1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2009-2011 Spectra Logic Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 19 * NO WARRANTY 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 28 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 29 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGES. 31 * 32 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 33 * Alan Somers (Spectra Logic Corporation) 34 * John Suykerbuyk (Spectra Logic Corporation) 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /** 41 * \file netback.c 42 * 43 * \brief Device driver supporting the vending of network access 44 * from this FreeBSD domain to other domains. 45 */ 46 #include "opt_inet.h" 47 #include "opt_inet6.h" 48 49 #include <sys/param.h> 50 #include <sys/kernel.h> 51 52 #include <sys/bus.h> 53 #include <sys/module.h> 54 #include <sys/rman.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_arp.h> 62 #include <net/ethernet.h> 63 #include <net/if_dl.h> 64 #include <net/if_media.h> 65 #include <net/if_types.h> 66 67 #include <netinet/in.h> 68 #include <netinet/ip.h> 69 #include <netinet/if_ether.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip_icmp.h> 72 #include <netinet/udp.h> 73 #include <machine/in_cksum.h> 74 75 #include <vm/vm.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_kern.h> 79 80 #include <machine/_inttypes.h> 81 82 #include <xen/xen-os.h> 83 #include <xen/hypervisor.h> 84 #include <xen/xen_intr.h> 85 #include <xen/interface/io/netif.h> 86 #include <xen/xenbus/xenbusvar.h> 87 88 /*--------------------------- Compile-time Tunables --------------------------*/ 89 90 /*---------------------------------- Macros ----------------------------------*/ 91 /** 92 * Custom malloc type for all driver allocations. 93 */ 94 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data"); 95 96 #define XNB_SG 1 /* netback driver supports feature-sg */ 97 #define XNB_GSO_TCPV4 0 /* netback driver supports feature-gso-tcpv4 */ 98 #define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */ 99 #define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */ 100 101 #undef XNB_DEBUG 102 #define XNB_DEBUG /* hardcode on during development */ 103 104 #ifdef XNB_DEBUG 105 #define DPRINTF(fmt, args...) \ 106 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) 107 #else 108 #define DPRINTF(fmt, args...) do {} while (0) 109 #endif 110 111 /* Default length for stack-allocated grant tables */ 112 #define GNTTAB_LEN (64) 113 114 /* Features supported by all backends. TSO and LRO can be negotiated */ 115 #define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 116 117 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 118 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 119 120 /** 121 * Two argument version of the standard macro. Second argument is a tentative 122 * value of req_cons 123 */ 124 #define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \ 125 unsigned int req = (_r)->sring->req_prod - cons; \ 126 unsigned int rsp = RING_SIZE(_r) - \ 127 (cons - (_r)->rsp_prod_pvt); \ 128 req < rsp ? req : rsp; \ 129 }) 130 131 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT) 132 #define virt_to_offset(x) ((x) & (PAGE_SIZE - 1)) 133 134 /** 135 * Predefined array type of grant table copy descriptors. Used to pass around 136 * statically allocated memory structures. 137 */ 138 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN]; 139 140 /*--------------------------- Forward Declarations ---------------------------*/ 141 struct xnb_softc; 142 struct xnb_pkt; 143 144 static void xnb_attach_failed(struct xnb_softc *xnb, 145 int err, const char *fmt, ...) 146 __printflike(3,4); 147 static int xnb_shutdown(struct xnb_softc *xnb); 148 static int create_netdev(device_t dev); 149 static int xnb_detach(device_t dev); 150 static int xnb_ifmedia_upd(struct ifnet *ifp); 151 static void xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 152 static void xnb_intr(void *arg); 153 static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend, 154 const struct mbuf *mbufc, gnttab_copy_table gnttab); 155 static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, 156 struct mbuf **mbufc, struct ifnet *ifnet, 157 gnttab_copy_table gnttab); 158 static int xnb_ring2pkt(struct xnb_pkt *pkt, 159 const netif_tx_back_ring_t *tx_ring, 160 RING_IDX start); 161 static void xnb_txpkt2rsp(const struct xnb_pkt *pkt, 162 netif_tx_back_ring_t *ring, int error); 163 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp); 164 static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt, 165 struct mbuf *mbufc, 166 gnttab_copy_table gnttab, 167 const netif_tx_back_ring_t *txb, 168 domid_t otherend_id); 169 static void xnb_update_mbufc(struct mbuf *mbufc, 170 const gnttab_copy_table gnttab, int n_entries); 171 static int xnb_mbufc2pkt(const struct mbuf *mbufc, 172 struct xnb_pkt *pkt, 173 RING_IDX start, int space); 174 static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, 175 const struct mbuf *mbufc, 176 gnttab_copy_table gnttab, 177 const netif_rx_back_ring_t *rxb, 178 domid_t otherend_id); 179 static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt, 180 const gnttab_copy_table gnttab, int n_entries, 181 netif_rx_back_ring_t *ring); 182 static void xnb_stop(struct xnb_softc*); 183 static int xnb_ioctl(struct ifnet*, u_long, caddr_t); 184 static void xnb_start_locked(struct ifnet*); 185 static void xnb_start(struct ifnet*); 186 static void xnb_ifinit_locked(struct xnb_softc*); 187 static void xnb_ifinit(void*); 188 #ifdef XNB_DEBUG 189 static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS); 190 static int xnb_dump_rings(SYSCTL_HANDLER_ARGS); 191 #endif 192 #if defined(INET) || defined(INET6) 193 static void xnb_add_mbuf_cksum(struct mbuf *mbufc); 194 #endif 195 /*------------------------------ Data Structures -----------------------------*/ 196 197 /** 198 * Representation of a xennet packet. Simplified version of a packet as 199 * stored in the Xen tx ring. Applicable to both RX and TX packets 200 */ 201 struct xnb_pkt{ 202 /** 203 * Array index of the first data-bearing (eg, not extra info) entry 204 * for this packet 205 */ 206 RING_IDX car; 207 208 /** 209 * Array index of the second data-bearing entry for this packet. 210 * Invalid if the packet has only one data-bearing entry. If the 211 * packet has more than two data-bearing entries, then the second 212 * through the last will be sequential modulo the ring size 213 */ 214 RING_IDX cdr; 215 216 /** 217 * Optional extra info. Only valid if flags contains 218 * NETTXF_extra_info. Note that extra.type will always be 219 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback 220 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_* 221 */ 222 netif_extra_info_t extra; 223 224 /** Size of entire packet in bytes. */ 225 uint16_t size; 226 227 /** The size of the first entry's data in bytes */ 228 uint16_t car_size; 229 230 /** 231 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are 232 * not the same for TX and RX packets 233 */ 234 uint16_t flags; 235 236 /** 237 * The number of valid data-bearing entries (either netif_tx_request's 238 * or netif_rx_response's) in the packet. If this is 0, it means the 239 * entire packet is invalid. 240 */ 241 uint16_t list_len; 242 243 /** There was an error processing the packet */ 244 uint8_t error; 245 }; 246 247 /** xnb_pkt method: initialize it */ 248 static inline void 249 xnb_pkt_initialize(struct xnb_pkt *pxnb) 250 { 251 bzero(pxnb, sizeof(*pxnb)); 252 } 253 254 /** xnb_pkt method: mark the packet as valid */ 255 static inline void 256 xnb_pkt_validate(struct xnb_pkt *pxnb) 257 { 258 pxnb->error = 0; 259 }; 260 261 /** xnb_pkt method: mark the packet as invalid */ 262 static inline void 263 xnb_pkt_invalidate(struct xnb_pkt *pxnb) 264 { 265 pxnb->error = 1; 266 }; 267 268 /** xnb_pkt method: Check whether the packet is valid */ 269 static inline int 270 xnb_pkt_is_valid(const struct xnb_pkt *pxnb) 271 { 272 return (! pxnb->error); 273 } 274 275 #ifdef XNB_DEBUG 276 /** xnb_pkt method: print the packet's contents in human-readable format*/ 277 static void __unused 278 xnb_dump_pkt(const struct xnb_pkt *pkt) { 279 if (pkt == NULL) { 280 DPRINTF("Was passed a null pointer.\n"); 281 return; 282 } 283 DPRINTF("pkt address= %p\n", pkt); 284 DPRINTF("pkt->size=%d\n", pkt->size); 285 DPRINTF("pkt->car_size=%d\n", pkt->car_size); 286 DPRINTF("pkt->flags=0x%04x\n", pkt->flags); 287 DPRINTF("pkt->list_len=%d\n", pkt->list_len); 288 /* DPRINTF("pkt->extra"); TODO */ 289 DPRINTF("pkt->car=%d\n", pkt->car); 290 DPRINTF("pkt->cdr=%d\n", pkt->cdr); 291 DPRINTF("pkt->error=%d\n", pkt->error); 292 } 293 #endif /* XNB_DEBUG */ 294 295 static void 296 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq) 297 { 298 if (txreq != NULL) { 299 DPRINTF("netif_tx_request index =%u\n", idx); 300 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref); 301 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset); 302 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags); 303 DPRINTF("netif_tx_request.id =%hu\n", txreq->id); 304 DPRINTF("netif_tx_request.size =%hu\n", txreq->size); 305 } 306 } 307 308 /** 309 * \brief Configuration data for a shared memory request ring 310 * used to communicate with the front-end client of this 311 * this driver. 