xref: /freebsd/sys/dev/xen/netback/netback.c (revision a831d7d1c538b93ffec095657d9a6e6e778db195)
1 /*-
2  * Copyright (c) 2009-2011 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Alan Somers         (Spectra Logic Corporation)
32  *          John Suykerbuyk     (Spectra Logic Corporation)
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file netback.c
40  *
41  * \brief Device driver supporting the vending of network access
42  * 	  from this FreeBSD domain to other domains.
43  */
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 
47 #include "opt_sctp.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 
52 #include <sys/bus.h>
53 #include <sys/module.h>
54 #include <sys/rman.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_arp.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/ip.h>
69 #include <netinet/if_ether.h>
70 #if __FreeBSD_version >= 700000
71 #include <netinet/tcp.h>
72 #endif
73 #include <netinet/ip_icmp.h>
74 #include <netinet/udp.h>
75 #include <machine/in_cksum.h>
76 
77 #include <vm/vm.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_kern.h>
81 
82 #include <machine/_inttypes.h>
83 
84 #include <xen/xen-os.h>
85 #include <xen/hypervisor.h>
86 #include <xen/xen_intr.h>
87 #include <xen/interface/io/netif.h>
88 #include <xen/xenbus/xenbusvar.h>
89 
90 #include <machine/xen/xenvar.h>
91 
92 /*--------------------------- Compile-time Tunables --------------------------*/
93 
94 /*---------------------------------- Macros ----------------------------------*/
95 /**
96  * Custom malloc type for all driver allocations.
97  */
98 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
99 
100 #define	XNB_SG	1	/* netback driver supports feature-sg */
101 #define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
102 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
103 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
104 
105 #undef XNB_DEBUG
106 #define	XNB_DEBUG /* hardcode on during development */
107 
108 #ifdef XNB_DEBUG
109 #define	DPRINTF(fmt, args...) \
110 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
111 #else
112 #define	DPRINTF(fmt, args...) do {} while (0)
113 #endif
114 
115 /* Default length for stack-allocated grant tables */
116 #define	GNTTAB_LEN	(64)
117 
118 /* Features supported by all backends.  TSO and LRO can be negotiated */
119 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
120 
121 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
122 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
123 
124 /**
125  * Two argument version of the standard macro.  Second argument is a tentative
126  * value of req_cons
127  */
128 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
129 	unsigned int req = (_r)->sring->req_prod - cons;          	\
130 	unsigned int rsp = RING_SIZE(_r) -                              \
131 	(cons - (_r)->rsp_prod_pvt);                          		\
132 	req < rsp ? req : rsp;                                          \
133 })
134 
135 #define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
136 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
137 
138 /**
139  * Predefined array type of grant table copy descriptors.  Used to pass around
140  * statically allocated memory structures.
141  */
142 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
143 
144 /*--------------------------- Forward Declarations ---------------------------*/
145 struct xnb_softc;
146 struct xnb_pkt;
147 
148 static void	xnb_attach_failed(struct xnb_softc *xnb,
149 				  int err, const char *fmt, ...)
150 				  __printflike(3,4);
151 static int	xnb_shutdown(struct xnb_softc *xnb);
152 static int	create_netdev(device_t dev);
153 static int	xnb_detach(device_t dev);
154 static int	xnb_ifmedia_upd(struct ifnet *ifp);
155 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
156 static void 	xnb_intr(void *arg);
157 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
158 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
159 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
160 			 struct mbuf **mbufc, struct ifnet *ifnet,
161 			 gnttab_copy_table gnttab);
162 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
163 			     const netif_tx_back_ring_t *tx_ring,
164 			     RING_IDX start);
165 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
166 			      netif_tx_back_ring_t *ring, int error);
167 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
168 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
169 				 const struct mbuf *mbufc,
170 				 gnttab_copy_table gnttab,
171 				 const netif_tx_back_ring_t *txb,
172 				 domid_t otherend_id);
173 static void	xnb_update_mbufc(struct mbuf *mbufc,
174 				 const gnttab_copy_table gnttab, int n_entries);
175 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
176 			      struct xnb_pkt *pkt,
177 			      RING_IDX start, int space);
178 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
179 				 const struct mbuf *mbufc,
180 				 gnttab_copy_table gnttab,
181 				 const netif_rx_back_ring_t *rxb,
182 				 domid_t otherend_id);
183 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
184 			      const gnttab_copy_table gnttab, int n_entries,
185 			      netif_rx_back_ring_t *ring);
186 static void	xnb_stop(struct xnb_softc*);
187 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
188 static void	xnb_start_locked(struct ifnet*);
189 static void	xnb_start(struct ifnet*);
190 static void	xnb_ifinit_locked(struct xnb_softc*);
191 static void	xnb_ifinit(void*);
192 #ifdef XNB_DEBUG
193 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
194 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
195 #endif
196 #if defined(INET) || defined(INET6)
197 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
198 #endif
199 /*------------------------------ Data Structures -----------------------------*/
200 
201 
202 /**
203  * Representation of a xennet packet.  Simplified version of a packet as
204  * stored in the Xen tx ring.  Applicable to both RX and TX packets
205  */
206 struct xnb_pkt{
207 	/**
208 	 * Array index of the first data-bearing (eg, not extra info) entry
209 	 * for this packet
210 	 */
211 	RING_IDX	car;
212 
213 	/**
214 	 * Array index of the second data-bearing entry for this packet.
215 	 * Invalid if the packet has only one data-bearing entry.  If the
216 	 * packet has more than two data-bearing entries, then the second
217 	 * through the last will be sequential modulo the ring size
218 	 */
219 	RING_IDX	cdr;
220 
221 	/**
222 	 * Optional extra info.  Only valid if flags contains
223 	 * NETTXF_extra_info.  Note that extra.type will always be
224 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
225 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
226 	 */
227 	netif_extra_info_t extra;
228 
229 	/** Size of entire packet in bytes.       */
230 	uint16_t	size;
231 
232 	/** The size of the first entry's data in bytes */
233 	uint16_t	car_size;
234 
235 	/**
236 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
237 	 * not the same for TX and RX packets
238 	 */
239 	uint16_t	flags;
240 
241 	/**
242 	 * The number of valid data-bearing entries (either netif_tx_request's
243 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
244 	 * entire packet is invalid.
245 	 */
246 	uint16_t	list_len;
247 
248 	/** There was an error processing the packet */
249 	uint8_t		error;
250 };
251 
252 /** xnb_pkt method: initialize it */
253 static inline void
254 xnb_pkt_initialize(struct xnb_pkt *pxnb)
255 {
256 	bzero(pxnb, sizeof(*pxnb));
257 }
258 
259 /** xnb_pkt method: mark the packet as valid */
260 static inline void
261 xnb_pkt_validate(struct xnb_pkt *pxnb)
262 {
263 	pxnb->error = 0;
264 };
265 
266 /** xnb_pkt method: mark the packet as invalid */
267 static inline void
268 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
269 {
270 	pxnb->error = 1;
271 };
272 
273 /** xnb_pkt method: Check whether the packet is valid */
274 static inline int
275 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
276 {
277 	return (! pxnb->error);
278 }
279 
280 #ifdef XNB_DEBUG
281 /** xnb_pkt method: print the packet's contents in human-readable format*/
282 static void __unused
283 xnb_dump_pkt(const struct xnb_pkt *pkt) {
284 	if (pkt == NULL) {
285 	  DPRINTF("Was passed a null pointer.\n");
286 	  return;
287 	}
288 	DPRINTF("pkt address= %p\n", pkt);
289 	DPRINTF("pkt->size=%d\n", pkt->size);
290 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
291 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
292 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
293 	/* DPRINTF("pkt->extra");	TODO */
294 	DPRINTF("pkt->car=%d\n", pkt->car);
295 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
296 	DPRINTF("pkt->error=%d\n", pkt->error);
297 }
298 #endif /* XNB_DEBUG */
299 
300 static void
301 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
302 {
303 	if (txreq != NULL) {
304 		DPRINTF("netif_tx_request index =%u\n", idx);
305 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
306 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
307 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
308 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
309 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
310 	}
311 }
312 
313 
314 /**
315  * \brief Configuration data for a shared memory request ring
316  *        used to communicate with the front-end client of this
317  *        this driver.
318  */
319 struct xnb_ring_config {
320 	/**
321 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
322 	 * use different data structures, and that cannot be changed since it
323 	 * is part of the interdomain protocol.
324 	 */
325 	union{
326 		netif_rx_back_ring_t	  rx_ring;
327 		netif_tx_back_ring_t	  tx_ring;
328 	} back_ring;
329 
330 	/**
331 	 * The device bus address returned by the hypervisor when
332 	 * mapping the ring and required to unmap it when a connection
333 	 * is torn down.
334 	 */
335 	uint64_t	bus_addr;
336 
337 	/** The pseudo-physical address where ring memory is mapped.*/
338 	uint64_t	gnt_addr;
339 
340 	/** KVA address where ring memory is mapped. */
341 	vm_offset_t	va;
342 
343 	/**
344 	 * Grant table handles, one per-ring page, returned by the
345 	 * hyperpervisor upon mapping of the ring and required to
346 	 * unmap it when a connection is torn down.
347 	 */
348 	grant_handle_t	handle;
349 
350 	/** The number of ring pages mapped for the current connection. */
351 	unsigned	ring_pages;
352 
353 	/**
354 	 * The grant references, one per-ring page, supplied by the
355 	 * front-end, allowing us to reference the ring pages in the
356 	 * front-end's domain and to map these pages into our own domain.
357 	 */
358 	grant_ref_t	ring_ref;
359 };
360 
361 /**
362  * Per-instance connection state flags.
