xref: /freebsd/sys/dev/xen/netback/netback.c (revision 4dc5c02c018978a490034b9cf8db0517963f2a62)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009-2011 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Alan Somers         (Spectra Logic Corporation)
34  *          John Suykerbuyk     (Spectra Logic Corporation)
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /**
41  * \file netback.c
42  *
43  * \brief Device driver supporting the vending of network access
44  * 	  from this FreeBSD domain to other domains.
45  */
46 #include "opt_inet.h"
47 #include "opt_inet6.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 
52 #include <sys/bus.h>
53 #include <sys/module.h>
54 #include <sys/rman.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_arp.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/ip.h>
69 #include <netinet/if_ether.h>
70 #if __FreeBSD_version >= 700000
71 #include <netinet/tcp.h>
72 #endif
73 #include <netinet/ip_icmp.h>
74 #include <netinet/udp.h>
75 #include <machine/in_cksum.h>
76 
77 #include <vm/vm.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_kern.h>
81 
82 #include <machine/_inttypes.h>
83 
84 #include <xen/xen-os.h>
85 #include <xen/hypervisor.h>
86 #include <xen/xen_intr.h>
87 #include <xen/interface/io/netif.h>
88 #include <xen/xenbus/xenbusvar.h>
89 
90 /*--------------------------- Compile-time Tunables --------------------------*/
91 
92 /*---------------------------------- Macros ----------------------------------*/
93 /**
94  * Custom malloc type for all driver allocations.
95  */
96 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
97 
98 #define	XNB_SG	1	/* netback driver supports feature-sg */
99 #define	XNB_GSO_TCPV4 0	/* netback driver supports feature-gso-tcpv4 */
100 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
101 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
102 
103 #undef XNB_DEBUG
104 #define	XNB_DEBUG /* hardcode on during development */
105 
106 #ifdef XNB_DEBUG
107 #define	DPRINTF(fmt, args...) \
108 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
109 #else
110 #define	DPRINTF(fmt, args...) do {} while (0)
111 #endif
112 
113 /* Default length for stack-allocated grant tables */
114 #define	GNTTAB_LEN	(64)
115 
116 /* Features supported by all backends.  TSO and LRO can be negotiated */
117 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
118 
119 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
120 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
121 
122 /**
123  * Two argument version of the standard macro.  Second argument is a tentative
124  * value of req_cons
125  */
126 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
127 	unsigned int req = (_r)->sring->req_prod - cons;          	\
128 	unsigned int rsp = RING_SIZE(_r) -                              \
129 	(cons - (_r)->rsp_prod_pvt);                          		\
130 	req < rsp ? req : rsp;                                          \
131 })
132 
133 #define	virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
134 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
135 
136 /**
137  * Predefined array type of grant table copy descriptors.  Used to pass around
138  * statically allocated memory structures.
139  */
140 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
141 
142 /*--------------------------- Forward Declarations ---------------------------*/
143 struct xnb_softc;
144 struct xnb_pkt;
145 
146 static void	xnb_attach_failed(struct xnb_softc *xnb,
147 				  int err, const char *fmt, ...)
148 				  __printflike(3,4);
149 static int	xnb_shutdown(struct xnb_softc *xnb);
150 static int	create_netdev(device_t dev);
151 static int	xnb_detach(device_t dev);
152 static int	xnb_ifmedia_upd(struct ifnet *ifp);
153 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
154 static void 	xnb_intr(void *arg);
155 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
156 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
157 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
158 			 struct mbuf **mbufc, struct ifnet *ifnet,
159 			 gnttab_copy_table gnttab);
160 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
161 			     const netif_tx_back_ring_t *tx_ring,
162 			     RING_IDX start);
163 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
164 			      netif_tx_back_ring_t *ring, int error);
165 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
166 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
167 				 struct mbuf *mbufc,
168 				 gnttab_copy_table gnttab,
169 				 const netif_tx_back_ring_t *txb,
170 				 domid_t otherend_id);
171 static void	xnb_update_mbufc(struct mbuf *mbufc,
172 				 const gnttab_copy_table gnttab, int n_entries);
173 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
174 			      struct xnb_pkt *pkt,
175 			      RING_IDX start, int space);
176 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
177 				 const struct mbuf *mbufc,
178 				 gnttab_copy_table gnttab,
179 				 const netif_rx_back_ring_t *rxb,
180 				 domid_t otherend_id);
181 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
182 			      const gnttab_copy_table gnttab, int n_entries,
183 			      netif_rx_back_ring_t *ring);
184 static void	xnb_stop(struct xnb_softc*);
185 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
186 static void	xnb_start_locked(struct ifnet*);
187 static void	xnb_start(struct ifnet*);
188 static void	xnb_ifinit_locked(struct xnb_softc*);
189 static void	xnb_ifinit(void*);
190 #ifdef XNB_DEBUG
191 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
192 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
193 #endif
194 #if defined(INET) || defined(INET6)
195 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
196 #endif
197 /*------------------------------ Data Structures -----------------------------*/
198 
199 
200 /**
201  * Representation of a xennet packet.  Simplified version of a packet as
202  * stored in the Xen tx ring.  Applicable to both RX and TX packets
203  */
204 struct xnb_pkt{
205 	/**
206 	 * Array index of the first data-bearing (eg, not extra info) entry
207 	 * for this packet
208 	 */
209 	RING_IDX	car;
210 
211 	/**
212 	 * Array index of the second data-bearing entry for this packet.
213 	 * Invalid if the packet has only one data-bearing entry.  If the
214 	 * packet has more than two data-bearing entries, then the second
215 	 * through the last will be sequential modulo the ring size
216 	 */
217 	RING_IDX	cdr;
218 
219 	/**
220 	 * Optional extra info.  Only valid if flags contains
221 	 * NETTXF_extra_info.  Note that extra.type will always be
222 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
223 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
224 	 */
225 	netif_extra_info_t extra;
226 
227 	/** Size of entire packet in bytes.       */
228 	uint16_t	size;
229 
230 	/** The size of the first entry's data in bytes */
231 	uint16_t	car_size;
232 
233 	/**
234 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
235 	 * not the same for TX and RX packets
236 	 */
237 	uint16_t	flags;
238 
239 	/**
240 	 * The number of valid data-bearing entries (either netif_tx_request's
241 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
242 	 * entire packet is invalid.