312 */ 313 struct xnb_ring_config { 314 /** 315 * Runtime structures for ring access. Unfortunately, TX and RX rings 316 * use different data structures, and that cannot be changed since it 317 * is part of the interdomain protocol. 318 */ 319 union{ 320 netif_rx_back_ring_t rx_ring; 321 netif_tx_back_ring_t tx_ring; 322 } back_ring; 323 324 /** 325 * The device bus address returned by the hypervisor when 326 * mapping the ring and required to unmap it when a connection 327 * is torn down. 328 */ 329 uint64_t bus_addr; 330 331 /** The pseudo-physical address where ring memory is mapped.*/ 332 uint64_t gnt_addr; 333 334 /** KVA address where ring memory is mapped. */ 335 vm_offset_t va; 336 337 /** 338 * Grant table handles, one per-ring page, returned by the 339 * hyperpervisor upon mapping of the ring and required to 340 * unmap it when a connection is torn down. 341 */ 342 grant_handle_t handle; 343 344 /** The number of ring pages mapped for the current connection. */ 345 unsigned ring_pages; 346 347 /** 348 * The grant references, one per-ring page, supplied by the 349 * front-end, allowing us to reference the ring pages in the 350 * front-end's domain and to map these pages into our own domain. 351 */ 352 grant_ref_t ring_ref; 353 }; 354 355 /** 356 * Per-instance connection state flags. 357 */ 358 typedef enum 359 { 360 /** Communication with the front-end has been established. */ 361 XNBF_RING_CONNECTED = 0x01, 362 363 /** 364 * Front-end requests exist in the ring and are waiting for 365 * xnb_xen_req objects to free up. 366 */ 367 XNBF_RESOURCE_SHORTAGE = 0x02, 368 369 /** Connection teardown has started. */ 370 XNBF_SHUTDOWN = 0x04, 371 372 /** A thread is already performing shutdown processing. */ 373 XNBF_IN_SHUTDOWN = 0x08 374 } xnb_flag_t; 375 376 /** 377 * Types of rings. Used for array indices and to identify a ring's control 378 * data structure type 379 */ 380 typedef enum{ 381 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */ 382 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */ 383 XNB_NUM_RING_TYPES 384 } xnb_ring_type_t; 385 386 /** 387 * Per-instance configuration data. 388 */ 389 struct xnb_softc { 390 /** NewBus device corresponding to this instance. */ 391 device_t dev; 392 393 /* Media related fields */ 394 395 /** Generic network media state */ 396 struct ifmedia sc_media; 397 398 /** Media carrier info */ 399 struct ifnet *xnb_ifp; 400 401 /** Our own private carrier state */ 402 unsigned carrier; 403 404 /** Device MAC Address */ 405 uint8_t mac[ETHER_ADDR_LEN]; 406 407 /* Xen related fields */ 408 409 /** 410 * \brief The netif protocol abi in effect. 411 * 412 * There are situations where the back and front ends can 413 * have a different, native abi (e.g. intel x86_64 and 414 * 32bit x86 domains on the same machine). The back-end 415 * always accommodates the front-end's native abi. That 416 * value is pulled from the XenStore and recorded here. 417 */ 418 int abi; 419 420 /** 421 * Name of the bridge to which this VIF is connected, if any 422 * This field is dynamically allocated by xenbus and must be free()ed 423 * when no longer needed 424 */ 425 char *bridge; 426 427 /** The interrupt driven even channel used to signal ring events. */ 428 evtchn_port_t evtchn; 429 430 /** Xen device handle.*/ 431 long handle; 432 433 /** Handle to the communication ring event channel. */ 434 xen_intr_handle_t xen_intr_handle; 435 436 /** 437 * \brief Cached value of the front-end's domain id. 438 * 439 * This value is used at once for each mapped page in 440 * a transaction. We cache it to avoid incuring the 441 * cost of an ivar access every time this is needed. 442 */ 443 domid_t otherend_id; 444 445 /** 446 * Undocumented frontend feature. Has something to do with 447 * scatter/gather IO 448 */ 449 uint8_t can_sg; 450 /** Undocumented frontend feature */ 451 uint8_t gso; 452 /** Undocumented frontend feature */ 453 uint8_t gso_prefix; 454 /** Can checksum TCP/UDP over IPv4 */ 455 uint8_t ip_csum; 456 457 /* Implementation related fields */ 458 /** 459 * Preallocated grant table copy descriptor for RX operations. 460 * Access must be protected by rx_lock 461 */ 462 gnttab_copy_table rx_gnttab; 463 464 /** 465 * Preallocated grant table copy descriptor for TX operations. 466 * Access must be protected by tx_lock 467 */ 468 gnttab_copy_table tx_gnttab; 469 470 /** 471 * Resource representing allocated physical address space 472 * associated with our per-instance kva region. 473 */ 474 struct resource *pseudo_phys_res; 475 476 /** Resource id for allocated physical address space. */ 477 int pseudo_phys_res_id; 478 479 /** Ring mapping and interrupt configuration data. */ 480 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES]; 481 482 /** 483 * Global pool of kva used for mapping remote domain ring 484 * and I/O transaction data. 485 */ 486 vm_offset_t kva; 487 488 /** Pseudo-physical address corresponding to kva. */ 489 uint64_t gnt_base_addr; 490 491 /** Various configuration and state bit flags. */ 492 xnb_flag_t flags; 493 494 /** Mutex protecting per-instance data in the receive path. */ 495 struct mtx rx_lock; 496 497 /** Mutex protecting per-instance data in the softc structure. */ 498 struct mtx sc_lock; 499 500 /** Mutex protecting per-instance data in the transmit path. */ 501 struct mtx tx_lock; 502 503 /** The size of the global kva pool. */ 504 int kva_size; 505 506 /** Name of the interface */ 507 char if_name[IFNAMSIZ]; 508 }; 509 510 /*---------------------------- Debugging functions ---------------------------*/ 511 #ifdef XNB_DEBUG 512 static void __unused 513 xnb_dump_gnttab_copy(const struct gnttab_copy *entry) 514 { 515 if (entry == NULL) { 516 printf("NULL grant table pointer\n"); 517 return; 518 } 519 520 if (entry->flags & GNTCOPY_dest_gref) 521 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref); 522 else 523 printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n", 524 entry->dest.u.gmfn); 525 printf("gnttab dest offset=\t%hu\n", entry->dest.offset); 526 printf("gnttab dest domid=\t%hu\n", entry->dest.domid); 527 if (entry->flags & GNTCOPY_source_gref) 528 printf("gnttab source ref=\t%u\n", entry->source.u.ref); 529 else 530 printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n", 531 entry->source.u.gmfn); 532 printf("gnttab source offset=\t%hu\n", entry->source.offset); 533 printf("gnttab source domid=\t%hu\n", entry->source.domid); 534 printf("gnttab len=\t%hu\n", entry->len); 535 printf("gnttab flags=\t%hu\n", entry->flags); 536 printf("gnttab status=\t%hd\n", entry->status); 537 } 538 539 static int 540 xnb_dump_rings(SYSCTL_HANDLER_ARGS) 541 { 542 static char results[720]; 543 struct xnb_softc const* xnb = (struct xnb_softc*)arg1; 544 netif_rx_back_ring_t const* rxb = 545 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 546 netif_tx_back_ring_t const* txb = 547 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 548 549 /* empty the result strings */ 550 results[0] = 0; 551 552 if ( !txb || !txb->sring || !rxb || !rxb->sring ) 553 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 554 555 snprintf(results, 720, 556 "\n\t%35s %18s\n" /* TX, RX */ 557 "\t%16s %18d %18d\n" /* req_cons */ 558 "\t%16s %18d %18d\n" /* nr_ents */ 559 "\t%16s %18d %18d\n" /* rsp_prod_pvt */ 560 "\t%16s %18p %18p\n" /* sring */ 561 "\t%16s %18d %18d\n" /* req_prod */ 562 "\t%16s %18d %18d\n" /* req_event */ 563 "\t%16s %18d %18d\n" /* rsp_prod */ 564 "\t%16s %18d %18d\n", /* rsp_event */ 565 "TX", "RX", 566 "req_cons", txb->req_cons, rxb->req_cons, 567 "nr_ents", txb->nr_ents, rxb->nr_ents, 568 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt, 569 "sring", txb->sring, rxb->sring, 570 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod, 571 "sring->req_event", txb->sring->req_event, rxb->sring->req_event, 572 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod, 573 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event); 574 575 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 576 } 577 578 static void __unused 579 xnb_dump_mbuf(const struct mbuf *m) 580 { 581 int len; 582 uint8_t *d; 583 if (m == NULL) 584 return; 585 586 printf("xnb_dump_mbuf:\n"); 587 if (m->m_flags & M_PKTHDR) { 588 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, " 589 "tso_segsz=%5hd\n", 590 m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags, 591 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz); 592 printf(" rcvif=%16p, len=%19d\n", 593 m->m_pkthdr.rcvif, m->m_pkthdr.len); 594 } 595 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n", 596 m->m_next, m->m_nextpkt, m->m_data); 597 printf(" m_len=%17d, m_flags=%#15x, m_type=%18u\n", 598 m->m_len, m->m_flags, m->m_type); 599 600 len = m->m_len; 601 d = mtod(m, uint8_t*); 602 while (len > 0) { 603 int i; 604 printf(" "); 605 for (i = 0; (i < 16) && (len > 0); i++, len--) { 606 printf("%02hhx ", *(d++)); 607 } 608 printf("\n"); 609 } 610 } 611 #endif /* XNB_DEBUG */ 612 613 /*------------------------ Inter-Domain Communication ------------------------*/ 614 /** 615 * Free dynamically allocated KVA or pseudo-physical address allocations. 616 * 617 * \param xnb Per-instance xnb configuration structure. 618 */ 619 static void 620 xnb_free_communication_mem(struct xnb_softc *xnb) 621 { 622 if (xnb->kva != 0) { 623 if (xnb->pseudo_phys_res != NULL) { 624 xenmem_free(xnb->dev, xnb->pseudo_phys_res_id, 625 xnb->pseudo_phys_res); 626 xnb->pseudo_phys_res = NULL; 627 } 628 } 629 xnb->kva = 0; 630 xnb->gnt_base_addr = 0; 631 } 632 633 /** 634 * Cleanup all inter-domain communication mechanisms. 