363  */
364 typedef enum
365 {
366 	/** Communication with the front-end has been established. */
367 	XNBF_RING_CONNECTED    = 0x01,
368 
369 	/**
370 	 * Front-end requests exist in the ring and are waiting for
371 	 * xnb_xen_req objects to free up.
372 	 */
373 	XNBF_RESOURCE_SHORTAGE = 0x02,
374 
375 	/** Connection teardown has started. */
376 	XNBF_SHUTDOWN          = 0x04,
377 
378 	/** A thread is already performing shutdown processing. */
379 	XNBF_IN_SHUTDOWN       = 0x08
380 } xnb_flag_t;
381 
382 /**
383  * Types of rings.  Used for array indices and to identify a ring's control
384  * data structure type
385  */
386 typedef enum{
387 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
388 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
389 	XNB_NUM_RING_TYPES
390 } xnb_ring_type_t;
391 
392 /**
393  * Per-instance configuration data.
394  */
395 struct xnb_softc {
396 	/** NewBus device corresponding to this instance. */
397 	device_t		dev;
398 
399 	/* Media related fields */
400 
401 	/** Generic network media state */
402 	struct ifmedia		sc_media;
403 
404 	/** Media carrier info */
405 	struct ifnet 		*xnb_ifp;
406 
407 	/** Our own private carrier state */
408 	unsigned carrier;
409 
410 	/** Device MAC Address */
411 	uint8_t			mac[ETHER_ADDR_LEN];
412 
413 	/* Xen related fields */
414 
415 	/**
416 	 * \brief The netif protocol abi in effect.
417 	 *
418 	 * There are situations where the back and front ends can
419 	 * have a different, native abi (e.g. intel x86_64 and
420 	 * 32bit x86 domains on the same machine).  The back-end
421 	 * always accomodates the front-end's native abi.  That
422 	 * value is pulled from the XenStore and recorded here.
423 	 */
424 	int			abi;
425 
426 	/**
427 	 * Name of the bridge to which this VIF is connected, if any
428 	 * This field is dynamically allocated by xenbus and must be free()ed
429 	 * when no longer needed
430 	 */
431 	char			*bridge;
432 
433 	/** The interrupt driven even channel used to signal ring events. */
434 	evtchn_port_t		evtchn;
435 
436 	/** Xen device handle.*/
437 	long 			handle;
438 
439 	/** Handle to the communication ring event channel. */
440 	xen_intr_handle_t	xen_intr_handle;
441 
442 	/**
443 	 * \brief Cached value of the front-end's domain id.
444 	 *
445 	 * This value is used at once for each mapped page in
446 	 * a transaction.  We cache it to avoid incuring the
447 	 * cost of an ivar access every time this is needed.
448 	 */
449 	domid_t			otherend_id;
450 
451 	/**
452 	 * Undocumented frontend feature.  Has something to do with
453 	 * scatter/gather IO
454 	 */
455 	uint8_t			can_sg;
456 	/** Undocumented frontend feature */
457 	uint8_t			gso;
458 	/** Undocumented frontend feature */
459 	uint8_t			gso_prefix;
460 	/** Can checksum TCP/UDP over IPv4 */
461 	uint8_t			ip_csum;
462 
463 	/* Implementation related fields */
464 	/**
465 	 * Preallocated grant table copy descriptor for RX operations.
466 	 * Access must be protected by rx_lock
467 	 */
468 	gnttab_copy_table	rx_gnttab;
469 
470 	/**
471 	 * Preallocated grant table copy descriptor for TX operations.
472 	 * Access must be protected by tx_lock
473 	 */
474 	gnttab_copy_table	tx_gnttab;
475 
476 #ifdef XENHVM
477 	/**
478 	 * Resource representing allocated physical address space
479 	 * associated with our per-instance kva region.
480 	 */
481 	struct resource		*pseudo_phys_res;
482 
483 	/** Resource id for allocated physical address space. */
484 	int			pseudo_phys_res_id;
485 #endif
486 
487 	/** Ring mapping and interrupt configuration data. */
488 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
489 
490 	/**
491 	 * Global pool of kva used for mapping remote domain ring
492 	 * and I/O transaction data.
493 	 */
494 	vm_offset_t		kva;
495 
496 	/** Psuedo-physical address corresponding to kva. */
497 	uint64_t		gnt_base_addr;
498 
499 	/** Various configuration and state bit flags. */
500 	xnb_flag_t		flags;
501 
502 	/** Mutex protecting per-instance data in the receive path. */
503 	struct mtx		rx_lock;
504 
505 	/** Mutex protecting per-instance data in the softc structure. */
506 	struct mtx		sc_lock;
507 
508 	/** Mutex protecting per-instance data in the transmit path. */
509 	struct mtx		tx_lock;
510 
511 	/** The size of the global kva pool. */
512 	int			kva_size;
513 
514 	/** Name of the interface */
515 	char			 if_name[IFNAMSIZ];
516 };
517 
518 /*---------------------------- Debugging functions ---------------------------*/
519 #ifdef XNB_DEBUG
520 static void __unused
521 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
522 {
523 	if (entry == NULL) {
524 		printf("NULL grant table pointer\n");
525 		return;
526 	}
527 
528 	if (entry->flags & GNTCOPY_dest_gref)
529 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
530 	else
531 		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
532 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
533 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
534 	if (entry->flags & GNTCOPY_source_gref)
535 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
536 	else
537 		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
538 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
539 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
540 	printf("gnttab len=\t%hu\n", entry->len);
541 	printf("gnttab flags=\t%hu\n", entry->flags);
542 	printf("gnttab status=\t%hd\n", entry->status);
543 }
544 
545 static int
546 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
547 {
548 	static char results[720];
549 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
550 	netif_rx_back_ring_t const* rxb =
551 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
552 	netif_tx_back_ring_t const* txb =
553 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
554 
555 	/* empty the result strings */
556 	results[0] = 0;
557 
558 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
559 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
560 
561 	snprintf(results, 720,
562 	    "\n\t%35s %18s\n"	/* TX, RX */
563 	    "\t%16s %18d %18d\n"	/* req_cons */
564 	    "\t%16s %18d %18d\n"	/* nr_ents */
565 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
566 	    "\t%16s %18p %18p\n"	/* sring */
567 	    "\t%16s %18d %18d\n"	/* req_prod */
568 	    "\t%16s %18d %18d\n"	/* req_event */
569 	    "\t%16s %18d %18d\n"	/* rsp_prod */
570 	    "\t%16s %18d %18d\n",	/* rsp_event */
571 	    "TX", "RX",
572 	    "req_cons", txb->req_cons, rxb->req_cons,
573 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
574 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
575 	    "sring", txb->sring, rxb->sring,
576 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
577 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
578 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
579 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
580 
581 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
582 }
583 
584 static void __unused
585 xnb_dump_mbuf(const struct mbuf *m)
586 {
587 	int len;
588 	uint8_t *d;
589 	if (m == NULL)
590 		return;
591 
592 	printf("xnb_dump_mbuf:\n");
593 	if (m->m_flags & M_PKTHDR) {
594 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
595 		       "tso_segsz=%5hd\n",
596 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
597 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
598 		printf("    rcvif=%16p,  len=%19d\n",
599 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
600 	}
601 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
602 	       m->m_next, m->m_nextpkt, m->m_data);
603 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
604 	       m->m_len, m->m_flags, m->m_type);
605 
606 	len = m->m_len;
607 	d = mtod(m, uint8_t*);
608 	while (len > 0) {
609 		int i;
610 		printf("                ");
611 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
612 			printf("%02hhx ", *(d++));
613 		}
614 		printf("\n");
615 	}
616 }
617 #endif /* XNB_DEBUG */
618 
619 /*------------------------ Inter-Domain Communication ------------------------*/
620 /**
621  * Free dynamically allocated KVA or pseudo-physical address allocations.
622  *
623  * \param xnb  Per-instance xnb configuration structure.
624  */
625 static void
626 xnb_free_communication_mem(struct xnb_softc *xnb)
627 {
628 	if (xnb->kva != 0) {
629 #ifndef XENHVM
630 		kva_free(xnb->kva, xnb->kva_size);
631 #else
632 		if (xnb->pseudo_phys_res != NULL) {
633 			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
634 			    xnb->pseudo_phys_res_id,
635 			    xnb->pseudo_phys_res);
636 			xnb->pseudo_phys_res = NULL;
637 		}
638 #endif /* XENHVM */
639 	}
640 	xnb->kva = 0;
641 	xnb->gnt_base_addr = 0;
642 }
643 
644 /**
645  * Cleanup all inter-domain communication mechanisms.
646  *
647  * \param xnb  Per-instance xnb configuration structure.
648  */
649 static int
650 xnb_disconnect(struct xnb_softc *xnb)
651 {
652 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
653 	int error;
654 	int i;
655 
656 	if (xnb->xen_intr_handle != NULL)
657 		xen_intr_unbind(&xnb->xen_intr_handle);
658 
659 	/*
660 	 * We may still have another thread currently processing requests.  We
661 	 * must acquire the rx and tx locks to make sure those threads are done,
662 	 * but we can release those locks as soon as we acquire them, because no
663 	 * more interrupts will be arriving.
664 	 */
665 	mtx_lock(&xnb->tx_lock);
666 	mtx_unlock(&xnb->tx_lock);
667 	mtx_lock(&xnb->rx_lock);
668 	mtx_unlock(&xnb->rx_lock);
669 
670 	/* Free malloc'd softc member variables */
671 	if (xnb->bridge != NULL) {
672 		free(xnb->bridge, M_XENSTORE);
673 		xnb->bridge = NULL;
674 	}
675 
676 	/* All request processing has stopped, so unmap the rings */
677 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
678 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
679 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
680 		gnts[i].handle = xnb->ring_configs[i].handle;
681 	}
682 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
683 					  XNB_NUM_RING_TYPES);
684 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
685 
686 	xnb_free_communication_mem(xnb);
687 	/*
688 	 * Zero the ring config structs because the pointers, handles, and
689 	 * grant refs contained therein are no longer valid.
