xref: /freebsd/sys/dev/xen/netback/netback.c (revision a98ff317388a00b992f1bf8404dee596f9383f5e)
1 /*-
2  * Copyright (c) 2009-2011 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Alan Somers         (Spectra Logic Corporation)
32  *          John Suykerbuyk     (Spectra Logic Corporation)
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file netback.c
40  *
41  * \brief Device driver supporting the vending of network access
42  * 	  from this FreeBSD domain to other domains.
43  */
44 #include "opt_inet.h"
45 #include "opt_global.h"
46 
47 #include "opt_sctp.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 
52 #include <sys/bus.h>
53 #include <sys/module.h>
54 #include <sys/rman.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #if __FreeBSD_version >= 700000
70 #include <netinet/tcp.h>
71 #endif
72 #include <netinet/ip_icmp.h>
73 #include <netinet/udp.h>
74 #include <machine/in_cksum.h>
75 
76 #include <vm/vm.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_extern.h>
79 #include <vm/vm_kern.h>
80 
81 #include <machine/_inttypes.h>
82 #include <machine/xen/xen-os.h>
83 #include <machine/xen/xenvar.h>
84 
85 #include <xen/evtchn.h>
86 #include <xen/xen_intr.h>
87 #include <xen/interface/io/netif.h>
88 #include <xen/xenbus/xenbusvar.h>
89 
90 /*--------------------------- Compile-time Tunables --------------------------*/
91 
92 /*---------------------------------- Macros ----------------------------------*/
93 /**
94  * Custom malloc type for all driver allocations.
95  */
96 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
97 
98 #define	XNB_SG	1	/* netback driver supports feature-sg */
99 #define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
100 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
101 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
102 
103 #undef XNB_DEBUG
104 #define	XNB_DEBUG /* hardcode on during development */
105 
106 #ifdef XNB_DEBUG
107 #define	DPRINTF(fmt, args...) \
108 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
109 #else
110 #define	DPRINTF(fmt, args...) do {} while (0)
111 #endif
112 
113 /* Default length for stack-allocated grant tables */
114 #define	GNTTAB_LEN	(64)
115 
116 /* Features supported by all backends.  TSO and LRO can be negotiated */
117 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
118 
119 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
120 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
121 
122 /**
123  * Two argument version of the standard macro.  Second argument is a tentative
124  * value of req_cons
125  */
126 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
127 	unsigned int req = (_r)->sring->req_prod - cons;          	\
128 	unsigned int rsp = RING_SIZE(_r) -                              \
129 	(cons - (_r)->rsp_prod_pvt);                          		\
130 	req < rsp ? req : rsp;                                          \
131 })
132 
133 #define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
134 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
135 
136 /**
137  * Predefined array type of grant table copy descriptors.  Used to pass around
138  * statically allocated memory structures.
139  */
140 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
141 
142 /*--------------------------- Forward Declarations ---------------------------*/
143 struct xnb_softc;
144 struct xnb_pkt;
145 
146 static void	xnb_attach_failed(struct xnb_softc *xnb,
147 				  int err, const char *fmt, ...)
148 				  __printflike(3,4);
149 static int	xnb_shutdown(struct xnb_softc *xnb);
150 static int	create_netdev(device_t dev);
151 static int	xnb_detach(device_t dev);
152 static int	xen_net_read_mac(device_t dev, uint8_t mac[]);
153 static int	xnb_ifmedia_upd(struct ifnet *ifp);
154 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
155 static void 	xnb_intr(void *arg);
156 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
157 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
158 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
159 			 struct mbuf **mbufc, struct ifnet *ifnet,
160 			 gnttab_copy_table gnttab);
161 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
162 			     const netif_tx_back_ring_t *tx_ring,
163 			     RING_IDX start);
164 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
165 			      netif_tx_back_ring_t *ring, int error);
166 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
167 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
168 				 const struct mbuf *mbufc,
169 				 gnttab_copy_table gnttab,
170 				 const netif_tx_back_ring_t *txb,
171 				 domid_t otherend_id);
172 static void	xnb_update_mbufc(struct mbuf *mbufc,
173 				 const gnttab_copy_table gnttab, int n_entries);
174 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
175 			      struct xnb_pkt *pkt,
176 			      RING_IDX start, int space);
177 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
178 				 const struct mbuf *mbufc,
179 				 gnttab_copy_table gnttab,
180 				 const netif_rx_back_ring_t *rxb,
181 				 domid_t otherend_id);
182 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
183 			      const gnttab_copy_table gnttab, int n_entries,
184 			      netif_rx_back_ring_t *ring);
185 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
186 static void	xnb_stop(struct xnb_softc*);
187 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
188 static void	xnb_start_locked(struct ifnet*);
189 static void	xnb_start(struct ifnet*);
190 static void	xnb_ifinit_locked(struct xnb_softc*);
191 static void	xnb_ifinit(void*);
192 #ifdef XNB_DEBUG
193 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
194 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
195 #endif
196 /*------------------------------ Data Structures -----------------------------*/
197 
198 
199 /**
200  * Representation of a xennet packet.  Simplified version of a packet as
201  * stored in the Xen tx ring.  Applicable to both RX and TX packets
202  */
203 struct xnb_pkt{
204 	/**
205 	 * Array index of the first data-bearing (eg, not extra info) entry
206 	 * for this packet
207 	 */
208 	RING_IDX	car;
209 
210 	/**
211 	 * Array index of the second data-bearing entry for this packet.
212 	 * Invalid if the packet has only one data-bearing entry.  If the
213 	 * packet has more than two data-bearing entries, then the second
214 	 * through the last will be sequential modulo the ring size
215 	 */
216 	RING_IDX	cdr;
217 
218 	/**
219 	 * Optional extra info.  Only valid if flags contains
220 	 * NETTXF_extra_info.  Note that extra.type will always be
221 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
222 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
223 	 */
224 	netif_extra_info_t extra;
225 
226 	/** Size of entire packet in bytes.       */
227 	uint16_t	size;
228 
229 	/** The size of the first entry's data in bytes */
230 	uint16_t	car_size;
231 
232 	/**
233 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
234 	 * not the same for TX and RX packets
235 	 */
236 	uint16_t	flags;
237 
238 	/**
239 	 * The number of valid data-bearing entries (either netif_tx_request's
240 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
241 	 * entire packet is invalid.
242 	 */
243 	uint16_t	list_len;
244 
245 	/** There was an error processing the packet */
246 	uint8_t		error;
247 };
248 
249 /** xnb_pkt method: initialize it */
250 static inline void
251 xnb_pkt_initialize(struct xnb_pkt *pxnb)
252 {
253 	bzero(pxnb, sizeof(*pxnb));
254 }
255 
256 /** xnb_pkt method: mark the packet as valid */
257 static inline void
258 xnb_pkt_validate(struct xnb_pkt *pxnb)
259 {
260 	pxnb->error = 0;
261 };
262 
263 /** xnb_pkt method: mark the packet as invalid */
264 static inline void
265 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
266 {
267 	pxnb->error = 1;
268 };
269 
270 /** xnb_pkt method: Check whether the packet is valid */
271 static inline int
272 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
273 {
274 	return (! pxnb->error);
275 }
276 
277 #ifdef XNB_DEBUG
278 /** xnb_pkt method: print the packet's contents in human-readable format*/
279 static void __unused
280 xnb_dump_pkt(const struct xnb_pkt *pkt) {
281 	if (pkt == NULL) {
282 	  DPRINTF("Was passed a null pointer.\n");
283 	  return;
284 	}
285 	DPRINTF("pkt address= %p\n", pkt);
286 	DPRINTF("pkt->size=%d\n", pkt->size);
287 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
288 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
289 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
290 	/* DPRINTF("pkt->extra");	TODO */
291 	DPRINTF("pkt->car=%d\n", pkt->car);
292 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
293 	DPRINTF("pkt->error=%d\n", pkt->error);
294 }
295 #endif /* XNB_DEBUG */
296 
297 static void
298 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
299 {
300 	if (txreq != NULL) {
301 		DPRINTF("netif_tx_request index =%u\n", idx);
302 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
303 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
304 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
305 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
306 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
307 	}
308 }
309 
310 
311 /**
312  * \brief Configuration data for a shared memory request ring
313  *        used to communicate with the front-end client of this
314  *        this driver.
315  */
316 struct xnb_ring_config {
317 	/**
318 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
319 	 * use different data structures, and that cannot be changed since it
320 	 * is part of the interdomain protocol.
321 	 */
322 	union{
323 		netif_rx_back_ring_t	  rx_ring;
324 		netif_tx_back_ring_t	  tx_ring;
325 	} back_ring;
326 
327 	/**
328 	 * The device bus address returned by the hypervisor when
329 	 * mapping the ring and required to unmap it when a connection
330 	 * is torn down.
331 	 */
332 	uint64_t	bus_addr;
333 
334 	/** The pseudo-physical address where ring memory is mapped.*/
335 	uint64_t	gnt_addr;
336 
337 	/** KVA address where ring memory is mapped. */
338 	vm_offset_t	va;
339 
340 	/**
341 	 * Grant table handles, one per-ring page, returned by the
342 	 * hyperpervisor upon mapping of the ring and required to
343 	 * unmap it when a connection is torn down.
344 	 */
345 	grant_handle_t	handle;
346 
347 	/** The number of ring pages mapped for the current connection. */
348 	unsigned	ring_pages;
349 
350 	/**
351 	 * The grant references, one per-ring page, supplied by the
352 	 * front-end, allowing us to reference the ring pages in the
353 	 * front-end's domain and to map these pages into our own domain.
354 	 */
355 	grant_ref_t	ring_ref;
356 };
357 
358 /**
359  * Per-instance connection state flags.