635 * 636 * \param xnb Per-instance xnb configuration structure. 637 */ 638 static int 639 xnb_disconnect(struct xnb_softc *xnb) 640 { 641 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES]; 642 int error; 643 int i; 644 645 if (xnb->xen_intr_handle != NULL) 646 xen_intr_unbind(&xnb->xen_intr_handle); 647 648 /* 649 * We may still have another thread currently processing requests. We 650 * must acquire the rx and tx locks to make sure those threads are done, 651 * but we can release those locks as soon as we acquire them, because no 652 * more interrupts will be arriving. 653 */ 654 mtx_lock(&xnb->tx_lock); 655 mtx_unlock(&xnb->tx_lock); 656 mtx_lock(&xnb->rx_lock); 657 mtx_unlock(&xnb->rx_lock); 658 659 mtx_lock(&xnb->sc_lock); 660 /* Free malloc'd softc member variables */ 661 if (xnb->bridge != NULL) { 662 free(xnb->bridge, M_XENSTORE); 663 xnb->bridge = NULL; 664 } 665 666 /* All request processing has stopped, so unmap the rings */ 667 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 668 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr; 669 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr; 670 gnts[i].handle = xnb->ring_configs[i].handle; 671 } 672 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts, 673 XNB_NUM_RING_TYPES); 674 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error)); 675 676 xnb_free_communication_mem(xnb); 677 /* 678 * Zero the ring config structs because the pointers, handles, and 679 * grant refs contained therein are no longer valid. 680 */ 681 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX], 682 sizeof(struct xnb_ring_config)); 683 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX], 684 sizeof(struct xnb_ring_config)); 685 686 xnb->flags &= ~XNBF_RING_CONNECTED; 687 mtx_unlock(&xnb->sc_lock); 688 689 return (0); 690 } 691 692 /** 693 * Map a single shared memory ring into domain local address space and 694 * initialize its control structure 695 * 696 * \param xnb Per-instance xnb configuration structure 697 * \param ring_type Array index of this ring in the xnb's array of rings 698 * \return An errno 699 */ 700 static int 701 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type) 702 { 703 struct gnttab_map_grant_ref gnt; 704 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type]; 705 int error; 706 707 /* TX ring type = 0, RX =1 */ 708 ring->va = xnb->kva + ring_type * PAGE_SIZE; 709 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE; 710 711 gnt.host_addr = ring->gnt_addr; 712 gnt.flags = GNTMAP_host_map; 713 gnt.ref = ring->ring_ref; 714 gnt.dom = xnb->otherend_id; 715 716 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1); 717 if (error != 0) 718 panic("netback: Ring page grant table op failed (%d)", error); 719 720 if (gnt.status != 0) { 721 ring->va = 0; 722 error = EACCES; 723 xenbus_dev_fatal(xnb->dev, error, 724 "Ring shared page mapping failed. " 725 "Status %d.", gnt.status); 726 } else { 727 ring->handle = gnt.handle; 728 ring->bus_addr = gnt.dev_bus_addr; 729 730 if (ring_type == XNB_RING_TYPE_TX) { 731 BACK_RING_INIT(&ring->back_ring.tx_ring, 732 (netif_tx_sring_t*)ring->va, 733 ring->ring_pages * PAGE_SIZE); 734 } else if (ring_type == XNB_RING_TYPE_RX) { 735 BACK_RING_INIT(&ring->back_ring.rx_ring, 736 (netif_rx_sring_t*)ring->va, 737 ring->ring_pages * PAGE_SIZE); 738 } else { 739 xenbus_dev_fatal(xnb->dev, error, 740 "Unknown ring type %d", ring_type); 741 } 742 } 743 744 return error; 745 } 746 747 /** 748 * Setup the shared memory rings and bind an interrupt to the event channel 749 * used to notify us of ring changes. 750 * 751 * \param xnb Per-instance xnb configuration structure. 752 */ 753 static int 754 xnb_connect_comms(struct xnb_softc *xnb) 755 { 756 int error; 757 xnb_ring_type_t i; 758 759 if ((xnb->flags & XNBF_RING_CONNECTED) != 0) 760 return (0); 761 762 /* 763 * Kva for our rings are at the tail of the region of kva allocated 764 * by xnb_alloc_communication_mem(). 765 */ 766 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 767 error = xnb_connect_ring(xnb, i); 768 if (error != 0) 769 return error; 770 } 771 772 xnb->flags |= XNBF_RING_CONNECTED; 773 774 error = xen_intr_bind_remote_port(xnb->dev, 775 xnb->otherend_id, 776 xnb->evtchn, 777 /*filter*/NULL, 778 xnb_intr, /*arg*/xnb, 779 INTR_TYPE_NET | INTR_MPSAFE, 780 &xnb->xen_intr_handle); 781 if (error != 0) { 782 (void)xnb_disconnect(xnb); 783 xenbus_dev_fatal(xnb->dev, error, "binding event channel"); 784 return (error); 785 } 786 787 DPRINTF("rings connected!\n"); 788 789 return (0); 790 } 791 792 /** 793 * Size KVA and pseudo-physical address allocations based on negotiated 794 * values for the size and number of I/O requests, and the size of our 795 * communication ring. 796 * 797 * \param xnb Per-instance xnb configuration structure. 798 * 799 * These address spaces are used to dynamically map pages in the 800 * front-end's domain into our own. 801 */ 802 static int 803 xnb_alloc_communication_mem(struct xnb_softc *xnb) 804 { 805 xnb_ring_type_t i; 806 807 xnb->kva_size = 0; 808 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 809 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE; 810 } 811 812 /* 813 * Reserve a range of pseudo physical memory that we can map 814 * into kva. These pages will only be backed by machine 815 * pages ("real memory") during the lifetime of front-end requests 816 * via grant table operations. We will map the netif tx and rx rings 817 * into this space. 818 */ 819 xnb->pseudo_phys_res_id = 0; 820 xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id, 821 xnb->kva_size); 822 if (xnb->pseudo_phys_res == NULL) { 823 xnb->kva = 0; 824 return (ENOMEM); 825 } 826 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res); 827 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res); 828 return (0); 829 } 830 831 /** 832 * Collect information from the XenStore related to our device and its frontend 833 * 834 * \param xnb Per-instance xnb configuration structure. 835 */ 836 static int 837 xnb_collect_xenstore_info(struct xnb_softc *xnb) 838 { 839 /** 840 * \todo Linux collects the following info. We should collect most 841 * of this, too: 842 * "feature-rx-notify" 843 */ 844 const char *otherend_path; 845 const char *our_path; 846 int err; 847 unsigned int rx_copy, bridge_len; 848 uint8_t no_csum_offload; 849 850 otherend_path = xenbus_get_otherend_path(xnb->dev); 851 our_path = xenbus_get_node(xnb->dev); 852 853 /* Collect the critical communication parameters */ 854 err = xs_gather(XST_NIL, otherend_path, 855 "tx-ring-ref", "%l" PRIu32, 856 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref, 857 "rx-ring-ref", "%l" PRIu32, 858 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref, 859 "event-channel", "%" PRIu32, &xnb->evtchn, 860 NULL); 861 if (err != 0) { 862 xenbus_dev_fatal(xnb->dev, err, 863 "Unable to retrieve ring information from " 864 "frontend %s. Unable to connect.", 865 otherend_path); 866 return (err); 867 } 868 869 /* Collect the handle from xenstore */ 870 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle); 871 if (err != 0) { 872 xenbus_dev_fatal(xnb->dev, err, 873 "Error reading handle from frontend %s. " 874 "Unable to connect.", otherend_path); 875 } 876 877 /* 878 * Collect the bridgename, if any. We do not need bridge_len; we just 879 * throw it away 880 */ 881 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len, 882 (void**)&xnb->bridge); 883 if (err != 0) 884 xnb->bridge = NULL; 885 886 /* 887 * Does the frontend request that we use rx copy? If not, return an 888 * error because this driver only supports rx copy. 889 */ 890 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL, 891 "%" PRIu32, &rx_copy); 892 if (err == ENOENT) { 893 err = 0; 894 rx_copy = 0; 895 } 896 if (err < 0) { 897 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy", 898 otherend_path); 899 return err; 900 } 901 /** 902 * \todo: figure out the exact meaning of this feature, and when 903 * the frontend will set it to true. It should be set to true 904 * at some point 905 */ 906 /* if (!rx_copy)*/ 907 /* return EOPNOTSUPP;*/ 908 909 /** \todo Collect the rx notify feature */ 910 911 /* Collect the feature-sg. */ 912 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL, 913 "%hhu", &xnb->can_sg) < 0) 914 xnb->can_sg = 0; 915 916 /* Collect remaining frontend features */ 917 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL, 918 "%hhu", &xnb->gso) < 0) 919 xnb->gso = 0; 920 921 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL, 922 "%hhu", &xnb->gso_prefix) < 0) 923 xnb->gso_prefix = 0; 924 925 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL, 926 "%hhu", &no_csum_offload) < 0) 927 no_csum_offload = 0; 928 xnb->ip_csum = (no_csum_offload == 0); 929 930 return (0); 931 } 932 933 /** 934 * Supply information about the physical device to the frontend 935 * via XenBus. 936 * 937 * \param xnb Per-instance xnb configuration structure. 