1 /*- 2 * Copyright (c) 2009-2011 Spectra Logic Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions, and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * substantially similar to the "NO WARRANTY" disclaimer below 13 * ("Disclaimer") and any redistribution must be conditioned upon 14 * including a substantially similar Disclaimer requirement for further 15 * binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGES. 29 * 30 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 31 * Alan Somers (Spectra Logic Corporation) 32 * John Suykerbuyk (Spectra Logic Corporation) 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /** 39 * \file netback.c 40 * 41 * \brief Device driver supporting the vending of network access 42 * from this FreeBSD domain to other domains. 43 */ 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_global.h" 47 48 #include "opt_sctp.h" 49 50 #include <sys/param.h> 51 #include <sys/kernel.h> 52 53 #include <sys/bus.h> 54 #include <sys/module.h> 55 #include <sys/rman.h> 56 #include <sys/socket.h> 57 #include <sys/sockio.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_arp.h> 63 #include <net/ethernet.h> 64 #include <net/if_dl.h> 65 #include <net/if_media.h> 66 #include <net/if_types.h> 67 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #include <netinet/if_ether.h> 71 #if __FreeBSD_version >= 700000 72 #include <netinet/tcp.h> 73 #endif 74 #include <netinet/ip_icmp.h> 75 #include <netinet/udp.h> 76 #include <machine/in_cksum.h> 77 78 #include <vm/vm.h> 79 #include <vm/pmap.h> 80 #include <vm/vm_extern.h> 81 #include <vm/vm_kern.h> 82 83 #include <machine/_inttypes.h> 84 85 #include <xen/xen-os.h> 86 #include <xen/hypervisor.h> 87 #include <xen/xen_intr.h> 88 #include <xen/interface/io/netif.h> 89 #include <xen/xenbus/xenbusvar.h> 90 91 #include <machine/xen/xenvar.h> 92 93 /*--------------------------- Compile-time Tunables --------------------------*/ 94 95 /*---------------------------------- Macros ----------------------------------*/ 96 /** 97 * Custom malloc type for all driver allocations. 98 */ 99 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data"); 100 101 #define XNB_SG 1 /* netback driver supports feature-sg */ 102 #define XNB_GSO_TCPV4 1 /* netback driver supports feature-gso-tcpv4 */ 103 #define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */ 104 #define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */ 105 106 #undef XNB_DEBUG 107 #define XNB_DEBUG /* hardcode on during development */ 108 109 #ifdef XNB_DEBUG 110 #define DPRINTF(fmt, args...) \ 111 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) 112 #else 113 #define DPRINTF(fmt, args...) do {} while (0) 114 #endif 115 116 /* Default length for stack-allocated grant tables */ 117 #define GNTTAB_LEN (64) 118 119 /* Features supported by all backends. TSO and LRO can be negotiated */ 120 #define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 121 122 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 123 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 124 125 /** 126 * Two argument version of the standard macro. Second argument is a tentative 127 * value of req_cons 128 */ 129 #define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \ 130 unsigned int req = (_r)->sring->req_prod - cons; \ 131 unsigned int rsp = RING_SIZE(_r) - \ 132 (cons - (_r)->rsp_prod_pvt); \ 133 req < rsp ? req : rsp; \ 134 }) 135 136 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 137 #define virt_to_offset(x) ((x) & (PAGE_SIZE - 1)) 138 139 /** 140 * Predefined array type of grant table copy descriptors. Used to pass around 141 * statically allocated memory structures. 142 */ 143 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN]; 144 145 /*--------------------------- Forward Declarations ---------------------------*/ 146 struct xnb_softc; 147 struct xnb_pkt; 148 149 static void xnb_attach_failed(struct xnb_softc *xnb, 150 int err, const char *fmt, ...) 151 __printflike(3,4); 152 static int xnb_shutdown(struct xnb_softc *xnb); 153 static int create_netdev(device_t dev); 154 static int xnb_detach(device_t dev); 155 static int xen_net_read_mac(device_t dev, uint8_t mac[]); 156 static int xnb_ifmedia_upd(struct ifnet *ifp); 157 static void xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 158 static void xnb_intr(void *arg); 159 static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend, 160 const struct mbuf *mbufc, gnttab_copy_table gnttab); 161 static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, 162 struct mbuf **mbufc, struct ifnet *ifnet, 163 gnttab_copy_table gnttab); 164 static int xnb_ring2pkt(struct xnb_pkt *pkt, 165 const netif_tx_back_ring_t *tx_ring, 166 RING_IDX start); 167 static void xnb_txpkt2rsp(const struct xnb_pkt *pkt, 168 netif_tx_back_ring_t *ring, int error); 169 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp); 170 static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt, 171 const struct mbuf *mbufc, 172 gnttab_copy_table gnttab, 173 const netif_tx_back_ring_t *txb, 174 domid_t otherend_id); 175 static void xnb_update_mbufc(struct mbuf *mbufc, 176 const gnttab_copy_table gnttab, int n_entries); 177 static int xnb_mbufc2pkt(const struct mbuf *mbufc, 178 struct xnb_pkt *pkt, 179 RING_IDX start, int space); 180 static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, 181 const struct mbuf *mbufc, 182 gnttab_copy_table gnttab, 183 const netif_rx_back_ring_t *rxb, 184 domid_t otherend_id); 185 static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt, 186 const gnttab_copy_table gnttab, int n_entries, 187 netif_rx_back_ring_t *ring); 188 static void xnb_stop(struct xnb_softc*); 189 static int xnb_ioctl(struct ifnet*, u_long, caddr_t); 190 static void xnb_start_locked(struct ifnet*); 191 static void xnb_start(struct ifnet*); 192 static void xnb_ifinit_locked(struct xnb_softc*); 193 static void xnb_ifinit(void*); 194 #ifdef XNB_DEBUG 195 static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS); 196 static int xnb_dump_rings(SYSCTL_HANDLER_ARGS); 197 #endif 198 #if defined(INET) || defined(INET6) 199 static void xnb_add_mbuf_cksum(struct mbuf *mbufc); 200 #endif 201 /*------------------------------ Data Structures -----------------------------*/ 202 203 204 /** 205 * Representation of a xennet packet. Simplified version of a packet as 206 * stored in the Xen tx ring. Applicable to both RX and TX packets 207 */ 208 struct xnb_pkt{ 209 /** 210 * Array index of the first data-bearing (eg, not extra info) entry 211 * for this packet 212 */ 213 RING_IDX car; 214 215 /** 216 * Array index of the second data-bearing entry for this packet. 217 * Invalid if the packet has only one data-bearing entry. If the 218 * packet has more than two data-bearing entries, then the second 219 * through the last will be sequential modulo the ring size 220 */ 221 RING_IDX cdr; 222 223 /** 224 * Optional extra info. Only valid if flags contains 225 * NETTXF_extra_info. Note that extra.type will always be 226 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback 227 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_* 228 */ 229 netif_extra_info_t extra; 230 231 /** Size of entire packet in bytes. */ 232 uint16_t size; 233 234 /** The size of the first entry's data in bytes */ 235 uint16_t car_size; 236 237 /** 238 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are 239 * not the same for TX and RX packets 240 */ 241 uint16_t flags; 242 243 /** 244 * The number of valid data-bearing entries (either netif_tx_request's 245 * or netif_rx_response's) in the packet. If this is 0, it means the 246 * entire packet is invalid. 247 */ 248 uint16_t list_len; 249 250 /** There was an error processing the packet */ 251 uint8_t error; 252 }; 253 254 /** xnb_pkt method: initialize it */ 255 static inline void 256 xnb_pkt_initialize(struct xnb_pkt *pxnb) 257 { 258 bzero(pxnb, sizeof(*pxnb)); 259 } 260 261 /** xnb_pkt method: mark the packet as valid */ 262 static inline void 263 xnb_pkt_validate(struct xnb_pkt *pxnb) 264 { 265 pxnb->error = 0; 266 }; 267 268 /** xnb_pkt method: mark the packet as invalid */ 269 static inline void 270 xnb_pkt_invalidate(struct xnb_pkt *pxnb) 271 { 272 pxnb->error = 1; 273 }; 274 275 /** xnb_pkt method: Check whether the packet is valid */ 276 static inline int 277 xnb_pkt_is_valid(const struct xnb_pkt *pxnb) 278 { 279 return (! pxnb->error); 280 } 281 282 #ifdef XNB_DEBUG 283 /** xnb_pkt method: print the packet's contents in human-readable format*/ 284 static void __unused 285 xnb_dump_pkt(const struct xnb_pkt *pkt) { 286 if (pkt == NULL) { 287 DPRINTF("Was passed a null pointer.\n"); 288 return; 289 } 290 DPRINTF("pkt address= %p\n", pkt); 291 DPRINTF("pkt->size=%d\n", pkt->size); 292 DPRINTF("pkt->car_size=%d\n", pkt->car_size); 293 DPRINTF("pkt->flags=0x%04x\n", pkt->flags); 294 DPRINTF("pkt->list_len=%d\n", pkt->list_len); 295 /* DPRINTF("pkt->extra"); TODO */ 296 DPRINTF("pkt->car=%d\n", pkt->car); 297 DPRINTF("pkt->cdr=%d\n", pkt->cdr); 298 DPRINTF("pkt->error=%d\n", pkt->error); 299 } 300 #endif /* XNB_DEBUG */ 301 302 static void 303 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq) 304 { 305 if (txreq != NULL) { 306 DPRINTF("netif_tx_request index =%u\n", idx); 307 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref); 308 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset); 309 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags); 310 DPRINTF("netif_tx_request.id =%hu\n", txreq->id); 311 DPRINTF("netif_tx_request.size =%hu\n", txreq->size); 312 } 313 } 314 315 316 /** 317 * \brief Configuration data for a shared memory request ring 318 * used to communicate with the front-end client of this 319 * this driver. 