243 	 */
244 	uint16_t	list_len;
245 
246 	/** There was an error processing the packet */
247 	uint8_t		error;
248 };
249 
250 /** xnb_pkt method: initialize it */
251 static inline void
252 xnb_pkt_initialize(struct xnb_pkt *pxnb)
253 {
254 	bzero(pxnb, sizeof(*pxnb));
255 }
256 
257 /** xnb_pkt method: mark the packet as valid */
258 static inline void
259 xnb_pkt_validate(struct xnb_pkt *pxnb)
260 {
261 	pxnb->error = 0;
262 };
263 
264 /** xnb_pkt method: mark the packet as invalid */
265 static inline void
266 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
267 {
268 	pxnb->error = 1;
269 };
270 
271 /** xnb_pkt method: Check whether the packet is valid */
272 static inline int
273 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
274 {
275 	return (! pxnb->error);
276 }
277 
278 #ifdef XNB_DEBUG
279 /** xnb_pkt method: print the packet's contents in human-readable format*/
280 static void __unused
281 xnb_dump_pkt(const struct xnb_pkt *pkt) {
282 	if (pkt == NULL) {
283 	  DPRINTF("Was passed a null pointer.\n");
284 	  return;
285 	}
286 	DPRINTF("pkt address= %p\n", pkt);
287 	DPRINTF("pkt->size=%d\n", pkt->size);
288 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
289 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
290 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
291 	/* DPRINTF("pkt->extra");	TODO */
292 	DPRINTF("pkt->car=%d\n", pkt->car);
293 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
294 	DPRINTF("pkt->error=%d\n", pkt->error);
295 }
296 #endif /* XNB_DEBUG */
297 
298 static void
299 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
300 {
301 	if (txreq != NULL) {
302 		DPRINTF("netif_tx_request index =%u\n", idx);
303 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
304 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
305 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
306 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
307 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
308 	}
309 }
310 
311 
312 /**
313  * \brief Configuration data for a shared memory request ring
314  *        used to communicate with the front-end client of this
315  *        this driver.
316  */
317 struct xnb_ring_config {
318 	/**
319 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
320 	 * use different data structures, and that cannot be changed since it
321 	 * is part of the interdomain protocol.
322 	 */
323 	union{
324 		netif_rx_back_ring_t	  rx_ring;
325 		netif_tx_back_ring_t	  tx_ring;
326 	} back_ring;
327 
328 	/**
329 	 * The device bus address returned by the hypervisor when
330 	 * mapping the ring and required to unmap it when a connection
331 	 * is torn down.
332 	 */
333 	uint64_t	bus_addr;
334 
335 	/** The pseudo-physical address where ring memory is mapped.*/
336 	uint64_t	gnt_addr;
337 
338 	/** KVA address where ring memory is mapped. */
339 	vm_offset_t	va;
340 
341 	/**
342 	 * Grant table handles, one per-ring page, returned by the
343 	 * hyperpervisor upon mapping of the ring and required to
344 	 * unmap it when a connection is torn down.
345 	 */
346 	grant_handle_t	handle;
347 
348 	/** The number of ring pages mapped for the current connection. */
349 	unsigned	ring_pages;
350 
351 	/**
352 	 * The grant references, one per-ring page, supplied by the
353 	 * front-end, allowing us to reference the ring pages in the
354 	 * front-end's domain and to map these pages into our own domain.
355 	 */
356 	grant_ref_t	ring_ref;
357 };
358 
359 /**
360  * Per-instance connection state flags.
361  */
362 typedef enum
363 {
364 	/** Communication with the front-end has been established. */
365 	XNBF_RING_CONNECTED    = 0x01,
366 
367 	/**
368 	 * Front-end requests exist in the ring and are waiting for
369 	 * xnb_xen_req objects to free up.
370 	 */
371 	XNBF_RESOURCE_SHORTAGE = 0x02,
372 
373 	/** Connection teardown has started. */
374 	XNBF_SHUTDOWN          = 0x04,
375 
376 	/** A thread is already performing shutdown processing. */
377 	XNBF_IN_SHUTDOWN       = 0x08
378 } xnb_flag_t;
379 
380 /**
381  * Types of rings.  Used for array indices and to identify a ring's control
382  * data structure type
383  */
384 typedef enum{
385 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
386 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
387 	XNB_NUM_RING_TYPES
388 } xnb_ring_type_t;
389 
390 /**
391  * Per-instance configuration data.
392  */
393 struct xnb_softc {
394 	/** NewBus device corresponding to this instance. */
395 	device_t		dev;
396 
397 	/* Media related fields */
398 
399 	/** Generic network media state */
400 	struct ifmedia		sc_media;
401 
402 	/** Media carrier info */
403 	struct ifnet 		*xnb_ifp;
404 
405 	/** Our own private carrier state */
406 	unsigned carrier;
407 
408 	/** Device MAC Address */
409 	uint8_t			mac[ETHER_ADDR_LEN];
410 
411 	/* Xen related fields */
412 
413 	/**
414 	 * \brief The netif protocol abi in effect.
415 	 *
416 	 * There are situations where the back and front ends can
417 	 * have a different, native abi (e.g. intel x86_64 and
418 	 * 32bit x86 domains on the same machine).  The back-end
419 	 * always accommodates the front-end's native abi.  That
420 	 * value is pulled from the XenStore and recorded here.
421 	 */
422 	int			abi;
423 
424 	/**
425 	 * Name of the bridge to which this VIF is connected, if any
426 	 * This field is dynamically allocated by xenbus and must be free()ed
427 	 * when no longer needed
428 	 */
429 	char			*bridge;
430 
431 	/** The interrupt driven even channel used to signal ring events. */
432 	evtchn_port_t		evtchn;
433 
434 	/** Xen device handle.*/
435 	long 			handle;
436 
437 	/** Handle to the communication ring event channel. */
438 	xen_intr_handle_t	xen_intr_handle;
439 
440 	/**
441 	 * \brief Cached value of the front-end's domain id.
