xref: /freebsd/sys/dev/xen/netback/netback.c (revision 6574b8ed19b093f0af09501d2c9676c28993cb97)
1 /*-
2  * Copyright (c) 2009-2011 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Alan Somers         (Spectra Logic Corporation)
32  *          John Suykerbuyk     (Spectra Logic Corporation)
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file netback.c
40  *
41  * \brief Device driver supporting the vending of network access
42  * 	  from this FreeBSD domain to other domains.
43  */
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_global.h"
47 
48 #include "opt_sctp.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 
53 #include <sys/bus.h>
54 #include <sys/module.h>
55 #include <sys/rman.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_ether.h>
71 #if __FreeBSD_version >= 700000
72 #include <netinet/tcp.h>
73 #endif
74 #include <netinet/ip_icmp.h>
75 #include <netinet/udp.h>
76 #include <machine/in_cksum.h>
77 
78 #include <vm/vm.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_kern.h>
82 
83 #include <machine/_inttypes.h>
84 
85 #include <xen/xen-os.h>
86 #include <xen/hypervisor.h>
87 #include <xen/xen_intr.h>
88 #include <xen/interface/io/netif.h>
89 #include <xen/xenbus/xenbusvar.h>
90 
91 #include <machine/xen/xenvar.h>
92 
93 /*--------------------------- Compile-time Tunables --------------------------*/
94 
95 /*---------------------------------- Macros ----------------------------------*/
96 /**
97  * Custom malloc type for all driver allocations.
98  */
99 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
100 
101 #define	XNB_SG	1	/* netback driver supports feature-sg */
102 #define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
103 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
104 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
105 
106 #undef XNB_DEBUG
107 #define	XNB_DEBUG /* hardcode on during development */
108 
109 #ifdef XNB_DEBUG
110 #define	DPRINTF(fmt, args...) \
111 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
112 #else
113 #define	DPRINTF(fmt, args...) do {} while (0)
114 #endif
115 
116 /* Default length for stack-allocated grant tables */
117 #define	GNTTAB_LEN	(64)
118 
119 /* Features supported by all backends.  TSO and LRO can be negotiated */
120 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
121 
122 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
123 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
124 
125 /**
126  * Two argument version of the standard macro.  Second argument is a tentative
127  * value of req_cons
128  */
129 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
130 	unsigned int req = (_r)->sring->req_prod - cons;          	\
131 	unsigned int rsp = RING_SIZE(_r) -                              \
132 	(cons - (_r)->rsp_prod_pvt);                          		\
133 	req < rsp ? req : rsp;                                          \
134 })
135 
136 #define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
137 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
138 
139 /**
140  * Predefined array type of grant table copy descriptors.  Used to pass around
141  * statically allocated memory structures.
142  */
143 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
144 
145 /*--------------------------- Forward Declarations ---------------------------*/
146 struct xnb_softc;
147 struct xnb_pkt;
148 
149 static void	xnb_attach_failed(struct xnb_softc *xnb,
150 				  int err, const char *fmt, ...)
151 				  __printflike(3,4);
152 static int	xnb_shutdown(struct xnb_softc *xnb);
153 static int	create_netdev(device_t dev);
154 static int	xnb_detach(device_t dev);
155 static int	xnb_ifmedia_upd(struct ifnet *ifp);
156 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
157 static void 	xnb_intr(void *arg);
158 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
159 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
160 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
161 			 struct mbuf **mbufc, struct ifnet *ifnet,
162 			 gnttab_copy_table gnttab);
163 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
164 			     const netif_tx_back_ring_t *tx_ring,
165 			     RING_IDX start);
166 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
167 			      netif_tx_back_ring_t *ring, int error);
168 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
169 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
170 				 const struct mbuf *mbufc,
171 				 gnttab_copy_table gnttab,
172 				 const netif_tx_back_ring_t *txb,
173 				 domid_t otherend_id);
174 static void	xnb_update_mbufc(struct mbuf *mbufc,
175 				 const gnttab_copy_table gnttab, int n_entries);
176 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
177 			      struct xnb_pkt *pkt,
178 			      RING_IDX start, int space);
179 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
180 				 const struct mbuf *mbufc,
181 				 gnttab_copy_table gnttab,
182 				 const netif_rx_back_ring_t *rxb,
183 				 domid_t otherend_id);
184 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
185 			      const gnttab_copy_table gnttab, int n_entries,
186 			      netif_rx_back_ring_t *ring);
187 static void	xnb_stop(struct xnb_softc*);
188 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
189 static void	xnb_start_locked(struct ifnet*);
190 static void	xnb_start(struct ifnet*);
191 static void	xnb_ifinit_locked(struct xnb_softc*);
192 static void	xnb_ifinit(void*);
193 #ifdef XNB_DEBUG
194 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
195 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
196 #endif
197 #if defined(INET) || defined(INET6)
198 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
199 #endif
200 /*------------------------------ Data Structures -----------------------------*/
201 
202 
203 /**
204  * Representation of a xennet packet.  Simplified version of a packet as
205  * stored in the Xen tx ring.  Applicable to both RX and TX packets
206  */
207 struct xnb_pkt{
208 	/**
209 	 * Array index of the first data-bearing (eg, not extra info) entry
210 	 * for this packet
211 	 */
212 	RING_IDX	car;
213 
214 	/**
215 	 * Array index of the second data-bearing entry for this packet.
216 	 * Invalid if the packet has only one data-bearing entry.  If the
217 	 * packet has more than two data-bearing entries, then the second
218 	 * through the last will be sequential modulo the ring size
219 	 */
220 	RING_IDX	cdr;
221 
222 	/**
223 	 * Optional extra info.  Only valid if flags contains
224 	 * NETTXF_extra_info.  Note that extra.type will always be
225 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
226 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
227 	 */
228 	netif_extra_info_t extra;
229 
230 	/** Size of entire packet in bytes.       */
231 	uint16_t	size;
232 
233 	/** The size of the first entry's data in bytes */
234 	uint16_t	car_size;
235 
236 	/**
237 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
238 	 * not the same for TX and RX packets
239 	 */
240 	uint16_t	flags;
241 
242 	/**
243 	 * The number of valid data-bearing entries (either netif_tx_request's
244 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
245 	 * entire packet is invalid.
246 	 */
247 	uint16_t	list_len;
248 
249 	/** There was an error processing the packet */
250 	uint8_t		error;
251 };
252 
253 /** xnb_pkt method: initialize it */
254 static inline void
255 xnb_pkt_initialize(struct xnb_pkt *pxnb)
256 {
257 	bzero(pxnb, sizeof(*pxnb));
258 }
259 
260 /** xnb_pkt method: mark the packet as valid */
261 static inline void
262 xnb_pkt_validate(struct xnb_pkt *pxnb)
263 {
264 	pxnb->error = 0;
265 };
266 
267 /** xnb_pkt method: mark the packet as invalid */
268 static inline void
269 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
270 {
271 	pxnb->error = 1;
272 };
273 
274 /** xnb_pkt method: Check whether the packet is valid */
275 static inline int
276 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
277 {
278 	return (! pxnb->error);
279 }
280 
281 #ifdef XNB_DEBUG
282 /** xnb_pkt method: print the packet's contents in human-readable format*/
283 static void __unused
284 xnb_dump_pkt(const struct xnb_pkt *pkt) {
285 	if (pkt == NULL) {
286 	  DPRINTF("Was passed a null pointer.\n");
287 	  return;
288 	}
289 	DPRINTF("pkt address= %p\n", pkt);
290 	DPRINTF("pkt->size=%d\n", pkt->size);
291 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
292 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
293 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
294 	/* DPRINTF("pkt->extra");	TODO */
295 	DPRINTF("pkt->car=%d\n", pkt->car);
296 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
297 	DPRINTF("pkt->error=%d\n", pkt->error);
298 }
299 #endif /* XNB_DEBUG */
300 
301 static void
302 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
303 {
304 	if (txreq != NULL) {
305 		DPRINTF("netif_tx_request index =%u\n", idx);
306 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
307 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
308 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
309 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
310 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
311 	}
312 }
313 
314 
315 /**
316  * \brief Configuration data for a shared memory request ring
317  *        used to communicate with the front-end client of this
318  *        this driver.
319  */
320 struct xnb_ring_config {
321 	/**
322 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
323 	 * use different data structures, and that cannot be changed since it
324 	 * is part of the interdomain protocol.
325 	 */
326 	union{
327 		netif_rx_back_ring_t	  rx_ring;
328 		netif_tx_back_ring_t	  tx_ring;
329 	} back_ring;
330 
331 	/**
332 	 * The device bus address returned by the hypervisor when
333 	 * mapping the ring and required to unmap it when a connection
334 	 * is torn down.
335 	 */
336 	uint64_t	bus_addr;
337 
338 	/** The pseudo-physical address where ring memory is mapped.*/
339 	uint64_t	gnt_addr;
340 
341 	/** KVA address where ring memory is mapped. */
342 	vm_offset_t	va;
343 
344 	/**
345 	 * Grant table handles, one per-ring page, returned by the
346 	 * hyperpervisor upon mapping of the ring and required to
347 	 * unmap it when a connection is torn down.
348 	 */
349 	grant_handle_t	handle;
350 
351 	/** The number of ring pages mapped for the current connection. */
352 	unsigned	ring_pages;
353 
354 	/**
355 	 * The grant references, one per-ring page, supplied by the
356 	 * front-end, allowing us to reference the ring pages in the
357 	 * front-end's domain and to map these pages into our own domain.
358 	 */
359 	grant_ref_t	ring_ref;
360 };
361 
362 /**
363  * Per-instance connection state flags.