690 	 */
691 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
692 	    sizeof(struct xnb_ring_config));
693 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
694 	    sizeof(struct xnb_ring_config));
695 
696 	xnb->flags &= ~XNBF_RING_CONNECTED;
697 	return (0);
698 }
699 
700 /**
701  * Map a single shared memory ring into domain local address space and
702  * initialize its control structure
703  *
704  * \param xnb	Per-instance xnb configuration structure
705  * \param ring_type	Array index of this ring in the xnb's array of rings
706  * \return 	An errno
707  */
708 static int
709 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
710 {
711 	struct gnttab_map_grant_ref gnt;
712 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
713 	int error;
714 
715 	/* TX ring type = 0, RX =1 */
716 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
717 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
718 
719 	gnt.host_addr = ring->gnt_addr;
720 	gnt.flags     = GNTMAP_host_map;
721 	gnt.ref       = ring->ring_ref;
722 	gnt.dom       = xnb->otherend_id;
723 
724 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
725 	if (error != 0)
726 		panic("netback: Ring page grant table op failed (%d)", error);
727 
728 	if (gnt.status != 0) {
729 		ring->va = 0;
730 		error = EACCES;
731 		xenbus_dev_fatal(xnb->dev, error,
732 				 "Ring shared page mapping failed. "
733 				 "Status %d.", gnt.status);
734 	} else {
735 		ring->handle = gnt.handle;
736 		ring->bus_addr = gnt.dev_bus_addr;
737 
738 		if (ring_type == XNB_RING_TYPE_TX) {
739 			BACK_RING_INIT(&ring->back_ring.tx_ring,
740 			    (netif_tx_sring_t*)ring->va,
741 			    ring->ring_pages * PAGE_SIZE);
742 		} else if (ring_type == XNB_RING_TYPE_RX) {
743 			BACK_RING_INIT(&ring->back_ring.rx_ring,
744 			    (netif_rx_sring_t*)ring->va,
745 			    ring->ring_pages * PAGE_SIZE);
746 		} else {
747 			xenbus_dev_fatal(xnb->dev, error,
748 				 "Unknown ring type %d", ring_type);
749 		}
750 	}
751 
752 	return error;
753 }
754 
755 /**
756  * Setup the shared memory rings and bind an interrupt to the event channel
757  * used to notify us of ring changes.
758  *
759  * \param xnb  Per-instance xnb configuration structure.
760  */
761 static int
762 xnb_connect_comms(struct xnb_softc *xnb)
763 {
764 	int	error;
765 	xnb_ring_type_t i;
766 
767 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
768 		return (0);
769 
770 	/*
771 	 * Kva for our rings are at the tail of the region of kva allocated
772 	 * by xnb_alloc_communication_mem().
773 	 */
774 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
775 		error = xnb_connect_ring(xnb, i);
776 		if (error != 0)
777 	  		return error;
778 	}
779 
780 	xnb->flags |= XNBF_RING_CONNECTED;
781 
782 	error = xen_intr_bind_remote_port(xnb->dev,
783 					  xnb->otherend_id,
784 					  xnb->evtchn,
785 					  /*filter*/NULL,
786 					  xnb_intr, /*arg*/xnb,
787 					  INTR_TYPE_BIO | INTR_MPSAFE,
788 					  &xnb->xen_intr_handle);
789 	if (error != 0) {
790 		(void)xnb_disconnect(xnb);
791 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
792 		return (error);
793 	}
794 
795 	DPRINTF("rings connected!\n");
796 
797 	return (0);
798 }
799 
800 /**
801  * Size KVA and pseudo-physical address allocations based on negotiated
802  * values for the size and number of I/O requests, and the size of our
803  * communication ring.
804  *
805  * \param xnb  Per-instance xnb configuration structure.
806  *
807  * These address spaces are used to dynamically map pages in the
808  * front-end's domain into our own.
809  */
810 static int
811 xnb_alloc_communication_mem(struct xnb_softc *xnb)
812 {
813 	xnb_ring_type_t i;
814 
815 	xnb->kva_size = 0;
816 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
817 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
818 	}
819 #ifndef XENHVM
820 	xnb->kva = kva_alloc(xnb->kva_size);
821 	if (xnb->kva == 0)
822 		return (ENOMEM);
823 	xnb->gnt_base_addr = xnb->kva;
824 #else /* defined XENHVM */
825 	/*
826 	 * Reserve a range of pseudo physical memory that we can map
827 	 * into kva.  These pages will only be backed by machine
828 	 * pages ("real memory") during the lifetime of front-end requests
829 	 * via grant table operations.  We will map the netif tx and rx rings
830 	 * into this space.
831 	 */
832 	xnb->pseudo_phys_res_id = 0;
833 	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
834 						  &xnb->pseudo_phys_res_id,
835 						  0, ~0, xnb->kva_size,
836 						  RF_ACTIVE);
837 	if (xnb->pseudo_phys_res == NULL) {
838 		xnb->kva = 0;
839 		return (ENOMEM);
840 	}
841 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
842 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
843 #endif /* !defined XENHVM */
844 	return (0);
845 }
846 
847 /**
848  * Collect information from the XenStore related to our device and its frontend
849  *
850  * \param xnb  Per-instance xnb configuration structure.
851  */
852 static int
853 xnb_collect_xenstore_info(struct xnb_softc *xnb)
854 {
855 	/**
856 	 * \todo Linux collects the following info.  We should collect most
857 	 * of this, too:
858 	 * "feature-rx-notify"
859 	 */
860 	const char *otherend_path;
861 	const char *our_path;
862 	int err;
863 	unsigned int rx_copy, bridge_len;
864 	uint8_t no_csum_offload;
865 
866 	otherend_path = xenbus_get_otherend_path(xnb->dev);
867 	our_path = xenbus_get_node(xnb->dev);
868 
869 	/* Collect the critical communication parameters */
870 	err = xs_gather(XST_NIL, otherend_path,
871 	    "tx-ring-ref", "%l" PRIu32,
872 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
873 	    "rx-ring-ref", "%l" PRIu32,
874 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
875 	    "event-channel", "%" PRIu32, &xnb->evtchn,
876 	    NULL);
877 	if (err != 0) {
878 		xenbus_dev_fatal(xnb->dev, err,
879 				 "Unable to retrieve ring information from "
880 				 "frontend %s.  Unable to connect.",
881 				 otherend_path);
882 		return (err);
883 	}
884 
885 	/* Collect the handle from xenstore */
886 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
887 	if (err != 0) {
888 		xenbus_dev_fatal(xnb->dev, err,
889 		    "Error reading handle from frontend %s.  "
890 		    "Unable to connect.", otherend_path);
891 	}
892 
893 	/*
894 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
895 	 * throw it away
896 	 */
897 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
898 		      (void**)&xnb->bridge);
899 	if (err != 0)
900 		xnb->bridge = NULL;
901 
902 	/*
903 	 * Does the frontend request that we use rx copy?  If not, return an
904 	 * error because this driver only supports rx copy.
905 	 */
906 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
907 		       "%" PRIu32, &rx_copy);
908 	if (err == ENOENT) {
909 		err = 0;
910 	 	rx_copy = 0;
911 	}
912 	if (err < 0) {
913 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
914 				 otherend_path);
915 		return err;
916 	}
917 	/**
918 	 * \todo: figure out the exact meaning of this feature, and when
919 	 * the frontend will set it to true.  It should be set to true
920 	 * at some point
921 	 */
922 /*        if (!rx_copy)*/
923 /*          return EOPNOTSUPP;*/
924 
925 	/** \todo Collect the rx notify feature */
926 
927 	/*  Collect the feature-sg. */
928 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
929 		     "%hhu", &xnb->can_sg) < 0)
930 		xnb->can_sg = 0;
931 
932 	/* Collect remaining frontend features */
933 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
934 		     "%hhu", &xnb->gso) < 0)
935 		xnb->gso = 0;
936 
937 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
938 		     "%hhu", &xnb->gso_prefix) < 0)
939 		xnb->gso_prefix = 0;
940 
941 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
942 		     "%hhu", &no_csum_offload) < 0)
943 		no_csum_offload = 0;
944 	xnb->ip_csum = (no_csum_offload == 0);
945 
946 	return (0);
947 }
948 
949 /**
950  * Supply information about the physical device to the frontend
951  * via XenBus.
952  *
953  * \param xnb  Per-instance xnb configuration structure.
954  */
955 static int
956 xnb_publish_backend_info(struct xnb_softc *xnb)
957 {
958 	struct xs_transaction xst;
959 	const char *our_path;
960 	int error;
961 
962 	our_path = xenbus_get_node(xnb->dev);
963 
964 	do {
965 		error = xs_transaction_start(&xst);
966 		if (error != 0) {
967 			xenbus_dev_fatal(xnb->dev, error,
968 					 "Error publishing backend info "
969 					 "(start transaction)");
970 			break;
971 		}
972 
973 		error = xs_printf(xst, our_path, "feature-sg",
974 				  "%d", XNB_SG);
975 		if (error != 0)
976 			break;
977 
978 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
979 				  "%d", XNB_GSO_TCPV4);
980 		if (error != 0)
981 			break;
982 
983 		error = xs_printf(xst, our_path, "feature-rx-copy",
984 				  "%d", XNB_RX_COPY);
985 		if (error != 0)
986 			break;
987 
988 		error = xs_printf(xst, our_path, "feature-rx-flip",
989 				  "%d", XNB_RX_FLIP);
990 		if (error != 0)
991 			break;
992 
993 		error = xs_transaction_end(xst, 0);
994 		if (error != 0 && error != EAGAIN) {
995 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
996 			break;
997 		}
998 
999 	} while (error == EAGAIN);
1000 
1001 	return (error);
1002 }
1003 
1004 /**
1005  * Connect to our netfront peer now that it has completed publishing
1006  * its configuration into the XenStore.
