1 /*- 2 * Copyright (c) 2009-2011 Spectra Logic Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions, and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * substantially similar to the "NO WARRANTY" disclaimer below 13 * ("Disclaimer") and any redistribution must be conditioned upon 14 * including a substantially similar Disclaimer requirement for further 15 * binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGES. 29 * 30 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 31 * Alan Somers (Spectra Logic Corporation) 32 * John Suykerbuyk (Spectra Logic Corporation) 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /** 39 * \file netback.c 40 * 41 * \brief Device driver supporting the vending of network access 42 * from this FreeBSD domain to other domains. 43 */ 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/kernel.h> 51 52 #include <sys/bus.h> 53 #include <sys/module.h> 54 #include <sys/rman.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_arp.h> 62 #include <net/ethernet.h> 63 #include <net/if_dl.h> 64 #include <net/if_media.h> 65 #include <net/if_types.h> 66 67 #include <netinet/in.h> 68 #include <netinet/ip.h> 69 #include <netinet/if_ether.h> 70 #if __FreeBSD_version >= 700000 71 #include <netinet/tcp.h> 72 #endif 73 #include <netinet/ip_icmp.h> 74 #include <netinet/udp.h> 75 #include <machine/in_cksum.h> 76 77 #include <vm/vm.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_extern.h> 80 #include <vm/vm_kern.h> 81 82 #include <machine/_inttypes.h> 83 84 #include <xen/xen-os.h> 85 #include <xen/hypervisor.h> 86 #include <xen/xen_intr.h> 87 #include <xen/interface/io/netif.h> 88 #include <xen/xenbus/xenbusvar.h> 89 90 #include <machine/xen/xenvar.h> 91 92 /*--------------------------- Compile-time Tunables --------------------------*/ 93 94 /*---------------------------------- Macros ----------------------------------*/ 95 /** 96 * Custom malloc type for all driver allocations. 97 */ 98 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data"); 99 100 #define XNB_SG 1 /* netback driver supports feature-sg */ 101 #define XNB_GSO_TCPV4 1 /* netback driver supports feature-gso-tcpv4 */ 102 #define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */ 103 #define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */ 104 105 #undef XNB_DEBUG 106 #define XNB_DEBUG /* hardcode on during development */ 107 108 #ifdef XNB_DEBUG 109 #define DPRINTF(fmt, args...) \ 110 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) 111 #else 112 #define DPRINTF(fmt, args...) do {} while (0) 113 #endif 114 115 /* Default length for stack-allocated grant tables */ 116 #define GNTTAB_LEN (64) 117 118 /* Features supported by all backends. TSO and LRO can be negotiated */ 119 #define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 120 121 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 122 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 123 124 /** 125 * Two argument version of the standard macro. Second argument is a tentative 126 * value of req_cons 127 */ 128 #define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \ 129 unsigned int req = (_r)->sring->req_prod - cons; \ 130 unsigned int rsp = RING_SIZE(_r) - \ 131 (cons - (_r)->rsp_prod_pvt); \ 132 req < rsp ? req : rsp; \ 133 }) 134 135 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 136 #define virt_to_offset(x) ((x) & (PAGE_SIZE - 1)) 137 138 /** 139 * Predefined array type of grant table copy descriptors. Used to pass around 140 * statically allocated memory structures. 141 */ 142 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN]; 143 144 /*--------------------------- Forward Declarations ---------------------------*/ 145 struct xnb_softc; 146 struct xnb_pkt; 147 148 static void xnb_attach_failed(struct xnb_softc *xnb, 149 int err, const char *fmt, ...) 150 __printflike(3,4); 151 static int xnb_shutdown(struct xnb_softc *xnb); 152 static int create_netdev(device_t dev); 153 static int xnb_detach(device_t dev); 154 static int xnb_ifmedia_upd(struct ifnet *ifp); 155 static void xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 156 static void xnb_intr(void *arg); 157 static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend, 158 const struct mbuf *mbufc, gnttab_copy_table gnttab); 159 static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, 160 struct mbuf **mbufc, struct ifnet *ifnet, 161 gnttab_copy_table gnttab); 162 static int xnb_ring2pkt(struct xnb_pkt *pkt, 163 const netif_tx_back_ring_t *tx_ring, 164 RING_IDX start); 165 static void xnb_txpkt2rsp(const struct xnb_pkt *pkt, 166 netif_tx_back_ring_t *ring, int error); 167 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp); 168 static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt, 169 const struct mbuf *mbufc, 170 gnttab_copy_table gnttab, 171 const netif_tx_back_ring_t *txb, 172 domid_t otherend_id); 173 static void xnb_update_mbufc(struct mbuf *mbufc, 174 const gnttab_copy_table gnttab, int n_entries); 175 static int xnb_mbufc2pkt(const struct mbuf *mbufc, 176 struct xnb_pkt *pkt, 177 RING_IDX start, int space); 178 static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, 179 const struct mbuf *mbufc, 180 gnttab_copy_table gnttab, 181 const netif_rx_back_ring_t *rxb, 182 domid_t otherend_id); 183 static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt, 184 const gnttab_copy_table gnttab, int n_entries, 185 netif_rx_back_ring_t *ring); 186 static void xnb_stop(struct xnb_softc*); 187 static int xnb_ioctl(struct ifnet*, u_long, caddr_t); 188 static void xnb_start_locked(struct ifnet*); 189 static void xnb_start(struct ifnet*); 190 static void xnb_ifinit_locked(struct xnb_softc*); 191 static void xnb_ifinit(void*); 192 #ifdef XNB_DEBUG 193 static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS); 194 static int xnb_dump_rings(SYSCTL_HANDLER_ARGS); 195 #endif 196 #if defined(INET) || defined(INET6) 197 static void xnb_add_mbuf_cksum(struct mbuf *mbufc); 198 #endif 199 /*------------------------------ Data Structures -----------------------------*/ 200 201 202 /** 203 * Representation of a xennet packet. Simplified version of a packet as 204 * stored in the Xen tx ring. Applicable to both RX and TX packets 205 */ 206 struct xnb_pkt{ 207 /** 208 * Array index of the first data-bearing (eg, not extra info) entry 209 * for this packet 210 */ 211 RING_IDX car; 212 213 /** 214 * Array index of the second data-bearing entry for this packet. 215 * Invalid if the packet has only one data-bearing entry. If the 216 * packet has more than two data-bearing entries, then the second 217 * through the last will be sequential modulo the ring size 218 */ 219 RING_IDX cdr; 220 221 /** 222 * Optional extra info. Only valid if flags contains 223 * NETTXF_extra_info. Note that extra.type will always be 224 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback 225 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_* 226 */ 227 netif_extra_info_t extra; 228 229 /** Size of entire packet in bytes. */ 230 uint16_t size; 231 232 /** The size of the first entry's data in bytes */ 233 uint16_t car_size; 234 235 /** 236 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are 237 * not the same for TX and RX packets 238 */ 239 uint16_t flags; 240 241 /** 242 * The number of valid data-bearing entries (either netif_tx_request's 243 * or netif_rx_response's) in the packet. If this is 0, it means the 244 * entire packet is invalid. 245 */ 246 uint16_t list_len; 247 248 /** There was an error processing the packet */ 249 uint8_t error; 250 }; 251 252 /** xnb_pkt method: initialize it */ 253 static inline void 254 xnb_pkt_initialize(struct xnb_pkt *pxnb) 255 { 256 bzero(pxnb, sizeof(*pxnb)); 257 } 258 259 /** xnb_pkt method: mark the packet as valid */ 260 static inline void 261 xnb_pkt_validate(struct xnb_pkt *pxnb) 262 { 263 pxnb->error = 0; 264 }; 265 266 /** xnb_pkt method: mark the packet as invalid */ 267 static inline void 268 xnb_pkt_invalidate(struct xnb_pkt *pxnb) 269 { 270 pxnb->error = 1; 271 }; 272 273 /** xnb_pkt method: Check whether the packet is valid */ 274 static inline int 275 xnb_pkt_is_valid(const struct xnb_pkt *pxnb) 276 { 277 return (! pxnb->error); 278 } 279 280 #ifdef XNB_DEBUG 281 /** xnb_pkt method: print the packet's contents in human-readable format*/ 282 static void __unused 283 xnb_dump_pkt(const struct xnb_pkt *pkt) { 284 if (pkt == NULL) { 285 DPRINTF("Was passed a null pointer.\n"); 286 return; 287 } 288 DPRINTF("pkt address= %p\n", pkt); 289 DPRINTF("pkt->size=%d\n", pkt->size); 290 DPRINTF("pkt->car_size=%d\n", pkt->car_size); 291 DPRINTF("pkt->flags=0x%04x\n", pkt->flags); 292 DPRINTF("pkt->list_len=%d\n", pkt->list_len); 293 /* DPRINTF("pkt->extra"); TODO */ 294 DPRINTF("pkt->car=%d\n", pkt->car); 295 DPRINTF("pkt->cdr=%d\n", pkt->cdr); 296 DPRINTF("pkt->error=%d\n", pkt->error); 297 } 298 #endif /* XNB_DEBUG */ 299 300 static void 301 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq) 302 { 303 if (txreq != NULL) { 304 DPRINTF("netif_tx_request index =%u\n", idx); 305 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref); 306 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset); 307 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags); 308 DPRINTF("netif_tx_request.id =%hu\n", txreq->id); 309 DPRINTF("netif_tx_request.size =%hu\n", txreq->size); 310 } 311 } 312 313 314 /** 315 * \brief Configuration data for a shared memory request ring 316 * used to communicate with the front-end client of this 317 * this driver. 