364  */
365 typedef enum
366 {
367 	/** Communication with the front-end has been established. */
368 	XNBF_RING_CONNECTED    = 0x01,
369 
370 	/**
371 	 * Front-end requests exist in the ring and are waiting for
372 	 * xnb_xen_req objects to free up.
373 	 */
374 	XNBF_RESOURCE_SHORTAGE = 0x02,
375 
376 	/** Connection teardown has started. */
377 	XNBF_SHUTDOWN          = 0x04,
378 
379 	/** A thread is already performing shutdown processing. */
380 	XNBF_IN_SHUTDOWN       = 0x08
381 } xnb_flag_t;
382 
383 /**
384  * Types of rings.  Used for array indices and to identify a ring's control
385  * data structure type
386  */
387 typedef enum{
388 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
389 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
390 	XNB_NUM_RING_TYPES
391 } xnb_ring_type_t;
392 
393 /**
394  * Per-instance configuration data.
395  */
396 struct xnb_softc {
397 	/** NewBus device corresponding to this instance. */
398 	device_t		dev;
399 
400 	/* Media related fields */
401 
402 	/** Generic network media state */
403 	struct ifmedia		sc_media;
404 
405 	/** Media carrier info */
406 	struct ifnet 		*xnb_ifp;
407 
408 	/** Our own private carrier state */
409 	unsigned carrier;
410 
411 	/** Device MAC Address */
412 	uint8_t			mac[ETHER_ADDR_LEN];
413 
414 	/* Xen related fields */
415 
416 	/**
417 	 * \brief The netif protocol abi in effect.
418 	 *
419 	 * There are situations where the back and front ends can
420 	 * have a different, native abi (e.g. intel x86_64 and
421 	 * 32bit x86 domains on the same machine).  The back-end
422 	 * always accomodates the front-end's native abi.  That
423 	 * value is pulled from the XenStore and recorded here.
424 	 */
425 	int			abi;
426 
427 	/**
428 	 * Name of the bridge to which this VIF is connected, if any
429 	 * This field is dynamically allocated by xenbus and must be free()ed
430 	 * when no longer needed
431 	 */
432 	char			*bridge;
433 
434 	/** The interrupt driven even channel used to signal ring events. */
435 	evtchn_port_t		evtchn;
436 
437 	/** Xen device handle.*/
438 	long 			handle;
439 
440 	/** Handle to the communication ring event channel. */
441 	xen_intr_handle_t	xen_intr_handle;
442 
443 	/**
444 	 * \brief Cached value of the front-end's domain id.
445 	 *
446 	 * This value is used at once for each mapped page in
447 	 * a transaction.  We cache it to avoid incuring the
448 	 * cost of an ivar access every time this is needed.
449 	 */
450 	domid_t			otherend_id;
451 
452 	/**
453 	 * Undocumented frontend feature.  Has something to do with
454 	 * scatter/gather IO
455 	 */
456 	uint8_t			can_sg;
457 	/** Undocumented frontend feature */
458 	uint8_t			gso;
459 	/** Undocumented frontend feature */
460 	uint8_t			gso_prefix;
461 	/** Can checksum TCP/UDP over IPv4 */
462 	uint8_t			ip_csum;
463 
464 	/* Implementation related fields */
465 	/**
466 	 * Preallocated grant table copy descriptor for RX operations.
467 	 * Access must be protected by rx_lock
468 	 */
469 	gnttab_copy_table	rx_gnttab;
470 
471 	/**
472 	 * Preallocated grant table copy descriptor for TX operations.
473 	 * Access must be protected by tx_lock
474 	 */
475 	gnttab_copy_table	tx_gnttab;
476 
477 #ifdef XENHVM
478 	/**
479 	 * Resource representing allocated physical address space
480 	 * associated with our per-instance kva region.
481 	 */
482 	struct resource		*pseudo_phys_res;
483 
484 	/** Resource id for allocated physical address space. */
485 	int			pseudo_phys_res_id;
486 #endif
487 
488 	/** Ring mapping and interrupt configuration data. */
489 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
490 
491 	/**
492 	 * Global pool of kva used for mapping remote domain ring
493 	 * and I/O transaction data.
494 	 */
495 	vm_offset_t		kva;
496 
497 	/** Psuedo-physical address corresponding to kva. */
498 	uint64_t		gnt_base_addr;
499 
500 	/** Various configuration and state bit flags. */
501 	xnb_flag_t		flags;
502 
503 	/** Mutex protecting per-instance data in the receive path. */
504 	struct mtx		rx_lock;
505 
506 	/** Mutex protecting per-instance data in the softc structure. */
507 	struct mtx		sc_lock;
508 
509 	/** Mutex protecting per-instance data in the transmit path. */
510 	struct mtx		tx_lock;
511 
512 	/** The size of the global kva pool. */
513 	int			kva_size;
514 };
515 
516 /*---------------------------- Debugging functions ---------------------------*/
517 #ifdef XNB_DEBUG
518 static void __unused
519 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
520 {
521 	if (entry == NULL) {
522 		printf("NULL grant table pointer\n");
523 		return;
524 	}
525 
526 	if (entry->flags & GNTCOPY_dest_gref)
527 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
528 	else
529 		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
530 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
531 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
532 	if (entry->flags & GNTCOPY_source_gref)
533 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
534 	else
535 		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
536 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
537 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
538 	printf("gnttab len=\t%hu\n", entry->len);
539 	printf("gnttab flags=\t%hu\n", entry->flags);
540 	printf("gnttab status=\t%hd\n", entry->status);
541 }
542 
543 static int
544 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
545 {
546 	static char results[720];
547 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
548 	netif_rx_back_ring_t const* rxb =
549 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
550 	netif_tx_back_ring_t const* txb =
551 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
552 
553 	/* empty the result strings */
554 	results[0] = 0;
555 
556 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
557 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
558 
559 	snprintf(results, 720,
560 	    "\n\t%35s %18s\n"	/* TX, RX */
561 	    "\t%16s %18d %18d\n"	/* req_cons */
562 	    "\t%16s %18d %18d\n"	/* nr_ents */
563 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
564 	    "\t%16s %18p %18p\n"	/* sring */
565 	    "\t%16s %18d %18d\n"	/* req_prod */
566 	    "\t%16s %18d %18d\n"	/* req_event */
567 	    "\t%16s %18d %18d\n"	/* rsp_prod */
568 	    "\t%16s %18d %18d\n",	/* rsp_event */
569 	    "TX", "RX",
570 	    "req_cons", txb->req_cons, rxb->req_cons,
571 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
572 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
573 	    "sring", txb->sring, rxb->sring,
574 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
575 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
576 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
577 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
578 
579 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
580 }
581 
582 static void __unused
583 xnb_dump_mbuf(const struct mbuf *m)
584 {
585 	int len;
586 	uint8_t *d;
587 	if (m == NULL)
588 		return;
589 
590 	printf("xnb_dump_mbuf:\n");
591 	if (m->m_flags & M_PKTHDR) {
592 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
593 		       "tso_segsz=%5hd\n",
594 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
595 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
596 		printf("    rcvif=%16p,  len=%19d\n",
597 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
598 	}
599 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
600 	       m->m_next, m->m_nextpkt, m->m_data);
601 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
602 	       m->m_len, m->m_flags, m->m_type);
603 
604 	len = m->m_len;
605 	d = mtod(m, uint8_t*);
606 	while (len > 0) {
607 		int i;
608 		printf("                ");
609 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
610 			printf("%02hhx ", *(d++));
611 		}
612 		printf("\n");
613 	}
614 }
615 #endif /* XNB_DEBUG */
616 
617 /*------------------------ Inter-Domain Communication ------------------------*/
618 /**
619  * Free dynamically allocated KVA or pseudo-physical address allocations.
620  *
621  * \param xnb  Per-instance xnb configuration structure.
622  */
623 static void
624 xnb_free_communication_mem(struct xnb_softc *xnb)
625 {
626 	if (xnb->kva != 0) {
627 #ifndef XENHVM
628 		kva_free(xnb->kva, xnb->kva_size);
629 #else
630 		if (xnb->pseudo_phys_res != NULL) {
631 			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
632 			    xnb->pseudo_phys_res_id,
633 			    xnb->pseudo_phys_res);
634 			xnb->pseudo_phys_res = NULL;
635 		}
636 #endif /* XENHVM */
637 	}
638 	xnb->kva = 0;
639 	xnb->gnt_base_addr = 0;
640 }
641 
642 /**
643  * Cleanup all inter-domain communication mechanisms.
644  *
645  * \param xnb  Per-instance xnb configuration structure.
646  */
647 static int
648 xnb_disconnect(struct xnb_softc *xnb)
649 {
650 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
651 	int error;
652 	int i;
653 
654 	if (xnb->xen_intr_handle != NULL)
655 		xen_intr_unbind(&xnb->xen_intr_handle);
656 
657 	/*
658 	 * We may still have another thread currently processing requests.  We
659 	 * must acquire the rx and tx locks to make sure those threads are done,
660 	 * but we can release those locks as soon as we acquire them, because no
661 	 * more interrupts will be arriving.
662 	 */
663 	mtx_lock(&xnb->tx_lock);
664 	mtx_unlock(&xnb->tx_lock);
665 	mtx_lock(&xnb->rx_lock);
666 	mtx_unlock(&xnb->rx_lock);
667 
668 	/* Free malloc'd softc member variables */
669 	if (xnb->bridge != NULL) {
670 		free(xnb->bridge, M_XENSTORE);
671 		xnb->bridge = NULL;
672 	}
673 
674 	/* All request processing has stopped, so unmap the rings */
675 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
676 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
677 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
678 		gnts[i].handle = xnb->ring_configs[i].handle;
679 	}
680 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
681 					  XNB_NUM_RING_TYPES);
682 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
683 
684 	xnb_free_communication_mem(xnb);
685 	/*
686 	 * Zero the ring config structs because the pointers, handles, and
687 	 * grant refs contained therein are no longer valid.