1007  *
1008  * \param xnb  Per-instance xnb configuration structure.
1009  */
1010 static void
1011 xnb_connect(struct xnb_softc *xnb)
1012 {
1013 	int	error;
1014 
1015 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1016 		return;
1017 
1018 	if (xnb_collect_xenstore_info(xnb) != 0)
1019 		return;
1020 
1021 	xnb->flags &= ~XNBF_SHUTDOWN;
1022 
1023 	/* Read front end configuration. */
1024 
1025 	/* Allocate resources whose size depends on front-end configuration. */
1026 	error = xnb_alloc_communication_mem(xnb);
1027 	if (error != 0) {
1028 		xenbus_dev_fatal(xnb->dev, error,
1029 				 "Unable to allocate communication memory");
1030 		return;
1031 	}
1032 
1033 	/*
1034 	 * Connect communication channel.
1035 	 */
1036 	error = xnb_connect_comms(xnb);
1037 	if (error != 0) {
1038 		/* Specific errors are reported by xnb_connect_comms(). */
1039 		return;
1040 	}
1041 	xnb->carrier = 1;
1042 
1043 	/* Ready for I/O. */
1044 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1045 }
1046 
1047 /*-------------------------- Device Teardown Support -------------------------*/
1048 /**
1049  * Perform device shutdown functions.
1050  *
1051  * \param xnb  Per-instance xnb configuration structure.
1052  *
1053  * Mark this instance as shutting down, wait for any active requests
1054  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1055  * a thread invoking our detach method) that detach can now proceed.
1056  */
1057 static int
1058 xnb_shutdown(struct xnb_softc *xnb)
1059 {
1060 	/*
1061 	 * Due to the need to drop our mutex during some
1062 	 * xenbus operations, it is possible for two threads
1063 	 * to attempt to close out shutdown processing at
1064 	 * the same time.  Tell the caller that hits this
1065 	 * race to try back later.
1066 	 */
1067 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1068 		return (EAGAIN);
1069 
1070 	xnb->flags |= XNBF_SHUTDOWN;
1071 
1072 	xnb->flags |= XNBF_IN_SHUTDOWN;
1073 
1074 	mtx_unlock(&xnb->sc_lock);
1075 	/* Free the network interface */
1076 	xnb->carrier = 0;
1077 	if (xnb->xnb_ifp != NULL) {
1078 		ether_ifdetach(xnb->xnb_ifp);
1079 		if_free(xnb->xnb_ifp);
1080 		xnb->xnb_ifp = NULL;
1081 	}
1082 	mtx_lock(&xnb->sc_lock);
1083 
1084 	xnb_disconnect(xnb);
1085 
1086 	mtx_unlock(&xnb->sc_lock);
1087 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1088 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1089 	mtx_lock(&xnb->sc_lock);
1090 
1091 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1092 
1093 
1094 	/* Indicate to xnb_detach() that is it safe to proceed. */
1095 	wakeup(xnb);
1096 
1097 	return (0);
1098 }
1099 
1100 /**
1101  * Report an attach time error to the console and Xen, and cleanup
1102  * this instance by forcing immediate detach processing.
1103  *
1104  * \param xnb  Per-instance xnb configuration structure.
1105  * \param err  Errno describing the error.
1106  * \param fmt  Printf style format and arguments
1107  */
1108 static void
1109 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1110 {
1111 	va_list ap;
1112 	va_list ap_hotplug;
1113 
1114 	va_start(ap, fmt);
1115 	va_copy(ap_hotplug, ap);
1116 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1117 		  "hotplug-error", fmt, ap_hotplug);
1118 	va_end(ap_hotplug);
1119 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1120 		  "hotplug-status", "error");
1121 
1122 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1123 	va_end(ap);
1124 
1125 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1126 		  "online", "0");
1127 	xnb_detach(xnb->dev);
1128 }
1129 
1130 /*---------------------------- NewBus Entrypoints ----------------------------*/
1131 /**
1132  * Inspect a XenBus device and claim it if is of the appropriate type.
1133  *
1134  * \param dev  NewBus device object representing a candidate XenBus device.
1135  *
1136  * \return  0 for success, errno codes for failure.
1137  */
1138 static int
1139 xnb_probe(device_t dev)
1140 {
1141 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1142 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1143 		    devclass_get_name(device_get_devclass(dev)));
1144 		device_set_desc(dev, "Backend Virtual Network Device");
1145 		device_quiet(dev);
1146 		return (0);
1147 	}
1148 	return (ENXIO);
1149 }
1150 
1151 /**
1152  * Setup sysctl variables to control various Network Back parameters.
1153  *
1154  * \param xnb  Xen Net Back softc.
1155  *
1156  */
1157 static void
1158 xnb_setup_sysctl(struct xnb_softc *xnb)
1159 {
1160 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1161 	struct sysctl_oid      *sysctl_tree = NULL;
1162 
1163 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1164 	if (sysctl_ctx == NULL)
1165 		return;
1166 
1167 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1168 	if (sysctl_tree == NULL)
1169 		return;
1170 
1171 #ifdef XNB_DEBUG
1172 	SYSCTL_ADD_PROC(sysctl_ctx,
1173 			SYSCTL_CHILDREN(sysctl_tree),
1174 			OID_AUTO,
1175 			"unit_test_results",
1176 			CTLTYPE_STRING | CTLFLAG_RD,
1177 			xnb,
1178 			0,
1179 			xnb_unit_test_main,
1180 			"A",
1181 			"Results of builtin unit tests");
1182 
1183 	SYSCTL_ADD_PROC(sysctl_ctx,
1184 			SYSCTL_CHILDREN(sysctl_tree),
1185 			OID_AUTO,
1186 			"dump_rings",
1187 			CTLTYPE_STRING | CTLFLAG_RD,
1188 			xnb,
1189 			0,
1190 			xnb_dump_rings,
1191 			"A",
1192 			"Xennet Back Rings");
1193 #endif /* XNB_DEBUG */
1194 }
1195 
1196 /**
1197  * Create a network device.
1198  * @param handle device handle
1199  */
1200 int
1201 create_netdev(device_t dev)
1202 {
1203 	struct ifnet *ifp;
1204 	struct xnb_softc *xnb;
1205 	int err = 0;
1206 	uint32_t handle;
1207 
1208 	xnb = device_get_softc(dev);
1209 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1210 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1211 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1212 
1213 	xnb->dev = dev;
1214 
1215 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1216 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1217 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1218 
1219 	/*
1220 	 * Set the MAC address to a dummy value (00:00:00:00:00),
1221 	 * if the MAC address of the host-facing interface is set
1222 	 * to the same as the guest-facing one (the value found in
1223 	 * xenstore), the bridge would stop delivering packets to
1224 	 * us because it would see that the destination address of
1225 	 * the packet is the same as the interface, and so the bridge
1226 	 * would expect the packet has already been delivered locally
1227 	 * (and just drop it).
1228 	 */
1229 	bzero(&xnb->mac[0], sizeof(xnb->mac));
1230 
1231 	/* The interface will be named using the following nomenclature:
1232 	 *
1233 	 * xnb<domid>.<handle>
1234 	 *
1235 	 * Where handle is the oder of the interface referred to the guest.
1236 	 */
1237 	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1238 		       "%" PRIu32, &handle);
1239 	if (err != 0)
1240 		return (err);
1241 	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1242 	    xenbus_get_otherend_id(dev), handle);
1243 
1244 	if (err == 0) {
1245 		/* Set up ifnet structure */
1246 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1247 		ifp->if_softc = xnb;
1248 		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1249 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1250 		ifp->if_ioctl = xnb_ioctl;
1251 		ifp->if_output = ether_output;
1252 		ifp->if_start = xnb_start;
1253 #ifdef notyet
1254 		ifp->if_watchdog = xnb_watchdog;
1255 #endif
1256 		ifp->if_init = xnb_ifinit;
1257 		ifp->if_mtu = ETHERMTU;
1258 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1259 
1260 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1261 		ifp->if_capabilities = IFCAP_HWCSUM;
1262 		ifp->if_capenable = IFCAP_HWCSUM;
1263 
1264 		ether_ifattach(ifp, xnb->mac);
1265 		xnb->carrier = 0;
1266 	}
1267 
1268 	return err;
1269 }
1270 
1271 /**
1272  * Attach to a XenBus device that has been claimed by our probe routine.
1273  *
1274  * \param dev  NewBus device object representing this Xen Net Back instance.
1275  *
1276  * \return  0 for success, errno codes for failure.
1277  */
1278 static int
1279 xnb_attach(device_t dev)
1280 {
1281 	struct xnb_softc *xnb;
1282 	int	error;
1283 	xnb_ring_type_t	i;
1284 
1285 	error = create_netdev(dev);
1286 	if (error != 0) {
1287 		xenbus_dev_fatal(dev, error, "creating netdev");
1288 		return (error);
1289 	}
1290 
1291 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1292 
1293 	/*
1294 	 * Basic initialization.
1295 	 * After this block it is safe to call xnb_detach()
1296 	 * to clean up any allocated data for this instance.
1297 	 */
1298 	xnb = device_get_softc(dev);
1299 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1300 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1301 		xnb->ring_configs[i].ring_pages = 1;
1302 	}
1303 
1304 	/*
1305 	 * Setup sysctl variables.
