xref: /freebsd/sys/dev/xen/netback/netback.c (revision 9e5787d2284e187abb5b654d924394a65772e004)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009-2011 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Alan Somers         (Spectra Logic Corporation)
34  *          John Suykerbuyk     (Spectra Logic Corporation)
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /**
41  * \file netback.c
42  *
43  * \brief Device driver supporting the vending of network access
44  * 	  from this FreeBSD domain to other domains.
45  */
46 #include "opt_inet.h"
47 #include "opt_inet6.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 
52 #include <sys/bus.h>
53 #include <sys/module.h>
54 #include <sys/rman.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_arp.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/ip.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip_icmp.h>
72 #include <netinet/udp.h>
73 #include <machine/in_cksum.h>
74 
75 #include <vm/vm.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_kern.h>
79 
80 #include <machine/_inttypes.h>
81 
82 #include <xen/xen-os.h>
83 #include <xen/hypervisor.h>
84 #include <xen/xen_intr.h>
85 #include <xen/interface/io/netif.h>
86 #include <xen/xenbus/xenbusvar.h>
87 
88 /*--------------------------- Compile-time Tunables --------------------------*/
89 
90 /*---------------------------------- Macros ----------------------------------*/
91 /**
92  * Custom malloc type for all driver allocations.
93  */
94 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
95 
96 #define	XNB_SG	1	/* netback driver supports feature-sg */
97 #define	XNB_GSO_TCPV4 0	/* netback driver supports feature-gso-tcpv4 */
98 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
99 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
100 
101 #undef XNB_DEBUG
102 #define	XNB_DEBUG /* hardcode on during development */
103 
104 #ifdef XNB_DEBUG
105 #define	DPRINTF(fmt, args...) \
106 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
107 #else
108 #define	DPRINTF(fmt, args...) do {} while (0)
109 #endif
110 
111 /* Default length for stack-allocated grant tables */
112 #define	GNTTAB_LEN	(64)
113 
114 /* Features supported by all backends.  TSO and LRO can be negotiated */
115 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
116 
117 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
118 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
119 
120 /**
121  * Two argument version of the standard macro.  Second argument is a tentative
122  * value of req_cons
123  */
124 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
125 	unsigned int req = (_r)->sring->req_prod - cons;          	\
126 	unsigned int rsp = RING_SIZE(_r) -                              \
127 	(cons - (_r)->rsp_prod_pvt);                          		\
128 	req < rsp ? req : rsp;                                          \
129 })
130 
131 #define	virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
132 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
133 
134 /**
135  * Predefined array type of grant table copy descriptors.  Used to pass around
136  * statically allocated memory structures.
137  */
138 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
139 
140 /*--------------------------- Forward Declarations ---------------------------*/
141 struct xnb_softc;
142 struct xnb_pkt;
143 
144 static void	xnb_attach_failed(struct xnb_softc *xnb,
145 				  int err, const char *fmt, ...)
146 				  __printflike(3,4);
147 static int	xnb_shutdown(struct xnb_softc *xnb);
148 static int	create_netdev(device_t dev);
149 static int	xnb_detach(device_t dev);
150 static int	xnb_ifmedia_upd(struct ifnet *ifp);
151 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
152 static void 	xnb_intr(void *arg);
153 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
154 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
155 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
156 			 struct mbuf **mbufc, struct ifnet *ifnet,
157 			 gnttab_copy_table gnttab);
158 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
159 			     const netif_tx_back_ring_t *tx_ring,
160 			     RING_IDX start);
161 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
162 			      netif_tx_back_ring_t *ring, int error);
163 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
164 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
165 				 struct mbuf *mbufc,
166 				 gnttab_copy_table gnttab,
167 				 const netif_tx_back_ring_t *txb,
168 				 domid_t otherend_id);
169 static void	xnb_update_mbufc(struct mbuf *mbufc,
170 				 const gnttab_copy_table gnttab, int n_entries);
171 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
172 			      struct xnb_pkt *pkt,
173 			      RING_IDX start, int space);
174 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
175 				 const struct mbuf *mbufc,
176 				 gnttab_copy_table gnttab,
177 				 const netif_rx_back_ring_t *rxb,
178 				 domid_t otherend_id);
179 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
180 			      const gnttab_copy_table gnttab, int n_entries,
181 			      netif_rx_back_ring_t *ring);
182 static void	xnb_stop(struct xnb_softc*);
183 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
184 static void	xnb_start_locked(struct ifnet*);
185 static void	xnb_start(struct ifnet*);
186 static void	xnb_ifinit_locked(struct xnb_softc*);
187 static void	xnb_ifinit(void*);
188 #ifdef XNB_DEBUG
189 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
190 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
191 #endif
192 #if defined(INET) || defined(INET6)
193 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
194 #endif
195 /*------------------------------ Data Structures -----------------------------*/
196 
197 
198 /**
199  * Representation of a xennet packet.  Simplified version of a packet as
200  * stored in the Xen tx ring.  Applicable to both RX and TX packets
201  */
202 struct xnb_pkt{
203 	/**
204 	 * Array index of the first data-bearing (eg, not extra info) entry
205 	 * for this packet
206 	 */
207 	RING_IDX	car;
208 
209 	/**
210 	 * Array index of the second data-bearing entry for this packet.
211 	 * Invalid if the packet has only one data-bearing entry.  If the
212 	 * packet has more than two data-bearing entries, then the second
213 	 * through the last will be sequential modulo the ring size
214 	 */
215 	RING_IDX	cdr;
216 
217 	/**
218 	 * Optional extra info.  Only valid if flags contains
219 	 * NETTXF_extra_info.  Note that extra.type will always be
220 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
221 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
222 	 */
223 	netif_extra_info_t extra;
224 
225 	/** Size of entire packet in bytes.       */
226 	uint16_t	size;
227 
228 	/** The size of the first entry's data in bytes */
229 	uint16_t	car_size;
230 
231 	/**
232 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
233 	 * not the same for TX and RX packets
234 	 */
235 	uint16_t	flags;
236 
237 	/**
238 	 * The number of valid data-bearing entries (either netif_tx_request's
239 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
240 	 * entire packet is invalid.
241 	 */
242 	uint16_t	list_len;
243 
244 	/** There was an error processing the packet */
245 	uint8_t		error;
246 };
247 
248 /** xnb_pkt method: initialize it */
249 static inline void
250 xnb_pkt_initialize(struct xnb_pkt *pxnb)
251 {
252 	bzero(pxnb, sizeof(*pxnb));
253 }
254 
255 /** xnb_pkt method: mark the packet as valid */
256 static inline void
257 xnb_pkt_validate(struct xnb_pkt *pxnb)
258 {
259 	pxnb->error = 0;
260 };
261 
262 /** xnb_pkt method: mark the packet as invalid */
263 static inline void
264 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
265 {
266 	pxnb->error = 1;
267 };
268 
269 /** xnb_pkt method: Check whether the packet is valid */
270 static inline int
271 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
272 {
273 	return (! pxnb->error);
274 }
275 
276 #ifdef XNB_DEBUG
277 /** xnb_pkt method: print the packet's contents in human-readable format*/
278 static void __unused
279 xnb_dump_pkt(const struct xnb_pkt *pkt) {
280 	if (pkt == NULL) {
281 	  DPRINTF("Was passed a null pointer.\n");
282 	  return;
283 	}
284 	DPRINTF("pkt address= %p\n", pkt);
285 	DPRINTF("pkt->size=%d\n", pkt->size);
286 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
287 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
288 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
289 	/* DPRINTF("pkt->extra");	TODO */
290 	DPRINTF("pkt->car=%d\n", pkt->car);
291 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
292 	DPRINTF("pkt->error=%d\n", pkt->error);
293 }
294 #endif /* XNB_DEBUG */
295 
296 static void
297 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
298 {
299 	if (txreq != NULL) {
300 		DPRINTF("netif_tx_request index =%u\n", idx);
301 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
302 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
303 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
304 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
305 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
306 	}
307 }
308 
309 
310 /**
311  * \brief Configuration data for a shared memory request ring
312  *        used to communicate with the front-end client of this
313  *        this driver.
314  */
315 struct xnb_ring_config {
316 	/**
317 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
318 	 * use different data structures, and that cannot be changed since it
319 	 * is part of the interdomain protocol.
320 	 */
321 	union{
322 		netif_rx_back_ring_t	  rx_ring;
323 		netif_tx_back_ring_t	  tx_ring;
324 	} back_ring;
325 
326 	/**
327 	 * The device bus address returned by the hypervisor when
328 	 * mapping the ring and required to unmap it when a connection
329 	 * is torn down.
330 	 */
331 	uint64_t	bus_addr;
332 
333 	/** The pseudo-physical address where ring memory is mapped.*/
334 	uint64_t	gnt_addr;
335 
336 	/** KVA address where ring memory is mapped. */
337 	vm_offset_t	va;
338 
339 	/**
340 	 * Grant table handles, one per-ring page, returned by the
341 	 * hyperpervisor upon mapping of the ring and required to
342 	 * unmap it when a connection is torn down.
343 	 */
344 	grant_handle_t	handle;
345 
346 	/** The number of ring pages mapped for the current connection. */
347 	unsigned	ring_pages;
348 
349 	/**
350 	 * The grant references, one per-ring page, supplied by the
351 	 * front-end, allowing us to reference the ring pages in the
352 	 * front-end's domain and to map these pages into our own domain.
353 	 */
354 	grant_ref_t	ring_ref;
355 };
356 
357 /**
358  * Per-instance connection state flags.