688 	 */
689 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
690 	    sizeof(struct xnb_ring_config));
691 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
692 	    sizeof(struct xnb_ring_config));
693 
694 	xnb->flags &= ~XNBF_RING_CONNECTED;
695 	return (0);
696 }
697 
698 /**
699  * Map a single shared memory ring into domain local address space and
700  * initialize its control structure
701  *
702  * \param xnb	Per-instance xnb configuration structure
703  * \param ring_type	Array index of this ring in the xnb's array of rings
704  * \return 	An errno
705  */
706 static int
707 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
708 {
709 	struct gnttab_map_grant_ref gnt;
710 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
711 	int error;
712 
713 	/* TX ring type = 0, RX =1 */
714 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
715 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
716 
717 	gnt.host_addr = ring->gnt_addr;
718 	gnt.flags     = GNTMAP_host_map;
719 	gnt.ref       = ring->ring_ref;
720 	gnt.dom       = xnb->otherend_id;
721 
722 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
723 	if (error != 0)
724 		panic("netback: Ring page grant table op failed (%d)", error);
725 
726 	if (gnt.status != 0) {
727 		ring->va = 0;
728 		error = EACCES;
729 		xenbus_dev_fatal(xnb->dev, error,
730 				 "Ring shared page mapping failed. "
731 				 "Status %d.", gnt.status);
732 	} else {
733 		ring->handle = gnt.handle;
734 		ring->bus_addr = gnt.dev_bus_addr;
735 
736 		if (ring_type == XNB_RING_TYPE_TX) {
737 			BACK_RING_INIT(&ring->back_ring.tx_ring,
738 			    (netif_tx_sring_t*)ring->va,
739 			    ring->ring_pages * PAGE_SIZE);
740 		} else if (ring_type == XNB_RING_TYPE_RX) {
741 			BACK_RING_INIT(&ring->back_ring.rx_ring,
742 			    (netif_rx_sring_t*)ring->va,
743 			    ring->ring_pages * PAGE_SIZE);
744 		} else {
745 			xenbus_dev_fatal(xnb->dev, error,
746 				 "Unknown ring type %d", ring_type);
747 		}
748 	}
749 
750 	return error;
751 }
752 
753 /**
754  * Setup the shared memory rings and bind an interrupt to the event channel
755  * used to notify us of ring changes.
756  *
757  * \param xnb  Per-instance xnb configuration structure.
758  */
759 static int
760 xnb_connect_comms(struct xnb_softc *xnb)
761 {
762 	int	error;
763 	xnb_ring_type_t i;
764 
765 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
766 		return (0);
767 
768 	/*
769 	 * Kva for our rings are at the tail of the region of kva allocated
770 	 * by xnb_alloc_communication_mem().
771 	 */
772 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
773 		error = xnb_connect_ring(xnb, i);
774 		if (error != 0)
775 	  		return error;
776 	}
777 
778 	xnb->flags |= XNBF_RING_CONNECTED;
779 
780 	error = xen_intr_bind_remote_port(xnb->dev,
781 					  xnb->otherend_id,
782 					  xnb->evtchn,
783 					  /*filter*/NULL,
784 					  xnb_intr, /*arg*/xnb,
785 					  INTR_TYPE_BIO | INTR_MPSAFE,
786 					  &xnb->xen_intr_handle);
787 	if (error != 0) {
788 		(void)xnb_disconnect(xnb);
789 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
790 		return (error);
791 	}
792 
793 	DPRINTF("rings connected!\n");
794 
795 	return (0);
796 }
797 
798 /**
799  * Size KVA and pseudo-physical address allocations based on negotiated
800  * values for the size and number of I/O requests, and the size of our
801  * communication ring.
802  *
803  * \param xnb  Per-instance xnb configuration structure.
804  *
805  * These address spaces are used to dynamically map pages in the
806  * front-end's domain into our own.
807  */
808 static int
809 xnb_alloc_communication_mem(struct xnb_softc *xnb)
810 {
811 	xnb_ring_type_t i;
812 
813 	xnb->kva_size = 0;
814 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
815 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
816 	}
817 #ifndef XENHVM
818 	xnb->kva = kva_alloc(xnb->kva_size);
819 	if (xnb->kva == 0)
820 		return (ENOMEM);
821 	xnb->gnt_base_addr = xnb->kva;
822 #else /* defined XENHVM */
823 	/*
824 	 * Reserve a range of pseudo physical memory that we can map
825 	 * into kva.  These pages will only be backed by machine
826 	 * pages ("real memory") during the lifetime of front-end requests
827 	 * via grant table operations.  We will map the netif tx and rx rings
828 	 * into this space.
829 	 */
830 	xnb->pseudo_phys_res_id = 0;
831 	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
832 						  &xnb->pseudo_phys_res_id,
833 						  0, ~0, xnb->kva_size,
834 						  RF_ACTIVE);
835 	if (xnb->pseudo_phys_res == NULL) {
836 		xnb->kva = 0;
837 		return (ENOMEM);
838 	}
839 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
840 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
841 #endif /* !defined XENHVM */
842 	return (0);
843 }
844 
845 /**
846  * Collect information from the XenStore related to our device and its frontend
847  *
848  * \param xnb  Per-instance xnb configuration structure.
849  */
850 static int
851 xnb_collect_xenstore_info(struct xnb_softc *xnb)
852 {
853 	/**
854 	 * \todo Linux collects the following info.  We should collect most
855 	 * of this, too:
856 	 * "feature-rx-notify"
857 	 */
858 	const char *otherend_path;
859 	const char *our_path;
860 	int err;
861 	unsigned int rx_copy, bridge_len;
862 	uint8_t no_csum_offload;
863 
864 	otherend_path = xenbus_get_otherend_path(xnb->dev);
865 	our_path = xenbus_get_node(xnb->dev);
866 
867 	/* Collect the critical communication parameters */
868 	err = xs_gather(XST_NIL, otherend_path,
869 	    "tx-ring-ref", "%l" PRIu32,
870 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
871 	    "rx-ring-ref", "%l" PRIu32,
872 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
873 	    "event-channel", "%" PRIu32, &xnb->evtchn,
874 	    NULL);
875 	if (err != 0) {
876 		xenbus_dev_fatal(xnb->dev, err,
877 				 "Unable to retrieve ring information from "
878 				 "frontend %s.  Unable to connect.",
879 				 otherend_path);
880 		return (err);
881 	}
882 
883 	/* Collect the handle from xenstore */
884 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
885 	if (err != 0) {
886 		xenbus_dev_fatal(xnb->dev, err,
887 		    "Error reading handle from frontend %s.  "
888 		    "Unable to connect.", otherend_path);
889 	}
890 
891 	/*
892 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
893 	 * throw it away
894 	 */
895 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
896 		      (void**)&xnb->bridge);
897 	if (err != 0)
898 		xnb->bridge = NULL;
899 
900 	/*
901 	 * Does the frontend request that we use rx copy?  If not, return an
902 	 * error because this driver only supports rx copy.
903 	 */
904 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
905 		       "%" PRIu32, &rx_copy);
906 	if (err == ENOENT) {
907 		err = 0;
908 	 	rx_copy = 0;
909 	}
910 	if (err < 0) {
911 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
912 				 otherend_path);
913 		return err;
914 	}
915 	/**
916 	 * \todo: figure out the exact meaning of this feature, and when
917 	 * the frontend will set it to true.  It should be set to true
918 	 * at some point
919 	 */
920 /*        if (!rx_copy)*/
921 /*          return EOPNOTSUPP;*/
922 
923 	/** \todo Collect the rx notify feature */
924 
925 	/*  Collect the feature-sg. */
926 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
927 		     "%hhu", &xnb->can_sg) < 0)
928 		xnb->can_sg = 0;
929 
930 	/* Collect remaining frontend features */
931 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
932 		     "%hhu", &xnb->gso) < 0)
933 		xnb->gso = 0;
934 
935 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
936 		     "%hhu", &xnb->gso_prefix) < 0)
937 		xnb->gso_prefix = 0;
938 
939 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
940 		     "%hhu", &no_csum_offload) < 0)
941 		no_csum_offload = 0;
942 	xnb->ip_csum = (no_csum_offload == 0);
943 
944 	return (0);
945 }
946 
947 /**
948  * Supply information about the physical device to the frontend
949  * via XenBus.
950  *
951  * \param xnb  Per-instance xnb configuration structure.
952  */
953 static int
954 xnb_publish_backend_info(struct xnb_softc *xnb)
955 {
956 	struct xs_transaction xst;
957 	const char *our_path;
958 	int error;
959 
960 	our_path = xenbus_get_node(xnb->dev);
961 
962 	do {
963 		error = xs_transaction_start(&xst);
964 		if (error != 0) {
965 			xenbus_dev_fatal(xnb->dev, error,
966 					 "Error publishing backend info "
967 					 "(start transaction)");
968 			break;
969 		}
970 
971 		error = xs_printf(xst, our_path, "feature-sg",
972 				  "%d", XNB_SG);
973 		if (error != 0)
974 			break;
975 
976 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
977 				  "%d", XNB_GSO_TCPV4);
978 		if (error != 0)
979 			break;
980 
981 		error = xs_printf(xst, our_path, "feature-rx-copy",
982 				  "%d", XNB_RX_COPY);
983 		if (error != 0)
984 			break;
985 
986 		error = xs_printf(xst, our_path, "feature-rx-flip",
987 				  "%d", XNB_RX_FLIP);
988 		if (error != 0)
989 			break;
990 
991 		error = xs_transaction_end(xst, 0);
992 		if (error != 0 && error != EAGAIN) {
993 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
994 			break;
995 		}
996 
997 	} while (error == EAGAIN);
998 
999 	return (error);
1000 }
1001 
1002 /**
1003  * Connect to our netfront peer now that it has completed publishing
1004  * its configuration into the XenStore.