1306 	 */
1307 	xnb_setup_sysctl(xnb);
1308 
1309 	/* Update hot-plug status to satisfy xend. */
1310 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1311 			  "hotplug-status", "connected");
1312 	if (error != 0) {
1313 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1314 				  xenbus_get_node(xnb->dev));
1315 		return (error);
1316 	}
1317 
1318 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1319 		/*
1320 		 * If we can't publish our data, we cannot participate
1321 		 * in this connection, and waiting for a front-end state
1322 		 * change will not help the situation.
1323 		 */
1324 		xnb_attach_failed(xnb, error,
1325 		    "Publishing backend status for %s",
1326 				  xenbus_get_node(xnb->dev));
1327 		return error;
1328 	}
1329 
1330 	/* Tell the front end that we are ready to connect. */
1331 	xenbus_set_state(dev, XenbusStateInitWait);
1332 
1333 	return (0);
1334 }
1335 
1336 /**
1337  * Detach from a net back device instance.
1338  *
1339  * \param dev  NewBus device object representing this Xen Net Back instance.
1340  *
1341  * \return  0 for success, errno codes for failure.
1342  *
1343  * \note A net back device may be detached at any time in its life-cycle,
1344  *       including part way through the attach process.  For this reason,
1345  *       initialization order and the intialization state checks in this
1346  *       routine must be carefully coupled so that attach time failures
1347  *       are gracefully handled.
1348  */
1349 static int
1350 xnb_detach(device_t dev)
1351 {
1352 	struct xnb_softc *xnb;
1353 
1354 	DPRINTF("\n");
1355 
1356 	xnb = device_get_softc(dev);
1357 	mtx_lock(&xnb->sc_lock);
1358 	while (xnb_shutdown(xnb) == EAGAIN) {
1359 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1360 		       "xnb_shutdown", 0);
1361 	}
1362 	mtx_unlock(&xnb->sc_lock);
1363 	DPRINTF("\n");
1364 
1365 	mtx_destroy(&xnb->tx_lock);
1366 	mtx_destroy(&xnb->rx_lock);
1367 	mtx_destroy(&xnb->sc_lock);
1368 	return (0);
1369 }
1370 
1371 /**
1372  * Prepare this net back device for suspension of this VM.
1373  *
1374  * \param dev  NewBus device object representing this Xen net Back instance.
1375  *
1376  * \return  0 for success, errno codes for failure.
1377  */
1378 static int
1379 xnb_suspend(device_t dev)
1380 {
1381 	return (0);
1382 }
1383 
1384 /**
1385  * Perform any processing required to recover from a suspended state.
1386  *
1387  * \param dev  NewBus device object representing this Xen Net Back instance.
1388  *
1389  * \return  0 for success, errno codes for failure.
1390  */
1391 static int
1392 xnb_resume(device_t dev)
1393 {
1394 	return (0);
1395 }
1396 
1397 /**
1398  * Handle state changes expressed via the XenStore by our front-end peer.
1399  *
1400  * \param dev             NewBus device object representing this Xen
1401  *                        Net Back instance.
1402  * \param frontend_state  The new state of the front-end.
1403  *
1404  * \return  0 for success, errno codes for failure.
1405  */
1406 static void
1407 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1408 {
1409 	struct xnb_softc *xnb;
1410 
1411 	xnb = device_get_softc(dev);
1412 
1413 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1414 	        xenbus_strstate(frontend_state),
1415 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1416 
1417 	switch (frontend_state) {
1418 	case XenbusStateInitialising:
1419 		break;
1420 	case XenbusStateInitialised:
1421 	case XenbusStateConnected:
1422 		xnb_connect(xnb);
1423 		break;
1424 	case XenbusStateClosing:
1425 	case XenbusStateClosed:
1426 		mtx_lock(&xnb->sc_lock);
1427 		xnb_shutdown(xnb);
1428 		mtx_unlock(&xnb->sc_lock);
1429 		if (frontend_state == XenbusStateClosed)
1430 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1431 		break;
1432 	default:
1433 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1434 				 frontend_state);
1435 		break;
1436 	}
1437 }
1438 
1439 
1440 /*---------------------------- Request Processing ----------------------------*/
1441 /**
1442  * Interrupt handler bound to the shared ring's event channel.
1443  * Entry point for the xennet transmit path in netback
1444  * Transfers packets from the Xen ring to the host's generic networking stack
1445  *
1446  * \param arg  Callback argument registerd during event channel
1447  *             binding - the xnb_softc for this instance.
1448  */
1449 static void
1450 xnb_intr(void *arg)
1451 {
1452 	struct xnb_softc *xnb;
1453 	struct ifnet *ifp;
1454 	netif_tx_back_ring_t *txb;
1455 	RING_IDX req_prod_local;
1456 
1457 	xnb = (struct xnb_softc *)arg;
1458 	ifp = xnb->xnb_ifp;
1459 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1460 
1461 	mtx_lock(&xnb->tx_lock);
1462 	do {
1463 		int notify;
1464 		req_prod_local = txb->sring->req_prod;
1465 		xen_rmb();
1466 
1467 		for (;;) {
1468 			struct mbuf *mbufc;
1469 			int err;
1470 
1471 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1472 			    	       xnb->tx_gnttab);
1473 			if (err || (mbufc == NULL))
1474 				break;
1475 
1476 			/* Send the packet to the generic network stack */
1477 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1478 		}
1479 
1480 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1481 		if (notify != 0)
1482 			xen_intr_signal(xnb->xen_intr_handle);
1483 
1484 		txb->sring->req_event = txb->req_cons + 1;
1485 		xen_mb();
1486 	} while (txb->sring->req_prod != req_prod_local) ;
1487 	mtx_unlock(&xnb->tx_lock);
1488 
1489 	xnb_start(ifp);
1490 }
1491 
1492 
1493 /**
1494  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1495  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1496  * \param[out]	pkt	The returned packet.  If there is an error building
1497  * 			the packet, pkt.list_len will be set to 0.
1498  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1499  * \param[in]	start	The ring index of the first potential request
1500  * \return		The number of requests consumed to build this packet
1501  */
1502 static int
1503 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1504 	     RING_IDX start)
1505 {
1506 	/*
1507 	 * Outline:
1508 	 * 1) Initialize pkt
1509 	 * 2) Read the first request of the packet
1510 	 * 3) Read the extras
1511 	 * 4) Set cdr
1512 	 * 5) Loop on the remainder of the packet
1513 	 * 6) Finalize pkt (stuff like car_size and list_len)
1514 	 */
1515 	int idx = start;
1516 	int discard = 0;	/* whether to discard the packet */
1517 	int more_data = 0;	/* there are more request past the last one */
1518 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1519 
1520 	xnb_pkt_initialize(pkt);
1521 
1522 	/* Read the first request */
1523 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1524 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1525 		pkt->size = tx->size;
1526 		pkt->flags = tx->flags & ~NETTXF_more_data;
1527 		more_data = tx->flags & NETTXF_more_data;
1528 		pkt->list_len++;
1529 		pkt->car = idx;
1530 		idx++;
1531 	}
1532 
1533 	/* Read the extra info */
1534 	if ((pkt->flags & NETTXF_extra_info) &&
1535 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1536 		netif_extra_info_t *ext =
1537 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1538 		pkt->extra.type = ext->type;
1539 		switch (pkt->extra.type) {
1540 			case XEN_NETIF_EXTRA_TYPE_GSO:
1541 				pkt->extra.u.gso = ext->u.gso;
1542 				break;
1543 			default:
1544 				/*
1545 				 * The reference Linux netfront driver will
1546 				 * never set any other extra.type.  So we don't
1547 				 * know what to do with it.  Let's print an
1548 				 * error, then consume and discard the packet
1549 				 */
1550 				printf("xnb(%s:%d): Unknown extra info type %d."
1551 				       "  Discarding packet\n",
1552 				       __func__, __LINE__, pkt->extra.type);
1553 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1554 				    start));
1555 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1556 				    idx));
1557 				discard = 1;
1558 				break;
1559 		}
1560 
1561 		pkt->extra.flags = ext->flags;
1562 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1563 			/*
1564 			 * The reference linux netfront driver never sets this
1565 			 * flag (nor does any other known netfront).  So we
1566 			 * will discard the packet.
1567 			 */
1568 			printf("xnb(%s:%d): Request sets "
1569 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1570 			    "that\n", __func__, __LINE__);
1571 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1572 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1573 			discard = 1;
1574 		}
1575 
1576 		idx++;
1577 	}
1578 
1579 	/* Set cdr.  If there is not more data, cdr is invalid */
1580 	pkt->cdr = idx;
1581 
1582 	/* Loop on remainder of packet */
1583 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1584 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1585 		pkt->list_len++;
1586 		cdr_size += tx->size;
1587 		if (tx->flags & ~NETTXF_more_data) {
1588 			/* There should be no other flags set at this point */
1589 			printf("xnb(%s:%d): Request sets unknown flags %d "
1590 			    "after the 1st request in the packet.\n",
1591 			    __func__, __LINE__, tx->flags);
1592 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1593 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1594 		}
1595 
1596 		more_data = tx->flags & NETTXF_more_data;
1597 		idx++;
1598 	}
1599 
1600 	/* Finalize packet */
1601 	if (more_data != 0) {
1602 		/* The ring ran out of requests before finishing the packet */
1603 		xnb_pkt_invalidate(pkt);
1604 		idx = start;	/* tell caller that we consumed no requests */
1605 	} else {
1606 		/* Calculate car_size */
1607 		pkt->car_size = pkt->size - cdr_size;
1608 	}
1609 	if (discard != 0) {
1610 		xnb_pkt_invalidate(pkt);
1611 	}
1612 
1613 	return idx - start;
1614 }
1615 
1616 
1617 /**
1618  * Respond to all the requests that constituted pkt.  Builds the responses and
1619  * writes them to the ring, but doesn't push them to the shared ring.