938 */ 939 static int 940 xnb_publish_backend_info(struct xnb_softc *xnb) 941 { 942 struct xs_transaction xst; 943 const char *our_path; 944 int error; 945 946 our_path = xenbus_get_node(xnb->dev); 947 948 do { 949 error = xs_transaction_start(&xst); 950 if (error != 0) { 951 xenbus_dev_fatal(xnb->dev, error, 952 "Error publishing backend info " 953 "(start transaction)"); 954 break; 955 } 956 957 error = xs_printf(xst, our_path, "feature-sg", 958 "%d", XNB_SG); 959 if (error != 0) 960 break; 961 962 error = xs_printf(xst, our_path, "feature-gso-tcpv4", 963 "%d", XNB_GSO_TCPV4); 964 if (error != 0) 965 break; 966 967 error = xs_printf(xst, our_path, "feature-rx-copy", 968 "%d", XNB_RX_COPY); 969 if (error != 0) 970 break; 971 972 error = xs_printf(xst, our_path, "feature-rx-flip", 973 "%d", XNB_RX_FLIP); 974 if (error != 0) 975 break; 976 977 error = xs_transaction_end(xst, 0); 978 if (error != 0 && error != EAGAIN) { 979 xenbus_dev_fatal(xnb->dev, error, "ending transaction"); 980 break; 981 } 982 983 } while (error == EAGAIN); 984 985 return (error); 986 } 987 988 /** 989 * Connect to our netfront peer now that it has completed publishing 990 * its configuration into the XenStore. 991 * 992 * \param xnb Per-instance xnb configuration structure. 993 */ 994 static void 995 xnb_connect(struct xnb_softc *xnb) 996 { 997 int error; 998 999 if (xenbus_get_state(xnb->dev) == XenbusStateConnected) 1000 return; 1001 1002 if (xnb_collect_xenstore_info(xnb) != 0) 1003 return; 1004 1005 xnb->flags &= ~XNBF_SHUTDOWN; 1006 1007 /* Read front end configuration. */ 1008 1009 /* Allocate resources whose size depends on front-end configuration. */ 1010 error = xnb_alloc_communication_mem(xnb); 1011 if (error != 0) { 1012 xenbus_dev_fatal(xnb->dev, error, 1013 "Unable to allocate communication memory"); 1014 return; 1015 } 1016 1017 /* 1018 * Connect communication channel. 1019 */ 1020 error = xnb_connect_comms(xnb); 1021 if (error != 0) { 1022 /* Specific errors are reported by xnb_connect_comms(). */ 1023 return; 1024 } 1025 xnb->carrier = 1; 1026 1027 /* Ready for I/O. */ 1028 xenbus_set_state(xnb->dev, XenbusStateConnected); 1029 } 1030 1031 /*-------------------------- Device Teardown Support -------------------------*/ 1032 /** 1033 * Perform device shutdown functions. 1034 * 1035 * \param xnb Per-instance xnb configuration structure. 1036 * 1037 * Mark this instance as shutting down, wait for any active requests 1038 * to drain, disconnect from the front-end, and notify any waiters (e.g. 1039 * a thread invoking our detach method) that detach can now proceed. 1040 */ 1041 static int 1042 xnb_shutdown(struct xnb_softc *xnb) 1043 { 1044 /* 1045 * Due to the need to drop our mutex during some 1046 * xenbus operations, it is possible for two threads 1047 * to attempt to close out shutdown processing at 1048 * the same time. Tell the caller that hits this 1049 * race to try back later. 1050 */ 1051 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0) 1052 return (EAGAIN); 1053 1054 xnb->flags |= XNBF_SHUTDOWN; 1055 1056 xnb->flags |= XNBF_IN_SHUTDOWN; 1057 1058 mtx_unlock(&xnb->sc_lock); 1059 /* Free the network interface */ 1060 xnb->carrier = 0; 1061 if (xnb->xnb_ifp != NULL) { 1062 ether_ifdetach(xnb->xnb_ifp); 1063 if_free(xnb->xnb_ifp); 1064 xnb->xnb_ifp = NULL; 1065 } 1066 1067 xnb_disconnect(xnb); 1068 1069 if (xenbus_get_state(xnb->dev) < XenbusStateClosing) 1070 xenbus_set_state(xnb->dev, XenbusStateClosing); 1071 mtx_lock(&xnb->sc_lock); 1072 1073 xnb->flags &= ~XNBF_IN_SHUTDOWN; 1074 1075 /* Indicate to xnb_detach() that is it safe to proceed. */ 1076 wakeup(xnb); 1077 1078 return (0); 1079 } 1080 1081 /** 1082 * Report an attach time error to the console and Xen, and cleanup 1083 * this instance by forcing immediate detach processing. 1084 * 1085 * \param xnb Per-instance xnb configuration structure. 1086 * \param err Errno describing the error. 1087 * \param fmt Printf style format and arguments 1088 */ 1089 static void 1090 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...) 1091 { 1092 va_list ap; 1093 va_list ap_hotplug; 1094 1095 va_start(ap, fmt); 1096 va_copy(ap_hotplug, ap); 1097 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev), 1098 "hotplug-error", fmt, ap_hotplug); 1099 va_end(ap_hotplug); 1100 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1101 "hotplug-status", "error"); 1102 1103 xenbus_dev_vfatal(xnb->dev, err, fmt, ap); 1104 va_end(ap); 1105 1106 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0"); 1107 xnb_detach(xnb->dev); 1108 } 1109 1110 /*---------------------------- NewBus Entrypoints ----------------------------*/ 1111 /** 1112 * Inspect a XenBus device and claim it if is of the appropriate type. 1113 * 1114 * \param dev NewBus device object representing a candidate XenBus device. 1115 * 1116 * \return 0 for success, errno codes for failure. 1117 */ 1118 static int 1119 xnb_probe(device_t dev) 1120 { 1121 if (!strcmp(xenbus_get_type(dev), "vif")) { 1122 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev), 1123 devclass_get_name(device_get_devclass(dev))); 1124 device_set_desc(dev, "Backend Virtual Network Device"); 1125 device_quiet(dev); 1126 return (0); 1127 } 1128 return (ENXIO); 1129 } 1130 1131 /** 1132 * Setup sysctl variables to control various Network Back parameters. 1133 * 1134 * \param xnb Xen Net Back softc. 1135 * 1136 */ 1137 static void 1138 xnb_setup_sysctl(struct xnb_softc *xnb) 1139 { 1140 struct sysctl_ctx_list *sysctl_ctx = NULL; 1141 struct sysctl_oid *sysctl_tree = NULL; 1142 1143 sysctl_ctx = device_get_sysctl_ctx(xnb->dev); 1144 if (sysctl_ctx == NULL) 1145 return; 1146 1147 sysctl_tree = device_get_sysctl_tree(xnb->dev); 1148 if (sysctl_tree == NULL) 1149 return; 1150 1151 #ifdef XNB_DEBUG 1152 SYSCTL_ADD_PROC(sysctl_ctx, 1153 SYSCTL_CHILDREN(sysctl_tree), 1154 OID_AUTO, 1155 "unit_test_results", 1156 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 1157 xnb, 1158 0, 1159 xnb_unit_test_main, 1160 "A", 1161 "Results of builtin unit tests"); 1162 1163 SYSCTL_ADD_PROC(sysctl_ctx, 1164 SYSCTL_CHILDREN(sysctl_tree), 1165 OID_AUTO, 1166 "dump_rings", 1167 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 1168 xnb, 1169 0, 1170 xnb_dump_rings, 1171 "A", 1172 "Xennet Back Rings"); 1173 #endif /* XNB_DEBUG */ 1174 } 1175 1176 /** 1177 * Create a network device. 1178 * @param handle device handle 1179 */ 1180 int 1181 create_netdev(device_t dev) 1182 { 1183 struct ifnet *ifp; 1184 struct xnb_softc *xnb; 1185 int err = 0; 1186 uint32_t handle; 1187 1188 xnb = device_get_softc(dev); 1189 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF); 1190 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF); 1191 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF); 1192 1193 xnb->dev = dev; 1194 1195 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts); 1196 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1197 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL); 1198 1199 /* 1200 * Set the MAC address to a dummy value (00:00:00:00:00), 1201 * if the MAC address of the host-facing interface is set 1202 * to the same as the guest-facing one (the value found in 1203 * xenstore), the bridge would stop delivering packets to 1204 * us because it would see that the destination address of 1205 * the packet is the same as the interface, and so the bridge 1206 * would expect the packet has already been delivered locally 1207 * (and just drop it). 1208 */ 1209 bzero(&xnb->mac[0], sizeof(xnb->mac)); 1210 1211 /* The interface will be named using the following nomenclature: 1212 * 1213 * xnb<domid>.<handle> 1214 * 1215 * Where handle is the oder of the interface referred to the guest. 1216 */ 1217 err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL, 1218 "%" PRIu32, &handle); 1219 if (err != 0) 1220 return (err); 1221 snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32, 1222 xenbus_get_otherend_id(dev), handle); 1223 1224 if (err == 0) { 1225 /* Set up ifnet structure */ 1226 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER); 1227 ifp->if_softc = xnb; 1228 if_initname(ifp, xnb->if_name, IF_DUNIT_NONE); 1229 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1230 ifp->if_ioctl = xnb_ioctl; 1231 ifp->if_start = xnb_start; 1232 ifp->if_init = xnb_ifinit; 1233 ifp->if_mtu = ETHERMTU; 1234 ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1; 1235 1236 ifp->if_hwassist = XNB_CSUM_FEATURES; 1237 ifp->if_capabilities = IFCAP_HWCSUM; 1238 ifp->if_capenable = IFCAP_HWCSUM; 1239 1240 ether_ifattach(ifp, xnb->mac); 1241 xnb->carrier = 0; 1242 } 1243 1244 return err; 1245 } 1246 1247 /** 1248 * Attach to a XenBus device that has been claimed by our probe routine. 1249 * 1250 * \param dev NewBus device object representing this Xen Net Back instance. 1251 * 1252 * \return 0 for success, errno codes for failure. 1253 */ 1254 static int 1255 xnb_attach(device_t dev) 1256 { 1257 struct xnb_softc *xnb; 1258 int error; 1259 xnb_ring_type_t i; 1260 1261 error = create_netdev(dev); 1262 if (error != 0) { 1263 xenbus_dev_fatal(dev, error, "creating netdev"); 1264 return (error); 1265 } 1266 1267 DPRINTF("Attaching to %s\n", xenbus_get_node(dev)); 1268 1269 /* 1270 * Basic initialization. 1271 * After this block it is safe to call xnb_detach() 1272 * to clean up any allocated data for this instance. 1273 */ 1274 xnb = device_get_softc(dev); 1275 xnb->otherend_id = xenbus_get_otherend_id(dev); 1276 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 1277 xnb->ring_configs[i].ring_pages = 1; 1278 } 1279 1280 /* 1281 * Setup sysctl variables. 1282 */ 1283 xnb_setup_sysctl(xnb); 1284 1285 /* Update hot-plug status to satisfy xend. */ 1286 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1287 "hotplug-status", "connected"); 1288 if (error != 0) { 1289 xnb_attach_failed(xnb, error, "writing %s/hotplug-status", 1290 xenbus_get_node(xnb->dev)); 1291 return (error); 1292 } 1293 1294 if ((error = xnb_publish_backend_info(xnb)) != 0) { 1295 /* 1296 * If we can't publish our data, we cannot participate 1297 * in this connection, and waiting for a front-end state 1298 * change will not help the situation. 