320 */ 321 struct xnb_ring_config { 322 /** 323 * Runtime structures for ring access. Unfortunately, TX and RX rings 324 * use different data structures, and that cannot be changed since it 325 * is part of the interdomain protocol. 326 */ 327 union{ 328 netif_rx_back_ring_t rx_ring; 329 netif_tx_back_ring_t tx_ring; 330 } back_ring; 331 332 /** 333 * The device bus address returned by the hypervisor when 334 * mapping the ring and required to unmap it when a connection 335 * is torn down. 336 */ 337 uint64_t bus_addr; 338 339 /** The pseudo-physical address where ring memory is mapped.*/ 340 uint64_t gnt_addr; 341 342 /** KVA address where ring memory is mapped. */ 343 vm_offset_t va; 344 345 /** 346 * Grant table handles, one per-ring page, returned by the 347 * hyperpervisor upon mapping of the ring and required to 348 * unmap it when a connection is torn down. 349 */ 350 grant_handle_t handle; 351 352 /** The number of ring pages mapped for the current connection. */ 353 unsigned ring_pages; 354 355 /** 356 * The grant references, one per-ring page, supplied by the 357 * front-end, allowing us to reference the ring pages in the 358 * front-end's domain and to map these pages into our own domain. 359 */ 360 grant_ref_t ring_ref; 361 }; 362 363 /** 364 * Per-instance connection state flags. 365 */ 366 typedef enum 367 { 368 /** Communication with the front-end has been established. */ 369 XNBF_RING_CONNECTED = 0x01, 370 371 /** 372 * Front-end requests exist in the ring and are waiting for 373 * xnb_xen_req objects to free up. 374 */ 375 XNBF_RESOURCE_SHORTAGE = 0x02, 376 377 /** Connection teardown has started. */ 378 XNBF_SHUTDOWN = 0x04, 379 380 /** A thread is already performing shutdown processing. */ 381 XNBF_IN_SHUTDOWN = 0x08 382 } xnb_flag_t; 383 384 /** 385 * Types of rings. Used for array indices and to identify a ring's control 386 * data structure type 387 */ 388 typedef enum{ 389 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */ 390 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */ 391 XNB_NUM_RING_TYPES 392 } xnb_ring_type_t; 393 394 /** 395 * Per-instance configuration data. 396 */ 397 struct xnb_softc { 398 /** NewBus device corresponding to this instance. */ 399 device_t dev; 400 401 /* Media related fields */ 402 403 /** Generic network media state */ 404 struct ifmedia sc_media; 405 406 /** Media carrier info */ 407 struct ifnet *xnb_ifp; 408 409 /** Our own private carrier state */ 410 unsigned carrier; 411 412 /** Device MAC Address */ 413 uint8_t mac[ETHER_ADDR_LEN]; 414 415 /* Xen related fields */ 416 417 /** 418 * \brief The netif protocol abi in effect. 419 * 420 * There are situations where the back and front ends can 421 * have a different, native abi (e.g. intel x86_64 and 422 * 32bit x86 domains on the same machine). The back-end 423 * always accomodates the front-end's native abi. That 424 * value is pulled from the XenStore and recorded here. 425 */ 426 int abi; 427 428 /** 429 * Name of the bridge to which this VIF is connected, if any 430 * This field is dynamically allocated by xenbus and must be free()ed 431 * when no longer needed 432 */ 433 char *bridge; 434 435 /** The interrupt driven even channel used to signal ring events. */ 436 evtchn_port_t evtchn; 437 438 /** Xen device handle.*/ 439 long handle; 440 441 /** Handle to the communication ring event channel. */ 442 xen_intr_handle_t xen_intr_handle; 443 444 /** 445 * \brief Cached value of the front-end's domain id. 446 * 447 * This value is used at once for each mapped page in 448 * a transaction. We cache it to avoid incuring the 449 * cost of an ivar access every time this is needed. 450 */ 451 domid_t otherend_id; 452 453 /** 454 * Undocumented frontend feature. Has something to do with 455 * scatter/gather IO 456 */ 457 uint8_t can_sg; 458 /** Undocumented frontend feature */ 459 uint8_t gso; 460 /** Undocumented frontend feature */ 461 uint8_t gso_prefix; 462 /** Can checksum TCP/UDP over IPv4 */ 463 uint8_t ip_csum; 464 465 /* Implementation related fields */ 466 /** 467 * Preallocated grant table copy descriptor for RX operations. 468 * Access must be protected by rx_lock 469 */ 470 gnttab_copy_table rx_gnttab; 471 472 /** 473 * Preallocated grant table copy descriptor for TX operations. 474 * Access must be protected by tx_lock 475 */ 476 gnttab_copy_table tx_gnttab; 477 478 #ifdef XENHVM 479 /** 480 * Resource representing allocated physical address space 481 * associated with our per-instance kva region. 482 */ 483 struct resource *pseudo_phys_res; 484 485 /** Resource id for allocated physical address space. */ 486 int pseudo_phys_res_id; 487 #endif 488 489 /** Ring mapping and interrupt configuration data. */ 490 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES]; 491 492 /** 493 * Global pool of kva used for mapping remote domain ring 494 * and I/O transaction data. 495 */ 496 vm_offset_t kva; 497 498 /** Psuedo-physical address corresponding to kva. */ 499 uint64_t gnt_base_addr; 500 501 /** Various configuration and state bit flags. */ 502 xnb_flag_t flags; 503 504 /** Mutex protecting per-instance data in the receive path. */ 505 struct mtx rx_lock; 506 507 /** Mutex protecting per-instance data in the softc structure. */ 508 struct mtx sc_lock; 509 510 /** Mutex protecting per-instance data in the transmit path. */ 511 struct mtx tx_lock; 512 513 /** The size of the global kva pool. */ 514 int kva_size; 515 }; 516 517 /*---------------------------- Debugging functions ---------------------------*/ 518 #ifdef XNB_DEBUG 519 static void __unused 520 xnb_dump_gnttab_copy(const struct gnttab_copy *entry) 521 { 522 if (entry == NULL) { 523 printf("NULL grant table pointer\n"); 524 return; 525 } 526 527 if (entry->flags & GNTCOPY_dest_gref) 528 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref); 529 else 530 printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn); 531 printf("gnttab dest offset=\t%hu\n", entry->dest.offset); 532 printf("gnttab dest domid=\t%hu\n", entry->dest.domid); 533 if (entry->flags & GNTCOPY_source_gref) 534 printf("gnttab source ref=\t%u\n", entry->source.u.ref); 535 else 536 printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn); 537 printf("gnttab source offset=\t%hu\n", entry->source.offset); 538 printf("gnttab source domid=\t%hu\n", entry->source.domid); 539 printf("gnttab len=\t%hu\n", entry->len); 540 printf("gnttab flags=\t%hu\n", entry->flags); 541 printf("gnttab status=\t%hd\n", entry->status); 542 } 543 544 static int 545 xnb_dump_rings(SYSCTL_HANDLER_ARGS) 546 { 547 static char results[720]; 548 struct xnb_softc const* xnb = (struct xnb_softc*)arg1; 549 netif_rx_back_ring_t const* rxb = 550 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 551 netif_tx_back_ring_t const* txb = 552 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 553 554 /* empty the result strings */ 555 results[0] = 0; 556 557 if ( !txb || !txb->sring || !rxb || !rxb->sring ) 558 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 559 560 snprintf(results, 720, 561 "\n\t%35s %18s\n" /* TX, RX */ 562 "\t%16s %18d %18d\n" /* req_cons */ 563 "\t%16s %18d %18d\n" /* nr_ents */ 564 "\t%16s %18d %18d\n" /* rsp_prod_pvt */ 565 "\t%16s %18p %18p\n" /* sring */ 566 "\t%16s %18d %18d\n" /* req_prod */ 567 "\t%16s %18d %18d\n" /* req_event */ 568 "\t%16s %18d %18d\n" /* rsp_prod */ 569 "\t%16s %18d %18d\n", /* rsp_event */ 570 "TX", "RX", 571 "req_cons", txb->req_cons, rxb->req_cons, 572 "nr_ents", txb->nr_ents, rxb->nr_ents, 573 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt, 574 "sring", txb->sring, rxb->sring, 575 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod, 576 "sring->req_event", txb->sring->req_event, rxb->sring->req_event, 577 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod, 578 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event); 579 580 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 581 } 582 583 static void __unused 584 xnb_dump_mbuf(const struct mbuf *m) 585 { 586 int len; 587 uint8_t *d; 588 if (m == NULL) 589 return; 590 591 printf("xnb_dump_mbuf:\n"); 592 if (m->m_flags & M_PKTHDR) { 593 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, " 594 "tso_segsz=%5hd\n", 595 m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags, 596 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz); 597 printf(" rcvif=%16p, len=%19d\n", 598 m->m_pkthdr.rcvif, m->m_pkthdr.len); 599 } 600 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n", 601 m->m_next, m->m_nextpkt, m->m_data); 602 printf(" m_len=%17d, m_flags=%#15x, m_type=%18u\n", 603 m->m_len, m->m_flags, m->m_type); 604 605 len = m->m_len; 606 d = mtod(m, uint8_t*); 607 while (len > 0) { 608 int i; 609 printf(" "); 610 for (i = 0; (i < 16) && (len > 0); i++, len--) { 611 printf("%02hhx ", *(d++)); 612 } 613 printf("\n"); 614 } 615 } 616 #endif /* XNB_DEBUG */ 617 618 /*------------------------ Inter-Domain Communication ------------------------*/ 619 /** 620 * Free dynamically allocated KVA or pseudo-physical address allocations. 621 * 622 * \param xnb Per-instance xnb configuration structure. 