1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2009-2011 Spectra Logic Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 19 * NO WARRANTY 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 28 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 29 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGES. 31 * 32 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 33 * Alan Somers (Spectra Logic Corporation) 34 * John Suykerbuyk (Spectra Logic Corporation) 35 */ 36 37 #include <sys/cdefs.h> 38 /** 39 * \file netback.c 40 * 41 * \brief Device driver supporting the vending of network access 42 * from this FreeBSD domain to other domains. 43 */ 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 47 #include <sys/param.h> 48 #include <sys/kernel.h> 49 50 #include <sys/bus.h> 51 #include <sys/module.h> 52 #include <sys/rman.h> 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/sysctl.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_arp.h> 60 #include <net/ethernet.h> 61 #include <net/if_dl.h> 62 #include <net/if_media.h> 63 #include <net/if_types.h> 64 65 #include <netinet/in.h> 66 #include <netinet/ip.h> 67 #include <netinet/if_ether.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip_icmp.h> 70 #include <netinet/udp.h> 71 #include <machine/in_cksum.h> 72 73 #include <vm/vm.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_extern.h> 76 #include <vm/vm_kern.h> 77 78 #include <machine/_inttypes.h> 79 80 #include <xen/xen-os.h> 81 #include <xen/hypervisor.h> 82 #include <xen/xen_intr.h> 83 #include <contrib/xen/io/netif.h> 84 #include <xen/xenbus/xenbusvar.h> 85 86 /*--------------------------- Compile-time Tunables --------------------------*/ 87 88 /*---------------------------------- Macros ----------------------------------*/ 89 /** 90 * Custom malloc type for all driver allocations. 91 */ 92 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data"); 93 94 #define XNB_SG 1 /* netback driver supports feature-sg */ 95 #define XNB_GSO_TCPV4 0 /* netback driver supports feature-gso-tcpv4 */ 96 #define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */ 97 #define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */ 98 99 #undef XNB_DEBUG 100 #define XNB_DEBUG /* hardcode on during development */ 101 102 #ifdef XNB_DEBUG 103 #define DPRINTF(fmt, args...) \ 104 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) 105 #else 106 #define DPRINTF(fmt, args...) do {} while (0) 107 #endif 108 109 /* Default length for stack-allocated grant tables */ 110 #define GNTTAB_LEN (64) 111 112 /* Features supported by all backends. TSO and LRO can be negotiated */ 113 #define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 114 115 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 116 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 117 118 /** 119 * Two argument version of the standard macro. Second argument is a tentative 120 * value of req_cons 121 */ 122 #define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \ 123 unsigned int req = (_r)->sring->req_prod - cons; \ 124 unsigned int rsp = RING_SIZE(_r) - \ 125 (cons - (_r)->rsp_prod_pvt); \ 126 req < rsp ? req : rsp; \ 127 }) 128 129 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT) 130 #define virt_to_offset(x) ((x) & (PAGE_SIZE - 1)) 131 132 /** 133 * Predefined array type of grant table copy descriptors. Used to pass around 134 * statically allocated memory structures. 135 */ 136 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN]; 137 138 /*--------------------------- Forward Declarations ---------------------------*/ 139 struct xnb_softc; 140 struct xnb_pkt; 141 142 static void xnb_attach_failed(struct xnb_softc *xnb, 143 int err, const char *fmt, ...) 144 __printflike(3,4); 145 static int xnb_shutdown(struct xnb_softc *xnb); 146 static int create_netdev(device_t dev); 147 static int xnb_detach(device_t dev); 148 static int xnb_ifmedia_upd(if_t ifp); 149 static void xnb_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr); 150 static void xnb_intr(void *arg); 151 static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend, 152 const struct mbuf *mbufc, gnttab_copy_table gnttab); 153 static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, 154 struct mbuf **mbufc, if_t ifnet, 155 gnttab_copy_table gnttab); 156 static int xnb_ring2pkt(struct xnb_pkt *pkt, 157 const netif_tx_back_ring_t *tx_ring, 158 RING_IDX start); 159 static void xnb_txpkt2rsp(const struct xnb_pkt *pkt, 160 netif_tx_back_ring_t *ring, int error); 161 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, if_t ifp); 162 static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt, 163 struct mbuf *mbufc, 164 gnttab_copy_table gnttab, 165 const netif_tx_back_ring_t *txb, 166 domid_t otherend_id); 167 static void xnb_update_mbufc(struct mbuf *mbufc, 168 const gnttab_copy_table gnttab, int n_entries); 169 static int xnb_mbufc2pkt(const struct mbuf *mbufc, 170 struct xnb_pkt *pkt, 171 RING_IDX start, int space); 172 static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, 173 const struct mbuf *mbufc, 174 gnttab_copy_table gnttab, 175 const netif_rx_back_ring_t *rxb, 176 domid_t otherend_id); 177 static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt, 178 const gnttab_copy_table gnttab, int n_entries, 179 netif_rx_back_ring_t *ring); 180 static void xnb_stop(struct xnb_softc*); 181 static int xnb_ioctl(if_t, u_long, caddr_t); 182 static void xnb_start_locked(if_t); 183 static void xnb_start(if_t); 184 static void xnb_ifinit_locked(struct xnb_softc*); 185 static void xnb_ifinit(void*); 186 #ifdef XNB_DEBUG 187 static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS); 188 static int xnb_dump_rings(SYSCTL_HANDLER_ARGS); 189 #endif 190 #if defined(INET) || defined(INET6) 191 static void xnb_add_mbuf_cksum(struct mbuf *mbufc); 192 #endif 193 /*------------------------------ Data Structures -----------------------------*/ 194 195 /** 196 * Representation of a xennet packet. Simplified version of a packet as 197 * stored in the Xen tx ring. Applicable to both RX and TX packets 198 */ 199 struct xnb_pkt{ 200 /** 201 * Array index of the first data-bearing (eg, not extra info) entry 202 * for this packet 203 */ 204 RING_IDX car; 205 206 /** 207 * Array index of the second data-bearing entry for this packet. 208 * Invalid if the packet has only one data-bearing entry. If the 209 * packet has more than two data-bearing entries, then the second 210 * through the last will be sequential modulo the ring size 211 */ 212 RING_IDX cdr; 213 214 /** 215 * Optional extra info. Only valid if flags contains 216 * NETTXF_extra_info. Note that extra.type will always be 217 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback 218 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_* 219 */ 220 netif_extra_info_t extra; 221 222 /** Size of entire packet in bytes. */ 223 uint16_t size; 224 225 /** The size of the first entry's data in bytes */ 226 uint16_t car_size; 227 228 /** 229 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are 230 * not the same for TX and RX packets 231 */ 232 uint16_t flags; 233 234 /** 235 * The number of valid data-bearing entries (either netif_tx_request's 236 * or netif_rx_response's) in the packet. If this is 0, it means the 237 * entire packet is invalid. 238 */ 239 uint16_t list_len; 240 241 /** There was an error processing the packet */ 242 uint8_t error; 243 }; 244 245 /** xnb_pkt method: initialize it */ 246 static inline void 247 xnb_pkt_initialize(struct xnb_pkt *pxnb) 248 { 249 bzero(pxnb, sizeof(*pxnb)); 250 } 251 252 /** xnb_pkt method: mark the packet as valid */ 253 static inline void 254 xnb_pkt_validate(struct xnb_pkt *pxnb) 255 { 256 pxnb->error = 0; 257 }; 258 259 /** xnb_pkt method: mark the packet as invalid */ 260 static inline void 261 xnb_pkt_invalidate(struct xnb_pkt *pxnb) 262 { 263 pxnb->error = 1; 264 }; 265 266 /** xnb_pkt method: Check whether the packet is valid */ 267 static inline int 268 xnb_pkt_is_valid(const struct xnb_pkt *pxnb) 269 { 270 return (! pxnb->error); 271 } 272 273 #ifdef XNB_DEBUG 274 /** xnb_pkt method: print the packet's contents in human-readable format*/ 275 static void __unused 276 xnb_dump_pkt(const struct xnb_pkt *pkt) { 277 if (pkt == NULL) { 278 DPRINTF("Was passed a null pointer.\n"); 279 return; 280 } 281 DPRINTF("pkt address= %p\n", pkt); 282 DPRINTF("pkt->size=%d\n", pkt->size); 283 DPRINTF("pkt->car_size=%d\n", pkt->car_size); 284 DPRINTF("pkt->flags=0x%04x\n", pkt->flags); 285 DPRINTF("pkt->list_len=%d\n", pkt->list_len); 286 /* DPRINTF("pkt->extra"); TODO */ 287 DPRINTF("pkt->car=%d\n", pkt->car); 288 DPRINTF("pkt->cdr=%d\n", pkt->cdr); 289 DPRINTF("pkt->error=%d\n", pkt->error); 290 } 291 #endif /* XNB_DEBUG */ 292 293 static void 294 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq) 295 { 296 if (txreq != NULL) { 297 DPRINTF("netif_tx_request index =%u\n", idx); 298 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref); 299 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset); 300 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags); 301 DPRINTF("netif_tx_request.id =%hu\n", txreq->id); 302 DPRINTF("netif_tx_request.size =%hu\n", txreq->size); 303 } 304 } 305 306 /** 307 * \brief Configuration data for a shared memory request ring 308 * used to communicate with the front-end client of this 309 * this driver. 