1005  *
1006  * \param xnb  Per-instance xnb configuration structure.
1007  */
1008 static void
1009 xnb_connect(struct xnb_softc *xnb)
1010 {
1011 	int	error;
1012 
1013 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1014 		return;
1015 
1016 	if (xnb_collect_xenstore_info(xnb) != 0)
1017 		return;
1018 
1019 	xnb->flags &= ~XNBF_SHUTDOWN;
1020 
1021 	/* Read front end configuration. */
1022 
1023 	/* Allocate resources whose size depends on front-end configuration. */
1024 	error = xnb_alloc_communication_mem(xnb);
1025 	if (error != 0) {
1026 		xenbus_dev_fatal(xnb->dev, error,
1027 				 "Unable to allocate communication memory");
1028 		return;
1029 	}
1030 
1031 	/*
1032 	 * Connect communication channel.
1033 	 */
1034 	error = xnb_connect_comms(xnb);
1035 	if (error != 0) {
1036 		/* Specific errors are reported by xnb_connect_comms(). */
1037 		return;
1038 	}
1039 	xnb->carrier = 1;
1040 
1041 	/* Ready for I/O. */
1042 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1043 }
1044 
1045 /*-------------------------- Device Teardown Support -------------------------*/
1046 /**
1047  * Perform device shutdown functions.
1048  *
1049  * \param xnb  Per-instance xnb configuration structure.
1050  *
1051  * Mark this instance as shutting down, wait for any active requests
1052  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1053  * a thread invoking our detach method) that detach can now proceed.
1054  */
1055 static int
1056 xnb_shutdown(struct xnb_softc *xnb)
1057 {
1058 	/*
1059 	 * Due to the need to drop our mutex during some
1060 	 * xenbus operations, it is possible for two threads
1061 	 * to attempt to close out shutdown processing at
1062 	 * the same time.  Tell the caller that hits this
1063 	 * race to try back later.
1064 	 */
1065 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1066 		return (EAGAIN);
1067 
1068 	xnb->flags |= XNBF_SHUTDOWN;
1069 
1070 	xnb->flags |= XNBF_IN_SHUTDOWN;
1071 
1072 	mtx_unlock(&xnb->sc_lock);
1073 	/* Free the network interface */
1074 	xnb->carrier = 0;
1075 	if (xnb->xnb_ifp != NULL) {
1076 		ether_ifdetach(xnb->xnb_ifp);
1077 		if_free(xnb->xnb_ifp);
1078 		xnb->xnb_ifp = NULL;
1079 	}
1080 	mtx_lock(&xnb->sc_lock);
1081 
1082 	xnb_disconnect(xnb);
1083 
1084 	mtx_unlock(&xnb->sc_lock);
1085 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1086 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1087 	mtx_lock(&xnb->sc_lock);
1088 
1089 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1090 
1091 
1092 	/* Indicate to xnb_detach() that is it safe to proceed. */
1093 	wakeup(xnb);
1094 
1095 	return (0);
1096 }
1097 
1098 /**
1099  * Report an attach time error to the console and Xen, and cleanup
1100  * this instance by forcing immediate detach processing.
1101  *
1102  * \param xnb  Per-instance xnb configuration structure.
1103  * \param err  Errno describing the error.
1104  * \param fmt  Printf style format and arguments
1105  */
1106 static void
1107 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1108 {
1109 	va_list ap;
1110 	va_list ap_hotplug;
1111 
1112 	va_start(ap, fmt);
1113 	va_copy(ap_hotplug, ap);
1114 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1115 		  "hotplug-error", fmt, ap_hotplug);
1116 	va_end(ap_hotplug);
1117 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1118 		  "hotplug-status", "error");
1119 
1120 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1121 	va_end(ap);
1122 
1123 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1124 		  "online", "0");
1125 	xnb_detach(xnb->dev);
1126 }
1127 
1128 /*---------------------------- NewBus Entrypoints ----------------------------*/
1129 /**
1130  * Inspect a XenBus device and claim it if is of the appropriate type.
1131  *
1132  * \param dev  NewBus device object representing a candidate XenBus device.
1133  *
1134  * \return  0 for success, errno codes for failure.
1135  */
1136 static int
1137 xnb_probe(device_t dev)
1138 {
1139 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1140 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1141 		    devclass_get_name(device_get_devclass(dev)));
1142 		device_set_desc(dev, "Backend Virtual Network Device");
1143 		device_quiet(dev);
1144 		return (0);
1145 	}
1146 	return (ENXIO);
1147 }
1148 
1149 /**
1150  * Setup sysctl variables to control various Network Back parameters.
1151  *
1152  * \param xnb  Xen Net Back softc.
1153  *
1154  */
1155 static void
1156 xnb_setup_sysctl(struct xnb_softc *xnb)
1157 {
1158 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1159 	struct sysctl_oid      *sysctl_tree = NULL;
1160 
1161 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1162 	if (sysctl_ctx == NULL)
1163 		return;
1164 
1165 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1166 	if (sysctl_tree == NULL)
1167 		return;
1168 
1169 #ifdef XNB_DEBUG
1170 	SYSCTL_ADD_PROC(sysctl_ctx,
1171 			SYSCTL_CHILDREN(sysctl_tree),
1172 			OID_AUTO,
1173 			"unit_test_results",
1174 			CTLTYPE_STRING | CTLFLAG_RD,
1175 			xnb,
1176 			0,
1177 			xnb_unit_test_main,
1178 			"A",
1179 			"Results of builtin unit tests");
1180 
1181 	SYSCTL_ADD_PROC(sysctl_ctx,
1182 			SYSCTL_CHILDREN(sysctl_tree),
1183 			OID_AUTO,
1184 			"dump_rings",
1185 			CTLTYPE_STRING | CTLFLAG_RD,
1186 			xnb,
1187 			0,
1188 			xnb_dump_rings,
1189 			"A",
1190 			"Xennet Back Rings");
1191 #endif /* XNB_DEBUG */
1192 }
1193 
1194 /**
1195  * Create a network device.
1196  * @param handle device handle
1197  */
1198 int
1199 create_netdev(device_t dev)
1200 {
1201 	struct ifnet *ifp;
1202 	struct xnb_softc *xnb;
1203 	int err = 0;
1204 
1205 	xnb = device_get_softc(dev);
1206 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1207 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1208 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1209 
1210 	xnb->dev = dev;
1211 
1212 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1213 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1214 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1215 
1216 	/*
1217 	 * Set the MAC address to a dummy value (00:00:00:00:00),
1218 	 * if the MAC address of the host-facing interface is set
1219 	 * to the same as the guest-facing one (the value found in
1220 	 * xenstore), the bridge would stop delivering packets to
1221 	 * us because it would see that the destination address of
1222 	 * the packet is the same as the interface, and so the bridge
1223 	 * would expect the packet has already been delivered locally
1224 	 * (and just drop it).
1225 	 */
1226 	bzero(&xnb->mac[0], sizeof(xnb->mac));
1227 
1228 	if (err == 0) {
1229 		/* Set up ifnet structure */
1230 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1231 		ifp->if_softc = xnb;
1232 		if_initname(ifp, "xnb",  device_get_unit(dev));
1233 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1234 		ifp->if_ioctl = xnb_ioctl;
1235 		ifp->if_output = ether_output;
1236 		ifp->if_start = xnb_start;
1237 #ifdef notyet
1238 		ifp->if_watchdog = xnb_watchdog;
1239 #endif
1240 		ifp->if_init = xnb_ifinit;
1241 		ifp->if_mtu = ETHERMTU;
1242 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1243 
1244 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1245 		ifp->if_capabilities = IFCAP_HWCSUM;
1246 		ifp->if_capenable = IFCAP_HWCSUM;
1247 
1248 		ether_ifattach(ifp, xnb->mac);
1249 		xnb->carrier = 0;
1250 	}
1251 
1252 	return err;
1253 }
1254 
1255 /**
1256  * Attach to a XenBus device that has been claimed by our probe routine.
1257  *
1258  * \param dev  NewBus device object representing this Xen Net Back instance.
1259  *
1260  * \return  0 for success, errno codes for failure.
1261  */
1262 static int
1263 xnb_attach(device_t dev)
1264 {
1265 	struct xnb_softc *xnb;
1266 	int	error;
1267 	xnb_ring_type_t	i;
1268 
1269 	error = create_netdev(dev);
1270 	if (error != 0) {
1271 		xenbus_dev_fatal(dev, error, "creating netdev");
1272 		return (error);
1273 	}
1274 
1275 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1276 
1277 	/*
1278 	 * Basic initialization.
1279 	 * After this block it is safe to call xnb_detach()
1280 	 * to clean up any allocated data for this instance.
1281 	 */
1282 	xnb = device_get_softc(dev);
1283 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1284 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1285 		xnb->ring_configs[i].ring_pages = 1;
1286 	}
1287 
1288 	/*
1289 	 * Setup sysctl variables.
1290 	 */
1291 	xnb_setup_sysctl(xnb);
1292 
1293 	/* Update hot-plug status to satisfy xend. */
1294 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1295 			  "hotplug-status", "connected");
1296 	if (error != 0) {
1297 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1298 				  xenbus_get_node(xnb->dev));
1299 		return (error);
1300 	}
1301 
1302 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1303 		/*
1304 		 * If we can't publish our data, we cannot participate
1305 		 * in this connection, and waiting for a front-end state
1306 		 * change will not help the situation.