623 */ 624 static void 625 xnb_free_communication_mem(struct xnb_softc *xnb) 626 { 627 if (xnb->kva != 0) { 628 #ifndef XENHVM 629 kva_free(xnb->kva, xnb->kva_size); 630 #else 631 if (xnb->pseudo_phys_res != NULL) { 632 bus_release_resource(xnb->dev, SYS_RES_MEMORY, 633 xnb->pseudo_phys_res_id, 634 xnb->pseudo_phys_res); 635 xnb->pseudo_phys_res = NULL; 636 } 637 #endif /* XENHVM */ 638 } 639 xnb->kva = 0; 640 xnb->gnt_base_addr = 0; 641 } 642 643 /** 644 * Cleanup all inter-domain communication mechanisms. 645 * 646 * \param xnb Per-instance xnb configuration structure. 647 */ 648 static int 649 xnb_disconnect(struct xnb_softc *xnb) 650 { 651 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES]; 652 int error; 653 int i; 654 655 xen_intr_unbind(xnb->xen_intr_handle); 656 657 /* 658 * We may still have another thread currently processing requests. We 659 * must acquire the rx and tx locks to make sure those threads are done, 660 * but we can release those locks as soon as we acquire them, because no 661 * more interrupts will be arriving. 662 */ 663 mtx_lock(&xnb->tx_lock); 664 mtx_unlock(&xnb->tx_lock); 665 mtx_lock(&xnb->rx_lock); 666 mtx_unlock(&xnb->rx_lock); 667 668 /* Free malloc'd softc member variables */ 669 if (xnb->bridge != NULL) 670 free(xnb->bridge, M_XENSTORE); 671 672 /* All request processing has stopped, so unmap the rings */ 673 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 674 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr; 675 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr; 676 gnts[i].handle = xnb->ring_configs[i].handle; 677 } 678 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts, 679 XNB_NUM_RING_TYPES); 680 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error)); 681 682 xnb_free_communication_mem(xnb); 683 /* 684 * Zero the ring config structs because the pointers, handles, and 685 * grant refs contained therein are no longer valid. 686 */ 687 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX], 688 sizeof(struct xnb_ring_config)); 689 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX], 690 sizeof(struct xnb_ring_config)); 691 692 xnb->flags &= ~XNBF_RING_CONNECTED; 693 return (0); 694 } 695 696 /** 697 * Map a single shared memory ring into domain local address space and 698 * initialize its control structure 699 * 700 * \param xnb Per-instance xnb configuration structure 701 * \param ring_type Array index of this ring in the xnb's array of rings 702 * \return An errno 703 */ 704 static int 705 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type) 706 { 707 struct gnttab_map_grant_ref gnt; 708 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type]; 709 int error; 710 711 /* TX ring type = 0, RX =1 */ 712 ring->va = xnb->kva + ring_type * PAGE_SIZE; 713 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE; 714 715 gnt.host_addr = ring->gnt_addr; 716 gnt.flags = GNTMAP_host_map; 717 gnt.ref = ring->ring_ref; 718 gnt.dom = xnb->otherend_id; 719 720 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1); 721 if (error != 0) 722 panic("netback: Ring page grant table op failed (%d)", error); 723 724 if (gnt.status != 0) { 725 ring->va = 0; 726 error = EACCES; 727 xenbus_dev_fatal(xnb->dev, error, 728 "Ring shared page mapping failed. " 729 "Status %d.", gnt.status); 730 } else { 731 ring->handle = gnt.handle; 732 ring->bus_addr = gnt.dev_bus_addr; 733 734 if (ring_type == XNB_RING_TYPE_TX) { 735 BACK_RING_INIT(&ring->back_ring.tx_ring, 736 (netif_tx_sring_t*)ring->va, 737 ring->ring_pages * PAGE_SIZE); 738 } else if (ring_type == XNB_RING_TYPE_RX) { 739 BACK_RING_INIT(&ring->back_ring.rx_ring, 740 (netif_rx_sring_t*)ring->va, 741 ring->ring_pages * PAGE_SIZE); 742 } else { 743 xenbus_dev_fatal(xnb->dev, error, 744 "Unknown ring type %d", ring_type); 745 } 746 } 747 748 return error; 749 } 750 751 /** 752 * Setup the shared memory rings and bind an interrupt to the event channel 753 * used to notify us of ring changes. 754 * 755 * \param xnb Per-instance xnb configuration structure. 756 */ 757 static int 758 xnb_connect_comms(struct xnb_softc *xnb) 759 { 760 int error; 761 xnb_ring_type_t i; 762 763 if ((xnb->flags & XNBF_RING_CONNECTED) != 0) 764 return (0); 765 766 /* 767 * Kva for our rings are at the tail of the region of kva allocated 768 * by xnb_alloc_communication_mem(). 769 */ 770 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 771 error = xnb_connect_ring(xnb, i); 772 if (error != 0) 773 return error; 774 } 775 776 xnb->flags |= XNBF_RING_CONNECTED; 777 778 error = xen_intr_bind_remote_port(xnb->dev, 779 xnb->otherend_id, 780 xnb->evtchn, 781 /*filter*/NULL, 782 xnb_intr, /*arg*/xnb, 783 INTR_TYPE_BIO | INTR_MPSAFE, 784 &xnb->xen_intr_handle); 785 if (error != 0) { 786 (void)xnb_disconnect(xnb); 787 xenbus_dev_fatal(xnb->dev, error, "binding event channel"); 788 return (error); 789 } 790 791 DPRINTF("rings connected!\n"); 792 793 return (0); 794 } 795 796 /** 797 * Size KVA and pseudo-physical address allocations based on negotiated 798 * values for the size and number of I/O requests, and the size of our 799 * communication ring. 800 * 801 * \param xnb Per-instance xnb configuration structure. 802 * 803 * These address spaces are used to dynamically map pages in the 804 * front-end's domain into our own. 805 */ 806 static int 807 xnb_alloc_communication_mem(struct xnb_softc *xnb) 808 { 809 xnb_ring_type_t i; 810 811 xnb->kva_size = 0; 812 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 813 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE; 814 } 815 #ifndef XENHVM 816 xnb->kva = kva_alloc(xnb->kva_size); 817 if (xnb->kva == 0) 818 return (ENOMEM); 819 xnb->gnt_base_addr = xnb->kva; 820 #else /* defined XENHVM */ 821 /* 822 * Reserve a range of pseudo physical memory that we can map 823 * into kva. These pages will only be backed by machine 824 * pages ("real memory") during the lifetime of front-end requests 825 * via grant table operations. We will map the netif tx and rx rings 826 * into this space. 827 */ 828 xnb->pseudo_phys_res_id = 0; 829 xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY, 830 &xnb->pseudo_phys_res_id, 831 0, ~0, xnb->kva_size, 832 RF_ACTIVE); 833 if (xnb->pseudo_phys_res == NULL) { 834 xnb->kva = 0; 835 return (ENOMEM); 836 } 837 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res); 838 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res); 839 #endif /* !defined XENHVM */ 840 return (0); 841 } 842 843 /** 844 * Collect information from the XenStore related to our device and its frontend 845 * 846 * \param xnb Per-instance xnb configuration structure. 847 */ 848 static int 849 xnb_collect_xenstore_info(struct xnb_softc *xnb) 850 { 851 /** 852 * \todo Linux collects the following info. We should collect most 853 * of this, too: 854 * "feature-rx-notify" 855 */ 856 const char *otherend_path; 857 const char *our_path; 858 int err; 859 unsigned int rx_copy, bridge_len; 860 uint8_t no_csum_offload; 861 862 otherend_path = xenbus_get_otherend_path(xnb->dev); 863 our_path = xenbus_get_node(xnb->dev); 864 865 /* Collect the critical communication parameters */ 866 err = xs_gather(XST_NIL, otherend_path, 867 "tx-ring-ref", "%l" PRIu32, 868 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref, 869 "rx-ring-ref", "%l" PRIu32, 870 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref, 871 "event-channel", "%" PRIu32, &xnb->evtchn, 872 NULL); 873 if (err != 0) { 874 xenbus_dev_fatal(xnb->dev, err, 875 "Unable to retrieve ring information from " 876 "frontend %s. Unable to connect.", 877 otherend_path); 878 return (err); 879 } 880 881 /* Collect the handle from xenstore */ 882 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle); 883 if (err != 0) { 884 xenbus_dev_fatal(xnb->dev, err, 885 "Error reading handle from frontend %s. " 886 "Unable to connect.", otherend_path); 887 } 888 889 /* 890 * Collect the bridgename, if any. We do not need bridge_len; we just 891 * throw it away 892 */ 893 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len, 894 (void**)&xnb->bridge); 895 if (err != 0) 896 xnb->bridge = NULL; 897 898 /* 899 * Does the frontend request that we use rx copy? If not, return an 900 * error because this driver only supports rx copy. 901 */ 902 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL, 903 "%" PRIu32, &rx_copy); 904 if (err == ENOENT) { 905 err = 0; 906 rx_copy = 0; 907 } 908 if (err < 0) { 909 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy", 910 otherend_path); 911 return err; 912 } 913 /** 914 * \todo: figure out the exact meaning of this feature, and when 915 * the frontend will set it to true. It should be set to true 916 * at some point 917 */ 918 /* if (!rx_copy)*/ 919 /* return EOPNOTSUPP;*/ 920 921 /** \todo Collect the rx notify feature */ 922 923 /* Collect the feature-sg. */ 924 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL, 925 "%hhu", &xnb->can_sg) < 0) 926 xnb->can_sg = 0; 927 928 /* Collect remaining frontend features */ 929 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL, 930 "%hhu", &xnb->gso) < 0) 931 xnb->gso = 0; 932 933 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL, 934 "%hhu", &xnb->gso_prefix) < 0) 935 xnb->gso_prefix = 0; 936 937 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL, 938 "%hhu", &no_csum_offload) < 0) 939 no_csum_offload = 0; 940 xnb->ip_csum = (no_csum_offload == 0); 941 942 return (0); 943 } 944 945 /** 946 * Supply information about the physical device to the frontend 947 * via XenBus. 948 * 949 * \param xnb Per-instance xnb configuration structure. 