359  */
360 typedef enum
361 {
362 	/** Communication with the front-end has been established. */
363 	XNBF_RING_CONNECTED    = 0x01,
364 
365 	/**
366 	 * Front-end requests exist in the ring and are waiting for
367 	 * xnb_xen_req objects to free up.
368 	 */
369 	XNBF_RESOURCE_SHORTAGE = 0x02,
370 
371 	/** Connection teardown has started. */
372 	XNBF_SHUTDOWN          = 0x04,
373 
374 	/** A thread is already performing shutdown processing. */
375 	XNBF_IN_SHUTDOWN       = 0x08
376 } xnb_flag_t;
377 
378 /**
379  * Types of rings.  Used for array indices and to identify a ring's control
380  * data structure type
381  */
382 typedef enum{
383 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
384 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
385 	XNB_NUM_RING_TYPES
386 } xnb_ring_type_t;
387 
388 /**
389  * Per-instance configuration data.
390  */
391 struct xnb_softc {
392 	/** NewBus device corresponding to this instance. */
393 	device_t		dev;
394 
395 	/* Media related fields */
396 
397 	/** Generic network media state */
398 	struct ifmedia		sc_media;
399 
400 	/** Media carrier info */
401 	struct ifnet 		*xnb_ifp;
402 
403 	/** Our own private carrier state */
404 	unsigned carrier;
405 
406 	/** Device MAC Address */
407 	uint8_t			mac[ETHER_ADDR_LEN];
408 
409 	/* Xen related fields */
410 
411 	/**
412 	 * \brief The netif protocol abi in effect.
413 	 *
414 	 * There are situations where the back and front ends can
415 	 * have a different, native abi (e.g. intel x86_64 and
416 	 * 32bit x86 domains on the same machine).  The back-end
417 	 * always accommodates the front-end's native abi.  That
418 	 * value is pulled from the XenStore and recorded here.
419 	 */
420 	int			abi;
421 
422 	/**
423 	 * Name of the bridge to which this VIF is connected, if any
424 	 * This field is dynamically allocated by xenbus and must be free()ed
425 	 * when no longer needed
426 	 */
427 	char			*bridge;
428 
429 	/** The interrupt driven even channel used to signal ring events. */
430 	evtchn_port_t		evtchn;
431 
432 	/** Xen device handle.*/
433 	long 			handle;
434 
435 	/** Handle to the communication ring event channel. */
436 	xen_intr_handle_t	xen_intr_handle;
437 
438 	/**
439 	 * \brief Cached value of the front-end's domain id.
440 	 *
441 	 * This value is used at once for each mapped page in
442 	 * a transaction.  We cache it to avoid incuring the
443 	 * cost of an ivar access every time this is needed.
444 	 */
445 	domid_t			otherend_id;
446 
447 	/**
448 	 * Undocumented frontend feature.  Has something to do with
449 	 * scatter/gather IO
450 	 */
451 	uint8_t			can_sg;
452 	/** Undocumented frontend feature */
453 	uint8_t			gso;
454 	/** Undocumented frontend feature */
455 	uint8_t			gso_prefix;
456 	/** Can checksum TCP/UDP over IPv4 */
457 	uint8_t			ip_csum;
458 
459 	/* Implementation related fields */
460 	/**
461 	 * Preallocated grant table copy descriptor for RX operations.
462 	 * Access must be protected by rx_lock
463 	 */
464 	gnttab_copy_table	rx_gnttab;
465 
466 	/**
467 	 * Preallocated grant table copy descriptor for TX operations.
468 	 * Access must be protected by tx_lock
469 	 */
470 	gnttab_copy_table	tx_gnttab;
471 
472 	/**
473 	 * Resource representing allocated physical address space
474 	 * associated with our per-instance kva region.
475 	 */
476 	struct resource		*pseudo_phys_res;
477 
478 	/** Resource id for allocated physical address space. */
479 	int			pseudo_phys_res_id;
480 
481 	/** Ring mapping and interrupt configuration data. */
482 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
483 
484 	/**
485 	 * Global pool of kva used for mapping remote domain ring
486 	 * and I/O transaction data.
487 	 */
488 	vm_offset_t		kva;
489 
490 	/** Pseudo-physical address corresponding to kva. */
491 	uint64_t		gnt_base_addr;
492 
493 	/** Various configuration and state bit flags. */
494 	xnb_flag_t		flags;
495 
496 	/** Mutex protecting per-instance data in the receive path. */
497 	struct mtx		rx_lock;
498 
499 	/** Mutex protecting per-instance data in the softc structure. */
500 	struct mtx		sc_lock;
501 
502 	/** Mutex protecting per-instance data in the transmit path. */
503 	struct mtx		tx_lock;
504 
505 	/** The size of the global kva pool. */
506 	int			kva_size;
507 
508 	/** Name of the interface */
509 	char			 if_name[IFNAMSIZ];
510 };
511 
512 /*---------------------------- Debugging functions ---------------------------*/
513 #ifdef XNB_DEBUG
514 static void __unused
515 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
516 {
517 	if (entry == NULL) {
518 		printf("NULL grant table pointer\n");
519 		return;
520 	}
521 
522 	if (entry->flags & GNTCOPY_dest_gref)
523 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
524 	else
525 		printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n",
526 		       entry->dest.u.gmfn);
527 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
528 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
529 	if (entry->flags & GNTCOPY_source_gref)
530 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
531 	else
532 		printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n",
533 		       entry->source.u.gmfn);
534 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
535 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
536 	printf("gnttab len=\t%hu\n", entry->len);
537 	printf("gnttab flags=\t%hu\n", entry->flags);
538 	printf("gnttab status=\t%hd\n", entry->status);
539 }
540 
541 static int
542 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
543 {
544 	static char results[720];
545 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
546 	netif_rx_back_ring_t const* rxb =
547 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
548 	netif_tx_back_ring_t const* txb =
549 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
550 
551 	/* empty the result strings */
552 	results[0] = 0;
553 
554 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
555 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
556 
557 	snprintf(results, 720,
558 	    "\n\t%35s %18s\n"	/* TX, RX */
559 	    "\t%16s %18d %18d\n"	/* req_cons */
560 	    "\t%16s %18d %18d\n"	/* nr_ents */
561 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
562 	    "\t%16s %18p %18p\n"	/* sring */
563 	    "\t%16s %18d %18d\n"	/* req_prod */
564 	    "\t%16s %18d %18d\n"	/* req_event */
565 	    "\t%16s %18d %18d\n"	/* rsp_prod */
566 	    "\t%16s %18d %18d\n",	/* rsp_event */
567 	    "TX", "RX",
568 	    "req_cons", txb->req_cons, rxb->req_cons,
569 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
570 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
571 	    "sring", txb->sring, rxb->sring,
572 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
573 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
574 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
575 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
576 
577 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
578 }
579 
580 static void __unused
581 xnb_dump_mbuf(const struct mbuf *m)
582 {
583 	int len;
584 	uint8_t *d;
585 	if (m == NULL)
586 		return;
587 
588 	printf("xnb_dump_mbuf:\n");
589 	if (m->m_flags & M_PKTHDR) {
590 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
591 		       "tso_segsz=%5hd\n",
592 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
593 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
594 		printf("    rcvif=%16p,  len=%19d\n",
595 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
596 	}
597 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
598 	       m->m_next, m->m_nextpkt, m->m_data);
599 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
600 	       m->m_len, m->m_flags, m->m_type);
601 
602 	len = m->m_len;
603 	d = mtod(m, uint8_t*);
604 	while (len > 0) {
605 		int i;
606 		printf("                ");
607 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
608 			printf("%02hhx ", *(d++));
609 		}
610 		printf("\n");
611 	}
612 }
613 #endif /* XNB_DEBUG */
614 
615 /*------------------------ Inter-Domain Communication ------------------------*/
616 /**
617  * Free dynamically allocated KVA or pseudo-physical address allocations.
618  *
619  * \param xnb  Per-instance xnb configuration structure.
620  */
621 static void
622 xnb_free_communication_mem(struct xnb_softc *xnb)
623 {
624 	if (xnb->kva != 0) {
625 		if (xnb->pseudo_phys_res != NULL) {
626 			xenmem_free(xnb->dev, xnb->pseudo_phys_res_id,
627 			    xnb->pseudo_phys_res);
628 			xnb->pseudo_phys_res = NULL;
629 		}
630 	}
631 	xnb->kva = 0;
632 	xnb->gnt_base_addr = 0;
633 }
634 
635 /**
636  * Cleanup all inter-domain communication mechanisms.
637  *
638  * \param xnb  Per-instance xnb configuration structure.
639  */
640 static int
641 xnb_disconnect(struct xnb_softc *xnb)
642 {
643 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
644 	int error;
645 	int i;
646 
647 	if (xnb->xen_intr_handle != NULL)
648 		xen_intr_unbind(&xnb->xen_intr_handle);
649 
650 	/*
651 	 * We may still have another thread currently processing requests.  We
652 	 * must acquire the rx and tx locks to make sure those threads are done,
653 	 * but we can release those locks as soon as we acquire them, because no
654 	 * more interrupts will be arriving.
655 	 */
656 	mtx_lock(&xnb->tx_lock);
657 	mtx_unlock(&xnb->tx_lock);
658 	mtx_lock(&xnb->rx_lock);
659 	mtx_unlock(&xnb->rx_lock);
660 
661 	mtx_lock(&xnb->sc_lock);
662 	/* Free malloc'd softc member variables */
663 	if (xnb->bridge != NULL) {
664 		free(xnb->bridge, M_XENSTORE);
665 		xnb->bridge = NULL;
666 	}
667 
668 	/* All request processing has stopped, so unmap the rings */
669 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
670 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
671 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
672 		gnts[i].handle = xnb->ring_configs[i].handle;
673 	}
674 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
675 					  XNB_NUM_RING_TYPES);
676 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
677 
678 	xnb_free_communication_mem(xnb);
679 	/*
680 	 * Zero the ring config structs because the pointers, handles, and
681 	 * grant refs contained therein are no longer valid.