360  */
361 typedef enum
362 {
363 	/** Communication with the front-end has been established. */
364 	XNBF_RING_CONNECTED    = 0x01,
365 
366 	/**
367 	 * Front-end requests exist in the ring and are waiting for
368 	 * xnb_xen_req objects to free up.
369 	 */
370 	XNBF_RESOURCE_SHORTAGE = 0x02,
371 
372 	/** Connection teardown has started. */
373 	XNBF_SHUTDOWN          = 0x04,
374 
375 	/** A thread is already performing shutdown processing. */
376 	XNBF_IN_SHUTDOWN       = 0x08
377 } xnb_flag_t;
378 
379 /**
380  * Types of rings.  Used for array indices and to identify a ring's control
381  * data structure type
382  */
383 typedef enum{
384 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
385 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
386 	XNB_NUM_RING_TYPES
387 } xnb_ring_type_t;
388 
389 /**
390  * Per-instance configuration data.
391  */
392 struct xnb_softc {
393 	/** NewBus device corresponding to this instance. */
394 	device_t		dev;
395 
396 	/* Media related fields */
397 
398 	/** Generic network media state */
399 	struct ifmedia		sc_media;
400 
401 	/** Media carrier info */
402 	struct ifnet 		*xnb_ifp;
403 
404 	/** Our own private carrier state */
405 	unsigned carrier;
406 
407 	/** Device MAC Address */
408 	uint8_t			mac[ETHER_ADDR_LEN];
409 
410 	/* Xen related fields */
411 
412 	/**
413 	 * \brief The netif protocol abi in effect.
414 	 *
415 	 * There are situations where the back and front ends can
416 	 * have a different, native abi (e.g. intel x86_64 and
417 	 * 32bit x86 domains on the same machine).  The back-end
418 	 * always accomodates the front-end's native abi.  That
419 	 * value is pulled from the XenStore and recorded here.
420 	 */
421 	int			abi;
422 
423 	/**
424 	 * Name of the bridge to which this VIF is connected, if any
425 	 * This field is dynamically allocated by xenbus and must be free()ed
426 	 * when no longer needed
427 	 */
428 	char			*bridge;
429 
430 	/** The interrupt driven even channel used to signal ring events. */
431 	evtchn_port_t		evtchn;
432 
433 	/** Xen device handle.*/
434 	long 			handle;
435 
436 	/** IRQ mapping for the communication ring event channel. */
437 	int			irq;
438 
439 	/**
440 	 * \brief Cached value of the front-end's domain id.
441 	 *
442 	 * This value is used at once for each mapped page in
443 	 * a transaction.  We cache it to avoid incuring the
444 	 * cost of an ivar access every time this is needed.
445 	 */
446 	domid_t			otherend_id;
447 
448 	/**
449 	 * Undocumented frontend feature.  Has something to do with
450 	 * scatter/gather IO
451 	 */
452 	uint8_t			can_sg;
453 	/** Undocumented frontend feature */
454 	uint8_t			gso;
455 	/** Undocumented frontend feature */
456 	uint8_t			gso_prefix;
457 	/** Can checksum TCP/UDP over IPv4 */
458 	uint8_t			ip_csum;
459 
460 	/* Implementation related fields */
461 	/**
462 	 * Preallocated grant table copy descriptor for RX operations.
463 	 * Access must be protected by rx_lock
464 	 */
465 	gnttab_copy_table	rx_gnttab;
466 
467 	/**
468 	 * Preallocated grant table copy descriptor for TX operations.
469 	 * Access must be protected by tx_lock
470 	 */
471 	gnttab_copy_table	tx_gnttab;
472 
473 #ifdef XENHVM
474 	/**
475 	 * Resource representing allocated physical address space
476 	 * associated with our per-instance kva region.
477 	 */
478 	struct resource		*pseudo_phys_res;
479 
480 	/** Resource id for allocated physical address space. */
481 	int			pseudo_phys_res_id;
482 #endif
483 
484 	/** Ring mapping and interrupt configuration data. */
485 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
486 
487 	/**
488 	 * Global pool of kva used for mapping remote domain ring
489 	 * and I/O transaction data.
490 	 */
491 	vm_offset_t		kva;
492 
493 	/** Psuedo-physical address corresponding to kva. */
494 	uint64_t		gnt_base_addr;
495 
496 	/** Various configuration and state bit flags. */
497 	xnb_flag_t		flags;
498 
499 	/** Mutex protecting per-instance data in the receive path. */
500 	struct mtx		rx_lock;
501 
502 	/** Mutex protecting per-instance data in the softc structure. */
503 	struct mtx		sc_lock;
504 
505 	/** Mutex protecting per-instance data in the transmit path. */
506 	struct mtx		tx_lock;
507 
508 	/** The size of the global kva pool. */
509 	int			kva_size;
510 };
511 
512 /*---------------------------- Debugging functions ---------------------------*/
513 #ifdef XNB_DEBUG
514 static void __unused
515 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
516 {
517 	if (entry == NULL) {
518 		printf("NULL grant table pointer\n");
519 		return;
520 	}
521 
522 	if (entry->flags & GNTCOPY_dest_gref)
523 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
524 	else
525 		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
526 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
527 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
528 	if (entry->flags & GNTCOPY_source_gref)
529 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
530 	else
531 		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
532 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
533 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
534 	printf("gnttab len=\t%hu\n", entry->len);
535 	printf("gnttab flags=\t%hu\n", entry->flags);
536 	printf("gnttab status=\t%hd\n", entry->status);
537 }
538 
539 static int
540 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
541 {
542 	static char results[720];
543 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
544 	netif_rx_back_ring_t const* rxb =
545 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
546 	netif_tx_back_ring_t const* txb =
547 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
548 
549 	/* empty the result strings */
550 	results[0] = 0;
551 
552 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
553 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
554 
555 	snprintf(results, 720,
556 	    "\n\t%35s %18s\n"	/* TX, RX */
557 	    "\t%16s %18d %18d\n"	/* req_cons */
558 	    "\t%16s %18d %18d\n"	/* nr_ents */
559 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
560 	    "\t%16s %18p %18p\n"	/* sring */
561 	    "\t%16s %18d %18d\n"	/* req_prod */
562 	    "\t%16s %18d %18d\n"	/* req_event */
563 	    "\t%16s %18d %18d\n"	/* rsp_prod */
564 	    "\t%16s %18d %18d\n",	/* rsp_event */
565 	    "TX", "RX",
566 	    "req_cons", txb->req_cons, rxb->req_cons,
567 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
568 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
569 	    "sring", txb->sring, rxb->sring,
570 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
571 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
572 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
573 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
574 
575 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
576 }
577 
578 static void __unused
579 xnb_dump_mbuf(const struct mbuf *m)
580 {
581 	int len;
582 	uint8_t *d;
583 	if (m == NULL)
584 		return;
585 
586 	printf("xnb_dump_mbuf:\n");
587 	if (m->m_flags & M_PKTHDR) {
588 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
589 		       "tso_segsz=%5hd\n",
590 		       m->m_pkthdr.flowid, m->m_pkthdr.csum_flags,
591 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
592 		printf("    rcvif=%16p,  header=%18p, len=%19d\n",
593 		       m->m_pkthdr.rcvif, m->m_pkthdr.header, m->m_pkthdr.len);
594 	}
595 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
596 	       m->m_next, m->m_nextpkt, m->m_data);
597 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18hd\n",
598 	       m->m_len, m->m_flags, m->m_type);
599 
600 	len = m->m_len;
601 	d = mtod(m, uint8_t*);
602 	while (len > 0) {
603 		int i;
604 		printf("                ");
605 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
606 			printf("%02hhx ", *(d++));
607 		}
608 		printf("\n");
609 	}
610 }
611 #endif /* XNB_DEBUG */
612 
613 /*------------------------ Inter-Domain Communication ------------------------*/
614 /**
615  * Free dynamically allocated KVA or pseudo-physical address allocations.
616  *
617  * \param xnb  Per-instance xnb configuration structure.
618  */
619 static void
620 xnb_free_communication_mem(struct xnb_softc *xnb)
621 {
622 	if (xnb->kva != 0) {
623 #ifndef XENHVM
624 		kmem_free(kernel_map, xnb->kva, xnb->kva_size);
625 #else
626 		if (xnb->pseudo_phys_res != NULL) {
627 			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
628 			    xnb->pseudo_phys_res_id,
629 			    xnb->pseudo_phys_res);
630 			xnb->pseudo_phys_res = NULL;
631 		}
632 #endif /* XENHVM */
633 	}
634 	xnb->kva = 0;
635 	xnb->gnt_base_addr = 0;
636 }
637 
638 /**
639  * Cleanup all inter-domain communication mechanisms.
640  *
641  * \param xnb  Per-instance xnb configuration structure.
642  */
643 static int
644 xnb_disconnect(struct xnb_softc *xnb)
645 {
646 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
647 	int error;
648 	int i;
649 
650 	if (xnb->irq != 0) {
651 		unbind_from_irqhandler(xnb->irq);
652 		xnb->irq = 0;
653 	}
654 
655 	/*
656 	 * We may still have another thread currently processing requests.  We
657 	 * must acquire the rx and tx locks to make sure those threads are done,
658 	 * but we can release those locks as soon as we acquire them, because no
659 	 * more interrupts will be arriving.
660 	 */
661 	mtx_lock(&xnb->tx_lock);
662 	mtx_unlock(&xnb->tx_lock);
663 	mtx_lock(&xnb->rx_lock);
664 	mtx_unlock(&xnb->rx_lock);
665 
666 	/* Free malloc'd softc member variables */
667 	if (xnb->bridge != NULL)
668 		free(xnb->bridge, M_XENSTORE);
669 
670 	/* All request processing has stopped, so unmap the rings */
671 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
672 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
673 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
674 		gnts[i].handle = xnb->ring_configs[i].handle;
675 	}
676 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
677 					  XNB_NUM_RING_TYPES);
678 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
679 
680 	xnb_free_communication_mem(xnb);
681 	/*
682 	 * Zero the ring config structs because the pointers, handles, and
683 	 * grant refs contained therein are no longer valid.
