xref: /freebsd/sys/dev/xen/netback/netback.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright (c) 2009-2011 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Alan Somers         (Spectra Logic Corporation)
32  *          John Suykerbuyk     (Spectra Logic Corporation)
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file netback.c
40  *
41  * \brief Device driver supporting the vending of network access
42  * 	  from this FreeBSD domain to other domains.
43  */
44 #include "opt_inet.h"
45 #include "opt_global.h"
46 
47 #include "opt_sctp.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 
52 #include <sys/bus.h>
53 #include <sys/module.h>
54 #include <sys/rman.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #if __FreeBSD_version >= 700000
70 #include <netinet/tcp.h>
71 #endif
72 #include <netinet/ip_icmp.h>
73 #include <netinet/udp.h>
74 #include <machine/in_cksum.h>
75 
76 #include <vm/vm.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_extern.h>
79 #include <vm/vm_kern.h>
80 
81 #include <machine/_inttypes.h>
82 
83 #include <xen/xen-os.h>
84 #include <xen/hypervisor.h>
85 #include <xen/xen_intr.h>
86 #include <xen/interface/io/netif.h>
87 #include <xen/xenbus/xenbusvar.h>
88 
89 #include <machine/xen/xenvar.h>
90 
91 /*--------------------------- Compile-time Tunables --------------------------*/
92 
93 /*---------------------------------- Macros ----------------------------------*/
94 /**
95  * Custom malloc type for all driver allocations.
96  */
97 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
98 
99 #define	XNB_SG	1	/* netback driver supports feature-sg */
100 #define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
101 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
102 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
103 
104 #undef XNB_DEBUG
105 #define	XNB_DEBUG /* hardcode on during development */
106 
107 #ifdef XNB_DEBUG
108 #define	DPRINTF(fmt, args...) \
109 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
110 #else
111 #define	DPRINTF(fmt, args...) do {} while (0)
112 #endif
113 
114 /* Default length for stack-allocated grant tables */
115 #define	GNTTAB_LEN	(64)
116 
117 /* Features supported by all backends.  TSO and LRO can be negotiated */
118 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
119 
120 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
121 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
122 
123 /**
124  * Two argument version of the standard macro.  Second argument is a tentative
125  * value of req_cons
126  */
127 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
128 	unsigned int req = (_r)->sring->req_prod - cons;          	\
129 	unsigned int rsp = RING_SIZE(_r) -                              \
130 	(cons - (_r)->rsp_prod_pvt);                          		\
131 	req < rsp ? req : rsp;                                          \
132 })
133 
134 #define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
135 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
136 
137 /**
138  * Predefined array type of grant table copy descriptors.  Used to pass around
139  * statically allocated memory structures.
140  */
141 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
142 
143 /*--------------------------- Forward Declarations ---------------------------*/
144 struct xnb_softc;
145 struct xnb_pkt;
146 
147 static void	xnb_attach_failed(struct xnb_softc *xnb,
148 				  int err, const char *fmt, ...)
149 				  __printflike(3,4);
150 static int	xnb_shutdown(struct xnb_softc *xnb);
151 static int	create_netdev(device_t dev);
152 static int	xnb_detach(device_t dev);
153 static int	xen_net_read_mac(device_t dev, uint8_t mac[]);
154 static int	xnb_ifmedia_upd(struct ifnet *ifp);
155 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
156 static void 	xnb_intr(void *arg);
157 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
158 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
159 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
160 			 struct mbuf **mbufc, struct ifnet *ifnet,
161 			 gnttab_copy_table gnttab);
162 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
163 			     const netif_tx_back_ring_t *tx_ring,
164 			     RING_IDX start);
165 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
166 			      netif_tx_back_ring_t *ring, int error);
167 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
168 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
169 				 const struct mbuf *mbufc,
170 				 gnttab_copy_table gnttab,
171 				 const netif_tx_back_ring_t *txb,
172 				 domid_t otherend_id);
173 static void	xnb_update_mbufc(struct mbuf *mbufc,
174 				 const gnttab_copy_table gnttab, int n_entries);
175 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
176 			      struct xnb_pkt *pkt,
177 			      RING_IDX start, int space);
178 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
179 				 const struct mbuf *mbufc,
180 				 gnttab_copy_table gnttab,
181 				 const netif_rx_back_ring_t *rxb,
182 				 domid_t otherend_id);
183 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
184 			      const gnttab_copy_table gnttab, int n_entries,
185 			      netif_rx_back_ring_t *ring);
186 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
187 static void	xnb_stop(struct xnb_softc*);
188 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
189 static void	xnb_start_locked(struct ifnet*);
190 static void	xnb_start(struct ifnet*);
191 static void	xnb_ifinit_locked(struct xnb_softc*);
192 static void	xnb_ifinit(void*);
193 #ifdef XNB_DEBUG
194 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
195 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
196 #endif
197 /*------------------------------ Data Structures -----------------------------*/
198 
199 
200 /**
201  * Representation of a xennet packet.  Simplified version of a packet as
202  * stored in the Xen tx ring.  Applicable to both RX and TX packets
203  */
204 struct xnb_pkt{
205 	/**
206 	 * Array index of the first data-bearing (eg, not extra info) entry
207 	 * for this packet
208 	 */
209 	RING_IDX	car;
210 
211 	/**
212 	 * Array index of the second data-bearing entry for this packet.
213 	 * Invalid if the packet has only one data-bearing entry.  If the
214 	 * packet has more than two data-bearing entries, then the second
215 	 * through the last will be sequential modulo the ring size
216 	 */
217 	RING_IDX	cdr;
218 
219 	/**
220 	 * Optional extra info.  Only valid if flags contains
221 	 * NETTXF_extra_info.  Note that extra.type will always be
222 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
223 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
224 	 */
225 	netif_extra_info_t extra;
226 
227 	/** Size of entire packet in bytes.       */
228 	uint16_t	size;
229 
230 	/** The size of the first entry's data in bytes */
231 	uint16_t	car_size;
232 
233 	/**
234 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
235 	 * not the same for TX and RX packets
236 	 */
237 	uint16_t	flags;
238 
239 	/**
240 	 * The number of valid data-bearing entries (either netif_tx_request's
241 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
242 	 * entire packet is invalid.
243 	 */
244 	uint16_t	list_len;
245 
246 	/** There was an error processing the packet */
247 	uint8_t		error;
248 };
249 
250 /** xnb_pkt method: initialize it */
251 static inline void
252 xnb_pkt_initialize(struct xnb_pkt *pxnb)
253 {
254 	bzero(pxnb, sizeof(*pxnb));
255 }
256 
257 /** xnb_pkt method: mark the packet as valid */
258 static inline void
259 xnb_pkt_validate(struct xnb_pkt *pxnb)
260 {
261 	pxnb->error = 0;
262 };
263 
264 /** xnb_pkt method: mark the packet as invalid */
265 static inline void
266 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
267 {
268 	pxnb->error = 1;
269 };
270 
271 /** xnb_pkt method: Check whether the packet is valid */
272 static inline int
273 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
274 {
275 	return (! pxnb->error);
276 }
277 
278 #ifdef XNB_DEBUG
279 /** xnb_pkt method: print the packet's contents in human-readable format*/
280 static void __unused
281 xnb_dump_pkt(const struct xnb_pkt *pkt) {
282 	if (pkt == NULL) {
283 	  DPRINTF("Was passed a null pointer.\n");
284 	  return;
285 	}
286 	DPRINTF("pkt address= %p\n", pkt);
287 	DPRINTF("pkt->size=%d\n", pkt->size);
288 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
289 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
290 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
291 	/* DPRINTF("pkt->extra");	TODO */
292 	DPRINTF("pkt->car=%d\n", pkt->car);
293 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
294 	DPRINTF("pkt->error=%d\n", pkt->error);
295 }
296 #endif /* XNB_DEBUG */
297 
298 static void
299 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
300 {
301 	if (txreq != NULL) {
302 		DPRINTF("netif_tx_request index =%u\n", idx);
303 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
304 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
305 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
306 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
307 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
308 	}
309 }
310 
311 
312 /**
313  * \brief Configuration data for a shared memory request ring
314  *        used to communicate with the front-end client of this
315  *        this driver.
316  */
317 struct xnb_ring_config {
318 	/**
319 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
320 	 * use different data structures, and that cannot be changed since it
321 	 * is part of the interdomain protocol.
322 	 */
323 	union{
324 		netif_rx_back_ring_t	  rx_ring;
325 		netif_tx_back_ring_t	  tx_ring;
326 	} back_ring;
327 
328 	/**
329 	 * The device bus address returned by the hypervisor when
330 	 * mapping the ring and required to unmap it when a connection
331 	 * is torn down.
332 	 */
333 	uint64_t	bus_addr;
334 
335 	/** The pseudo-physical address where ring memory is mapped.*/
336 	uint64_t	gnt_addr;
337 
338 	/** KVA address where ring memory is mapped. */
339 	vm_offset_t	va;
340 
341 	/**
342 	 * Grant table handles, one per-ring page, returned by the
343 	 * hyperpervisor upon mapping of the ring and required to
344 	 * unmap it when a connection is torn down.
345 	 */
346 	grant_handle_t	handle;
347 
348 	/** The number of ring pages mapped for the current connection. */
349 	unsigned	ring_pages;
350 
351 	/**
352 	 * The grant references, one per-ring page, supplied by the
353 	 * front-end, allowing us to reference the ring pages in the
354 	 * front-end's domain and to map these pages into our own domain.
355 	 */
356 	grant_ref_t	ring_ref;
357 };
358 
359 /**
360  * Per-instance connection state flags.
