					 * available.
2335 					 */
2336 					IF_PREPEND(&ifp->if_snd, mbufc);
2337 					/*
2338 					 * Perhaps the frontend missed an IRQ
2339 					 * and went to sleep.  Notify it to wake
2340 					 * it up.
2341 					 */
2342 					out_of_space = 1;
2343 					break;
2344 
2345 				case EINVAL:
2346 					/* OS gave a corrupt packet.  Drop it.*/
2347 					ifp->if_oerrors++;
2348 					/* FALLTHROUGH */
2349 				default:
2350 					/* Send succeeded, or packet had error.
2351 					 * Free the packet */
2352 					ifp->if_opackets++;
2353 					if (mbufc)
2354 						m_freem(mbufc);
2355 					break;
2356 			}
2357 			if (out_of_space != 0)
2358 				break;
2359 		}
2360 
2361 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2362 		if ((notify != 0) || (out_of_space != 0))
2363 			xen_intr_signal(xnb->xen_intr_handle);
2364 		rxb->sring->req_event = req_prod_local + 1;
2365 		xen_mb();
2366 	} while (rxb->sring->req_prod != req_prod_local) ;
2367 }
2368 
2369 /**
2370  * Sends one packet to the ring.  Blocks until the packet is on the ring
2371  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2372  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2373  * 			otherend will not be notified.
2374  * \param[in]	otherend The domain ID of the other end of the connection
2375  * \retval	EAGAIN	The ring did not have enough space for the packet.
2376  * 			The ring has not been modified
2377  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2378  * 			this a function parameter so that we will take less
2379  * 			stack space.
2380  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2381  */
2382 static int
2383 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2384 	 gnttab_copy_table gnttab)
2385 {
2386 	struct xnb_pkt pkt;
2387 	int error, n_entries, n_reqs;
2388 	RING_IDX space;
2389 
2390 	space = ring->sring->req_prod - ring->req_cons;
2391 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2392 	if (error != 0)
2393 		return error;
2394 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2395 	if (n_entries != 0) {
2396 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2397 		    gnttab, n_entries);
2398 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2399 		    hv_ret));
2400 	}
2401 
2402 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2403 
2404 	return 0;
2405 }
2406 
2407 static void
2408 xnb_start(struct ifnet *ifp)
2409 {
2410 	struct xnb_softc *xnb;
2411 
2412 	xnb = ifp->if_softc;
2413 	mtx_lock(&xnb->rx_lock);
2414 	xnb_start_locked(ifp);
2415 	mtx_unlock(&xnb->rx_lock);
2416 }
2417 
2418 /* equivalent of network_open() in Linux */
2419 static void
2420 xnb_ifinit_locked(struct xnb_softc *xnb)
2421 {
2422 	struct ifnet *ifp;
2423 
2424 	ifp = xnb->xnb_ifp;
2425 
2426 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2427 
2428 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2429 		return;
2430 
2431 	xnb_stop(xnb);
2432 
2433 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2434 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2435 	if_link_state_change(ifp, LINK_STATE_UP);
2436 }
2437 
2438 
2439 static void
2440 xnb_ifinit(void *xsc)
2441 {
2442 	struct xnb_softc *xnb = xsc;
2443 
2444 	mtx_lock(&xnb->sc_lock);
2445 	xnb_ifinit_locked(xnb);
2446 	mtx_unlock(&xnb->sc_lock);
2447 }
2448 
2449 
2450 /**
2451  * Read the 'mac' node at the given device's node in the store, and parse that
2452  * as colon-separated octets, placing result the given mac array.  mac must be
2453  * a preallocated array of length ETHER_ADDR_LEN ETH_ALEN (as declared in
2454  * net/ethernet.h).
2455  * Return 0 on success, or errno on error.
2456  */
2457 static int
2458 xen_net_read_mac(device_t dev, uint8_t mac[])
2459 {
2460 	char *s, *e, *macstr;
2461 	const char *path;
2462 	int error = 0;
2463 	int i;
2464 
2465 	path = xenbus_get_node(dev);
2466 	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
2467 	if (error != 0) {
2468 		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
2469 	} else {
2470 	        s = macstr;
2471 	        for (i = 0; i < ETHER_ADDR_LEN; i++) {
2472 		        mac[i] = strtoul(s, &e, 16);
2473 		        if (s == e || (e[0] != ':' && e[0] != 0)) {
2474 				error = ENOENT;
2475 				break;
2476 		        }
2477 		        s = &e[1];
2478 	        }
2479 	        free(macstr, M_XENBUS);
2480 	}
2481 	return error;
2482 }
2483 
2484 
2485 /**
2486  * Callback used by the generic networking code to tell us when our carrier
2487  * state has changed.  Since we don't have a physical carrier, we don't care
2488  */
2489 static int
2490 xnb_ifmedia_upd(struct ifnet *ifp)
2491 {
2492 	return (0);
2493 }
2494 
2495 /**
2496  * Callback used by the generic networking code to ask us what our carrier
2497  * state is.  Since we don't have a physical carrier, this is very simple
2498  */
2499 static void
2500 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2501 {
2502 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2503 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2504 }
2505 
2506 
2507 /*---------------------------- NewBus Registration ---------------------------*/
2508 static device_method_t xnb_methods[] = {
2509 	/* Device interface */
2510 	DEVMETHOD(device_probe,		xnb_probe),
2511 	DEVMETHOD(device_attach,	xnb_attach),
2512 	DEVMETHOD(device_detach,	xnb_detach),
2513 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2514 	DEVMETHOD(device_suspend,	xnb_suspend),
2515 	DEVMETHOD(device_resume,	xnb_resume),
2516 
2517 	/* Xenbus interface */
2518 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2519 
2520 	{ 0, 0 }
2521 };
2522 
2523 static driver_t xnb_driver = {
2524 	"xnb",
2525 	xnb_methods,
2526 	sizeof(struct xnb_softc),
2527 };
2528 devclass_t xnb_devclass;
2529 
2530 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2531 
2532 
2533 /*-------------------------- Unit Tests -------------------------------------*/
2534 #ifdef XNB_DEBUG
2535 #include "netback_unit_tests.c"
2536 #endif
2537