684 	 */
685 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
686 	    sizeof(struct xnb_ring_config));
687 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
688 	    sizeof(struct xnb_ring_config));
689 
690 	xnb->flags &= ~XNBF_RING_CONNECTED;
691 	return (0);
692 }
693 
694 /**
695  * Map a single shared memory ring into domain local address space and
696  * initialize its control structure
697  *
698  * \param xnb	Per-instance xnb configuration structure
699  * \param ring_type	Array index of this ring in the xnb's array of rings
700  * \return 	An errno
701  */
702 static int
703 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
704 {
705 	struct gnttab_map_grant_ref gnt;
706 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
707 	int error;
708 
709 	/* TX ring type = 0, RX =1 */
710 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
711 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
712 
713 	gnt.host_addr = ring->gnt_addr;
714 	gnt.flags     = GNTMAP_host_map;
715 	gnt.ref       = ring->ring_ref;
716 	gnt.dom       = xnb->otherend_id;
717 
718 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
719 	if (error != 0)
720 		panic("netback: Ring page grant table op failed (%d)", error);
721 
722 	if (gnt.status != 0) {
723 		ring->va = 0;
724 		error = EACCES;
725 		xenbus_dev_fatal(xnb->dev, error,
726 				 "Ring shared page mapping failed. "
727 				 "Status %d.", gnt.status);
728 	} else {
729 		ring->handle = gnt.handle;
730 		ring->bus_addr = gnt.dev_bus_addr;
731 
732 		if (ring_type == XNB_RING_TYPE_TX) {
733 			BACK_RING_INIT(&ring->back_ring.tx_ring,
734 			    (netif_tx_sring_t*)ring->va,
735 			    ring->ring_pages * PAGE_SIZE);
736 		} else if (ring_type == XNB_RING_TYPE_RX) {
737 			BACK_RING_INIT(&ring->back_ring.rx_ring,
738 			    (netif_rx_sring_t*)ring->va,
739 			    ring->ring_pages * PAGE_SIZE);
740 		} else {
741 			xenbus_dev_fatal(xnb->dev, error,
742 				 "Unknown ring type %d", ring_type);
743 		}
744 	}
745 
746 	return error;
747 }
748 
749 /**
750  * Setup the shared memory rings and bind an interrupt to the event channel
751  * used to notify us of ring changes.
752  *
753  * \param xnb  Per-instance xnb configuration structure.
754  */
755 static int
756 xnb_connect_comms(struct xnb_softc *xnb)
757 {
758 	int	error;
759 	xnb_ring_type_t i;
760 
761 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
762 		return (0);
763 
764 	/*
765 	 * Kva for our rings are at the tail of the region of kva allocated
766 	 * by xnb_alloc_communication_mem().
767 	 */
768 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
769 		error = xnb_connect_ring(xnb, i);
770 		if (error != 0)
771 	  		return error;
772 	}
773 
774 	xnb->flags |= XNBF_RING_CONNECTED;
775 
776 	error =
777 	    bind_interdomain_evtchn_to_irqhandler(xnb->otherend_id,
778 						  xnb->evtchn,
779 						  device_get_nameunit(xnb->dev),
780 						  xnb_intr, /*arg*/xnb,
781 						  INTR_TYPE_BIO | INTR_MPSAFE,
782 						  &xnb->irq);
783 	if (error != 0) {
784 		(void)xnb_disconnect(xnb);
785 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
786 		return (error);
787 	}
788 
789 	DPRINTF("rings connected!\n");
790 
791 	return (0);
792 }
793 
794 /**
795  * Size KVA and pseudo-physical address allocations based on negotiated
796  * values for the size and number of I/O requests, and the size of our
797  * communication ring.
798  *
799  * \param xnb  Per-instance xnb configuration structure.
800  *
801  * These address spaces are used to dynamically map pages in the
802  * front-end's domain into our own.
803  */
804 static int
805 xnb_alloc_communication_mem(struct xnb_softc *xnb)
806 {
807 	xnb_ring_type_t i;
808 
809 	xnb->kva_size = 0;
810 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
811 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
812 	}
813 #ifndef XENHVM
814 	xnb->kva = kmem_alloc_nofault(kernel_map, xnb->kva_size);
815 	if (xnb->kva == 0)
816 		return (ENOMEM);
817 	xnb->gnt_base_addr = xnb->kva;
818 #else /* defined XENHVM */
819 	/*
820 	 * Reserve a range of pseudo physical memory that we can map
821 	 * into kva.  These pages will only be backed by machine
822 	 * pages ("real memory") during the lifetime of front-end requests
823 	 * via grant table operations.  We will map the netif tx and rx rings
824 	 * into this space.
825 	 */
826 	xnb->pseudo_phys_res_id = 0;
827 	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
828 						  &xnb->pseudo_phys_res_id,
829 						  0, ~0, xnb->kva_size,
830 						  RF_ACTIVE);
831 	if (xnb->pseudo_phys_res == NULL) {
832 		xnb->kva = 0;
833 		return (ENOMEM);
834 	}
835 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
836 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
837 #endif /* !defined XENHVM */
838 	return (0);
839 }
840 
841 /**
842  * Collect information from the XenStore related to our device and its frontend
843  *
844  * \param xnb  Per-instance xnb configuration structure.
845  */
846 static int
847 xnb_collect_xenstore_info(struct xnb_softc *xnb)
848 {
849 	/**
850 	 * \todo Linux collects the following info.  We should collect most
851 	 * of this, too:
852 	 * "feature-rx-notify"
853 	 */
854 	const char *otherend_path;
855 	const char *our_path;
856 	int err;
857 	unsigned int rx_copy, bridge_len;
858 	uint8_t no_csum_offload;
859 
860 	otherend_path = xenbus_get_otherend_path(xnb->dev);
861 	our_path = xenbus_get_node(xnb->dev);
862 
863 	/* Collect the critical communication parameters */
864 	err = xs_gather(XST_NIL, otherend_path,
865 	    "tx-ring-ref", "%l" PRIu32,
866 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
867 	    "rx-ring-ref", "%l" PRIu32,
868 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
869 	    "event-channel", "%" PRIu32, &xnb->evtchn,
870 	    NULL);
871 	if (err != 0) {
872 		xenbus_dev_fatal(xnb->dev, err,
873 				 "Unable to retrieve ring information from "
874 				 "frontend %s.  Unable to connect.",
875 				 otherend_path);
876 		return (err);
877 	}
878 
879 	/* Collect the handle from xenstore */
880 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
881 	if (err != 0) {
882 		xenbus_dev_fatal(xnb->dev, err,
883 		    "Error reading handle from frontend %s.  "
884 		    "Unable to connect.", otherend_path);
885 	}
886 
887 	/*
888 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
889 	 * throw it away
890 	 */
891 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
892 		      (void**)&xnb->bridge);
893 	if (err != 0)
894 		xnb->bridge = NULL;
895 
896 	/*
897 	 * Does the frontend request that we use rx copy?  If not, return an
898 	 * error because this driver only supports rx copy.
899 	 */
900 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
901 		       "%" PRIu32, &rx_copy);
902 	if (err == ENOENT) {
903 		err = 0;
904 	 	rx_copy = 0;
905 	}
906 	if (err < 0) {
907 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
908 				 otherend_path);
909 		return err;
910 	}
911 	/**
912 	 * \todo: figure out the exact meaning of this feature, and when
913 	 * the frontend will set it to true.  It should be set to true
914 	 * at some point
915 	 */
916 /*        if (!rx_copy)*/
917 /*          return EOPNOTSUPP;*/
918 
919 	/** \todo Collect the rx notify feature */
920 
921 	/*  Collect the feature-sg. */
922 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
923 		     "%hhu", &xnb->can_sg) < 0)
924 		xnb->can_sg = 0;
925 
926 	/* Collect remaining frontend features */
927 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
928 		     "%hhu", &xnb->gso) < 0)
929 		xnb->gso = 0;
930 
931 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
932 		     "%hhu", &xnb->gso_prefix) < 0)
933 		xnb->gso_prefix = 0;
934 
935 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
936 		     "%hhu", &no_csum_offload) < 0)
937 		no_csum_offload = 0;
938 	xnb->ip_csum = (no_csum_offload == 0);
939 
940 	return (0);
941 }
942 
943 /**
944  * Supply information about the physical device to the frontend
945  * via XenBus.
946  *
947  * \param xnb  Per-instance xnb configuration structure.
948  */
949 static int
950 xnb_publish_backend_info(struct xnb_softc *xnb)
951 {
952 	struct xs_transaction xst;
953 	const char *our_path;
954 	int error;
955 
956 	our_path = xenbus_get_node(xnb->dev);
957 
958 	do {
959 		error = xs_transaction_start(&xst);
960 		if (error != 0) {
961 			xenbus_dev_fatal(xnb->dev, error,
962 					 "Error publishing backend info "
963 					 "(start transaction)");
964 			break;
965 		}
966 
967 		error = xs_printf(xst, our_path, "feature-sg",
968 				  "%d", XNB_SG);
969 		if (error != 0)
970 			break;
971 
972 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
973 				  "%d", XNB_GSO_TCPV4);
974 		if (error != 0)
975 			break;
976 
977 		error = xs_printf(xst, our_path, "feature-rx-copy",
978 				  "%d", XNB_RX_COPY);
979 		if (error != 0)
980 			break;
981 
982 		error = xs_printf(xst, our_path, "feature-rx-flip",
983 				  "%d", XNB_RX_FLIP);
984 		if (error != 0)
985 			break;
986 
987 		error = xs_transaction_end(xst, 0);
988 		if (error != 0 && error != EAGAIN) {
989 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
990 			break;
991 		}
992 
993 	} while (error == EAGAIN);
994 
995 	return (error);
996 }
997 
998 /**
999  * Connect to our netfront peer now that it has completed publishing
1000  * its configuration into the XenStore.