1299 */ 1300 xnb_attach_failed(xnb, error, 1301 "Publishing backend status for %s", 1302 xenbus_get_node(xnb->dev)); 1303 return error; 1304 } 1305 1306 /* Tell the front end that we are ready to connect. */ 1307 xenbus_set_state(dev, XenbusStateInitWait); 1308 1309 return (0); 1310 } 1311 1312 /** 1313 * Detach from a net back device instance. 1314 * 1315 * \param dev NewBus device object representing this Xen Net Back instance. 1316 * 1317 * \return 0 for success, errno codes for failure. 1318 * 1319 * \note A net back device may be detached at any time in its life-cycle, 1320 * including part way through the attach process. For this reason, 1321 * initialization order and the initialization state checks in this 1322 * routine must be carefully coupled so that attach time failures 1323 * are gracefully handled. 1324 */ 1325 static int 1326 xnb_detach(device_t dev) 1327 { 1328 struct xnb_softc *xnb; 1329 1330 DPRINTF("\n"); 1331 1332 xnb = device_get_softc(dev); 1333 mtx_lock(&xnb->sc_lock); 1334 while (xnb_shutdown(xnb) == EAGAIN) { 1335 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0, 1336 "xnb_shutdown", 0); 1337 } 1338 mtx_unlock(&xnb->sc_lock); 1339 DPRINTF("\n"); 1340 1341 mtx_destroy(&xnb->tx_lock); 1342 mtx_destroy(&xnb->rx_lock); 1343 mtx_destroy(&xnb->sc_lock); 1344 return (0); 1345 } 1346 1347 /** 1348 * Prepare this net back device for suspension of this VM. 1349 * 1350 * \param dev NewBus device object representing this Xen net Back instance. 1351 * 1352 * \return 0 for success, errno codes for failure. 1353 */ 1354 static int 1355 xnb_suspend(device_t dev) 1356 { 1357 return (0); 1358 } 1359 1360 /** 1361 * Perform any processing required to recover from a suspended state. 1362 * 1363 * \param dev NewBus device object representing this Xen Net Back instance. 1364 * 1365 * \return 0 for success, errno codes for failure. 1366 */ 1367 static int 1368 xnb_resume(device_t dev) 1369 { 1370 return (0); 1371 } 1372 1373 /** 1374 * Handle state changes expressed via the XenStore by our front-end peer. 1375 * 1376 * \param dev NewBus device object representing this Xen 1377 * Net Back instance. 1378 * \param frontend_state The new state of the front-end. 1379 * 1380 * \return 0 for success, errno codes for failure. 1381 */ 1382 static void 1383 xnb_frontend_changed(device_t dev, XenbusState frontend_state) 1384 { 1385 struct xnb_softc *xnb; 1386 1387 xnb = device_get_softc(dev); 1388 1389 DPRINTF("frontend_state=%s, xnb_state=%s\n", 1390 xenbus_strstate(frontend_state), 1391 xenbus_strstate(xenbus_get_state(xnb->dev))); 1392 1393 switch (frontend_state) { 1394 case XenbusStateInitialising: 1395 break; 1396 case XenbusStateInitialised: 1397 case XenbusStateConnected: 1398 xnb_connect(xnb); 1399 break; 1400 case XenbusStateClosing: 1401 case XenbusStateClosed: 1402 mtx_lock(&xnb->sc_lock); 1403 xnb_shutdown(xnb); 1404 mtx_unlock(&xnb->sc_lock); 1405 if (frontend_state == XenbusStateClosed) 1406 xenbus_set_state(xnb->dev, XenbusStateClosed); 1407 break; 1408 default: 1409 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend", 1410 frontend_state); 1411 break; 1412 } 1413 } 1414 1415 /*---------------------------- Request Processing ----------------------------*/ 1416 /** 1417 * Interrupt handler bound to the shared ring's event channel. 1418 * Entry point for the xennet transmit path in netback 1419 * Transfers packets from the Xen ring to the host's generic networking stack 1420 * 1421 * \param arg Callback argument registerd during event channel 1422 * binding - the xnb_softc for this instance. 1423 */ 1424 static void 1425 xnb_intr(void *arg) 1426 { 1427 struct xnb_softc *xnb; 1428 struct ifnet *ifp; 1429 netif_tx_back_ring_t *txb; 1430 RING_IDX req_prod_local; 1431 1432 xnb = (struct xnb_softc *)arg; 1433 ifp = xnb->xnb_ifp; 1434 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 1435 1436 mtx_lock(&xnb->tx_lock); 1437 do { 1438 int notify; 1439 req_prod_local = txb->sring->req_prod; 1440 xen_rmb(); 1441 1442 for (;;) { 1443 struct mbuf *mbufc; 1444 int err; 1445 1446 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp, 1447 xnb->tx_gnttab); 1448 if (err || (mbufc == NULL)) 1449 break; 1450 1451 /* Send the packet to the generic network stack */ 1452 (*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc); 1453 } 1454 1455 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify); 1456 if (notify != 0) 1457 xen_intr_signal(xnb->xen_intr_handle); 1458 1459 txb->sring->req_event = txb->req_cons + 1; 1460 xen_mb(); 1461 } while (txb->sring->req_prod != req_prod_local) ; 1462 mtx_unlock(&xnb->tx_lock); 1463 1464 xnb_start(ifp); 1465 } 1466 1467 /** 1468 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring. 1469 * Will read exactly 0 or 1 packets from the ring; never a partial packet. 1470 * \param[out] pkt The returned packet. If there is an error building 1471 * the packet, pkt.list_len will be set to 0. 1472 * \param[in] tx_ring Pointer to the Ring that is the input to this function 1473 * \param[in] start The ring index of the first potential request 1474 * \return The number of requests consumed to build this packet 1475 */ 1476 static int 1477 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring, 1478 RING_IDX start) 1479 { 1480 /* 1481 * Outline: 1482 * 1) Initialize pkt 1483 * 2) Read the first request of the packet 1484 * 3) Read the extras 1485 * 4) Set cdr 1486 * 5) Loop on the remainder of the packet 1487 * 6) Finalize pkt (stuff like car_size and list_len) 1488 */ 1489 int idx = start; 1490 int discard = 0; /* whether to discard the packet */ 1491 int more_data = 0; /* there are more request past the last one */ 1492 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */ 1493 1494 xnb_pkt_initialize(pkt); 1495 1496 /* Read the first request */ 1497 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1498 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1499 pkt->size = tx->size; 1500 pkt->flags = tx->flags & ~NETTXF_more_data; 1501 more_data = tx->flags & NETTXF_more_data; 1502 pkt->list_len++; 1503 pkt->car = idx; 1504 idx++; 1505 } 1506 1507 /* Read the extra info */ 1508 if ((pkt->flags & NETTXF_extra_info) && 1509 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1510 netif_extra_info_t *ext = 1511 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx); 1512 pkt->extra.type = ext->type; 1513 switch (pkt->extra.type) { 1514 case XEN_NETIF_EXTRA_TYPE_GSO: 1515 pkt->extra.u.gso = ext->u.gso; 1516 break; 1517 default: 1518 /* 1519 * The reference Linux netfront driver will 1520 * never set any other extra.type. So we don't 1521 * know what to do with it. Let's print an 1522 * error, then consume and discard the packet 1523 */ 1524 printf("xnb(%s:%d): Unknown extra info type %d." 1525 " Discarding packet\n", 1526 __func__, __LINE__, pkt->extra.type); 1527 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, 1528 start)); 1529 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, 1530 idx)); 1531 discard = 1; 1532 break; 1533 } 1534 1535 pkt->extra.flags = ext->flags; 1536 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) { 1537 /* 1538 * The reference linux netfront driver never sets this 1539 * flag (nor does any other known netfront). So we 1540 * will discard the packet. 1541 */ 1542 printf("xnb(%s:%d): Request sets " 1543 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle " 1544 "that\n", __func__, __LINE__); 1545 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1546 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1547 discard = 1; 1548 } 1549 1550 idx++; 1551 } 1552 1553 /* Set cdr. If there is not more data, cdr is invalid */ 1554 pkt->cdr = idx; 1555 1556 /* Loop on remainder of packet */ 1557 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1558 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1559 pkt->list_len++; 1560 cdr_size += tx->size; 1561 if (tx->flags & ~NETTXF_more_data) { 1562 /* There should be no other flags set at this point */ 1563 printf("xnb(%s:%d): Request sets unknown flags %d " 1564 "after the 1st request in the packet.\n", 1565 __func__, __LINE__, tx->flags); 1566 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1567 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1568 } 1569 1570 more_data = tx->flags & NETTXF_more_data; 1571 idx++; 1572 } 1573 1574 /* Finalize packet */ 1575 if (more_data != 0) { 1576 /* The ring ran out of requests before finishing the packet */ 1577 xnb_pkt_invalidate(pkt); 1578 idx = start; /* tell caller that we consumed no requests */ 1579 } else { 1580 /* Calculate car_size */ 1581 pkt->car_size = pkt->size - cdr_size; 1582 } 1583 if (discard != 0) { 1584 xnb_pkt_invalidate(pkt); 1585 } 1586 1587 return idx - start; 1588 } 1589 1590 /** 1591 * Respond to all the requests that constituted pkt. Builds the responses and 1592 * writes them to the ring, but doesn't push them to the shared ring. 1593 * \param[in] pkt the packet that needs a response 1594 * \param[in] error true if there was an error handling the packet, such 1595 * as in the hypervisor copy op or mbuf allocation 1596 * \param[out] ring Responses go here 1597 */ 1598 static void 1599 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring, 1600 int error) 1601 { 1602 /* 1603 * Outline: 1604 * 1) Respond to the first request 1605 * 2) Respond to the extra info reques 1606 * Loop through every remaining request in the packet, generating 1607 * responses that copy those requests' ids and sets the status 1608 * appropriately. 