1620  * \param[in] pkt	the packet that needs a response
1621  * \param[in] error	true if there was an error handling the packet, such
1622  * 			as in the hypervisor copy op or mbuf allocation
1623  * \param[out] ring	Responses go here
1624  */
1625 static void
1626 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1627 	      int error)
1628 {
1629 	/*
1630 	 * Outline:
1631 	 * 1) Respond to the first request
1632 	 * 2) Respond to the extra info reques
1633 	 * Loop through every remaining request in the packet, generating
1634 	 * responses that copy those requests' ids and sets the status
1635 	 * appropriately.
1636 	 */
1637 	netif_tx_request_t *tx;
1638 	netif_tx_response_t *rsp;
1639 	int i;
1640 	uint16_t status;
1641 
1642 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1643 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1644 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1645 	    ("Cannot respond to ring requests out of order"));
1646 
1647 	if (pkt->list_len >= 1) {
1648 		uint16_t id;
1649 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1650 		id = tx->id;
1651 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1652 		rsp->id = id;
1653 		rsp->status = status;
1654 		ring->rsp_prod_pvt++;
1655 
1656 		if (pkt->flags & NETRXF_extra_info) {
1657 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1658 			rsp->status = NETIF_RSP_NULL;
1659 			ring->rsp_prod_pvt++;
1660 		}
1661 	}
1662 
1663 	for (i=0; i < pkt->list_len - 1; i++) {
1664 		uint16_t id;
1665 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1666 		id = tx->id;
1667 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1668 		rsp->id = id;
1669 		rsp->status = status;
1670 		ring->rsp_prod_pvt++;
1671 	}
1672 }
1673 
1674 /**
1675  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1676  * in the mbuf chain, but does not copy the data.  The returned chain must be
1677  * free()'d when no longer needed
1678  * \param[in]	pkt	A packet to model the mbuf chain after
1679  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1680  * 		NULL on failure
1681  */
1682 static struct mbuf*
1683 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1684 {
1685 	/**
1686 	 * \todo consider using a memory pool for mbufs instead of
1687 	 * reallocating them for every packet
1688 	 */
1689 	/** \todo handle extra data */
1690 	struct mbuf *m;
1691 
1692 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1693 
1694 	if (m != NULL) {
1695 		m->m_pkthdr.rcvif = ifp;
1696 		if (pkt->flags & NETTXF_data_validated) {
1697 			/*
1698 			 * We lie to the host OS and always tell it that the
1699 			 * checksums are ok, because the packet is unlikely to
1700 			 * get corrupted going across domains.
1701 			 */
1702 			m->m_pkthdr.csum_flags = (
1703 				CSUM_IP_CHECKED |
1704 				CSUM_IP_VALID   |
1705 				CSUM_DATA_VALID |
1706 				CSUM_PSEUDO_HDR
1707 				);
1708 			m->m_pkthdr.csum_data = 0xffff;
1709 		}
1710 	}
1711 	return m;
1712 }
1713 
1714 /**
1715  * Build a gnttab_copy table that can be used to copy data from a pkt
1716  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1717  * the packet side.
1718  * \param[in]	pkt	pkt's associated requests form the src for
1719  * 			the copy operation
1720  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1721  * \param[out]  gnttab	Storage for the returned grant table
1722  * \param[in]	txb	Pointer to the backend ring structure
1723  * \param[in]	otherend_id	The domain ID of the other end of the copy
1724  * \return 		The number of gnttab entries filled
1725  */
1726 static int
1727 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1728 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1729 		 domid_t otherend_id)
1730 {
1731 
1732 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1733 	int gnt_idx = 0;		/* index into grant table */
1734 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1735 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1736 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1737 	/* size in bytes that still needs to be represented in the table */
1738 	uint16_t size_remaining = pkt->size;
1739 
1740 	while (size_remaining > 0) {
1741 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1742 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1743 		const size_t req_size =
1744 			r_idx == pkt->car ? pkt->car_size : txq->size;
1745 		const size_t pkt_space = req_size - r_ofs;
1746 		/*
1747 		 * space is the largest amount of data that can be copied in the
1748 		 * grant table's next entry
1749 		 */
1750 		const size_t space = MIN(pkt_space, mbuf_space);
1751 
1752 		/* TODO: handle this error condition without panicking */
1753 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1754 
1755 		gnttab[gnt_idx].source.u.ref = txq->gref;
1756 		gnttab[gnt_idx].source.domid = otherend_id;
1757 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1758 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1759 		    mtod(mbuf, vm_offset_t) + m_ofs);
1760 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1761 		    mtod(mbuf, vm_offset_t) + m_ofs);
1762 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1763 		gnttab[gnt_idx].len = space;
1764 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1765 
1766 		gnt_idx++;
1767 		r_ofs += space;
1768 		m_ofs += space;
1769 		size_remaining -= space;
1770 		if (req_size - r_ofs <= 0) {
1771 			/* Must move to the next tx request */
1772 			r_ofs = 0;
1773 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1774 		}
1775 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1776 			/* Must move to the next mbuf */
1777 			m_ofs = 0;
1778 			mbuf = mbuf->m_next;
1779 		}
1780 	}
1781 
1782 	return gnt_idx;
1783 }
1784 
1785 /**
1786  * Check the status of the grant copy operations, and update mbufs various
1787  * non-data fields to reflect the data present.
1788  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1789  * 			the correct length, and data should already be present
1790  * \param[in] gnttab	A grant table for a just completed copy op
1791  * \param[in] n_entries The number of valid entries in the grant table
1792  */
1793 static void
1794 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1795     		 int n_entries)
1796 {
1797 	struct mbuf *mbuf = mbufc;
1798 	int i;
1799 	size_t total_size = 0;
1800 
1801 	for (i = 0; i < n_entries; i++) {
1802 		KASSERT(gnttab[i].status == GNTST_okay,
1803 		    ("Some gnttab_copy entry had error status %hd\n",
1804 		    gnttab[i].status));
1805 
1806 		mbuf->m_len += gnttab[i].len;
1807 		total_size += gnttab[i].len;
1808 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1809 			mbuf = mbuf->m_next;
1810 		}
1811 	}
1812 	mbufc->m_pkthdr.len = total_size;
1813 
1814 #if defined(INET) || defined(INET6)
1815 	xnb_add_mbuf_cksum(mbufc);
1816 #endif
1817 }
1818 
1819 /**
1820  * Dequeue at most one packet from the shared ring
1821  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1822  * 			its private indices will be updated.  But the indices
1823  * 			will not be pushed to the shared ring.
1824  * \param[in] ifnet	Interface to which the packet will be sent
1825  * \param[in] otherend	Domain ID of the other end of the ring
1826  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1827  * 			networking stack
1828  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1829  * 			this a function parameter so that we will take less
1830  * 			stack space.
1831  * \return		An error code
1832  */
1833 static int
1834 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1835 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1836 {
1837 	struct xnb_pkt pkt;
1838 	/* number of tx requests consumed to build the last packet */
1839 	int num_consumed;
1840 	int nr_ents;
1841 
1842 	*mbufc = NULL;
1843 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1844 	if (num_consumed == 0)
1845 		return 0;	/* Nothing to receive */
1846 
1847 	/* update statistics independent of errors */
1848 	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1849 
1850 	/*
1851 	 * if we got here, then 1 or more requests was consumed, but the packet
1852 	 * is not necessarily valid.
1853 	 */
1854 	if (xnb_pkt_is_valid(&pkt) == 0) {
1855 		/* got a garbage packet, respond and drop it */
1856 		xnb_txpkt2rsp(&pkt, txb, 1);
1857 		txb->req_cons += num_consumed;
1858 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1859 				num_consumed);
1860 		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1861 		return EINVAL;
1862 	}
1863 
1864 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1865 
1866 	if (*mbufc == NULL) {
1867 		/*
1868 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1869 		 * not consume the requests
1870 		 */
1871 		xnb_txpkt2rsp(&pkt, txb, 1);
1872 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1873 		    num_consumed);
1874 		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1875 		return ENOMEM;
1876 	}
1877 
1878 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1879 
1880 	if (nr_ents > 0) {
1881 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1882 		    gnttab, nr_ents);
1883 		KASSERT(hv_ret == 0,
1884 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1885 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1886 	}
1887 
1888 	xnb_txpkt2rsp(&pkt, txb, 0);
1889 	txb->req_cons += num_consumed;
1890 	return 0;
1891 }
1892 
1893 /**
1894  * Create an xnb_pkt based on the contents of an mbuf chain.
1895  * \param[in] mbufc	mbuf chain to transform into a packet
1896  * \param[out] pkt	Storage for the newly generated xnb_pkt
1897  * \param[in] start	The ring index of the first available slot in the rx
1898  * 			ring
1899  * \param[in] space	The number of free slots in the rx ring
1900  * \retval 0		Success
1901  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1902  * \retval EAGAIN	There was not enough space in the ring to queue the
1903  * 			packet
1904  */
1905 static int
1906 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1907 	      RING_IDX start, int space)
1908 {
1909 
1910 	int retval = 0;
1911 
1912 	if ((mbufc == NULL) ||
1913 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1914 	     (mbufc->m_pkthdr.len == 0)) {
1915 		xnb_pkt_invalidate(pkt);
1916 		retval = EINVAL;
1917 	} else {
1918 		int slots_required;
1919 
1920 		xnb_pkt_validate(pkt);
1921 		pkt->flags = 0;
1922 		pkt->size = mbufc->m_pkthdr.len;
1923 		pkt->car = start;
1924 		pkt->car_size = mbufc->m_len;
1925 
1926 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1927 			pkt->flags |= NETRXF_extra_info;
1928 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1929 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1930 			pkt->extra.u.gso.pad = 0;
1931 			pkt->extra.u.gso.features = 0;
1932 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1933 			pkt->extra.flags = 0;
1934 			pkt->cdr = start + 2;
1935 		} else {
1936 			pkt->cdr = start + 1;
1937 		}
1938 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1939 			pkt->flags |=
1940 			    (NETRXF_csum_blank | NETRXF_data_validated);
1941 		}
1942 
1943 		/*
1944 		 * Each ring response can have up to PAGE_SIZE of data.