1001  *
1002  * \param xnb  Per-instance xnb configuration structure.
1003  */
1004 static void
1005 xnb_connect(struct xnb_softc *xnb)
1006 {
1007 	int	error;
1008 
1009 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1010 		return;
1011 
1012 	if (xnb_collect_xenstore_info(xnb) != 0)
1013 		return;
1014 
1015 	xnb->flags &= ~XNBF_SHUTDOWN;
1016 
1017 	/* Read front end configuration. */
1018 
1019 	/* Allocate resources whose size depends on front-end configuration. */
1020 	error = xnb_alloc_communication_mem(xnb);
1021 	if (error != 0) {
1022 		xenbus_dev_fatal(xnb->dev, error,
1023 				 "Unable to allocate communication memory");
1024 		return;
1025 	}
1026 
1027 	/*
1028 	 * Connect communication channel.
1029 	 */
1030 	error = xnb_connect_comms(xnb);
1031 	if (error != 0) {
1032 		/* Specific errors are reported by xnb_connect_comms(). */
1033 		return;
1034 	}
1035 	xnb->carrier = 1;
1036 
1037 	/* Ready for I/O. */
1038 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1039 }
1040 
1041 /*-------------------------- Device Teardown Support -------------------------*/
1042 /**
1043  * Perform device shutdown functions.
1044  *
1045  * \param xnb  Per-instance xnb configuration structure.
1046  *
1047  * Mark this instance as shutting down, wait for any active requests
1048  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1049  * a thread invoking our detach method) that detach can now proceed.
1050  */
1051 static int
1052 xnb_shutdown(struct xnb_softc *xnb)
1053 {
1054 	/*
1055 	 * Due to the need to drop our mutex during some
1056 	 * xenbus operations, it is possible for two threads
1057 	 * to attempt to close out shutdown processing at
1058 	 * the same time.  Tell the caller that hits this
1059 	 * race to try back later.
1060 	 */
1061 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1062 		return (EAGAIN);
1063 
1064 	xnb->flags |= XNBF_SHUTDOWN;
1065 
1066 	xnb->flags |= XNBF_IN_SHUTDOWN;
1067 
1068 	mtx_unlock(&xnb->sc_lock);
1069 	/* Free the network interface */
1070 	xnb->carrier = 0;
1071 	if (xnb->xnb_ifp != NULL) {
1072 		ether_ifdetach(xnb->xnb_ifp);
1073 		if_free(xnb->xnb_ifp);
1074 		xnb->xnb_ifp = NULL;
1075 	}
1076 	mtx_lock(&xnb->sc_lock);
1077 
1078 	xnb_disconnect(xnb);
1079 
1080 	mtx_unlock(&xnb->sc_lock);
1081 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1082 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1083 	mtx_lock(&xnb->sc_lock);
1084 
1085 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1086 
1087 
1088 	/* Indicate to xnb_detach() that is it safe to proceed. */
1089 	wakeup(xnb);
1090 
1091 	return (0);
1092 }
1093 
1094 /**
1095  * Report an attach time error to the console and Xen, and cleanup
1096  * this instance by forcing immediate detach processing.
1097  *
1098  * \param xnb  Per-instance xnb configuration structure.
1099  * \param err  Errno describing the error.
1100  * \param fmt  Printf style format and arguments
1101  */
1102 static void
1103 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1104 {
1105 	va_list ap;
1106 	va_list ap_hotplug;
1107 
1108 	va_start(ap, fmt);
1109 	va_copy(ap_hotplug, ap);
1110 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1111 		  "hotplug-error", fmt, ap_hotplug);
1112 	va_end(ap_hotplug);
1113 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1114 		  "hotplug-status", "error");
1115 
1116 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1117 	va_end(ap);
1118 
1119 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1120 		  "online", "0");
1121 	xnb_detach(xnb->dev);
1122 }
1123 
1124 /*---------------------------- NewBus Entrypoints ----------------------------*/
1125 /**
1126  * Inspect a XenBus device and claim it if is of the appropriate type.
1127  *
1128  * \param dev  NewBus device object representing a candidate XenBus device.
1129  *
1130  * \return  0 for success, errno codes for failure.
1131  */
1132 static int
1133 xnb_probe(device_t dev)
1134 {
1135 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1136 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1137 		    devclass_get_name(device_get_devclass(dev)));
1138 		device_set_desc(dev, "Backend Virtual Network Device");
1139 		device_quiet(dev);
1140 		return (0);
1141 	}
1142 	return (ENXIO);
1143 }
1144 
1145 /**
1146  * Setup sysctl variables to control various Network Back parameters.
1147  *
1148  * \param xnb  Xen Net Back softc.
1149  *
1150  */
1151 static void
1152 xnb_setup_sysctl(struct xnb_softc *xnb)
1153 {
1154 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1155 	struct sysctl_oid      *sysctl_tree = NULL;
1156 
1157 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1158 	if (sysctl_ctx == NULL)
1159 		return;
1160 
1161 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1162 	if (sysctl_tree == NULL)
1163 		return;
1164 
1165 #ifdef XNB_DEBUG
1166 	SYSCTL_ADD_PROC(sysctl_ctx,
1167 			SYSCTL_CHILDREN(sysctl_tree),
1168 			OID_AUTO,
1169 			"unit_test_results",
1170 			CTLTYPE_STRING | CTLFLAG_RD,
1171 			xnb,
1172 			0,
1173 			xnb_unit_test_main,
1174 			"A",
1175 			"Results of builtin unit tests");
1176 
1177 	SYSCTL_ADD_PROC(sysctl_ctx,
1178 			SYSCTL_CHILDREN(sysctl_tree),
1179 			OID_AUTO,
1180 			"dump_rings",
1181 			CTLTYPE_STRING | CTLFLAG_RD,
1182 			xnb,
1183 			0,
1184 			xnb_dump_rings,
1185 			"A",
1186 			"Xennet Back Rings");
1187 #endif /* XNB_DEBUG */
1188 }
1189 
1190 /**
1191  * Create a network device.
1192  * @param handle device handle
1193  */
1194 int
1195 create_netdev(device_t dev)
1196 {
1197 	struct ifnet *ifp;
1198 	struct xnb_softc *xnb;
1199 	int err = 0;
1200 
1201 	xnb = device_get_softc(dev);
1202 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1203 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1204 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1205 
1206 	xnb->dev = dev;
1207 
1208 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1209 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1210 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1211 
1212 	err = xen_net_read_mac(dev, xnb->mac);
1213 	if (err == 0) {
1214 		/* Set up ifnet structure */
1215 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1216 		ifp->if_softc = xnb;
1217 		if_initname(ifp, "xnb",  device_get_unit(dev));
1218 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1219 		ifp->if_ioctl = xnb_ioctl;
1220 		ifp->if_output = ether_output;
1221 		ifp->if_start = xnb_start;
1222 #ifdef notyet
1223 		ifp->if_watchdog = xnb_watchdog;
1224 #endif
1225 		ifp->if_init = xnb_ifinit;
1226 		ifp->if_mtu = ETHERMTU;
1227 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1228 
1229 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1230 		ifp->if_capabilities = IFCAP_HWCSUM;
1231 		ifp->if_capenable = IFCAP_HWCSUM;
1232 
1233 		ether_ifattach(ifp, xnb->mac);
1234 		xnb->carrier = 0;
1235 	}
1236 
1237 	return err;
1238 }
1239 
1240 /**
1241  * Attach to a XenBus device that has been claimed by our probe routine.
1242  *
1243  * \param dev  NewBus device object representing this Xen Net Back instance.
1244  *
1245  * \return  0 for success, errno codes for failure.
1246  */
1247 static int
1248 xnb_attach(device_t dev)
1249 {
1250 	struct xnb_softc *xnb;
1251 	int	error;
1252 	xnb_ring_type_t	i;
1253 
1254 	error = create_netdev(dev);
1255 	if (error != 0) {
1256 		xenbus_dev_fatal(dev, error, "creating netdev");
1257 		return (error);
1258 	}
1259 
1260 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1261 
1262 	/*
1263 	 * Basic initialization.
1264 	 * After this block it is safe to call xnb_detach()
1265 	 * to clean up any allocated data for this instance.
1266 	 */
1267 	xnb = device_get_softc(dev);
1268 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1269 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1270 		xnb->ring_configs[i].ring_pages = 1;
1271 	}
1272 
1273 	/*
1274 	 * Setup sysctl variables.
1275 	 */
1276 	xnb_setup_sysctl(xnb);
1277 
1278 	/* Update hot-plug status to satisfy xend. */
1279 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1280 			  "hotplug-status", "connected");
1281 	if (error != 0) {
1282 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1283 				  xenbus_get_node(xnb->dev));
1284 		return (error);
1285 	}
1286 
1287 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1288 		/*
1289 		 * If we can't publish our data, we cannot participate
1290 		 * in this connection, and waiting for a front-end state
1291 		 * change will not help the situation.
1292 		 */
1293 		xnb_attach_failed(xnb, error,
1294 		    "Publishing backend status for %s",
1295 				  xenbus_get_node(xnb->dev));
1296 		return error;
1297 	}
1298 
1299 	/* Tell the front end that we are ready to connect. */
1300 	xenbus_set_state(dev, XenbusStateInitWait);
1301 
1302 	return (0);
1303 }
1304 
1305 /**
1306  * Detach from a net back device instance.