1609 */ 1610 netif_tx_request_t *tx; 1611 netif_tx_response_t *rsp; 1612 int i; 1613 uint16_t status; 1614 1615 status = (xnb_pkt_is_valid(pkt) == 0) || error ? 1616 NETIF_RSP_ERROR : NETIF_RSP_OKAY; 1617 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car), 1618 ("Cannot respond to ring requests out of order")); 1619 1620 if (pkt->list_len >= 1) { 1621 uint16_t id; 1622 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1623 id = tx->id; 1624 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1625 rsp->id = id; 1626 rsp->status = status; 1627 ring->rsp_prod_pvt++; 1628 1629 if (pkt->flags & NETRXF_extra_info) { 1630 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1631 rsp->status = NETIF_RSP_NULL; 1632 ring->rsp_prod_pvt++; 1633 } 1634 } 1635 1636 for (i=0; i < pkt->list_len - 1; i++) { 1637 uint16_t id; 1638 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1639 id = tx->id; 1640 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1641 rsp->id = id; 1642 rsp->status = status; 1643 ring->rsp_prod_pvt++; 1644 } 1645 } 1646 1647 /** 1648 * Create an mbuf chain to represent a packet. Initializes all of the headers 1649 * in the mbuf chain, but does not copy the data. The returned chain must be 1650 * free()'d when no longer needed 1651 * \param[in] pkt A packet to model the mbuf chain after 1652 * \return A newly allocated mbuf chain, possibly with clusters attached. 1653 * NULL on failure 1654 */ 1655 static struct mbuf* 1656 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp) 1657 { 1658 /** 1659 * \todo consider using a memory pool for mbufs instead of 1660 * reallocating them for every packet 1661 */ 1662 /** \todo handle extra data */ 1663 struct mbuf *m; 1664 1665 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA); 1666 1667 if (m != NULL) { 1668 m->m_pkthdr.rcvif = ifp; 1669 if (pkt->flags & NETTXF_data_validated) { 1670 /* 1671 * We lie to the host OS and always tell it that the 1672 * checksums are ok, because the packet is unlikely to 1673 * get corrupted going across domains. 1674 */ 1675 m->m_pkthdr.csum_flags = ( 1676 CSUM_IP_CHECKED | 1677 CSUM_IP_VALID | 1678 CSUM_DATA_VALID | 1679 CSUM_PSEUDO_HDR 1680 ); 1681 m->m_pkthdr.csum_data = 0xffff; 1682 } 1683 } 1684 return m; 1685 } 1686 1687 /** 1688 * Build a gnttab_copy table that can be used to copy data from a pkt 1689 * to an mbufc. Does not actually perform the copy. Always uses gref's on 1690 * the packet side. 1691 * \param[in] pkt pkt's associated requests form the src for 1692 * the copy operation 1693 * \param[in] mbufc mbufc's storage forms the dest for the copy operation 1694 * \param[out] gnttab Storage for the returned grant table 1695 * \param[in] txb Pointer to the backend ring structure 1696 * \param[in] otherend_id The domain ID of the other end of the copy 1697 * \return The number of gnttab entries filled 1698 */ 1699 static int 1700 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc, 1701 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb, 1702 domid_t otherend_id) 1703 { 1704 1705 struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1706 int gnt_idx = 0; /* index into grant table */ 1707 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */ 1708 int r_ofs = 0; /* offset of next data within tx request's data area */ 1709 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1710 /* size in bytes that still needs to be represented in the table */ 1711 uint16_t size_remaining = pkt->size; 1712 1713 while (size_remaining > 0) { 1714 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx); 1715 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs; 1716 const size_t req_size = 1717 r_idx == pkt->car ? pkt->car_size : txq->size; 1718 const size_t pkt_space = req_size - r_ofs; 1719 /* 1720 * space is the largest amount of data that can be copied in the 1721 * grant table's next entry 1722 */ 1723 const size_t space = MIN(pkt_space, mbuf_space); 1724 1725 /* TODO: handle this error condition without panicking */ 1726 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1727 1728 gnttab[gnt_idx].source.u.ref = txq->gref; 1729 gnttab[gnt_idx].source.domid = otherend_id; 1730 gnttab[gnt_idx].source.offset = txq->offset + r_ofs; 1731 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn( 1732 mtod(mbuf, vm_offset_t) + m_ofs); 1733 gnttab[gnt_idx].dest.offset = virt_to_offset( 1734 mtod(mbuf, vm_offset_t) + m_ofs); 1735 gnttab[gnt_idx].dest.domid = DOMID_SELF; 1736 gnttab[gnt_idx].len = space; 1737 gnttab[gnt_idx].flags = GNTCOPY_source_gref; 1738 1739 gnt_idx++; 1740 r_ofs += space; 1741 m_ofs += space; 1742 size_remaining -= space; 1743 if (req_size - r_ofs <= 0) { 1744 /* Must move to the next tx request */ 1745 r_ofs = 0; 1746 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 1747 } 1748 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) { 1749 /* Must move to the next mbuf */ 1750 m_ofs = 0; 1751 mbuf = mbuf->m_next; 1752 } 1753 } 1754 1755 return gnt_idx; 1756 } 1757 1758 /** 1759 * Check the status of the grant copy operations, and update mbufs various 1760 * non-data fields to reflect the data present. 1761 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of 1762 * the correct length, and data should already be present 1763 * \param[in] gnttab A grant table for a just completed copy op 1764 * \param[in] n_entries The number of valid entries in the grant table 1765 */ 1766 static void 1767 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab, 1768 int n_entries) 1769 { 1770 struct mbuf *mbuf = mbufc; 1771 int i; 1772 size_t total_size = 0; 1773 1774 for (i = 0; i < n_entries; i++) { 1775 KASSERT(gnttab[i].status == GNTST_okay, 1776 ("Some gnttab_copy entry had error status %hd\n", 1777 gnttab[i].status)); 1778 1779 mbuf->m_len += gnttab[i].len; 1780 total_size += gnttab[i].len; 1781 if (M_TRAILINGSPACE(mbuf) <= 0) { 1782 mbuf = mbuf->m_next; 1783 } 1784 } 1785 mbufc->m_pkthdr.len = total_size; 1786 1787 #if defined(INET) || defined(INET6) 1788 xnb_add_mbuf_cksum(mbufc); 1789 #endif 1790 } 1791 1792 /** 1793 * Dequeue at most one packet from the shared ring 1794 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and 1795 * its private indices will be updated. But the indices 1796 * will not be pushed to the shared ring. 1797 * \param[in] ifnet Interface to which the packet will be sent 1798 * \param[in] otherend Domain ID of the other end of the ring 1799 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic 1800 * networking stack 1801 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 1802 * this a function parameter so that we will take less 1803 * stack space. 1804 * \return An error code 1805 */ 1806 static int 1807 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc, 1808 struct ifnet *ifnet, gnttab_copy_table gnttab) 1809 { 1810 struct xnb_pkt pkt; 1811 /* number of tx requests consumed to build the last packet */ 1812 int num_consumed; 1813 int nr_ents; 1814 1815 *mbufc = NULL; 1816 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons); 1817 if (num_consumed == 0) 1818 return 0; /* Nothing to receive */ 1819 1820 /* update statistics independent of errors */ 1821 if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1); 1822 1823 /* 1824 * if we got here, then 1 or more requests was consumed, but the packet 1825 * is not necessarily valid. 1826 */ 1827 if (xnb_pkt_is_valid(&pkt) == 0) { 1828 /* got a garbage packet, respond and drop it */ 1829 xnb_txpkt2rsp(&pkt, txb, 1); 1830 txb->req_cons += num_consumed; 1831 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n", 1832 num_consumed); 1833 if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1); 1834 return EINVAL; 1835 } 1836 1837 *mbufc = xnb_pkt2mbufc(&pkt, ifnet); 1838 1839 if (*mbufc == NULL) { 1840 /* 1841 * Couldn't allocate mbufs. Respond and drop the packet. Do 1842 * not consume the requests 1843 */ 1844 xnb_txpkt2rsp(&pkt, txb, 1); 1845 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n", 1846 num_consumed); 1847 if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1); 1848 return ENOMEM; 1849 } 1850 1851 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend); 1852 1853 if (nr_ents > 0) { 1854 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 1855 gnttab, nr_ents); 1856 KASSERT(hv_ret == 0, 1857 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret)); 1858 xnb_update_mbufc(*mbufc, gnttab, nr_ents); 1859 } 1860 1861 xnb_txpkt2rsp(&pkt, txb, 0); 1862 txb->req_cons += num_consumed; 1863 return 0; 1864 } 1865 1866 /** 1867 * Create an xnb_pkt based on the contents of an mbuf chain. 