950 */ 951 static int 952 xnb_publish_backend_info(struct xnb_softc *xnb) 953 { 954 struct xs_transaction xst; 955 const char *our_path; 956 int error; 957 958 our_path = xenbus_get_node(xnb->dev); 959 960 do { 961 error = xs_transaction_start(&xst); 962 if (error != 0) { 963 xenbus_dev_fatal(xnb->dev, error, 964 "Error publishing backend info " 965 "(start transaction)"); 966 break; 967 } 968 969 error = xs_printf(xst, our_path, "feature-sg", 970 "%d", XNB_SG); 971 if (error != 0) 972 break; 973 974 error = xs_printf(xst, our_path, "feature-gso-tcpv4", 975 "%d", XNB_GSO_TCPV4); 976 if (error != 0) 977 break; 978 979 error = xs_printf(xst, our_path, "feature-rx-copy", 980 "%d", XNB_RX_COPY); 981 if (error != 0) 982 break; 983 984 error = xs_printf(xst, our_path, "feature-rx-flip", 985 "%d", XNB_RX_FLIP); 986 if (error != 0) 987 break; 988 989 error = xs_transaction_end(xst, 0); 990 if (error != 0 && error != EAGAIN) { 991 xenbus_dev_fatal(xnb->dev, error, "ending transaction"); 992 break; 993 } 994 995 } while (error == EAGAIN); 996 997 return (error); 998 } 999 1000 /** 1001 * Connect to our netfront peer now that it has completed publishing 1002 * its configuration into the XenStore. 1003 * 1004 * \param xnb Per-instance xnb configuration structure. 1005 */ 1006 static void 1007 xnb_connect(struct xnb_softc *xnb) 1008 { 1009 int error; 1010 1011 if (xenbus_get_state(xnb->dev) == XenbusStateConnected) 1012 return; 1013 1014 if (xnb_collect_xenstore_info(xnb) != 0) 1015 return; 1016 1017 xnb->flags &= ~XNBF_SHUTDOWN; 1018 1019 /* Read front end configuration. */ 1020 1021 /* Allocate resources whose size depends on front-end configuration. */ 1022 error = xnb_alloc_communication_mem(xnb); 1023 if (error != 0) { 1024 xenbus_dev_fatal(xnb->dev, error, 1025 "Unable to allocate communication memory"); 1026 return; 1027 } 1028 1029 /* 1030 * Connect communication channel. 1031 */ 1032 error = xnb_connect_comms(xnb); 1033 if (error != 0) { 1034 /* Specific errors are reported by xnb_connect_comms(). */ 1035 return; 1036 } 1037 xnb->carrier = 1; 1038 1039 /* Ready for I/O. */ 1040 xenbus_set_state(xnb->dev, XenbusStateConnected); 1041 } 1042 1043 /*-------------------------- Device Teardown Support -------------------------*/ 1044 /** 1045 * Perform device shutdown functions. 1046 * 1047 * \param xnb Per-instance xnb configuration structure. 1048 * 1049 * Mark this instance as shutting down, wait for any active requests 1050 * to drain, disconnect from the front-end, and notify any waiters (e.g. 1051 * a thread invoking our detach method) that detach can now proceed. 1052 */ 1053 static int 1054 xnb_shutdown(struct xnb_softc *xnb) 1055 { 1056 /* 1057 * Due to the need to drop our mutex during some 1058 * xenbus operations, it is possible for two threads 1059 * to attempt to close out shutdown processing at 1060 * the same time. Tell the caller that hits this 1061 * race to try back later. 1062 */ 1063 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0) 1064 return (EAGAIN); 1065 1066 xnb->flags |= XNBF_SHUTDOWN; 1067 1068 xnb->flags |= XNBF_IN_SHUTDOWN; 1069 1070 mtx_unlock(&xnb->sc_lock); 1071 /* Free the network interface */ 1072 xnb->carrier = 0; 1073 if (xnb->xnb_ifp != NULL) { 1074 ether_ifdetach(xnb->xnb_ifp); 1075 if_free(xnb->xnb_ifp); 1076 xnb->xnb_ifp = NULL; 1077 } 1078 mtx_lock(&xnb->sc_lock); 1079 1080 xnb_disconnect(xnb); 1081 1082 mtx_unlock(&xnb->sc_lock); 1083 if (xenbus_get_state(xnb->dev) < XenbusStateClosing) 1084 xenbus_set_state(xnb->dev, XenbusStateClosing); 1085 mtx_lock(&xnb->sc_lock); 1086 1087 xnb->flags &= ~XNBF_IN_SHUTDOWN; 1088 1089 1090 /* Indicate to xnb_detach() that is it safe to proceed. */ 1091 wakeup(xnb); 1092 1093 return (0); 1094 } 1095 1096 /** 1097 * Report an attach time error to the console and Xen, and cleanup 1098 * this instance by forcing immediate detach processing. 1099 * 1100 * \param xnb Per-instance xnb configuration structure. 1101 * \param err Errno describing the error. 1102 * \param fmt Printf style format and arguments 1103 */ 1104 static void 1105 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...) 1106 { 1107 va_list ap; 1108 va_list ap_hotplug; 1109 1110 va_start(ap, fmt); 1111 va_copy(ap_hotplug, ap); 1112 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev), 1113 "hotplug-error", fmt, ap_hotplug); 1114 va_end(ap_hotplug); 1115 xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1116 "hotplug-status", "error"); 1117 1118 xenbus_dev_vfatal(xnb->dev, err, fmt, ap); 1119 va_end(ap); 1120 1121 xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1122 "online", "0"); 1123 xnb_detach(xnb->dev); 1124 } 1125 1126 /*---------------------------- NewBus Entrypoints ----------------------------*/ 1127 /** 1128 * Inspect a XenBus device and claim it if is of the appropriate type. 1129 * 1130 * \param dev NewBus device object representing a candidate XenBus device. 1131 * 1132 * \return 0 for success, errno codes for failure. 1133 */ 1134 static int 1135 xnb_probe(device_t dev) 1136 { 1137 if (!strcmp(xenbus_get_type(dev), "vif")) { 1138 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev), 1139 devclass_get_name(device_get_devclass(dev))); 1140 device_set_desc(dev, "Backend Virtual Network Device"); 1141 device_quiet(dev); 1142 return (0); 1143 } 1144 return (ENXIO); 1145 } 1146 1147 /** 1148 * Setup sysctl variables to control various Network Back parameters. 1149 * 1150 * \param xnb Xen Net Back softc. 1151 * 1152 */ 1153 static void 1154 xnb_setup_sysctl(struct xnb_softc *xnb) 1155 { 1156 struct sysctl_ctx_list *sysctl_ctx = NULL; 1157 struct sysctl_oid *sysctl_tree = NULL; 1158 1159 sysctl_ctx = device_get_sysctl_ctx(xnb->dev); 1160 if (sysctl_ctx == NULL) 1161 return; 1162 1163 sysctl_tree = device_get_sysctl_tree(xnb->dev); 1164 if (sysctl_tree == NULL) 1165 return; 1166 1167 #ifdef XNB_DEBUG 1168 SYSCTL_ADD_PROC(sysctl_ctx, 1169 SYSCTL_CHILDREN(sysctl_tree), 1170 OID_AUTO, 1171 "unit_test_results", 1172 CTLTYPE_STRING | CTLFLAG_RD, 1173 xnb, 1174 0, 1175 xnb_unit_test_main, 1176 "A", 1177 "Results of builtin unit tests"); 1178 1179 SYSCTL_ADD_PROC(sysctl_ctx, 1180 SYSCTL_CHILDREN(sysctl_tree), 1181 OID_AUTO, 1182 "dump_rings", 1183 CTLTYPE_STRING | CTLFLAG_RD, 1184 xnb, 1185 0, 1186 xnb_dump_rings, 1187 "A", 1188 "Xennet Back Rings"); 1189 #endif /* XNB_DEBUG */ 1190 } 1191 1192 /** 1193 * Create a network device. 1194 * @param handle device handle 1195 */ 1196 int 1197 create_netdev(device_t dev) 1198 { 1199 struct ifnet *ifp; 1200 struct xnb_softc *xnb; 1201 int err = 0; 1202 1203 xnb = device_get_softc(dev); 1204 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF); 1205 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF); 1206 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF); 1207 1208 xnb->dev = dev; 1209 1210 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts); 1211 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1212 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL); 1213 1214 err = xen_net_read_mac(dev, xnb->mac); 1215 if (err == 0) { 1216 /* Set up ifnet structure */ 1217 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER); 1218 ifp->if_softc = xnb; 1219 if_initname(ifp, "xnb", device_get_unit(dev)); 1220 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1221 ifp->if_ioctl = xnb_ioctl; 1222 ifp->if_output = ether_output; 1223 ifp->if_start = xnb_start; 1224 #ifdef notyet 1225 ifp->if_watchdog = xnb_watchdog; 1226 #endif 1227 ifp->if_init = xnb_ifinit; 1228 ifp->if_mtu = ETHERMTU; 1229 ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1; 1230 1231 ifp->if_hwassist = XNB_CSUM_FEATURES; 1232 ifp->if_capabilities = IFCAP_HWCSUM; 1233 ifp->if_capenable = IFCAP_HWCSUM; 1234 1235 ether_ifattach(ifp, xnb->mac); 1236 xnb->carrier = 0; 1237 } 1238 1239 return err; 1240 } 1241 1242 /** 1243 * Attach to a XenBus device that has been claimed by our probe routine. 1244 * 1245 * \param dev NewBus device object representing this Xen Net Back instance. 1246 * 1247 * \return 0 for success, errno codes for failure. 1248 */ 1249 static int 1250 xnb_attach(device_t dev) 1251 { 1252 struct xnb_softc *xnb; 1253 int error; 1254 xnb_ring_type_t i; 1255 1256 error = create_netdev(dev); 1257 if (error != 0) { 1258 xenbus_dev_fatal(dev, error, "creating netdev"); 1259 return (error); 1260 } 1261 1262 DPRINTF("Attaching to %s\n", xenbus_get_node(dev)); 1263 1264 /* 1265 * Basic initialization. 1266 * After this block it is safe to call xnb_detach() 1267 * to clean up any allocated data for this instance. 1268 */ 1269 xnb = device_get_softc(dev); 1270 xnb->otherend_id = xenbus_get_otherend_id(dev); 1271 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 1272 xnb->ring_configs[i].ring_pages = 1; 1273 } 1274 1275 /* 1276 * Setup sysctl variables. 1277 */ 1278 xnb_setup_sysctl(xnb); 1279 1280 /* Update hot-plug status to satisfy xend. */ 1281 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1282 "hotplug-status", "connected"); 1283 if (error != 0) { 1284 xnb_attach_failed(xnb, error, "writing %s/hotplug-status", 1285 xenbus_get_node(xnb->dev)); 1286 return (error); 1287 } 1288 1289 if ((error = xnb_publish_backend_info(xnb)) != 0) { 1290 /* 1291 * If we can't publish our data, we cannot participate 1292 * in this connection, and waiting for a front-end state 1293 * change will not help the situation. 1294 */ 1295 xnb_attach_failed(xnb, error, 1296 "Publishing backend status for %s", 1297 xenbus_get_node(xnb->dev)); 1298 return error; 1299 } 1300 1301 /* Tell the front end that we are ready to connect. */ 1302 xenbus_set_state(dev, XenbusStateInitWait); 1303 1304 return (0); 1305 } 1306 1307 /** 1308 * Detach from a net back device instance. 