310 */ 311 struct xnb_ring_config { 312 /** 313 * Runtime structures for ring access. Unfortunately, TX and RX rings 314 * use different data structures, and that cannot be changed since it 315 * is part of the interdomain protocol. 316 */ 317 union{ 318 netif_rx_back_ring_t rx_ring; 319 netif_tx_back_ring_t tx_ring; 320 } back_ring; 321 322 /** 323 * The device bus address returned by the hypervisor when 324 * mapping the ring and required to unmap it when a connection 325 * is torn down. 326 */ 327 uint64_t bus_addr; 328 329 /** The pseudo-physical address where ring memory is mapped.*/ 330 uint64_t gnt_addr; 331 332 /** KVA address where ring memory is mapped. */ 333 vm_offset_t va; 334 335 /** 336 * Grant table handles, one per-ring page, returned by the 337 * hyperpervisor upon mapping of the ring and required to 338 * unmap it when a connection is torn down. 339 */ 340 grant_handle_t handle; 341 342 /** The number of ring pages mapped for the current connection. */ 343 unsigned ring_pages; 344 345 /** 346 * The grant references, one per-ring page, supplied by the 347 * front-end, allowing us to reference the ring pages in the 348 * front-end's domain and to map these pages into our own domain. 349 */ 350 grant_ref_t ring_ref; 351 }; 352 353 /** 354 * Per-instance connection state flags. 355 */ 356 typedef enum 357 { 358 /** Communication with the front-end has been established. */ 359 XNBF_RING_CONNECTED = 0x01, 360 361 /** 362 * Front-end requests exist in the ring and are waiting for 363 * xnb_xen_req objects to free up. 364 */ 365 XNBF_RESOURCE_SHORTAGE = 0x02, 366 367 /** Connection teardown has started. */ 368 XNBF_SHUTDOWN = 0x04, 369 370 /** A thread is already performing shutdown processing. */ 371 XNBF_IN_SHUTDOWN = 0x08 372 } xnb_flag_t; 373 374 /** 375 * Types of rings. Used for array indices and to identify a ring's control 376 * data structure type 377 */ 378 typedef enum{ 379 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */ 380 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */ 381 XNB_NUM_RING_TYPES 382 } xnb_ring_type_t; 383 384 /** 385 * Per-instance configuration data. 386 */ 387 struct xnb_softc { 388 /** NewBus device corresponding to this instance. */ 389 device_t dev; 390 391 /* Media related fields */ 392 393 /** Generic network media state */ 394 struct ifmedia sc_media; 395 396 /** Media carrier info */ 397 if_t xnb_ifp; 398 399 /** Our own private carrier state */ 400 unsigned carrier; 401 402 /** Device MAC Address */ 403 uint8_t mac[ETHER_ADDR_LEN]; 404 405 /* Xen related fields */ 406 407 /** 408 * \brief The netif protocol abi in effect. 409 * 410 * There are situations where the back and front ends can 411 * have a different, native abi (e.g. intel x86_64 and 412 * 32bit x86 domains on the same machine). The back-end 413 * always accommodates the front-end's native abi. That 414 * value is pulled from the XenStore and recorded here. 415 */ 416 int abi; 417 418 /** 419 * Name of the bridge to which this VIF is connected, if any 420 * This field is dynamically allocated by xenbus and must be free()ed 421 * when no longer needed 422 */ 423 char *bridge; 424 425 /** The interrupt driven even channel used to signal ring events. */ 426 evtchn_port_t evtchn; 427 428 /** Xen device handle.*/ 429 long handle; 430 431 /** Handle to the communication ring event channel. */ 432 xen_intr_handle_t xen_intr_handle; 433 434 /** 435 * \brief Cached value of the front-end's domain id. 436 * 437 * This value is used at once for each mapped page in 438 * a transaction. We cache it to avoid incuring the 439 * cost of an ivar access every time this is needed. 440 */ 441 domid_t otherend_id; 442 443 /** 444 * Undocumented frontend feature. Has something to do with 445 * scatter/gather IO 446 */ 447 uint8_t can_sg; 448 /** Undocumented frontend feature */ 449 uint8_t gso; 450 /** Undocumented frontend feature */ 451 uint8_t gso_prefix; 452 /** Can checksum TCP/UDP over IPv4 */ 453 uint8_t ip_csum; 454 455 /* Implementation related fields */ 456 /** 457 * Preallocated grant table copy descriptor for RX operations. 458 * Access must be protected by rx_lock 459 */ 460 gnttab_copy_table rx_gnttab; 461 462 /** 463 * Preallocated grant table copy descriptor for TX operations. 464 * Access must be protected by tx_lock 465 */ 466 gnttab_copy_table tx_gnttab; 467 468 /** 469 * Resource representing allocated physical address space 470 * associated with our per-instance kva region. 471 */ 472 struct resource *pseudo_phys_res; 473 474 /** Resource id for allocated physical address space. */ 475 int pseudo_phys_res_id; 476 477 /** Ring mapping and interrupt configuration data. */ 478 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES]; 479 480 /** 481 * Global pool of kva used for mapping remote domain ring 482 * and I/O transaction data. 483 */ 484 vm_offset_t kva; 485 486 /** Pseudo-physical address corresponding to kva. */ 487 uint64_t gnt_base_addr; 488 489 /** Various configuration and state bit flags. */ 490 xnb_flag_t flags; 491 492 /** Mutex protecting per-instance data in the receive path. */ 493 struct mtx rx_lock; 494 495 /** Mutex protecting per-instance data in the softc structure. */ 496 struct mtx sc_lock; 497 498 /** Mutex protecting per-instance data in the transmit path. */ 499 struct mtx tx_lock; 500 501 /** The size of the global kva pool. */ 502 int kva_size; 503 504 /** Name of the interface */ 505 char if_name[IFNAMSIZ]; 506 }; 507 508 /*---------------------------- Debugging functions ---------------------------*/ 509 #ifdef XNB_DEBUG 510 static void __unused 511 xnb_dump_gnttab_copy(const struct gnttab_copy *entry) 512 { 513 if (entry == NULL) { 514 printf("NULL grant table pointer\n"); 515 return; 516 } 517 518 if (entry->flags & GNTCOPY_dest_gref) 519 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref); 520 else 521 printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n", 522 entry->dest.u.gmfn); 523 printf("gnttab dest offset=\t%hu\n", entry->dest.offset); 524 printf("gnttab dest domid=\t%hu\n", entry->dest.domid); 525 if (entry->flags & GNTCOPY_source_gref) 526 printf("gnttab source ref=\t%u\n", entry->source.u.ref); 527 else 528 printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n", 529 entry->source.u.gmfn); 530 printf("gnttab source offset=\t%hu\n", entry->source.offset); 531 printf("gnttab source domid=\t%hu\n", entry->source.domid); 532 printf("gnttab len=\t%hu\n", entry->len); 533 printf("gnttab flags=\t%hu\n", entry->flags); 534 printf("gnttab status=\t%hd\n", entry->status); 535 } 536 537 static int 538 xnb_dump_rings(SYSCTL_HANDLER_ARGS) 539 { 540 static char results[720]; 541 struct xnb_softc const* xnb = (struct xnb_softc*)arg1; 542 netif_rx_back_ring_t const* rxb = 543 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 544 netif_tx_back_ring_t const* txb = 545 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 546 547 /* empty the result strings */ 548 results[0] = 0; 549 550 if ( !txb || !txb->sring || !rxb || !rxb->sring ) 551 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 552 553 snprintf(results, 720, 554 "\n\t%35s %18s\n" /* TX, RX */ 555 "\t%16s %18d %18d\n" /* req_cons */ 556 "\t%16s %18d %18d\n" /* nr_ents */ 557 "\t%16s %18d %18d\n" /* rsp_prod_pvt */ 558 "\t%16s %18p %18p\n" /* sring */ 559 "\t%16s %18d %18d\n" /* req_prod */ 560 "\t%16s %18d %18d\n" /* req_event */ 561 "\t%16s %18d %18d\n" /* rsp_prod */ 562 "\t%16s %18d %18d\n", /* rsp_event */ 563 "TX", "RX", 564 "req_cons", txb->req_cons, rxb->req_cons, 565 "nr_ents", txb->nr_ents, rxb->nr_ents, 566 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt, 567 "sring", txb->sring, rxb->sring, 568 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod, 569 "sring->req_event", txb->sring->req_event, rxb->sring->req_event, 570 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod, 571 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event); 572 573 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 574 } 575 576 static void __unused 577 xnb_dump_mbuf(const struct mbuf *m) 578 { 579 int len; 580 uint8_t *d; 581 if (m == NULL) 582 return; 583 584 printf("xnb_dump_mbuf:\n"); 585 if (m->m_flags & M_PKTHDR) { 586 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, " 587 "tso_segsz=%5hd\n", 588 m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags, 589 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz); 590 printf(" rcvif=%16p, len=%19d\n", 591 m->m_pkthdr.rcvif, m->m_pkthdr.len); 592 } 593 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n", 594 m->m_next, m->m_nextpkt, m->m_data); 595 printf(" m_len=%17d, m_flags=%#15x, m_type=%18u\n", 596 m->m_len, m->m_flags, m->m_type); 597 598 len = m->m_len; 599 d = mtod(m, uint8_t*); 600 while (len > 0) { 601 int i; 602 printf(" "); 603 for (i = 0; (i < 16) && (len > 0); i++, len--) { 604 printf("%02hhx ", *(d++)); 605 } 606 printf("\n"); 607 } 608 } 609 #endif /* XNB_DEBUG */ 610 611 /*------------------------ Inter-Domain Communication ------------------------*/ 612 /** 613 * Free dynamically allocated KVA or pseudo-physical address allocations. 614 * 615 * \param xnb Per-instance xnb configuration structure. 616 */ 617 static void 618 xnb_free_communication_mem(struct xnb_softc *xnb) 619 { 620 if (xnb->kva != 0) { 621 if (xnb->pseudo_phys_res != NULL) { 622 xenmem_free(xnb->dev, xnb->pseudo_phys_res_id, 623 xnb->pseudo_phys_res); 624 xnb->pseudo_phys_res = NULL; 625 } 626 } 627 xnb->kva = 0; 628 xnb->gnt_base_addr = 0; 629 } 630 631 /** 632 * Cleanup all inter-domain communication mechanisms. 