682 	 */
683 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
684 	    sizeof(struct xnb_ring_config));
685 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
686 	    sizeof(struct xnb_ring_config));
687 
688 	xnb->flags &= ~XNBF_RING_CONNECTED;
689 	mtx_unlock(&xnb->sc_lock);
690 
691 	return (0);
692 }
693 
694 /**
695  * Map a single shared memory ring into domain local address space and
696  * initialize its control structure
697  *
698  * \param xnb	Per-instance xnb configuration structure
699  * \param ring_type	Array index of this ring in the xnb's array of rings
700  * \return 	An errno
701  */
702 static int
703 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
704 {
705 	struct gnttab_map_grant_ref gnt;
706 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
707 	int error;
708 
709 	/* TX ring type = 0, RX =1 */
710 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
711 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
712 
713 	gnt.host_addr = ring->gnt_addr;
714 	gnt.flags     = GNTMAP_host_map;
715 	gnt.ref       = ring->ring_ref;
716 	gnt.dom       = xnb->otherend_id;
717 
718 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
719 	if (error != 0)
720 		panic("netback: Ring page grant table op failed (%d)", error);
721 
722 	if (gnt.status != 0) {
723 		ring->va = 0;
724 		error = EACCES;
725 		xenbus_dev_fatal(xnb->dev, error,
726 				 "Ring shared page mapping failed. "
727 				 "Status %d.", gnt.status);
728 	} else {
729 		ring->handle = gnt.handle;
730 		ring->bus_addr = gnt.dev_bus_addr;
731 
732 		if (ring_type == XNB_RING_TYPE_TX) {
733 			BACK_RING_INIT(&ring->back_ring.tx_ring,
734 			    (netif_tx_sring_t*)ring->va,
735 			    ring->ring_pages * PAGE_SIZE);
736 		} else if (ring_type == XNB_RING_TYPE_RX) {
737 			BACK_RING_INIT(&ring->back_ring.rx_ring,
738 			    (netif_rx_sring_t*)ring->va,
739 			    ring->ring_pages * PAGE_SIZE);
740 		} else {
741 			xenbus_dev_fatal(xnb->dev, error,
742 				 "Unknown ring type %d", ring_type);
743 		}
744 	}
745 
746 	return error;
747 }
748 
749 /**
750  * Setup the shared memory rings and bind an interrupt to the event channel
751  * used to notify us of ring changes.
752  *
753  * \param xnb  Per-instance xnb configuration structure.
754  */
755 static int
756 xnb_connect_comms(struct xnb_softc *xnb)
757 {
758 	int	error;
759 	xnb_ring_type_t i;
760 
761 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
762 		return (0);
763 
764 	/*
765 	 * Kva for our rings are at the tail of the region of kva allocated
766 	 * by xnb_alloc_communication_mem().
767 	 */
768 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
769 		error = xnb_connect_ring(xnb, i);
770 		if (error != 0)
771 	  		return error;
772 	}
773 
774 	xnb->flags |= XNBF_RING_CONNECTED;
775 
776 	error = xen_intr_bind_remote_port(xnb->dev,
777 					  xnb->otherend_id,
778 					  xnb->evtchn,
779 					  /*filter*/NULL,
780 					  xnb_intr, /*arg*/xnb,
781 					  INTR_TYPE_NET | INTR_MPSAFE,
782 					  &xnb->xen_intr_handle);
783 	if (error != 0) {
784 		(void)xnb_disconnect(xnb);
785 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
786 		return (error);
787 	}
788 
789 	DPRINTF("rings connected!\n");
790 
791 	return (0);
792 }
793 
794 /**
795  * Size KVA and pseudo-physical address allocations based on negotiated
796  * values for the size and number of I/O requests, and the size of our
797  * communication ring.
798  *
799  * \param xnb  Per-instance xnb configuration structure.
800  *
801  * These address spaces are used to dynamically map pages in the
802  * front-end's domain into our own.
803  */
804 static int
805 xnb_alloc_communication_mem(struct xnb_softc *xnb)
806 {
807 	xnb_ring_type_t i;
808 
809 	xnb->kva_size = 0;
810 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
811 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
812 	}
813 
814 	/*
815 	 * Reserve a range of pseudo physical memory that we can map
816 	 * into kva.  These pages will only be backed by machine
817 	 * pages ("real memory") during the lifetime of front-end requests
818 	 * via grant table operations.  We will map the netif tx and rx rings
819 	 * into this space.
820 	 */
821 	xnb->pseudo_phys_res_id = 0;
822 	xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id,
823 	    xnb->kva_size);
824 	if (xnb->pseudo_phys_res == NULL) {
825 		xnb->kva = 0;
826 		return (ENOMEM);
827 	}
828 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
829 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
830 	return (0);
831 }
832 
833 /**
834  * Collect information from the XenStore related to our device and its frontend
835  *
836  * \param xnb  Per-instance xnb configuration structure.
837  */
838 static int
839 xnb_collect_xenstore_info(struct xnb_softc *xnb)
840 {
841 	/**
842 	 * \todo Linux collects the following info.  We should collect most
843 	 * of this, too:
844 	 * "feature-rx-notify"
845 	 */
846 	const char *otherend_path;
847 	const char *our_path;
848 	int err;
849 	unsigned int rx_copy, bridge_len;
850 	uint8_t no_csum_offload;
851 
852 	otherend_path = xenbus_get_otherend_path(xnb->dev);
853 	our_path = xenbus_get_node(xnb->dev);
854 
855 	/* Collect the critical communication parameters */
856 	err = xs_gather(XST_NIL, otherend_path,
857 	    "tx-ring-ref", "%l" PRIu32,
858 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
859 	    "rx-ring-ref", "%l" PRIu32,
860 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
861 	    "event-channel", "%" PRIu32, &xnb->evtchn,
862 	    NULL);
863 	if (err != 0) {
864 		xenbus_dev_fatal(xnb->dev, err,
865 				 "Unable to retrieve ring information from "
866 				 "frontend %s.  Unable to connect.",
867 				 otherend_path);
868 		return (err);
869 	}
870 
871 	/* Collect the handle from xenstore */
872 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
873 	if (err != 0) {
874 		xenbus_dev_fatal(xnb->dev, err,
875 		    "Error reading handle from frontend %s.  "
876 		    "Unable to connect.", otherend_path);
877 	}
878 
879 	/*
880 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
881 	 * throw it away
882 	 */
883 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
884 		      (void**)&xnb->bridge);
885 	if (err != 0)
886 		xnb->bridge = NULL;
887 
888 	/*
889 	 * Does the frontend request that we use rx copy?  If not, return an
890 	 * error because this driver only supports rx copy.
891 	 */
892 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
893 		       "%" PRIu32, &rx_copy);
894 	if (err == ENOENT) {
895 		err = 0;
896 	 	rx_copy = 0;
897 	}
898 	if (err < 0) {
899 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
900 				 otherend_path);
901 		return err;
902 	}
903 	/**
904 	 * \todo: figure out the exact meaning of this feature, and when
905 	 * the frontend will set it to true.  It should be set to true
906 	 * at some point
907 	 */
908 /*        if (!rx_copy)*/
909 /*          return EOPNOTSUPP;*/
910 
911 	/** \todo Collect the rx notify feature */
912 
913 	/*  Collect the feature-sg. */
914 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
915 		     "%hhu", &xnb->can_sg) < 0)
916 		xnb->can_sg = 0;
917 
918 	/* Collect remaining frontend features */
919 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
920 		     "%hhu", &xnb->gso) < 0)
921 		xnb->gso = 0;
922 
923 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
924 		     "%hhu", &xnb->gso_prefix) < 0)
925 		xnb->gso_prefix = 0;
926 
927 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
928 		     "%hhu", &no_csum_offload) < 0)
929 		no_csum_offload = 0;
930 	xnb->ip_csum = (no_csum_offload == 0);
931 
932 	return (0);
933 }
934 
935 /**
936  * Supply information about the physical device to the frontend
937  * via XenBus.
938  *
939  * \param xnb  Per-instance xnb configuration structure.
940  */
941 static int
942 xnb_publish_backend_info(struct xnb_softc *xnb)
943 {
944 	struct xs_transaction xst;
945 	const char *our_path;
946 	int error;
947 
948 	our_path = xenbus_get_node(xnb->dev);
949 
950 	do {
951 		error = xs_transaction_start(&xst);
952 		if (error != 0) {
953 			xenbus_dev_fatal(xnb->dev, error,
954 					 "Error publishing backend info "
955 					 "(start transaction)");
956 			break;
957 		}
958 
959 		error = xs_printf(xst, our_path, "feature-sg",
960 				  "%d", XNB_SG);
961 		if (error != 0)
962 			break;
963 
964 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
965 				  "%d", XNB_GSO_TCPV4);
966 		if (error != 0)
967 			break;
968 
969 		error = xs_printf(xst, our_path, "feature-rx-copy",
970 				  "%d", XNB_RX_COPY);
971 		if (error != 0)
972 			break;
973 
974 		error = xs_printf(xst, our_path, "feature-rx-flip",
975 				  "%d", XNB_RX_FLIP);
976 		if (error != 0)
977 			break;
978 
979 		error = xs_transaction_end(xst, 0);
980 		if (error != 0 && error != EAGAIN) {
981 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
982 			break;
983 		}
984 
985 	} while (error == EAGAIN);
986 
987 	return (error);
988 }
989 
990 /**
991  * Connect to our netfront peer now that it has completed publishing
992  * its configuration into the XenStore.