1307 		 */
1308 		xnb_attach_failed(xnb, error,
1309 		    "Publishing backend status for %s",
1310 				  xenbus_get_node(xnb->dev));
1311 		return error;
1312 	}
1313 
1314 	/* Tell the front end that we are ready to connect. */
1315 	xenbus_set_state(dev, XenbusStateInitWait);
1316 
1317 	return (0);
1318 }
1319 
1320 /**
1321  * Detach from a net back device instance.
1322  *
1323  * \param dev  NewBus device object representing this Xen Net Back instance.
1324  *
1325  * \return  0 for success, errno codes for failure.
1326  *
1327  * \note A net back device may be detached at any time in its life-cycle,
1328  *       including part way through the attach process.  For this reason,
1329  *       initialization order and the intialization state checks in this
1330  *       routine must be carefully coupled so that attach time failures
1331  *       are gracefully handled.
1332  */
1333 static int
1334 xnb_detach(device_t dev)
1335 {
1336 	struct xnb_softc *xnb;
1337 
1338 	DPRINTF("\n");
1339 
1340 	xnb = device_get_softc(dev);
1341 	mtx_lock(&xnb->sc_lock);
1342 	while (xnb_shutdown(xnb) == EAGAIN) {
1343 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1344 		       "xnb_shutdown", 0);
1345 	}
1346 	mtx_unlock(&xnb->sc_lock);
1347 	DPRINTF("\n");
1348 
1349 	mtx_destroy(&xnb->tx_lock);
1350 	mtx_destroy(&xnb->rx_lock);
1351 	mtx_destroy(&xnb->sc_lock);
1352 	return (0);
1353 }
1354 
1355 /**
1356  * Prepare this net back device for suspension of this VM.
1357  *
1358  * \param dev  NewBus device object representing this Xen net Back instance.
1359  *
1360  * \return  0 for success, errno codes for failure.
1361  */
1362 static int
1363 xnb_suspend(device_t dev)
1364 {
1365 	return (0);
1366 }
1367 
1368 /**
1369  * Perform any processing required to recover from a suspended state.
1370  *
1371  * \param dev  NewBus device object representing this Xen Net Back instance.
1372  *
1373  * \return  0 for success, errno codes for failure.
1374  */
1375 static int
1376 xnb_resume(device_t dev)
1377 {
1378 	return (0);
1379 }
1380 
1381 /**
1382  * Handle state changes expressed via the XenStore by our front-end peer.
1383  *
1384  * \param dev             NewBus device object representing this Xen
1385  *                        Net Back instance.
1386  * \param frontend_state  The new state of the front-end.
1387  *
1388  * \return  0 for success, errno codes for failure.
1389  */
1390 static void
1391 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1392 {
1393 	struct xnb_softc *xnb;
1394 
1395 	xnb = device_get_softc(dev);
1396 
1397 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1398 	        xenbus_strstate(frontend_state),
1399 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1400 
1401 	switch (frontend_state) {
1402 	case XenbusStateInitialising:
1403 		break;
1404 	case XenbusStateInitialised:
1405 	case XenbusStateConnected:
1406 		xnb_connect(xnb);
1407 		break;
1408 	case XenbusStateClosing:
1409 	case XenbusStateClosed:
1410 		mtx_lock(&xnb->sc_lock);
1411 		xnb_shutdown(xnb);
1412 		mtx_unlock(&xnb->sc_lock);
1413 		if (frontend_state == XenbusStateClosed)
1414 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1415 		break;
1416 	default:
1417 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1418 				 frontend_state);
1419 		break;
1420 	}
1421 }
1422 
1423 
1424 /*---------------------------- Request Processing ----------------------------*/
1425 /**
1426  * Interrupt handler bound to the shared ring's event channel.
1427  * Entry point for the xennet transmit path in netback
1428  * Transfers packets from the Xen ring to the host's generic networking stack
1429  *
1430  * \param arg  Callback argument registerd during event channel
1431  *             binding - the xnb_softc for this instance.
1432  */
1433 static void
1434 xnb_intr(void *arg)
1435 {
1436 	struct xnb_softc *xnb;
1437 	struct ifnet *ifp;
1438 	netif_tx_back_ring_t *txb;
1439 	RING_IDX req_prod_local;
1440 
1441 	xnb = (struct xnb_softc *)arg;
1442 	ifp = xnb->xnb_ifp;
1443 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1444 
1445 	mtx_lock(&xnb->tx_lock);
1446 	do {
1447 		int notify;
1448 		req_prod_local = txb->sring->req_prod;
1449 		xen_rmb();
1450 
1451 		for (;;) {
1452 			struct mbuf *mbufc;
1453 			int err;
1454 
1455 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1456 			    	       xnb->tx_gnttab);
1457 			if (err || (mbufc == NULL))
1458 				break;
1459 
1460 			/* Send the packet to the generic network stack */
1461 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1462 		}
1463 
1464 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1465 		if (notify != 0)
1466 			xen_intr_signal(xnb->xen_intr_handle);
1467 
1468 		txb->sring->req_event = txb->req_cons + 1;
1469 		xen_mb();
1470 	} while (txb->sring->req_prod != req_prod_local) ;
1471 	mtx_unlock(&xnb->tx_lock);
1472 
1473 	xnb_start(ifp);
1474 }
1475 
1476 
1477 /**
1478  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1479  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1480  * \param[out]	pkt	The returned packet.  If there is an error building
1481  * 			the packet, pkt.list_len will be set to 0.
1482  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1483  * \param[in]	start	The ring index of the first potential request
1484  * \return		The number of requests consumed to build this packet
1485  */
1486 static int
1487 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1488 	     RING_IDX start)
1489 {
1490 	/*
1491 	 * Outline:
1492 	 * 1) Initialize pkt
1493 	 * 2) Read the first request of the packet
1494 	 * 3) Read the extras
1495 	 * 4) Set cdr
1496 	 * 5) Loop on the remainder of the packet
1497 	 * 6) Finalize pkt (stuff like car_size and list_len)
1498 	 */
1499 	int idx = start;
1500 	int discard = 0;	/* whether to discard the packet */
1501 	int more_data = 0;	/* there are more request past the last one */
1502 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1503 
1504 	xnb_pkt_initialize(pkt);
1505 
1506 	/* Read the first request */
1507 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1508 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1509 		pkt->size = tx->size;
1510 		pkt->flags = tx->flags & ~NETTXF_more_data;
1511 		more_data = tx->flags & NETTXF_more_data;
1512 		pkt->list_len++;
1513 		pkt->car = idx;
1514 		idx++;
1515 	}
1516 
1517 	/* Read the extra info */
1518 	if ((pkt->flags & NETTXF_extra_info) &&
1519 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1520 		netif_extra_info_t *ext =
1521 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1522 		pkt->extra.type = ext->type;
1523 		switch (pkt->extra.type) {
1524 			case XEN_NETIF_EXTRA_TYPE_GSO:
1525 				pkt->extra.u.gso = ext->u.gso;
1526 				break;
1527 			default:
1528 				/*
1529 				 * The reference Linux netfront driver will
1530 				 * never set any other extra.type.  So we don't
1531 				 * know what to do with it.  Let's print an
1532 				 * error, then consume and discard the packet
1533 				 */
1534 				printf("xnb(%s:%d): Unknown extra info type %d."
1535 				       "  Discarding packet\n",
1536 				       __func__, __LINE__, pkt->extra.type);
1537 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1538 				    start));
1539 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1540 				    idx));
1541 				discard = 1;
1542 				break;
1543 		}
1544 
1545 		pkt->extra.flags = ext->flags;
1546 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1547 			/*
1548 			 * The reference linux netfront driver never sets this
1549 			 * flag (nor does any other known netfront).  So we
1550 			 * will discard the packet.
1551 			 */
1552 			printf("xnb(%s:%d): Request sets "
1553 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1554 			    "that\n", __func__, __LINE__);
1555 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1556 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1557 			discard = 1;
1558 		}
1559 
1560 		idx++;
1561 	}
1562 
1563 	/* Set cdr.  If there is not more data, cdr is invalid */
1564 	pkt->cdr = idx;
1565 
1566 	/* Loop on remainder of packet */
1567 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1568 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1569 		pkt->list_len++;
1570 		cdr_size += tx->size;
1571 		if (tx->flags & ~NETTXF_more_data) {
1572 			/* There should be no other flags set at this point */
1573 			printf("xnb(%s:%d): Request sets unknown flags %d "
1574 			    "after the 1st request in the packet.\n",
1575 			    __func__, __LINE__, tx->flags);
1576 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1577 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1578 		}
1579 
1580 		more_data = tx->flags & NETTXF_more_data;
1581 		idx++;
1582 	}
1583 
1584 	/* Finalize packet */
1585 	if (more_data != 0) {
1586 		/* The ring ran out of requests before finishing the packet */
1587 		xnb_pkt_invalidate(pkt);
1588 		idx = start;	/* tell caller that we consumed no requests */
1589 	} else {
1590 		/* Calculate car_size */
1591 		pkt->car_size = pkt->size - cdr_size;
1592 	}
1593 	if (discard != 0) {
1594 		xnb_pkt_invalidate(pkt);
1595 	}
1596 
1597 	return idx - start;
1598 }
1599 
1600 
1601 /**
1602  * Respond to all the requests that constituted pkt.  Builds the responses and
1603  * writes them to the ring, but doesn't push them to the shared ring.