633 * 634 * \param xnb Per-instance xnb configuration structure. 635 */ 636 static int 637 xnb_disconnect(struct xnb_softc *xnb) 638 { 639 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES]; 640 int error __diagused; 641 int i; 642 643 if (xnb->xen_intr_handle != NULL) 644 xen_intr_unbind(&xnb->xen_intr_handle); 645 646 /* 647 * We may still have another thread currently processing requests. We 648 * must acquire the rx and tx locks to make sure those threads are done, 649 * but we can release those locks as soon as we acquire them, because no 650 * more interrupts will be arriving. 651 */ 652 mtx_lock(&xnb->tx_lock); 653 mtx_unlock(&xnb->tx_lock); 654 mtx_lock(&xnb->rx_lock); 655 mtx_unlock(&xnb->rx_lock); 656 657 mtx_lock(&xnb->sc_lock); 658 /* Free malloc'd softc member variables */ 659 if (xnb->bridge != NULL) { 660 free(xnb->bridge, M_XENSTORE); 661 xnb->bridge = NULL; 662 } 663 664 /* All request processing has stopped, so unmap the rings */ 665 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 666 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr; 667 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr; 668 gnts[i].handle = xnb->ring_configs[i].handle; 669 } 670 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts, 671 XNB_NUM_RING_TYPES); 672 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error)); 673 674 xnb_free_communication_mem(xnb); 675 /* 676 * Zero the ring config structs because the pointers, handles, and 677 * grant refs contained therein are no longer valid. 678 */ 679 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX], 680 sizeof(struct xnb_ring_config)); 681 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX], 682 sizeof(struct xnb_ring_config)); 683 684 xnb->flags &= ~XNBF_RING_CONNECTED; 685 mtx_unlock(&xnb->sc_lock); 686 687 return (0); 688 } 689 690 /** 691 * Map a single shared memory ring into domain local address space and 692 * initialize its control structure 693 * 694 * \param xnb Per-instance xnb configuration structure 695 * \param ring_type Array index of this ring in the xnb's array of rings 696 * \return An errno 697 */ 698 static int 699 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type) 700 { 701 struct gnttab_map_grant_ref gnt; 702 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type]; 703 int error; 704 705 /* TX ring type = 0, RX =1 */ 706 ring->va = xnb->kva + ring_type * PAGE_SIZE; 707 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE; 708 709 gnt.host_addr = ring->gnt_addr; 710 gnt.flags = GNTMAP_host_map; 711 gnt.ref = ring->ring_ref; 712 gnt.dom = xnb->otherend_id; 713 714 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1); 715 if (error != 0) 716 panic("netback: Ring page grant table op failed (%d)", error); 717 718 if (gnt.status != 0) { 719 ring->va = 0; 720 error = EACCES; 721 xenbus_dev_fatal(xnb->dev, error, 722 "Ring shared page mapping failed. " 723 "Status %d.", gnt.status); 724 } else { 725 ring->handle = gnt.handle; 726 ring->bus_addr = gnt.dev_bus_addr; 727 728 if (ring_type == XNB_RING_TYPE_TX) { 729 BACK_RING_INIT(&ring->back_ring.tx_ring, 730 (netif_tx_sring_t*)ring->va, 731 ring->ring_pages * PAGE_SIZE); 732 } else if (ring_type == XNB_RING_TYPE_RX) { 733 BACK_RING_INIT(&ring->back_ring.rx_ring, 734 (netif_rx_sring_t*)ring->va, 735 ring->ring_pages * PAGE_SIZE); 736 } else { 737 xenbus_dev_fatal(xnb->dev, error, 738 "Unknown ring type %d", ring_type); 739 } 740 } 741 742 return error; 743 } 744 745 /** 746 * Setup the shared memory rings and bind an interrupt to the event channel 747 * used to notify us of ring changes. 748 * 749 * \param xnb Per-instance xnb configuration structure. 750 */ 751 static int 752 xnb_connect_comms(struct xnb_softc *xnb) 753 { 754 int error; 755 xnb_ring_type_t i; 756 757 if ((xnb->flags & XNBF_RING_CONNECTED) != 0) 758 return (0); 759 760 /* 761 * Kva for our rings are at the tail of the region of kva allocated 762 * by xnb_alloc_communication_mem(). 763 */ 764 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 765 error = xnb_connect_ring(xnb, i); 766 if (error != 0) 767 return error; 768 } 769 770 xnb->flags |= XNBF_RING_CONNECTED; 771 772 error = xen_intr_bind_remote_port(xnb->dev, 773 xnb->otherend_id, 774 xnb->evtchn, 775 /*filter*/NULL, 776 xnb_intr, /*arg*/xnb, 777 INTR_TYPE_NET | INTR_MPSAFE, 778 &xnb->xen_intr_handle); 779 if (error != 0) { 780 (void)xnb_disconnect(xnb); 781 xenbus_dev_fatal(xnb->dev, error, "binding event channel"); 782 return (error); 783 } 784 785 DPRINTF("rings connected!\n"); 786 787 return (0); 788 } 789 790 /** 791 * Size KVA and pseudo-physical address allocations based on negotiated 792 * values for the size and number of I/O requests, and the size of our 793 * communication ring. 794 * 795 * \param xnb Per-instance xnb configuration structure. 796 * 797 * These address spaces are used to dynamically map pages in the 798 * front-end's domain into our own. 799 */ 800 static int 801 xnb_alloc_communication_mem(struct xnb_softc *xnb) 802 { 803 xnb_ring_type_t i; 804 805 xnb->kva_size = 0; 806 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 807 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE; 808 } 809 810 /* 811 * Reserve a range of pseudo physical memory that we can map 812 * into kva. These pages will only be backed by machine 813 * pages ("real memory") during the lifetime of front-end requests 814 * via grant table operations. We will map the netif tx and rx rings 815 * into this space. 816 */ 817 xnb->pseudo_phys_res_id = 0; 818 xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id, 819 xnb->kva_size); 820 if (xnb->pseudo_phys_res == NULL) { 821 xnb->kva = 0; 822 return (ENOMEM); 823 } 824 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res); 825 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res); 826 return (0); 827 } 828 829 /** 830 * Collect information from the XenStore related to our device and its frontend 831 * 832 * \param xnb Per-instance xnb configuration structure. 833 */ 834 static int 835 xnb_collect_xenstore_info(struct xnb_softc *xnb) 836 { 837 /** 838 * \todo Linux collects the following info. We should collect most 839 * of this, too: 840 * "feature-rx-notify" 841 */ 842 const char *otherend_path; 843 const char *our_path; 844 int err; 845 unsigned int rx_copy, bridge_len; 846 uint8_t no_csum_offload; 847 848 otherend_path = xenbus_get_otherend_path(xnb->dev); 849 our_path = xenbus_get_node(xnb->dev); 850 851 /* Collect the critical communication parameters */ 852 err = xs_gather(XST_NIL, otherend_path, 853 "tx-ring-ref", "%l" PRIu32, 854 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref, 855 "rx-ring-ref", "%l" PRIu32, 856 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref, 857 "event-channel", "%" PRIu32, &xnb->evtchn, 858 NULL); 859 if (err != 0) { 860 xenbus_dev_fatal(xnb->dev, err, 861 "Unable to retrieve ring information from " 862 "frontend %s. Unable to connect.", 863 otherend_path); 864 return (err); 865 } 866 867 /* Collect the handle from xenstore */ 868 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle); 869 if (err != 0) { 870 xenbus_dev_fatal(xnb->dev, err, 871 "Error reading handle from frontend %s. " 872 "Unable to connect.", otherend_path); 873 } 874 875 /* 876 * Collect the bridgename, if any. We do not need bridge_len; we just 877 * throw it away 878 */ 879 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len, 880 (void**)&xnb->bridge); 881 if (err != 0) 882 xnb->bridge = NULL; 883 884 /* 885 * Does the frontend request that we use rx copy? If not, return an 886 * error because this driver only supports rx copy. 887 */ 888 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL, 889 "%" PRIu32, &rx_copy); 890 if (err == ENOENT) { 891 err = 0; 892 rx_copy = 0; 893 } 894 if (err < 0) { 895 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy", 896 otherend_path); 897 return err; 898 } 899 /** 900 * \todo: figure out the exact meaning of this feature, and when 901 * the frontend will set it to true. It should be set to true 902 * at some point 903 */ 904 /* if (!rx_copy)*/ 905 /* return EOPNOTSUPP;*/ 906 907 /** \todo Collect the rx notify feature */ 908 909 /* Collect the feature-sg. */ 910 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL, 911 "%hhu", &xnb->can_sg) < 0) 912 xnb->can_sg = 0; 913 914 /* Collect remaining frontend features */ 915 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL, 916 "%hhu", &xnb->gso) < 0) 917 xnb->gso = 0; 918 919 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL, 920 "%hhu", &xnb->gso_prefix) < 0) 921 xnb->gso_prefix = 0; 922 923 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL, 924 "%hhu", &no_csum_offload) < 0) 925 no_csum_offload = 0; 926 xnb->ip_csum = (no_csum_offload == 0); 927 928 return (0); 929 } 930 931 /** 932 * Supply information about the physical device to the frontend 933 * via XenBus. 934 * 935 * \param xnb Per-instance xnb configuration structure. 