442 	 *
443 	 * This value is used at once for each mapped page in
444 	 * a transaction.  We cache it to avoid incuring the
445 	 * cost of an ivar access every time this is needed.
446 	 */
447 	domid_t			otherend_id;
448 
449 	/**
450 	 * Undocumented frontend feature.  Has something to do with
451 	 * scatter/gather IO
452 	 */
453 	uint8_t			can_sg;
454 	/** Undocumented frontend feature */
455 	uint8_t			gso;
456 	/** Undocumented frontend feature */
457 	uint8_t			gso_prefix;
458 	/** Can checksum TCP/UDP over IPv4 */
459 	uint8_t			ip_csum;
460 
461 	/* Implementation related fields */
462 	/**
463 	 * Preallocated grant table copy descriptor for RX operations.
464 	 * Access must be protected by rx_lock
465 	 */
466 	gnttab_copy_table	rx_gnttab;
467 
468 	/**
469 	 * Preallocated grant table copy descriptor for TX operations.
470 	 * Access must be protected by tx_lock
471 	 */
472 	gnttab_copy_table	tx_gnttab;
473 
474 	/**
475 	 * Resource representing allocated physical address space
476 	 * associated with our per-instance kva region.
477 	 */
478 	struct resource		*pseudo_phys_res;
479 
480 	/** Resource id for allocated physical address space. */
481 	int			pseudo_phys_res_id;
482 
483 	/** Ring mapping and interrupt configuration data. */
484 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
485 
486 	/**
487 	 * Global pool of kva used for mapping remote domain ring
488 	 * and I/O transaction data.
489 	 */
490 	vm_offset_t		kva;
491 
492 	/** Pseudo-physical address corresponding to kva. */
493 	uint64_t		gnt_base_addr;
494 
495 	/** Various configuration and state bit flags. */
496 	xnb_flag_t		flags;
497 
498 	/** Mutex protecting per-instance data in the receive path. */
499 	struct mtx		rx_lock;
500 
501 	/** Mutex protecting per-instance data in the softc structure. */
502 	struct mtx		sc_lock;
503 
504 	/** Mutex protecting per-instance data in the transmit path. */
505 	struct mtx		tx_lock;
506 
507 	/** The size of the global kva pool. */
508 	int			kva_size;
509 
510 	/** Name of the interface */
511 	char			 if_name[IFNAMSIZ];
512 };
513 
514 /*---------------------------- Debugging functions ---------------------------*/
515 #ifdef XNB_DEBUG
516 static void __unused
517 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
518 {
519 	if (entry == NULL) {
520 		printf("NULL grant table pointer\n");
521 		return;
522 	}
523 
524 	if (entry->flags & GNTCOPY_dest_gref)
525 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
526 	else
527 		printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n",
528 		       entry->dest.u.gmfn);
529 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
530 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
531 	if (entry->flags & GNTCOPY_source_gref)
532 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
533 	else
534 		printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n",
535 		       entry->source.u.gmfn);
536 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
537 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
538 	printf("gnttab len=\t%hu\n", entry->len);
539 	printf("gnttab flags=\t%hu\n", entry->flags);
540 	printf("gnttab status=\t%hd\n", entry->status);
541 }
542 
543 static int
544 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
545 {
546 	static char results[720];
547 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
548 	netif_rx_back_ring_t const* rxb =
549 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
550 	netif_tx_back_ring_t const* txb =
551 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
552 
553 	/* empty the result strings */
554 	results[0] = 0;
555 
556 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
557 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
558 
559 	snprintf(results, 720,
560 	    "\n\t%35s %18s\n"	/* TX, RX */
561 	    "\t%16s %18d %18d\n"	/* req_cons */
562 	    "\t%16s %18d %18d\n"	/* nr_ents */
563 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
564 	    "\t%16s %18p %18p\n"	/* sring */
565 	    "\t%16s %18d %18d\n"	/* req_prod */
566 	    "\t%16s %18d %18d\n"	/* req_event */
567 	    "\t%16s %18d %18d\n"	/* rsp_prod */
568 	    "\t%16s %18d %18d\n",	/* rsp_event */
569 	    "TX", "RX",
570 	    "req_cons", txb->req_cons, rxb->req_cons,
571 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
572 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
573 	    "sring", txb->sring, rxb->sring,
574 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
575 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
576 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
577 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
578 
579 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
580 }
581 
582 static void __unused
583 xnb_dump_mbuf(const struct mbuf *m)
584 {
585 	int len;
586 	uint8_t *d;
587 	if (m == NULL)
588 		return;
589 
590 	printf("xnb_dump_mbuf:\n");
591 	if (m->m_flags & M_PKTHDR) {
592 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
593 		       "tso_segsz=%5hd\n",
594 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
595 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
596 		printf("    rcvif=%16p,  len=%19d\n",
597 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
598 	}
599 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
600 	       m->m_next, m->m_nextpkt, m->m_data);
601 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
602 	       m->m_len, m->m_flags, m->m_type);
603 
604 	len = m->m_len;
605 	d = mtod(m, uint8_t*);
606 	while (len > 0) {
607 		int i;
608 		printf("                ");
609 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
610 			printf("%02hhx ", *(d++));
611 		}
612 		printf("\n");
613 	}
614 }
615 #endif /* XNB_DEBUG */
616 
617 /*------------------------ Inter-Domain Communication ------------------------*/
618 /**
619  * Free dynamically allocated KVA or pseudo-physical address allocations.
620  *
621  * \param xnb  Per-instance xnb configuration structure.
622  */
623 static void
624 xnb_free_communication_mem(struct xnb_softc *xnb)
625 {
626 	if (xnb->kva != 0) {
627 		if (xnb->pseudo_phys_res != NULL) {
628 			xenmem_free(xnb->dev, xnb->pseudo_phys_res_id,
629 			    xnb->pseudo_phys_res);
630 			xnb->pseudo_phys_res = NULL;
631 		}
632 	}
633 	xnb->kva = 0;
634 	xnb->gnt_base_addr = 0;
635 }
636 
637 /**
638  * Cleanup all inter-domain communication mechanisms.