993  *
994  * \param xnb  Per-instance xnb configuration structure.
995  */
996 static void
997 xnb_connect(struct xnb_softc *xnb)
998 {
999 	int	error;
1000 
1001 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1002 		return;
1003 
1004 	if (xnb_collect_xenstore_info(xnb) != 0)
1005 		return;
1006 
1007 	xnb->flags &= ~XNBF_SHUTDOWN;
1008 
1009 	/* Read front end configuration. */
1010 
1011 	/* Allocate resources whose size depends on front-end configuration. */
1012 	error = xnb_alloc_communication_mem(xnb);
1013 	if (error != 0) {
1014 		xenbus_dev_fatal(xnb->dev, error,
1015 				 "Unable to allocate communication memory");
1016 		return;
1017 	}
1018 
1019 	/*
1020 	 * Connect communication channel.
1021 	 */
1022 	error = xnb_connect_comms(xnb);
1023 	if (error != 0) {
1024 		/* Specific errors are reported by xnb_connect_comms(). */
1025 		return;
1026 	}
1027 	xnb->carrier = 1;
1028 
1029 	/* Ready for I/O. */
1030 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1031 }
1032 
1033 /*-------------------------- Device Teardown Support -------------------------*/
1034 /**
1035  * Perform device shutdown functions.
1036  *
1037  * \param xnb  Per-instance xnb configuration structure.
1038  *
1039  * Mark this instance as shutting down, wait for any active requests
1040  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1041  * a thread invoking our detach method) that detach can now proceed.
1042  */
1043 static int
1044 xnb_shutdown(struct xnb_softc *xnb)
1045 {
1046 	/*
1047 	 * Due to the need to drop our mutex during some
1048 	 * xenbus operations, it is possible for two threads
1049 	 * to attempt to close out shutdown processing at
1050 	 * the same time.  Tell the caller that hits this
1051 	 * race to try back later.
1052 	 */
1053 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1054 		return (EAGAIN);
1055 
1056 	xnb->flags |= XNBF_SHUTDOWN;
1057 
1058 	xnb->flags |= XNBF_IN_SHUTDOWN;
1059 
1060 	mtx_unlock(&xnb->sc_lock);
1061 	/* Free the network interface */
1062 	xnb->carrier = 0;
1063 	if (xnb->xnb_ifp != NULL) {
1064 		ether_ifdetach(xnb->xnb_ifp);
1065 		if_free(xnb->xnb_ifp);
1066 		xnb->xnb_ifp = NULL;
1067 	}
1068 
1069 	xnb_disconnect(xnb);
1070 
1071 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1072 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1073 	mtx_lock(&xnb->sc_lock);
1074 
1075 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1076 
1077 	/* Indicate to xnb_detach() that is it safe to proceed. */
1078 	wakeup(xnb);
1079 
1080 	return (0);
1081 }
1082 
1083 /**
1084  * Report an attach time error to the console and Xen, and cleanup
1085  * this instance by forcing immediate detach processing.
1086  *
1087  * \param xnb  Per-instance xnb configuration structure.
1088  * \param err  Errno describing the error.
1089  * \param fmt  Printf style format and arguments
1090  */
1091 static void
1092 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1093 {
1094 	va_list ap;
1095 	va_list ap_hotplug;
1096 
1097 	va_start(ap, fmt);
1098 	va_copy(ap_hotplug, ap);
1099 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1100 		  "hotplug-error", fmt, ap_hotplug);
1101 	va_end(ap_hotplug);
1102 	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1103 		  "hotplug-status", "error");
1104 
1105 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1106 	va_end(ap);
1107 
1108 	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0");
1109 	xnb_detach(xnb->dev);
1110 }
1111 
1112 /*---------------------------- NewBus Entrypoints ----------------------------*/
1113 /**
1114  * Inspect a XenBus device and claim it if is of the appropriate type.
1115  *
1116  * \param dev  NewBus device object representing a candidate XenBus device.
1117  *
1118  * \return  0 for success, errno codes for failure.
1119  */
1120 static int
1121 xnb_probe(device_t dev)
1122 {
1123 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1124 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1125 		    devclass_get_name(device_get_devclass(dev)));
1126 		device_set_desc(dev, "Backend Virtual Network Device");
1127 		device_quiet(dev);
1128 		return (0);
1129 	}
1130 	return (ENXIO);
1131 }
1132 
1133 /**
1134  * Setup sysctl variables to control various Network Back parameters.
1135  *
1136  * \param xnb  Xen Net Back softc.
1137  *
1138  */
1139 static void
1140 xnb_setup_sysctl(struct xnb_softc *xnb)
1141 {
1142 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1143 	struct sysctl_oid      *sysctl_tree = NULL;
1144 
1145 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1146 	if (sysctl_ctx == NULL)
1147 		return;
1148 
1149 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1150 	if (sysctl_tree == NULL)
1151 		return;
1152 
1153 #ifdef XNB_DEBUG
1154 	SYSCTL_ADD_PROC(sysctl_ctx,
1155 			SYSCTL_CHILDREN(sysctl_tree),
1156 			OID_AUTO,
1157 			"unit_test_results",
1158 			CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1159 			xnb,
1160 			0,
1161 			xnb_unit_test_main,
1162 			"A",
1163 			"Results of builtin unit tests");
1164 
1165 	SYSCTL_ADD_PROC(sysctl_ctx,
1166 			SYSCTL_CHILDREN(sysctl_tree),
1167 			OID_AUTO,
1168 			"dump_rings",
1169 			CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1170 			xnb,
1171 			0,
1172 			xnb_dump_rings,
1173 			"A",
1174 			"Xennet Back Rings");
1175 #endif /* XNB_DEBUG */
1176 }
1177 
1178 /**
1179  * Create a network device.
1180  * @param handle device handle
1181  */
1182 int
1183 create_netdev(device_t dev)
1184 {
1185 	struct ifnet *ifp;
1186 	struct xnb_softc *xnb;
1187 	int err = 0;
1188 	uint32_t handle;
1189 
1190 	xnb = device_get_softc(dev);
1191 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1192 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1193 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1194 
1195 	xnb->dev = dev;
1196 
1197 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1198 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1199 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1200 
1201 	/*
1202 	 * Set the MAC address to a dummy value (00:00:00:00:00),
1203 	 * if the MAC address of the host-facing interface is set
1204 	 * to the same as the guest-facing one (the value found in
1205 	 * xenstore), the bridge would stop delivering packets to
1206 	 * us because it would see that the destination address of
1207 	 * the packet is the same as the interface, and so the bridge
1208 	 * would expect the packet has already been delivered locally
1209 	 * (and just drop it).
1210 	 */
1211 	bzero(&xnb->mac[0], sizeof(xnb->mac));
1212 
1213 	/* The interface will be named using the following nomenclature:
1214 	 *
1215 	 * xnb<domid>.<handle>
1216 	 *
1217 	 * Where handle is the oder of the interface referred to the guest.
1218 	 */
1219 	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1220 		       "%" PRIu32, &handle);
1221 	if (err != 0)
1222 		return (err);
1223 	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1224 	    xenbus_get_otherend_id(dev), handle);
1225 
1226 	if (err == 0) {
1227 		/* Set up ifnet structure */
1228 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1229 		ifp->if_softc = xnb;
1230 		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1231 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1232 		ifp->if_ioctl = xnb_ioctl;
1233 		ifp->if_start = xnb_start;
1234 		ifp->if_init = xnb_ifinit;
1235 		ifp->if_mtu = ETHERMTU;
1236 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1237 
1238 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1239 		ifp->if_capabilities = IFCAP_HWCSUM;
1240 		ifp->if_capenable = IFCAP_HWCSUM;
1241 
1242 		ether_ifattach(ifp, xnb->mac);
1243 		xnb->carrier = 0;
1244 	}
1245 
1246 	return err;
1247 }
1248 
1249 /**
1250  * Attach to a XenBus device that has been claimed by our probe routine.
1251  *
1252  * \param dev  NewBus device object representing this Xen Net Back instance.
1253  *
1254  * \return  0 for success, errno codes for failure.
1255  */
1256 static int
1257 xnb_attach(device_t dev)
1258 {
1259 	struct xnb_softc *xnb;
1260 	int	error;
1261 	xnb_ring_type_t	i;
1262 
1263 	error = create_netdev(dev);
1264 	if (error != 0) {
1265 		xenbus_dev_fatal(dev, error, "creating netdev");
1266 		return (error);
1267 	}
1268 
1269 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1270 
1271 	/*
1272 	 * Basic initialization.
1273 	 * After this block it is safe to call xnb_detach()
1274 	 * to clean up any allocated data for this instance.
1275 	 */
1276 	xnb = device_get_softc(dev);
1277 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1278 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1279 		xnb->ring_configs[i].ring_pages = 1;
1280 	}
1281 
1282 	/*
1283 	 * Setup sysctl variables.
1284 	 */
1285 	xnb_setup_sysctl(xnb);
1286 
1287 	/* Update hot-plug status to satisfy xend. */
1288 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1289 			  "hotplug-status", "connected");
1290 	if (error != 0) {
1291 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1292 				  xenbus_get_node(xnb->dev));
1293 		return (error);
1294 	}
1295 
1296 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1297 		/*
1298 		 * If we can't publish our data, we cannot participate
1299 		 * in this connection, and waiting for a front-end state
1300 		 * change will not help the situation.