936 */ 937 static int 938 xnb_publish_backend_info(struct xnb_softc *xnb) 939 { 940 struct xs_transaction xst; 941 const char *our_path; 942 int error; 943 944 our_path = xenbus_get_node(xnb->dev); 945 946 do { 947 error = xs_transaction_start(&xst); 948 if (error != 0) { 949 xenbus_dev_fatal(xnb->dev, error, 950 "Error publishing backend info " 951 "(start transaction)"); 952 break; 953 } 954 955 error = xs_printf(xst, our_path, "feature-sg", 956 "%d", XNB_SG); 957 if (error != 0) 958 break; 959 960 error = xs_printf(xst, our_path, "feature-gso-tcpv4", 961 "%d", XNB_GSO_TCPV4); 962 if (error != 0) 963 break; 964 965 error = xs_printf(xst, our_path, "feature-rx-copy", 966 "%d", XNB_RX_COPY); 967 if (error != 0) 968 break; 969 970 error = xs_printf(xst, our_path, "feature-rx-flip", 971 "%d", XNB_RX_FLIP); 972 if (error != 0) 973 break; 974 975 error = xs_transaction_end(xst, 0); 976 if (error != 0 && error != EAGAIN) { 977 xenbus_dev_fatal(xnb->dev, error, "ending transaction"); 978 break; 979 } 980 981 } while (error == EAGAIN); 982 983 return (error); 984 } 985 986 /** 987 * Connect to our netfront peer now that it has completed publishing 988 * its configuration into the XenStore. 989 * 990 * \param xnb Per-instance xnb configuration structure. 991 */ 992 static void 993 xnb_connect(struct xnb_softc *xnb) 994 { 995 int error; 996 997 if (xenbus_get_state(xnb->dev) == XenbusStateConnected) 998 return; 999 1000 if (xnb_collect_xenstore_info(xnb) != 0) 1001 return; 1002 1003 xnb->flags &= ~XNBF_SHUTDOWN; 1004 1005 /* Read front end configuration. */ 1006 1007 /* Allocate resources whose size depends on front-end configuration. */ 1008 error = xnb_alloc_communication_mem(xnb); 1009 if (error != 0) { 1010 xenbus_dev_fatal(xnb->dev, error, 1011 "Unable to allocate communication memory"); 1012 return; 1013 } 1014 1015 /* 1016 * Connect communication channel. 1017 */ 1018 error = xnb_connect_comms(xnb); 1019 if (error != 0) { 1020 /* Specific errors are reported by xnb_connect_comms(). */ 1021 return; 1022 } 1023 xnb->carrier = 1; 1024 1025 /* Ready for I/O. */ 1026 xenbus_set_state(xnb->dev, XenbusStateConnected); 1027 } 1028 1029 /*-------------------------- Device Teardown Support -------------------------*/ 1030 /** 1031 * Perform device shutdown functions. 1032 * 1033 * \param xnb Per-instance xnb configuration structure. 1034 * 1035 * Mark this instance as shutting down, wait for any active requests 1036 * to drain, disconnect from the front-end, and notify any waiters (e.g. 1037 * a thread invoking our detach method) that detach can now proceed. 1038 */ 1039 static int 1040 xnb_shutdown(struct xnb_softc *xnb) 1041 { 1042 /* 1043 * Due to the need to drop our mutex during some 1044 * xenbus operations, it is possible for two threads 1045 * to attempt to close out shutdown processing at 1046 * the same time. Tell the caller that hits this 1047 * race to try back later. 1048 */ 1049 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0) 1050 return (EAGAIN); 1051 1052 xnb->flags |= XNBF_SHUTDOWN; 1053 1054 xnb->flags |= XNBF_IN_SHUTDOWN; 1055 1056 mtx_unlock(&xnb->sc_lock); 1057 /* Free the network interface */ 1058 xnb->carrier = 0; 1059 if (xnb->xnb_ifp != NULL) { 1060 ether_ifdetach(xnb->xnb_ifp); 1061 if_free(xnb->xnb_ifp); 1062 xnb->xnb_ifp = NULL; 1063 } 1064 1065 xnb_disconnect(xnb); 1066 1067 if (xenbus_get_state(xnb->dev) < XenbusStateClosing) 1068 xenbus_set_state(xnb->dev, XenbusStateClosing); 1069 mtx_lock(&xnb->sc_lock); 1070 1071 xnb->flags &= ~XNBF_IN_SHUTDOWN; 1072 1073 /* Indicate to xnb_detach() that is it safe to proceed. */ 1074 wakeup(xnb); 1075 1076 return (0); 1077 } 1078 1079 /** 1080 * Report an attach time error to the console and Xen, and cleanup 1081 * this instance by forcing immediate detach processing. 1082 * 1083 * \param xnb Per-instance xnb configuration structure. 1084 * \param err Errno describing the error. 1085 * \param fmt Printf style format and arguments 1086 */ 1087 static void 1088 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...) 1089 { 1090 va_list ap; 1091 va_list ap_hotplug; 1092 1093 va_start(ap, fmt); 1094 va_copy(ap_hotplug, ap); 1095 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev), 1096 "hotplug-error", fmt, ap_hotplug); 1097 va_end(ap_hotplug); 1098 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1099 "hotplug-status", "error"); 1100 1101 xenbus_dev_vfatal(xnb->dev, err, fmt, ap); 1102 va_end(ap); 1103 1104 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0"); 1105 xnb_detach(xnb->dev); 1106 } 1107 1108 /*---------------------------- NewBus Entrypoints ----------------------------*/ 1109 /** 1110 * Inspect a XenBus device and claim it if is of the appropriate type. 1111 * 1112 * \param dev NewBus device object representing a candidate XenBus device. 1113 * 1114 * \return 0 for success, errno codes for failure. 1115 */ 1116 static int 1117 xnb_probe(device_t dev) 1118 { 1119 if (!strcmp(xenbus_get_type(dev), "vif")) { 1120 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev), 1121 devclass_get_name(device_get_devclass(dev))); 1122 device_set_desc(dev, "Backend Virtual Network Device"); 1123 device_quiet(dev); 1124 return (0); 1125 } 1126 return (ENXIO); 1127 } 1128 1129 /** 1130 * Setup sysctl variables to control various Network Back parameters. 1131 * 1132 * \param xnb Xen Net Back softc. 1133 * 1134 */ 1135 static void 1136 xnb_setup_sysctl(struct xnb_softc *xnb) 1137 { 1138 struct sysctl_ctx_list *sysctl_ctx = NULL; 1139 struct sysctl_oid *sysctl_tree = NULL; 1140 1141 sysctl_ctx = device_get_sysctl_ctx(xnb->dev); 1142 if (sysctl_ctx == NULL) 1143 return; 1144 1145 sysctl_tree = device_get_sysctl_tree(xnb->dev); 1146 if (sysctl_tree == NULL) 1147 return; 1148 1149 #ifdef XNB_DEBUG 1150 SYSCTL_ADD_PROC(sysctl_ctx, 1151 SYSCTL_CHILDREN(sysctl_tree), 1152 OID_AUTO, 1153 "unit_test_results", 1154 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 1155 xnb, 1156 0, 1157 xnb_unit_test_main, 1158 "A", 1159 "Results of builtin unit tests"); 1160 1161 SYSCTL_ADD_PROC(sysctl_ctx, 1162 SYSCTL_CHILDREN(sysctl_tree), 1163 OID_AUTO, 1164 "dump_rings", 1165 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 1166 xnb, 1167 0, 1168 xnb_dump_rings, 1169 "A", 1170 "Xennet Back Rings"); 1171 #endif /* XNB_DEBUG */ 1172 } 1173 1174 /** 1175 * Create a network device. 1176 * @param handle device handle 1177 */ 1178 int 1179 create_netdev(device_t dev) 1180 { 1181 if_t ifp; 1182 struct xnb_softc *xnb; 1183 int err = 0; 1184 uint32_t handle; 1185 1186 xnb = device_get_softc(dev); 1187 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF); 1188 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF); 1189 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF); 1190 1191 xnb->dev = dev; 1192 1193 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts); 1194 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1195 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL); 1196 1197 /* 1198 * Set the MAC address to a dummy value (00:00:00:00:00), 1199 * if the MAC address of the host-facing interface is set 1200 * to the same as the guest-facing one (the value found in 1201 * xenstore), the bridge would stop delivering packets to 1202 * us because it would see that the destination address of 1203 * the packet is the same as the interface, and so the bridge 1204 * would expect the packet has already been delivered locally 1205 * (and just drop it). 1206 */ 1207 bzero(&xnb->mac[0], sizeof(xnb->mac)); 1208 1209 /* The interface will be named using the following nomenclature: 1210 * 1211 * xnb<domid>.<handle> 1212 * 1213 * Where handle is the oder of the interface referred to the guest. 1214 */ 1215 err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL, 1216 "%" PRIu32, &handle); 1217 if (err != 0) 1218 return (err); 1219 snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32, 1220 xenbus_get_otherend_id(dev), handle); 1221 1222 if (err == 0) { 1223 /* Set up ifnet structure */ 1224 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER); 1225 if_setsoftc(ifp, xnb); 1226 if_initname(ifp, xnb->if_name, IF_DUNIT_NONE); 1227 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 1228 if_setioctlfn(ifp, xnb_ioctl); 1229 if_setstartfn(ifp, xnb_start); 1230 if_setinitfn(ifp, xnb_ifinit); 1231 if_setmtu(ifp, ETHERMTU); 1232 if_setsendqlen(ifp, NET_RX_RING_SIZE - 1); 1233 1234 if_sethwassist(ifp, XNB_CSUM_FEATURES); 1235 if_setcapabilities(ifp, IFCAP_HWCSUM); 1236 if_setcapenable(ifp, IFCAP_HWCSUM); 1237 1238 ether_ifattach(ifp, xnb->mac); 1239 xnb->carrier = 0; 1240 } 1241 1242 return err; 1243 } 1244 1245 /** 1246 * Attach to a XenBus device that has been claimed by our probe routine. 1247 * 1248 * \param dev NewBus device object representing this Xen Net Back instance. 1249 * 1250 * \return 0 for success, errno codes for failure. 1251 */ 1252 static int 1253 xnb_attach(device_t dev) 1254 { 1255 struct xnb_softc *xnb; 1256 int error; 1257 xnb_ring_type_t i; 1258 1259 error = create_netdev(dev); 1260 if (error != 0) { 1261 xenbus_dev_fatal(dev, error, "creating netdev"); 1262 return (error); 1263 } 1264 1265 DPRINTF("Attaching to %s\n", xenbus_get_node(dev)); 1266 1267 /* 1268 * Basic initialization. 1269 * After this block it is safe to call xnb_detach() 1270 * to clean up any allocated data for this instance. 1271 */ 1272 xnb = device_get_softc(dev); 1273 xnb->otherend_id = xenbus_get_otherend_id(dev); 1274 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 1275 xnb->ring_configs[i].ring_pages = 1; 1276 } 1277 1278 /* 1279 * Setup sysctl variables. 