639  *
640  * \param xnb  Per-instance xnb configuration structure.
641  */
642 static int
643 xnb_disconnect(struct xnb_softc *xnb)
644 {
645 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
646 	int error;
647 	int i;
648 
649 	if (xnb->xen_intr_handle != NULL)
650 		xen_intr_unbind(&xnb->xen_intr_handle);
651 
652 	/*
653 	 * We may still have another thread currently processing requests.  We
654 	 * must acquire the rx and tx locks to make sure those threads are done,
655 	 * but we can release those locks as soon as we acquire them, because no
656 	 * more interrupts will be arriving.
657 	 */
658 	mtx_lock(&xnb->tx_lock);
659 	mtx_unlock(&xnb->tx_lock);
660 	mtx_lock(&xnb->rx_lock);
661 	mtx_unlock(&xnb->rx_lock);
662 
663 	mtx_lock(&xnb->sc_lock);
664 	/* Free malloc'd softc member variables */
665 	if (xnb->bridge != NULL) {
666 		free(xnb->bridge, M_XENSTORE);
667 		xnb->bridge = NULL;
668 	}
669 
670 	/* All request processing has stopped, so unmap the rings */
671 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
672 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
673 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
674 		gnts[i].handle = xnb->ring_configs[i].handle;
675 	}
676 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
677 					  XNB_NUM_RING_TYPES);
678 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
679 
680 	xnb_free_communication_mem(xnb);
681 	/*
682 	 * Zero the ring config structs because the pointers, handles, and
683 	 * grant refs contained therein are no longer valid.
684 	 */
685 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
686 	    sizeof(struct xnb_ring_config));
687 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
688 	    sizeof(struct xnb_ring_config));
689 
690 	xnb->flags &= ~XNBF_RING_CONNECTED;
691 	mtx_unlock(&xnb->sc_lock);
692 
693 	return (0);
694 }
695 
696 /**
697  * Map a single shared memory ring into domain local address space and
698  * initialize its control structure
699  *
700  * \param xnb	Per-instance xnb configuration structure
701  * \param ring_type	Array index of this ring in the xnb's array of rings
702  * \return 	An errno
703  */
704 static int
705 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
706 {
707 	struct gnttab_map_grant_ref gnt;
708 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
709 	int error;
710 
711 	/* TX ring type = 0, RX =1 */
712 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
713 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
714 
715 	gnt.host_addr = ring->gnt_addr;
716 	gnt.flags     = GNTMAP_host_map;
717 	gnt.ref       = ring->ring_ref;
718 	gnt.dom       = xnb->otherend_id;
719 
720 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
721 	if (error != 0)
722 		panic("netback: Ring page grant table op failed (%d)", error);
723 
724 	if (gnt.status != 0) {
725 		ring->va = 0;
726 		error = EACCES;
727 		xenbus_dev_fatal(xnb->dev, error,
728 				 "Ring shared page mapping failed. "
729 				 "Status %d.", gnt.status);
730 	} else {
731 		ring->handle = gnt.handle;
732 		ring->bus_addr = gnt.dev_bus_addr;
733 
734 		if (ring_type == XNB_RING_TYPE_TX) {
735 			BACK_RING_INIT(&ring->back_ring.tx_ring,
736 			    (netif_tx_sring_t*)ring->va,
737 			    ring->ring_pages * PAGE_SIZE);
738 		} else if (ring_type == XNB_RING_TYPE_RX) {
739 			BACK_RING_INIT(&ring->back_ring.rx_ring,
740 			    (netif_rx_sring_t*)ring->va,
741 			    ring->ring_pages * PAGE_SIZE);
742 		} else {
743 			xenbus_dev_fatal(xnb->dev, error,
744 				 "Unknown ring type %d", ring_type);
745 		}
746 	}
747 
748 	return error;
749 }
750 
751 /**
752  * Setup the shared memory rings and bind an interrupt to the event channel
753  * used to notify us of ring changes.
754  *
755  * \param xnb  Per-instance xnb configuration structure.
756  */
757 static int
758 xnb_connect_comms(struct xnb_softc *xnb)
759 {
760 	int	error;
761 	xnb_ring_type_t i;
762 
763 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
764 		return (0);
765 
766 	/*
767 	 * Kva for our rings are at the tail of the region of kva allocated
768 	 * by xnb_alloc_communication_mem().
769 	 */
770 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
771 		error = xnb_connect_ring(xnb, i);
772 		if (error != 0)
773 	  		return error;
774 	}
775 
776 	xnb->flags |= XNBF_RING_CONNECTED;
777 
778 	error = xen_intr_bind_remote_port(xnb->dev,
779 					  xnb->otherend_id,
780 					  xnb->evtchn,
781 					  /*filter*/NULL,
782 					  xnb_intr, /*arg*/xnb,
783 					  INTR_TYPE_BIO | INTR_MPSAFE,
784 					  &xnb->xen_intr_handle);
785 	if (error != 0) {
786 		(void)xnb_disconnect(xnb);
787 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
788 		return (error);
789 	}
790 
791 	DPRINTF("rings connected!\n");
792 
793 	return (0);
794 }
795 
796 /**
797  * Size KVA and pseudo-physical address allocations based on negotiated
798  * values for the size and number of I/O requests, and the size of our
799  * communication ring.
800  *
801  * \param xnb  Per-instance xnb configuration structure.
802  *
803  * These address spaces are used to dynamically map pages in the
804  * front-end's domain into our own.
805  */
806 static int
807 xnb_alloc_communication_mem(struct xnb_softc *xnb)
808 {
809 	xnb_ring_type_t i;
810 
811 	xnb->kva_size = 0;
812 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
813 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
814 	}
815 
816 	/*
817 	 * Reserve a range of pseudo physical memory that we can map
818 	 * into kva.  These pages will only be backed by machine
819 	 * pages ("real memory") during the lifetime of front-end requests
820 	 * via grant table operations.  We will map the netif tx and rx rings
821 	 * into this space.