1868 * \param[in] mbufc mbuf chain to transform into a packet 1869 * \param[out] pkt Storage for the newly generated xnb_pkt 1870 * \param[in] start The ring index of the first available slot in the rx 1871 * ring 1872 * \param[in] space The number of free slots in the rx ring 1873 * \retval 0 Success 1874 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 1875 * \retval EAGAIN There was not enough space in the ring to queue the 1876 * packet 1877 */ 1878 static int 1879 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt, 1880 RING_IDX start, int space) 1881 { 1882 1883 int retval = 0; 1884 1885 if ((mbufc == NULL) || 1886 ( (mbufc->m_flags & M_PKTHDR) == 0) || 1887 (mbufc->m_pkthdr.len == 0)) { 1888 xnb_pkt_invalidate(pkt); 1889 retval = EINVAL; 1890 } else { 1891 int slots_required; 1892 1893 xnb_pkt_validate(pkt); 1894 pkt->flags = 0; 1895 pkt->size = mbufc->m_pkthdr.len; 1896 pkt->car = start; 1897 pkt->car_size = mbufc->m_len; 1898 1899 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) { 1900 pkt->flags |= NETRXF_extra_info; 1901 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz; 1902 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 1903 pkt->extra.u.gso.pad = 0; 1904 pkt->extra.u.gso.features = 0; 1905 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO; 1906 pkt->extra.flags = 0; 1907 pkt->cdr = start + 2; 1908 } else { 1909 pkt->cdr = start + 1; 1910 } 1911 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) { 1912 pkt->flags |= 1913 (NETRXF_csum_blank | NETRXF_data_validated); 1914 } 1915 1916 /* 1917 * Each ring response can have up to PAGE_SIZE of data. 1918 * Assume that we can defragment the mbuf chain efficiently 1919 * into responses so that each response but the last uses all 1920 * PAGE_SIZE bytes. 1921 */ 1922 pkt->list_len = howmany(pkt->size, PAGE_SIZE); 1923 1924 if (pkt->list_len > 1) { 1925 pkt->flags |= NETRXF_more_data; 1926 } 1927 1928 slots_required = pkt->list_len + 1929 (pkt->flags & NETRXF_extra_info ? 1 : 0); 1930 if (slots_required > space) { 1931 xnb_pkt_invalidate(pkt); 1932 retval = EAGAIN; 1933 } 1934 } 1935 1936 return retval; 1937 } 1938 1939 /** 1940 * Build a gnttab_copy table that can be used to copy data from an mbuf chain 1941 * to the frontend's shared buffers. Does not actually perform the copy. 1942 * Always uses gref's on the other end's side. 1943 * \param[in] pkt pkt's associated responses form the dest for the copy 1944 * operatoin 1945 * \param[in] mbufc The source for the copy operation 1946 * \param[out] gnttab Storage for the returned grant table 1947 * \param[in] rxb Pointer to the backend ring structure 1948 * \param[in] otherend_id The domain ID of the other end of the copy 1949 * \return The number of gnttab entries filled 1950 */ 1951 static int 1952 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1953 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb, 1954 domid_t otherend_id) 1955 { 1956 1957 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1958 int gnt_idx = 0; /* index into grant table */ 1959 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */ 1960 int r_ofs = 0; /* offset of next data within rx request's data area */ 1961 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1962 /* size in bytes that still needs to be represented in the table */ 1963 uint16_t size_remaining; 1964 1965 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0; 1966 1967 while (size_remaining > 0) { 1968 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx); 1969 const size_t mbuf_space = mbuf->m_len - m_ofs; 1970 /* Xen shared pages have an implied size of PAGE_SIZE */ 1971 const size_t req_size = PAGE_SIZE; 1972 const size_t pkt_space = req_size - r_ofs; 1973 /* 1974 * space is the largest amount of data that can be copied in the 1975 * grant table's next entry 1976 */ 1977 const size_t space = MIN(pkt_space, mbuf_space); 1978 1979 /* TODO: handle this error condition without panicing */ 1980 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1981 1982 gnttab[gnt_idx].dest.u.ref = rxq->gref; 1983 gnttab[gnt_idx].dest.domid = otherend_id; 1984 gnttab[gnt_idx].dest.offset = r_ofs; 1985 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn( 1986 mtod(mbuf, vm_offset_t) + m_ofs); 1987 gnttab[gnt_idx].source.offset = virt_to_offset( 1988 mtod(mbuf, vm_offset_t) + m_ofs); 1989 gnttab[gnt_idx].source.domid = DOMID_SELF; 1990 gnttab[gnt_idx].len = space; 1991 gnttab[gnt_idx].flags = GNTCOPY_dest_gref; 1992 1993 gnt_idx++; 1994 1995 r_ofs += space; 1996 m_ofs += space; 1997 size_remaining -= space; 1998 if (req_size - r_ofs <= 0) { 1999 /* Must move to the next rx request */ 2000 r_ofs = 0; 2001 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 2002 } 2003 if (mbuf->m_len - m_ofs <= 0) { 2004 /* Must move to the next mbuf */ 2005 m_ofs = 0; 2006 mbuf = mbuf->m_next; 2007 } 2008 } 2009 2010 return gnt_idx; 2011 } 2012 2013 /** 2014 * Generates responses for all the requests that constituted pkt. Builds 2015 * responses and writes them to the ring, but doesn't push the shared ring 2016 * indices. 2017 * \param[in] pkt the packet that needs a response 2018 * \param[in] gnttab The grant copy table corresponding to this packet. 2019 * Used to determine how many rsp->netif_rx_response_t's to 2020 * generate. 2021 * \param[in] n_entries Number of relevant entries in the grant table 2022 * \param[out] ring Responses go here 2023 * \return The number of RX requests that were consumed to generate 2024 * the responses 2025 */ 2026 static int 2027 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab, 2028 int n_entries, netif_rx_back_ring_t *ring) 2029 { 2030 /* 2031 * This code makes the following assumptions: 2032 * * All entries in gnttab set GNTCOPY_dest_gref 2033 * * The entries in gnttab are grouped by their grefs: any two 2034 * entries with the same gref must be adjacent 2035 */ 2036 int error = 0; 2037 int gnt_idx, i; 2038 int n_responses = 0; 2039 grant_ref_t last_gref = GRANT_REF_INVALID; 2040 RING_IDX r_idx; 2041 2042 KASSERT(gnttab != NULL, ("Received a null granttable copy")); 2043 2044 /* 2045 * In the event of an error, we only need to send one response to the 2046 * netfront. In that case, we musn't write any data to the responses 2047 * after the one we send. So we must loop all the way through gnttab 2048 * looking for errors before we generate any responses 2049 * 2050 * Since we're looping through the grant table anyway, we'll count the 2051 * number of different gref's in it, which will tell us how many 2052 * responses to generate 2053 */ 2054 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) { 2055 int16_t status = gnttab[gnt_idx].status; 2056 if (status != GNTST_okay) { 2057 DPRINTF( 2058 "Got error %d for hypervisor gnttab_copy status\n", 2059 status); 2060 error = 1; 2061 break; 2062 } 2063 if (gnttab[gnt_idx].dest.u.ref != last_gref) { 2064 n_responses++; 2065 last_gref = gnttab[gnt_idx].dest.u.ref; 2066 } 2067 } 2068 2069 if (error != 0) { 2070 uint16_t id; 2071 netif_rx_response_t *rsp; 2072 2073 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id; 2074 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 2075 rsp->id = id; 2076 rsp->status = NETIF_RSP_ERROR; 2077 n_responses = 1; 2078 } else { 2079 gnt_idx = 0; 2080 const int has_extra = pkt->flags & NETRXF_extra_info; 2081 if (has_extra != 0) 2082 n_responses++; 2083 2084 for (i = 0; i < n_responses; i++) { 2085 netif_rx_request_t rxq; 2086 netif_rx_response_t *rsp; 2087 2088 r_idx = ring->rsp_prod_pvt + i; 2089 /* 2090 * We copy the structure of rxq instead of making a 2091 * pointer because it shares the same memory as rsp. 2092 */ 2093 rxq = *(RING_GET_REQUEST(ring, r_idx)); 2094 rsp = RING_GET_RESPONSE(ring, r_idx); 2095 if (has_extra && (i == 1)) { 2096 netif_extra_info_t *ext = 2097 (netif_extra_info_t*)rsp; 2098 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 2099 ext->flags = 0; 2100 ext->u.gso.size = pkt->extra.u.gso.size; 2101 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 2102 ext->u.gso.pad = 0; 2103 ext->u.gso.features = 0; 2104 } else { 2105 rsp->id = rxq.id; 2106 rsp->status = GNTST_okay; 2107 rsp->offset = 0; 2108 rsp->flags = 0; 2109 if (i < pkt->list_len - 1) 2110 rsp->flags |= NETRXF_more_data; 2111 if ((i == 0) && has_extra) 2112 rsp->flags |= NETRXF_extra_info; 2113 if ((i == 0) && 2114 (pkt->flags & NETRXF_data_validated)) { 2115 rsp->flags |= NETRXF_data_validated; 2116 rsp->flags |= NETRXF_csum_blank; 2117 } 2118 rsp->status = 0; 2119 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref; 2120 gnt_idx++) { 2121 rsp->status += gnttab[gnt_idx].len; 2122 } 2123 } 2124 } 2125 } 2126 2127 ring->req_cons += n_responses; 2128 ring->rsp_prod_pvt += n_responses; 2129 return n_responses; 2130 } 2131 2132 #if defined(INET) || defined(INET6) 2133 /** 2134 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf 2135 * in the chain must start with a struct ether_header. 2136 * 2137 * XXX This function will perform incorrectly on UDP packets that are split up 2138 * into multiple ethernet frames. 