1604  * \param[in] pkt	the packet that needs a response
1605  * \param[in] error	true if there was an error handling the packet, such
1606  * 			as in the hypervisor copy op or mbuf allocation
1607  * \param[out] ring	Responses go here
1608  */
1609 static void
1610 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1611 	      int error)
1612 {
1613 	/*
1614 	 * Outline:
1615 	 * 1) Respond to the first request
1616 	 * 2) Respond to the extra info reques
1617 	 * Loop through every remaining request in the packet, generating
1618 	 * responses that copy those requests' ids and sets the status
1619 	 * appropriately.
1620 	 */
1621 	netif_tx_request_t *tx;
1622 	netif_tx_response_t *rsp;
1623 	int i;
1624 	uint16_t status;
1625 
1626 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1627 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1628 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1629 	    ("Cannot respond to ring requests out of order"));
1630 
1631 	if (pkt->list_len >= 1) {
1632 		uint16_t id;
1633 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1634 		id = tx->id;
1635 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1636 		rsp->id = id;
1637 		rsp->status = status;
1638 		ring->rsp_prod_pvt++;
1639 
1640 		if (pkt->flags & NETRXF_extra_info) {
1641 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1642 			rsp->status = NETIF_RSP_NULL;
1643 			ring->rsp_prod_pvt++;
1644 		}
1645 	}
1646 
1647 	for (i=0; i < pkt->list_len - 1; i++) {
1648 		uint16_t id;
1649 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1650 		id = tx->id;
1651 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1652 		rsp->id = id;
1653 		rsp->status = status;
1654 		ring->rsp_prod_pvt++;
1655 	}
1656 }
1657 
1658 /**
1659  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1660  * in the mbuf chain, but does not copy the data.  The returned chain must be
1661  * free()'d when no longer needed
1662  * \param[in]	pkt	A packet to model the mbuf chain after
1663  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1664  * 		NULL on failure
1665  */
1666 static struct mbuf*
1667 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1668 {
1669 	/**
1670 	 * \todo consider using a memory pool for mbufs instead of
1671 	 * reallocating them for every packet
1672 	 */
1673 	/** \todo handle extra data */
1674 	struct mbuf *m;
1675 
1676 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1677 
1678 	if (m != NULL) {
1679 		m->m_pkthdr.rcvif = ifp;
1680 		if (pkt->flags & NETTXF_data_validated) {
1681 			/*
1682 			 * We lie to the host OS and always tell it that the
1683 			 * checksums are ok, because the packet is unlikely to
1684 			 * get corrupted going across domains.
1685 			 */
1686 			m->m_pkthdr.csum_flags = (
1687 				CSUM_IP_CHECKED |
1688 				CSUM_IP_VALID   |
1689 				CSUM_DATA_VALID |
1690 				CSUM_PSEUDO_HDR
1691 				);
1692 			m->m_pkthdr.csum_data = 0xffff;
1693 		}
1694 	}
1695 	return m;
1696 }
1697 
1698 /**
1699  * Build a gnttab_copy table that can be used to copy data from a pkt
1700  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1701  * the packet side.
1702  * \param[in]	pkt	pkt's associated requests form the src for
1703  * 			the copy operation
1704  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1705  * \param[out]  gnttab	Storage for the returned grant table
1706  * \param[in]	txb	Pointer to the backend ring structure
1707  * \param[in]	otherend_id	The domain ID of the other end of the copy
1708  * \return 		The number of gnttab entries filled
1709  */
1710 static int
1711 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1712 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1713 		 domid_t otherend_id)
1714 {
1715 
1716 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1717 	int gnt_idx = 0;		/* index into grant table */
1718 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1719 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1720 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1721 	/* size in bytes that still needs to be represented in the table */
1722 	uint16_t size_remaining = pkt->size;
1723 
1724 	while (size_remaining > 0) {
1725 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1726 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1727 		const size_t req_size =
1728 			r_idx == pkt->car ? pkt->car_size : txq->size;
1729 		const size_t pkt_space = req_size - r_ofs;
1730 		/*
1731 		 * space is the largest amount of data that can be copied in the
1732 		 * grant table's next entry
1733 		 */
1734 		const size_t space = MIN(pkt_space, mbuf_space);
1735 
1736 		/* TODO: handle this error condition without panicking */
1737 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1738 
1739 		gnttab[gnt_idx].source.u.ref = txq->gref;
1740 		gnttab[gnt_idx].source.domid = otherend_id;
1741 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1742 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1743 		    mtod(mbuf, vm_offset_t) + m_ofs);
1744 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1745 		    mtod(mbuf, vm_offset_t) + m_ofs);
1746 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1747 		gnttab[gnt_idx].len = space;
1748 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1749 
1750 		gnt_idx++;
1751 		r_ofs += space;
1752 		m_ofs += space;
1753 		size_remaining -= space;
1754 		if (req_size - r_ofs <= 0) {
1755 			/* Must move to the next tx request */
1756 			r_ofs = 0;
1757 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1758 		}
1759 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1760 			/* Must move to the next mbuf */
1761 			m_ofs = 0;
1762 			mbuf = mbuf->m_next;
1763 		}
1764 	}
1765 
1766 	return gnt_idx;
1767 }
1768 
1769 /**
1770  * Check the status of the grant copy operations, and update mbufs various
1771  * non-data fields to reflect the data present.
1772  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1773  * 			the correct length, and data should already be present
1774  * \param[in] gnttab	A grant table for a just completed copy op
1775  * \param[in] n_entries The number of valid entries in the grant table
1776  */
1777 static void
1778 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1779     		 int n_entries)
1780 {
1781 	struct mbuf *mbuf = mbufc;
1782 	int i;
1783 	size_t total_size = 0;
1784 
1785 	for (i = 0; i < n_entries; i++) {
1786 		KASSERT(gnttab[i].status == GNTST_okay,
1787 		    ("Some gnttab_copy entry had error status %hd\n",
1788 		    gnttab[i].status));
1789 
1790 		mbuf->m_len += gnttab[i].len;
1791 		total_size += gnttab[i].len;
1792 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1793 			mbuf = mbuf->m_next;
1794 		}
1795 	}
1796 	mbufc->m_pkthdr.len = total_size;
1797 
1798 #if defined(INET) || defined(INET6)
1799 	xnb_add_mbuf_cksum(mbufc);
1800 #endif
1801 }
1802 
1803 /**
1804  * Dequeue at most one packet from the shared ring
1805  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1806  * 			its private indices will be updated.  But the indices
1807  * 			will not be pushed to the shared ring.
1808  * \param[in] ifnet	Interface to which the packet will be sent
1809  * \param[in] otherend	Domain ID of the other end of the ring
1810  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1811  * 			networking stack
1812  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1813  * 			this a function parameter so that we will take less
1814  * 			stack space.
1815  * \return		An error code
1816  */
1817 static int
1818 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1819 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1820 {
1821 	struct xnb_pkt pkt;
1822 	/* number of tx requests consumed to build the last packet */
1823 	int num_consumed;
1824 	int nr_ents;
1825 
1826 	*mbufc = NULL;
1827 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1828 	if (num_consumed == 0)
1829 		return 0;	/* Nothing to receive */
1830 
1831 	/* update statistics independent of errors */
1832 	ifnet->if_ipackets++;
1833 
1834 	/*
1835 	 * if we got here, then 1 or more requests was consumed, but the packet
1836 	 * is not necessarily valid.
1837 	 */
1838 	if (xnb_pkt_is_valid(&pkt) == 0) {
1839 		/* got a garbage packet, respond and drop it */
1840 		xnb_txpkt2rsp(&pkt, txb, 1);
1841 		txb->req_cons += num_consumed;
1842 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1843 				num_consumed);
1844 		ifnet->if_ierrors++;
1845 		return EINVAL;
1846 	}
1847 
1848 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1849 
1850 	if (*mbufc == NULL) {
1851 		/*
1852 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1853 		 * not consume the requests
1854 		 */
1855 		xnb_txpkt2rsp(&pkt, txb, 1);
1856 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1857 		    num_consumed);
1858 		ifnet->if_iqdrops++;
1859 		return ENOMEM;
1860 	}
1861 
1862 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1863 
1864 	if (nr_ents > 0) {
1865 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1866 		    gnttab, nr_ents);
1867 		KASSERT(hv_ret == 0,
1868 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1869 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1870 	}
1871 
1872 	xnb_txpkt2rsp(&pkt, txb, 0);
1873 	txb->req_cons += num_consumed;
1874 	return 0;
1875 }
1876 
1877 /**
1878  * Create an xnb_pkt based on the contents of an mbuf chain.
1879  * \param[in] mbufc	mbuf chain to transform into a packet
1880  * \param[out] pkt	Storage for the newly generated xnb_pkt
1881  * \param[in] start	The ring index of the first available slot in the rx
1882  * 			ring
1883  * \param[in] space	The number of free slots in the rx ring
1884  * \retval 0		Success
1885  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1886  * \retval EAGAIN	There was not enough space in the ring to queue the
1887  * 			packet
1888  */
1889 static int
1890 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1891 	      RING_IDX start, int space)
1892 {
1893 
1894 	int retval = 0;
1895 
1896 	if ((mbufc == NULL) ||
1897 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1898 	     (mbufc->m_pkthdr.len == 0)) {
1899 		xnb_pkt_invalidate(pkt);
1900 		retval = EINVAL;
1901 	} else {
1902 		int slots_required;
1903 
1904 		xnb_pkt_validate(pkt);
1905 		pkt->flags = 0;
1906 		pkt->size = mbufc->m_pkthdr.len;
1907 		pkt->car = start;
1908 		pkt->car_size = mbufc->m_len;
1909 
1910 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1911 			pkt->flags |= NETRXF_extra_info;
1912 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1913 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1914 			pkt->extra.u.gso.pad = 0;
1915 			pkt->extra.u.gso.features = 0;
1916 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1917 			pkt->extra.flags = 0;
1918 			pkt->cdr = start + 2;
1919 		} else {
1920 			pkt->cdr = start + 1;
1921 		}
1922 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1923 			pkt->flags |=
1924 			    (NETRXF_csum_blank | NETRXF_data_validated);
1925 		}
1926 
1927 		/*
1928 		 * Each ring response can have up to PAGE_SIZE of data.