822 	 */
823 	xnb->pseudo_phys_res_id = 0;
824 	xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id,
825 	    xnb->kva_size);
826 	if (xnb->pseudo_phys_res == NULL) {
827 		xnb->kva = 0;
828 		return (ENOMEM);
829 	}
830 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
831 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
832 	return (0);
833 }
834 
835 /**
836  * Collect information from the XenStore related to our device and its frontend
837  *
838  * \param xnb  Per-instance xnb configuration structure.
839  */
840 static int
841 xnb_collect_xenstore_info(struct xnb_softc *xnb)
842 {
843 	/**
844 	 * \todo Linux collects the following info.  We should collect most
845 	 * of this, too:
846 	 * "feature-rx-notify"
847 	 */
848 	const char *otherend_path;
849 	const char *our_path;
850 	int err;
851 	unsigned int rx_copy, bridge_len;
852 	uint8_t no_csum_offload;
853 
854 	otherend_path = xenbus_get_otherend_path(xnb->dev);
855 	our_path = xenbus_get_node(xnb->dev);
856 
857 	/* Collect the critical communication parameters */
858 	err = xs_gather(XST_NIL, otherend_path,
859 	    "tx-ring-ref", "%l" PRIu32,
860 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
861 	    "rx-ring-ref", "%l" PRIu32,
862 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
863 	    "event-channel", "%" PRIu32, &xnb->evtchn,
864 	    NULL);
865 	if (err != 0) {
866 		xenbus_dev_fatal(xnb->dev, err,
867 				 "Unable to retrieve ring information from "
868 				 "frontend %s.  Unable to connect.",
869 				 otherend_path);
870 		return (err);
871 	}
872 
873 	/* Collect the handle from xenstore */
874 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
875 	if (err != 0) {
876 		xenbus_dev_fatal(xnb->dev, err,
877 		    "Error reading handle from frontend %s.  "
878 		    "Unable to connect.", otherend_path);
879 	}
880 
881 	/*
882 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
883 	 * throw it away
884 	 */
885 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
886 		      (void**)&xnb->bridge);
887 	if (err != 0)
888 		xnb->bridge = NULL;
889 
890 	/*
891 	 * Does the frontend request that we use rx copy?  If not, return an
892 	 * error because this driver only supports rx copy.
893 	 */
894 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
895 		       "%" PRIu32, &rx_copy);
896 	if (err == ENOENT) {
897 		err = 0;
898 	 	rx_copy = 0;
899 	}
900 	if (err < 0) {
901 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
902 				 otherend_path);
903 		return err;
904 	}
905 	/**
906 	 * \todo: figure out the exact meaning of this feature, and when
907 	 * the frontend will set it to true.  It should be set to true
908 	 * at some point
909 	 */
910 /*        if (!rx_copy)*/
911 /*          return EOPNOTSUPP;*/
912 
913 	/** \todo Collect the rx notify feature */
914 
915 	/*  Collect the feature-sg. */
916 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
917 		     "%hhu", &xnb->can_sg) < 0)
918 		xnb->can_sg = 0;
919 
920 	/* Collect remaining frontend features */
921 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
922 		     "%hhu", &xnb->gso) < 0)
923 		xnb->gso = 0;
924 
925 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
926 		     "%hhu", &xnb->gso_prefix) < 0)
927 		xnb->gso_prefix = 0;
928 
929 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
930 		     "%hhu", &no_csum_offload) < 0)
931 		no_csum_offload = 0;
932 	xnb->ip_csum = (no_csum_offload == 0);
933 
934 	return (0);
935 }
936 
937 /**
938  * Supply information about the physical device to the frontend
939  * via XenBus.
940  *
941  * \param xnb  Per-instance xnb configuration structure.
942  */
943 static int
944 xnb_publish_backend_info(struct xnb_softc *xnb)
945 {
946 	struct xs_transaction xst;
947 	const char *our_path;
948 	int error;
949 
950 	our_path = xenbus_get_node(xnb->dev);
951 
952 	do {
953 		error = xs_transaction_start(&xst);
954 		if (error != 0) {
955 			xenbus_dev_fatal(xnb->dev, error,
956 					 "Error publishing backend info "
957 					 "(start transaction)");
958 			break;
959 		}
960 
961 		error = xs_printf(xst, our_path, "feature-sg",
962 				  "%d", XNB_SG);
963 		if (error != 0)
964 			break;
965 
966 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
967 				  "%d", XNB_GSO_TCPV4);
968 		if (error != 0)
969 			break;
970 
971 		error = xs_printf(xst, our_path, "feature-rx-copy",
972 				  "%d", XNB_RX_COPY);
973 		if (error != 0)
974 			break;
975 
976 		error = xs_printf(xst, our_path, "feature-rx-flip",
977 				  "%d", XNB_RX_FLIP);
978 		if (error != 0)
979 			break;
980 
981 		error = xs_transaction_end(xst, 0);
982 		if (error != 0 && error != EAGAIN) {
983 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
984 			break;
985 		}
986 
987 	} while (error == EAGAIN);
988 
989 	return (error);
990 }
991 
992 /**
993  * Connect to our netfront peer now that it has completed publishing
994  * its configuration into the XenStore.
995  *
996  * \param xnb  Per-instance xnb configuration structure.
997  */
998 static void
999 xnb_connect(struct xnb_softc *xnb)
1000 {
1001 	int	error;
1002 
1003 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1004 		return;
1005 
1006 	if (xnb_collect_xenstore_info(xnb) != 0)
1007 		return;
1008 
1009 	xnb->flags &= ~XNBF_SHUTDOWN;
1010 
1011 	/* Read front end configuration. */
1012 
1013 	/* Allocate resources whose size depends on front-end configuration. */
1014 	error = xnb_alloc_communication_mem(xnb);
1015 	if (error != 0) {
1016 		xenbus_dev_fatal(xnb->dev, error,
1017 				 "Unable to allocate communication memory");
1018 		return;
1019 	}
1020 
1021 	/*
1022 	 * Connect communication channel.