1307  *
1308  * \param dev  NewBus device object representing this Xen Net Back instance.
1309  *
1310  * \return  0 for success, errno codes for failure.
1311  *
1312  * \note A net back device may be detached at any time in its life-cycle,
1313  *       including part way through the attach process.  For this reason,
1314  *       initialization order and the intialization state checks in this
1315  *       routine must be carefully coupled so that attach time failures
1316  *       are gracefully handled.
1317  */
1318 static int
1319 xnb_detach(device_t dev)
1320 {
1321 	struct xnb_softc *xnb;
1322 
1323 	DPRINTF("\n");
1324 
1325 	xnb = device_get_softc(dev);
1326 	mtx_lock(&xnb->sc_lock);
1327 	while (xnb_shutdown(xnb) == EAGAIN) {
1328 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1329 		       "xnb_shutdown", 0);
1330 	}
1331 	mtx_unlock(&xnb->sc_lock);
1332 	DPRINTF("\n");
1333 
1334 	mtx_destroy(&xnb->tx_lock);
1335 	mtx_destroy(&xnb->rx_lock);
1336 	mtx_destroy(&xnb->sc_lock);
1337 	return (0);
1338 }
1339 
1340 /**
1341  * Prepare this net back device for suspension of this VM.
1342  *
1343  * \param dev  NewBus device object representing this Xen net Back instance.
1344  *
1345  * \return  0 for success, errno codes for failure.
1346  */
1347 static int
1348 xnb_suspend(device_t dev)
1349 {
1350 	return (0);
1351 }
1352 
1353 /**
1354  * Perform any processing required to recover from a suspended state.
1355  *
1356  * \param dev  NewBus device object representing this Xen Net Back instance.
1357  *
1358  * \return  0 for success, errno codes for failure.
1359  */
1360 static int
1361 xnb_resume(device_t dev)
1362 {
1363 	return (0);
1364 }
1365 
1366 /**
1367  * Handle state changes expressed via the XenStore by our front-end peer.
1368  *
1369  * \param dev             NewBus device object representing this Xen
1370  *                        Net Back instance.
1371  * \param frontend_state  The new state of the front-end.
1372  *
1373  * \return  0 for success, errno codes for failure.
1374  */
1375 static void
1376 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1377 {
1378 	struct xnb_softc *xnb;
1379 
1380 	xnb = device_get_softc(dev);
1381 
1382 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1383 	        xenbus_strstate(frontend_state),
1384 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1385 
1386 	switch (frontend_state) {
1387 	case XenbusStateInitialising:
1388 		break;
1389 	case XenbusStateInitialised:
1390 	case XenbusStateConnected:
1391 		xnb_connect(xnb);
1392 		break;
1393 	case XenbusStateClosing:
1394 	case XenbusStateClosed:
1395 		mtx_lock(&xnb->sc_lock);
1396 		xnb_shutdown(xnb);
1397 		mtx_unlock(&xnb->sc_lock);
1398 		if (frontend_state == XenbusStateClosed)
1399 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1400 		break;
1401 	default:
1402 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1403 				 frontend_state);
1404 		break;
1405 	}
1406 }
1407 
1408 
1409 /*---------------------------- Request Processing ----------------------------*/
1410 /**
1411  * Interrupt handler bound to the shared ring's event channel.
1412  * Entry point for the xennet transmit path in netback
1413  * Transfers packets from the Xen ring to the host's generic networking stack
1414  *
1415  * \param arg  Callback argument registerd during event channel
1416  *             binding - the xnb_softc for this instance.
1417  */
1418 static void
1419 xnb_intr(void *arg)
1420 {
1421 	struct xnb_softc *xnb;
1422 	struct ifnet *ifp;
1423 	netif_tx_back_ring_t *txb;
1424 	RING_IDX req_prod_local;
1425 
1426 	xnb = (struct xnb_softc *)arg;
1427 	ifp = xnb->xnb_ifp;
1428 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1429 
1430 	mtx_lock(&xnb->tx_lock);
1431 	do {
1432 		int notify;
1433 		req_prod_local = txb->sring->req_prod;
1434 		xen_rmb();
1435 
1436 		for (;;) {
1437 			struct mbuf *mbufc;
1438 			int err;
1439 
1440 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1441 			    	       xnb->tx_gnttab);
1442 			if (err || (mbufc == NULL))
1443 				break;
1444 
1445 			/* Send the packet to the generic network stack */
1446 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1447 		}
1448 
1449 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1450 		if (notify != 0)
1451 			notify_remote_via_irq(xnb->irq);
1452 
1453 		txb->sring->req_event = txb->req_cons + 1;
1454 		xen_mb();
1455 	} while (txb->sring->req_prod != req_prod_local) ;
1456 	mtx_unlock(&xnb->tx_lock);
1457 
1458 	xnb_start(ifp);
1459 }
1460 
1461 
1462 /**
1463  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1464  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1465  * \param[out]	pkt	The returned packet.  If there is an error building
1466  * 			the packet, pkt.list_len will be set to 0.
1467  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1468  * \param[in]	start	The ring index of the first potential request
1469  * \return		The number of requests consumed to build this packet
1470  */
1471 static int
1472 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1473 	     RING_IDX start)
1474 {
1475 	/*
1476 	 * Outline:
1477 	 * 1) Initialize pkt
1478 	 * 2) Read the first request of the packet
1479 	 * 3) Read the extras
1480 	 * 4) Set cdr
1481 	 * 5) Loop on the remainder of the packet
1482 	 * 6) Finalize pkt (stuff like car_size and list_len)
1483 	 */
1484 	int idx = start;
1485 	int discard = 0;	/* whether to discard the packet */
1486 	int more_data = 0;	/* there are more request past the last one */
1487 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1488 
1489 	xnb_pkt_initialize(pkt);
1490 
1491 	/* Read the first request */
1492 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1493 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1494 		pkt->size = tx->size;
1495 		pkt->flags = tx->flags & ~NETTXF_more_data;
1496 		more_data = tx->flags & NETTXF_more_data;
1497 		pkt->list_len++;
1498 		pkt->car = idx;
1499 		idx++;
1500 	}
1501 
1502 	/* Read the extra info */
1503 	if ((pkt->flags & NETTXF_extra_info) &&
1504 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1505 		netif_extra_info_t *ext =
1506 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1507 		pkt->extra.type = ext->type;
1508 		switch (pkt->extra.type) {
1509 			case XEN_NETIF_EXTRA_TYPE_GSO:
1510 				pkt->extra.u.gso = ext->u.gso;
1511 				break;
1512 			default:
1513 				/*
1514 				 * The reference Linux netfront driver will
1515 				 * never set any other extra.type.  So we don't
1516 				 * know what to do with it.  Let's print an
1517 				 * error, then consume and discard the packet
1518 				 */
1519 				printf("xnb(%s:%d): Unknown extra info type %d."
1520 				       "  Discarding packet\n",
1521 				       __func__, __LINE__, pkt->extra.type);
1522 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1523 				    start));
1524 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1525 				    idx));
1526 				discard = 1;
1527 				break;
1528 		}
1529 
1530 		pkt->extra.flags = ext->flags;
1531 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1532 			/*
1533 			 * The reference linux netfront driver never sets this
1534 			 * flag (nor does any other known netfront).  So we
1535 			 * will discard the packet.
1536 			 */
1537 			printf("xnb(%s:%d): Request sets "
1538 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1539 			    "that\n", __func__, __LINE__);
1540 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1541 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1542 			discard = 1;
1543 		}
1544 
1545 		idx++;
1546 	}
1547 
1548 	/* Set cdr.  If there is not more data, cdr is invalid */
1549 	pkt->cdr = idx;
1550 
1551 	/* Loop on remainder of packet */
1552 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1553 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1554 		pkt->list_len++;
1555 		cdr_size += tx->size;
1556 		if (tx->flags & ~NETTXF_more_data) {
1557 			/* There should be no other flags set at this point */
1558 			printf("xnb(%s:%d): Request sets unknown flags %d "
1559 			    "after the 1st request in the packet.\n",
1560 			    __func__, __LINE__, tx->flags);
1561 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1562 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1563 		}
1564 
1565 		more_data = tx->flags & NETTXF_more_data;
1566 		idx++;
1567 	}
1568 
1569 	/* Finalize packet */
1570 	if (more_data != 0) {
1571 		/* The ring ran out of requests before finishing the packet */
1572 		xnb_pkt_invalidate(pkt);
1573 		idx = start;	/* tell caller that we consumed no requests */
1574 	} else {
1575 		/* Calculate car_size */
1576 		pkt->car_size = pkt->size - cdr_size;
1577 	}
1578 	if (discard != 0) {
1579 		xnb_pkt_invalidate(pkt);
1580 	}
1581 
1582 	return idx - start;
1583 }
1584 
1585 
1586 /**
1587  * Respond to all the requests that constituted pkt.  Builds the responses and
1588  * writes them to the ring, but doesn't push them to the shared ring.
1589  * \param[in] pkt	the packet that needs a response
1590  * \param[in] error	true if there was an error handling the packet, such
1591  * 			as in the hypervisor copy op or mbuf allocation
1592  * \param[out] ring	Responses go here
1593  */
1594 static void
1595 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1596 	      int error)
1597 {
1598 	/*
1599 	 * Outline:
1600 	 * 1) Respond to the first request
1601 	 * 2) Respond to the extra info reques
1602 	 * Loop through every remaining request in the packet, generating
1603 	 * responses that copy those requests' ids and sets the status
1604 	 * appropriately.