1309 * 1310 * \param dev NewBus device object representing this Xen Net Back instance. 1311 * 1312 * \return 0 for success, errno codes for failure. 1313 * 1314 * \note A net back device may be detached at any time in its life-cycle, 1315 * including part way through the attach process. For this reason, 1316 * initialization order and the intialization state checks in this 1317 * routine must be carefully coupled so that attach time failures 1318 * are gracefully handled. 1319 */ 1320 static int 1321 xnb_detach(device_t dev) 1322 { 1323 struct xnb_softc *xnb; 1324 1325 DPRINTF("\n"); 1326 1327 xnb = device_get_softc(dev); 1328 mtx_lock(&xnb->sc_lock); 1329 while (xnb_shutdown(xnb) == EAGAIN) { 1330 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0, 1331 "xnb_shutdown", 0); 1332 } 1333 mtx_unlock(&xnb->sc_lock); 1334 DPRINTF("\n"); 1335 1336 mtx_destroy(&xnb->tx_lock); 1337 mtx_destroy(&xnb->rx_lock); 1338 mtx_destroy(&xnb->sc_lock); 1339 return (0); 1340 } 1341 1342 /** 1343 * Prepare this net back device for suspension of this VM. 1344 * 1345 * \param dev NewBus device object representing this Xen net Back instance. 1346 * 1347 * \return 0 for success, errno codes for failure. 1348 */ 1349 static int 1350 xnb_suspend(device_t dev) 1351 { 1352 return (0); 1353 } 1354 1355 /** 1356 * Perform any processing required to recover from a suspended state. 1357 * 1358 * \param dev NewBus device object representing this Xen Net Back instance. 1359 * 1360 * \return 0 for success, errno codes for failure. 1361 */ 1362 static int 1363 xnb_resume(device_t dev) 1364 { 1365 return (0); 1366 } 1367 1368 /** 1369 * Handle state changes expressed via the XenStore by our front-end peer. 1370 * 1371 * \param dev NewBus device object representing this Xen 1372 * Net Back instance. 1373 * \param frontend_state The new state of the front-end. 1374 * 1375 * \return 0 for success, errno codes for failure. 1376 */ 1377 static void 1378 xnb_frontend_changed(device_t dev, XenbusState frontend_state) 1379 { 1380 struct xnb_softc *xnb; 1381 1382 xnb = device_get_softc(dev); 1383 1384 DPRINTF("frontend_state=%s, xnb_state=%s\n", 1385 xenbus_strstate(frontend_state), 1386 xenbus_strstate(xenbus_get_state(xnb->dev))); 1387 1388 switch (frontend_state) { 1389 case XenbusStateInitialising: 1390 break; 1391 case XenbusStateInitialised: 1392 case XenbusStateConnected: 1393 xnb_connect(xnb); 1394 break; 1395 case XenbusStateClosing: 1396 case XenbusStateClosed: 1397 mtx_lock(&xnb->sc_lock); 1398 xnb_shutdown(xnb); 1399 mtx_unlock(&xnb->sc_lock); 1400 if (frontend_state == XenbusStateClosed) 1401 xenbus_set_state(xnb->dev, XenbusStateClosed); 1402 break; 1403 default: 1404 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend", 1405 frontend_state); 1406 break; 1407 } 1408 } 1409 1410 1411 /*---------------------------- Request Processing ----------------------------*/ 1412 /** 1413 * Interrupt handler bound to the shared ring's event channel. 1414 * Entry point for the xennet transmit path in netback 1415 * Transfers packets from the Xen ring to the host's generic networking stack 1416 * 1417 * \param arg Callback argument registerd during event channel 1418 * binding - the xnb_softc for this instance. 1419 */ 1420 static void 1421 xnb_intr(void *arg) 1422 { 1423 struct xnb_softc *xnb; 1424 struct ifnet *ifp; 1425 netif_tx_back_ring_t *txb; 1426 RING_IDX req_prod_local; 1427 1428 xnb = (struct xnb_softc *)arg; 1429 ifp = xnb->xnb_ifp; 1430 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 1431 1432 mtx_lock(&xnb->tx_lock); 1433 do { 1434 int notify; 1435 req_prod_local = txb->sring->req_prod; 1436 xen_rmb(); 1437 1438 for (;;) { 1439 struct mbuf *mbufc; 1440 int err; 1441 1442 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp, 1443 xnb->tx_gnttab); 1444 if (err || (mbufc == NULL)) 1445 break; 1446 1447 /* Send the packet to the generic network stack */ 1448 (*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc); 1449 } 1450 1451 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify); 1452 if (notify != 0) 1453 xen_intr_signal(xnb->xen_intr_handle); 1454 1455 txb->sring->req_event = txb->req_cons + 1; 1456 xen_mb(); 1457 } while (txb->sring->req_prod != req_prod_local) ; 1458 mtx_unlock(&xnb->tx_lock); 1459 1460 xnb_start(ifp); 1461 } 1462 1463 1464 /** 1465 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring. 1466 * Will read exactly 0 or 1 packets from the ring; never a partial packet. 1467 * \param[out] pkt The returned packet. If there is an error building 1468 * the packet, pkt.list_len will be set to 0. 1469 * \param[in] tx_ring Pointer to the Ring that is the input to this function 1470 * \param[in] start The ring index of the first potential request 1471 * \return The number of requests consumed to build this packet 1472 */ 1473 static int 1474 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring, 1475 RING_IDX start) 1476 { 1477 /* 1478 * Outline: 1479 * 1) Initialize pkt 1480 * 2) Read the first request of the packet 1481 * 3) Read the extras 1482 * 4) Set cdr 1483 * 5) Loop on the remainder of the packet 1484 * 6) Finalize pkt (stuff like car_size and list_len) 1485 */ 1486 int idx = start; 1487 int discard = 0; /* whether to discard the packet */ 1488 int more_data = 0; /* there are more request past the last one */ 1489 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */ 1490 1491 xnb_pkt_initialize(pkt); 1492 1493 /* Read the first request */ 1494 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1495 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1496 pkt->size = tx->size; 1497 pkt->flags = tx->flags & ~NETTXF_more_data; 1498 more_data = tx->flags & NETTXF_more_data; 1499 pkt->list_len++; 1500 pkt->car = idx; 1501 idx++; 1502 } 1503 1504 /* Read the extra info */ 1505 if ((pkt->flags & NETTXF_extra_info) && 1506 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1507 netif_extra_info_t *ext = 1508 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx); 1509 pkt->extra.type = ext->type; 1510 switch (pkt->extra.type) { 1511 case XEN_NETIF_EXTRA_TYPE_GSO: 1512 pkt->extra.u.gso = ext->u.gso; 1513 break; 1514 default: 1515 /* 1516 * The reference Linux netfront driver will 1517 * never set any other extra.type. So we don't 1518 * know what to do with it. Let's print an 1519 * error, then consume and discard the packet 1520 */ 1521 printf("xnb(%s:%d): Unknown extra info type %d." 1522 " Discarding packet\n", 1523 __func__, __LINE__, pkt->extra.type); 1524 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, 1525 start)); 1526 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, 1527 idx)); 1528 discard = 1; 1529 break; 1530 } 1531 1532 pkt->extra.flags = ext->flags; 1533 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) { 1534 /* 1535 * The reference linux netfront driver never sets this 1536 * flag (nor does any other known netfront). So we 1537 * will discard the packet. 1538 */ 1539 printf("xnb(%s:%d): Request sets " 1540 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle " 1541 "that\n", __func__, __LINE__); 1542 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1543 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1544 discard = 1; 1545 } 1546 1547 idx++; 1548 } 1549 1550 /* Set cdr. If there is not more data, cdr is invalid */ 1551 pkt->cdr = idx; 1552 1553 /* Loop on remainder of packet */ 1554 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1555 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1556 pkt->list_len++; 1557 cdr_size += tx->size; 1558 if (tx->flags & ~NETTXF_more_data) { 1559 /* There should be no other flags set at this point */ 1560 printf("xnb(%s:%d): Request sets unknown flags %d " 1561 "after the 1st request in the packet.\n", 1562 __func__, __LINE__, tx->flags); 1563 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1564 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1565 } 1566 1567 more_data = tx->flags & NETTXF_more_data; 1568 idx++; 1569 } 1570 1571 /* Finalize packet */ 1572 if (more_data != 0) { 1573 /* The ring ran out of requests before finishing the packet */ 1574 xnb_pkt_invalidate(pkt); 1575 idx = start; /* tell caller that we consumed no requests */ 1576 } else { 1577 /* Calculate car_size */ 1578 pkt->car_size = pkt->size - cdr_size; 1579 } 1580 if (discard != 0) { 1581 xnb_pkt_invalidate(pkt); 1582 } 1583 1584 return idx - start; 1585 } 1586 1587 1588 /** 1589 * Respond to all the requests that constituted pkt. Builds the responses and 1590 * writes them to the ring, but doesn't push them to the shared ring. 1591 * \param[in] pkt the packet that needs a response 1592 * \param[in] error true if there was an error handling the packet, such 1593 * as in the hypervisor copy op or mbuf allocation 1594 * \param[out] ring Responses go here 1595 */ 1596 static void 1597 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring, 1598 int error) 1599 { 1600 /* 1601 * Outline: 1602 * 1) Respond to the first request 1603 * 2) Respond to the extra info reques 1604 * Loop through every remaining request in the packet, generating 1605 * responses that copy those requests' ids and sets the status 1606 * appropriately. 1607 */ 1608 netif_tx_request_t *tx; 1609 netif_tx_response_t *rsp; 1610 int i; 1611 uint16_t status; 1612 1613 status = (xnb_pkt_is_valid(pkt) == 0) || error ? 