1280 */ 1281 xnb_setup_sysctl(xnb); 1282 1283 /* Update hot-plug status to satisfy xend. */ 1284 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1285 "hotplug-status", "connected"); 1286 if (error != 0) { 1287 xnb_attach_failed(xnb, error, "writing %s/hotplug-status", 1288 xenbus_get_node(xnb->dev)); 1289 return (error); 1290 } 1291 1292 if ((error = xnb_publish_backend_info(xnb)) != 0) { 1293 /* 1294 * If we can't publish our data, we cannot participate 1295 * in this connection, and waiting for a front-end state 1296 * change will not help the situation. 1297 */ 1298 xnb_attach_failed(xnb, error, 1299 "Publishing backend status for %s", 1300 xenbus_get_node(xnb->dev)); 1301 return error; 1302 } 1303 1304 /* Tell the front end that we are ready to connect. */ 1305 xenbus_set_state(dev, XenbusStateInitWait); 1306 1307 return (0); 1308 } 1309 1310 /** 1311 * Detach from a net back device instance. 1312 * 1313 * \param dev NewBus device object representing this Xen Net Back instance. 1314 * 1315 * \return 0 for success, errno codes for failure. 1316 * 1317 * \note A net back device may be detached at any time in its life-cycle, 1318 * including part way through the attach process. For this reason, 1319 * initialization order and the initialization state checks in this 1320 * routine must be carefully coupled so that attach time failures 1321 * are gracefully handled. 1322 */ 1323 static int 1324 xnb_detach(device_t dev) 1325 { 1326 struct xnb_softc *xnb; 1327 1328 DPRINTF("\n"); 1329 1330 xnb = device_get_softc(dev); 1331 mtx_lock(&xnb->sc_lock); 1332 while (xnb_shutdown(xnb) == EAGAIN) { 1333 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0, 1334 "xnb_shutdown", 0); 1335 } 1336 mtx_unlock(&xnb->sc_lock); 1337 DPRINTF("\n"); 1338 1339 mtx_destroy(&xnb->tx_lock); 1340 mtx_destroy(&xnb->rx_lock); 1341 mtx_destroy(&xnb->sc_lock); 1342 return (0); 1343 } 1344 1345 /** 1346 * Prepare this net back device for suspension of this VM. 1347 * 1348 * \param dev NewBus device object representing this Xen net Back instance. 1349 * 1350 * \return 0 for success, errno codes for failure. 1351 */ 1352 static int 1353 xnb_suspend(device_t dev) 1354 { 1355 return (0); 1356 } 1357 1358 /** 1359 * Perform any processing required to recover from a suspended state. 1360 * 1361 * \param dev NewBus device object representing this Xen Net Back instance. 1362 * 1363 * \return 0 for success, errno codes for failure. 1364 */ 1365 static int 1366 xnb_resume(device_t dev) 1367 { 1368 return (0); 1369 } 1370 1371 /** 1372 * Handle state changes expressed via the XenStore by our front-end peer. 1373 * 1374 * \param dev NewBus device object representing this Xen 1375 * Net Back instance. 1376 * \param frontend_state The new state of the front-end. 1377 * 1378 * \return 0 for success, errno codes for failure. 1379 */ 1380 static void 1381 xnb_frontend_changed(device_t dev, XenbusState frontend_state) 1382 { 1383 struct xnb_softc *xnb; 1384 1385 xnb = device_get_softc(dev); 1386 1387 DPRINTF("frontend_state=%s, xnb_state=%s\n", 1388 xenbus_strstate(frontend_state), 1389 xenbus_strstate(xenbus_get_state(xnb->dev))); 1390 1391 switch (frontend_state) { 1392 case XenbusStateInitialising: 1393 case XenbusStateInitialised: 1394 break; 1395 case XenbusStateConnected: 1396 xnb_connect(xnb); 1397 break; 1398 case XenbusStateClosing: 1399 case XenbusStateClosed: 1400 mtx_lock(&xnb->sc_lock); 1401 xnb_shutdown(xnb); 1402 mtx_unlock(&xnb->sc_lock); 1403 if (frontend_state == XenbusStateClosed) 1404 xenbus_set_state(xnb->dev, XenbusStateClosed); 1405 break; 1406 default: 1407 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend", 1408 frontend_state); 1409 break; 1410 } 1411 } 1412 1413 /*---------------------------- Request Processing ----------------------------*/ 1414 /** 1415 * Interrupt handler bound to the shared ring's event channel. 1416 * Entry point for the xennet transmit path in netback 1417 * Transfers packets from the Xen ring to the host's generic networking stack 1418 * 1419 * \param arg Callback argument registerd during event channel 1420 * binding - the xnb_softc for this instance. 1421 */ 1422 static void 1423 xnb_intr(void *arg) 1424 { 1425 struct xnb_softc *xnb; 1426 if_t ifp; 1427 netif_tx_back_ring_t *txb; 1428 RING_IDX req_prod_local; 1429 1430 xnb = (struct xnb_softc *)arg; 1431 ifp = xnb->xnb_ifp; 1432 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 1433 1434 mtx_lock(&xnb->tx_lock); 1435 do { 1436 int notify; 1437 req_prod_local = txb->sring->req_prod; 1438 xen_rmb(); 1439 1440 for (;;) { 1441 struct mbuf *mbufc; 1442 int err; 1443 1444 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp, 1445 xnb->tx_gnttab); 1446 if (err || (mbufc == NULL)) 1447 break; 1448 1449 /* Send the packet to the generic network stack */ 1450 if_input(xnb->xnb_ifp, mbufc); 1451 } 1452 1453 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify); 1454 if (notify != 0) 1455 xen_intr_signal(xnb->xen_intr_handle); 1456 1457 txb->sring->req_event = txb->req_cons + 1; 1458 xen_mb(); 1459 } while (txb->sring->req_prod != req_prod_local) ; 1460 mtx_unlock(&xnb->tx_lock); 1461 1462 xnb_start(ifp); 1463 } 1464 1465 /** 1466 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring. 1467 * Will read exactly 0 or 1 packets from the ring; never a partial packet. 1468 * \param[out] pkt The returned packet. If there is an error building 1469 * the packet, pkt.list_len will be set to 0. 1470 * \param[in] tx_ring Pointer to the Ring that is the input to this function 1471 * \param[in] start The ring index of the first potential request 1472 * \return The number of requests consumed to build this packet 1473 */ 1474 static int 1475 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring, 1476 RING_IDX start) 1477 { 1478 /* 1479 * Outline: 1480 * 1) Initialize pkt 1481 * 2) Read the first request of the packet 1482 * 3) Read the extras 1483 * 4) Set cdr 1484 * 5) Loop on the remainder of the packet 1485 * 6) Finalize pkt (stuff like car_size and list_len) 1486 */ 1487 int idx = start; 1488 int discard = 0; /* whether to discard the packet */ 1489 int more_data = 0; /* there are more request past the last one */ 1490 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */ 1491 1492 xnb_pkt_initialize(pkt); 1493 1494 /* Read the first request */ 1495 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1496 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1497 pkt->size = tx->size; 1498 pkt->flags = tx->flags & ~NETTXF_more_data; 1499 more_data = tx->flags & NETTXF_more_data; 1500 pkt->list_len++; 1501 pkt->car = idx; 1502 idx++; 1503 } 1504 1505 /* Read the extra info */ 1506 if ((pkt->flags & NETTXF_extra_info) && 1507 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1508 netif_extra_info_t *ext = 1509 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx); 1510 pkt->extra.type = ext->type; 1511 switch (pkt->extra.type) { 1512 case XEN_NETIF_EXTRA_TYPE_GSO: 1513 pkt->extra.u.gso = ext->u.gso; 1514 break; 1515 default: 1516 /* 1517 * The reference Linux netfront driver will 1518 * never set any other extra.type. So we don't 1519 * know what to do with it. Let's print an 1520 * error, then consume and discard the packet 1521 */ 1522 printf("xnb(%s:%d): Unknown extra info type %d." 1523 " Discarding packet\n", 1524 __func__, __LINE__, pkt->extra.type); 1525 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, 1526 start)); 1527 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, 1528 idx)); 1529 discard = 1; 1530 break; 1531 } 1532 1533 pkt->extra.flags = ext->flags; 1534 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) { 1535 /* 1536 * The reference linux netfront driver never sets this 1537 * flag (nor does any other known netfront). So we 1538 * will discard the packet. 1539 */ 1540 printf("xnb(%s:%d): Request sets " 1541 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle " 1542 "that\n", __func__, __LINE__); 1543 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1544 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1545 discard = 1; 1546 } 1547 1548 idx++; 1549 } 1550 1551 /* Set cdr. If there is not more data, cdr is invalid */ 1552 pkt->cdr = idx; 1553 1554 /* Loop on remainder of packet */ 1555 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1556 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1557 pkt->list_len++; 1558 cdr_size += tx->size; 1559 if (tx->flags & ~NETTXF_more_data) { 1560 /* There should be no other flags set at this point */ 1561 printf("xnb(%s:%d): Request sets unknown flags %d " 1562 "after the 1st request in the packet.\n", 1563 __func__, __LINE__, tx->flags); 1564 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1565 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1566 } 1567 1568 more_data = tx->flags & NETTXF_more_data; 1569 idx++; 1570 } 1571 1572 /* Finalize packet */ 1573 if (more_data != 0) { 1574 /* The ring ran out of requests before finishing the packet */ 1575 xnb_pkt_invalidate(pkt); 1576 idx = start; /* tell caller that we consumed no requests */ 1577 } else { 1578 /* Calculate car_size */ 1579 pkt->car_size = pkt->size - cdr_size; 1580 } 1581 if (discard != 0) { 1582 xnb_pkt_invalidate(pkt); 1583 } 1584 1585 return idx - start; 1586 } 1587 1588 /** 1589 * Respond to all the requests that constituted pkt. Builds the responses and 1590 * writes them to the ring, but doesn't push them to the shared ring. 1591 * \param[in] pkt the packet that needs a response 1592 * \param[in] error true if there was an error handling the packet, such 1593 * as in the hypervisor copy op or mbuf allocation 1594 * \param[out] ring Responses go here 1595 */ 1596 static void 1597 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring, 1598 int error) 1599 { 1600 /* 1601 * Outline: 1602 * 1) Respond to the first request 1603 * 2) Respond to the extra info reques 1604 * Loop through every remaining request in the packet, generating 1605 * responses that copy those requests' ids and sets the status 1606 * appropriately. 