1301 		 */
1302 		xnb_attach_failed(xnb, error,
1303 		    "Publishing backend status for %s",
1304 				  xenbus_get_node(xnb->dev));
1305 		return error;
1306 	}
1307 
1308 	/* Tell the front end that we are ready to connect. */
1309 	xenbus_set_state(dev, XenbusStateInitWait);
1310 
1311 	return (0);
1312 }
1313 
1314 /**
1315  * Detach from a net back device instance.
1316  *
1317  * \param dev  NewBus device object representing this Xen Net Back instance.
1318  *
1319  * \return  0 for success, errno codes for failure.
1320  *
1321  * \note A net back device may be detached at any time in its life-cycle,
1322  *       including part way through the attach process.  For this reason,
1323  *       initialization order and the initialization state checks in this
1324  *       routine must be carefully coupled so that attach time failures
1325  *       are gracefully handled.
1326  */
1327 static int
1328 xnb_detach(device_t dev)
1329 {
1330 	struct xnb_softc *xnb;
1331 
1332 	DPRINTF("\n");
1333 
1334 	xnb = device_get_softc(dev);
1335 	mtx_lock(&xnb->sc_lock);
1336 	while (xnb_shutdown(xnb) == EAGAIN) {
1337 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1338 		       "xnb_shutdown", 0);
1339 	}
1340 	mtx_unlock(&xnb->sc_lock);
1341 	DPRINTF("\n");
1342 
1343 	mtx_destroy(&xnb->tx_lock);
1344 	mtx_destroy(&xnb->rx_lock);
1345 	mtx_destroy(&xnb->sc_lock);
1346 	return (0);
1347 }
1348 
1349 /**
1350  * Prepare this net back device for suspension of this VM.
1351  *
1352  * \param dev  NewBus device object representing this Xen net Back instance.
1353  *
1354  * \return  0 for success, errno codes for failure.
1355  */
1356 static int
1357 xnb_suspend(device_t dev)
1358 {
1359 	return (0);
1360 }
1361 
1362 /**
1363  * Perform any processing required to recover from a suspended state.
1364  *
1365  * \param dev  NewBus device object representing this Xen Net Back instance.
1366  *
1367  * \return  0 for success, errno codes for failure.
1368  */
1369 static int
1370 xnb_resume(device_t dev)
1371 {
1372 	return (0);
1373 }
1374 
1375 /**
1376  * Handle state changes expressed via the XenStore by our front-end peer.
1377  *
1378  * \param dev             NewBus device object representing this Xen
1379  *                        Net Back instance.
1380  * \param frontend_state  The new state of the front-end.
1381  *
1382  * \return  0 for success, errno codes for failure.
1383  */
1384 static void
1385 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1386 {
1387 	struct xnb_softc *xnb;
1388 
1389 	xnb = device_get_softc(dev);
1390 
1391 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1392 	        xenbus_strstate(frontend_state),
1393 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1394 
1395 	switch (frontend_state) {
1396 	case XenbusStateInitialising:
1397 		break;
1398 	case XenbusStateInitialised:
1399 	case XenbusStateConnected:
1400 		xnb_connect(xnb);
1401 		break;
1402 	case XenbusStateClosing:
1403 	case XenbusStateClosed:
1404 		mtx_lock(&xnb->sc_lock);
1405 		xnb_shutdown(xnb);
1406 		mtx_unlock(&xnb->sc_lock);
1407 		if (frontend_state == XenbusStateClosed)
1408 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1409 		break;
1410 	default:
1411 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1412 				 frontend_state);
1413 		break;
1414 	}
1415 }
1416 
1417 
1418 /*---------------------------- Request Processing ----------------------------*/
1419 /**
1420  * Interrupt handler bound to the shared ring's event channel.
1421  * Entry point for the xennet transmit path in netback
1422  * Transfers packets from the Xen ring to the host's generic networking stack
1423  *
1424  * \param arg  Callback argument registerd during event channel
1425  *             binding - the xnb_softc for this instance.
1426  */
1427 static void
1428 xnb_intr(void *arg)
1429 {
1430 	struct xnb_softc *xnb;
1431 	struct ifnet *ifp;
1432 	netif_tx_back_ring_t *txb;
1433 	RING_IDX req_prod_local;
1434 
1435 	xnb = (struct xnb_softc *)arg;
1436 	ifp = xnb->xnb_ifp;
1437 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1438 
1439 	mtx_lock(&xnb->tx_lock);
1440 	do {
1441 		int notify;
1442 		req_prod_local = txb->sring->req_prod;
1443 		xen_rmb();
1444 
1445 		for (;;) {
1446 			struct mbuf *mbufc;
1447 			int err;
1448 
1449 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1450 			    	       xnb->tx_gnttab);
1451 			if (err || (mbufc == NULL))
1452 				break;
1453 
1454 			/* Send the packet to the generic network stack */
1455 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1456 		}
1457 
1458 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1459 		if (notify != 0)
1460 			xen_intr_signal(xnb->xen_intr_handle);
1461 
1462 		txb->sring->req_event = txb->req_cons + 1;
1463 		xen_mb();
1464 	} while (txb->sring->req_prod != req_prod_local) ;
1465 	mtx_unlock(&xnb->tx_lock);
1466 
1467 	xnb_start(ifp);
1468 }
1469 
1470 
1471 /**
1472  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1473  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1474  * \param[out]	pkt	The returned packet.  If there is an error building
1475  * 			the packet, pkt.list_len will be set to 0.
1476  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1477  * \param[in]	start	The ring index of the first potential request
1478  * \return		The number of requests consumed to build this packet
1479  */
1480 static int
1481 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1482 	     RING_IDX start)
1483 {
1484 	/*
1485 	 * Outline:
1486 	 * 1) Initialize pkt
1487 	 * 2) Read the first request of the packet
1488 	 * 3) Read the extras
1489 	 * 4) Set cdr
1490 	 * 5) Loop on the remainder of the packet
1491 	 * 6) Finalize pkt (stuff like car_size and list_len)
1492 	 */
1493 	int idx = start;
1494 	int discard = 0;	/* whether to discard the packet */
1495 	int more_data = 0;	/* there are more request past the last one */
1496 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1497 
1498 	xnb_pkt_initialize(pkt);
1499 
1500 	/* Read the first request */
1501 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1502 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1503 		pkt->size = tx->size;
1504 		pkt->flags = tx->flags & ~NETTXF_more_data;
1505 		more_data = tx->flags & NETTXF_more_data;
1506 		pkt->list_len++;
1507 		pkt->car = idx;
1508 		idx++;
1509 	}
1510 
1511 	/* Read the extra info */
1512 	if ((pkt->flags & NETTXF_extra_info) &&
1513 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1514 		netif_extra_info_t *ext =
1515 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1516 		pkt->extra.type = ext->type;
1517 		switch (pkt->extra.type) {
1518 			case XEN_NETIF_EXTRA_TYPE_GSO:
1519 				pkt->extra.u.gso = ext->u.gso;
1520 				break;
1521 			default:
1522 				/*
1523 				 * The reference Linux netfront driver will
1524 				 * never set any other extra.type.  So we don't
1525 				 * know what to do with it.  Let's print an
1526 				 * error, then consume and discard the packet
1527 				 */
1528 				printf("xnb(%s:%d): Unknown extra info type %d."
1529 				       "  Discarding packet\n",
1530 				       __func__, __LINE__, pkt->extra.type);
1531 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1532 				    start));
1533 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1534 				    idx));
1535 				discard = 1;
1536 				break;
1537 		}
1538 
1539 		pkt->extra.flags = ext->flags;
1540 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1541 			/*
1542 			 * The reference linux netfront driver never sets this
1543 			 * flag (nor does any other known netfront).  So we
1544 			 * will discard the packet.
1545 			 */
1546 			printf("xnb(%s:%d): Request sets "
1547 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1548 			    "that\n", __func__, __LINE__);
1549 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1550 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1551 			discard = 1;
1552 		}
1553 
1554 		idx++;
1555 	}
1556 
1557 	/* Set cdr.  If there is not more data, cdr is invalid */
1558 	pkt->cdr = idx;
1559 
1560 	/* Loop on remainder of packet */
1561 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1562 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1563 		pkt->list_len++;
1564 		cdr_size += tx->size;
1565 		if (tx->flags & ~NETTXF_more_data) {
1566 			/* There should be no other flags set at this point */
1567 			printf("xnb(%s:%d): Request sets unknown flags %d "
1568 			    "after the 1st request in the packet.\n",
1569 			    __func__, __LINE__, tx->flags);
1570 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1571 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1572 		}
1573 
1574 		more_data = tx->flags & NETTXF_more_data;
1575 		idx++;
1576 	}
1577 
1578 	/* Finalize packet */
1579 	if (more_data != 0) {
1580 		/* The ring ran out of requests before finishing the packet */
1581 		xnb_pkt_invalidate(pkt);
1582 		idx = start;	/* tell caller that we consumed no requests */
1583 	} else {
1584 		/* Calculate car_size */
1585 		pkt->car_size = pkt->size - cdr_size;
1586 	}
1587 	if (discard != 0) {
1588 		xnb_pkt_invalidate(pkt);
1589 	}
1590 
1591 	return idx - start;
1592 }
1593 
1594 
1595 /**
1596  * Respond to all the requests that constituted pkt.  Builds the responses and
1597  * writes them to the ring, but doesn't push them to the shared ring.