1614 NETIF_RSP_ERROR : NETIF_RSP_OKAY; 1615 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car), 1616 ("Cannot respond to ring requests out of order")); 1617 1618 if (pkt->list_len >= 1) { 1619 uint16_t id; 1620 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1621 id = tx->id; 1622 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1623 rsp->id = id; 1624 rsp->status = status; 1625 ring->rsp_prod_pvt++; 1626 1627 if (pkt->flags & NETRXF_extra_info) { 1628 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1629 rsp->status = NETIF_RSP_NULL; 1630 ring->rsp_prod_pvt++; 1631 } 1632 } 1633 1634 for (i=0; i < pkt->list_len - 1; i++) { 1635 uint16_t id; 1636 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1637 id = tx->id; 1638 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1639 rsp->id = id; 1640 rsp->status = status; 1641 ring->rsp_prod_pvt++; 1642 } 1643 } 1644 1645 /** 1646 * Create an mbuf chain to represent a packet. Initializes all of the headers 1647 * in the mbuf chain, but does not copy the data. The returned chain must be 1648 * free()'d when no longer needed 1649 * \param[in] pkt A packet to model the mbuf chain after 1650 * \return A newly allocated mbuf chain, possibly with clusters attached. 1651 * NULL on failure 1652 */ 1653 static struct mbuf* 1654 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp) 1655 { 1656 /** 1657 * \todo consider using a memory pool for mbufs instead of 1658 * reallocating them for every packet 1659 */ 1660 /** \todo handle extra data */ 1661 struct mbuf *m; 1662 1663 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA); 1664 1665 if (m != NULL) { 1666 m->m_pkthdr.rcvif = ifp; 1667 if (pkt->flags & NETTXF_data_validated) { 1668 /* 1669 * We lie to the host OS and always tell it that the 1670 * checksums are ok, because the packet is unlikely to 1671 * get corrupted going across domains. 1672 */ 1673 m->m_pkthdr.csum_flags = ( 1674 CSUM_IP_CHECKED | 1675 CSUM_IP_VALID | 1676 CSUM_DATA_VALID | 1677 CSUM_PSEUDO_HDR 1678 ); 1679 m->m_pkthdr.csum_data = 0xffff; 1680 } 1681 } 1682 return m; 1683 } 1684 1685 /** 1686 * Build a gnttab_copy table that can be used to copy data from a pkt 1687 * to an mbufc. Does not actually perform the copy. Always uses gref's on 1688 * the packet side. 1689 * \param[in] pkt pkt's associated requests form the src for 1690 * the copy operation 1691 * \param[in] mbufc mbufc's storage forms the dest for the copy operation 1692 * \param[out] gnttab Storage for the returned grant table 1693 * \param[in] txb Pointer to the backend ring structure 1694 * \param[in] otherend_id The domain ID of the other end of the copy 1695 * \return The number of gnttab entries filled 1696 */ 1697 static int 1698 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1699 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb, 1700 domid_t otherend_id) 1701 { 1702 1703 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1704 int gnt_idx = 0; /* index into grant table */ 1705 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */ 1706 int r_ofs = 0; /* offset of next data within tx request's data area */ 1707 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1708 /* size in bytes that still needs to be represented in the table */ 1709 uint16_t size_remaining = pkt->size; 1710 1711 while (size_remaining > 0) { 1712 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx); 1713 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs; 1714 const size_t req_size = 1715 r_idx == pkt->car ? pkt->car_size : txq->size; 1716 const size_t pkt_space = req_size - r_ofs; 1717 /* 1718 * space is the largest amount of data that can be copied in the 1719 * grant table's next entry 1720 */ 1721 const size_t space = MIN(pkt_space, mbuf_space); 1722 1723 /* TODO: handle this error condition without panicking */ 1724 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1725 1726 gnttab[gnt_idx].source.u.ref = txq->gref; 1727 gnttab[gnt_idx].source.domid = otherend_id; 1728 gnttab[gnt_idx].source.offset = txq->offset + r_ofs; 1729 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn( 1730 mtod(mbuf, vm_offset_t) + m_ofs); 1731 gnttab[gnt_idx].dest.offset = virt_to_offset( 1732 mtod(mbuf, vm_offset_t) + m_ofs); 1733 gnttab[gnt_idx].dest.domid = DOMID_SELF; 1734 gnttab[gnt_idx].len = space; 1735 gnttab[gnt_idx].flags = GNTCOPY_source_gref; 1736 1737 gnt_idx++; 1738 r_ofs += space; 1739 m_ofs += space; 1740 size_remaining -= space; 1741 if (req_size - r_ofs <= 0) { 1742 /* Must move to the next tx request */ 1743 r_ofs = 0; 1744 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 1745 } 1746 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) { 1747 /* Must move to the next mbuf */ 1748 m_ofs = 0; 1749 mbuf = mbuf->m_next; 1750 } 1751 } 1752 1753 return gnt_idx; 1754 } 1755 1756 /** 1757 * Check the status of the grant copy operations, and update mbufs various 1758 * non-data fields to reflect the data present. 1759 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of 1760 * the correct length, and data should already be present 1761 * \param[in] gnttab A grant table for a just completed copy op 1762 * \param[in] n_entries The number of valid entries in the grant table 1763 */ 1764 static void 1765 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab, 1766 int n_entries) 1767 { 1768 struct mbuf *mbuf = mbufc; 1769 int i; 1770 size_t total_size = 0; 1771 1772 for (i = 0; i < n_entries; i++) { 1773 KASSERT(gnttab[i].status == GNTST_okay, 1774 ("Some gnttab_copy entry had error status %hd\n", 1775 gnttab[i].status)); 1776 1777 mbuf->m_len += gnttab[i].len; 1778 total_size += gnttab[i].len; 1779 if (M_TRAILINGSPACE(mbuf) <= 0) { 1780 mbuf = mbuf->m_next; 1781 } 1782 } 1783 mbufc->m_pkthdr.len = total_size; 1784 1785 #if defined(INET) || defined(INET6) 1786 xnb_add_mbuf_cksum(mbufc); 1787 #endif 1788 } 1789 1790 /** 1791 * Dequeue at most one packet from the shared ring 1792 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and 1793 * its private indices will be updated. But the indices 1794 * will not be pushed to the shared ring. 1795 * \param[in] ifnet Interface to which the packet will be sent 1796 * \param[in] otherend Domain ID of the other end of the ring 1797 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic 1798 * networking stack 1799 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 1800 * this a function parameter so that we will take less 1801 * stack space. 1802 * \return An error code 1803 */ 1804 static int 1805 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc, 1806 struct ifnet *ifnet, gnttab_copy_table gnttab) 1807 { 1808 struct xnb_pkt pkt; 1809 /* number of tx requests consumed to build the last packet */ 1810 int num_consumed; 1811 int nr_ents; 1812 1813 *mbufc = NULL; 1814 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons); 1815 if (num_consumed == 0) 1816 return 0; /* Nothing to receive */ 1817 1818 /* update statistics independent of errors */ 1819 ifnet->if_ipackets++; 1820 1821 /* 1822 * if we got here, then 1 or more requests was consumed, but the packet 1823 * is not necessarily valid. 1824 */ 1825 if (xnb_pkt_is_valid(&pkt) == 0) { 1826 /* got a garbage packet, respond and drop it */ 1827 xnb_txpkt2rsp(&pkt, txb, 1); 1828 txb->req_cons += num_consumed; 1829 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n", 1830 num_consumed); 1831 ifnet->if_ierrors++; 1832 return EINVAL; 1833 } 1834 1835 *mbufc = xnb_pkt2mbufc(&pkt, ifnet); 1836 1837 if (*mbufc == NULL) { 1838 /* 1839 * Couldn't allocate mbufs. Respond and drop the packet. Do 1840 * not consume the requests 1841 */ 1842 xnb_txpkt2rsp(&pkt, txb, 1); 1843 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n", 1844 num_consumed); 1845 ifnet->if_iqdrops++; 1846 return ENOMEM; 1847 } 1848 1849 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend); 1850 1851 if (nr_ents > 0) { 1852 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 1853 gnttab, nr_ents); 1854 KASSERT(hv_ret == 0, 1855 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret)); 1856 xnb_update_mbufc(*mbufc, gnttab, nr_ents); 1857 } 1858 1859 xnb_txpkt2rsp(&pkt, txb, 0); 1860 txb->req_cons += num_consumed; 1861 return 0; 1862 } 1863 1864 /** 1865 * Create an xnb_pkt based on the contents of an mbuf chain. 1866 * \param[in] mbufc mbuf chain to transform into a packet 1867 * \param[out] pkt Storage for the newly generated xnb_pkt 1868 * \param[in] start The ring index of the first available slot in the rx 1869 * ring 1870 * \param[in] space The number of free slots in the rx ring 1871 * \retval 0 Success 1872 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 1873 * \retval EAGAIN There was not enough space in the ring to queue the 1874 * packet 1875 */ 1876 static int 1877 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt, 1878 RING_IDX start, int space) 1879 { 1880 1881 int retval = 0; 1882 1883 if ((mbufc == NULL) || 1884 ( (mbufc->m_flags & M_PKTHDR) == 0) || 1885 (mbufc->m_pkthdr.len == 0)) { 1886 xnb_pkt_invalidate(pkt); 1887 retval = EINVAL; 1888 } else { 1889 int slots_required; 1890 1891 xnb_pkt_validate(pkt); 1892 pkt->flags = 0; 1893 pkt->size = mbufc->m_pkthdr.len; 1894 pkt->car = start; 1895 pkt->car_size = mbufc->m_len; 1896 1897 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) { 1898 pkt->flags |= NETRXF_extra_info; 1899 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz; 1900 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 1901 pkt->extra.u.gso.pad = 0; 1902 pkt->extra.u.gso.features = 0; 1903 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO; 1904 pkt->extra.flags = 0; 1905 pkt->cdr = start + 2; 1906 } else { 1907 pkt->cdr = start + 1; 1908 } 1909 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) { 1910 pkt->flags |= 1911 (NETRXF_csum_blank | NETRXF_data_validated); 1912 } 1913 1914 /* 1915 * Each ring response can have up to PAGE_SIZE of data. 1916 * Assume that we can defragment the mbuf chain efficiently 1917 * into responses so that each response but the last uses all 1918 * PAGE_SIZE bytes. 