1607 */ 1608 netif_tx_request_t *tx; 1609 netif_tx_response_t *rsp; 1610 int i; 1611 uint16_t status; 1612 1613 status = (xnb_pkt_is_valid(pkt) == 0) || error ? 1614 NETIF_RSP_ERROR : NETIF_RSP_OKAY; 1615 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car), 1616 ("Cannot respond to ring requests out of order")); 1617 1618 if (pkt->list_len >= 1) { 1619 uint16_t id; 1620 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1621 id = tx->id; 1622 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1623 rsp->id = id; 1624 rsp->status = status; 1625 ring->rsp_prod_pvt++; 1626 1627 if (pkt->flags & NETRXF_extra_info) { 1628 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1629 rsp->status = NETIF_RSP_NULL; 1630 ring->rsp_prod_pvt++; 1631 } 1632 } 1633 1634 for (i=0; i < pkt->list_len - 1; i++) { 1635 uint16_t id; 1636 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1637 id = tx->id; 1638 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1639 rsp->id = id; 1640 rsp->status = status; 1641 ring->rsp_prod_pvt++; 1642 } 1643 } 1644 1645 /** 1646 * Create an mbuf chain to represent a packet. Initializes all of the headers 1647 * in the mbuf chain, but does not copy the data. The returned chain must be 1648 * free()'d when no longer needed 1649 * \param[in] pkt A packet to model the mbuf chain after 1650 * \return A newly allocated mbuf chain, possibly with clusters attached. 1651 * NULL on failure 1652 */ 1653 static struct mbuf* 1654 xnb_pkt2mbufc(const struct xnb_pkt *pkt, if_t ifp) 1655 { 1656 /** 1657 * \todo consider using a memory pool for mbufs instead of 1658 * reallocating them for every packet 1659 */ 1660 /** \todo handle extra data */ 1661 struct mbuf *m; 1662 1663 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA); 1664 1665 if (m != NULL) { 1666 m->m_pkthdr.rcvif = ifp; 1667 if (pkt->flags & NETTXF_data_validated) { 1668 /* 1669 * We lie to the host OS and always tell it that the 1670 * checksums are ok, because the packet is unlikely to 1671 * get corrupted going across domains. 1672 */ 1673 m->m_pkthdr.csum_flags = ( 1674 CSUM_IP_CHECKED | 1675 CSUM_IP_VALID | 1676 CSUM_DATA_VALID | 1677 CSUM_PSEUDO_HDR 1678 ); 1679 m->m_pkthdr.csum_data = 0xffff; 1680 } 1681 } 1682 return m; 1683 } 1684 1685 /** 1686 * Build a gnttab_copy table that can be used to copy data from a pkt 1687 * to an mbufc. Does not actually perform the copy. Always uses gref's on 1688 * the packet side. 1689 * \param[in] pkt pkt's associated requests form the src for 1690 * the copy operation 1691 * \param[in] mbufc mbufc's storage forms the dest for the copy operation 1692 * \param[out] gnttab Storage for the returned grant table 1693 * \param[in] txb Pointer to the backend ring structure 1694 * \param[in] otherend_id The domain ID of the other end of the copy 1695 * \return The number of gnttab entries filled 1696 */ 1697 static int 1698 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc, 1699 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb, 1700 domid_t otherend_id) 1701 { 1702 1703 struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1704 int gnt_idx = 0; /* index into grant table */ 1705 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */ 1706 int r_ofs = 0; /* offset of next data within tx request's data area */ 1707 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1708 /* size in bytes that still needs to be represented in the table */ 1709 uint16_t size_remaining = pkt->size; 1710 1711 while (size_remaining > 0) { 1712 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx); 1713 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs; 1714 const size_t req_size = 1715 r_idx == pkt->car ? pkt->car_size : txq->size; 1716 const size_t pkt_space = req_size - r_ofs; 1717 /* 1718 * space is the largest amount of data that can be copied in the 1719 * grant table's next entry 1720 */ 1721 const size_t space = MIN(pkt_space, mbuf_space); 1722 1723 /* TODO: handle this error condition without panicking */ 1724 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1725 1726 gnttab[gnt_idx].source.u.ref = txq->gref; 1727 gnttab[gnt_idx].source.domid = otherend_id; 1728 gnttab[gnt_idx].source.offset = txq->offset + r_ofs; 1729 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn( 1730 mtod(mbuf, vm_offset_t) + m_ofs); 1731 gnttab[gnt_idx].dest.offset = virt_to_offset( 1732 mtod(mbuf, vm_offset_t) + m_ofs); 1733 gnttab[gnt_idx].dest.domid = DOMID_SELF; 1734 gnttab[gnt_idx].len = space; 1735 gnttab[gnt_idx].flags = GNTCOPY_source_gref; 1736 1737 gnt_idx++; 1738 r_ofs += space; 1739 m_ofs += space; 1740 size_remaining -= space; 1741 if (req_size - r_ofs <= 0) { 1742 /* Must move to the next tx request */ 1743 r_ofs = 0; 1744 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 1745 } 1746 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) { 1747 /* Must move to the next mbuf */ 1748 m_ofs = 0; 1749 mbuf = mbuf->m_next; 1750 } 1751 } 1752 1753 return gnt_idx; 1754 } 1755 1756 /** 1757 * Check the status of the grant copy operations, and update mbufs various 1758 * non-data fields to reflect the data present. 1759 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of 1760 * the correct length, and data should already be present 1761 * \param[in] gnttab A grant table for a just completed copy op 1762 * \param[in] n_entries The number of valid entries in the grant table 1763 */ 1764 static void 1765 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab, 1766 int n_entries) 1767 { 1768 struct mbuf *mbuf = mbufc; 1769 int i; 1770 size_t total_size = 0; 1771 1772 for (i = 0; i < n_entries; i++) { 1773 KASSERT(gnttab[i].status == GNTST_okay, 1774 ("Some gnttab_copy entry had error status %hd\n", 1775 gnttab[i].status)); 1776 1777 mbuf->m_len += gnttab[i].len; 1778 total_size += gnttab[i].len; 1779 if (M_TRAILINGSPACE(mbuf) <= 0) { 1780 mbuf = mbuf->m_next; 1781 } 1782 } 1783 mbufc->m_pkthdr.len = total_size; 1784 1785 #if defined(INET) || defined(INET6) 1786 xnb_add_mbuf_cksum(mbufc); 1787 #endif 1788 } 1789 1790 /** 1791 * Dequeue at most one packet from the shared ring 1792 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and 1793 * its private indices will be updated. But the indices 1794 * will not be pushed to the shared ring. 1795 * \param[in] ifnet Interface to which the packet will be sent 1796 * \param[in] otherend Domain ID of the other end of the ring 1797 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic 1798 * networking stack 1799 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 1800 * this a function parameter so that we will take less 1801 * stack space. 1802 * \return An error code 1803 */ 1804 static int 1805 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc, 1806 if_t ifnet, gnttab_copy_table gnttab) 1807 { 1808 struct xnb_pkt pkt; 1809 /* number of tx requests consumed to build the last packet */ 1810 int num_consumed; 1811 int nr_ents; 1812 1813 *mbufc = NULL; 1814 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons); 1815 if (num_consumed == 0) 1816 return 0; /* Nothing to receive */ 1817 1818 /* update statistics independent of errors */ 1819 if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1); 1820 1821 /* 1822 * if we got here, then 1 or more requests was consumed, but the packet 1823 * is not necessarily valid. 1824 */ 1825 if (xnb_pkt_is_valid(&pkt) == 0) { 1826 /* got a garbage packet, respond and drop it */ 1827 xnb_txpkt2rsp(&pkt, txb, 1); 1828 txb->req_cons += num_consumed; 1829 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n", 1830 num_consumed); 1831 if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1); 1832 return EINVAL; 1833 } 1834 1835 *mbufc = xnb_pkt2mbufc(&pkt, ifnet); 1836 1837 if (*mbufc == NULL) { 1838 /* 1839 * Couldn't allocate mbufs. Respond and drop the packet. Do 1840 * not consume the requests 1841 */ 1842 xnb_txpkt2rsp(&pkt, txb, 1); 1843 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n", 1844 num_consumed); 1845 if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1); 1846 return ENOMEM; 1847 } 1848 1849 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend); 1850 1851 if (nr_ents > 0) { 1852 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 1853 gnttab, nr_ents); 1854 KASSERT(hv_ret == 0, 1855 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret)); 1856 xnb_update_mbufc(*mbufc, gnttab, nr_ents); 1857 } 1858 1859 xnb_txpkt2rsp(&pkt, txb, 0); 1860 txb->req_cons += num_consumed; 1861 return 0; 1862 } 1863 1864 /** 1865 * Create an xnb_pkt based on the contents of an mbuf chain. 