361  */
362 typedef enum
363 {
364 	/** Communication with the front-end has been established. */
365 	XNBF_RING_CONNECTED    = 0x01,
366 
367 	/**
368 	 * Front-end requests exist in the ring and are waiting for
369 	 * xnb_xen_req objects to free up.
370 	 */
371 	XNBF_RESOURCE_SHORTAGE = 0x02,
372 
373 	/** Connection teardown has started. */
374 	XNBF_SHUTDOWN          = 0x04,
375 
376 	/** A thread is already performing shutdown processing. */
377 	XNBF_IN_SHUTDOWN       = 0x08
378 } xnb_flag_t;
379 
380 /**
381  * Types of rings.  Used for array indices and to identify a ring's control
382  * data structure type
383  */
384 typedef enum{
385 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
386 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
387 	XNB_NUM_RING_TYPES
388 } xnb_ring_type_t;
389 
390 /**
391  * Per-instance configuration data.
392  */
393 struct xnb_softc {
394 	/** NewBus device corresponding to this instance. */
395 	device_t		dev;
396 
397 	/* Media related fields */
398 
399 	/** Generic network media state */
400 	struct ifmedia		sc_media;
401 
402 	/** Media carrier info */
403 	struct ifnet 		*xnb_ifp;
404 
405 	/** Our own private carrier state */
406 	unsigned carrier;
407 
408 	/** Device MAC Address */
409 	uint8_t			mac[ETHER_ADDR_LEN];
410 
411 	/* Xen related fields */
412 
413 	/**
414 	 * \brief The netif protocol abi in effect.
415 	 *
416 	 * There are situations where the back and front ends can
417 	 * have a different, native abi (e.g. intel x86_64 and
418 	 * 32bit x86 domains on the same machine).  The back-end
419 	 * always accomodates the front-end's native abi.  That
420 	 * value is pulled from the XenStore and recorded here.
421 	 */
422 	int			abi;
423 
424 	/**
425 	 * Name of the bridge to which this VIF is connected, if any
426 	 * This field is dynamically allocated by xenbus and must be free()ed
427 	 * when no longer needed
428 	 */
429 	char			*bridge;
430 
431 	/** The interrupt driven even channel used to signal ring events. */
432 	evtchn_port_t		evtchn;
433 
434 	/** Xen device handle.*/
435 	long 			handle;
436 
437 	/** Handle to the communication ring event channel. */
438 	xen_intr_handle_t	xen_intr_handle;
439 
440 	/**
441 	 * \brief Cached value of the front-end's domain id.
442 	 *
443 	 * This value is used at once for each mapped page in
444 	 * a transaction.  We cache it to avoid incuring the
445 	 * cost of an ivar access every time this is needed.
446 	 */
447 	domid_t			otherend_id;
448 
449 	/**
450 	 * Undocumented frontend feature.  Has something to do with
451 	 * scatter/gather IO
452 	 */
453 	uint8_t			can_sg;
454 	/** Undocumented frontend feature */
455 	uint8_t			gso;
456 	/** Undocumented frontend feature */
457 	uint8_t			gso_prefix;
458 	/** Can checksum TCP/UDP over IPv4 */
459 	uint8_t			ip_csum;
460 
461 	/* Implementation related fields */
462 	/**
463 	 * Preallocated grant table copy descriptor for RX operations.
464 	 * Access must be protected by rx_lock
465 	 */
466 	gnttab_copy_table	rx_gnttab;
467 
468 	/**
469 	 * Preallocated grant table copy descriptor for TX operations.
470 	 * Access must be protected by tx_lock
471 	 */
472 	gnttab_copy_table	tx_gnttab;
473 
474 #ifdef XENHVM
475 	/**
476 	 * Resource representing allocated physical address space
477 	 * associated with our per-instance kva region.
478 	 */
479 	struct resource		*pseudo_phys_res;
480 
481 	/** Resource id for allocated physical address space. */
482 	int			pseudo_phys_res_id;
483 #endif
484 
485 	/** Ring mapping and interrupt configuration data. */
486 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
487 
488 	/**
489 	 * Global pool of kva used for mapping remote domain ring
490 	 * and I/O transaction data.
491 	 */
492 	vm_offset_t		kva;
493 
494 	/** Psuedo-physical address corresponding to kva. */
495 	uint64_t		gnt_base_addr;
496 
497 	/** Various configuration and state bit flags. */
498 	xnb_flag_t		flags;
499 
500 	/** Mutex protecting per-instance data in the receive path. */
501 	struct mtx		rx_lock;
502 
503 	/** Mutex protecting per-instance data in the softc structure. */
504 	struct mtx		sc_lock;
505 
506 	/** Mutex protecting per-instance data in the transmit path. */
507 	struct mtx		tx_lock;
508 
509 	/** The size of the global kva pool. */
510 	int			kva_size;
511 };
512 
513 /*---------------------------- Debugging functions ---------------------------*/
514 #ifdef XNB_DEBUG
515 static void __unused
516 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
517 {
518 	if (entry == NULL) {
519 		printf("NULL grant table pointer\n");
520 		return;
521 	}
522 
523 	if (entry->flags & GNTCOPY_dest_gref)
524 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
525 	else
526 		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
527 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
528 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
529 	if (entry->flags & GNTCOPY_source_gref)
530 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
531 	else
532 		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
533 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
534 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
535 	printf("gnttab len=\t%hu\n", entry->len);
536 	printf("gnttab flags=\t%hu\n", entry->flags);
537 	printf("gnttab status=\t%hd\n", entry->status);
538 }
539 
540 static int
541 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
542 {
543 	static char results[720];
544 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
545 	netif_rx_back_ring_t const* rxb =
546 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
547 	netif_tx_back_ring_t const* txb =
548 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
549 
550 	/* empty the result strings */
551 	results[0] = 0;
552 
553 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
554 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
555 
556 	snprintf(results, 720,
557 	    "\n\t%35s %18s\n"	/* TX, RX */
558 	    "\t%16s %18d %18d\n"	/* req_cons */
559 	    "\t%16s %18d %18d\n"	/* nr_ents */
560 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
561 	    "\t%16s %18p %18p\n"	/* sring */
562 	    "\t%16s %18d %18d\n"	/* req_prod */
563 	    "\t%16s %18d %18d\n"	/* req_event */
564 	    "\t%16s %18d %18d\n"	/* rsp_prod */
565 	    "\t%16s %18d %18d\n",	/* rsp_event */
566 	    "TX", "RX",
567 	    "req_cons", txb->req_cons, rxb->req_cons,
568 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
569 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
570 	    "sring", txb->sring, rxb->sring,
571 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
572 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
573 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
574 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
575 
576 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
577 }
578 
579 static void __unused
580 xnb_dump_mbuf(const struct mbuf *m)
581 {
582 	int len;
583 	uint8_t *d;
584 	if (m == NULL)
585 		return;
586 
587 	printf("xnb_dump_mbuf:\n");
588 	if (m->m_flags & M_PKTHDR) {
589 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
590 		       "tso_segsz=%5hd\n",
591 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
592 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
593 		printf("    rcvif=%16p,  len=%19d\n",
594 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
595 	}
596 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
597 	       m->m_next, m->m_nextpkt, m->m_data);
598 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
599 	       m->m_len, m->m_flags, m->m_type);
600 
601 	len = m->m_len;
602 	d = mtod(m, uint8_t*);
603 	while (len > 0) {
604 		int i;
605 		printf("                ");
606 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
607 			printf("%02hhx ", *(d++));
608 		}
609 		printf("\n");
610 	}
611 }
612 #endif /* XNB_DEBUG */
613 
614 /*------------------------ Inter-Domain Communication ------------------------*/
615 /**
616  * Free dynamically allocated KVA or pseudo-physical address allocations.
617  *
618  * \param xnb  Per-instance xnb configuration structure.
619  */
620 static void
621 xnb_free_communication_mem(struct xnb_softc *xnb)
622 {
623 	if (xnb->kva != 0) {
624 #ifndef XENHVM
625 		kva_free(xnb->kva, xnb->kva_size);
626 #else
627 		if (xnb->pseudo_phys_res != NULL) {
628 			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
629 			    xnb->pseudo_phys_res_id,
630 			    xnb->pseudo_phys_res);
631 			xnb->pseudo_phys_res = NULL;
632 		}
633 #endif /* XENHVM */
634 	}
635 	xnb->kva = 0;
636 	xnb->gnt_base_addr = 0;
637 }
638 
639 /**
640  * Cleanup all inter-domain communication mechanisms.
641  *
642  * \param xnb  Per-instance xnb configuration structure.
643  */
644 static int
645 xnb_disconnect(struct xnb_softc *xnb)
646 {
647 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
648 	int error;
649 	int i;
650 
651 	xen_intr_unbind(xnb->xen_intr_handle);
652 
653 	/*
654 	 * We may still have another thread currently processing requests.  We
655 	 * must acquire the rx and tx locks to make sure those threads are done,
656 	 * but we can release those locks as soon as we acquire them, because no
657 	 * more interrupts will be arriving.
658 	 */
659 	mtx_lock(&xnb->tx_lock);
660 	mtx_unlock(&xnb->tx_lock);
661 	mtx_lock(&xnb->rx_lock);
662 	mtx_unlock(&xnb->rx_lock);
663 
664 	/* Free malloc'd softc member variables */
665 	if (xnb->bridge != NULL)
666 		free(xnb->bridge, M_XENSTORE);
667 
668 	/* All request processing has stopped, so unmap the rings */
669 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
670 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
671 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
672 		gnts[i].handle = xnb->ring_configs[i].handle;
673 	}
674 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
675 					  XNB_NUM_RING_TYPES);
676 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
677 
678 	xnb_free_communication_mem(xnb);
679 	/*
680 	 * Zero the ring config structs because the pointers, handles, and
681 	 * grant refs contained therein are no longer valid.