1919 */ 1920 pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE; 1921 1922 if (pkt->list_len > 1) { 1923 pkt->flags |= NETRXF_more_data; 1924 } 1925 1926 slots_required = pkt->list_len + 1927 (pkt->flags & NETRXF_extra_info ? 1 : 0); 1928 if (slots_required > space) { 1929 xnb_pkt_invalidate(pkt); 1930 retval = EAGAIN; 1931 } 1932 } 1933 1934 return retval; 1935 } 1936 1937 /** 1938 * Build a gnttab_copy table that can be used to copy data from an mbuf chain 1939 * to the frontend's shared buffers. Does not actually perform the copy. 1940 * Always uses gref's on the other end's side. 1941 * \param[in] pkt pkt's associated responses form the dest for the copy 1942 * operatoin 1943 * \param[in] mbufc The source for the copy operation 1944 * \param[out] gnttab Storage for the returned grant table 1945 * \param[in] rxb Pointer to the backend ring structure 1946 * \param[in] otherend_id The domain ID of the other end of the copy 1947 * \return The number of gnttab entries filled 1948 */ 1949 static int 1950 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1951 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb, 1952 domid_t otherend_id) 1953 { 1954 1955 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1956 int gnt_idx = 0; /* index into grant table */ 1957 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */ 1958 int r_ofs = 0; /* offset of next data within rx request's data area */ 1959 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1960 /* size in bytes that still needs to be represented in the table */ 1961 uint16_t size_remaining; 1962 1963 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0; 1964 1965 while (size_remaining > 0) { 1966 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx); 1967 const size_t mbuf_space = mbuf->m_len - m_ofs; 1968 /* Xen shared pages have an implied size of PAGE_SIZE */ 1969 const size_t req_size = PAGE_SIZE; 1970 const size_t pkt_space = req_size - r_ofs; 1971 /* 1972 * space is the largest amount of data that can be copied in the 1973 * grant table's next entry 1974 */ 1975 const size_t space = MIN(pkt_space, mbuf_space); 1976 1977 /* TODO: handle this error condition without panicing */ 1978 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1979 1980 gnttab[gnt_idx].dest.u.ref = rxq->gref; 1981 gnttab[gnt_idx].dest.domid = otherend_id; 1982 gnttab[gnt_idx].dest.offset = r_ofs; 1983 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn( 1984 mtod(mbuf, vm_offset_t) + m_ofs); 1985 gnttab[gnt_idx].source.offset = virt_to_offset( 1986 mtod(mbuf, vm_offset_t) + m_ofs); 1987 gnttab[gnt_idx].source.domid = DOMID_SELF; 1988 gnttab[gnt_idx].len = space; 1989 gnttab[gnt_idx].flags = GNTCOPY_dest_gref; 1990 1991 gnt_idx++; 1992 1993 r_ofs += space; 1994 m_ofs += space; 1995 size_remaining -= space; 1996 if (req_size - r_ofs <= 0) { 1997 /* Must move to the next rx request */ 1998 r_ofs = 0; 1999 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 2000 } 2001 if (mbuf->m_len - m_ofs <= 0) { 2002 /* Must move to the next mbuf */ 2003 m_ofs = 0; 2004 mbuf = mbuf->m_next; 2005 } 2006 } 2007 2008 return gnt_idx; 2009 } 2010 2011 /** 2012 * Generates responses for all the requests that constituted pkt. Builds 2013 * responses and writes them to the ring, but doesn't push the shared ring 2014 * indices. 2015 * \param[in] pkt the packet that needs a response 2016 * \param[in] gnttab The grant copy table corresponding to this packet. 2017 * Used to determine how many rsp->netif_rx_response_t's to 2018 * generate. 2019 * \param[in] n_entries Number of relevant entries in the grant table 2020 * \param[out] ring Responses go here 2021 * \return The number of RX requests that were consumed to generate 2022 * the responses 2023 */ 2024 static int 2025 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab, 2026 int n_entries, netif_rx_back_ring_t *ring) 2027 { 2028 /* 2029 * This code makes the following assumptions: 2030 * * All entries in gnttab set GNTCOPY_dest_gref 2031 * * The entries in gnttab are grouped by their grefs: any two 2032 * entries with the same gref must be adjacent 2033 */ 2034 int error = 0; 2035 int gnt_idx, i; 2036 int n_responses = 0; 2037 grant_ref_t last_gref = GRANT_REF_INVALID; 2038 RING_IDX r_idx; 2039 2040 KASSERT(gnttab != NULL, ("Received a null granttable copy")); 2041 2042 /* 2043 * In the event of an error, we only need to send one response to the 2044 * netfront. In that case, we musn't write any data to the responses 2045 * after the one we send. So we must loop all the way through gnttab 2046 * looking for errors before we generate any responses 2047 * 2048 * Since we're looping through the grant table anyway, we'll count the 2049 * number of different gref's in it, which will tell us how many 2050 * responses to generate 2051 */ 2052 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) { 2053 int16_t status = gnttab[gnt_idx].status; 2054 if (status != GNTST_okay) { 2055 DPRINTF( 2056 "Got error %d for hypervisor gnttab_copy status\n", 2057 status); 2058 error = 1; 2059 break; 2060 } 2061 if (gnttab[gnt_idx].dest.u.ref != last_gref) { 2062 n_responses++; 2063 last_gref = gnttab[gnt_idx].dest.u.ref; 2064 } 2065 } 2066 2067 if (error != 0) { 2068 uint16_t id; 2069 netif_rx_response_t *rsp; 2070 2071 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id; 2072 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 2073 rsp->id = id; 2074 rsp->status = NETIF_RSP_ERROR; 2075 n_responses = 1; 2076 } else { 2077 gnt_idx = 0; 2078 const int has_extra = pkt->flags & NETRXF_extra_info; 2079 if (has_extra != 0) 2080 n_responses++; 2081 2082 for (i = 0; i < n_responses; i++) { 2083 netif_rx_request_t rxq; 2084 netif_rx_response_t *rsp; 2085 2086 r_idx = ring->rsp_prod_pvt + i; 2087 /* 2088 * We copy the structure of rxq instead of making a 2089 * pointer because it shares the same memory as rsp. 2090 */ 2091 rxq = *(RING_GET_REQUEST(ring, r_idx)); 2092 rsp = RING_GET_RESPONSE(ring, r_idx); 2093 if (has_extra && (i == 1)) { 2094 netif_extra_info_t *ext = 2095 (netif_extra_info_t*)rsp; 2096 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 2097 ext->flags = 0; 2098 ext->u.gso.size = pkt->extra.u.gso.size; 2099 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 2100 ext->u.gso.pad = 0; 2101 ext->u.gso.features = 0; 2102 } else { 2103 rsp->id = rxq.id; 2104 rsp->status = GNTST_okay; 2105 rsp->offset = 0; 2106 rsp->flags = 0; 2107 if (i < pkt->list_len - 1) 2108 rsp->flags |= NETRXF_more_data; 2109 if ((i == 0) && has_extra) 2110 rsp->flags |= NETRXF_extra_info; 2111 if ((i == 0) && 2112 (pkt->flags & NETRXF_data_validated)) { 2113 rsp->flags |= NETRXF_data_validated; 2114 rsp->flags |= NETRXF_csum_blank; 2115 } 2116 rsp->status = 0; 2117 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref; 2118 gnt_idx++) { 2119 rsp->status += gnttab[gnt_idx].len; 2120 } 2121 } 2122 } 2123 } 2124 2125 ring->req_cons += n_responses; 2126 ring->rsp_prod_pvt += n_responses; 2127 return n_responses; 2128 } 2129 2130 #if defined(INET) || defined(INET6) 2131 /** 2132 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf 2133 * in the chain must start with a struct ether_header. 2134 * 2135 * XXX This function will perform incorrectly on UDP packets that are split up 2136 * into multiple ethernet frames. 2137 */ 2138 static void 2139 xnb_add_mbuf_cksum(struct mbuf *mbufc) 2140 { 2141 struct ether_header *eh; 2142 struct ip *iph; 2143 uint16_t ether_type; 2144 2145 eh = mtod(mbufc, struct ether_header*); 2146 ether_type = ntohs(eh->ether_type); 2147 if (ether_type != ETHERTYPE_IP) { 2148 /* Nothing to calculate */ 2149 return; 2150 } 2151 2152 iph = (struct ip*)(eh + 1); 2153 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2154 iph->ip_sum = 0; 2155 iph->ip_sum = in_cksum_hdr(iph); 2156 } 2157 2158 switch (iph->ip_p) { 2159 case IPPROTO_TCP: 2160 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2161 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip); 2162 struct tcphdr *th = (struct tcphdr*)(iph + 1); 2163 th->th_sum = in_pseudo(iph->ip_src.s_addr, 2164 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen)); 2165 th->th_sum = in_cksum_skip(mbufc, 2166 sizeof(struct ether_header) + ntohs(iph->ip_len), 2167 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2168 } 2169 break; 2170 case IPPROTO_UDP: 2171 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2172 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip); 2173 struct udphdr *uh = (struct udphdr*)(iph + 1); 2174 uh->uh_sum = in_pseudo(iph->ip_src.s_addr, 2175 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen)); 2176 uh->uh_sum = in_cksum_skip(mbufc, 2177 sizeof(struct ether_header) + ntohs(iph->ip_len), 2178 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2179 } 2180 break; 2181 default: 2182 break; 2183 } 2184 } 2185 #endif /* INET || INET6 */ 2186 2187 static void 2188 xnb_stop(struct xnb_softc *xnb) 2189 { 2190 struct ifnet *ifp; 2191 2192 mtx_assert(&xnb->sc_lock, MA_OWNED); 2193 ifp = xnb->xnb_ifp; 2194 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2195 