1605 	 */
1606 	netif_tx_request_t *tx;
1607 	netif_tx_response_t *rsp;
1608 	int i;
1609 	uint16_t status;
1610 
1611 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1612 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1613 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1614 	    ("Cannot respond to ring requests out of order"));
1615 
1616 	if (pkt->list_len >= 1) {
1617 		uint16_t id;
1618 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1619 		id = tx->id;
1620 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1621 		rsp->id = id;
1622 		rsp->status = status;
1623 		ring->rsp_prod_pvt++;
1624 
1625 		if (pkt->flags & NETRXF_extra_info) {
1626 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1627 			rsp->status = NETIF_RSP_NULL;
1628 			ring->rsp_prod_pvt++;
1629 		}
1630 	}
1631 
1632 	for (i=0; i < pkt->list_len - 1; i++) {
1633 		uint16_t id;
1634 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1635 		id = tx->id;
1636 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1637 		rsp->id = id;
1638 		rsp->status = status;
1639 		ring->rsp_prod_pvt++;
1640 	}
1641 }
1642 
1643 /**
1644  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1645  * in the mbuf chain, but does not copy the data.  The returned chain must be
1646  * free()'d when no longer needed
1647  * \param[in]	pkt	A packet to model the mbuf chain after
1648  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1649  * 		NULL on failure
1650  */
1651 static struct mbuf*
1652 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1653 {
1654 	/**
1655 	 * \todo consider using a memory pool for mbufs instead of
1656 	 * reallocating them for every packet
1657 	 */
1658 	/** \todo handle extra data */
1659 	struct mbuf *m;
1660 
1661 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1662 
1663 	if (m != NULL) {
1664 		m->m_pkthdr.rcvif = ifp;
1665 		if (pkt->flags & NETTXF_data_validated) {
1666 			/*
1667 			 * We lie to the host OS and always tell it that the
1668 			 * checksums are ok, because the packet is unlikely to
1669 			 * get corrupted going across domains.
1670 			 */
1671 			m->m_pkthdr.csum_flags = (
1672 				CSUM_IP_CHECKED |
1673 				CSUM_IP_VALID   |
1674 				CSUM_DATA_VALID |
1675 				CSUM_PSEUDO_HDR
1676 				);
1677 			m->m_pkthdr.csum_data = 0xffff;
1678 		}
1679 	}
1680 	return m;
1681 }
1682 
1683 /**
1684  * Build a gnttab_copy table that can be used to copy data from a pkt
1685  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1686  * the packet side.
1687  * \param[in]	pkt	pkt's associated requests form the src for
1688  * 			the copy operation
1689  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1690  * \param[out]  gnttab	Storage for the returned grant table
1691  * \param[in]	txb	Pointer to the backend ring structure
1692  * \param[in]	otherend_id	The domain ID of the other end of the copy
1693  * \return 		The number of gnttab entries filled
1694  */
1695 static int
1696 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1697 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1698 		 domid_t otherend_id)
1699 {
1700 
1701 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1702 	int gnt_idx = 0;		/* index into grant table */
1703 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1704 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1705 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1706 	/* size in bytes that still needs to be represented in the table */
1707 	uint16_t size_remaining = pkt->size;
1708 
1709 	while (size_remaining > 0) {
1710 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1711 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1712 		const size_t req_size =
1713 			r_idx == pkt->car ? pkt->car_size : txq->size;
1714 		const size_t pkt_space = req_size - r_ofs;
1715 		/*
1716 		 * space is the largest amount of data that can be copied in the
1717 		 * grant table's next entry
1718 		 */
1719 		const size_t space = MIN(pkt_space, mbuf_space);
1720 
1721 		/* TODO: handle this error condition without panicking */
1722 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1723 
1724 		gnttab[gnt_idx].source.u.ref = txq->gref;
1725 		gnttab[gnt_idx].source.domid = otherend_id;
1726 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1727 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1728 		    mtod(mbuf, vm_offset_t) + m_ofs);
1729 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1730 		    mtod(mbuf, vm_offset_t) + m_ofs);
1731 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1732 		gnttab[gnt_idx].len = space;
1733 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1734 
1735 		gnt_idx++;
1736 		r_ofs += space;
1737 		m_ofs += space;
1738 		size_remaining -= space;
1739 		if (req_size - r_ofs <= 0) {
1740 			/* Must move to the next tx request */
1741 			r_ofs = 0;
1742 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1743 		}
1744 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1745 			/* Must move to the next mbuf */
1746 			m_ofs = 0;
1747 			mbuf = mbuf->m_next;
1748 		}
1749 	}
1750 
1751 	return gnt_idx;
1752 }
1753 
1754 /**
1755  * Check the status of the grant copy operations, and update mbufs various
1756  * non-data fields to reflect the data present.
1757  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1758  * 			the correct length, and data should already be present
1759  * \param[in] gnttab	A grant table for a just completed copy op
1760  * \param[in] n_entries The number of valid entries in the grant table
1761  */
1762 static void
1763 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1764     		 int n_entries)
1765 {
1766 	struct mbuf *mbuf = mbufc;
1767 	int i;
1768 	size_t total_size = 0;
1769 
1770 	for (i = 0; i < n_entries; i++) {
1771 		KASSERT(gnttab[i].status == GNTST_okay,
1772 		    ("Some gnttab_copy entry had error status %hd\n",
1773 		    gnttab[i].status));
1774 
1775 		mbuf->m_len += gnttab[i].len;
1776 		total_size += gnttab[i].len;
1777 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1778 			mbuf = mbuf->m_next;
1779 		}
1780 	}
1781 	mbufc->m_pkthdr.len = total_size;
1782 
1783 	xnb_add_mbuf_cksum(mbufc);
1784 }
1785 
1786 /**
1787  * Dequeue at most one packet from the shared ring
1788  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1789  * 			its private indices will be updated.  But the indices
1790  * 			will not be pushed to the shared ring.
1791  * \param[in] ifnet	Interface to which the packet will be sent
1792  * \param[in] otherend	Domain ID of the other end of the ring
1793  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1794  * 			networking stack
1795  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1796  * 			this a function parameter so that we will take less
1797  * 			stack space.
1798  * \return		An error code
1799  */
1800 static int
1801 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1802 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1803 {
1804 	struct xnb_pkt pkt;
1805 	/* number of tx requests consumed to build the last packet */
1806 	int num_consumed;
1807 	int nr_ents;
1808 
1809 	*mbufc = NULL;
1810 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1811 	if (num_consumed == 0)
1812 		return 0;	/* Nothing to receive */
1813 
1814 	/* update statistics independent of errors */
1815 	ifnet->if_ipackets++;
1816 
1817 	/*
1818 	 * if we got here, then 1 or more requests was consumed, but the packet
1819 	 * is not necessarily valid.
1820 	 */
1821 	if (xnb_pkt_is_valid(&pkt) == 0) {
1822 		/* got a garbage packet, respond and drop it */
1823 		xnb_txpkt2rsp(&pkt, txb, 1);
1824 		txb->req_cons += num_consumed;
1825 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1826 				num_consumed);
1827 		ifnet->if_ierrors++;
1828 		return EINVAL;
1829 	}
1830 
1831 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1832 
1833 	if (*mbufc == NULL) {
1834 		/*
1835 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1836 		 * not consume the requests
1837 		 */
1838 		xnb_txpkt2rsp(&pkt, txb, 1);
1839 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1840 		    num_consumed);
1841 		ifnet->if_iqdrops++;
1842 		return ENOMEM;
1843 	}
1844 
1845 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1846 
1847 	if (nr_ents > 0) {
1848 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1849 		    gnttab, nr_ents);
1850 		KASSERT(hv_ret == 0,
1851 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1852 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1853 	}
1854 
1855 	xnb_txpkt2rsp(&pkt, txb, 0);
1856 	txb->req_cons += num_consumed;
1857 	return 0;
1858 }
1859 
1860 /**
1861  * Create an xnb_pkt based on the contents of an mbuf chain.
1862  * \param[in] mbufc	mbuf chain to transform into a packet
1863  * \param[out] pkt	Storage for the newly generated xnb_pkt
1864  * \param[in] start	The ring index of the first available slot in the rx
1865  * 			ring
1866  * \param[in] space	The number of free slots in the rx ring
1867  * \retval 0		Success
1868  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1869  * \retval EAGAIN	There was not enough space in the ring to queue the
1870  * 			packet
1871  */
1872 static int
1873 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1874 	      RING_IDX start, int space)
1875 {
1876 
1877 	int retval = 0;
1878 
1879 	if ((mbufc == NULL) ||
1880 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1881 	     (mbufc->m_pkthdr.len == 0)) {
1882 		xnb_pkt_invalidate(pkt);
1883 		retval = EINVAL;
1884 	} else {
1885 		int slots_required;
1886 
1887 		xnb_pkt_validate(pkt);
1888 		pkt->flags = 0;
1889 		pkt->size = mbufc->m_pkthdr.len;
1890 		pkt->car = start;
1891 		pkt->car_size = mbufc->m_len;
1892 
1893 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1894 			pkt->flags |= NETRXF_extra_info;
1895 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1896 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1897 			pkt->extra.u.gso.pad = 0;
1898 			pkt->extra.u.gso.features = 0;
1899 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1900 			pkt->extra.flags = 0;
1901 			pkt->cdr = start + 2;
1902 		} else {
1903 			pkt->cdr = start + 1;
1904 		}
1905 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1906 			pkt->flags |=
1907 			    (NETRXF_csum_blank | NETRXF_data_validated);
1908 		}
1909 
1910 		/*
1911 		 * Each ring response can have up to PAGE_SIZE of data.
1912 		 * Assume that we can defragment the mbuf chain efficiently
1913 		 * into responses so that each response but the last uses all
1914 		 * PAGE_SIZE bytes.