682 	 */
683 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
684 	    sizeof(struct xnb_ring_config));
685 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
686 	    sizeof(struct xnb_ring_config));
687 
688 	xnb->flags &= ~XNBF_RING_CONNECTED;
689 	return (0);
690 }
691 
692 /**
693  * Map a single shared memory ring into domain local address space and
694  * initialize its control structure
695  *
696  * \param xnb	Per-instance xnb configuration structure
697  * \param ring_type	Array index of this ring in the xnb's array of rings
698  * \return 	An errno
699  */
700 static int
701 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
702 {
703 	struct gnttab_map_grant_ref gnt;
704 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
705 	int error;
706 
707 	/* TX ring type = 0, RX =1 */
708 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
709 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
710 
711 	gnt.host_addr = ring->gnt_addr;
712 	gnt.flags     = GNTMAP_host_map;
713 	gnt.ref       = ring->ring_ref;
714 	gnt.dom       = xnb->otherend_id;
715 
716 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
717 	if (error != 0)
718 		panic("netback: Ring page grant table op failed (%d)", error);
719 
720 	if (gnt.status != 0) {
721 		ring->va = 0;
722 		error = EACCES;
723 		xenbus_dev_fatal(xnb->dev, error,
724 				 "Ring shared page mapping failed. "
725 				 "Status %d.", gnt.status);
726 	} else {
727 		ring->handle = gnt.handle;
728 		ring->bus_addr = gnt.dev_bus_addr;
729 
730 		if (ring_type == XNB_RING_TYPE_TX) {
731 			BACK_RING_INIT(&ring->back_ring.tx_ring,
732 			    (netif_tx_sring_t*)ring->va,
733 			    ring->ring_pages * PAGE_SIZE);
734 		} else if (ring_type == XNB_RING_TYPE_RX) {
735 			BACK_RING_INIT(&ring->back_ring.rx_ring,
736 			    (netif_rx_sring_t*)ring->va,
737 			    ring->ring_pages * PAGE_SIZE);
738 		} else {
739 			xenbus_dev_fatal(xnb->dev, error,
740 				 "Unknown ring type %d", ring_type);
741 		}
742 	}
743 
744 	return error;
745 }
746 
747 /**
748  * Setup the shared memory rings and bind an interrupt to the event channel
749  * used to notify us of ring changes.
750  *
751  * \param xnb  Per-instance xnb configuration structure.
752  */
753 static int
754 xnb_connect_comms(struct xnb_softc *xnb)
755 {
756 	int	error;
757 	xnb_ring_type_t i;
758 
759 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
760 		return (0);
761 
762 	/*
763 	 * Kva for our rings are at the tail of the region of kva allocated
764 	 * by xnb_alloc_communication_mem().
765 	 */
766 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
767 		error = xnb_connect_ring(xnb, i);
768 		if (error != 0)
769 	  		return error;
770 	}
771 
772 	xnb->flags |= XNBF_RING_CONNECTED;
773 
774 	error = xen_intr_bind_remote_port(xnb->dev,
775 					  xnb->otherend_id,
776 					  xnb->evtchn,
777 					  /*filter*/NULL,
778 					  xnb_intr, /*arg*/xnb,
779 					  INTR_TYPE_BIO | INTR_MPSAFE,
780 					  &xnb->xen_intr_handle);
781 	if (error != 0) {
782 		(void)xnb_disconnect(xnb);
783 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
784 		return (error);
785 	}
786 
787 	DPRINTF("rings connected!\n");
788 
789 	return (0);
790 }
791 
792 /**
793  * Size KVA and pseudo-physical address allocations based on negotiated
794  * values for the size and number of I/O requests, and the size of our
795  * communication ring.
796  *
797  * \param xnb  Per-instance xnb configuration structure.
798  *
799  * These address spaces are used to dynamically map pages in the
800  * front-end's domain into our own.
801  */
802 static int
803 xnb_alloc_communication_mem(struct xnb_softc *xnb)
804 {
805 	xnb_ring_type_t i;
806 
807 	xnb->kva_size = 0;
808 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
809 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
810 	}
811 #ifndef XENHVM
812 	xnb->kva = kva_alloc(xnb->kva_size);
813 	if (xnb->kva == 0)
814 		return (ENOMEM);
815 	xnb->gnt_base_addr = xnb->kva;
816 #else /* defined XENHVM */
817 	/*
818 	 * Reserve a range of pseudo physical memory that we can map
819 	 * into kva.  These pages will only be backed by machine
820 	 * pages ("real memory") during the lifetime of front-end requests
821 	 * via grant table operations.  We will map the netif tx and rx rings
822 	 * into this space.
823 	 */
824 	xnb->pseudo_phys_res_id = 0;
825 	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
826 						  &xnb->pseudo_phys_res_id,
827 						  0, ~0, xnb->kva_size,
828 						  RF_ACTIVE);
829 	if (xnb->pseudo_phys_res == NULL) {
830 		xnb->kva = 0;
831 		return (ENOMEM);
832 	}
833 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
834 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
835 #endif /* !defined XENHVM */
836 	return (0);
837 }
838 
839 /**
840  * Collect information from the XenStore related to our device and its frontend
841  *
842  * \param xnb  Per-instance xnb configuration structure.
843  */
844 static int
845 xnb_collect_xenstore_info(struct xnb_softc *xnb)
846 {
847 	/**
848 	 * \todo Linux collects the following info.  We should collect most
849 	 * of this, too:
850 	 * "feature-rx-notify"
851 	 */
852 	const char *otherend_path;
853 	const char *our_path;
854 	int err;
855 	unsigned int rx_copy, bridge_len;
856 	uint8_t no_csum_offload;
857 
858 	otherend_path = xenbus_get_otherend_path(xnb->dev);
859 	our_path = xenbus_get_node(xnb->dev);
860 
861 	/* Collect the critical communication parameters */
862 	err = xs_gather(XST_NIL, otherend_path,
863 	    "tx-ring-ref", "%l" PRIu32,
864 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
865 	    "rx-ring-ref", "%l" PRIu32,
866 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
867 	    "event-channel", "%" PRIu32, &xnb->evtchn,
868 	    NULL);
869 	if (err != 0) {
870 		xenbus_dev_fatal(xnb->dev, err,
871 				 "Unable to retrieve ring information from "
872 				 "frontend %s.  Unable to connect.",
873 				 otherend_path);
874 		return (err);
875 	}
876 
877 	/* Collect the handle from xenstore */
878 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
879 	if (err != 0) {
880 		xenbus_dev_fatal(xnb->dev, err,
881 		    "Error reading handle from frontend %s.  "
882 		    "Unable to connect.", otherend_path);
883 	}
884 
885 	/*
886 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
887 	 * throw it away
888 	 */
889 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
890 		      (void**)&xnb->bridge);
891 	if (err != 0)
892 		xnb->bridge = NULL;
893 
894 	/*
895 	 * Does the frontend request that we use rx copy?  If not, return an
896 	 * error because this driver only supports rx copy.
897 	 */
898 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
899 		       "%" PRIu32, &rx_copy);
900 	if (err == ENOENT) {
901 		err = 0;
902 	 	rx_copy = 0;
903 	}
904 	if (err < 0) {
905 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
906 				 otherend_path);
907 		return err;
908 	}
909 	/**
910 	 * \todo: figure out the exact meaning of this feature, and when
911 	 * the frontend will set it to true.  It should be set to true
912 	 * at some point
913 	 */
914 /*        if (!rx_copy)*/
915 /*          return EOPNOTSUPP;*/
916 
917 	/** \todo Collect the rx notify feature */
918 
919 	/*  Collect the feature-sg. */
920 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
921 		     "%hhu", &xnb->can_sg) < 0)
922 		xnb->can_sg = 0;
923 
924 	/* Collect remaining frontend features */
925 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
926 		     "%hhu", &xnb->gso) < 0)
927 		xnb->gso = 0;
928 
929 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
930 		     "%hhu", &xnb->gso_prefix) < 0)
931 		xnb->gso_prefix = 0;
932 
933 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
934 		     "%hhu", &no_csum_offload) < 0)
935 		no_csum_offload = 0;
936 	xnb->ip_csum = (no_csum_offload == 0);
937 
938 	return (0);
939 }
940 
941 /**
942  * Supply information about the physical device to the frontend
943  * via XenBus.
944  *
945  * \param xnb  Per-instance xnb configuration structure.
946  */
947 static int
948 xnb_publish_backend_info(struct xnb_softc *xnb)
949 {
950 	struct xs_transaction xst;
951 	const char *our_path;
952 	int error;
953 
954 	our_path = xenbus_get_node(xnb->dev);
955 
956 	do {
957 		error = xs_transaction_start(&xst);
958 		if (error != 0) {
959 			xenbus_dev_fatal(xnb->dev, error,
960 					 "Error publishing backend info "
961 					 "(start transaction)");
962 			break;
963 		}
964 
965 		error = xs_printf(xst, our_path, "feature-sg",
966 				  "%d", XNB_SG);
967 		if (error != 0)
968 			break;
969 
970 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
971 				  "%d", XNB_GSO_TCPV4);
972 		if (error != 0)
973 			break;
974 
975 		error = xs_printf(xst, our_path, "feature-rx-copy",
976 				  "%d", XNB_RX_COPY);
977 		if (error != 0)
978 			break;
979 
980 		error = xs_printf(xst, our_path, "feature-rx-flip",
981 				  "%d", XNB_RX_FLIP);
982 		if (error != 0)
983 			break;
984 
985 		error = xs_transaction_end(xst, 0);
986 		if (error != 0 && error != EAGAIN) {
987 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
988 			break;
989 		}
990 
991 	} while (error == EAGAIN);
992 
993 	return (error);
994 }
995 
996 /**
997  * Connect to our netfront peer now that it has completed publishing
998  * its configuration into the XenStore.