if_link_state_change(ifp, LINK_STATE_DOWN); 2196 } 2197 2198 static int 2199 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2200 { 2201 struct xnb_softc *xnb = ifp->if_softc; 2202 struct ifreq *ifr = (struct ifreq*) data; 2203 #ifdef INET 2204 struct ifaddr *ifa = (struct ifaddr*)data; 2205 #endif 2206 int error = 0; 2207 2208 switch (cmd) { 2209 case SIOCSIFFLAGS: 2210 mtx_lock(&xnb->sc_lock); 2211 if (ifp->if_flags & IFF_UP) { 2212 xnb_ifinit_locked(xnb); 2213 } else { 2214 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2215 xnb_stop(xnb); 2216 } 2217 } 2218 /* 2219 * Note: netfront sets a variable named xn_if_flags 2220 * here, but that variable is never read 2221 */ 2222 mtx_unlock(&xnb->sc_lock); 2223 break; 2224 case SIOCSIFADDR: 2225 case SIOCGIFADDR: 2226 #ifdef INET 2227 mtx_lock(&xnb->sc_lock); 2228 if (ifa->ifa_addr->sa_family == AF_INET) { 2229 ifp->if_flags |= IFF_UP; 2230 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2231 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | 2232 IFF_DRV_OACTIVE); 2233 if_link_state_change(ifp, 2234 LINK_STATE_DOWN); 2235 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2236 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2237 if_link_state_change(ifp, 2238 LINK_STATE_UP); 2239 } 2240 arp_ifinit(ifp, ifa); 2241 mtx_unlock(&xnb->sc_lock); 2242 } else { 2243 mtx_unlock(&xnb->sc_lock); 2244 #endif 2245 error = ether_ioctl(ifp, cmd, data); 2246 #ifdef INET 2247 } 2248 #endif 2249 break; 2250 case SIOCSIFCAP: 2251 mtx_lock(&xnb->sc_lock); 2252 if (ifr->ifr_reqcap & IFCAP_TXCSUM) { 2253 ifp->if_capenable |= IFCAP_TXCSUM; 2254 ifp->if_hwassist |= XNB_CSUM_FEATURES; 2255 } else { 2256 ifp->if_capenable &= ~(IFCAP_TXCSUM); 2257 ifp->if_hwassist &= ~(XNB_CSUM_FEATURES); 2258 } 2259 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) { 2260 ifp->if_capenable |= IFCAP_RXCSUM; 2261 } else { 2262 ifp->if_capenable &= ~(IFCAP_RXCSUM); 2263 } 2264 /* 2265 * TODO enable TSO4 and LRO once we no longer need 2266 * to calculate checksums in software 2267 */ 2268 #if 0 2269 if (ifr->if_reqcap |= IFCAP_TSO4) { 2270 if (IFCAP_TXCSUM & ifp->if_capenable) { 2271 printf("xnb: Xen netif requires that " 2272 "TXCSUM be enabled in order " 2273 "to use TSO4\n"); 2274 error = EINVAL; 2275 } else { 2276 ifp->if_capenable |= IFCAP_TSO4; 2277 ifp->if_hwassist |= CSUM_TSO; 2278 } 2279 } else { 2280 ifp->if_capenable &= ~(IFCAP_TSO4); 2281 ifp->if_hwassist &= ~(CSUM_TSO); 2282 } 2283 if (ifr->ifreqcap |= IFCAP_LRO) { 2284 ifp->if_capenable |= IFCAP_LRO; 2285 } else { 2286 ifp->if_capenable &= ~(IFCAP_LRO); 2287 } 2288 #endif 2289 mtx_unlock(&xnb->sc_lock); 2290 break; 2291 case SIOCSIFMTU: 2292 ifp->if_mtu = ifr->ifr_mtu; 2293 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2294 xnb_ifinit(xnb); 2295 break; 2296 case SIOCADDMULTI: 2297 case SIOCDELMULTI: 2298 case SIOCSIFMEDIA: 2299 case SIOCGIFMEDIA: 2300 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd); 2301 break; 2302 default: 2303 error = ether_ioctl(ifp, cmd, data); 2304 break; 2305 } 2306 return (error); 2307 } 2308 2309 static void 2310 xnb_start_locked(struct ifnet *ifp) 2311 { 2312 netif_rx_back_ring_t *rxb; 2313 struct xnb_softc *xnb; 2314 struct mbuf *mbufc; 2315 RING_IDX req_prod_local; 2316 2317 xnb = ifp->if_softc; 2318 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 2319 2320 if (!xnb->carrier) 2321 return; 2322 2323 do { 2324 int out_of_space = 0; 2325 int notify; 2326 req_prod_local = rxb->sring->req_prod; 2327 xen_rmb(); 2328 for (;;) { 2329 int error; 2330 2331 IF_DEQUEUE(&ifp->if_snd, mbufc); 2332 if (mbufc == NULL) 2333 break; 2334 error = xnb_send(rxb, xnb->otherend_id, mbufc, 2335 xnb->rx_gnttab); 2336 switch (error) { 2337 case EAGAIN: 2338 /* 2339 * Insufficient space in the ring. 2340 * Requeue pkt and send when space is 2341 * available. 2342 */ 2343 IF_PREPEND(&ifp->if_snd, mbufc); 2344 /* 2345 * Perhaps the frontend missed an IRQ 2346 * and went to sleep. Notify it to wake 2347 * it up. 2348 */ 2349 out_of_space = 1; 2350 break; 2351 2352 case EINVAL: 2353 /* OS gave a corrupt packet. Drop it.*/ 2354 ifp->if_oerrors++; 2355 /* FALLTHROUGH */ 2356 default: 2357 /* Send succeeded, or packet had error. 2358 * Free the packet */ 2359 ifp->if_opackets++; 2360 if (mbufc) 2361 m_freem(mbufc); 2362 break; 2363 } 2364 if (out_of_space != 0) 2365 break; 2366 } 2367 2368 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify); 2369 if ((notify != 0) || (out_of_space != 0)) 2370 xen_intr_signal(xnb->xen_intr_handle); 2371 rxb->sring->req_event = req_prod_local + 1; 2372 xen_mb(); 2373 } while (rxb->sring->req_prod != req_prod_local) ; 2374 } 2375 2376 /** 2377 * Sends one packet to the ring. Blocks until the packet is on the ring 2378 * \param[in] mbufc Contains one packet to send. Caller must free 2379 * \param[in,out] rxb The packet will be pushed onto this ring, but the 2380 * otherend will not be notified. 2381 * \param[in] otherend The domain ID of the other end of the connection 2382 * \retval EAGAIN The ring did not have enough space for the packet. 2383 * The ring has not been modified 2384 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 2385 * this a function parameter so that we will take less 2386 * stack space. 2387 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 2388 */ 2389 static int 2390 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc, 2391 gnttab_copy_table gnttab) 2392 { 2393 struct xnb_pkt pkt; 2394 int error, n_entries, n_reqs; 2395 RING_IDX space; 2396 2397 space = ring->sring->req_prod - ring->req_cons; 2398 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space); 2399 if (error != 0) 2400 return error; 2401 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend); 2402 if (n_entries != 0) { 2403 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 2404 gnttab, n_entries); 2405 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n", 2406 hv_ret)); 2407 } 2408 2409 n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring); 2410 2411 return 0; 2412 } 2413 2414 static void 2415 xnb_start(struct ifnet *ifp) 2416 { 2417 struct xnb_softc *xnb; 2418 2419 xnb = ifp->if_softc; 2420 mtx_lock(&xnb->rx_lock); 2421 xnb_start_locked(ifp); 2422 mtx_unlock(&xnb->rx_lock); 2423 } 2424 2425 /* equivalent of network_open() in Linux */ 2426 static void 2427 xnb_ifinit_locked(struct xnb_softc *xnb) 2428 { 2429 struct ifnet *ifp; 2430 2431 ifp = xnb->xnb_ifp; 2432 2433 mtx_assert(&xnb->sc_lock, MA_OWNED); 2434 2435 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2436 return; 2437 2438 xnb_stop(xnb); 2439 2440 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2441 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2442 if_link_state_change(ifp, LINK_STATE_UP); 2443 } 2444 2445 2446 static void 2447 xnb_ifinit(void *xsc) 2448 { 2449 struct xnb_softc *xnb = xsc; 2450 2451 mtx_lock(&xnb->sc_lock); 2452 xnb_ifinit_locked(xnb); 2453 mtx_unlock(&xnb->sc_lock); 2454 } 2455 2456 2457 /** 2458 * Read the 'mac' node at the given device's node in the store, and parse that 2459 * as colon-separated octets, placing result the given mac array. mac must be 2460 * a preallocated array of length ETHER_ADDR_LEN ETH_ALEN (as declared in 2461 * net/ethernet.h). 2462 * Return 0 on success, or errno on error. 2463 */ 2464 static int 2465 xen_net_read_mac(device_t dev, uint8_t mac[]) 2466 { 2467 char *s, *e, *macstr; 2468 const char *path; 2469 int error = 0; 2470 int i; 2471 2472 path = xenbus_get_node(dev); 2473 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 2474 if (error != 0) { 2475 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 2476 } else { 2477 s = macstr; 2478 for (i = 0; i < ETHER_ADDR_LEN; i++) { 2479 mac[i] = strtoul(s, &e, 16); 2480 if (s == e || (e[0] != ':' && e[0] != 0)) { 2481 error = ENOENT; 2482 break; 2483 } 2484 s = &e[1]; 2485 } 2486 free(macstr, M_XENBUS); 2487 } 2488 return error; 2489 } 2490 2491 2492 /** 2493 * Callback used by the generic networking code to tell us when our carrier 2494 * state has changed. Since we don't have a physical carrier, we don't care 2495 */ 2496 static int 2497 xnb_ifmedia_upd(struct ifnet *ifp) 2498 { 2499 return (0); 2500 } 2501 2502 /** 2503 * Callback used by the generic networking code to ask us what our carrier 2504 * state is. Since we don't have a physical carrier, this is very simple 2505 */ 2506 static void 2507 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2508 { 2509 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2510 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2511 } 2512 2513 2514 /*---------------------------- NewBus Registration ---------------------------*/ 2515 static device_method_t xnb_methods[] = { 2516 /* Device interface */ 2517 DEVMETHOD(device_probe, xnb_probe), 2518 DEVMETHOD(device_attach, xnb_attach), 2519 DEVMETHOD(device_detach, xnb_detach), 2520 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2521 DEVMETHOD(device_suspend, xnb_suspend), 2522 DEVMETHOD(device_resume, xnb_resume), 2523 2524 /* Xenbus interface */ 2525 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed), 2526 2527 { 0, 0 } 2528 }; 2529 2530 static driver_t xnb_driver = { 2531 "xnb", 2532 xnb_methods, 2533 sizeof(struct xnb_softc), 2534 }; 2535 devclass_t xnb_devclass; 2536 2537 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0); 2538 2539 2540 /*-------------------------- Unit Tests -------------------------------------*/ 2541 #ifdef XNB_DEBUG 2542 #include "netback_unit_tests.c" 2543 #endif 2544