1023 	 */
1024 	error = xnb_connect_comms(xnb);
1025 	if (error != 0) {
1026 		/* Specific errors are reported by xnb_connect_comms(). */
1027 		return;
1028 	}
1029 	xnb->carrier = 1;
1030 
1031 	/* Ready for I/O. */
1032 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1033 }
1034 
1035 /*-------------------------- Device Teardown Support -------------------------*/
1036 /**
1037  * Perform device shutdown functions.
1038  *
1039  * \param xnb  Per-instance xnb configuration structure.
1040  *
1041  * Mark this instance as shutting down, wait for any active requests
1042  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1043  * a thread invoking our detach method) that detach can now proceed.
1044  */
1045 static int
1046 xnb_shutdown(struct xnb_softc *xnb)
1047 {
1048 	/*
1049 	 * Due to the need to drop our mutex during some
1050 	 * xenbus operations, it is possible for two threads
1051 	 * to attempt to close out shutdown processing at
1052 	 * the same time.  Tell the caller that hits this
1053 	 * race to try back later.
1054 	 */
1055 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1056 		return (EAGAIN);
1057 
1058 	xnb->flags |= XNBF_SHUTDOWN;
1059 
1060 	xnb->flags |= XNBF_IN_SHUTDOWN;
1061 
1062 	mtx_unlock(&xnb->sc_lock);
1063 	/* Free the network interface */
1064 	xnb->carrier = 0;
1065 	if (xnb->xnb_ifp != NULL) {
1066 		ether_ifdetach(xnb->xnb_ifp);
1067 		if_free(xnb->xnb_ifp);
1068 		xnb->xnb_ifp = NULL;
1069 	}
1070 
1071 	xnb_disconnect(xnb);
1072 
1073 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1074 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1075 	mtx_lock(&xnb->sc_lock);
1076 
1077 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1078 
1079 	/* Indicate to xnb_detach() that is it safe to proceed. */
1080 	wakeup(xnb);
1081 
1082 	return (0);
1083 }
1084 
1085 /**
1086  * Report an attach time error to the console and Xen, and cleanup
1087  * this instance by forcing immediate detach processing.
1088  *
1089  * \param xnb  Per-instance xnb configuration structure.
1090  * \param err  Errno describing the error.
1091  * \param fmt  Printf style format and arguments
1092  */
1093 static void
1094 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1095 {
1096 	va_list ap;
1097 	va_list ap_hotplug;
1098 
1099 	va_start(ap, fmt);
1100 	va_copy(ap_hotplug, ap);
1101 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1102 		  "hotplug-error", fmt, ap_hotplug);
1103 	va_end(ap_hotplug);
1104 	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1105 		  "hotplug-status", "error");
1106 
1107 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1108 	va_end(ap);
1109 
1110 	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0");
1111 	xnb_detach(xnb->dev);
1112 }
1113 
1114 /*---------------------------- NewBus Entrypoints ----------------------------*/
1115 /**
1116  * Inspect a XenBus device and claim it if is of the appropriate type.
1117  *
1118  * \param dev  NewBus device object representing a candidate XenBus device.
1119  *
1120  * \return  0 for success, errno codes for failure.
1121  */
1122 static int
1123 xnb_probe(device_t dev)
1124 {
1125 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1126 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1127 		    devclass_get_name(device_get_devclass(dev)));
1128 		device_set_desc(dev, "Backend Virtual Network Device");
1129 		device_quiet(dev);
1130 		return (0);
1131 	}
1132 	return (ENXIO);
1133 }
1134 
1135 /**
1136  * Setup sysctl variables to control various Network Back parameters.
1137  *
1138  * \param xnb  Xen Net Back softc.
1139  *
1140  */
1141 static void
1142 xnb_setup_sysctl(struct xnb_softc *xnb)
1143 {
1144 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1145 	struct sysctl_oid      *sysctl_tree = NULL;
1146 
1147 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1148 	if (sysctl_ctx == NULL)
1149 		return;
1150 
1151 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1152 	if (sysctl_tree == NULL)
1153 		return;
1154 
1155 #ifdef XNB_DEBUG
1156 	SYSCTL_ADD_PROC(sysctl_ctx,
1157 			SYSCTL_CHILDREN(sysctl_tree),
1158 			OID_AUTO,
1159 			"unit_test_results",
1160 			CTLTYPE_STRING | CTLFLAG_RD,
1161 			xnb,
1162 			0,
1163 			xnb_unit_test_main,
1164 			"A",
1165 			"Results of builtin unit tests");
1166 
1167 	SYSCTL_ADD_PROC(sysctl_ctx,
1168 			SYSCTL_CHILDREN(sysctl_tree),
1169 			OID_AUTO,
1170 			"dump_rings",
1171 			CTLTYPE_STRING | CTLFLAG_RD,
1172 			xnb,
1173 			0,
1174 			xnb_dump_rings,
1175 			"A",
1176 			"Xennet Back Rings");
1177 #endif /* XNB_DEBUG */
1178 }
1179 
1180 /**
1181  * Create a network device.
1182  * @param handle device handle
1183  */
1184 int
1185 create_netdev(device_t dev)
1186 {
1187 	struct ifnet *ifp;
1188 	struct xnb_softc *xnb;
1189 	int err = 0;
1190 	uint32_t handle;
1191 
1192 	xnb = device_get_softc(dev);
1193 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1194 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1195 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1196 
1197 	xnb->dev = dev;
1198 
1199 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1200 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1201 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1202 
1203 	/*
1204 	 * Set the MAC address to a dummy value (00:00:00:00:00),
1205 	 * if the MAC address of the host-facing interface is set
1206 	 * to the same as the guest-facing one (the value found in
1207 	 * xenstore), the bridge would stop delivering packets to
1208 	 * us because it would see that the destination address of
1209 	 * the packet is the same as the interface, and so the bridge
1210 	 * would expect the packet has already been delivered locally
1211 	 * (and just drop it).