318 */ 319 struct xnb_ring_config { 320 /** 321 * Runtime structures for ring access. Unfortunately, TX and RX rings 322 * use different data structures, and that cannot be changed since it 323 * is part of the interdomain protocol. 324 */ 325 union{ 326 netif_rx_back_ring_t rx_ring; 327 netif_tx_back_ring_t tx_ring; 328 } back_ring; 329 330 /** 331 * The device bus address returned by the hypervisor when 332 * mapping the ring and required to unmap it when a connection 333 * is torn down. 334 */ 335 uint64_t bus_addr; 336 337 /** The pseudo-physical address where ring memory is mapped.*/ 338 uint64_t gnt_addr; 339 340 /** KVA address where ring memory is mapped. */ 341 vm_offset_t va; 342 343 /** 344 * Grant table handles, one per-ring page, returned by the 345 * hyperpervisor upon mapping of the ring and required to 346 * unmap it when a connection is torn down. 347 */ 348 grant_handle_t handle; 349 350 /** The number of ring pages mapped for the current connection. */ 351 unsigned ring_pages; 352 353 /** 354 * The grant references, one per-ring page, supplied by the 355 * front-end, allowing us to reference the ring pages in the 356 * front-end's domain and to map these pages into our own domain. 357 */ 358 grant_ref_t ring_ref; 359 }; 360 361 /** 362 * Per-instance connection state flags. 363 */ 364 typedef enum 365 { 366 /** Communication with the front-end has been established. */ 367 XNBF_RING_CONNECTED = 0x01, 368 369 /** 370 * Front-end requests exist in the ring and are waiting for 371 * xnb_xen_req objects to free up. 372 */ 373 XNBF_RESOURCE_SHORTAGE = 0x02, 374 375 /** Connection teardown has started. */ 376 XNBF_SHUTDOWN = 0x04, 377 378 /** A thread is already performing shutdown processing. */ 379 XNBF_IN_SHUTDOWN = 0x08 380 } xnb_flag_t; 381 382 /** 383 * Types of rings. Used for array indices and to identify a ring's control 384 * data structure type 385 */ 386 typedef enum{ 387 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */ 388 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */ 389 XNB_NUM_RING_TYPES 390 } xnb_ring_type_t; 391 392 /** 393 * Per-instance configuration data. 394 */ 395 struct xnb_softc { 396 /** NewBus device corresponding to this instance. */ 397 device_t dev; 398 399 /* Media related fields */ 400 401 /** Generic network media state */ 402 struct ifmedia sc_media; 403 404 /** Media carrier info */ 405 struct ifnet *xnb_ifp; 406 407 /** Our own private carrier state */ 408 unsigned carrier; 409 410 /** Device MAC Address */ 411 uint8_t mac[ETHER_ADDR_LEN]; 412 413 /* Xen related fields */ 414 415 /** 416 * \brief The netif protocol abi in effect. 417 * 418 * There are situations where the back and front ends can 419 * have a different, native abi (e.g. intel x86_64 and 420 * 32bit x86 domains on the same machine). The back-end 421 * always accomodates the front-end's native abi. That 422 * value is pulled from the XenStore and recorded here. 423 */ 424 int abi; 425 426 /** 427 * Name of the bridge to which this VIF is connected, if any 428 * This field is dynamically allocated by xenbus and must be free()ed 429 * when no longer needed 430 */ 431 char *bridge; 432 433 /** The interrupt driven even channel used to signal ring events. */ 434 evtchn_port_t evtchn; 435 436 /** Xen device handle.*/ 437 long handle; 438 439 /** Handle to the communication ring event channel. */ 440 xen_intr_handle_t xen_intr_handle; 441 442 /** 443 * \brief Cached value of the front-end's domain id. 444 * 445 * This value is used at once for each mapped page in 446 * a transaction. We cache it to avoid incuring the 447 * cost of an ivar access every time this is needed. 448 */ 449 domid_t otherend_id; 450 451 /** 452 * Undocumented frontend feature. Has something to do with 453 * scatter/gather IO 454 */ 455 uint8_t can_sg; 456 /** Undocumented frontend feature */ 457 uint8_t gso; 458 /** Undocumented frontend feature */ 459 uint8_t gso_prefix; 460 /** Can checksum TCP/UDP over IPv4 */ 461 uint8_t ip_csum; 462 463 /* Implementation related fields */ 464 /** 465 * Preallocated grant table copy descriptor for RX operations. 466 * Access must be protected by rx_lock 467 */ 468 gnttab_copy_table rx_gnttab; 469 470 /** 471 * Preallocated grant table copy descriptor for TX operations. 472 * Access must be protected by tx_lock 473 */ 474 gnttab_copy_table tx_gnttab; 475 476 #ifdef XENHVM 477 /** 478 * Resource representing allocated physical address space 479 * associated with our per-instance kva region. 480 */ 481 struct resource *pseudo_phys_res; 482 483 /** Resource id for allocated physical address space. */ 484 int pseudo_phys_res_id; 485 #endif 486 487 /** Ring mapping and interrupt configuration data. */ 488 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES]; 489 490 /** 491 * Global pool of kva used for mapping remote domain ring 492 * and I/O transaction data. 493 */ 494 vm_offset_t kva; 495 496 /** Psuedo-physical address corresponding to kva. */ 497 uint64_t gnt_base_addr; 498 499 /** Various configuration and state bit flags. */ 500 xnb_flag_t flags; 501 502 /** Mutex protecting per-instance data in the receive path. */ 503 struct mtx rx_lock; 504 505 /** Mutex protecting per-instance data in the softc structure. */ 506 struct mtx sc_lock; 507 508 /** Mutex protecting per-instance data in the transmit path. */ 509 struct mtx tx_lock; 510 511 /** The size of the global kva pool. */ 512 int kva_size; 513 514 /** Name of the interface */ 515 char if_name[IFNAMSIZ]; 516 }; 517 518 /*---------------------------- Debugging functions ---------------------------*/ 519 #ifdef XNB_DEBUG 520 static void __unused 521 xnb_dump_gnttab_copy(const struct gnttab_copy *entry) 522 { 523 if (entry == NULL) { 524 printf("NULL grant table pointer\n"); 525 return; 526 } 527 528 if (entry->flags & GNTCOPY_dest_gref) 529 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref); 530 else 531 printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn); 532 printf("gnttab dest offset=\t%hu\n", entry->dest.offset); 533 printf("gnttab dest domid=\t%hu\n", entry->dest.domid); 534 if (entry->flags & GNTCOPY_source_gref) 535 printf("gnttab source ref=\t%u\n", entry->source.u.ref); 536 else 537 printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn); 538 printf("gnttab source offset=\t%hu\n", entry->source.offset); 539 printf("gnttab source domid=\t%hu\n", entry->source.domid); 540 printf("gnttab len=\t%hu\n", entry->len); 541 printf("gnttab flags=\t%hu\n", entry->flags); 542 printf("gnttab status=\t%hd\n", entry->status); 543 } 544 545 static int 546 xnb_dump_rings(SYSCTL_HANDLER_ARGS) 547 { 548 static char results[720]; 549 struct xnb_softc const* xnb = (struct xnb_softc*)arg1; 550 netif_rx_back_ring_t const* rxb = 551 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 552 netif_tx_back_ring_t const* txb = 553 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 554 555 /* empty the result strings */ 556 results[0] = 0; 557 558 if ( !txb || !txb->sring || !rxb || !rxb->sring ) 559 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 560 561 snprintf(results, 720, 562 "\n\t%35s %18s\n" /* TX, RX */ 563 "\t%16s %18d %18d\n" /* req_cons */ 564 "\t%16s %18d %18d\n" /* nr_ents */ 565 "\t%16s %18d %18d\n" /* rsp_prod_pvt */ 566 "\t%16s %18p %18p\n" /* sring */ 567 "\t%16s %18d %18d\n" /* req_prod */ 568 "\t%16s %18d %18d\n" /* req_event */ 569 "\t%16s %18d %18d\n" /* rsp_prod */ 570 "\t%16s %18d %18d\n", /* rsp_event */ 571 "TX", "RX", 572 "req_cons", txb->req_cons, rxb->req_cons, 573 "nr_ents", txb->nr_ents, rxb->nr_ents, 574 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt, 575 "sring", txb->sring, rxb->sring, 576 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod, 577 "sring->req_event", txb->sring->req_event, rxb->sring->req_event, 578 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod, 579 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event); 580 581 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 582 } 583 584 static void __unused 585 xnb_dump_mbuf(const struct mbuf *m) 586 { 587 int len; 588 uint8_t *d; 589 if (m == NULL) 590 return; 591 592 printf("xnb_dump_mbuf:\n"); 593 if (m->m_flags & M_PKTHDR) { 594 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, " 595 "tso_segsz=%5hd\n", 596 m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags, 597 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz); 598 printf(" rcvif=%16p, len=%19d\n", 599 m->m_pkthdr.rcvif, m->m_pkthdr.len); 600 } 601 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n", 602 m->m_next, m->m_nextpkt, m->m_data); 603 printf(" m_len=%17d, m_flags=%#15x, m_type=%18u\n", 604 m->m_len, m->m_flags, m->m_type); 605 606 len = m->m_len; 607 d = mtod(m, uint8_t*); 608 while (len > 0) { 609 int i; 610 printf(" "); 611 for (i = 0; (i < 16) && (len > 0); i++, len--) { 612 printf("%02hhx ", *(d++)); 613 } 614 printf("\n"); 615 } 616 } 617 #endif /* XNB_DEBUG */ 618 619 /*------------------------ Inter-Domain Communication ------------------------*/ 620 /** 621 * Free dynamically allocated KVA or pseudo-physical address allocations. 622 * 623 * \param xnb Per-instance xnb configuration structure. 624 */ 625 static void 626 xnb_free_communication_mem(struct xnb_softc *xnb) 627 { 628 if (xnb->kva != 0) { 629 #ifndef XENHVM 630 kva_free(xnb->kva, xnb->kva_size); 631 #else 632 if (xnb->pseudo_phys_res != NULL) { 633 bus_release_resource(xnb->dev, SYS_RES_MEMORY, 634 xnb->pseudo_phys_res_id, 635 xnb->pseudo_phys_res); 636 xnb->pseudo_phys_res = NULL; 637 } 638 #endif /* XENHVM */ 639 } 640 xnb->kva = 0; 641 xnb->gnt_base_addr = 0; 642 } 643 644 /** 645 * Cleanup all inter-domain communication mechanisms. 