1598  * \param[in] pkt	the packet that needs a response
1599  * \param[in] error	true if there was an error handling the packet, such
1600  * 			as in the hypervisor copy op or mbuf allocation
1601  * \param[out] ring	Responses go here
1602  */
1603 static void
1604 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1605 	      int error)
1606 {
1607 	/*
1608 	 * Outline:
1609 	 * 1) Respond to the first request
1610 	 * 2) Respond to the extra info reques
1611 	 * Loop through every remaining request in the packet, generating
1612 	 * responses that copy those requests' ids and sets the status
1613 	 * appropriately.
1614 	 */
1615 	netif_tx_request_t *tx;
1616 	netif_tx_response_t *rsp;
1617 	int i;
1618 	uint16_t status;
1619 
1620 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1621 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1622 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1623 	    ("Cannot respond to ring requests out of order"));
1624 
1625 	if (pkt->list_len >= 1) {
1626 		uint16_t id;
1627 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1628 		id = tx->id;
1629 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1630 		rsp->id = id;
1631 		rsp->status = status;
1632 		ring->rsp_prod_pvt++;
1633 
1634 		if (pkt->flags & NETRXF_extra_info) {
1635 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1636 			rsp->status = NETIF_RSP_NULL;
1637 			ring->rsp_prod_pvt++;
1638 		}
1639 	}
1640 
1641 	for (i=0; i < pkt->list_len - 1; i++) {
1642 		uint16_t id;
1643 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1644 		id = tx->id;
1645 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1646 		rsp->id = id;
1647 		rsp->status = status;
1648 		ring->rsp_prod_pvt++;
1649 	}
1650 }
1651 
1652 /**
1653  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1654  * in the mbuf chain, but does not copy the data.  The returned chain must be
1655  * free()'d when no longer needed
1656  * \param[in]	pkt	A packet to model the mbuf chain after
1657  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1658  * 		NULL on failure
1659  */
1660 static struct mbuf*
1661 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1662 {
1663 	/**
1664 	 * \todo consider using a memory pool for mbufs instead of
1665 	 * reallocating them for every packet
1666 	 */
1667 	/** \todo handle extra data */
1668 	struct mbuf *m;
1669 
1670 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1671 
1672 	if (m != NULL) {
1673 		m->m_pkthdr.rcvif = ifp;
1674 		if (pkt->flags & NETTXF_data_validated) {
1675 			/*
1676 			 * We lie to the host OS and always tell it that the
1677 			 * checksums are ok, because the packet is unlikely to
1678 			 * get corrupted going across domains.
1679 			 */
1680 			m->m_pkthdr.csum_flags = (
1681 				CSUM_IP_CHECKED |
1682 				CSUM_IP_VALID   |
1683 				CSUM_DATA_VALID |
1684 				CSUM_PSEUDO_HDR
1685 				);
1686 			m->m_pkthdr.csum_data = 0xffff;
1687 		}
1688 	}
1689 	return m;
1690 }
1691 
1692 /**
1693  * Build a gnttab_copy table that can be used to copy data from a pkt
1694  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1695  * the packet side.
1696  * \param[in]	pkt	pkt's associated requests form the src for
1697  * 			the copy operation
1698  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1699  * \param[out]  gnttab	Storage for the returned grant table
1700  * \param[in]	txb	Pointer to the backend ring structure
1701  * \param[in]	otherend_id	The domain ID of the other end of the copy
1702  * \return 		The number of gnttab entries filled
1703  */
1704 static int
1705 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc,
1706 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1707 		 domid_t otherend_id)
1708 {
1709 
1710 	struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1711 	int gnt_idx = 0;		/* index into grant table */
1712 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1713 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1714 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1715 	/* size in bytes that still needs to be represented in the table */
1716 	uint16_t size_remaining = pkt->size;
1717 
1718 	while (size_remaining > 0) {
1719 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1720 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1721 		const size_t req_size =
1722 			r_idx == pkt->car ? pkt->car_size : txq->size;
1723 		const size_t pkt_space = req_size - r_ofs;
1724 		/*
1725 		 * space is the largest amount of data that can be copied in the
1726 		 * grant table's next entry
1727 		 */
1728 		const size_t space = MIN(pkt_space, mbuf_space);
1729 
1730 		/* TODO: handle this error condition without panicking */
1731 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1732 
1733 		gnttab[gnt_idx].source.u.ref = txq->gref;
1734 		gnttab[gnt_idx].source.domid = otherend_id;
1735 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1736 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1737 		    mtod(mbuf, vm_offset_t) + m_ofs);
1738 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1739 		    mtod(mbuf, vm_offset_t) + m_ofs);
1740 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1741 		gnttab[gnt_idx].len = space;
1742 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1743 
1744 		gnt_idx++;
1745 		r_ofs += space;
1746 		m_ofs += space;
1747 		size_remaining -= space;
1748 		if (req_size - r_ofs <= 0) {
1749 			/* Must move to the next tx request */
1750 			r_ofs = 0;
1751 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1752 		}
1753 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1754 			/* Must move to the next mbuf */
1755 			m_ofs = 0;
1756 			mbuf = mbuf->m_next;
1757 		}
1758 	}
1759 
1760 	return gnt_idx;
1761 }
1762 
1763 /**
1764  * Check the status of the grant copy operations, and update mbufs various
1765  * non-data fields to reflect the data present.
1766  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1767  * 			the correct length, and data should already be present
1768  * \param[in] gnttab	A grant table for a just completed copy op
1769  * \param[in] n_entries The number of valid entries in the grant table
1770  */
1771 static void
1772 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1773     		 int n_entries)
1774 {
1775 	struct mbuf *mbuf = mbufc;
1776 	int i;
1777 	size_t total_size = 0;
1778 
1779 	for (i = 0; i < n_entries; i++) {
1780 		KASSERT(gnttab[i].status == GNTST_okay,
1781 		    ("Some gnttab_copy entry had error status %hd\n",
1782 		    gnttab[i].status));
1783 
1784 		mbuf->m_len += gnttab[i].len;
1785 		total_size += gnttab[i].len;
1786 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1787 			mbuf = mbuf->m_next;
1788 		}
1789 	}
1790 	mbufc->m_pkthdr.len = total_size;
1791 
1792 #if defined(INET) || defined(INET6)
1793 	xnb_add_mbuf_cksum(mbufc);
1794 #endif
1795 }
1796 
1797 /**
1798  * Dequeue at most one packet from the shared ring
1799  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1800  * 			its private indices will be updated.  But the indices
1801  * 			will not be pushed to the shared ring.
1802  * \param[in] ifnet	Interface to which the packet will be sent
1803  * \param[in] otherend	Domain ID of the other end of the ring
1804  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1805  * 			networking stack
1806  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1807  * 			this a function parameter so that we will take less
1808  * 			stack space.
1809  * \return		An error code
1810  */
1811 static int
1812 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1813 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1814 {
1815 	struct xnb_pkt pkt;
1816 	/* number of tx requests consumed to build the last packet */
1817 	int num_consumed;
1818 	int nr_ents;
1819 
1820 	*mbufc = NULL;
1821 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1822 	if (num_consumed == 0)
1823 		return 0;	/* Nothing to receive */
1824 
1825 	/* update statistics independent of errors */
1826 	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1827 
1828 	/*
1829 	 * if we got here, then 1 or more requests was consumed, but the packet
1830 	 * is not necessarily valid.
1831 	 */
1832 	if (xnb_pkt_is_valid(&pkt) == 0) {
1833 		/* got a garbage packet, respond and drop it */
1834 		xnb_txpkt2rsp(&pkt, txb, 1);
1835 		txb->req_cons += num_consumed;
1836 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1837 				num_consumed);
1838 		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1839 		return EINVAL;
1840 	}
1841 
1842 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1843 
1844 	if (*mbufc == NULL) {
1845 		/*
1846 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1847 		 * not consume the requests
1848 		 */
1849 		xnb_txpkt2rsp(&pkt, txb, 1);
1850 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1851 		    num_consumed);
1852 		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1853 		return ENOMEM;
1854 	}
1855 
1856 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1857 
1858 	if (nr_ents > 0) {
1859 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1860 		    gnttab, nr_ents);
1861 		KASSERT(hv_ret == 0,
1862 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1863 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1864 	}
1865 
1866 	xnb_txpkt2rsp(&pkt, txb, 0);
1867 	txb->req_cons += num_consumed;
1868 	return 0;
1869 }
1870 
1871 /**
1872  * Create an xnb_pkt based on the contents of an mbuf chain.
1873  * \param[in] mbufc	mbuf chain to transform into a packet
1874  * \param[out] pkt	Storage for the newly generated xnb_pkt
1875  * \param[in] start	The ring index of the first available slot in the rx
1876  * 			ring
1877  * \param[in] space	The number of free slots in the rx ring
1878  * \retval 0		Success
1879  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1880  * \retval EAGAIN	There was not enough space in the ring to queue the
1881  * 			packet
1882  */
1883 static int
1884 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1885 	      RING_IDX start, int space)
1886 {
1887 
1888 	int retval = 0;
1889 
1890 	if ((mbufc == NULL) ||
1891 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1892 	     (mbufc->m_pkthdr.len == 0)) {
1893 		xnb_pkt_invalidate(pkt);
1894 		retval = EINVAL;
1895 	} else {
1896 		int slots_required;
1897 
1898 		xnb_pkt_validate(pkt);
1899 		pkt->flags = 0;
1900 		pkt->size = mbufc->m_pkthdr.len;
1901 		pkt->car = start;
1902 		pkt->car_size = mbufc->m_len;
1903 
1904 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1905 			pkt->flags |= NETRXF_extra_info;
1906 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1907 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1908 			pkt->extra.u.gso.pad = 0;
1909 			pkt->extra.u.gso.features = 0;
1910 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1911 			pkt->extra.flags = 0;
1912 			pkt->cdr = start + 2;
1913 		} else {
1914 			pkt->cdr = start + 1;
1915 		}
1916 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1917 			pkt->flags |=
1918 			    (NETRXF_csum_blank | NETRXF_data_validated);
1919 		}
1920 
1921 		/*
1922 		 * Each ring response can have up to PAGE_SIZE of data.