1866 * \param[in] mbufc mbuf chain to transform into a packet 1867 * \param[out] pkt Storage for the newly generated xnb_pkt 1868 * \param[in] start The ring index of the first available slot in the rx 1869 * ring 1870 * \param[in] space The number of free slots in the rx ring 1871 * \retval 0 Success 1872 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 1873 * \retval EAGAIN There was not enough space in the ring to queue the 1874 * packet 1875 */ 1876 static int 1877 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt, 1878 RING_IDX start, int space) 1879 { 1880 1881 int retval = 0; 1882 1883 if ((mbufc == NULL) || 1884 ( (mbufc->m_flags & M_PKTHDR) == 0) || 1885 (mbufc->m_pkthdr.len == 0)) { 1886 xnb_pkt_invalidate(pkt); 1887 retval = EINVAL; 1888 } else { 1889 int slots_required; 1890 1891 xnb_pkt_validate(pkt); 1892 pkt->flags = 0; 1893 pkt->size = mbufc->m_pkthdr.len; 1894 pkt->car = start; 1895 pkt->car_size = mbufc->m_len; 1896 1897 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) { 1898 pkt->flags |= NETRXF_extra_info; 1899 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz; 1900 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 1901 pkt->extra.u.gso.pad = 0; 1902 pkt->extra.u.gso.features = 0; 1903 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO; 1904 pkt->extra.flags = 0; 1905 pkt->cdr = start + 2; 1906 } else { 1907 pkt->cdr = start + 1; 1908 } 1909 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) { 1910 pkt->flags |= 1911 (NETRXF_csum_blank | NETRXF_data_validated); 1912 } 1913 1914 /* 1915 * Each ring response can have up to PAGE_SIZE of data. 1916 * Assume that we can defragment the mbuf chain efficiently 1917 * into responses so that each response but the last uses all 1918 * PAGE_SIZE bytes. 1919 */ 1920 pkt->list_len = howmany(pkt->size, PAGE_SIZE); 1921 1922 if (pkt->list_len > 1) { 1923 pkt->flags |= NETRXF_more_data; 1924 } 1925 1926 slots_required = pkt->list_len + 1927 (pkt->flags & NETRXF_extra_info ? 1 : 0); 1928 if (slots_required > space) { 1929 xnb_pkt_invalidate(pkt); 1930 retval = EAGAIN; 1931 } 1932 } 1933 1934 return retval; 1935 } 1936 1937 /** 1938 * Build a gnttab_copy table that can be used to copy data from an mbuf chain 1939 * to the frontend's shared buffers. Does not actually perform the copy. 1940 * Always uses gref's on the other end's side. 1941 * \param[in] pkt pkt's associated responses form the dest for the copy 1942 * operatoin 1943 * \param[in] mbufc The source for the copy operation 1944 * \param[out] gnttab Storage for the returned grant table 1945 * \param[in] rxb Pointer to the backend ring structure 1946 * \param[in] otherend_id The domain ID of the other end of the copy 1947 * \return The number of gnttab entries filled 1948 */ 1949 static int 1950 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1951 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb, 1952 domid_t otherend_id) 1953 { 1954 1955 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1956 int gnt_idx = 0; /* index into grant table */ 1957 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */ 1958 int r_ofs = 0; /* offset of next data within rx request's data area */ 1959 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1960 /* size in bytes that still needs to be represented in the table */ 1961 uint16_t size_remaining; 1962 1963 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0; 1964 1965 while (size_remaining > 0) { 1966 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx); 1967 const size_t mbuf_space = mbuf->m_len - m_ofs; 1968 /* Xen shared pages have an implied size of PAGE_SIZE */ 1969 const size_t req_size = PAGE_SIZE; 1970 const size_t pkt_space = req_size - r_ofs; 1971 /* 1972 * space is the largest amount of data that can be copied in the 1973 * grant table's next entry 1974 */ 1975 const size_t space = MIN(pkt_space, mbuf_space); 1976 1977 /* TODO: handle this error condition without panicing */ 1978 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1979 1980 gnttab[gnt_idx].dest.u.ref = rxq->gref; 1981 gnttab[gnt_idx].dest.domid = otherend_id; 1982 gnttab[gnt_idx].dest.offset = r_ofs; 1983 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn( 1984 mtod(mbuf, vm_offset_t) + m_ofs); 1985 gnttab[gnt_idx].source.offset = virt_to_offset( 1986 mtod(mbuf, vm_offset_t) + m_ofs); 1987 gnttab[gnt_idx].source.domid = DOMID_SELF; 1988 gnttab[gnt_idx].len = space; 1989 gnttab[gnt_idx].flags = GNTCOPY_dest_gref; 1990 1991 gnt_idx++; 1992 1993 r_ofs += space; 1994 m_ofs += space; 1995 size_remaining -= space; 1996 if (req_size - r_ofs <= 0) { 1997 /* Must move to the next rx request */ 1998 r_ofs = 0; 1999 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 2000 } 2001 if (mbuf->m_len - m_ofs <= 0) { 2002 /* Must move to the next mbuf */ 2003 m_ofs = 0; 2004 mbuf = mbuf->m_next; 2005 } 2006 } 2007 2008 return gnt_idx; 2009 } 2010 2011 /** 2012 * Generates responses for all the requests that constituted pkt. Builds 2013 * responses and writes them to the ring, but doesn't push the shared ring 2014 * indices. 2015 * \param[in] pkt the packet that needs a response 2016 * \param[in] gnttab The grant copy table corresponding to this packet. 2017 * Used to determine how many rsp->netif_rx_response_t's to 2018 * generate. 2019 * \param[in] n_entries Number of relevant entries in the grant table 2020 * \param[out] ring Responses go here 2021 * \return The number of RX requests that were consumed to generate 2022 * the responses 2023 */ 2024 static int 2025 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab, 2026 int n_entries, netif_rx_back_ring_t *ring) 2027 { 2028 /* 2029 * This code makes the following assumptions: 2030 * * All entries in gnttab set GNTCOPY_dest_gref 2031 * * The entries in gnttab are grouped by their grefs: any two 2032 * entries with the same gref must be adjacent 2033 */ 2034 int error = 0; 2035 int gnt_idx, i; 2036 int n_responses = 0; 2037 grant_ref_t last_gref = GRANT_REF_INVALID; 2038 RING_IDX r_idx; 2039 2040 KASSERT(gnttab != NULL, ("Received a null granttable copy")); 2041 2042 /* 2043 * In the event of an error, we only need to send one response to the 2044 * netfront. In that case, we musn't write any data to the responses 2045 * after the one we send. So we must loop all the way through gnttab 2046 * looking for errors before we generate any responses 2047 * 2048 * Since we're looping through the grant table anyway, we'll count the 2049 * number of different gref's in it, which will tell us how many 2050 * responses to generate 2051 */ 2052 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) { 2053 int16_t status = gnttab[gnt_idx].status; 2054 if (status != GNTST_okay) { 2055 DPRINTF( 2056 "Got error %d for hypervisor gnttab_copy status\n", 2057 status); 2058 error = 1; 2059 break; 2060 } 2061 if (gnttab[gnt_idx].dest.u.ref != last_gref) { 2062 n_responses++; 2063 last_gref = gnttab[gnt_idx].dest.u.ref; 2064 } 2065 } 2066 2067 if (error != 0) { 2068 uint16_t id; 2069 netif_rx_response_t *rsp; 2070 2071 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id; 2072 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 2073 rsp->id = id; 2074 rsp->status = NETIF_RSP_ERROR; 2075 n_responses = 1; 2076 } else { 2077 gnt_idx = 0; 2078 const int has_extra = pkt->flags & NETRXF_extra_info; 2079 if (has_extra != 0) 2080 n_responses++; 2081 2082 for (i = 0; i < n_responses; i++) { 2083 netif_rx_request_t rxq; 2084 netif_rx_response_t *rsp; 2085 2086 r_idx = ring->rsp_prod_pvt + i; 2087 /* 2088 * We copy the structure of rxq instead of making a 2089 * pointer because it shares the same memory as rsp. 2090 */ 2091 rxq = *(RING_GET_REQUEST(ring, r_idx)); 2092 rsp = RING_GET_RESPONSE(ring, r_idx); 2093 if (has_extra && (i == 1)) { 2094 netif_extra_info_t *ext = 2095 (netif_extra_info_t*)rsp; 2096 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 2097 ext->flags = 0; 2098 ext->u.gso.size = pkt->extra.u.gso.size; 2099 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 2100 ext->u.gso.pad = 0; 2101 ext->u.gso.features = 0; 2102 } else { 2103 rsp->id = rxq.id; 2104 rsp->status = GNTST_okay; 2105 rsp->offset = 0; 2106 rsp->flags = 0; 2107 if (i < pkt->list_len - 1) 2108 rsp->flags |= NETRXF_more_data; 2109 if ((i == 0) && has_extra) 2110 rsp->flags |= NETRXF_extra_info; 2111 if ((i == 0) && 2112 (pkt->flags & NETRXF_data_validated)) { 2113 rsp->flags |= NETRXF_data_validated; 2114 rsp->flags |= NETRXF_csum_blank; 2115 } 2116 rsp->status = 0; 2117 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref; 2118 gnt_idx++) { 2119 rsp->status += gnttab[gnt_idx].len; 2120 } 2121 } 2122 } 2123 } 2124 2125 ring->req_cons += n_responses; 2126 ring->rsp_prod_pvt += n_responses; 2127 return n_responses; 2128 } 2129 2130 #if defined(INET) || defined(INET6) 2131 /** 2132 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf 2133 * in the chain must start with a struct ether_header. 2134 * 2135 * XXX This function will perform incorrectly on UDP packets that are split up 2136 * into multiple ethernet frames. 