646 * 647 * \param xnb Per-instance xnb configuration structure. 648 */ 649 static int 650 xnb_disconnect(struct xnb_softc *xnb) 651 { 652 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES]; 653 int error; 654 int i; 655 656 if (xnb->xen_intr_handle != NULL) 657 xen_intr_unbind(&xnb->xen_intr_handle); 658 659 /* 660 * We may still have another thread currently processing requests. We 661 * must acquire the rx and tx locks to make sure those threads are done, 662 * but we can release those locks as soon as we acquire them, because no 663 * more interrupts will be arriving. 664 */ 665 mtx_lock(&xnb->tx_lock); 666 mtx_unlock(&xnb->tx_lock); 667 mtx_lock(&xnb->rx_lock); 668 mtx_unlock(&xnb->rx_lock); 669 670 /* Free malloc'd softc member variables */ 671 if (xnb->bridge != NULL) { 672 free(xnb->bridge, M_XENSTORE); 673 xnb->bridge = NULL; 674 } 675 676 /* All request processing has stopped, so unmap the rings */ 677 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 678 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr; 679 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr; 680 gnts[i].handle = xnb->ring_configs[i].handle; 681 } 682 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts, 683 XNB_NUM_RING_TYPES); 684 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error)); 685 686 xnb_free_communication_mem(xnb); 687 /* 688 * Zero the ring config structs because the pointers, handles, and 689 * grant refs contained therein are no longer valid. 690 */ 691 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX], 692 sizeof(struct xnb_ring_config)); 693 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX], 694 sizeof(struct xnb_ring_config)); 695 696 xnb->flags &= ~XNBF_RING_CONNECTED; 697 return (0); 698 } 699 700 /** 701 * Map a single shared memory ring into domain local address space and 702 * initialize its control structure 703 * 704 * \param xnb Per-instance xnb configuration structure 705 * \param ring_type Array index of this ring in the xnb's array of rings 706 * \return An errno 707 */ 708 static int 709 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type) 710 { 711 struct gnttab_map_grant_ref gnt; 712 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type]; 713 int error; 714 715 /* TX ring type = 0, RX =1 */ 716 ring->va = xnb->kva + ring_type * PAGE_SIZE; 717 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE; 718 719 gnt.host_addr = ring->gnt_addr; 720 gnt.flags = GNTMAP_host_map; 721 gnt.ref = ring->ring_ref; 722 gnt.dom = xnb->otherend_id; 723 724 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1); 725 if (error != 0) 726 panic("netback: Ring page grant table op failed (%d)", error); 727 728 if (gnt.status != 0) { 729 ring->va = 0; 730 error = EACCES; 731 xenbus_dev_fatal(xnb->dev, error, 732 "Ring shared page mapping failed. " 733 "Status %d.", gnt.status); 734 } else { 735 ring->handle = gnt.handle; 736 ring->bus_addr = gnt.dev_bus_addr; 737 738 if (ring_type == XNB_RING_TYPE_TX) { 739 BACK_RING_INIT(&ring->back_ring.tx_ring, 740 (netif_tx_sring_t*)ring->va, 741 ring->ring_pages * PAGE_SIZE); 742 } else if (ring_type == XNB_RING_TYPE_RX) { 743 BACK_RING_INIT(&ring->back_ring.rx_ring, 744 (netif_rx_sring_t*)ring->va, 745 ring->ring_pages * PAGE_SIZE); 746 } else { 747 xenbus_dev_fatal(xnb->dev, error, 748 "Unknown ring type %d", ring_type); 749 } 750 } 751 752 return error; 753 } 754 755 /** 756 * Setup the shared memory rings and bind an interrupt to the event channel 757 * used to notify us of ring changes. 758 * 759 * \param xnb Per-instance xnb configuration structure. 760 */ 761 static int 762 xnb_connect_comms(struct xnb_softc *xnb) 763 { 764 int error; 765 xnb_ring_type_t i; 766 767 if ((xnb->flags & XNBF_RING_CONNECTED) != 0) 768 return (0); 769 770 /* 771 * Kva for our rings are at the tail of the region of kva allocated 772 * by xnb_alloc_communication_mem(). 773 */ 774 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 775 error = xnb_connect_ring(xnb, i); 776 if (error != 0) 777 return error; 778 } 779 780 xnb->flags |= XNBF_RING_CONNECTED; 781 782 error = xen_intr_bind_remote_port(xnb->dev, 783 xnb->otherend_id, 784 xnb->evtchn, 785 /*filter*/NULL, 786 xnb_intr, /*arg*/xnb, 787 INTR_TYPE_BIO | INTR_MPSAFE, 788 &xnb->xen_intr_handle); 789 if (error != 0) { 790 (void)xnb_disconnect(xnb); 791 xenbus_dev_fatal(xnb->dev, error, "binding event channel"); 792 return (error); 793 } 794 795 DPRINTF("rings connected!\n"); 796 797 return (0); 798 } 799 800 /** 801 * Size KVA and pseudo-physical address allocations based on negotiated 802 * values for the size and number of I/O requests, and the size of our 803 * communication ring. 804 * 805 * \param xnb Per-instance xnb configuration structure. 806 * 807 * These address spaces are used to dynamically map pages in the 808 * front-end's domain into our own. 809 */ 810 static int 811 xnb_alloc_communication_mem(struct xnb_softc *xnb) 812 { 813 xnb_ring_type_t i; 814 815 xnb->kva_size = 0; 816 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 817 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE; 818 } 819 #ifndef XENHVM 820 xnb->kva = kva_alloc(xnb->kva_size); 821 if (xnb->kva == 0) 822 return (ENOMEM); 823 xnb->gnt_base_addr = xnb->kva; 824 #else /* defined XENHVM */ 825 /* 826 * Reserve a range of pseudo physical memory that we can map 827 * into kva. These pages will only be backed by machine 828 * pages ("real memory") during the lifetime of front-end requests 829 * via grant table operations. We will map the netif tx and rx rings 830 * into this space. 831 */ 832 xnb->pseudo_phys_res_id = 0; 833 xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY, 834 &xnb->pseudo_phys_res_id, 835 0, ~0, xnb->kva_size, 836 RF_ACTIVE); 837 if (xnb->pseudo_phys_res == NULL) { 838 xnb->kva = 0; 839 return (ENOMEM); 840 } 841 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res); 842 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res); 843 #endif /* !defined XENHVM */ 844 return (0); 845 } 846 847 /** 848 * Collect information from the XenStore related to our device and its frontend 849 * 850 * \param xnb Per-instance xnb configuration structure. 851 */ 852 static int 853 xnb_collect_xenstore_info(struct xnb_softc *xnb) 854 { 855 /** 856 * \todo Linux collects the following info. We should collect most 857 * of this, too: 858 * "feature-rx-notify" 859 */ 860 const char *otherend_path; 861 const char *our_path; 862 int err; 863 unsigned int rx_copy, bridge_len; 864 uint8_t no_csum_offload; 865 866 otherend_path = xenbus_get_otherend_path(xnb->dev); 867 our_path = xenbus_get_node(xnb->dev); 868 869 /* Collect the critical communication parameters */ 870 err = xs_gather(XST_NIL, otherend_path, 871 "tx-ring-ref", "%l" PRIu32, 872 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref, 873 "rx-ring-ref", "%l" PRIu32, 874 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref, 875 "event-channel", "%" PRIu32, &xnb->evtchn, 876 NULL); 877 if (err != 0) { 878 xenbus_dev_fatal(xnb->dev, err, 879 "Unable to retrieve ring information from " 880 "frontend %s. Unable to connect.", 881 otherend_path); 882 return (err); 883 } 884 885 /* Collect the handle from xenstore */ 886 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle); 887 if (err != 0) { 888 xenbus_dev_fatal(xnb->dev, err, 889 "Error reading handle from frontend %s. " 890 "Unable to connect.", otherend_path); 891 } 892 893 /* 894 * Collect the bridgename, if any. We do not need bridge_len; we just 895 * throw it away 896 */ 897 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len, 898 (void**)&xnb->bridge); 899 if (err != 0) 900 xnb->bridge = NULL; 901 902 /* 903 * Does the frontend request that we use rx copy? If not, return an 904 * error because this driver only supports rx copy. 905 */ 906 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL, 907 "%" PRIu32, &rx_copy); 908 if (err == ENOENT) { 909 err = 0; 910 rx_copy = 0; 911 } 912 if (err < 0) { 913 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy", 914 otherend_path); 915 return err; 916 } 917 /** 918 * \todo: figure out the exact meaning of this feature, and when 919 * the frontend will set it to true. It should be set to true 920 * at some point 921 */ 922 /* if (!rx_copy)*/ 923 /* return EOPNOTSUPP;*/ 924 925 /** \todo Collect the rx notify feature */ 926 927 /* Collect the feature-sg. */ 928 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL, 929 "%hhu", &xnb->can_sg) < 0) 930 xnb->can_sg = 0; 931 932 /* Collect remaining frontend features */ 933 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL, 934 "%hhu", &xnb->gso) < 0) 935 xnb->gso = 0; 936 937 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL, 938 "%hhu", &xnb->gso_prefix) < 0) 939 xnb->gso_prefix = 0; 940 941 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL, 942 "%hhu", &no_csum_offload) < 0) 943 no_csum_offload = 0; 944 xnb->ip_csum = (no_csum_offload == 0); 945 946 return (0); 947 } 948 949 /** 950 * Supply information about the physical device to the frontend 951 * via XenBus. 952 * 953 * \param xnb Per-instance xnb configuration structure. 