1923 		 * Assume that we can defragment the mbuf chain efficiently
1924 		 * into responses so that each response but the last uses all
1925 		 * PAGE_SIZE bytes.
1926 		 */
1927 		pkt->list_len = howmany(pkt->size, PAGE_SIZE);
1928 
1929 		if (pkt->list_len > 1) {
1930 			pkt->flags |= NETRXF_more_data;
1931 		}
1932 
1933 		slots_required = pkt->list_len +
1934 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1935 		if (slots_required > space) {
1936 			xnb_pkt_invalidate(pkt);
1937 			retval = EAGAIN;
1938 		}
1939 	}
1940 
1941 	return retval;
1942 }
1943 
1944 /**
1945  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1946  * to the frontend's shared buffers.  Does not actually perform the copy.
1947  * Always uses gref's on the other end's side.
1948  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1949  * 			operatoin
1950  * \param[in]	mbufc	The source for the copy operation
1951  * \param[out]	gnttab	Storage for the returned grant table
1952  * \param[in]	rxb	Pointer to the backend ring structure
1953  * \param[in]	otherend_id	The domain ID of the other end of the copy
1954  * \return 		The number of gnttab entries filled
1955  */
1956 static int
1957 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1958 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1959 		 domid_t otherend_id)
1960 {
1961 
1962 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1963 	int gnt_idx = 0;		/* index into grant table */
1964 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1965 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1966 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1967 	/* size in bytes that still needs to be represented in the table */
1968 	uint16_t size_remaining;
1969 
1970 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1971 
1972 	while (size_remaining > 0) {
1973 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1974 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1975 		/* Xen shared pages have an implied size of PAGE_SIZE */
1976 		const size_t req_size = PAGE_SIZE;
1977 		const size_t pkt_space = req_size - r_ofs;
1978 		/*
1979 		 * space is the largest amount of data that can be copied in the
1980 		 * grant table's next entry
1981 		 */
1982 		const size_t space = MIN(pkt_space, mbuf_space);
1983 
1984 		/* TODO: handle this error condition without panicing */
1985 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1986 
1987 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1988 		gnttab[gnt_idx].dest.domid = otherend_id;
1989 		gnttab[gnt_idx].dest.offset = r_ofs;
1990 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1991 		    mtod(mbuf, vm_offset_t) + m_ofs);
1992 		gnttab[gnt_idx].source.offset = virt_to_offset(
1993 		    mtod(mbuf, vm_offset_t) + m_ofs);
1994 		gnttab[gnt_idx].source.domid = DOMID_SELF;
1995 		gnttab[gnt_idx].len = space;
1996 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1997 
1998 		gnt_idx++;
1999 
2000 		r_ofs += space;
2001 		m_ofs += space;
2002 		size_remaining -= space;
2003 		if (req_size - r_ofs <= 0) {
2004 			/* Must move to the next rx request */
2005 			r_ofs = 0;
2006 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2007 		}
2008 		if (mbuf->m_len - m_ofs <= 0) {
2009 			/* Must move to the next mbuf */
2010 			m_ofs = 0;
2011 			mbuf = mbuf->m_next;
2012 		}
2013 	}
2014 
2015 	return gnt_idx;
2016 }
2017 
2018 /**
2019  * Generates responses for all the requests that constituted pkt.  Builds
2020  * responses and writes them to the ring, but doesn't push the shared ring
2021  * indices.
2022  * \param[in] pkt	the packet that needs a response
2023  * \param[in] gnttab	The grant copy table corresponding to this packet.
2024  * 			Used to determine how many rsp->netif_rx_response_t's to
2025  * 			generate.
2026  * \param[in] n_entries	Number of relevant entries in the grant table
2027  * \param[out] ring	Responses go here
2028  * \return		The number of RX requests that were consumed to generate
2029  * 			the responses
2030  */
2031 static int
2032 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2033     	      int n_entries, netif_rx_back_ring_t *ring)
2034 {
2035 	/*
2036 	 * This code makes the following assumptions:
2037 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2038 	 *	* The entries in gnttab are grouped by their grefs: any two
2039 	 *	   entries with the same gref must be adjacent
2040 	 */
2041 	int error = 0;
2042 	int gnt_idx, i;
2043 	int n_responses = 0;
2044 	grant_ref_t last_gref = GRANT_REF_INVALID;
2045 	RING_IDX r_idx;
2046 
2047 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2048 
2049 	/*
2050 	 * In the event of an error, we only need to send one response to the
2051 	 * netfront.  In that case, we musn't write any data to the responses
2052 	 * after the one we send.  So we must loop all the way through gnttab
2053 	 * looking for errors before we generate any responses
2054 	 *
2055 	 * Since we're looping through the grant table anyway, we'll count the
2056 	 * number of different gref's in it, which will tell us how many
2057 	 * responses to generate
2058 	 */
2059 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2060 		int16_t status = gnttab[gnt_idx].status;
2061 		if (status != GNTST_okay) {
2062 			DPRINTF(
2063 			    "Got error %d for hypervisor gnttab_copy status\n",
2064 			    status);
2065 			error = 1;
2066 			break;
2067 		}
2068 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2069 			n_responses++;
2070 			last_gref = gnttab[gnt_idx].dest.u.ref;
2071 		}
2072 	}
2073 
2074 	if (error != 0) {
2075 		uint16_t id;
2076 		netif_rx_response_t *rsp;
2077 
2078 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2079 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2080 		rsp->id = id;
2081 		rsp->status = NETIF_RSP_ERROR;
2082 		n_responses = 1;
2083 	} else {
2084 		gnt_idx = 0;
2085 		const int has_extra = pkt->flags & NETRXF_extra_info;
2086 		if (has_extra != 0)
2087 			n_responses++;
2088 
2089 		for (i = 0; i < n_responses; i++) {
2090 			netif_rx_request_t rxq;
2091 			netif_rx_response_t *rsp;
2092 
2093 			r_idx = ring->rsp_prod_pvt + i;
2094 			/*
2095 			 * We copy the structure of rxq instead of making a
2096 			 * pointer because it shares the same memory as rsp.
2097 			 */
2098 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2099 			rsp = RING_GET_RESPONSE(ring, r_idx);
2100 			if (has_extra && (i == 1)) {
2101 				netif_extra_info_t *ext =
2102 					(netif_extra_info_t*)rsp;
2103 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2104 				ext->flags = 0;
2105 				ext->u.gso.size = pkt->extra.u.gso.size;
2106 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2107 				ext->u.gso.pad = 0;
2108 				ext->u.gso.features = 0;
2109 			} else {
2110 				rsp->id = rxq.id;
2111 				rsp->status = GNTST_okay;
2112 				rsp->offset = 0;
2113 				rsp->flags = 0;
2114 				if (i < pkt->list_len - 1)
2115 					rsp->flags |= NETRXF_more_data;
2116 				if ((i == 0) && has_extra)
2117 					rsp->flags |= NETRXF_extra_info;
2118 				if ((i == 0) &&
2119 					(pkt->flags & NETRXF_data_validated)) {
2120 					rsp->flags |= NETRXF_data_validated;
2121 					rsp->flags |= NETRXF_csum_blank;
2122 				}
2123 				rsp->status = 0;
2124 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2125 				    gnt_idx++) {
2126 					rsp->status += gnttab[gnt_idx].len;
2127 				}
2128 			}
2129 		}
2130 	}
2131 
2132 	ring->req_cons += n_responses;
2133 	ring->rsp_prod_pvt += n_responses;
2134 	return n_responses;
2135 }
2136 
2137 #if defined(INET) || defined(INET6)
2138 /**
2139  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2140  * in the chain must start with a struct ether_header.
2141  *
2142  * XXX This function will perform incorrectly on UDP packets that are split up
2143  * into multiple ethernet frames.