1945 		 * Assume that we can defragment the mbuf chain efficiently
1946 		 * into responses so that each response but the last uses all
1947 		 * PAGE_SIZE bytes.
1948 		 */
1949 		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1950 
1951 		if (pkt->list_len > 1) {
1952 			pkt->flags |= NETRXF_more_data;
1953 		}
1954 
1955 		slots_required = pkt->list_len +
1956 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1957 		if (slots_required > space) {
1958 			xnb_pkt_invalidate(pkt);
1959 			retval = EAGAIN;
1960 		}
1961 	}
1962 
1963 	return retval;
1964 }
1965 
1966 /**
1967  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1968  * to the frontend's shared buffers.  Does not actually perform the copy.
1969  * Always uses gref's on the other end's side.
1970  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1971  * 			operatoin
1972  * \param[in]	mbufc	The source for the copy operation
1973  * \param[out]	gnttab	Storage for the returned grant table
1974  * \param[in]	rxb	Pointer to the backend ring structure
1975  * \param[in]	otherend_id	The domain ID of the other end of the copy
1976  * \return 		The number of gnttab entries filled
1977  */
1978 static int
1979 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1980 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1981 		 domid_t otherend_id)
1982 {
1983 
1984 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1985 	int gnt_idx = 0;		/* index into grant table */
1986 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1987 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1988 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1989 	/* size in bytes that still needs to be represented in the table */
1990 	uint16_t size_remaining;
1991 
1992 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1993 
1994 	while (size_remaining > 0) {
1995 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1996 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1997 		/* Xen shared pages have an implied size of PAGE_SIZE */
1998 		const size_t req_size = PAGE_SIZE;
1999 		const size_t pkt_space = req_size - r_ofs;
2000 		/*
2001 		 * space is the largest amount of data that can be copied in the
2002 		 * grant table's next entry
2003 		 */
2004 		const size_t space = MIN(pkt_space, mbuf_space);
2005 
2006 		/* TODO: handle this error condition without panicing */
2007 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
2008 
2009 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
2010 		gnttab[gnt_idx].dest.domid = otherend_id;
2011 		gnttab[gnt_idx].dest.offset = r_ofs;
2012 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
2013 		    mtod(mbuf, vm_offset_t) + m_ofs);
2014 		gnttab[gnt_idx].source.offset = virt_to_offset(
2015 		    mtod(mbuf, vm_offset_t) + m_ofs);
2016 		gnttab[gnt_idx].source.domid = DOMID_SELF;
2017 		gnttab[gnt_idx].len = space;
2018 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
2019 
2020 		gnt_idx++;
2021 
2022 		r_ofs += space;
2023 		m_ofs += space;
2024 		size_remaining -= space;
2025 		if (req_size - r_ofs <= 0) {
2026 			/* Must move to the next rx request */
2027 			r_ofs = 0;
2028 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2029 		}
2030 		if (mbuf->m_len - m_ofs <= 0) {
2031 			/* Must move to the next mbuf */
2032 			m_ofs = 0;
2033 			mbuf = mbuf->m_next;
2034 		}
2035 	}
2036 
2037 	return gnt_idx;
2038 }
2039 
2040 /**
2041  * Generates responses for all the requests that constituted pkt.  Builds
2042  * responses and writes them to the ring, but doesn't push the shared ring
2043  * indices.
2044  * \param[in] pkt	the packet that needs a response
2045  * \param[in] gnttab	The grant copy table corresponding to this packet.
2046  * 			Used to determine how many rsp->netif_rx_response_t's to
2047  * 			generate.
2048  * \param[in] n_entries	Number of relevant entries in the grant table
2049  * \param[out] ring	Responses go here
2050  * \return		The number of RX requests that were consumed to generate
2051  * 			the responses
2052  */
2053 static int
2054 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2055     	      int n_entries, netif_rx_back_ring_t *ring)
2056 {
2057 	/*
2058 	 * This code makes the following assumptions:
2059 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2060 	 *	* The entries in gnttab are grouped by their grefs: any two
2061 	 *	   entries with the same gref must be adjacent
2062 	 */
2063 	int error = 0;
2064 	int gnt_idx, i;
2065 	int n_responses = 0;
2066 	grant_ref_t last_gref = GRANT_REF_INVALID;
2067 	RING_IDX r_idx;
2068 
2069 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2070 
2071 	/*
2072 	 * In the event of an error, we only need to send one response to the
2073 	 * netfront.  In that case, we musn't write any data to the responses
2074 	 * after the one we send.  So we must loop all the way through gnttab
2075 	 * looking for errors before we generate any responses
2076 	 *
2077 	 * Since we're looping through the grant table anyway, we'll count the
2078 	 * number of different gref's in it, which will tell us how many
2079 	 * responses to generate
2080 	 */
2081 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2082 		int16_t status = gnttab[gnt_idx].status;
2083 		if (status != GNTST_okay) {
2084 			DPRINTF(
2085 			    "Got error %d for hypervisor gnttab_copy status\n",
2086 			    status);
2087 			error = 1;
2088 			break;
2089 		}
2090 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2091 			n_responses++;
2092 			last_gref = gnttab[gnt_idx].dest.u.ref;
2093 		}
2094 	}
2095 
2096 	if (error != 0) {
2097 		uint16_t id;
2098 		netif_rx_response_t *rsp;
2099 
2100 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2101 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2102 		rsp->id = id;
2103 		rsp->status = NETIF_RSP_ERROR;
2104 		n_responses = 1;
2105 	} else {
2106 		gnt_idx = 0;
2107 		const int has_extra = pkt->flags & NETRXF_extra_info;
2108 		if (has_extra != 0)
2109 			n_responses++;
2110 
2111 		for (i = 0; i < n_responses; i++) {
2112 			netif_rx_request_t rxq;
2113 			netif_rx_response_t *rsp;
2114 
2115 			r_idx = ring->rsp_prod_pvt + i;
2116 			/*
2117 			 * We copy the structure of rxq instead of making a
2118 			 * pointer because it shares the same memory as rsp.
2119 			 */
2120 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2121 			rsp = RING_GET_RESPONSE(ring, r_idx);
2122 			if (has_extra && (i == 1)) {
2123 				netif_extra_info_t *ext =
2124 					(netif_extra_info_t*)rsp;
2125 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2126 				ext->flags = 0;
2127 				ext->u.gso.size = pkt->extra.u.gso.size;
2128 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2129 				ext->u.gso.pad = 0;
2130 				ext->u.gso.features = 0;
2131 			} else {
2132 				rsp->id = rxq.id;
2133 				rsp->status = GNTST_okay;
2134 				rsp->offset = 0;
2135 				rsp->flags = 0;
2136 				if (i < pkt->list_len - 1)
2137 					rsp->flags |= NETRXF_more_data;
2138 				if ((i == 0) && has_extra)
2139 					rsp->flags |= NETRXF_extra_info;
2140 				if ((i == 0) &&
2141 					(pkt->flags & NETRXF_data_validated)) {
2142 					rsp->flags |= NETRXF_data_validated;
2143 					rsp->flags |= NETRXF_csum_blank;
2144 				}
2145 				rsp->status = 0;
2146 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2147 				    gnt_idx++) {
2148 					rsp->status += gnttab[gnt_idx].len;
2149 				}
2150 			}
2151 		}
2152 	}
2153 
2154 	ring->req_cons += n_responses;
2155 	ring->rsp_prod_pvt += n_responses;
2156 	return n_responses;
2157 }
2158 
2159 #if defined(INET) || defined(INET6)
2160 /**
2161  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2162  * in the chain must start with a struct ether_header.
2163  *
2164  * XXX This function will perform incorrectly on UDP packets that are split up
2165  * into multiple ethernet frames.