954 */ 955 static int 956 xnb_publish_backend_info(struct xnb_softc *xnb) 957 { 958 struct xs_transaction xst; 959 const char *our_path; 960 int error; 961 962 our_path = xenbus_get_node(xnb->dev); 963 964 do { 965 error = xs_transaction_start(&xst); 966 if (error != 0) { 967 xenbus_dev_fatal(xnb->dev, error, 968 "Error publishing backend info " 969 "(start transaction)"); 970 break; 971 } 972 973 error = xs_printf(xst, our_path, "feature-sg", 974 "%d", XNB_SG); 975 if (error != 0) 976 break; 977 978 error = xs_printf(xst, our_path, "feature-gso-tcpv4", 979 "%d", XNB_GSO_TCPV4); 980 if (error != 0) 981 break; 982 983 error = xs_printf(xst, our_path, "feature-rx-copy", 984 "%d", XNB_RX_COPY); 985 if (error != 0) 986 break; 987 988 error = xs_printf(xst, our_path, "feature-rx-flip", 989 "%d", XNB_RX_FLIP); 990 if (error != 0) 991 break; 992 993 error = xs_transaction_end(xst, 0); 994 if (error != 0 && error != EAGAIN) { 995 xenbus_dev_fatal(xnb->dev, error, "ending transaction"); 996 break; 997 } 998 999 } while (error == EAGAIN); 1000 1001 return (error); 1002 } 1003 1004 /** 1005 * Connect to our netfront peer now that it has completed publishing 1006 * its configuration into the XenStore. 1007 * 1008 * \param xnb Per-instance xnb configuration structure. 1009 */ 1010 static void 1011 xnb_connect(struct xnb_softc *xnb) 1012 { 1013 int error; 1014 1015 if (xenbus_get_state(xnb->dev) == XenbusStateConnected) 1016 return; 1017 1018 if (xnb_collect_xenstore_info(xnb) != 0) 1019 return; 1020 1021 xnb->flags &= ~XNBF_SHUTDOWN; 1022 1023 /* Read front end configuration. */ 1024 1025 /* Allocate resources whose size depends on front-end configuration. */ 1026 error = xnb_alloc_communication_mem(xnb); 1027 if (error != 0) { 1028 xenbus_dev_fatal(xnb->dev, error, 1029 "Unable to allocate communication memory"); 1030 return; 1031 } 1032 1033 /* 1034 * Connect communication channel. 1035 */ 1036 error = xnb_connect_comms(xnb); 1037 if (error != 0) { 1038 /* Specific errors are reported by xnb_connect_comms(). */ 1039 return; 1040 } 1041 xnb->carrier = 1; 1042 1043 /* Ready for I/O. */ 1044 xenbus_set_state(xnb->dev, XenbusStateConnected); 1045 } 1046 1047 /*-------------------------- Device Teardown Support -------------------------*/ 1048 /** 1049 * Perform device shutdown functions. 1050 * 1051 * \param xnb Per-instance xnb configuration structure. 1052 * 1053 * Mark this instance as shutting down, wait for any active requests 1054 * to drain, disconnect from the front-end, and notify any waiters (e.g. 1055 * a thread invoking our detach method) that detach can now proceed. 1056 */ 1057 static int 1058 xnb_shutdown(struct xnb_softc *xnb) 1059 { 1060 /* 1061 * Due to the need to drop our mutex during some 1062 * xenbus operations, it is possible for two threads 1063 * to attempt to close out shutdown processing at 1064 * the same time. Tell the caller that hits this 1065 * race to try back later. 1066 */ 1067 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0) 1068 return (EAGAIN); 1069 1070 xnb->flags |= XNBF_SHUTDOWN; 1071 1072 xnb->flags |= XNBF_IN_SHUTDOWN; 1073 1074 mtx_unlock(&xnb->sc_lock); 1075 /* Free the network interface */ 1076 xnb->carrier = 0; 1077 if (xnb->xnb_ifp != NULL) { 1078 ether_ifdetach(xnb->xnb_ifp); 1079 if_free(xnb->xnb_ifp); 1080 xnb->xnb_ifp = NULL; 1081 } 1082 mtx_lock(&xnb->sc_lock); 1083 1084 xnb_disconnect(xnb); 1085 1086 mtx_unlock(&xnb->sc_lock); 1087 if (xenbus_get_state(xnb->dev) < XenbusStateClosing) 1088 xenbus_set_state(xnb->dev, XenbusStateClosing); 1089 mtx_lock(&xnb->sc_lock); 1090 1091 xnb->flags &= ~XNBF_IN_SHUTDOWN; 1092 1093 1094 /* Indicate to xnb_detach() that is it safe to proceed. */ 1095 wakeup(xnb); 1096 1097 return (0); 1098 } 1099 1100 /** 1101 * Report an attach time error to the console and Xen, and cleanup 1102 * this instance by forcing immediate detach processing. 1103 * 1104 * \param xnb Per-instance xnb configuration structure. 1105 * \param err Errno describing the error. 1106 * \param fmt Printf style format and arguments 1107 */ 1108 static void 1109 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...) 1110 { 1111 va_list ap; 1112 va_list ap_hotplug; 1113 1114 va_start(ap, fmt); 1115 va_copy(ap_hotplug, ap); 1116 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev), 1117 "hotplug-error", fmt, ap_hotplug); 1118 va_end(ap_hotplug); 1119 xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1120 "hotplug-status", "error"); 1121 1122 xenbus_dev_vfatal(xnb->dev, err, fmt, ap); 1123 va_end(ap); 1124 1125 xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1126 "online", "0"); 1127 xnb_detach(xnb->dev); 1128 } 1129 1130 /*---------------------------- NewBus Entrypoints ----------------------------*/ 1131 /** 1132 * Inspect a XenBus device and claim it if is of the appropriate type. 1133 * 1134 * \param dev NewBus device object representing a candidate XenBus device. 1135 * 1136 * \return 0 for success, errno codes for failure. 1137 */ 1138 static int 1139 xnb_probe(device_t dev) 1140 { 1141 if (!strcmp(xenbus_get_type(dev), "vif")) { 1142 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev), 1143 devclass_get_name(device_get_devclass(dev))); 1144 device_set_desc(dev, "Backend Virtual Network Device"); 1145 device_quiet(dev); 1146 return (0); 1147 } 1148 return (ENXIO); 1149 } 1150 1151 /** 1152 * Setup sysctl variables to control various Network Back parameters. 1153 * 1154 * \param xnb Xen Net Back softc. 1155 * 1156 */ 1157 static void 1158 xnb_setup_sysctl(struct xnb_softc *xnb) 1159 { 1160 struct sysctl_ctx_list *sysctl_ctx = NULL; 1161 struct sysctl_oid *sysctl_tree = NULL; 1162 1163 sysctl_ctx = device_get_sysctl_ctx(xnb->dev); 1164 if (sysctl_ctx == NULL) 1165 return; 1166 1167 sysctl_tree = device_get_sysctl_tree(xnb->dev); 1168 if (sysctl_tree == NULL) 1169 return; 1170 1171 #ifdef XNB_DEBUG 1172 SYSCTL_ADD_PROC(sysctl_ctx, 1173 SYSCTL_CHILDREN(sysctl_tree), 1174 OID_AUTO, 1175 "unit_test_results", 1176 CTLTYPE_STRING | CTLFLAG_RD, 1177 xnb, 1178 0, 1179 xnb_unit_test_main, 1180 "A", 1181 "Results of builtin unit tests"); 1182 1183 SYSCTL_ADD_PROC(sysctl_ctx, 1184 SYSCTL_CHILDREN(sysctl_tree), 1185 OID_AUTO, 1186 "dump_rings", 1187 CTLTYPE_STRING | CTLFLAG_RD, 1188 xnb, 1189 0, 1190 xnb_dump_rings, 1191 "A", 1192 "Xennet Back Rings"); 1193 #endif /* XNB_DEBUG */ 1194 } 1195 1196 /** 1197 * Create a network device. 1198 * @param handle device handle 1199 */ 1200 int 1201 create_netdev(device_t dev) 1202 { 1203 struct ifnet *ifp; 1204 struct xnb_softc *xnb; 1205 int err = 0; 1206 uint32_t handle; 1207 1208 xnb = device_get_softc(dev); 1209 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF); 1210 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF); 1211 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF); 1212 1213 xnb->dev = dev; 1214 1215 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts); 1216 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1217 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL); 1218 1219 /* 1220 * Set the MAC address to a dummy value (00:00:00:00:00), 1221 * if the MAC address of the host-facing interface is set 1222 * to the same as the guest-facing one (the value found in 1223 * xenstore), the bridge would stop delivering packets to 1224 * us because it would see that the destination address of 1225 * the packet is the same as the interface, and so the bridge 1226 * would expect the packet has already been delivered locally 1227 * (and just drop it). 1228 */ 1229 bzero(&xnb->mac[0], sizeof(xnb->mac)); 1230 1231 /* The interface will be named using the following nomenclature: 1232 * 1233 * xnb<domid>.<handle> 1234 * 1235 * Where handle is the oder of the interface referred to the guest. 1236 */ 1237 err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL, 1238 "%" PRIu32, &handle); 1239 if (err != 0) 1240 return (err); 1241 snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32, 1242 xenbus_get_otherend_id(dev), handle); 1243 1244 if (err == 0) { 1245 /* Set up ifnet structure */ 1246 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER); 1247 ifp->if_softc = xnb; 1248 if_initname(ifp, xnb->if_name, IF_DUNIT_NONE); 1249 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1250 ifp->if_ioctl = xnb_ioctl; 1251 ifp->if_output = ether_output; 1252 ifp->if_start = xnb_start; 1253 #ifdef notyet 1254 ifp->if_watchdog = xnb_watchdog; 1255 #endif 1256 ifp->if_init = xnb_ifinit; 1257 ifp->if_mtu = ETHERMTU; 1258 ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1; 1259 1260 ifp->if_hwassist = XNB_CSUM_FEATURES; 1261 ifp->if_capabilities = IFCAP_HWCSUM; 1262 ifp->if_capenable = IFCAP_HWCSUM; 1263 1264 ether_ifattach(ifp, xnb->mac); 1265 xnb->carrier = 0; 1266 } 1267 1268 return err; 1269 } 1270 1271 /** 1272 * Attach to a XenBus device that has been claimed by our probe routine. 1273 * 1274 * \param dev NewBus device object representing this Xen Net Back instance. 1275 * 1276 * \return 0 for success, errno codes for failure. 1277 */ 1278 static int 1279 xnb_attach(device_t dev) 1280 { 1281 struct xnb_softc *xnb; 1282 int error; 1283 xnb_ring_type_t i; 1284 1285 error = create_netdev(dev); 1286 if (error != 0) { 1287 xenbus_dev_fatal(dev, error, "creating netdev"); 1288 return (error); 1289 } 1290 1291 DPRINTF("Attaching to %s\n", xenbus_get_node(dev)); 1292 1293 /* 1294 * Basic initialization. 1295 * After this block it is safe to call xnb_detach() 1296 * to clean up any allocated data for this instance. 1297 */ 1298 xnb = device_get_softc(dev); 1299 xnb->otherend_id = xenbus_get_otherend_id(dev); 1300 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 1301 xnb->ring_configs[i].ring_pages = 1; 1302 } 1303 1304 /* 1305 * Setup sysctl variables. 