2139 */ 2140 static void 2141 xnb_add_mbuf_cksum(struct mbuf *mbufc) 2142 { 2143 struct ether_header *eh; 2144 struct ip *iph; 2145 uint16_t ether_type; 2146 2147 eh = mtod(mbufc, struct ether_header*); 2148 ether_type = ntohs(eh->ether_type); 2149 if (ether_type != ETHERTYPE_IP) { 2150 /* Nothing to calculate */ 2151 return; 2152 } 2153 2154 iph = (struct ip*)(eh + 1); 2155 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2156 iph->ip_sum = 0; 2157 iph->ip_sum = in_cksum_hdr(iph); 2158 } 2159 2160 switch (iph->ip_p) { 2161 case IPPROTO_TCP: 2162 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2163 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip); 2164 struct tcphdr *th = (struct tcphdr*)(iph + 1); 2165 th->th_sum = in_pseudo(iph->ip_src.s_addr, 2166 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen)); 2167 th->th_sum = in_cksum_skip(mbufc, 2168 sizeof(struct ether_header) + ntohs(iph->ip_len), 2169 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2170 } 2171 break; 2172 case IPPROTO_UDP: 2173 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2174 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip); 2175 struct udphdr *uh = (struct udphdr*)(iph + 1); 2176 uh->uh_sum = in_pseudo(iph->ip_src.s_addr, 2177 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen)); 2178 uh->uh_sum = in_cksum_skip(mbufc, 2179 sizeof(struct ether_header) + ntohs(iph->ip_len), 2180 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2181 } 2182 break; 2183 default: 2184 break; 2185 } 2186 } 2187 #endif /* INET || INET6 */ 2188 2189 static void 2190 xnb_stop(struct xnb_softc *xnb) 2191 { 2192 struct ifnet *ifp; 2193 2194 mtx_assert(&xnb->sc_lock, MA_OWNED); 2195 ifp = xnb->xnb_ifp; 2196 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2197 if_link_state_change(ifp, LINK_STATE_DOWN); 2198 } 2199 2200 static int 2201 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2202 { 2203 struct xnb_softc *xnb = ifp->if_softc; 2204 struct ifreq *ifr = (struct ifreq*) data; 2205 #ifdef INET 2206 struct ifaddr *ifa = (struct ifaddr*)data; 2207 #endif 2208 int error = 0; 2209 2210 switch (cmd) { 2211 case SIOCSIFFLAGS: 2212 mtx_lock(&xnb->sc_lock); 2213 if (ifp->if_flags & IFF_UP) { 2214 xnb_ifinit_locked(xnb); 2215 } else { 2216 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2217 xnb_stop(xnb); 2218 } 2219 } 2220 /* 2221 * Note: netfront sets a variable named xn_if_flags 2222 * here, but that variable is never read 2223 */ 2224 mtx_unlock(&xnb->sc_lock); 2225 break; 2226 case SIOCSIFADDR: 2227 #ifdef INET 2228 mtx_lock(&xnb->sc_lock); 2229 if (ifa->ifa_addr->sa_family == AF_INET) { 2230 ifp->if_flags |= IFF_UP; 2231 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2232 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | 2233 IFF_DRV_OACTIVE); 2234 if_link_state_change(ifp, 2235 LINK_STATE_DOWN); 2236 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2237 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2238 if_link_state_change(ifp, 2239 LINK_STATE_UP); 2240 } 2241 arp_ifinit(ifp, ifa); 2242 mtx_unlock(&xnb->sc_lock); 2243 } else { 2244 mtx_unlock(&xnb->sc_lock); 2245 #endif 2246 error = ether_ioctl(ifp, cmd, data); 2247 #ifdef INET 2248 } 2249 #endif 2250 break; 2251 case SIOCSIFCAP: 2252 mtx_lock(&xnb->sc_lock); 2253 if (ifr->ifr_reqcap & IFCAP_TXCSUM) { 2254 ifp->if_capenable |= IFCAP_TXCSUM; 2255 ifp->if_hwassist |= XNB_CSUM_FEATURES; 2256 } else { 2257 ifp->if_capenable &= ~(IFCAP_TXCSUM); 2258 ifp->if_hwassist &= ~(XNB_CSUM_FEATURES); 2259 } 2260 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) { 2261 ifp->if_capenable |= IFCAP_RXCSUM; 2262 } else { 2263 ifp->if_capenable &= ~(IFCAP_RXCSUM); 2264 } 2265 /* 2266 * TODO enable TSO4 and LRO once we no longer need 2267 * to calculate checksums in software 2268 */ 2269 #if 0 2270 if (ifr->if_reqcap |= IFCAP_TSO4) { 2271 if (IFCAP_TXCSUM & ifp->if_capenable) { 2272 printf("xnb: Xen netif requires that " 2273 "TXCSUM be enabled in order " 2274 "to use TSO4\n"); 2275 error = EINVAL; 2276 } else { 2277 ifp->if_capenable |= IFCAP_TSO4; 2278 ifp->if_hwassist |= CSUM_TSO; 2279 } 2280 } else { 2281 ifp->if_capenable &= ~(IFCAP_TSO4); 2282 ifp->if_hwassist &= ~(CSUM_TSO); 2283 } 2284 if (ifr->ifreqcap |= IFCAP_LRO) { 2285 ifp->if_capenable |= IFCAP_LRO; 2286 } else { 2287 ifp->if_capenable &= ~(IFCAP_LRO); 2288 } 2289 #endif 2290 mtx_unlock(&xnb->sc_lock); 2291 break; 2292 case SIOCSIFMTU: 2293 ifp->if_mtu = ifr->ifr_mtu; 2294 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2295 xnb_ifinit(xnb); 2296 break; 2297 case SIOCADDMULTI: 2298 case SIOCDELMULTI: 2299 case SIOCSIFMEDIA: 2300 case SIOCGIFMEDIA: 2301 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd); 2302 break; 2303 default: 2304 error = ether_ioctl(ifp, cmd, data); 2305 break; 2306 } 2307 return (error); 2308 } 2309 2310 static void 2311 xnb_start_locked(struct ifnet *ifp) 2312 { 2313 netif_rx_back_ring_t *rxb; 2314 struct xnb_softc *xnb; 2315 struct mbuf *mbufc; 2316 RING_IDX req_prod_local; 2317 2318 xnb = ifp->if_softc; 2319 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 2320 2321 if (!xnb->carrier) 2322 return; 2323 2324 do { 2325 int out_of_space = 0; 2326 int notify; 2327 req_prod_local = rxb->sring->req_prod; 2328 xen_rmb(); 2329 for (;;) { 2330 int error; 2331 2332 IF_DEQUEUE(&ifp->if_snd, mbufc); 2333 if (mbufc == NULL) 2334 break; 2335 error = xnb_send(rxb, xnb->otherend_id, mbufc, 2336 xnb->rx_gnttab); 2337 switch (error) { 2338 case EAGAIN: 2339 /* 2340 * Insufficient space in the ring. 2341 * Requeue pkt and send when space is 2342 * available. 2343 */ 2344 IF_PREPEND(&ifp->if_snd, mbufc); 2345 /* 2346 * Perhaps the frontend missed an IRQ 2347 * and went to sleep. Notify it to wake 2348 * it up. 2349 */ 2350 out_of_space = 1; 2351 break; 2352 2353 case EINVAL: 2354 /* OS gave a corrupt packet. Drop it.*/ 2355 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2356 /* FALLTHROUGH */ 2357 default: 2358 /* Send succeeded, or packet had error. 2359 * Free the packet */ 2360 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2361 if (mbufc) 2362 m_freem(mbufc); 2363 break; 2364 } 2365 if (out_of_space != 0) 2366 break; 2367 } 2368 2369 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify); 2370 if ((notify != 0) || (out_of_space != 0)) 2371 xen_intr_signal(xnb->xen_intr_handle); 2372 rxb->sring->req_event = req_prod_local + 1; 2373 xen_mb(); 2374 } while (rxb->sring->req_prod != req_prod_local) ; 2375 } 2376 2377 /** 2378 * Sends one packet to the ring. Blocks until the packet is on the ring 2379 * \param[in] mbufc Contains one packet to send. Caller must free 2380 * \param[in,out] rxb The packet will be pushed onto this ring, but the 2381 * otherend will not be notified. 2382 * \param[in] otherend The domain ID of the other end of the connection 2383 * \retval EAGAIN The ring did not have enough space for the packet. 2384 * The ring has not been modified 2385 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 2386 * this a function parameter so that we will take less 2387 * stack space. 2388 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 2389 */ 2390 static int 2391 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc, 2392 gnttab_copy_table gnttab) 2393 { 2394 struct xnb_pkt pkt; 2395 int error, n_entries, n_reqs; 2396 RING_IDX space; 2397 2398 space = ring->sring->req_prod - ring->req_cons; 2399 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space); 2400 if (error != 0) 2401 return error; 2402 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend); 2403 if (n_entries != 0) { 2404 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 2405 gnttab, n_entries); 2406 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n", 2407 hv_ret)); 2408 } 2409 2410 n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring); 2411 2412 return 0; 2413 } 2414 2415 static void 2416 xnb_start(struct ifnet *ifp) 2417 { 2418 struct xnb_softc *xnb; 2419 2420 xnb = ifp->if_softc; 2421 mtx_lock(&xnb->rx_lock); 2422 xnb_start_locked(ifp); 2423 mtx_unlock(&xnb->rx_lock); 2424 } 2425 2426 /* equivalent of network_open() in Linux */ 2427 static void 2428 xnb_ifinit_locked(struct xnb_softc *xnb) 2429 { 2430 struct ifnet *ifp; 2431 2432 ifp = xnb->xnb_ifp; 2433 2434 mtx_assert(&xnb->sc_lock, MA_OWNED); 2435 2436 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2437 return; 2438 2439 xnb_stop(xnb); 2440 2441 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2442 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2443 if_link_state_change(ifp, LINK_STATE_UP); 2444 } 2445 2446 static void 2447 xnb_ifinit(void *xsc) 2448 { 2449 struct xnb_softc *xnb = xsc; 2450 2451 mtx_lock(&xnb->sc_lock); 2452 xnb_ifinit_locked(xnb); 2453 mtx_unlock(&xnb->sc_lock); 2454 } 2455 2456 /** 2457 * Callback used by the generic networking code to tell us when our carrier 2458 * state has changed. Since we don't have a physical carrier, we don't care 2459 */ 2460 static int 2461 xnb_ifmedia_upd(struct ifnet *ifp) 2462 { 2463 return (0); 2464 } 2465 2466 /** 2467 * Callback used by the generic networking code to ask us what our carrier 2468 * state is. Since we don't have a physical carrier, this is very simple 2469 */ 2470 static void 2471 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2472 { 2473 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2474 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2475 } 2476 2477 /*---------------------------- NewBus Registration ---------------------------*/ 2478 static device_method_t xnb_methods[] = { 2479 /* Device interface */ 2480 DEVMETHOD(device_probe, xnb_probe), 2481 DEVMETHOD(device_attach, xnb_attach), 2482 DEVMETHOD(device_detach, xnb_detach), 2483 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2484 DEVMETHOD(device_suspend, xnb_suspend), 2485 DEVMETHOD(device_resume, xnb_resume), 2486 2487 /* Xenbus interface */ 2488 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed), 2489 { 0, 0 } 2490 }; 2491 2492 static driver_t xnb_driver = { 2493 "xnb", 2494 xnb_methods, 2495 sizeof(struct xnb_softc), 2496 }; 2497 devclass_t xnb_devclass; 2498 2499 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0); 2500 2501 /*-------------------------- Unit Tests -------------------------------------*/ 2502 #ifdef XNB_DEBUG 2503 #include "netback_unit_tests.c" 2504 #endif 2505