999  *
1000  * \param xnb  Per-instance xnb configuration structure.
1001  */
1002 static void
1003 xnb_connect(struct xnb_softc *xnb)
1004 {
1005 	int	error;
1006 
1007 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1008 		return;
1009 
1010 	if (xnb_collect_xenstore_info(xnb) != 0)
1011 		return;
1012 
1013 	xnb->flags &= ~XNBF_SHUTDOWN;
1014 
1015 	/* Read front end configuration. */
1016 
1017 	/* Allocate resources whose size depends on front-end configuration. */
1018 	error = xnb_alloc_communication_mem(xnb);
1019 	if (error != 0) {
1020 		xenbus_dev_fatal(xnb->dev, error,
1021 				 "Unable to allocate communication memory");
1022 		return;
1023 	}
1024 
1025 	/*
1026 	 * Connect communication channel.
1027 	 */
1028 	error = xnb_connect_comms(xnb);
1029 	if (error != 0) {
1030 		/* Specific errors are reported by xnb_connect_comms(). */
1031 		return;
1032 	}
1033 	xnb->carrier = 1;
1034 
1035 	/* Ready for I/O. */
1036 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1037 }
1038 
1039 /*-------------------------- Device Teardown Support -------------------------*/
1040 /**
1041  * Perform device shutdown functions.
1042  *
1043  * \param xnb  Per-instance xnb configuration structure.
1044  *
1045  * Mark this instance as shutting down, wait for any active requests
1046  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1047  * a thread invoking our detach method) that detach can now proceed.
1048  */
1049 static int
1050 xnb_shutdown(struct xnb_softc *xnb)
1051 {
1052 	/*
1053 	 * Due to the need to drop our mutex during some
1054 	 * xenbus operations, it is possible for two threads
1055 	 * to attempt to close out shutdown processing at
1056 	 * the same time.  Tell the caller that hits this
1057 	 * race to try back later.
1058 	 */
1059 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1060 		return (EAGAIN);
1061 
1062 	xnb->flags |= XNBF_SHUTDOWN;
1063 
1064 	xnb->flags |= XNBF_IN_SHUTDOWN;
1065 
1066 	mtx_unlock(&xnb->sc_lock);
1067 	/* Free the network interface */
1068 	xnb->carrier = 0;
1069 	if (xnb->xnb_ifp != NULL) {
1070 		ether_ifdetach(xnb->xnb_ifp);
1071 		if_free(xnb->xnb_ifp);
1072 		xnb->xnb_ifp = NULL;
1073 	}
1074 	mtx_lock(&xnb->sc_lock);
1075 
1076 	xnb_disconnect(xnb);
1077 
1078 	mtx_unlock(&xnb->sc_lock);
1079 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1080 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1081 	mtx_lock(&xnb->sc_lock);
1082 
1083 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1084 
1085 
1086 	/* Indicate to xnb_detach() that is it safe to proceed. */
1087 	wakeup(xnb);
1088 
1089 	return (0);
1090 }
1091 
1092 /**
1093  * Report an attach time error to the console and Xen, and cleanup
1094  * this instance by forcing immediate detach processing.
1095  *
1096  * \param xnb  Per-instance xnb configuration structure.
1097  * \param err  Errno describing the error.
1098  * \param fmt  Printf style format and arguments
1099  */
1100 static void
1101 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1102 {
1103 	va_list ap;
1104 	va_list ap_hotplug;
1105 
1106 	va_start(ap, fmt);
1107 	va_copy(ap_hotplug, ap);
1108 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1109 		  "hotplug-error", fmt, ap_hotplug);
1110 	va_end(ap_hotplug);
1111 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1112 		  "hotplug-status", "error");
1113 
1114 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1115 	va_end(ap);
1116 
1117 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1118 		  "online", "0");
1119 	xnb_detach(xnb->dev);
1120 }
1121 
1122 /*---------------------------- NewBus Entrypoints ----------------------------*/
1123 /**
1124  * Inspect a XenBus device and claim it if is of the appropriate type.
1125  *
1126  * \param dev  NewBus device object representing a candidate XenBus device.
1127  *
1128  * \return  0 for success, errno codes for failure.
1129  */
1130 static int
1131 xnb_probe(device_t dev)
1132 {
1133 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1134 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1135 		    devclass_get_name(device_get_devclass(dev)));
1136 		device_set_desc(dev, "Backend Virtual Network Device");
1137 		device_quiet(dev);
1138 		return (0);
1139 	}
1140 	return (ENXIO);
1141 }
1142 
1143 /**
1144  * Setup sysctl variables to control various Network Back parameters.
1145  *
1146  * \param xnb  Xen Net Back softc.
1147  *
1148  */
1149 static void
1150 xnb_setup_sysctl(struct xnb_softc *xnb)
1151 {
1152 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1153 	struct sysctl_oid      *sysctl_tree = NULL;
1154 
1155 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1156 	if (sysctl_ctx == NULL)
1157 		return;
1158 
1159 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1160 	if (sysctl_tree == NULL)
1161 		return;
1162 
1163 #ifdef XNB_DEBUG
1164 	SYSCTL_ADD_PROC(sysctl_ctx,
1165 			SYSCTL_CHILDREN(sysctl_tree),
1166 			OID_AUTO,
1167 			"unit_test_results",
1168 			CTLTYPE_STRING | CTLFLAG_RD,
1169 			xnb,
1170 			0,
1171 			xnb_unit_test_main,
1172 			"A",
1173 			"Results of builtin unit tests");
1174 
1175 	SYSCTL_ADD_PROC(sysctl_ctx,
1176 			SYSCTL_CHILDREN(sysctl_tree),
1177 			OID_AUTO,
1178 			"dump_rings",
1179 			CTLTYPE_STRING | CTLFLAG_RD,
1180 			xnb,
1181 			0,
1182 			xnb_dump_rings,
1183 			"A",
1184 			"Xennet Back Rings");
1185 #endif /* XNB_DEBUG */
1186 }
1187 
1188 /**
1189  * Create a network device.
1190  * @param handle device handle
1191  */
1192 int
1193 create_netdev(device_t dev)
1194 {
1195 	struct ifnet *ifp;
1196 	struct xnb_softc *xnb;
1197 	int err = 0;
1198 
1199 	xnb = device_get_softc(dev);
1200 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1201 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1202 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1203 
1204 	xnb->dev = dev;
1205 
1206 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1207 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1208 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1209 
1210 	err = xen_net_read_mac(dev, xnb->mac);
1211 	if (err == 0) {
1212 		/* Set up ifnet structure */
1213 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1214 		ifp->if_softc = xnb;
1215 		if_initname(ifp, "xnb",  device_get_unit(dev));
1216 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1217 		ifp->if_ioctl = xnb_ioctl;
1218 		ifp->if_output = ether_output;
1219 		ifp->if_start = xnb_start;
1220 #ifdef notyet
1221 		ifp->if_watchdog = xnb_watchdog;
1222 #endif
1223 		ifp->if_init = xnb_ifinit;
1224 		ifp->if_mtu = ETHERMTU;
1225 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1226 
1227 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1228 		ifp->if_capabilities = IFCAP_HWCSUM;
1229 		ifp->if_capenable = IFCAP_HWCSUM;
1230 
1231 		ether_ifattach(ifp, xnb->mac);
1232 		xnb->carrier = 0;
1233 	}
1234 
1235 	return err;
1236 }
1237 
1238 /**
1239  * Attach to a XenBus device that has been claimed by our probe routine.
1240  *
1241  * \param dev  NewBus device object representing this Xen Net Back instance.
1242  *
1243  * \return  0 for success, errno codes for failure.
1244  */
1245 static int
1246 xnb_attach(device_t dev)
1247 {
1248 	struct xnb_softc *xnb;
1249 	int	error;
1250 	xnb_ring_type_t	i;
1251 
1252 	error = create_netdev(dev);
1253 	if (error != 0) {
1254 		xenbus_dev_fatal(dev, error, "creating netdev");
1255 		return (error);
1256 	}
1257 
1258 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1259 
1260 	/*
1261 	 * Basic initialization.
1262 	 * After this block it is safe to call xnb_detach()
1263 	 * to clean up any allocated data for this instance.
1264 	 */
1265 	xnb = device_get_softc(dev);
1266 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1267 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1268 		xnb->ring_configs[i].ring_pages = 1;
1269 	}
1270 
1271 	/*
1272 	 * Setup sysctl variables.
1273 	 */
1274 	xnb_setup_sysctl(xnb);
1275 
1276 	/* Update hot-plug status to satisfy xend. */
1277 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1278 			  "hotplug-status", "connected");
1279 	if (error != 0) {
1280 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1281 				  xenbus_get_node(xnb->dev));
1282 		return (error);
1283 	}
1284 
1285 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1286 		/*
1287 		 * If we can't publish our data, we cannot participate
1288 		 * in this connection, and waiting for a front-end state
1289 		 * change will not help the situation.
1290 		 */
1291 		xnb_attach_failed(xnb, error,
1292 		    "Publishing backend status for %s",
1293 				  xenbus_get_node(xnb->dev));
1294 		return error;
1295 	}
1296 
1297 	/* Tell the front end that we are ready to connect. */
1298 	xenbus_set_state(dev, XenbusStateInitWait);
1299 
1300 	return (0);
1301 }
1302 
1303 /**
1304  * Detach from a net back device instance.
1305  *
1306  * \param dev  NewBus device object representing this Xen Net Back instance.
1307  *
1308  * \return  0 for success, errno codes for failure.