1306 */ 1307 xnb_setup_sysctl(xnb); 1308 1309 /* Update hot-plug status to satisfy xend. */ 1310 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1311 "hotplug-status", "connected"); 1312 if (error != 0) { 1313 xnb_attach_failed(xnb, error, "writing %s/hotplug-status", 1314 xenbus_get_node(xnb->dev)); 1315 return (error); 1316 } 1317 1318 if ((error = xnb_publish_backend_info(xnb)) != 0) { 1319 /* 1320 * If we can't publish our data, we cannot participate 1321 * in this connection, and waiting for a front-end state 1322 * change will not help the situation. 1323 */ 1324 xnb_attach_failed(xnb, error, 1325 "Publishing backend status for %s", 1326 xenbus_get_node(xnb->dev)); 1327 return error; 1328 } 1329 1330 /* Tell the front end that we are ready to connect. */ 1331 xenbus_set_state(dev, XenbusStateInitWait); 1332 1333 return (0); 1334 } 1335 1336 /** 1337 * Detach from a net back device instance. 1338 * 1339 * \param dev NewBus device object representing this Xen Net Back instance. 1340 * 1341 * \return 0 for success, errno codes for failure. 1342 * 1343 * \note A net back device may be detached at any time in its life-cycle, 1344 * including part way through the attach process. For this reason, 1345 * initialization order and the intialization state checks in this 1346 * routine must be carefully coupled so that attach time failures 1347 * are gracefully handled. 1348 */ 1349 static int 1350 xnb_detach(device_t dev) 1351 { 1352 struct xnb_softc *xnb; 1353 1354 DPRINTF("\n"); 1355 1356 xnb = device_get_softc(dev); 1357 mtx_lock(&xnb->sc_lock); 1358 while (xnb_shutdown(xnb) == EAGAIN) { 1359 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0, 1360 "xnb_shutdown", 0); 1361 } 1362 mtx_unlock(&xnb->sc_lock); 1363 DPRINTF("\n"); 1364 1365 mtx_destroy(&xnb->tx_lock); 1366 mtx_destroy(&xnb->rx_lock); 1367 mtx_destroy(&xnb->sc_lock); 1368 return (0); 1369 } 1370 1371 /** 1372 * Prepare this net back device for suspension of this VM. 1373 * 1374 * \param dev NewBus device object representing this Xen net Back instance. 1375 * 1376 * \return 0 for success, errno codes for failure. 1377 */ 1378 static int 1379 xnb_suspend(device_t dev) 1380 { 1381 return (0); 1382 } 1383 1384 /** 1385 * Perform any processing required to recover from a suspended state. 1386 * 1387 * \param dev NewBus device object representing this Xen Net Back instance. 1388 * 1389 * \return 0 for success, errno codes for failure. 1390 */ 1391 static int 1392 xnb_resume(device_t dev) 1393 { 1394 return (0); 1395 } 1396 1397 /** 1398 * Handle state changes expressed via the XenStore by our front-end peer. 1399 * 1400 * \param dev NewBus device object representing this Xen 1401 * Net Back instance. 1402 * \param frontend_state The new state of the front-end. 1403 * 1404 * \return 0 for success, errno codes for failure. 1405 */ 1406 static void 1407 xnb_frontend_changed(device_t dev, XenbusState frontend_state) 1408 { 1409 struct xnb_softc *xnb; 1410 1411 xnb = device_get_softc(dev); 1412 1413 DPRINTF("frontend_state=%s, xnb_state=%s\n", 1414 xenbus_strstate(frontend_state), 1415 xenbus_strstate(xenbus_get_state(xnb->dev))); 1416 1417 switch (frontend_state) { 1418 case XenbusStateInitialising: 1419 break; 1420 case XenbusStateInitialised: 1421 case XenbusStateConnected: 1422 xnb_connect(xnb); 1423 break; 1424 case XenbusStateClosing: 1425 case XenbusStateClosed: 1426 mtx_lock(&xnb->sc_lock); 1427 xnb_shutdown(xnb); 1428 mtx_unlock(&xnb->sc_lock); 1429 if (frontend_state == XenbusStateClosed) 1430 xenbus_set_state(xnb->dev, XenbusStateClosed); 1431 break; 1432 default: 1433 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend", 1434 frontend_state); 1435 break; 1436 } 1437 } 1438 1439 1440 /*---------------------------- Request Processing ----------------------------*/ 1441 /** 1442 * Interrupt handler bound to the shared ring's event channel. 1443 * Entry point for the xennet transmit path in netback 1444 * Transfers packets from the Xen ring to the host's generic networking stack 1445 * 1446 * \param arg Callback argument registerd during event channel 1447 * binding - the xnb_softc for this instance. 1448 */ 1449 static void 1450 xnb_intr(void *arg) 1451 { 1452 struct xnb_softc *xnb; 1453 struct ifnet *ifp; 1454 netif_tx_back_ring_t *txb; 1455 RING_IDX req_prod_local; 1456 1457 xnb = (struct xnb_softc *)arg; 1458 ifp = xnb->xnb_ifp; 1459 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 1460 1461 mtx_lock(&xnb->tx_lock); 1462 do { 1463 int notify; 1464 req_prod_local = txb->sring->req_prod; 1465 xen_rmb(); 1466 1467 for (;;) { 1468 struct mbuf *mbufc; 1469 int err; 1470 1471 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp, 1472 xnb->tx_gnttab); 1473 if (err || (mbufc == NULL)) 1474 break; 1475 1476 /* Send the packet to the generic network stack */ 1477 (*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc); 1478 } 1479 1480 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify); 1481 if (notify != 0) 1482 xen_intr_signal(xnb->xen_intr_handle); 1483 1484 txb->sring->req_event = txb->req_cons + 1; 1485 xen_mb(); 1486 } while (txb->sring->req_prod != req_prod_local) ; 1487 mtx_unlock(&xnb->tx_lock); 1488 1489 xnb_start(ifp); 1490 } 1491 1492 1493 /** 1494 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring. 1495 * Will read exactly 0 or 1 packets from the ring; never a partial packet. 1496 * \param[out] pkt The returned packet. If there is an error building 1497 * the packet, pkt.list_len will be set to 0. 1498 * \param[in] tx_ring Pointer to the Ring that is the input to this function 1499 * \param[in] start The ring index of the first potential request 1500 * \return The number of requests consumed to build this packet 1501 */ 1502 static int 1503 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring, 1504 RING_IDX start) 1505 { 1506 /* 1507 * Outline: 1508 * 1) Initialize pkt 1509 * 2) Read the first request of the packet 1510 * 3) Read the extras 1511 * 4) Set cdr 1512 * 5) Loop on the remainder of the packet 1513 * 6) Finalize pkt (stuff like car_size and list_len) 1514 */ 1515 int idx = start; 1516 int discard = 0; /* whether to discard the packet */ 1517 int more_data = 0; /* there are more request past the last one */ 1518 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */ 1519 1520 xnb_pkt_initialize(pkt); 1521 1522 /* Read the first request */ 1523 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1524 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1525 pkt->size = tx->size; 1526 pkt->flags = tx->flags & ~NETTXF_more_data; 1527 more_data = tx->flags & NETTXF_more_data; 1528 pkt->list_len++; 1529 pkt->car = idx; 1530 idx++; 1531 } 1532 1533 /* Read the extra info */ 1534 if ((pkt->flags & NETTXF_extra_info) && 1535 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1536 netif_extra_info_t *ext = 1537 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx); 1538 pkt->extra.type = ext->type; 1539 switch (pkt->extra.type) { 1540 case XEN_NETIF_EXTRA_TYPE_GSO: 1541 pkt->extra.u.gso = ext->u.gso; 1542 break; 1543 default: 1544 /* 1545 * The reference Linux netfront driver will 1546 * never set any other extra.type. So we don't 1547 * know what to do with it. Let's print an 1548 * error, then consume and discard the packet 1549 */ 1550 printf("xnb(%s:%d): Unknown extra info type %d." 1551 " Discarding packet\n", 1552 __func__, __LINE__, pkt->extra.type); 1553 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, 1554 start)); 1555 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, 1556 idx)); 1557 discard = 1; 1558 break; 1559 } 1560 1561 pkt->extra.flags = ext->flags; 1562 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) { 1563 /* 1564 * The reference linux netfront driver never sets this 1565 * flag (nor does any other known netfront). So we 1566 * will discard the packet. 1567 */ 1568 printf("xnb(%s:%d): Request sets " 1569 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle " 1570 "that\n", __func__, __LINE__); 1571 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1572 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1573 discard = 1; 1574 } 1575 1576 idx++; 1577 } 1578 1579 /* Set cdr. If there is not more data, cdr is invalid */ 1580 pkt->cdr = idx; 1581 1582 /* Loop on remainder of packet */ 1583 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1584 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1585 pkt->list_len++; 1586 cdr_size += tx->size; 1587 if (tx->flags & ~NETTXF_more_data) { 1588 /* There should be no other flags set at this point */ 1589 printf("xnb(%s:%d): Request sets unknown flags %d " 1590 "after the 1st request in the packet.\n", 1591 __func__, __LINE__, tx->flags); 1592 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1593 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1594 } 1595 1596 more_data = tx->flags & NETTXF_more_data; 1597 idx++; 1598 } 1599 1600 /* Finalize packet */ 1601 if (more_data != 0) { 1602 /* The ring ran out of requests before finishing the packet */ 1603 xnb_pkt_invalidate(pkt); 1604 idx = start; /* tell caller that we consumed no requests */ 1605 } else { 1606 /* Calculate car_size */ 1607 pkt->car_size = pkt->size - cdr_size; 1608 } 1609 if (discard != 0) { 1610 xnb_pkt_invalidate(pkt); 1611 } 1612 1613 return idx - start; 1614 } 1615 1616 1617 /** 1618 * Respond to all the requests that constituted pkt. Builds the responses and 1619 * writes them to the ring, but doesn't push them to the shared ring. 1620 * \param[in] pkt the packet that needs a response 1621 * \param[in] error true if there was an error handling the packet, such 1622 * as in the hypervisor copy op or mbuf allocation 1623 * \param[out] ring Responses go here 1624 */ 1625 static void 1626 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring, 1627 int error) 1628 { 1629 /* 1630 * Outline: 1631 * 1) Respond to the first request 1632 * 2) Respond to the extra info reques 1633 * Loop through every remaining request in the packet, generating 1634 * responses that copy those requests' ids and sets the status 1635 * appropriately. 