1212 	 */
1213 	bzero(&xnb->mac[0], sizeof(xnb->mac));
1214 
1215 	/* The interface will be named using the following nomenclature:
1216 	 *
1217 	 * xnb<domid>.<handle>
1218 	 *
1219 	 * Where handle is the oder of the interface referred to the guest.
1220 	 */
1221 	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1222 		       "%" PRIu32, &handle);
1223 	if (err != 0)
1224 		return (err);
1225 	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1226 	    xenbus_get_otherend_id(dev), handle);
1227 
1228 	if (err == 0) {
1229 		/* Set up ifnet structure */
1230 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1231 		ifp->if_softc = xnb;
1232 		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1233 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1234 		ifp->if_ioctl = xnb_ioctl;
1235 		ifp->if_start = xnb_start;
1236 		ifp->if_init = xnb_ifinit;
1237 		ifp->if_mtu = ETHERMTU;
1238 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1239 
1240 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1241 		ifp->if_capabilities = IFCAP_HWCSUM;
1242 		ifp->if_capenable = IFCAP_HWCSUM;
1243 
1244 		ether_ifattach(ifp, xnb->mac);
1245 		xnb->carrier = 0;
1246 	}
1247 
1248 	return err;
1249 }
1250 
1251 /**
1252  * Attach to a XenBus device that has been claimed by our probe routine.
1253  *
1254  * \param dev  NewBus device object representing this Xen Net Back instance.
1255  *
1256  * \return  0 for success, errno codes for failure.
1257  */
1258 static int
1259 xnb_attach(device_t dev)
1260 {
1261 	struct xnb_softc *xnb;
1262 	int	error;
1263 	xnb_ring_type_t	i;
1264 
1265 	error = create_netdev(dev);
1266 	if (error != 0) {
1267 		xenbus_dev_fatal(dev, error, "creating netdev");
1268 		return (error);
1269 	}
1270 
1271 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1272 
1273 	/*
1274 	 * Basic initialization.
1275 	 * After this block it is safe to call xnb_detach()
1276 	 * to clean up any allocated data for this instance.
1277 	 */
1278 	xnb = device_get_softc(dev);
1279 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1280 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1281 		xnb->ring_configs[i].ring_pages = 1;
1282 	}
1283 
1284 	/*
1285 	 * Setup sysctl variables.
1286 	 */
1287 	xnb_setup_sysctl(xnb);
1288 
1289 	/* Update hot-plug status to satisfy xend. */
1290 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1291 			  "hotplug-status", "connected");
1292 	if (error != 0) {
1293 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1294 				  xenbus_get_node(xnb->dev));
1295 		return (error);
1296 	}
1297 
1298 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1299 		/*
1300 		 * If we can't publish our data, we cannot participate
1301 		 * in this connection, and waiting for a front-end state
1302 		 * change will not help the situation.
1303 		 */
1304 		xnb_attach_failed(xnb, error,
1305 		    "Publishing backend status for %s",
1306 				  xenbus_get_node(xnb->dev));
1307 		return error;
1308 	}
1309 
1310 	/* Tell the front end that we are ready to connect. */
1311 	xenbus_set_state(dev, XenbusStateInitWait);
1312 
1313 	return (0);
1314 }
1315 
1316 /**
1317  * Detach from a net back device instance.
1318  *
1319  * \param dev  NewBus device object representing this Xen Net Back instance.
1320  *
1321  * \return  0 for success, errno codes for failure.
1322  *
1323  * \note A net back device may be detached at any time in its life-cycle,
1324  *       including part way through the attach process.  For this reason,
1325  *       initialization order and the initialization state checks in this
1326  *       routine must be carefully coupled so that attach time failures
1327  *       are gracefully handled.
1328  */
1329 static int
1330 xnb_detach(device_t dev)
1331 {
1332 	struct xnb_softc *xnb;
1333 
1334 	DPRINTF("\n");
1335 
1336 	xnb = device_get_softc(dev);
1337 	mtx_lock(&xnb->sc_lock);
1338 	while (xnb_shutdown(xnb) == EAGAIN) {
1339 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1340 		       "xnb_shutdown", 0);
1341 	}
1342 	mtx_unlock(&xnb->sc_lock);
1343 	DPRINTF("\n");
1344 
1345 	mtx_destroy(&xnb->tx_lock);
1346 	mtx_destroy(&xnb->rx_lock);
1347 	mtx_destroy(&xnb->sc_lock);
1348 	return (0);
1349 }
1350 
1351 /**
1352  * Prepare this net back device for suspension of this VM.
1353  *
1354  * \param dev  NewBus device object representing this Xen net Back instance.
1355  *
1356  * \return  0 for success, errno codes for failure.
1357  */
1358 static int
1359 xnb_suspend(device_t dev)
1360 {
1361 	return (0);
1362 }
1363 
1364 /**
1365  * Perform any processing required to recover from a suspended state.
1366  *
1367  * \param dev  NewBus device object representing this Xen Net Back instance.
1368  *
1369  * \return  0 for success, errno codes for failure.
1370  */
1371 static int
1372 xnb_resume(device_t dev)
1373 {
1374 	return (0);
1375 }
1376 
1377 /**
1378  * Handle state changes expressed via the XenStore by our front-end peer.
1379  *
1380  * \param dev             NewBus device object representing this Xen
1381  *                        Net Back instance.
1382  * \param frontend_state  The new state of the front-end.
1383  *
1384  * \return  0 for success, errno codes for failure.
1385  */
1386 static void
1387 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1388 {
1389 	struct xnb_softc *xnb;
1390 
1391 	xnb = device_get_softc(dev);
1392 
1393 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1394 	        xenbus_strstate(frontend_state),
1395 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1396 
1397 	switch (frontend_state) {
1398 	case XenbusStateInitialising:
1399 		break;
1400 	case XenbusStateInitialised:
1401 	case XenbusStateConnected:
1402 		xnb_connect(xnb);
1403 		break;
1404 	case XenbusStateClosing:
1405 	case XenbusStateClosed:
1406 		mtx_lock(&xnb->sc_lock);
1407 		xnb_shutdown(xnb);
1408 		mtx_unlock(&xnb->sc_lock);
1409 		if (frontend_state == XenbusStateClosed)
1410 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1411 		break;
1412 	default:
1413 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1414 				 frontend_state);
1415 		break;
1416 	}
1417 }
1418 
1419 
1420 /*---------------------------- Request Processing ----------------------------*/
1421 /**
1422  * Interrupt handler bound to the shared ring's event channel.