1309  *
1310  * \note A net back device may be detached at any time in its life-cycle,
1311  *       including part way through the attach process.  For this reason,
1312  *       initialization order and the intialization state checks in this
1313  *       routine must be carefully coupled so that attach time failures
1314  *       are gracefully handled.
1315  */
1316 static int
1317 xnb_detach(device_t dev)
1318 {
1319 	struct xnb_softc *xnb;
1320 
1321 	DPRINTF("\n");
1322 
1323 	xnb = device_get_softc(dev);
1324 	mtx_lock(&xnb->sc_lock);
1325 	while (xnb_shutdown(xnb) == EAGAIN) {
1326 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1327 		       "xnb_shutdown", 0);
1328 	}
1329 	mtx_unlock(&xnb->sc_lock);
1330 	DPRINTF("\n");
1331 
1332 	mtx_destroy(&xnb->tx_lock);
1333 	mtx_destroy(&xnb->rx_lock);
1334 	mtx_destroy(&xnb->sc_lock);
1335 	return (0);
1336 }
1337 
1338 /**
1339  * Prepare this net back device for suspension of this VM.
1340  *
1341  * \param dev  NewBus device object representing this Xen net Back instance.
1342  *
1343  * \return  0 for success, errno codes for failure.
1344  */
1345 static int
1346 xnb_suspend(device_t dev)
1347 {
1348 	return (0);
1349 }
1350 
1351 /**
1352  * Perform any processing required to recover from a suspended state.
1353  *
1354  * \param dev  NewBus device object representing this Xen Net Back instance.
1355  *
1356  * \return  0 for success, errno codes for failure.
1357  */
1358 static int
1359 xnb_resume(device_t dev)
1360 {
1361 	return (0);
1362 }
1363 
1364 /**
1365  * Handle state changes expressed via the XenStore by our front-end peer.
1366  *
1367  * \param dev             NewBus device object representing this Xen
1368  *                        Net Back instance.
1369  * \param frontend_state  The new state of the front-end.
1370  *
1371  * \return  0 for success, errno codes for failure.
1372  */
1373 static void
1374 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1375 {
1376 	struct xnb_softc *xnb;
1377 
1378 	xnb = device_get_softc(dev);
1379 
1380 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1381 	        xenbus_strstate(frontend_state),
1382 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1383 
1384 	switch (frontend_state) {
1385 	case XenbusStateInitialising:
1386 		break;
1387 	case XenbusStateInitialised:
1388 	case XenbusStateConnected:
1389 		xnb_connect(xnb);
1390 		break;
1391 	case XenbusStateClosing:
1392 	case XenbusStateClosed:
1393 		mtx_lock(&xnb->sc_lock);
1394 		xnb_shutdown(xnb);
1395 		mtx_unlock(&xnb->sc_lock);
1396 		if (frontend_state == XenbusStateClosed)
1397 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1398 		break;
1399 	default:
1400 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1401 				 frontend_state);
1402 		break;
1403 	}
1404 }
1405 
1406 
1407 /*---------------------------- Request Processing ----------------------------*/
1408 /**
1409  * Interrupt handler bound to the shared ring's event channel.
1410  * Entry point for the xennet transmit path in netback
1411  * Transfers packets from the Xen ring to the host's generic networking stack
1412  *
1413  * \param arg  Callback argument registerd during event channel
1414  *             binding - the xnb_softc for this instance.
1415  */
1416 static void
1417 xnb_intr(void *arg)
1418 {
1419 	struct xnb_softc *xnb;
1420 	struct ifnet *ifp;
1421 	netif_tx_back_ring_t *txb;
1422 	RING_IDX req_prod_local;
1423 
1424 	xnb = (struct xnb_softc *)arg;
1425 	ifp = xnb->xnb_ifp;
1426 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1427 
1428 	mtx_lock(&xnb->tx_lock);
1429 	do {
1430 		int notify;
1431 		req_prod_local = txb->sring->req_prod;
1432 		xen_rmb();
1433 
1434 		for (;;) {
1435 			struct mbuf *mbufc;
1436 			int err;
1437 
1438 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1439 			    	       xnb->tx_gnttab);
1440 			if (err || (mbufc == NULL))
1441 				break;
1442 
1443 			/* Send the packet to the generic network stack */
1444 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1445 		}
1446 
1447 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1448 		if (notify != 0)
1449 			xen_intr_signal(xnb->xen_intr_handle);
1450 
1451 		txb->sring->req_event = txb->req_cons + 1;
1452 		xen_mb();
1453 	} while (txb->sring->req_prod != req_prod_local) ;
1454 	mtx_unlock(&xnb->tx_lock);
1455 
1456 	xnb_start(ifp);
1457 }
1458 
1459 
1460 /**
1461  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1462  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1463  * \param[out]	pkt	The returned packet.  If there is an error building
1464  * 			the packet, pkt.list_len will be set to 0.
1465  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1466  * \param[in]	start	The ring index of the first potential request
1467  * \return		The number of requests consumed to build this packet
1468  */
1469 static int
1470 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1471 	     RING_IDX start)
1472 {
1473 	/*
1474 	 * Outline:
1475 	 * 1) Initialize pkt
1476 	 * 2) Read the first request of the packet
1477 	 * 3) Read the extras
1478 	 * 4) Set cdr
1479 	 * 5) Loop on the remainder of the packet
1480 	 * 6) Finalize pkt (stuff like car_size and list_len)
1481 	 */
1482 	int idx = start;
1483 	int discard = 0;	/* whether to discard the packet */
1484 	int more_data = 0;	/* there are more request past the last one */
1485 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1486 
1487 	xnb_pkt_initialize(pkt);
1488 
1489 	/* Read the first request */
1490 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1491 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1492 		pkt->size = tx->size;
1493 		pkt->flags = tx->flags & ~NETTXF_more_data;
1494 		more_data = tx->flags & NETTXF_more_data;
1495 		pkt->list_len++;
1496 		pkt->car = idx;
1497 		idx++;
1498 	}
1499 
1500 	/* Read the extra info */
1501 	if ((pkt->flags & NETTXF_extra_info) &&
1502 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1503 		netif_extra_info_t *ext =
1504 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1505 		pkt->extra.type = ext->type;
1506 		switch (pkt->extra.type) {
1507 			case XEN_NETIF_EXTRA_TYPE_GSO:
1508 				pkt->extra.u.gso = ext->u.gso;
1509 				break;
1510 			default:
1511 				/*
1512 				 * The reference Linux netfront driver will
1513 				 * never set any other extra.type.  So we don't
1514 				 * know what to do with it.  Let's print an
1515 				 * error, then consume and discard the packet
1516 				 */
1517 				printf("xnb(%s:%d): Unknown extra info type %d."
1518 				       "  Discarding packet\n",
1519 				       __func__, __LINE__, pkt->extra.type);
1520 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1521 				    start));
1522 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1523 				    idx));
1524 				discard = 1;
1525 				break;
1526 		}
1527 
1528 		pkt->extra.flags = ext->flags;
1529 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1530 			/*
1531 			 * The reference linux netfront driver never sets this
1532 			 * flag (nor does any other known netfront).  So we
1533 			 * will discard the packet.
1534 			 */
1535 			printf("xnb(%s:%d): Request sets "
1536 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1537 			    "that\n", __func__, __LINE__);
1538 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1539 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1540 			discard = 1;
1541 		}
1542 
1543 		idx++;
1544 	}
1545 
1546 	/* Set cdr.  If there is not more data, cdr is invalid */
1547 	pkt->cdr = idx;
1548 
1549 	/* Loop on remainder of packet */
1550 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1551 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1552 		pkt->list_len++;
1553 		cdr_size += tx->size;
1554 		if (tx->flags & ~NETTXF_more_data) {
1555 			/* There should be no other flags set at this point */
1556 			printf("xnb(%s:%d): Request sets unknown flags %d "
1557 			    "after the 1st request in the packet.\n",
1558 			    __func__, __LINE__, tx->flags);
1559 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1560 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1561 		}
1562 
1563 		more_data = tx->flags & NETTXF_more_data;
1564 		idx++;
1565 	}
1566 
1567 	/* Finalize packet */
1568 	if (more_data != 0) {
1569 		/* The ring ran out of requests before finishing the packet */
1570 		xnb_pkt_invalidate(pkt);
1571 		idx = start;	/* tell caller that we consumed no requests */
1572 	} else {
1573 		/* Calculate car_size */
1574 		pkt->car_size = pkt->size - cdr_size;
1575 	}
1576 	if (discard != 0) {
1577 		xnb_pkt_invalidate(pkt);
1578 	}
1579 
1580 	return idx - start;
1581 }
1582 
1583 
1584 /**
1585  * Respond to all the requests that constituted pkt.  Builds the responses and
1586  * writes them to the ring, but doesn't push them to the shared ring.
1587  * \param[in] pkt	the packet that needs a response
1588  * \param[in] error	true if there was an error handling the packet, such
1589  * 			as in the hypervisor copy op or mbuf allocation
1590  * \param[out] ring	Responses go here
1591  */
1592 static void
1593 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1594 	      int error)
1595 {
1596 	/*
1597 	 * Outline:
1598 	 * 1) Respond to the first request
1599 	 * 2) Respond to the extra info reques
1600 	 * Loop through every remaining request in the packet, generating
1601 	 * responses that copy those requests' ids and sets the status
1602 	 * appropriately.