1929 		 * Assume that we can defragment the mbuf chain efficiently
1930 		 * into responses so that each response but the last uses all
1931 		 * PAGE_SIZE bytes.
1932 		 */
1933 		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1934 
1935 		if (pkt->list_len > 1) {
1936 			pkt->flags |= NETRXF_more_data;
1937 		}
1938 
1939 		slots_required = pkt->list_len +
1940 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1941 		if (slots_required > space) {
1942 			xnb_pkt_invalidate(pkt);
1943 			retval = EAGAIN;
1944 		}
1945 	}
1946 
1947 	return retval;
1948 }
1949 
1950 /**
1951  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1952  * to the frontend's shared buffers.  Does not actually perform the copy.
1953  * Always uses gref's on the other end's side.
1954  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1955  * 			operatoin
1956  * \param[in]	mbufc	The source for the copy operation
1957  * \param[out]	gnttab	Storage for the returned grant table
1958  * \param[in]	rxb	Pointer to the backend ring structure
1959  * \param[in]	otherend_id	The domain ID of the other end of the copy
1960  * \return 		The number of gnttab entries filled
1961  */
1962 static int
1963 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1964 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1965 		 domid_t otherend_id)
1966 {
1967 
1968 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1969 	int gnt_idx = 0;		/* index into grant table */
1970 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1971 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1972 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1973 	/* size in bytes that still needs to be represented in the table */
1974 	uint16_t size_remaining;
1975 
1976 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1977 
1978 	while (size_remaining > 0) {
1979 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1980 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1981 		/* Xen shared pages have an implied size of PAGE_SIZE */
1982 		const size_t req_size = PAGE_SIZE;
1983 		const size_t pkt_space = req_size - r_ofs;
1984 		/*
1985 		 * space is the largest amount of data that can be copied in the
1986 		 * grant table's next entry
1987 		 */
1988 		const size_t space = MIN(pkt_space, mbuf_space);
1989 
1990 		/* TODO: handle this error condition without panicing */
1991 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1992 
1993 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1994 		gnttab[gnt_idx].dest.domid = otherend_id;
1995 		gnttab[gnt_idx].dest.offset = r_ofs;
1996 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1997 		    mtod(mbuf, vm_offset_t) + m_ofs);
1998 		gnttab[gnt_idx].source.offset = virt_to_offset(
1999 		    mtod(mbuf, vm_offset_t) + m_ofs);
2000 		gnttab[gnt_idx].source.domid = DOMID_SELF;
2001 		gnttab[gnt_idx].len = space;
2002 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
2003 
2004 		gnt_idx++;
2005 
2006 		r_ofs += space;
2007 		m_ofs += space;
2008 		size_remaining -= space;
2009 		if (req_size - r_ofs <= 0) {
2010 			/* Must move to the next rx request */
2011 			r_ofs = 0;
2012 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2013 		}
2014 		if (mbuf->m_len - m_ofs <= 0) {
2015 			/* Must move to the next mbuf */
2016 			m_ofs = 0;
2017 			mbuf = mbuf->m_next;
2018 		}
2019 	}
2020 
2021 	return gnt_idx;
2022 }
2023 
2024 /**
2025  * Generates responses for all the requests that constituted pkt.  Builds
2026  * responses and writes them to the ring, but doesn't push the shared ring
2027  * indices.
2028  * \param[in] pkt	the packet that needs a response
2029  * \param[in] gnttab	The grant copy table corresponding to this packet.
2030  * 			Used to determine how many rsp->netif_rx_response_t's to
2031  * 			generate.
2032  * \param[in] n_entries	Number of relevant entries in the grant table
2033  * \param[out] ring	Responses go here
2034  * \return		The number of RX requests that were consumed to generate
2035  * 			the responses
2036  */
2037 static int
2038 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2039     	      int n_entries, netif_rx_back_ring_t *ring)
2040 {
2041 	/*
2042 	 * This code makes the following assumptions:
2043 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2044 	 *	* The entries in gnttab are grouped by their grefs: any two
2045 	 *	   entries with the same gref must be adjacent
2046 	 */
2047 	int error = 0;
2048 	int gnt_idx, i;
2049 	int n_responses = 0;
2050 	grant_ref_t last_gref = GRANT_REF_INVALID;
2051 	RING_IDX r_idx;
2052 
2053 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2054 
2055 	/*
2056 	 * In the event of an error, we only need to send one response to the
2057 	 * netfront.  In that case, we musn't write any data to the responses
2058 	 * after the one we send.  So we must loop all the way through gnttab
2059 	 * looking for errors before we generate any responses
2060 	 *
2061 	 * Since we're looping through the grant table anyway, we'll count the
2062 	 * number of different gref's in it, which will tell us how many
2063 	 * responses to generate
2064 	 */
2065 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2066 		int16_t status = gnttab[gnt_idx].status;
2067 		if (status != GNTST_okay) {
2068 			DPRINTF(
2069 			    "Got error %d for hypervisor gnttab_copy status\n",
2070 			    status);
2071 			error = 1;
2072 			break;
2073 		}
2074 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2075 			n_responses++;
2076 			last_gref = gnttab[gnt_idx].dest.u.ref;
2077 		}
2078 	}
2079 
2080 	if (error != 0) {
2081 		uint16_t id;
2082 		netif_rx_response_t *rsp;
2083 
2084 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2085 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2086 		rsp->id = id;
2087 		rsp->status = NETIF_RSP_ERROR;
2088 		n_responses = 1;
2089 	} else {
2090 		gnt_idx = 0;
2091 		const int has_extra = pkt->flags & NETRXF_extra_info;
2092 		if (has_extra != 0)
2093 			n_responses++;
2094 
2095 		for (i = 0; i < n_responses; i++) {
2096 			netif_rx_request_t rxq;
2097 			netif_rx_response_t *rsp;
2098 
2099 			r_idx = ring->rsp_prod_pvt + i;
2100 			/*
2101 			 * We copy the structure of rxq instead of making a
2102 			 * pointer because it shares the same memory as rsp.
2103 			 */
2104 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2105 			rsp = RING_GET_RESPONSE(ring, r_idx);
2106 			if (has_extra && (i == 1)) {
2107 				netif_extra_info_t *ext =
2108 					(netif_extra_info_t*)rsp;
2109 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2110 				ext->flags = 0;
2111 				ext->u.gso.size = pkt->extra.u.gso.size;
2112 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2113 				ext->u.gso.pad = 0;
2114 				ext->u.gso.features = 0;
2115 			} else {
2116 				rsp->id = rxq.id;
2117 				rsp->status = GNTST_okay;
2118 				rsp->offset = 0;
2119 				rsp->flags = 0;
2120 				if (i < pkt->list_len - 1)
2121 					rsp->flags |= NETRXF_more_data;
2122 				if ((i == 0) && has_extra)
2123 					rsp->flags |= NETRXF_extra_info;
2124 				if ((i == 0) &&
2125 					(pkt->flags & NETRXF_data_validated)) {
2126 					rsp->flags |= NETRXF_data_validated;
2127 					rsp->flags |= NETRXF_csum_blank;
2128 				}
2129 				rsp->status = 0;
2130 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2131 				    gnt_idx++) {
2132 					rsp->status += gnttab[gnt_idx].len;
2133 				}
2134 			}
2135 		}
2136 	}
2137 
2138 	ring->req_cons += n_responses;
2139 	ring->rsp_prod_pvt += n_responses;
2140 	return n_responses;
2141 }
2142 
2143 #if defined(INET) || defined(INET6)
2144 /**
2145  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2146  * in the chain must start with a struct ether_header.
2147  *
2148  * XXX This function will perform incorrectly on UDP packets that are split up
2149  * into multiple ethernet frames.