2144  */
2145 static void
2146 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2147 {
2148 	struct ether_header *eh;
2149 	struct ip *iph;
2150 	uint16_t ether_type;
2151 
2152 	eh = mtod(mbufc, struct ether_header*);
2153 	ether_type = ntohs(eh->ether_type);
2154 	if (ether_type != ETHERTYPE_IP) {
2155 		/* Nothing to calculate */
2156 		return;
2157 	}
2158 
2159 	iph = (struct ip*)(eh + 1);
2160 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2161 		iph->ip_sum = 0;
2162 		iph->ip_sum = in_cksum_hdr(iph);
2163 	}
2164 
2165 	switch (iph->ip_p) {
2166 	case IPPROTO_TCP:
2167 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2168 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2169 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2170 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2171 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2172 			th->th_sum = in_cksum_skip(mbufc,
2173 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2174 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2175 		}
2176 		break;
2177 	case IPPROTO_UDP:
2178 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2179 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2180 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2181 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2182 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2183 			uh->uh_sum = in_cksum_skip(mbufc,
2184 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2185 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2186 		}
2187 		break;
2188 	default:
2189 		break;
2190 	}
2191 }
2192 #endif /* INET || INET6 */
2193 
2194 static void
2195 xnb_stop(struct xnb_softc *xnb)
2196 {
2197 	struct ifnet *ifp;
2198 
2199 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2200 	ifp = xnb->xnb_ifp;
2201 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2202 	if_link_state_change(ifp, LINK_STATE_DOWN);
2203 }
2204 
2205 static int
2206 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2207 {
2208 	struct xnb_softc *xnb = ifp->if_softc;
2209 	struct ifreq *ifr = (struct ifreq*) data;
2210 #ifdef INET
2211 	struct ifaddr *ifa = (struct ifaddr*)data;
2212 #endif
2213 	int error = 0;
2214 
2215 	switch (cmd) {
2216 		case SIOCSIFFLAGS:
2217 			mtx_lock(&xnb->sc_lock);
2218 			if (ifp->if_flags & IFF_UP) {
2219 				xnb_ifinit_locked(xnb);
2220 			} else {
2221 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2222 					xnb_stop(xnb);
2223 				}
2224 			}
2225 			/*
2226 			 * Note: netfront sets a variable named xn_if_flags
2227 			 * here, but that variable is never read
2228 			 */
2229 			mtx_unlock(&xnb->sc_lock);
2230 			break;
2231 		case SIOCSIFADDR:
2232 #ifdef INET
2233 			mtx_lock(&xnb->sc_lock);
2234 			if (ifa->ifa_addr->sa_family == AF_INET) {
2235 				ifp->if_flags |= IFF_UP;
2236 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2237 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2238 							IFF_DRV_OACTIVE);
2239 					if_link_state_change(ifp,
2240 							LINK_STATE_DOWN);
2241 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2242 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2243 					if_link_state_change(ifp,
2244 					    LINK_STATE_UP);
2245 				}
2246 				arp_ifinit(ifp, ifa);
2247 				mtx_unlock(&xnb->sc_lock);
2248 			} else {
2249 				mtx_unlock(&xnb->sc_lock);
2250 #endif
2251 				error = ether_ioctl(ifp, cmd, data);
2252 #ifdef INET
2253 			}
2254 #endif
2255 			break;
2256 		case SIOCSIFCAP:
2257 			mtx_lock(&xnb->sc_lock);
2258 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2259 				ifp->if_capenable |= IFCAP_TXCSUM;
2260 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2261 			} else {
2262 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2263 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2264 			}
2265 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2266 				ifp->if_capenable |= IFCAP_RXCSUM;
2267 			} else {
2268 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2269 			}
2270 			/*
2271 			 * TODO enable TSO4 and LRO once we no longer need
2272 			 * to calculate checksums in software
2273 			 */
2274 #if 0
2275 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2276 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2277 					printf("xnb: Xen netif requires that "
2278 						"TXCSUM be enabled in order "
2279 						"to use TSO4\n");
2280 					error = EINVAL;
2281 				} else {
2282 					ifp->if_capenable |= IFCAP_TSO4;
2283 					ifp->if_hwassist |= CSUM_TSO;
2284 				}
2285 			} else {
2286 				ifp->if_capenable &= ~(IFCAP_TSO4);
2287 				ifp->if_hwassist &= ~(CSUM_TSO);
2288 			}
2289 			if (ifr->ifreqcap |= IFCAP_LRO) {
2290 				ifp->if_capenable |= IFCAP_LRO;
2291 			} else {
2292 				ifp->if_capenable &= ~(IFCAP_LRO);
2293 			}
2294 #endif
2295 			mtx_unlock(&xnb->sc_lock);
2296 			break;
2297 		case SIOCSIFMTU:
2298 			ifp->if_mtu = ifr->ifr_mtu;
2299 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2300 			xnb_ifinit(xnb);
2301 			break;
2302 		case SIOCADDMULTI:
2303 		case SIOCDELMULTI:
2304 		case SIOCSIFMEDIA:
2305 		case SIOCGIFMEDIA:
2306 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2307 			break;
2308 		default:
2309 			error = ether_ioctl(ifp, cmd, data);
2310 			break;
2311 	}
2312 	return (error);
2313 }
2314 
2315 static void
2316 xnb_start_locked(struct ifnet *ifp)
2317 {
2318 	netif_rx_back_ring_t *rxb;
2319 	struct xnb_softc *xnb;
2320 	struct mbuf *mbufc;
2321 	RING_IDX req_prod_local;
2322 
2323 	xnb = ifp->if_softc;
2324 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2325 
2326 	if (!xnb->carrier)
2327 		return;
2328 
2329 	do {
2330 		int out_of_space = 0;
2331 		int notify;
2332 		req_prod_local = rxb->sring->req_prod;
2333 		xen_rmb();
2334 		for (;;) {
2335 			int error;
2336 
2337 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2338 			if (mbufc == NULL)
2339 				break;
2340 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2341 			    		 xnb->rx_gnttab);
2342 			switch (error) {
2343 				case EAGAIN:
2344 					/*
2345 					 * Insufficient space in the ring.
2346 					 * Requeue pkt and send when space is
2347 					 * available.
2348 					 */
2349 					IF_PREPEND(&ifp->if_snd, mbufc);
2350 					/*
2351 					 * Perhaps the frontend missed an IRQ
2352 					 * and went to sleep.  Notify it to wake
2353 					 * it up.
2354 					 */
2355 					out_of_space = 1;
2356 					break;
2357 
2358 				case EINVAL:
2359 					/* OS gave a corrupt packet.  Drop it.*/
2360 					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2361 					/* FALLTHROUGH */
2362 				default:
2363 					/* Send succeeded, or packet had error.
2364 					 * Free the packet */
2365 					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2366 					if (mbufc)
2367 						m_freem(mbufc);
2368 					break;
2369 			}
2370 			if (out_of_space != 0)
2371 				break;
2372 		}
2373 
2374 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2375 		if ((notify != 0) || (out_of_space != 0))
2376 			xen_intr_signal(xnb->xen_intr_handle);
2377 		rxb->sring->req_event = req_prod_local + 1;
2378 		xen_mb();
2379 	} while (rxb->sring->req_prod != req_prod_local) ;
2380 }
2381 
2382 /**
2383  * Sends one packet to the ring.  Blocks until the packet is on the ring
2384  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2385  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2386  * 			otherend will not be notified.
2387  * \param[in]	otherend The domain ID of the other end of the connection
2388  * \retval	EAGAIN	The ring did not have enough space for the packet.
2389  * 			The ring has not been modified
2390  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2391  * 			this a function parameter so that we will take less
2392  * 			stack space.
2393  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2394  */
2395 static int
2396 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2397 	 gnttab_copy_table gnttab)
2398 {
2399 	struct xnb_pkt pkt;
2400 	int error, n_entries, n_reqs;
2401 	RING_IDX space;
2402 
2403 	space = ring->sring->req_prod - ring->req_cons;
2404 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2405 	if (error != 0)
2406 		return error;
2407 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2408 	if (n_entries != 0) {
2409 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2410 		    gnttab, n_entries);
2411 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2412 		    hv_ret));
2413 	}
2414 
2415 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2416 
2417 	return 0;
2418 }
2419 
2420 static void
2421 xnb_start(struct ifnet *ifp)
2422 {
2423 	struct xnb_softc *xnb;
2424 
2425 	xnb = ifp->if_softc;
2426 	mtx_lock(&xnb->rx_lock);
2427 	xnb_start_locked(ifp);
2428 	mtx_unlock(&xnb->rx_lock);
2429 }
2430 
2431 /* equivalent of network_open() in Linux */
2432 static void
2433 xnb_ifinit_locked(struct xnb_softc *xnb)
2434 {
2435 	struct ifnet *ifp;
2436 
2437 	ifp = xnb->xnb_ifp;
2438 
2439 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2440 
2441 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2442 		return;
2443 
2444 	xnb_stop(xnb);
2445 
2446 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2447 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2448 	if_link_state_change(ifp, LINK_STATE_UP);
2449 }
2450 
2451 
2452 static void
2453 xnb_ifinit(void *xsc)
2454 {
2455 	struct xnb_softc *xnb = xsc;
2456 
2457 	mtx_lock(&xnb->sc_lock);
2458 	xnb_ifinit_locked(xnb);
2459 	mtx_unlock(&xnb->sc_lock);
2460 }
2461 
2462 /**
2463  * Callback used by the generic networking code to tell us when our carrier
2464  * state has changed.  Since we don't have a physical carrier, we don't care
2465  */
2466 static int
2467 xnb_ifmedia_upd(struct ifnet *ifp)
2468 {
2469 	return (0);
2470 }
2471 
2472 /**
2473  * Callback used by the generic networking code to ask us what our carrier
2474  * state is.  Since we don't have a physical carrier, this is very simple
2475  */
2476 static void
2477 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2478 {
2479 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2480 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2481 }
2482 
2483 
2484 /*---------------------------- NewBus Registration ---------------------------*/
2485 static device_method_t xnb_methods[] = {
2486 	/* Device interface */
2487 	DEVMETHOD(device_probe,		xnb_probe),
2488 	DEVMETHOD(device_attach,	xnb_attach),
2489 	DEVMETHOD(device_detach,	xnb_detach),
2490 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2491 	DEVMETHOD(device_suspend,	xnb_suspend),
2492 	DEVMETHOD(device_resume,	xnb_resume),
2493 
2494 	/* Xenbus interface */
2495 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2496 
2497 	{ 0, 0 }
2498 };
2499 
2500 static driver_t xnb_driver = {
2501 	"xnb",
2502 	xnb_methods,
2503 	sizeof(struct xnb_softc),
2504 };
2505 devclass_t xnb_devclass;
2506 
2507 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2508 
2509 
2510 /*-------------------------- Unit Tests -------------------------------------*/
2511 #ifdef XNB_DEBUG
2512 #include "netback_unit_tests.c"
2513 #endif
2514