1636 */ 1637 netif_tx_request_t *tx; 1638 netif_tx_response_t *rsp; 1639 int i; 1640 uint16_t status; 1641 1642 status = (xnb_pkt_is_valid(pkt) == 0) || error ? 1643 NETIF_RSP_ERROR : NETIF_RSP_OKAY; 1644 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car), 1645 ("Cannot respond to ring requests out of order")); 1646 1647 if (pkt->list_len >= 1) { 1648 uint16_t id; 1649 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1650 id = tx->id; 1651 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1652 rsp->id = id; 1653 rsp->status = status; 1654 ring->rsp_prod_pvt++; 1655 1656 if (pkt->flags & NETRXF_extra_info) { 1657 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1658 rsp->status = NETIF_RSP_NULL; 1659 ring->rsp_prod_pvt++; 1660 } 1661 } 1662 1663 for (i=0; i < pkt->list_len - 1; i++) { 1664 uint16_t id; 1665 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1666 id = tx->id; 1667 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1668 rsp->id = id; 1669 rsp->status = status; 1670 ring->rsp_prod_pvt++; 1671 } 1672 } 1673 1674 /** 1675 * Create an mbuf chain to represent a packet. Initializes all of the headers 1676 * in the mbuf chain, but does not copy the data. The returned chain must be 1677 * free()'d when no longer needed 1678 * \param[in] pkt A packet to model the mbuf chain after 1679 * \return A newly allocated mbuf chain, possibly with clusters attached. 1680 * NULL on failure 1681 */ 1682 static struct mbuf* 1683 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp) 1684 { 1685 /** 1686 * \todo consider using a memory pool for mbufs instead of 1687 * reallocating them for every packet 1688 */ 1689 /** \todo handle extra data */ 1690 struct mbuf *m; 1691 1692 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA); 1693 1694 if (m != NULL) { 1695 m->m_pkthdr.rcvif = ifp; 1696 if (pkt->flags & NETTXF_data_validated) { 1697 /* 1698 * We lie to the host OS and always tell it that the 1699 * checksums are ok, because the packet is unlikely to 1700 * get corrupted going across domains. 1701 */ 1702 m->m_pkthdr.csum_flags = ( 1703 CSUM_IP_CHECKED | 1704 CSUM_IP_VALID | 1705 CSUM_DATA_VALID | 1706 CSUM_PSEUDO_HDR 1707 ); 1708 m->m_pkthdr.csum_data = 0xffff; 1709 } 1710 } 1711 return m; 1712 } 1713 1714 /** 1715 * Build a gnttab_copy table that can be used to copy data from a pkt 1716 * to an mbufc. Does not actually perform the copy. Always uses gref's on 1717 * the packet side. 1718 * \param[in] pkt pkt's associated requests form the src for 1719 * the copy operation 1720 * \param[in] mbufc mbufc's storage forms the dest for the copy operation 1721 * \param[out] gnttab Storage for the returned grant table 1722 * \param[in] txb Pointer to the backend ring structure 1723 * \param[in] otherend_id The domain ID of the other end of the copy 1724 * \return The number of gnttab entries filled 1725 */ 1726 static int 1727 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1728 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb, 1729 domid_t otherend_id) 1730 { 1731 1732 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1733 int gnt_idx = 0; /* index into grant table */ 1734 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */ 1735 int r_ofs = 0; /* offset of next data within tx request's data area */ 1736 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1737 /* size in bytes that still needs to be represented in the table */ 1738 uint16_t size_remaining = pkt->size; 1739 1740 while (size_remaining > 0) { 1741 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx); 1742 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs; 1743 const size_t req_size = 1744 r_idx == pkt->car ? pkt->car_size : txq->size; 1745 const size_t pkt_space = req_size - r_ofs; 1746 /* 1747 * space is the largest amount of data that can be copied in the 1748 * grant table's next entry 1749 */ 1750 const size_t space = MIN(pkt_space, mbuf_space); 1751 1752 /* TODO: handle this error condition without panicking */ 1753 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1754 1755 gnttab[gnt_idx].source.u.ref = txq->gref; 1756 gnttab[gnt_idx].source.domid = otherend_id; 1757 gnttab[gnt_idx].source.offset = txq->offset + r_ofs; 1758 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn( 1759 mtod(mbuf, vm_offset_t) + m_ofs); 1760 gnttab[gnt_idx].dest.offset = virt_to_offset( 1761 mtod(mbuf, vm_offset_t) + m_ofs); 1762 gnttab[gnt_idx].dest.domid = DOMID_SELF; 1763 gnttab[gnt_idx].len = space; 1764 gnttab[gnt_idx].flags = GNTCOPY_source_gref; 1765 1766 gnt_idx++; 1767 r_ofs += space; 1768 m_ofs += space; 1769 size_remaining -= space; 1770 if (req_size - r_ofs <= 0) { 1771 /* Must move to the next tx request */ 1772 r_ofs = 0; 1773 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 1774 } 1775 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) { 1776 /* Must move to the next mbuf */ 1777 m_ofs = 0; 1778 mbuf = mbuf->m_next; 1779 } 1780 } 1781 1782 return gnt_idx; 1783 } 1784 1785 /** 1786 * Check the status of the grant copy operations, and update mbufs various 1787 * non-data fields to reflect the data present. 1788 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of 1789 * the correct length, and data should already be present 1790 * \param[in] gnttab A grant table for a just completed copy op 1791 * \param[in] n_entries The number of valid entries in the grant table 1792 */ 1793 static void 1794 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab, 1795 int n_entries) 1796 { 1797 struct mbuf *mbuf = mbufc; 1798 int i; 1799 size_t total_size = 0; 1800 1801 for (i = 0; i < n_entries; i++) { 1802 KASSERT(gnttab[i].status == GNTST_okay, 1803 ("Some gnttab_copy entry had error status %hd\n", 1804 gnttab[i].status)); 1805 1806 mbuf->m_len += gnttab[i].len; 1807 total_size += gnttab[i].len; 1808 if (M_TRAILINGSPACE(mbuf) <= 0) { 1809 mbuf = mbuf->m_next; 1810 } 1811 } 1812 mbufc->m_pkthdr.len = total_size; 1813 1814 #if defined(INET) || defined(INET6) 1815 xnb_add_mbuf_cksum(mbufc); 1816 #endif 1817 } 1818 1819 /** 1820 * Dequeue at most one packet from the shared ring 1821 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and 1822 * its private indices will be updated. But the indices 1823 * will not be pushed to the shared ring. 1824 * \param[in] ifnet Interface to which the packet will be sent 1825 * \param[in] otherend Domain ID of the other end of the ring 1826 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic 1827 * networking stack 1828 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 1829 * this a function parameter so that we will take less 1830 * stack space. 1831 * \return An error code 1832 */ 1833 static int 1834 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc, 1835 struct ifnet *ifnet, gnttab_copy_table gnttab) 1836 { 1837 struct xnb_pkt pkt; 1838 /* number of tx requests consumed to build the last packet */ 1839 int num_consumed; 1840 int nr_ents; 1841 1842 *mbufc = NULL; 1843 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons); 1844 if (num_consumed == 0) 1845 return 0; /* Nothing to receive */ 1846 1847 /* update statistics independent of errors */ 1848 if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1); 1849 1850 /* 1851 * if we got here, then 1 or more requests was consumed, but the packet 1852 * is not necessarily valid. 1853 */ 1854 if (xnb_pkt_is_valid(&pkt) == 0) { 1855 /* got a garbage packet, respond and drop it */ 1856 xnb_txpkt2rsp(&pkt, txb, 1); 1857 txb->req_cons += num_consumed; 1858 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n", 1859 num_consumed); 1860 if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1); 1861 return EINVAL; 1862 } 1863 1864 *mbufc = xnb_pkt2mbufc(&pkt, ifnet); 1865 1866 if (*mbufc == NULL) { 1867 /* 1868 * Couldn't allocate mbufs. Respond and drop the packet. Do 1869 * not consume the requests 1870 */ 1871 xnb_txpkt2rsp(&pkt, txb, 1); 1872 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n", 1873 num_consumed); 1874 if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1); 1875 return ENOMEM; 1876 } 1877 1878 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend); 1879 1880 if (nr_ents > 0) { 1881 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 1882 gnttab, nr_ents); 1883 KASSERT(hv_ret == 0, 1884 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret)); 1885 xnb_update_mbufc(*mbufc, gnttab, nr_ents); 1886 } 1887 1888 xnb_txpkt2rsp(&pkt, txb, 0); 1889 txb->req_cons += num_consumed; 1890 return 0; 1891 } 1892 1893 /** 1894 * Create an xnb_pkt based on the contents of an mbuf chain. 