2137 */ 2138 static void 2139 xnb_add_mbuf_cksum(struct mbuf *mbufc) 2140 { 2141 struct ether_header *eh; 2142 struct ip *iph; 2143 uint16_t ether_type; 2144 2145 eh = mtod(mbufc, struct ether_header*); 2146 ether_type = ntohs(eh->ether_type); 2147 if (ether_type != ETHERTYPE_IP) { 2148 /* Nothing to calculate */ 2149 return; 2150 } 2151 2152 iph = (struct ip*)(eh + 1); 2153 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2154 iph->ip_sum = 0; 2155 iph->ip_sum = in_cksum_hdr(iph); 2156 } 2157 2158 switch (iph->ip_p) { 2159 case IPPROTO_TCP: 2160 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2161 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip); 2162 struct tcphdr *th = (struct tcphdr*)(iph + 1); 2163 th->th_sum = in_pseudo(iph->ip_src.s_addr, 2164 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen)); 2165 th->th_sum = in_cksum_skip(mbufc, 2166 sizeof(struct ether_header) + ntohs(iph->ip_len), 2167 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2168 } 2169 break; 2170 case IPPROTO_UDP: 2171 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2172 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip); 2173 struct udphdr *uh = (struct udphdr*)(iph + 1); 2174 uh->uh_sum = in_pseudo(iph->ip_src.s_addr, 2175 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen)); 2176 uh->uh_sum = in_cksum_skip(mbufc, 2177 sizeof(struct ether_header) + ntohs(iph->ip_len), 2178 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2179 } 2180 break; 2181 default: 2182 break; 2183 } 2184 } 2185 #endif /* INET || INET6 */ 2186 2187 static void 2188 xnb_stop(struct xnb_softc *xnb) 2189 { 2190 if_t ifp; 2191 2192 mtx_assert(&xnb->sc_lock, MA_OWNED); 2193 ifp = xnb->xnb_ifp; 2194 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2195 if_link_state_change(ifp, LINK_STATE_DOWN); 2196 } 2197 2198 static int 2199 xnb_ioctl(if_t ifp, u_long cmd, caddr_t data) 2200 { 2201 struct xnb_softc *xnb = if_getsoftc(ifp); 2202 struct ifreq *ifr = (struct ifreq*) data; 2203 #ifdef INET 2204 struct ifaddr *ifa = (struct ifaddr*)data; 2205 #endif 2206 int error = 0; 2207 2208 switch (cmd) { 2209 case SIOCSIFFLAGS: 2210 mtx_lock(&xnb->sc_lock); 2211 if (if_getflags(ifp) & IFF_UP) { 2212 xnb_ifinit_locked(xnb); 2213 } else { 2214 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2215 xnb_stop(xnb); 2216 } 2217 } 2218 /* 2219 * Note: netfront sets a variable named xn_if_flags 2220 * here, but that variable is never read 2221 */ 2222 mtx_unlock(&xnb->sc_lock); 2223 break; 2224 case SIOCSIFADDR: 2225 #ifdef INET 2226 mtx_lock(&xnb->sc_lock); 2227 if (ifa->ifa_addr->sa_family == AF_INET) { 2228 if_setflagbits(ifp, IFF_UP, 0); 2229 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 2230 if_setdrvflagbits(ifp, 0, 2231 IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2232 if_link_state_change(ifp, 2233 LINK_STATE_DOWN); 2234 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 2235 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2236 if_link_state_change(ifp, 2237 LINK_STATE_UP); 2238 } 2239 arp_ifinit(ifp, ifa); 2240 mtx_unlock(&xnb->sc_lock); 2241 } else { 2242 mtx_unlock(&xnb->sc_lock); 2243 #endif 2244 error = ether_ioctl(ifp, cmd, data); 2245 #ifdef INET 2246 } 2247 #endif 2248 break; 2249 case SIOCSIFCAP: 2250 mtx_lock(&xnb->sc_lock); 2251 if (ifr->ifr_reqcap & IFCAP_TXCSUM) { 2252 if_setcapenablebit(ifp, IFCAP_TXCSUM, 0); 2253 if_sethwassistbits(ifp, XNB_CSUM_FEATURES, 0); 2254 } else { 2255 if_setcapenablebit(ifp, 0, IFCAP_TXCSUM); 2256 if_sethwassistbits(ifp, 0, XNB_CSUM_FEATURES); 2257 } 2258 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) { 2259 if_setcapenablebit(ifp, IFCAP_RXCSUM, 0); 2260 } else { 2261 if_setcapenablebit(ifp, 0, IFCAP_RXCSUM); 2262 } 2263 /* 2264 * TODO enable TSO4 and LRO once we no longer need 2265 * to calculate checksums in software 2266 */ 2267 #if 0 2268 if (ifr->if_reqcap |= IFCAP_TSO4) { 2269 if (IFCAP_TXCSUM & if_getcapenable(ifp)) { 2270 printf("xnb: Xen netif requires that " 2271 "TXCSUM be enabled in order " 2272 "to use TSO4\n"); 2273 error = EINVAL; 2274 } else { 2275 if_setcapenablebit(ifp, IFCAP_TSO4, 0); 2276 if_sethwassistbits(ifp, CSUM_TSO, 0); 2277 } 2278 } else { 2279 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2280 if_sethwassistbits(ifp, 0, (CSUM_TSO)); 2281 } 2282 if (ifr->ifreqcap |= IFCAP_LRO) { 2283 if_setcapenablebit(ifp, IFCAP_LRO, 0); 2284 } else { 2285 if_setcapenablebit(ifp, 0, IFCAP_LRO); 2286 } 2287 #endif 2288 mtx_unlock(&xnb->sc_lock); 2289 break; 2290 case SIOCSIFMTU: 2291 if_setmtu(ifp, ifr->ifr_mtu); 2292 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2293 xnb_ifinit(xnb); 2294 break; 2295 case SIOCADDMULTI: 2296 case SIOCDELMULTI: 2297 break; 2298 case SIOCSIFMEDIA: 2299 case SIOCGIFMEDIA: 2300 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd); 2301 break; 2302 default: 2303 error = ether_ioctl(ifp, cmd, data); 2304 break; 2305 } 2306 return (error); 2307 } 2308 2309 static void 2310 xnb_start_locked(if_t ifp) 2311 { 2312 netif_rx_back_ring_t *rxb; 2313 struct xnb_softc *xnb; 2314 struct mbuf *mbufc; 2315 RING_IDX req_prod_local; 2316 2317 xnb = if_getsoftc(ifp); 2318 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 2319 2320 if (!xnb->carrier) 2321 return; 2322 2323 do { 2324 int out_of_space = 0; 2325 int notify; 2326 req_prod_local = rxb->sring->req_prod; 2327 xen_rmb(); 2328 for (;;) { 2329 int error; 2330 2331 mbufc = if_dequeue(ifp); 2332 if (mbufc == NULL) 2333 break; 2334 error = xnb_send(rxb, xnb->otherend_id, mbufc, 2335 xnb->rx_gnttab); 2336 switch (error) { 2337 case EAGAIN: 2338 /* 2339 * Insufficient space in the ring. 2340 * Requeue pkt and send when space is 2341 * available. 2342 */ 2343 if_sendq_prepend(ifp, mbufc); 2344 /* 2345 * Perhaps the frontend missed an IRQ 2346 * and went to sleep. Notify it to wake 2347 * it up. 2348 */ 2349 out_of_space = 1; 2350 break; 2351 2352 case EINVAL: 2353 /* OS gave a corrupt packet. Drop it.*/ 2354 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2355 /* FALLTHROUGH */ 2356 default: 2357 /* Send succeeded, or packet had error. 2358 * Free the packet */ 2359 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2360 if (mbufc) 2361 m_freem(mbufc); 2362 break; 2363 } 2364 if (out_of_space != 0) 2365 break; 2366 } 2367 2368 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify); 2369 if ((notify != 0) || (out_of_space != 0)) 2370 xen_intr_signal(xnb->xen_intr_handle); 2371 rxb->sring->req_event = req_prod_local + 1; 2372 xen_mb(); 2373 } while (rxb->sring->req_prod != req_prod_local) ; 2374 } 2375 2376 /** 2377 * Sends one packet to the ring. Blocks until the packet is on the ring 2378 * \param[in] mbufc Contains one packet to send. Caller must free 2379 * \param[in,out] rxb The packet will be pushed onto this ring, but the 2380 * otherend will not be notified. 2381 * \param[in] otherend The domain ID of the other end of the connection 2382 * \retval EAGAIN The ring did not have enough space for the packet. 2383 * The ring has not been modified 2384 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 2385 * this a function parameter so that we will take less 2386 * stack space. 2387 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 2388 */ 2389 static int 2390 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc, 2391 gnttab_copy_table gnttab) 2392 { 2393 struct xnb_pkt pkt; 2394 int error, n_entries; 2395 RING_IDX space; 2396 2397 space = ring->sring->req_prod - ring->req_cons; 2398 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space); 2399 if (error != 0) 2400 return error; 2401 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend); 2402 if (n_entries != 0) { 2403 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 2404 gnttab, n_entries); 2405 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n", 2406 hv_ret)); 2407 } 2408 2409 xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring); 2410 2411 return 0; 2412 } 2413 2414 static void 2415 xnb_start(if_t ifp) 2416 { 2417 struct xnb_softc *xnb; 2418 2419 xnb = if_getsoftc(ifp); 2420 mtx_lock(&xnb->rx_lock); 2421 xnb_start_locked(ifp); 2422 mtx_unlock(&xnb->rx_lock); 2423 } 2424 2425 /* equivalent of network_open() in Linux */ 2426 static void 2427 xnb_ifinit_locked(struct xnb_softc *xnb) 2428 { 2429 if_t ifp; 2430 2431 ifp = xnb->xnb_ifp; 2432 2433 mtx_assert(&xnb->sc_lock, MA_OWNED); 2434 2435 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2436 return; 2437 2438 xnb_stop(xnb); 2439 2440 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 2441 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2442 if_link_state_change(ifp, LINK_STATE_UP); 2443 } 2444 2445 static void 2446 xnb_ifinit(void *xsc) 2447 { 2448 struct xnb_softc *xnb = xsc; 2449 2450 mtx_lock(&xnb->sc_lock); 2451 xnb_ifinit_locked(xnb); 2452 mtx_unlock(&xnb->sc_lock); 2453 } 2454 2455 /** 2456 * Callback used by the generic networking code to tell us when our carrier 2457 * state has changed. Since we don't have a physical carrier, we don't care 2458 */ 2459 static int 2460 xnb_ifmedia_upd(if_t ifp) 2461 { 2462 return (0); 2463 } 2464 2465 /** 2466 * Callback used by the generic networking code to ask us what our carrier 2467 * state is. Since we don't have a physical carrier, this is very simple 2468 */ 2469 static void 2470 xnb_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 2471 { 2472 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2473 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2474 } 2475 2476 /*---------------------------- NewBus Registration ---------------------------*/ 2477 static device_method_t xnb_methods[] = { 2478 /* Device interface */ 2479 DEVMETHOD(device_probe, xnb_probe), 2480 DEVMETHOD(device_attach, xnb_attach), 2481 DEVMETHOD(device_detach, xnb_detach), 2482 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2483 DEVMETHOD(device_suspend, xnb_suspend), 2484 DEVMETHOD(device_resume, xnb_resume), 2485 2486 /* Xenbus interface */ 2487 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed), 2488 2489 DEVMETHOD_END 2490 }; 2491 2492 static driver_t xnb_driver = { 2493 "xnb", 2494 xnb_methods, 2495 sizeof(struct xnb_softc), 2496 }; 2497 2498 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, 0, 0); 2499 2500 /*-------------------------- Unit Tests -------------------------------------*/ 2501 #ifdef XNB_DEBUG 2502 #include "netback_unit_tests.c" 2503 #endif 2504