1603 	 */
1604 	netif_tx_request_t *tx;
1605 	netif_tx_response_t *rsp;
1606 	int i;
1607 	uint16_t status;
1608 
1609 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1610 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1611 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1612 	    ("Cannot respond to ring requests out of order"));
1613 
1614 	if (pkt->list_len >= 1) {
1615 		uint16_t id;
1616 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1617 		id = tx->id;
1618 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1619 		rsp->id = id;
1620 		rsp->status = status;
1621 		ring->rsp_prod_pvt++;
1622 
1623 		if (pkt->flags & NETRXF_extra_info) {
1624 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1625 			rsp->status = NETIF_RSP_NULL;
1626 			ring->rsp_prod_pvt++;
1627 		}
1628 	}
1629 
1630 	for (i=0; i < pkt->list_len - 1; i++) {
1631 		uint16_t id;
1632 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1633 		id = tx->id;
1634 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1635 		rsp->id = id;
1636 		rsp->status = status;
1637 		ring->rsp_prod_pvt++;
1638 	}
1639 }
1640 
1641 /**
1642  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1643  * in the mbuf chain, but does not copy the data.  The returned chain must be
1644  * free()'d when no longer needed
1645  * \param[in]	pkt	A packet to model the mbuf chain after
1646  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1647  * 		NULL on failure
1648  */
1649 static struct mbuf*
1650 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1651 {
1652 	/**
1653 	 * \todo consider using a memory pool for mbufs instead of
1654 	 * reallocating them for every packet
1655 	 */
1656 	/** \todo handle extra data */
1657 	struct mbuf *m;
1658 
1659 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1660 
1661 	if (m != NULL) {
1662 		m->m_pkthdr.rcvif = ifp;
1663 		if (pkt->flags & NETTXF_data_validated) {
1664 			/*
1665 			 * We lie to the host OS and always tell it that the
1666 			 * checksums are ok, because the packet is unlikely to
1667 			 * get corrupted going across domains.
1668 			 */
1669 			m->m_pkthdr.csum_flags = (
1670 				CSUM_IP_CHECKED |
1671 				CSUM_IP_VALID   |
1672 				CSUM_DATA_VALID |
1673 				CSUM_PSEUDO_HDR
1674 				);
1675 			m->m_pkthdr.csum_data = 0xffff;
1676 		}
1677 	}
1678 	return m;
1679 }
1680 
1681 /**
1682  * Build a gnttab_copy table that can be used to copy data from a pkt
1683  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1684  * the packet side.
1685  * \param[in]	pkt	pkt's associated requests form the src for
1686  * 			the copy operation
1687  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1688  * \param[out]  gnttab	Storage for the returned grant table
1689  * \param[in]	txb	Pointer to the backend ring structure
1690  * \param[in]	otherend_id	The domain ID of the other end of the copy
1691  * \return 		The number of gnttab entries filled
1692  */
1693 static int
1694 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1695 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1696 		 domid_t otherend_id)
1697 {
1698 
1699 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1700 	int gnt_idx = 0;		/* index into grant table */
1701 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1702 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1703 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1704 	/* size in bytes that still needs to be represented in the table */
1705 	uint16_t size_remaining = pkt->size;
1706 
1707 	while (size_remaining > 0) {
1708 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1709 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1710 		const size_t req_size =
1711 			r_idx == pkt->car ? pkt->car_size : txq->size;
1712 		const size_t pkt_space = req_size - r_ofs;
1713 		/*
1714 		 * space is the largest amount of data that can be copied in the
1715 		 * grant table's next entry
1716 		 */
1717 		const size_t space = MIN(pkt_space, mbuf_space);
1718 
1719 		/* TODO: handle this error condition without panicking */
1720 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1721 
1722 		gnttab[gnt_idx].source.u.ref = txq->gref;
1723 		gnttab[gnt_idx].source.domid = otherend_id;
1724 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1725 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1726 		    mtod(mbuf, vm_offset_t) + m_ofs);
1727 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1728 		    mtod(mbuf, vm_offset_t) + m_ofs);
1729 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1730 		gnttab[gnt_idx].len = space;
1731 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1732 
1733 		gnt_idx++;
1734 		r_ofs += space;
1735 		m_ofs += space;
1736 		size_remaining -= space;
1737 		if (req_size - r_ofs <= 0) {
1738 			/* Must move to the next tx request */
1739 			r_ofs = 0;
1740 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1741 		}
1742 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1743 			/* Must move to the next mbuf */
1744 			m_ofs = 0;
1745 			mbuf = mbuf->m_next;
1746 		}
1747 	}
1748 
1749 	return gnt_idx;
1750 }
1751 
1752 /**
1753  * Check the status of the grant copy operations, and update mbufs various
1754  * non-data fields to reflect the data present.
1755  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1756  * 			the correct length, and data should already be present
1757  * \param[in] gnttab	A grant table for a just completed copy op
1758  * \param[in] n_entries The number of valid entries in the grant table
1759  */
1760 static void
1761 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1762     		 int n_entries)
1763 {
1764 	struct mbuf *mbuf = mbufc;
1765 	int i;
1766 	size_t total_size = 0;
1767 
1768 	for (i = 0; i < n_entries; i++) {
1769 		KASSERT(gnttab[i].status == GNTST_okay,
1770 		    ("Some gnttab_copy entry had error status %hd\n",
1771 		    gnttab[i].status));
1772 
1773 		mbuf->m_len += gnttab[i].len;
1774 		total_size += gnttab[i].len;
1775 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1776 			mbuf = mbuf->m_next;
1777 		}
1778 	}
1779 	mbufc->m_pkthdr.len = total_size;
1780 
1781 	xnb_add_mbuf_cksum(mbufc);
1782 }
1783 
1784 /**
1785  * Dequeue at most one packet from the shared ring
1786  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1787  * 			its private indices will be updated.  But the indices
1788  * 			will not be pushed to the shared ring.
1789  * \param[in] ifnet	Interface to which the packet will be sent
1790  * \param[in] otherend	Domain ID of the other end of the ring
1791  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1792  * 			networking stack
1793  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1794  * 			this a function parameter so that we will take less
1795  * 			stack space.
1796  * \return		An error code
1797  */
1798 static int
1799 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1800 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1801 {
1802 	struct xnb_pkt pkt;
1803 	/* number of tx requests consumed to build the last packet */
1804 	int num_consumed;
1805 	int nr_ents;
1806 
1807 	*mbufc = NULL;
1808 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1809 	if (num_consumed == 0)
1810 		return 0;	/* Nothing to receive */
1811 
1812 	/* update statistics independent of errors */
1813 	ifnet->if_ipackets++;
1814 
1815 	/*
1816 	 * if we got here, then 1 or more requests was consumed, but the packet
1817 	 * is not necessarily valid.
1818 	 */
1819 	if (xnb_pkt_is_valid(&pkt) == 0) {
1820 		/* got a garbage packet, respond and drop it */
1821 		xnb_txpkt2rsp(&pkt, txb, 1);
1822 		txb->req_cons += num_consumed;
1823 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1824 				num_consumed);
1825 		ifnet->if_ierrors++;
1826 		return EINVAL;
1827 	}
1828 
1829 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1830 
1831 	if (*mbufc == NULL) {
1832 		/*
1833 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1834 		 * not consume the requests
1835 		 */
1836 		xnb_txpkt2rsp(&pkt, txb, 1);
1837 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1838 		    num_consumed);
1839 		ifnet->if_iqdrops++;
1840 		return ENOMEM;
1841 	}
1842 
1843 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1844 
1845 	if (nr_ents > 0) {
1846 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1847 		    gnttab, nr_ents);
1848 		KASSERT(hv_ret == 0,
1849 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1850 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1851 	}
1852 
1853 	xnb_txpkt2rsp(&pkt, txb, 0);
1854 	txb->req_cons += num_consumed;
1855 	return 0;
1856 }
1857 
1858 /**
1859  * Create an xnb_pkt based on the contents of an mbuf chain.
1860  * \param[in] mbufc	mbuf chain to transform into a packet
1861  * \param[out] pkt	Storage for the newly generated xnb_pkt
1862  * \param[in] start	The ring index of the first available slot in the rx
1863  * 			ring
1864  * \param[in] space	The number of free slots in the rx ring
1865  * \retval 0		Success
1866  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1867  * \retval EAGAIN	There was not enough space in the ring to queue the
1868  * 			packet
1869  */
1870 static int
1871 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1872 	      RING_IDX start, int space)
1873 {
1874 
1875 	int retval = 0;
1876 
1877 	if ((mbufc == NULL) ||
1878 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1879 	     (mbufc->m_pkthdr.len == 0)) {
1880 		xnb_pkt_invalidate(pkt);
1881 		retval = EINVAL;
1882 	} else {
1883 		int slots_required;
1884 
1885 		xnb_pkt_validate(pkt);
1886 		pkt->flags = 0;
1887 		pkt->size = mbufc->m_pkthdr.len;
1888 		pkt->car = start;
1889 		pkt->car_size = mbufc->m_len;
1890 
1891 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1892 			pkt->flags |= NETRXF_extra_info;
1893 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1894 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1895 			pkt->extra.u.gso.pad = 0;
1896 			pkt->extra.u.gso.features = 0;
1897 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1898 			pkt->extra.flags = 0;
1899 			pkt->cdr = start + 2;
1900 		} else {
1901 			pkt->cdr = start + 1;
1902 		}
1903 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1904 			pkt->flags |=
1905 			    (NETRXF_csum_blank | NETRXF_data_validated);
1906 		}
1907 
1908 		/*
1909 		 * Each ring response can have up to PAGE_SIZE of data.
1910 		 * Assume that we can defragment the mbuf chain efficiently
1911 		 * into responses so that each response but the last uses all
1912 		 * PAGE_SIZE bytes.
1913 		 */
1914 		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1915 
1916 		if (pkt->list_len > 1) {
1917 			pkt->flags |= NETRXF_more_data;
1918 		}
1919 
1920 		slots_required = pkt->list_len +
1921 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1922 		if (slots_required > space) {
1923 			xnb_pkt_invalidate(pkt);
1924 			retval = EAGAIN;
1925 		}
1926 	}
1927 
1928 	return retval;
1929 }
1930 
1931 /**
1932  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1933  * to the frontend's shared buffers.  Does not actually perform the copy.