1895 * \param[in] mbufc mbuf chain to transform into a packet 1896 * \param[out] pkt Storage for the newly generated xnb_pkt 1897 * \param[in] start The ring index of the first available slot in the rx 1898 * ring 1899 * \param[in] space The number of free slots in the rx ring 1900 * \retval 0 Success 1901 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 1902 * \retval EAGAIN There was not enough space in the ring to queue the 1903 * packet 1904 */ 1905 static int 1906 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt, 1907 RING_IDX start, int space) 1908 { 1909 1910 int retval = 0; 1911 1912 if ((mbufc == NULL) || 1913 ( (mbufc->m_flags & M_PKTHDR) == 0) || 1914 (mbufc->m_pkthdr.len == 0)) { 1915 xnb_pkt_invalidate(pkt); 1916 retval = EINVAL; 1917 } else { 1918 int slots_required; 1919 1920 xnb_pkt_validate(pkt); 1921 pkt->flags = 0; 1922 pkt->size = mbufc->m_pkthdr.len; 1923 pkt->car = start; 1924 pkt->car_size = mbufc->m_len; 1925 1926 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) { 1927 pkt->flags |= NETRXF_extra_info; 1928 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz; 1929 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 1930 pkt->extra.u.gso.pad = 0; 1931 pkt->extra.u.gso.features = 0; 1932 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO; 1933 pkt->extra.flags = 0; 1934 pkt->cdr = start + 2; 1935 } else { 1936 pkt->cdr = start + 1; 1937 } 1938 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) { 1939 pkt->flags |= 1940 (NETRXF_csum_blank | NETRXF_data_validated); 1941 } 1942 1943 /* 1944 * Each ring response can have up to PAGE_SIZE of data. 1945 * Assume that we can defragment the mbuf chain efficiently 1946 * into responses so that each response but the last uses all 1947 * PAGE_SIZE bytes. 1948 */ 1949 pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE; 1950 1951 if (pkt->list_len > 1) { 1952 pkt->flags |= NETRXF_more_data; 1953 } 1954 1955 slots_required = pkt->list_len + 1956 (pkt->flags & NETRXF_extra_info ? 1 : 0); 1957 if (slots_required > space) { 1958 xnb_pkt_invalidate(pkt); 1959 retval = EAGAIN; 1960 } 1961 } 1962 1963 return retval; 1964 } 1965 1966 /** 1967 * Build a gnttab_copy table that can be used to copy data from an mbuf chain 1968 * to the frontend's shared buffers. Does not actually perform the copy. 1969 * Always uses gref's on the other end's side. 1970 * \param[in] pkt pkt's associated responses form the dest for the copy 1971 * operatoin 1972 * \param[in] mbufc The source for the copy operation 1973 * \param[out] gnttab Storage for the returned grant table 1974 * \param[in] rxb Pointer to the backend ring structure 1975 * \param[in] otherend_id The domain ID of the other end of the copy 1976 * \return The number of gnttab entries filled 1977 */ 1978 static int 1979 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1980 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb, 1981 domid_t otherend_id) 1982 { 1983 1984 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1985 int gnt_idx = 0; /* index into grant table */ 1986 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */ 1987 int r_ofs = 0; /* offset of next data within rx request's data area */ 1988 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1989 /* size in bytes that still needs to be represented in the table */ 1990 uint16_t size_remaining; 1991 1992 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0; 1993 1994 while (size_remaining > 0) { 1995 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx); 1996 const size_t mbuf_space = mbuf->m_len - m_ofs; 1997 /* Xen shared pages have an implied size of PAGE_SIZE */ 1998 const size_t req_size = PAGE_SIZE; 1999 const size_t pkt_space = req_size - r_ofs; 2000 /* 2001 * space is the largest amount of data that can be copied in the 2002 * grant table's next entry 2003 */ 2004 const size_t space = MIN(pkt_space, mbuf_space); 2005 2006 /* TODO: handle this error condition without panicing */ 2007 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 2008 2009 gnttab[gnt_idx].dest.u.ref = rxq->gref; 2010 gnttab[gnt_idx].dest.domid = otherend_id; 2011 gnttab[gnt_idx].dest.offset = r_ofs; 2012 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn( 2013 mtod(mbuf, vm_offset_t) + m_ofs); 2014 gnttab[gnt_idx].source.offset = virt_to_offset( 2015 mtod(mbuf, vm_offset_t) + m_ofs); 2016 gnttab[gnt_idx].source.domid = DOMID_SELF; 2017 gnttab[gnt_idx].len = space; 2018 gnttab[gnt_idx].flags = GNTCOPY_dest_gref; 2019 2020 gnt_idx++; 2021 2022 r_ofs += space; 2023 m_ofs += space; 2024 size_remaining -= space; 2025 if (req_size - r_ofs <= 0) { 2026 /* Must move to the next rx request */ 2027 r_ofs = 0; 2028 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 2029 } 2030 if (mbuf->m_len - m_ofs <= 0) { 2031 /* Must move to the next mbuf */ 2032 m_ofs = 0; 2033 mbuf = mbuf->m_next; 2034 } 2035 } 2036 2037 return gnt_idx; 2038 } 2039 2040 /** 2041 * Generates responses for all the requests that constituted pkt. Builds 2042 * responses and writes them to the ring, but doesn't push the shared ring 2043 * indices. 2044 * \param[in] pkt the packet that needs a response 2045 * \param[in] gnttab The grant copy table corresponding to this packet. 2046 * Used to determine how many rsp->netif_rx_response_t's to 2047 * generate. 2048 * \param[in] n_entries Number of relevant entries in the grant table 2049 * \param[out] ring Responses go here 2050 * \return The number of RX requests that were consumed to generate 2051 * the responses 2052 */ 2053 static int 2054 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab, 2055 int n_entries, netif_rx_back_ring_t *ring) 2056 { 2057 /* 2058 * This code makes the following assumptions: 2059 * * All entries in gnttab set GNTCOPY_dest_gref 2060 * * The entries in gnttab are grouped by their grefs: any two 2061 * entries with the same gref must be adjacent 2062 */ 2063 int error = 0; 2064 int gnt_idx, i; 2065 int n_responses = 0; 2066 grant_ref_t last_gref = GRANT_REF_INVALID; 2067 RING_IDX r_idx; 2068 2069 KASSERT(gnttab != NULL, ("Received a null granttable copy")); 2070 2071 /* 2072 * In the event of an error, we only need to send one response to the 2073 * netfront. In that case, we musn't write any data to the responses 2074 * after the one we send. So we must loop all the way through gnttab 2075 * looking for errors before we generate any responses 2076 * 2077 * Since we're looping through the grant table anyway, we'll count the 2078 * number of different gref's in it, which will tell us how many 2079 * responses to generate 2080 */ 2081 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) { 2082 int16_t status = gnttab[gnt_idx].status; 2083 if (status != GNTST_okay) { 2084 DPRINTF( 2085 "Got error %d for hypervisor gnttab_copy status\n", 2086 status); 2087 error = 1; 2088 break; 2089 } 2090 if (gnttab[gnt_idx].dest.u.ref != last_gref) { 2091 n_responses++; 2092 last_gref = gnttab[gnt_idx].dest.u.ref; 2093 } 2094 } 2095 2096 if (error != 0) { 2097 uint16_t id; 2098 netif_rx_response_t *rsp; 2099 2100 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id; 2101 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 2102 rsp->id = id; 2103 rsp->status = NETIF_RSP_ERROR; 2104 n_responses = 1; 2105 } else { 2106 gnt_idx = 0; 2107 const int has_extra = pkt->flags & NETRXF_extra_info; 2108 if (has_extra != 0) 2109 n_responses++; 2110 2111 for (i = 0; i < n_responses; i++) { 2112 netif_rx_request_t rxq; 2113 netif_rx_response_t *rsp; 2114 2115 r_idx = ring->rsp_prod_pvt + i; 2116 /* 2117 * We copy the structure of rxq instead of making a 2118 * pointer because it shares the same memory as rsp. 2119 */ 2120 rxq = *(RING_GET_REQUEST(ring, r_idx)); 2121 rsp = RING_GET_RESPONSE(ring, r_idx); 2122 if (has_extra && (i == 1)) { 2123 netif_extra_info_t *ext = 2124 (netif_extra_info_t*)rsp; 2125 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 2126 ext->flags = 0; 2127 ext->u.gso.size = pkt->extra.u.gso.size; 2128 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 2129 ext->u.gso.pad = 0; 2130 ext->u.gso.features = 0; 2131 } else { 2132 rsp->id = rxq.id; 2133 rsp->status = GNTST_okay; 2134 rsp->offset = 0; 2135 rsp->flags = 0; 2136 if (i < pkt->list_len - 1) 2137 rsp->flags |= NETRXF_more_data; 2138 if ((i == 0) && has_extra) 2139 rsp->flags |= NETRXF_extra_info; 2140 if ((i == 0) && 2141 (pkt->flags & NETRXF_data_validated)) { 2142 rsp->flags |= NETRXF_data_validated; 2143 rsp->flags |= NETRXF_csum_blank; 2144 } 2145 rsp->status = 0; 2146 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref; 2147 gnt_idx++) { 2148 rsp->status += gnttab[gnt_idx].len; 2149 } 2150 } 2151 } 2152 } 2153 2154 ring->req_cons += n_responses; 2155 ring->rsp_prod_pvt += n_responses; 2156 return n_responses; 2157 } 2158 2159 #if defined(INET) || defined(INET6) 2160 /** 2161 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf 2162 * in the chain must start with a struct ether_header. 2163 * 2164 * XXX This function will perform incorrectly on UDP packets that are split up 2165 * into multiple ethernet frames. 