1915 		 */
1916 		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1917 
1918 		if (pkt->list_len > 1) {
1919 			pkt->flags |= NETRXF_more_data;
1920 		}
1921 
1922 		slots_required = pkt->list_len +
1923 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1924 		if (slots_required > space) {
1925 			xnb_pkt_invalidate(pkt);
1926 			retval = EAGAIN;
1927 		}
1928 	}
1929 
1930 	return retval;
1931 }
1932 
1933 /**
1934  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1935  * to the frontend's shared buffers.  Does not actually perform the copy.
1936  * Always uses gref's on the other end's side.
1937  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1938  * 			operatoin
1939  * \param[in]	mbufc	The source for the copy operation
1940  * \param[out]	gnttab	Storage for the returned grant table
1941  * \param[in]	rxb	Pointer to the backend ring structure
1942  * \param[in]	otherend_id	The domain ID of the other end of the copy
1943  * \return 		The number of gnttab entries filled
1944  */
1945 static int
1946 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1947 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1948 		 domid_t otherend_id)
1949 {
1950 
1951 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1952 	int gnt_idx = 0;		/* index into grant table */
1953 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1954 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1955 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1956 	/* size in bytes that still needs to be represented in the table */
1957 	uint16_t size_remaining;
1958 
1959 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1960 
1961 	while (size_remaining > 0) {
1962 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1963 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1964 		/* Xen shared pages have an implied size of PAGE_SIZE */
1965 		const size_t req_size = PAGE_SIZE;
1966 		const size_t pkt_space = req_size - r_ofs;
1967 		/*
1968 		 * space is the largest amount of data that can be copied in the
1969 		 * grant table's next entry
1970 		 */
1971 		const size_t space = MIN(pkt_space, mbuf_space);
1972 
1973 		/* TODO: handle this error condition without panicing */
1974 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1975 
1976 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1977 		gnttab[gnt_idx].dest.domid = otherend_id;
1978 		gnttab[gnt_idx].dest.offset = r_ofs;
1979 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1980 		    mtod(mbuf, vm_offset_t) + m_ofs);
1981 		gnttab[gnt_idx].source.offset = virt_to_offset(
1982 		    mtod(mbuf, vm_offset_t) + m_ofs);
1983 		gnttab[gnt_idx].source.domid = DOMID_SELF;
1984 		gnttab[gnt_idx].len = space;
1985 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1986 
1987 		gnt_idx++;
1988 
1989 		r_ofs += space;
1990 		m_ofs += space;
1991 		size_remaining -= space;
1992 		if (req_size - r_ofs <= 0) {
1993 			/* Must move to the next rx request */
1994 			r_ofs = 0;
1995 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1996 		}
1997 		if (mbuf->m_len - m_ofs <= 0) {
1998 			/* Must move to the next mbuf */
1999 			m_ofs = 0;
2000 			mbuf = mbuf->m_next;
2001 		}
2002 	}
2003 
2004 	return gnt_idx;
2005 }
2006 
2007 /**
2008  * Generates responses for all the requests that constituted pkt.  Builds
2009  * responses and writes them to the ring, but doesn't push the shared ring
2010  * indices.
2011  * \param[in] pkt	the packet that needs a response
2012  * \param[in] gnttab	The grant copy table corresponding to this packet.
2013  * 			Used to determine how many rsp->netif_rx_response_t's to
2014  * 			generate.
2015  * \param[in] n_entries	Number of relevant entries in the grant table
2016  * \param[out] ring	Responses go here
2017  * \return		The number of RX requests that were consumed to generate
2018  * 			the responses
2019  */
2020 static int
2021 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2022     	      int n_entries, netif_rx_back_ring_t *ring)
2023 {
2024 	/*
2025 	 * This code makes the following assumptions:
2026 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2027 	 *	* The entries in gnttab are grouped by their grefs: any two
2028 	 *	   entries with the same gref must be adjacent
2029 	 */
2030 	int error = 0;
2031 	int gnt_idx, i;
2032 	int n_responses = 0;
2033 	grant_ref_t last_gref = GRANT_REF_INVALID;
2034 	RING_IDX r_idx;
2035 
2036 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2037 
2038 	/*
2039 	 * In the event of an error, we only need to send one response to the
2040 	 * netfront.  In that case, we musn't write any data to the responses
2041 	 * after the one we send.  So we must loop all the way through gnttab
2042 	 * looking for errors before we generate any responses
2043 	 *
2044 	 * Since we're looping through the grant table anyway, we'll count the
2045 	 * number of different gref's in it, which will tell us how many
2046 	 * responses to generate
2047 	 */
2048 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2049 		int16_t status = gnttab[gnt_idx].status;
2050 		if (status != GNTST_okay) {
2051 			DPRINTF(
2052 			    "Got error %d for hypervisor gnttab_copy status\n",
2053 			    status);
2054 			error = 1;
2055 			break;
2056 		}
2057 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2058 			n_responses++;
2059 			last_gref = gnttab[gnt_idx].dest.u.ref;
2060 		}
2061 	}
2062 
2063 	if (error != 0) {
2064 		uint16_t id;
2065 		netif_rx_response_t *rsp;
2066 
2067 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2068 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2069 		rsp->id = id;
2070 		rsp->status = NETIF_RSP_ERROR;
2071 		n_responses = 1;
2072 	} else {
2073 		gnt_idx = 0;
2074 		const int has_extra = pkt->flags & NETRXF_extra_info;
2075 		if (has_extra != 0)
2076 			n_responses++;
2077 
2078 		for (i = 0; i < n_responses; i++) {
2079 			netif_rx_request_t rxq;
2080 			netif_rx_response_t *rsp;
2081 
2082 			r_idx = ring->rsp_prod_pvt + i;
2083 			/*
2084 			 * We copy the structure of rxq instead of making a
2085 			 * pointer because it shares the same memory as rsp.
2086 			 */
2087 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2088 			rsp = RING_GET_RESPONSE(ring, r_idx);
2089 			if (has_extra && (i == 1)) {
2090 				netif_extra_info_t *ext =
2091 					(netif_extra_info_t*)rsp;
2092 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2093 				ext->flags = 0;
2094 				ext->u.gso.size = pkt->extra.u.gso.size;
2095 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2096 				ext->u.gso.pad = 0;
2097 				ext->u.gso.features = 0;
2098 			} else {
2099 				rsp->id = rxq.id;
2100 				rsp->status = GNTST_okay;
2101 				rsp->offset = 0;
2102 				rsp->flags = 0;
2103 				if (i < pkt->list_len - 1)
2104 					rsp->flags |= NETRXF_more_data;
2105 				if ((i == 0) && has_extra)
2106 					rsp->flags |= NETRXF_extra_info;
2107 				if ((i == 0) &&
2108 					(pkt->flags & NETRXF_data_validated)) {
2109 					rsp->flags |= NETRXF_data_validated;
2110 					rsp->flags |= NETRXF_csum_blank;
2111 				}
2112 				rsp->status = 0;
2113 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2114 				    gnt_idx++) {
2115 					rsp->status += gnttab[gnt_idx].len;
2116 				}
2117 			}
2118 		}
2119 	}
2120 
2121 	ring->req_cons += n_responses;
2122 	ring->rsp_prod_pvt += n_responses;
2123 	return n_responses;
2124 }
2125 
2126 /**
2127  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2128  * in the chain must start with a struct ether_header.
2129  *
2130  * XXX This function will perform incorrectly on UDP packets that are split up
2131  * into multiple ethernet frames.