2166  */
2167 static void
2168 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2169 {
2170 	struct ether_header *eh;
2171 	struct ip *iph;
2172 	uint16_t ether_type;
2173 
2174 	eh = mtod(mbufc, struct ether_header*);
2175 	ether_type = ntohs(eh->ether_type);
2176 	if (ether_type != ETHERTYPE_IP) {
2177 		/* Nothing to calculate */
2178 		return;
2179 	}
2180 
2181 	iph = (struct ip*)(eh + 1);
2182 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2183 		iph->ip_sum = 0;
2184 		iph->ip_sum = in_cksum_hdr(iph);
2185 	}
2186 
2187 	switch (iph->ip_p) {
2188 	case IPPROTO_TCP:
2189 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2190 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2191 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2192 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2193 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2194 			th->th_sum = in_cksum_skip(mbufc,
2195 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2196 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2197 		}
2198 		break;
2199 	case IPPROTO_UDP:
2200 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2201 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2202 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2203 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2204 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2205 			uh->uh_sum = in_cksum_skip(mbufc,
2206 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2207 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2208 		}
2209 		break;
2210 	default:
2211 		break;
2212 	}
2213 }
2214 #endif /* INET || INET6 */
2215 
2216 static void
2217 xnb_stop(struct xnb_softc *xnb)
2218 {
2219 	struct ifnet *ifp;
2220 
2221 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2222 	ifp = xnb->xnb_ifp;
2223 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2224 	if_link_state_change(ifp, LINK_STATE_DOWN);
2225 }
2226 
2227 static int
2228 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2229 {
2230 	struct xnb_softc *xnb = ifp->if_softc;
2231 	struct ifreq *ifr = (struct ifreq*) data;
2232 #ifdef INET
2233 	struct ifaddr *ifa = (struct ifaddr*)data;
2234 #endif
2235 	int error = 0;
2236 
2237 	switch (cmd) {
2238 		case SIOCSIFFLAGS:
2239 			mtx_lock(&xnb->sc_lock);
2240 			if (ifp->if_flags & IFF_UP) {
2241 				xnb_ifinit_locked(xnb);
2242 			} else {
2243 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2244 					xnb_stop(xnb);
2245 				}
2246 			}
2247 			/*
2248 			 * Note: netfront sets a variable named xn_if_flags
2249 			 * here, but that variable is never read
2250 			 */
2251 			mtx_unlock(&xnb->sc_lock);
2252 			break;
2253 		case SIOCSIFADDR:
2254 #ifdef INET
2255 			mtx_lock(&xnb->sc_lock);
2256 			if (ifa->ifa_addr->sa_family == AF_INET) {
2257 				ifp->if_flags |= IFF_UP;
2258 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2259 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2260 							IFF_DRV_OACTIVE);
2261 					if_link_state_change(ifp,
2262 							LINK_STATE_DOWN);
2263 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2264 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2265 					if_link_state_change(ifp,
2266 					    LINK_STATE_UP);
2267 				}
2268 				arp_ifinit(ifp, ifa);
2269 				mtx_unlock(&xnb->sc_lock);
2270 			} else {
2271 				mtx_unlock(&xnb->sc_lock);
2272 #endif
2273 				error = ether_ioctl(ifp, cmd, data);
2274 #ifdef INET
2275 			}
2276 #endif
2277 			break;
2278 		case SIOCSIFCAP:
2279 			mtx_lock(&xnb->sc_lock);
2280 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2281 				ifp->if_capenable |= IFCAP_TXCSUM;
2282 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2283 			} else {
2284 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2285 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2286 			}
2287 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2288 				ifp->if_capenable |= IFCAP_RXCSUM;
2289 			} else {
2290 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2291 			}
2292 			/*
2293 			 * TODO enable TSO4 and LRO once we no longer need
2294 			 * to calculate checksums in software
2295 			 */
2296 #if 0
2297 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2298 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2299 					printf("xnb: Xen netif requires that "
2300 						"TXCSUM be enabled in order "
2301 						"to use TSO4\n");
2302 					error = EINVAL;
2303 				} else {
2304 					ifp->if_capenable |= IFCAP_TSO4;
2305 					ifp->if_hwassist |= CSUM_TSO;
2306 				}
2307 			} else {
2308 				ifp->if_capenable &= ~(IFCAP_TSO4);
2309 				ifp->if_hwassist &= ~(CSUM_TSO);
2310 			}
2311 			if (ifr->ifreqcap |= IFCAP_LRO) {
2312 				ifp->if_capenable |= IFCAP_LRO;
2313 			} else {
2314 				ifp->if_capenable &= ~(IFCAP_LRO);
2315 			}
2316 #endif
2317 			mtx_unlock(&xnb->sc_lock);
2318 			break;
2319 		case SIOCSIFMTU:
2320 			ifp->if_mtu = ifr->ifr_mtu;
2321 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2322 			xnb_ifinit(xnb);
2323 			break;
2324 		case SIOCADDMULTI:
2325 		case SIOCDELMULTI:
2326 		case SIOCSIFMEDIA:
2327 		case SIOCGIFMEDIA:
2328 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2329 			break;
2330 		default:
2331 			error = ether_ioctl(ifp, cmd, data);
2332 			break;
2333 	}
2334 	return (error);
2335 }
2336 
2337 static void
2338 xnb_start_locked(struct ifnet *ifp)
2339 {
2340 	netif_rx_back_ring_t *rxb;
2341 	struct xnb_softc *xnb;
2342 	struct mbuf *mbufc;
2343 	RING_IDX req_prod_local;
2344 
2345 	xnb = ifp->if_softc;
2346 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2347 
2348 	if (!xnb->carrier)
2349 		return;
2350 
2351 	do {
2352 		int out_of_space = 0;
2353 		int notify;
2354 		req_prod_local = rxb->sring->req_prod;
2355 		xen_rmb();
2356 		for (;;) {
2357 			int error;
2358 
2359 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2360 			if (mbufc == NULL)
2361 				break;
2362 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2363 			    		 xnb->rx_gnttab);
2364 			switch (error) {
2365 				case EAGAIN:
2366 					/*
2367 					 * Insufficient space in the ring.
2368 					 * Requeue pkt and send when space is
2369 					 * available.
2370 					 */
2371 					IF_PREPEND(&ifp->if_snd, mbufc);
2372 					/*
2373 					 * Perhaps the frontend missed an IRQ
2374 					 * and went to sleep.  Notify it to wake
2375 					 * it up.
2376 					 */
2377 					out_of_space = 1;
2378 					break;
2379 
2380 				case EINVAL:
2381 					/* OS gave a corrupt packet.  Drop it.*/
2382 					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2383 					/* FALLTHROUGH */
2384 				default:
2385 					/* Send succeeded, or packet had error.
2386 					 * Free the packet */
2387 					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2388 					if (mbufc)
2389 						m_freem(mbufc);
2390 					break;
2391 			}
2392 			if (out_of_space != 0)
2393 				break;
2394 		}
2395 
2396 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2397 		if ((notify != 0) || (out_of_space != 0))
2398 			xen_intr_signal(xnb->xen_intr_handle);
2399 		rxb->sring->req_event = req_prod_local + 1;
2400 		xen_mb();
2401 	} while (rxb->sring->req_prod != req_prod_local) ;
2402 }
2403 
2404 /**
2405  * Sends one packet to the ring.  Blocks until the packet is on the ring
2406  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2407  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2408  * 			otherend will not be notified.
2409  * \param[in]	otherend The domain ID of the other end of the connection
2410  * \retval	EAGAIN	The ring did not have enough space for the packet.
2411  * 			The ring has not been modified
2412  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2413  * 			this a function parameter so that we will take less
2414  * 			stack space.
2415  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2416  */
2417 static int
2418 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2419 	 gnttab_copy_table gnttab)
2420 {
2421 	struct xnb_pkt pkt;
2422 	int error, n_entries, n_reqs;
2423 	RING_IDX space;
2424 
2425 	space = ring->sring->req_prod - ring->req_cons;
2426 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2427 	if (error != 0)
2428 		return error;
2429 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2430 	if (n_entries != 0) {
2431 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2432 		    gnttab, n_entries);
2433 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2434 		    hv_ret));
2435 	}
2436 
2437 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2438 
2439 	return 0;
2440 }
2441 
2442 static void
2443 xnb_start(struct ifnet *ifp)
2444 {
2445 	struct xnb_softc *xnb;
2446 
2447 	xnb = ifp->if_softc;
2448 	mtx_lock(&xnb->rx_lock);
2449 	xnb_start_locked(ifp);
2450 	mtx_unlock(&xnb->rx_lock);
2451 }
2452 
2453 /* equivalent of network_open() in Linux */
2454 static void
2455 xnb_ifinit_locked(struct xnb_softc *xnb)
2456 {
2457 	struct ifnet *ifp;
2458 
2459 	ifp = xnb->xnb_ifp;
2460 
2461 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2462 
2463 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2464 		return;
2465 
2466 	xnb_stop(xnb);
2467 
2468 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2469 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2470 	if_link_state_change(ifp, LINK_STATE_UP);
2471 }
2472 
2473 
2474 static void
2475 xnb_ifinit(void *xsc)
2476 {
2477 	struct xnb_softc *xnb = xsc;
2478 
2479 	mtx_lock(&xnb->sc_lock);
2480 	xnb_ifinit_locked(xnb);
2481 	mtx_unlock(&xnb->sc_lock);
2482 }
2483 
2484 /**
2485  * Callback used by the generic networking code to tell us when our carrier
2486  * state has changed.  Since we don't have a physical carrier, we don't care
2487  */
2488 static int
2489 xnb_ifmedia_upd(struct ifnet *ifp)
2490 {
2491 	return (0);
2492 }
2493 
2494 /**
2495  * Callback used by the generic networking code to ask us what our carrier
2496  * state is.  Since we don't have a physical carrier, this is very simple
2497  */
2498 static void
2499 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2500 {
2501 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2502 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2503 }
2504 
2505 
2506 /*---------------------------- NewBus Registration ---------------------------*/
2507 static device_method_t xnb_methods[] = {
2508 	/* Device interface */
2509 	DEVMETHOD(device_probe,		xnb_probe),
2510 	DEVMETHOD(device_attach,	xnb_attach),
2511 	DEVMETHOD(device_detach,	xnb_detach),
2512 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2513 	DEVMETHOD(device_suspend,	xnb_suspend),
2514 	DEVMETHOD(device_resume,	xnb_resume),
2515 
2516 	/* Xenbus interface */
2517 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2518 
2519 	{ 0, 0 }
2520 };
2521 
2522 static driver_t xnb_driver = {
2523 	"xnb",
2524 	xnb_methods,
2525 	sizeof(struct xnb_softc),
2526 };
2527 devclass_t xnb_devclass;
2528 
2529 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2530 
2531 
2532 /*-------------------------- Unit Tests -------------------------------------*/
2533 #ifdef XNB_DEBUG
2534 #include "netback_unit_tests.c"
2535 #endif
2536