2166 */ 2167 static void 2168 xnb_add_mbuf_cksum(struct mbuf *mbufc) 2169 { 2170 struct ether_header *eh; 2171 struct ip *iph; 2172 uint16_t ether_type; 2173 2174 eh = mtod(mbufc, struct ether_header*); 2175 ether_type = ntohs(eh->ether_type); 2176 if (ether_type != ETHERTYPE_IP) { 2177 /* Nothing to calculate */ 2178 return; 2179 } 2180 2181 iph = (struct ip*)(eh + 1); 2182 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2183 iph->ip_sum = 0; 2184 iph->ip_sum = in_cksum_hdr(iph); 2185 } 2186 2187 switch (iph->ip_p) { 2188 case IPPROTO_TCP: 2189 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2190 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip); 2191 struct tcphdr *th = (struct tcphdr*)(iph + 1); 2192 th->th_sum = in_pseudo(iph->ip_src.s_addr, 2193 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen)); 2194 th->th_sum = in_cksum_skip(mbufc, 2195 sizeof(struct ether_header) + ntohs(iph->ip_len), 2196 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2197 } 2198 break; 2199 case IPPROTO_UDP: 2200 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2201 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip); 2202 struct udphdr *uh = (struct udphdr*)(iph + 1); 2203 uh->uh_sum = in_pseudo(iph->ip_src.s_addr, 2204 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen)); 2205 uh->uh_sum = in_cksum_skip(mbufc, 2206 sizeof(struct ether_header) + ntohs(iph->ip_len), 2207 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2208 } 2209 break; 2210 default: 2211 break; 2212 } 2213 } 2214 #endif /* INET || INET6 */ 2215 2216 static void 2217 xnb_stop(struct xnb_softc *xnb) 2218 { 2219 struct ifnet *ifp; 2220 2221 mtx_assert(&xnb->sc_lock, MA_OWNED); 2222 ifp = xnb->xnb_ifp; 2223 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2224 if_link_state_change(ifp, LINK_STATE_DOWN); 2225 } 2226 2227 static int 2228 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2229 { 2230 struct xnb_softc *xnb = ifp->if_softc; 2231 struct ifreq *ifr = (struct ifreq*) data; 2232 #ifdef INET 2233 struct ifaddr *ifa = (struct ifaddr*)data; 2234 #endif 2235 int error = 0; 2236 2237 switch (cmd) { 2238 case SIOCSIFFLAGS: 2239 mtx_lock(&xnb->sc_lock); 2240 if (ifp->if_flags & IFF_UP) { 2241 xnb_ifinit_locked(xnb); 2242 } else { 2243 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2244 xnb_stop(xnb); 2245 } 2246 } 2247 /* 2248 * Note: netfront sets a variable named xn_if_flags 2249 * here, but that variable is never read 2250 */ 2251 mtx_unlock(&xnb->sc_lock); 2252 break; 2253 case SIOCSIFADDR: 2254 #ifdef INET 2255 mtx_lock(&xnb->sc_lock); 2256 if (ifa->ifa_addr->sa_family == AF_INET) { 2257 ifp->if_flags |= IFF_UP; 2258 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2259 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | 2260 IFF_DRV_OACTIVE); 2261 if_link_state_change(ifp, 2262 LINK_STATE_DOWN); 2263 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2264 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2265 if_link_state_change(ifp, 2266 LINK_STATE_UP); 2267 } 2268 arp_ifinit(ifp, ifa); 2269 mtx_unlock(&xnb->sc_lock); 2270 } else { 2271 mtx_unlock(&xnb->sc_lock); 2272 #endif 2273 error = ether_ioctl(ifp, cmd, data); 2274 #ifdef INET 2275 } 2276 #endif 2277 break; 2278 case SIOCSIFCAP: 2279 mtx_lock(&xnb->sc_lock); 2280 if (ifr->ifr_reqcap & IFCAP_TXCSUM) { 2281 ifp->if_capenable |= IFCAP_TXCSUM; 2282 ifp->if_hwassist |= XNB_CSUM_FEATURES; 2283 } else { 2284 ifp->if_capenable &= ~(IFCAP_TXCSUM); 2285 ifp->if_hwassist &= ~(XNB_CSUM_FEATURES); 2286 } 2287 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) { 2288 ifp->if_capenable |= IFCAP_RXCSUM; 2289 } else { 2290 ifp->if_capenable &= ~(IFCAP_RXCSUM); 2291 } 2292 /* 2293 * TODO enable TSO4 and LRO once we no longer need 2294 * to calculate checksums in software 2295 */ 2296 #if 0 2297 if (ifr->if_reqcap |= IFCAP_TSO4) { 2298 if (IFCAP_TXCSUM & ifp->if_capenable) { 2299 printf("xnb: Xen netif requires that " 2300 "TXCSUM be enabled in order " 2301 "to use TSO4\n"); 2302 error = EINVAL; 2303 } else { 2304 ifp->if_capenable |= IFCAP_TSO4; 2305 ifp->if_hwassist |= CSUM_TSO; 2306 } 2307 } else { 2308 ifp->if_capenable &= ~(IFCAP_TSO4); 2309 ifp->if_hwassist &= ~(CSUM_TSO); 2310 } 2311 if (ifr->ifreqcap |= IFCAP_LRO) { 2312 ifp->if_capenable |= IFCAP_LRO; 2313 } else { 2314 ifp->if_capenable &= ~(IFCAP_LRO); 2315 } 2316 #endif 2317 mtx_unlock(&xnb->sc_lock); 2318 break; 2319 case SIOCSIFMTU: 2320 ifp->if_mtu = ifr->ifr_mtu; 2321 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2322 xnb_ifinit(xnb); 2323 break; 2324 case SIOCADDMULTI: 2325 case SIOCDELMULTI: 2326 case SIOCSIFMEDIA: 2327 case SIOCGIFMEDIA: 2328 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd); 2329 break; 2330 default: 2331 error = ether_ioctl(ifp, cmd, data); 2332 break; 2333 } 2334 return (error); 2335 } 2336 2337 static void 2338 xnb_start_locked(struct ifnet *ifp) 2339 { 2340 netif_rx_back_ring_t *rxb; 2341 struct xnb_softc *xnb; 2342 struct mbuf *mbufc; 2343 RING_IDX req_prod_local; 2344 2345 xnb = ifp->if_softc; 2346 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 2347 2348 if (!xnb->carrier) 2349 return; 2350 2351 do { 2352 int out_of_space = 0; 2353 int notify; 2354 req_prod_local = rxb->sring->req_prod; 2355 xen_rmb(); 2356 for (;;) { 2357 int error; 2358 2359 IF_DEQUEUE(&ifp->if_snd, mbufc); 2360 if (mbufc == NULL) 2361 break; 2362 error = xnb_send(rxb, xnb->otherend_id, mbufc, 2363 xnb->rx_gnttab); 2364 switch (error) { 2365 case EAGAIN: 2366 /* 2367 * Insufficient space in the ring. 2368 * Requeue pkt and send when space is 2369 * available. 2370 */ 2371 IF_PREPEND(&ifp->if_snd, mbufc); 2372 /* 2373 * Perhaps the frontend missed an IRQ 2374 * and went to sleep. Notify it to wake 2375 * it up. 2376 */ 2377 out_of_space = 1; 2378 break; 2379 2380 case EINVAL: 2381 /* OS gave a corrupt packet. Drop it.*/ 2382 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2383 /* FALLTHROUGH */ 2384 default: 2385 /* Send succeeded, or packet had error. 2386 * Free the packet */ 2387 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2388 if (mbufc) 2389 m_freem(mbufc); 2390 break; 2391 } 2392 if (out_of_space != 0) 2393 break; 2394 } 2395 2396 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify); 2397 if ((notify != 0) || (out_of_space != 0)) 2398 xen_intr_signal(xnb->xen_intr_handle); 2399 rxb->sring->req_event = req_prod_local + 1; 2400 xen_mb(); 2401 } while (rxb->sring->req_prod != req_prod_local) ; 2402 } 2403 2404 /** 2405 * Sends one packet to the ring. Blocks until the packet is on the ring 2406 * \param[in] mbufc Contains one packet to send. Caller must free 2407 * \param[in,out] rxb The packet will be pushed onto this ring, but the 2408 * otherend will not be notified. 2409 * \param[in] otherend The domain ID of the other end of the connection 2410 * \retval EAGAIN The ring did not have enough space for the packet. 2411 * The ring has not been modified 2412 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 2413 * this a function parameter so that we will take less 2414 * stack space. 2415 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 2416 */ 2417 static int 2418 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc, 2419 gnttab_copy_table gnttab) 2420 { 2421 struct xnb_pkt pkt; 2422 int error, n_entries, n_reqs; 2423 RING_IDX space; 2424 2425 space = ring->sring->req_prod - ring->req_cons; 2426 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space); 2427 if (error != 0) 2428 return error; 2429 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend); 2430 if (n_entries != 0) { 2431 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 2432 gnttab, n_entries); 2433 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n", 2434 hv_ret)); 2435 } 2436 2437 n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring); 2438 2439 return 0; 2440 } 2441 2442 static void 2443 xnb_start(struct ifnet *ifp) 2444 { 2445 struct xnb_softc *xnb; 2446 2447 xnb = ifp->if_softc; 2448 mtx_lock(&xnb->rx_lock); 2449 xnb_start_locked(ifp); 2450 mtx_unlock(&xnb->rx_lock); 2451 } 2452 2453 /* equivalent of network_open() in Linux */ 2454 static void 2455 xnb_ifinit_locked(struct xnb_softc *xnb) 2456 { 2457 struct ifnet *ifp; 2458 2459 ifp = xnb->xnb_ifp; 2460 2461 mtx_assert(&xnb->sc_lock, MA_OWNED); 2462 2463 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2464 return; 2465 2466 xnb_stop(xnb); 2467 2468 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2469 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2470 if_link_state_change(ifp, LINK_STATE_UP); 2471 } 2472 2473 2474 static void 2475 xnb_ifinit(void *xsc) 2476 { 2477 struct xnb_softc *xnb = xsc; 2478 2479 mtx_lock(&xnb->sc_lock); 2480 xnb_ifinit_locked(xnb); 2481 mtx_unlock(&xnb->sc_lock); 2482 } 2483 2484 /** 2485 * Callback used by the generic networking code to tell us when our carrier 2486 * state has changed. Since we don't have a physical carrier, we don't care 2487 */ 2488 static int 2489 xnb_ifmedia_upd(struct ifnet *ifp) 2490 { 2491 return (0); 2492 } 2493 2494 /** 2495 * Callback used by the generic networking code to ask us what our carrier 2496 * state is. Since we don't have a physical carrier, this is very simple 2497 */ 2498 static void 2499 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2500 { 2501 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2502 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2503 } 2504 2505 2506 /*---------------------------- NewBus Registration ---------------------------*/ 2507 static device_method_t xnb_methods[] = { 2508 /* Device interface */ 2509 DEVMETHOD(device_probe, xnb_probe), 2510 DEVMETHOD(device_attach, xnb_attach), 2511 DEVMETHOD(device_detach, xnb_detach), 2512 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2513 DEVMETHOD(device_suspend, xnb_suspend), 2514 DEVMETHOD(device_resume, xnb_resume), 2515 2516 /* Xenbus interface */ 2517 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed), 2518 2519 { 0, 0 } 2520 }; 2521 2522 static driver_t xnb_driver = { 2523 "xnb", 2524 xnb_methods, 2525 sizeof(struct xnb_softc), 2526 }; 2527 devclass_t xnb_devclass; 2528 2529 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0); 2530 2531 2532 /*-------------------------- Unit Tests -------------------------------------*/ 2533 #ifdef XNB_DEBUG 2534 #include "netback_unit_tests.c" 2535 #endif 2536