2132  */
2133 static void
2134 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2135 {
2136 	struct ether_header *eh;
2137 	struct ip *iph;
2138 	uint16_t ether_type;
2139 
2140 	eh = mtod(mbufc, struct ether_header*);
2141 	ether_type = ntohs(eh->ether_type);
2142 	if (ether_type != ETHERTYPE_IP) {
2143 		/* Nothing to calculate */
2144 		return;
2145 	}
2146 
2147 	iph = (struct ip*)(eh + 1);
2148 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2149 		iph->ip_sum = 0;
2150 		iph->ip_sum = in_cksum_hdr(iph);
2151 	}
2152 
2153 	switch (iph->ip_p) {
2154 	case IPPROTO_TCP:
2155 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2156 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2157 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2158 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2159 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2160 			th->th_sum = in_cksum_skip(mbufc,
2161 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2162 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2163 		}
2164 		break;
2165 	case IPPROTO_UDP:
2166 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2167 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2168 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2169 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2170 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2171 			uh->uh_sum = in_cksum_skip(mbufc,
2172 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2173 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2174 		}
2175 		break;
2176 	default:
2177 		break;
2178 	}
2179 }
2180 
2181 static void
2182 xnb_stop(struct xnb_softc *xnb)
2183 {
2184 	struct ifnet *ifp;
2185 
2186 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2187 	ifp = xnb->xnb_ifp;
2188 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2189 	if_link_state_change(ifp, LINK_STATE_DOWN);
2190 }
2191 
2192 static int
2193 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2194 {
2195 	struct xnb_softc *xnb = ifp->if_softc;
2196 #ifdef INET
2197 	struct ifreq *ifr = (struct ifreq*) data;
2198 	struct ifaddr *ifa = (struct ifaddr*)data;
2199 #endif
2200 	int error = 0;
2201 
2202 	switch (cmd) {
2203 		case SIOCSIFFLAGS:
2204 			mtx_lock(&xnb->sc_lock);
2205 			if (ifp->if_flags & IFF_UP) {
2206 				xnb_ifinit_locked(xnb);
2207 			} else {
2208 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2209 					xnb_stop(xnb);
2210 				}
2211 			}
2212 			/*
2213 			 * Note: netfront sets a variable named xn_if_flags
2214 			 * here, but that variable is never read
2215 			 */
2216 			mtx_unlock(&xnb->sc_lock);
2217 			break;
2218 		case SIOCSIFADDR:
2219 		case SIOCGIFADDR:
2220 #ifdef INET
2221 			mtx_lock(&xnb->sc_lock);
2222 			if (ifa->ifa_addr->sa_family == AF_INET) {
2223 				ifp->if_flags |= IFF_UP;
2224 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2225 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2226 							IFF_DRV_OACTIVE);
2227 					if_link_state_change(ifp,
2228 							LINK_STATE_DOWN);
2229 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2230 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2231 					if_link_state_change(ifp,
2232 					    LINK_STATE_UP);
2233 				}
2234 				arp_ifinit(ifp, ifa);
2235 				mtx_unlock(&xnb->sc_lock);
2236 			} else {
2237 				mtx_unlock(&xnb->sc_lock);
2238 #endif
2239 				error = ether_ioctl(ifp, cmd, data);
2240 #ifdef INET
2241 			}
2242 #endif
2243 			break;
2244 		case SIOCSIFCAP:
2245 			mtx_lock(&xnb->sc_lock);
2246 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2247 				ifp->if_capenable |= IFCAP_TXCSUM;
2248 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2249 			} else {
2250 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2251 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2252 			}
2253 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2254 				ifp->if_capenable |= IFCAP_RXCSUM;
2255 			} else {
2256 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2257 			}
2258 			/*
2259 			 * TODO enable TSO4 and LRO once we no longer need
2260 			 * to calculate checksums in software
2261 			 */
2262 #if 0
2263 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2264 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2265 					printf("xnb: Xen netif requires that "
2266 						"TXCSUM be enabled in order "
2267 						"to use TSO4\n");
2268 					error = EINVAL;
2269 				} else {
2270 					ifp->if_capenable |= IFCAP_TSO4;
2271 					ifp->if_hwassist |= CSUM_TSO;
2272 				}
2273 			} else {
2274 				ifp->if_capenable &= ~(IFCAP_TSO4);
2275 				ifp->if_hwassist &= ~(CSUM_TSO);
2276 			}
2277 			if (ifr->ifreqcap |= IFCAP_LRO) {
2278 				ifp->if_capenable |= IFCAP_LRO;
2279 			} else {
2280 				ifp->if_capenable &= ~(IFCAP_LRO);
2281 			}
2282 #endif
2283 			mtx_unlock(&xnb->sc_lock);
2284 			break;
2285 		case SIOCSIFMTU:
2286 			ifp->if_mtu = ifr->ifr_mtu;
2287 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2288 			xnb_ifinit(xnb);
2289 			break;
2290 		case SIOCADDMULTI:
2291 		case SIOCDELMULTI:
2292 		case SIOCSIFMEDIA:
2293 		case SIOCGIFMEDIA:
2294 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2295 			break;
2296 		default:
2297 			error = ether_ioctl(ifp, cmd, data);
2298 			break;
2299 	}
2300 	return (error);
2301 }
2302 
2303 static void
2304 xnb_start_locked(struct ifnet *ifp)
2305 {
2306 	netif_rx_back_ring_t *rxb;
2307 	struct xnb_softc *xnb;
2308 	struct mbuf *mbufc;
2309 	RING_IDX req_prod_local;
2310 
2311 	xnb = ifp->if_softc;
2312 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2313 
2314 	if (!xnb->carrier)
2315 		return;
2316 
2317 	do {
2318 		int out_of_space = 0;
2319 		int notify;
2320 		req_prod_local = rxb->sring->req_prod;
2321 		xen_rmb();
2322 		for (;;) {
2323 			int error;
2324 
2325 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2326 			if (mbufc == NULL)
2327 				break;
2328 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2329 			    		 xnb->rx_gnttab);
2330 			switch (error) {
2331 				case EAGAIN:
2332 					/*
2333 					 * Insufficient space in the ring.
2334 					 * Requeue pkt and send when space is
2335 					 * available.
2336 					 */
2337 					IF_PREPEND(&ifp->if_snd, mbufc);
2338 					/*
2339 					 * Perhaps the frontend missed an IRQ
2340 					 * and went to sleep.  Notify it to wake
2341 					 * it up.
2342 					 */
2343 					out_of_space = 1;
2344 					break;
2345 
2346 				case EINVAL:
2347 					/* OS gave a corrupt packet.  Drop it.*/
2348 					ifp->if_oerrors++;
2349 					/* FALLTHROUGH */
2350 				default:
2351 					/* Send succeeded, or packet had error.
2352 					 * Free the packet */
2353 					ifp->if_opackets++;
2354 					if (mbufc)
2355 						m_freem(mbufc);
2356 					break;
2357 			}
2358 			if (out_of_space != 0)
2359 				break;
2360 		}
2361 
2362 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2363 		if ((notify != 0) || (out_of_space != 0))
2364 			notify_remote_via_irq(xnb->irq);
2365 		rxb->sring->req_event = req_prod_local + 1;
2366 		xen_mb();
2367 	} while (rxb->sring->req_prod != req_prod_local) ;
2368 }
2369 
2370 /**
2371  * Sends one packet to the ring.  Blocks until the packet is on the ring
2372  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2373  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2374  * 			otherend will not be notified.
2375  * \param[in]	otherend The domain ID of the other end of the connection
2376  * \retval	EAGAIN	The ring did not have enough space for the packet.
2377  * 			The ring has not been modified
2378  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2379  * 			this a function parameter so that we will take less
2380  * 			stack space.
2381  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2382  */
2383 static int
2384 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2385 	 gnttab_copy_table gnttab)
2386 {
2387 	struct xnb_pkt pkt;
2388 	int error, n_entries, n_reqs;
2389 	RING_IDX space;
2390 
2391 	space = ring->sring->req_prod - ring->req_cons;
2392 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2393 	if (error != 0)
2394 		return error;
2395 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2396 	if (n_entries != 0) {
2397 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2398 		    gnttab, n_entries);
2399 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2400 		    hv_ret));
2401 	}
2402 
2403 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2404 
2405 	return 0;
2406 }
2407 
2408 static void
2409 xnb_start(struct ifnet *ifp)
2410 {
2411 	struct xnb_softc *xnb;
2412 
2413 	xnb = ifp->if_softc;
2414 	mtx_lock(&xnb->rx_lock);
2415 	xnb_start_locked(ifp);
2416 	mtx_unlock(&xnb->rx_lock);
2417 }
2418 
2419 /* equivalent of network_open() in Linux */
2420 static void
2421 xnb_ifinit_locked(struct xnb_softc *xnb)
2422 {
2423 	struct ifnet *ifp;
2424 
2425 	ifp = xnb->xnb_ifp;
2426 
2427 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2428 
2429 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2430 		return;
2431 
2432 	xnb_stop(xnb);
2433 
2434 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2435 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2436 	if_link_state_change(ifp, LINK_STATE_UP);
2437 }
2438 
2439 
2440 static void
2441 xnb_ifinit(void *xsc)
2442 {
2443 	struct xnb_softc *xnb = xsc;
2444 
2445 	mtx_lock(&xnb->sc_lock);
2446 	xnb_ifinit_locked(xnb);
2447 	mtx_unlock(&xnb->sc_lock);
2448 }
2449 
2450 
2451 /**
2452  * Read the 'mac' node at the given device's node in the store, and parse that
2453  * as colon-separated octets, placing result the given mac array.  mac must be
2454  * a preallocated array of length ETHER_ADDR_LEN ETH_ALEN (as declared in
2455  * net/ethernet.h).
2456  * Return 0 on success, or errno on error.
2457  */
2458 static int
2459 xen_net_read_mac(device_t dev, uint8_t mac[])
2460 {
2461 	char *s, *e, *macstr;
2462 	const char *path;
2463 	int error = 0;
2464 	int i;
2465 
2466 	path = xenbus_get_node(dev);
2467 	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
2468 	if (error != 0) {
2469 		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
2470 	} else {
2471 	        s = macstr;
2472 	        for (i = 0; i < ETHER_ADDR_LEN; i++) {
2473 		        mac[i] = strtoul(s, &e, 16);
2474 		        if (s == e || (e[0] != ':' && e[0] != 0)) {
2475 				error = ENOENT;
2476 				break;
2477 		        }
2478 		        s = &e[1];
2479 	        }
2480 	        free(macstr, M_XENBUS);
2481 	}
2482 	return error;
2483 }
2484 
2485 
2486 /**
2487  * Callback used by the generic networking code to tell us when our carrier
2488  * state has changed.  Since we don't have a physical carrier, we don't care
2489  */
2490 static int
2491 xnb_ifmedia_upd(struct ifnet *ifp)
2492 {
2493 	return (0);
2494 }
2495 
2496 /**
2497  * Callback used by the generic networking code to ask us what our carrier
2498  * state is.  Since we don't have a physical carrier, this is very simple
2499  */
2500 static void
2501 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2502 {
2503 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2504 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2505 }
2506 
2507 
2508 /*---------------------------- NewBus Registration ---------------------------*/
2509 static device_method_t xnb_methods[] = {
2510 	/* Device interface */
2511 	DEVMETHOD(device_probe,		xnb_probe),
2512 	DEVMETHOD(device_attach,	xnb_attach),
2513 	DEVMETHOD(device_detach,	xnb_detach),
2514 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2515 	DEVMETHOD(device_suspend,	xnb_suspend),
2516 	DEVMETHOD(device_resume,	xnb_resume),
2517 
2518 	/* Xenbus interface */
2519 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2520 
2521 	{ 0, 0 }
2522 };
2523 
2524 static driver_t xnb_driver = {
2525 	"xnb",
2526 	xnb_methods,
2527 	sizeof(struct xnb_softc),
2528 };
2529 devclass_t xnb_devclass;
2530 
2531 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2532 
2533 
2534 /*-------------------------- Unit Tests -------------------------------------*/
2535 #ifdef XNB_DEBUG
2536 #include "netback_unit_tests.c"
2537 #endif
2538