2150  */
2151 static void
2152 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2153 {
2154 	struct ether_header *eh;
2155 	struct ip *iph;
2156 	uint16_t ether_type;
2157 
2158 	eh = mtod(mbufc, struct ether_header*);
2159 	ether_type = ntohs(eh->ether_type);
2160 	if (ether_type != ETHERTYPE_IP) {
2161 		/* Nothing to calculate */
2162 		return;
2163 	}
2164 
2165 	iph = (struct ip*)(eh + 1);
2166 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2167 		iph->ip_sum = 0;
2168 		iph->ip_sum = in_cksum_hdr(iph);
2169 	}
2170 
2171 	switch (iph->ip_p) {
2172 	case IPPROTO_TCP:
2173 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2174 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2175 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2176 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2177 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2178 			th->th_sum = in_cksum_skip(mbufc,
2179 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2180 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2181 		}
2182 		break;
2183 	case IPPROTO_UDP:
2184 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2185 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2186 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2187 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2188 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2189 			uh->uh_sum = in_cksum_skip(mbufc,
2190 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2191 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2192 		}
2193 		break;
2194 	default:
2195 		break;
2196 	}
2197 }
2198 #endif /* INET || INET6 */
2199 
2200 static void
2201 xnb_stop(struct xnb_softc *xnb)
2202 {
2203 	struct ifnet *ifp;
2204 
2205 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2206 	ifp = xnb->xnb_ifp;
2207 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2208 	if_link_state_change(ifp, LINK_STATE_DOWN);
2209 }
2210 
2211 static int
2212 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2213 {
2214 	struct xnb_softc *xnb = ifp->if_softc;
2215 	struct ifreq *ifr = (struct ifreq*) data;
2216 #ifdef INET
2217 	struct ifaddr *ifa = (struct ifaddr*)data;
2218 #endif
2219 	int error = 0;
2220 
2221 	switch (cmd) {
2222 		case SIOCSIFFLAGS:
2223 			mtx_lock(&xnb->sc_lock);
2224 			if (ifp->if_flags & IFF_UP) {
2225 				xnb_ifinit_locked(xnb);
2226 			} else {
2227 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2228 					xnb_stop(xnb);
2229 				}
2230 			}
2231 			/*
2232 			 * Note: netfront sets a variable named xn_if_flags
2233 			 * here, but that variable is never read
2234 			 */
2235 			mtx_unlock(&xnb->sc_lock);
2236 			break;
2237 		case SIOCSIFADDR:
2238 		case SIOCGIFADDR:
2239 #ifdef INET
2240 			mtx_lock(&xnb->sc_lock);
2241 			if (ifa->ifa_addr->sa_family == AF_INET) {
2242 				ifp->if_flags |= IFF_UP;
2243 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2244 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2245 							IFF_DRV_OACTIVE);
2246 					if_link_state_change(ifp,
2247 							LINK_STATE_DOWN);
2248 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2249 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2250 					if_link_state_change(ifp,
2251 					    LINK_STATE_UP);
2252 				}
2253 				arp_ifinit(ifp, ifa);
2254 				mtx_unlock(&xnb->sc_lock);
2255 			} else {
2256 				mtx_unlock(&xnb->sc_lock);
2257 #endif
2258 				error = ether_ioctl(ifp, cmd, data);
2259 #ifdef INET
2260 			}
2261 #endif
2262 			break;
2263 		case SIOCSIFCAP:
2264 			mtx_lock(&xnb->sc_lock);
2265 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2266 				ifp->if_capenable |= IFCAP_TXCSUM;
2267 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2268 			} else {
2269 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2270 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2271 			}
2272 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2273 				ifp->if_capenable |= IFCAP_RXCSUM;
2274 			} else {
2275 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2276 			}
2277 			/*
2278 			 * TODO enable TSO4 and LRO once we no longer need
2279 			 * to calculate checksums in software
2280 			 */
2281 #if 0
2282 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2283 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2284 					printf("xnb: Xen netif requires that "
2285 						"TXCSUM be enabled in order "
2286 						"to use TSO4\n");
2287 					error = EINVAL;
2288 				} else {
2289 					ifp->if_capenable |= IFCAP_TSO4;
2290 					ifp->if_hwassist |= CSUM_TSO;
2291 				}
2292 			} else {
2293 				ifp->if_capenable &= ~(IFCAP_TSO4);
2294 				ifp->if_hwassist &= ~(CSUM_TSO);
2295 			}
2296 			if (ifr->ifreqcap |= IFCAP_LRO) {
2297 				ifp->if_capenable |= IFCAP_LRO;
2298 			} else {
2299 				ifp->if_capenable &= ~(IFCAP_LRO);
2300 			}
2301 #endif
2302 			mtx_unlock(&xnb->sc_lock);
2303 			break;
2304 		case SIOCSIFMTU:
2305 			ifp->if_mtu = ifr->ifr_mtu;
2306 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2307 			xnb_ifinit(xnb);
2308 			break;
2309 		case SIOCADDMULTI:
2310 		case SIOCDELMULTI:
2311 		case SIOCSIFMEDIA:
2312 		case SIOCGIFMEDIA:
2313 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2314 			break;
2315 		default:
2316 			error = ether_ioctl(ifp, cmd, data);
2317 			break;
2318 	}
2319 	return (error);
2320 }
2321 
2322 static void
2323 xnb_start_locked(struct ifnet *ifp)
2324 {
2325 	netif_rx_back_ring_t *rxb;
2326 	struct xnb_softc *xnb;
2327 	struct mbuf *mbufc;
2328 	RING_IDX req_prod_local;
2329 
2330 	xnb = ifp->if_softc;
2331 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2332 
2333 	if (!xnb->carrier)
2334 		return;
2335 
2336 	do {
2337 		int out_of_space = 0;
2338 		int notify;
2339 		req_prod_local = rxb->sring->req_prod;
2340 		xen_rmb();
2341 		for (;;) {
2342 			int error;
2343 
2344 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2345 			if (mbufc == NULL)
2346 				break;
2347 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2348 			    		 xnb->rx_gnttab);
2349 			switch (error) {
2350 				case EAGAIN:
2351 					/*
2352 					 * Insufficient space in the ring.
2353 					 * Requeue pkt and send when space is
2354 					 * available.
2355 					 */
2356 					IF_PREPEND(&ifp->if_snd, mbufc);
2357 					/*
2358 					 * Perhaps the frontend missed an IRQ
2359 					 * and went to sleep.  Notify it to wake
2360 					 * it up.
2361 					 */
2362 					out_of_space = 1;
2363 					break;
2364 
2365 				case EINVAL:
2366 					/* OS gave a corrupt packet.  Drop it.*/
2367 					ifp->if_oerrors++;
2368 					/* FALLTHROUGH */
2369 				default:
2370 					/* Send succeeded, or packet had error.
2371 					 * Free the packet */
2372 					ifp->if_opackets++;
2373 					if (mbufc)
2374 						m_freem(mbufc);
2375 					break;
2376 			}
2377 			if (out_of_space != 0)
2378 				break;
2379 		}
2380 
2381 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2382 		if ((notify != 0) || (out_of_space != 0))
2383 			xen_intr_signal(xnb->xen_intr_handle);
2384 		rxb->sring->req_event = req_prod_local + 1;
2385 		xen_mb();
2386 	} while (rxb->sring->req_prod != req_prod_local) ;
2387 }
2388 
2389 /**
2390  * Sends one packet to the ring.  Blocks until the packet is on the ring
2391  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2392  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2393  * 			otherend will not be notified.
2394  * \param[in]	otherend The domain ID of the other end of the connection
2395  * \retval	EAGAIN	The ring did not have enough space for the packet.
2396  * 			The ring has not been modified
2397  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2398  * 			this a function parameter so that we will take less
2399  * 			stack space.
2400  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2401  */
2402 static int
2403 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2404 	 gnttab_copy_table gnttab)
2405 {
2406 	struct xnb_pkt pkt;
2407 	int error, n_entries, n_reqs;
2408 	RING_IDX space;
2409 
2410 	space = ring->sring->req_prod - ring->req_cons;
2411 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2412 	if (error != 0)
2413 		return error;
2414 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2415 	if (n_entries != 0) {
2416 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2417 		    gnttab, n_entries);
2418 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2419 		    hv_ret));
2420 	}
2421 
2422 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2423 
2424 	return 0;
2425 }
2426 
2427 static void
2428 xnb_start(struct ifnet *ifp)
2429 {
2430 	struct xnb_softc *xnb;
2431 
2432 	xnb = ifp->if_softc;
2433 	mtx_lock(&xnb->rx_lock);
2434 	xnb_start_locked(ifp);
2435 	mtx_unlock(&xnb->rx_lock);
2436 }
2437 
2438 /* equivalent of network_open() in Linux */
2439 static void
2440 xnb_ifinit_locked(struct xnb_softc *xnb)
2441 {
2442 	struct ifnet *ifp;
2443 
2444 	ifp = xnb->xnb_ifp;
2445 
2446 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2447 
2448 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2449 		return;
2450 
2451 	xnb_stop(xnb);
2452 
2453 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2454 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2455 	if_link_state_change(ifp, LINK_STATE_UP);
2456 }
2457 
2458 
2459 static void
2460 xnb_ifinit(void *xsc)
2461 {
2462 	struct xnb_softc *xnb = xsc;
2463 
2464 	mtx_lock(&xnb->sc_lock);
2465 	xnb_ifinit_locked(xnb);
2466 	mtx_unlock(&xnb->sc_lock);
2467 }
2468 
2469 /**
2470  * Callback used by the generic networking code to tell us when our carrier
2471  * state has changed.  Since we don't have a physical carrier, we don't care
2472  */
2473 static int
2474 xnb_ifmedia_upd(struct ifnet *ifp)
2475 {
2476 	return (0);
2477 }
2478 
2479 /**
2480  * Callback used by the generic networking code to ask us what our carrier
2481  * state is.  Since we don't have a physical carrier, this is very simple
2482  */
2483 static void
2484 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2485 {
2486 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2487 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2488 }
2489 
2490 
2491 /*---------------------------- NewBus Registration ---------------------------*/
2492 static device_method_t xnb_methods[] = {
2493 	/* Device interface */
2494 	DEVMETHOD(device_probe,		xnb_probe),
2495 	DEVMETHOD(device_attach,	xnb_attach),
2496 	DEVMETHOD(device_detach,	xnb_detach),
2497 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2498 	DEVMETHOD(device_suspend,	xnb_suspend),
2499 	DEVMETHOD(device_resume,	xnb_resume),
2500 
2501 	/* Xenbus interface */
2502 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2503 
2504 	{ 0, 0 }
2505 };
2506 
2507 static driver_t xnb_driver = {
2508 	"xnb",
2509 	xnb_methods,
2510 	sizeof(struct xnb_softc),
2511 };
2512 devclass_t xnb_devclass;
2513 
2514 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2515 
2516 
2517 /*-------------------------- Unit Tests -------------------------------------*/
2518 #ifdef XNB_DEBUG
2519 #include "netback_unit_tests.c"
2520 #endif
2521