1934  * Always uses gref's on the other end's side.
1935  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1936  * 			operatoin
1937  * \param[in]	mbufc	The source for the copy operation
1938  * \param[out]	gnttab	Storage for the returned grant table
1939  * \param[in]	rxb	Pointer to the backend ring structure
1940  * \param[in]	otherend_id	The domain ID of the other end of the copy
1941  * \return 		The number of gnttab entries filled
1942  */
1943 static int
1944 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1945 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1946 		 domid_t otherend_id)
1947 {
1948 
1949 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1950 	int gnt_idx = 0;		/* index into grant table */
1951 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1952 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1953 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1954 	/* size in bytes that still needs to be represented in the table */
1955 	uint16_t size_remaining;
1956 
1957 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1958 
1959 	while (size_remaining > 0) {
1960 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1961 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1962 		/* Xen shared pages have an implied size of PAGE_SIZE */
1963 		const size_t req_size = PAGE_SIZE;
1964 		const size_t pkt_space = req_size - r_ofs;
1965 		/*
1966 		 * space is the largest amount of data that can be copied in the
1967 		 * grant table's next entry
1968 		 */
1969 		const size_t space = MIN(pkt_space, mbuf_space);
1970 
1971 		/* TODO: handle this error condition without panicing */
1972 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1973 
1974 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1975 		gnttab[gnt_idx].dest.domid = otherend_id;
1976 		gnttab[gnt_idx].dest.offset = r_ofs;
1977 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1978 		    mtod(mbuf, vm_offset_t) + m_ofs);
1979 		gnttab[gnt_idx].source.offset = virt_to_offset(
1980 		    mtod(mbuf, vm_offset_t) + m_ofs);
1981 		gnttab[gnt_idx].source.domid = DOMID_SELF;
1982 		gnttab[gnt_idx].len = space;
1983 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1984 
1985 		gnt_idx++;
1986 
1987 		r_ofs += space;
1988 		m_ofs += space;
1989 		size_remaining -= space;
1990 		if (req_size - r_ofs <= 0) {
1991 			/* Must move to the next rx request */
1992 			r_ofs = 0;
1993 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1994 		}
1995 		if (mbuf->m_len - m_ofs <= 0) {
1996 			/* Must move to the next mbuf */
1997 			m_ofs = 0;
1998 			mbuf = mbuf->m_next;
1999 		}
2000 	}
2001 
2002 	return gnt_idx;
2003 }
2004 
2005 /**
2006  * Generates responses for all the requests that constituted pkt.  Builds
2007  * responses and writes them to the ring, but doesn't push the shared ring
2008  * indices.
2009  * \param[in] pkt	the packet that needs a response
2010  * \param[in] gnttab	The grant copy table corresponding to this packet.
2011  * 			Used to determine how many rsp->netif_rx_response_t's to
2012  * 			generate.
2013  * \param[in] n_entries	Number of relevant entries in the grant table
2014  * \param[out] ring	Responses go here
2015  * \return		The number of RX requests that were consumed to generate
2016  * 			the responses
2017  */
2018 static int
2019 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2020     	      int n_entries, netif_rx_back_ring_t *ring)
2021 {
2022 	/*
2023 	 * This code makes the following assumptions:
2024 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2025 	 *	* The entries in gnttab are grouped by their grefs: any two
2026 	 *	   entries with the same gref must be adjacent
2027 	 */
2028 	int error = 0;
2029 	int gnt_idx, i;
2030 	int n_responses = 0;
2031 	grant_ref_t last_gref = GRANT_REF_INVALID;
2032 	RING_IDX r_idx;
2033 
2034 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2035 
2036 	/*
2037 	 * In the event of an error, we only need to send one response to the
2038 	 * netfront.  In that case, we musn't write any data to the responses
2039 	 * after the one we send.  So we must loop all the way through gnttab
2040 	 * looking for errors before we generate any responses
2041 	 *
2042 	 * Since we're looping through the grant table anyway, we'll count the
2043 	 * number of different gref's in it, which will tell us how many
2044 	 * responses to generate
2045 	 */
2046 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2047 		int16_t status = gnttab[gnt_idx].status;
2048 		if (status != GNTST_okay) {
2049 			DPRINTF(
2050 			    "Got error %d for hypervisor gnttab_copy status\n",
2051 			    status);
2052 			error = 1;
2053 			break;
2054 		}
2055 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2056 			n_responses++;
2057 			last_gref = gnttab[gnt_idx].dest.u.ref;
2058 		}
2059 	}
2060 
2061 	if (error != 0) {
2062 		uint16_t id;
2063 		netif_rx_response_t *rsp;
2064 
2065 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2066 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2067 		rsp->id = id;
2068 		rsp->status = NETIF_RSP_ERROR;
2069 		n_responses = 1;
2070 	} else {
2071 		gnt_idx = 0;
2072 		const int has_extra = pkt->flags & NETRXF_extra_info;
2073 		if (has_extra != 0)
2074 			n_responses++;
2075 
2076 		for (i = 0; i < n_responses; i++) {
2077 			netif_rx_request_t rxq;
2078 			netif_rx_response_t *rsp;
2079 
2080 			r_idx = ring->rsp_prod_pvt + i;
2081 			/*
2082 			 * We copy the structure of rxq instead of making a
2083 			 * pointer because it shares the same memory as rsp.
2084 			 */
2085 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2086 			rsp = RING_GET_RESPONSE(ring, r_idx);
2087 			if (has_extra && (i == 1)) {
2088 				netif_extra_info_t *ext =
2089 					(netif_extra_info_t*)rsp;
2090 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2091 				ext->flags = 0;
2092 				ext->u.gso.size = pkt->extra.u.gso.size;
2093 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2094 				ext->u.gso.pad = 0;
2095 				ext->u.gso.features = 0;
2096 			} else {
2097 				rsp->id = rxq.id;
2098 				rsp->status = GNTST_okay;
2099 				rsp->offset = 0;
2100 				rsp->flags = 0;
2101 				if (i < pkt->list_len - 1)
2102 					rsp->flags |= NETRXF_more_data;
2103 				if ((i == 0) && has_extra)
2104 					rsp->flags |= NETRXF_extra_info;
2105 				if ((i == 0) &&
2106 					(pkt->flags & NETRXF_data_validated)) {
2107 					rsp->flags |= NETRXF_data_validated;
2108 					rsp->flags |= NETRXF_csum_blank;
2109 				}
2110 				rsp->status = 0;
2111 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2112 				    gnt_idx++) {
2113 					rsp->status += gnttab[gnt_idx].len;
2114 				}
2115 			}
2116 		}
2117 	}
2118 
2119 	ring->req_cons += n_responses;
2120 	ring->rsp_prod_pvt += n_responses;
2121 	return n_responses;
2122 }
2123 
2124 /**
2125  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2126  * in the chain must start with a struct ether_header.
2127  *
2128  * XXX This function will perform incorrectly on UDP packets that are split up
2129  * into multiple ethernet frames.
2130  */
2131 static void
2132 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2133 {
2134 	struct ether_header *eh;
2135 	struct ip *iph;
2136 	uint16_t ether_type;
2137 
2138 	eh = mtod(mbufc, struct ether_header*);
2139 	ether_type = ntohs(eh->ether_type);
2140 	if (ether_type != ETHERTYPE_IP) {
2141 		/* Nothing to calculate */
2142 		return;
2143 	}
2144 
2145 	iph = (struct ip*)(eh + 1);
2146 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2147 		iph->ip_sum = 0;
2148 		iph->ip_sum = in_cksum_hdr(iph);
2149 	}
2150 
2151 	switch (iph->ip_p) {
2152 	case IPPROTO_TCP:
2153 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2154 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2155 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2156 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2157 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2158 			th->th_sum = in_cksum_skip(mbufc,
2159 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2160 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2161 		}
2162 		break;
2163 	case IPPROTO_UDP:
2164 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2165 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2166 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2167 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2168 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2169 			uh->uh_sum = in_cksum_skip(mbufc,
2170 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2171 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2172 		}
2173 		break;
2174 	default:
2175 		break;
2176 	}
2177 }
2178 
2179 static void
2180 xnb_stop(struct xnb_softc *xnb)
2181 {
2182 	struct ifnet *ifp;
2183 
2184 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2185 	ifp = xnb->xnb_ifp;
2186 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2187 	if_link_state_change(ifp, LINK_STATE_DOWN);
2188 }
2189 
2190 static int
2191 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2192 {
2193 	struct xnb_softc *xnb = ifp->if_softc;
2194 #ifdef INET
2195 	struct ifreq *ifr = (struct ifreq*) data;
2196 	struct ifaddr *ifa = (struct ifaddr*)data;
2197 #endif
2198 	int error = 0;
2199 
2200 	switch (cmd) {
2201 		case SIOCSIFFLAGS:
2202 			mtx_lock(&xnb->sc_lock);
2203 			if (ifp->if_flags & IFF_UP) {
2204 				xnb_ifinit_locked(xnb);
2205 			} else {
2206 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2207 					xnb_stop(xnb);
2208 				}
2209 			}
2210 			/*
2211 			 * Note: netfront sets a variable named xn_if_flags
2212 			 * here, but that variable is never read
2213 			 */
2214 			mtx_unlock(&xnb->sc_lock);
2215 			break;
2216 		case SIOCSIFADDR:
2217 		case SIOCGIFADDR:
2218 #ifdef INET
2219 			mtx_lock(&xnb->sc_lock);
2220 			if (ifa->ifa_addr->sa_family == AF_INET) {
2221 				ifp->if_flags |= IFF_UP;
2222 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2223 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2224 							IFF_DRV_OACTIVE);
2225 					if_link_state_change(ifp,
2226 							LINK_STATE_DOWN);
2227 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2228 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2229 					if_link_state_change(ifp,
2230 					    LINK_STATE_UP);
2231 				}
2232 				arp_ifinit(ifp, ifa);
2233 				mtx_unlock(&xnb->sc_lock);
2234 			} else {
2235 				mtx_unlock(&xnb->sc_lock);
2236 #endif
2237 				error = ether_ioctl(ifp, cmd, data);
2238 #ifdef INET
2239 			}
2240 #endif
2241 			break;
2242 		case SIOCSIFCAP:
2243 			mtx_lock(&xnb->sc_lock);
2244 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2245 				ifp->if_capenable |= IFCAP_TXCSUM;
2246 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2247 			} else {
2248 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2249 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2250 			}
2251 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2252 				ifp->if_capenable |= IFCAP_RXCSUM;
2253 			} else {
2254 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2255 			}
2256 			/*
2257 			 * TODO enable TSO4 and LRO once we no longer need
2258 			 * to calculate checksums in software
2259 			 */
2260 #if 0
2261 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2262 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2263 					printf("xnb: Xen netif requires that "
2264 						"TXCSUM be enabled in order "
2265 						"to use TSO4\n");
2266 					error = EINVAL;
2267 				} else {
2268 					ifp->if_capenable |= IFCAP_TSO4;
2269 					ifp->if_hwassist |= CSUM_TSO;
2270 				}
2271 			} else {
2272 				ifp->if_capenable &= ~(IFCAP_TSO4);
2273 				ifp->if_hwassist &= ~(CSUM_TSO);
2274 			}
2275 			if (ifr->ifreqcap |= IFCAP_LRO) {
2276 				ifp->if_capenable |= IFCAP_LRO;
2277 			} else {
2278 				ifp->if_capenable &= ~(IFCAP_LRO);
2279 			}
2280 #endif
2281 			mtx_unlock(&xnb->sc_lock);
2282 			break;
2283 		case SIOCSIFMTU:
2284 			ifp->if_mtu = ifr->ifr_mtu;
2285 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2286 			xnb_ifinit(xnb);
2287 			break;
2288 		case SIOCADDMULTI:
2289 		case SIOCDELMULTI:
2290 		case SIOCSIFMEDIA:
2291 		case SIOCGIFMEDIA:
2292 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2293 			break;
2294 		default:
2295 			error = ether_ioctl(ifp, cmd, data);
2296 			break;
2297 	}
2298 	return (error);
2299 }
2300 
2301 static void
2302 xnb_start_locked(struct ifnet *ifp)
2303 {
2304 	netif_rx_back_ring_t *rxb;
2305 	struct xnb_softc *xnb;
2306 	struct mbuf *mbufc;
2307 	RING_IDX req_prod_local;
2308 
2309 	xnb = ifp->if_softc;
2310 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2311 
2312 	if (!xnb->carrier)
2313 		return;
2314 
2315 	do {
2316 		int out_of_space = 0;
2317 		int notify;
2318 		req_prod_local = rxb->sring->req_prod;
2319 		xen_rmb();
2320 		for (;;) {
2321 			int error;
2322 
2323 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2324 			if (mbufc == NULL)
2325 				break;
2326 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2327 			    		 xnb->rx_gnttab);
2328 			switch (error) {
2329 				case EAGAIN:
2330 					/*
2331 					 * Insufficient space in the ring.
2332 					 * Requeue pkt and send when space is
2333 					 * available.
2334 					 */
2335 					IF_PREPEND(&ifp->if_snd, mbufc);
2336 					/*
2337 					 * Perhaps the frontend missed an IRQ
2338 					 * and went to sleep.  Notify it to wake
2339 					 * it up.
2340 					 */
2341 					out_of_space = 1;
2342 					break;
2343 
2344 				case EINVAL:
2345 					/* OS gave a corrupt packet.  Drop it.*/
2346 					ifp->if_oerrors++;
2347 					/* FALLTHROUGH */
2348 				default:
2349 					/* Send succeeded, or packet had error.
2350 					 * Free the packet */
2351 					ifp->if_opackets++;
2352 					if (mbufc)
2353 						m_freem(mbufc);
2354 					break;
2355 			}
2356 			if (out_of_space != 0)
2357 				break;
2358 		}
2359 
2360 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2361 		if ((notify != 0) || (out_of_space != 0))
2362 			xen_intr_signal(xnb->xen_intr_handle);
2363 		rxb->sring->req_event = req_prod_local + 1;
2364 		xen_mb();
2365 	} while (rxb->sring->req_prod != req_prod_local) ;
2366 }
2367 
2368 /**
2369  * Sends one packet to the ring.  Blocks until the packet is on the ring
2370  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2371  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2372  * 			otherend will not be notified.
2373  * \param[in]	otherend The domain ID of the other end of the connection
2374  * \retval	EAGAIN	The ring did not have enough space for the packet.
2375  * 			The ring has not been modified
2376  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2377  * 			this a function parameter so that we will take less
2378  * 			stack space.
2379  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2380  */
2381 static int
2382 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2383 	 gnttab_copy_table gnttab)
2384 {
2385 	struct xnb_pkt pkt;
2386 	int error, n_entries, n_reqs;
2387 	RING_IDX space;
2388 
2389 	space = ring->sring->req_prod - ring->req_cons;
2390 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2391 	if (error != 0)
2392 		return error;
2393 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2394 	if (n_entries != 0) {
2395 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2396 		    gnttab, n_entries);
2397 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2398 		    hv_ret));
2399 	}
2400 
2401 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2402 
2403 	return 0;
2404 }
2405 
2406 static void
2407 xnb_start(struct ifnet *ifp)
2408 {
2409 	struct xnb_softc *xnb;
2410 
2411 	xnb = ifp->if_softc;
2412 	mtx_lock(&xnb->rx_lock);
2413 	xnb_start_locked(ifp);
2414 	mtx_unlock(&xnb->rx_lock);
2415 }
2416 
2417 /* equivalent of network_open() in Linux */
2418 static void
2419 xnb_ifinit_locked(struct xnb_softc *xnb)
2420 {
2421 	struct ifnet *ifp;
2422 
2423 	ifp = xnb->xnb_ifp;
2424 
2425 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2426 
2427 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2428 		return;
2429 
2430 	xnb_stop(xnb);
2431 
2432 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2433 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2434 	if_link_state_change(ifp, LINK_STATE_UP);
2435 }
2436 
2437 
2438 static void
2439 xnb_ifinit(void *xsc)
2440 {
2441 	struct xnb_softc *xnb = xsc;
2442 
2443 	mtx_lock(&xnb->sc_lock);
2444 	xnb_ifinit_locked(xnb);
2445 	mtx_unlock(&xnb->sc_lock);
2446 }
2447 
2448 
2449 /**
2450  * Read the 'mac' node at the given device's node in the store, and parse that
2451  * as colon-separated octets, placing result the given mac array.  mac must be
2452  * a preallocated array of length ETHER_ADDR_LEN ETH_ALEN (as declared in
2453  * net/ethernet.h).
2454  * Return 0 on success, or errno on error.
2455  */
2456 static int
2457 xen_net_read_mac(device_t dev, uint8_t mac[])
2458 {
2459 	char *s, *e, *macstr;
2460 	const char *path;
2461 	int error = 0;
2462 	int i;
2463 
2464 	path = xenbus_get_node(dev);
2465 	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
2466 	if (error != 0) {
2467 		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
2468 	} else {
2469 	        s = macstr;
2470 	        for (i = 0; i < ETHER_ADDR_LEN; i++) {
2471 		        mac[i] = strtoul(s, &e, 16);
2472 		        if (s == e || (e[0] != ':' && e[0] != 0)) {
2473 				error = ENOENT;
2474 				break;
2475 		        }
2476 		        s = &e[1];
2477 	        }
2478 	        free(macstr, M_XENBUS);
2479 	}
2480 	return error;
2481 }
2482 
2483 
2484 /**
2485  * Callback used by the generic networking code to tell us when our carrier
2486  * state has changed.  Since we don't have a physical carrier, we don't care
2487  */
2488 static int
2489 xnb_ifmedia_upd(struct ifnet *ifp)
2490 {
2491 	return (0);
2492 }
2493 
2494 /**
2495  * Callback used by the generic networking code to ask us what our carrier
2496  * state is.  Since we don't have a physical carrier, this is very simple
2497  */
2498 static void
2499 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2500 {
2501 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2502 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2503 }
2504 
2505 
2506 /*---------------------------- NewBus Registration ---------------------------*/
2507 static device_method_t xnb_methods[] = {
2508 	/* Device interface */
2509 	DEVMETHOD(device_probe,		xnb_probe),
2510 	DEVMETHOD(device_attach,	xnb_attach),
2511 	DEVMETHOD(device_detach,	xnb_detach),
2512 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2513 	DEVMETHOD(device_suspend,	xnb_suspend),
2514 	DEVMETHOD(device_resume,	xnb_resume),
2515 
2516 	/* Xenbus interface */
2517 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2518 
2519 	{ 0, 0 }
2520 };
2521 
2522 static driver_t xnb_driver = {
2523 	"xnb",
2524 	xnb_methods,
2525 	sizeof(struct xnb_softc),
2526 };
2527 devclass_t xnb_devclass;
2528 
2529 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2530 
2531 
2532 /*-------------------------- Unit Tests -------------------------------------*/
2533 #ifdef XNB_DEBUG
2534 #include "netback_unit_tests.c"
2535 #endif
2536