1423  * Entry point for the xennet transmit path in netback
1424  * Transfers packets from the Xen ring to the host's generic networking stack
1425  *
1426  * \param arg  Callback argument registerd during event channel
1427  *             binding - the xnb_softc for this instance.
1428  */
1429 static void
1430 xnb_intr(void *arg)
1431 {
1432 	struct xnb_softc *xnb;
1433 	struct ifnet *ifp;
1434 	netif_tx_back_ring_t *txb;
1435 	RING_IDX req_prod_local;
1436 
1437 	xnb = (struct xnb_softc *)arg;
1438 	ifp = xnb->xnb_ifp;
1439 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1440 
1441 	mtx_lock(&xnb->tx_lock);
1442 	do {
1443 		int notify;
1444 		req_prod_local = txb->sring->req_prod;
1445 		xen_rmb();
1446 
1447 		for (;;) {
1448 			struct mbuf *mbufc;
1449 			int err;
1450 
1451 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1452 			    	       xnb->tx_gnttab);
1453 			if (err || (mbufc == NULL))
1454 				break;
1455 
1456 			/* Send the packet to the generic network stack */
1457 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1458 		}
1459 
1460 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1461 		if (notify != 0)
1462 			xen_intr_signal(xnb->xen_intr_handle);
1463 
1464 		txb->sring->req_event = txb->req_cons + 1;
1465 		xen_mb();
1466 	} while (txb->sring->req_prod != req_prod_local) ;
1467 	mtx_unlock(&xnb->tx_lock);
1468 
1469 	xnb_start(ifp);
1470 }
1471 
1472 
1473 /**
1474  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1475  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1476  * \param[out]	pkt	The returned packet.  If there is an error building
1477  * 			the packet, pkt.list_len will be set to 0.
1478  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1479  * \param[in]	start	The ring index of the first potential request
1480  * \return		The number of requests consumed to build this packet
1481  */
1482 static int
1483 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1484 	     RING_IDX start)
1485 {
1486 	/*
1487 	 * Outline:
1488 	 * 1) Initialize pkt
1489 	 * 2) Read the first request of the packet
1490 	 * 3) Read the extras
1491 	 * 4) Set cdr
1492 	 * 5) Loop on the remainder of the packet
1493 	 * 6) Finalize pkt (stuff like car_size and list_len)
1494 	 */
1495 	int idx = start;
1496 	int discard = 0;	/* whether to discard the packet */
1497 	int more_data = 0;	/* there are more request past the last one */
1498 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1499 
1500 	xnb_pkt_initialize(pkt);
1501 
1502 	/* Read the first request */
1503 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1504 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1505 		pkt->size = tx->size;
1506 		pkt->flags = tx->flags & ~NETTXF_more_data;
1507 		more_data = tx->flags & NETTXF_more_data;
1508 		pkt->list_len++;
1509 		pkt->car = idx;
1510 		idx++;
1511 	}
1512 
1513 	/* Read the extra info */
1514 	if ((pkt->flags & NETTXF_extra_info) &&
1515 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1516 		netif_extra_info_t *ext =
1517 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1518 		pkt->extra.type = ext->type;
1519 		switch (pkt->extra.type) {
1520 			case XEN_NETIF_EXTRA_TYPE_GSO:
1521 				pkt->extra.u.gso = ext->u.gso;
1522 				break;
1523 			default:
1524 				/*
1525 				 * The reference Linux netfront driver will
1526 				 * never set any other extra.type.  So we don't
1527 				 * know what to do with it.  Let's print an
1528 				 * error, then consume and discard the packet
1529 				 */
1530 				printf("xnb(%s:%d): Unknown extra info type %d."
1531 				       "  Discarding packet\n",
1532 				       __func__, __LINE__, pkt->extra.type);
1533 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1534 				    start));
1535 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1536 				    idx));
1537 				discard = 1;
1538 				break;
1539 		}
1540 
1541 		pkt->extra.flags = ext->flags;
1542 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1543 			/*
1544 			 * The reference linux netfront driver never sets this
1545 			 * flag (nor does any other known netfront).  So we
1546 			 * will discard the packet.
1547 			 */
1548 			printf("xnb(%s:%d): Request sets "
1549 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1550 			    "that\n", __func__, __LINE__);
1551 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1552 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1553 			discard = 1;
1554 		}
1555 
1556 		idx++;
1557 	}
1558 
1559 	/* Set cdr.  If there is not more data, cdr is invalid */
1560 	pkt->cdr = idx;
1561 
1562 	/* Loop on remainder of packet */
1563 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1564 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1565 		pkt->list_len++;
1566 		cdr_size += tx->size;
1567 		if (tx->flags & ~NETTXF_more_data) {
1568 			/* There should be no other flags set at this point */
1569 			printf("xnb(%s:%d): Request sets unknown flags %d "
1570 			    "after the 1st request in the packet.\n",
1571 			    __func__, __LINE__, tx->flags);
1572 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1573 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1574 		}
1575 
1576 		more_data = tx->flags & NETTXF_more_data;
1577 		idx++;
1578 	}
1579 
1580 	/* Finalize packet */
1581 	if (more_data != 0) {
1582 		/* The ring ran out of requests before finishing the packet */
1583 		xnb_pkt_invalidate(pkt);
1584 		idx = start;	/* tell caller that we consumed no requests */
1585 	} else {
1586 		/* Calculate car_size */
1587 		pkt->car_size = pkt->size - cdr_size;
1588 	}
1589 	if (discard != 0) {
1590 		xnb_pkt_invalidate(pkt);
1591 	}
1592 
1593 	return idx - start;
1594 }
1595 
1596 
1597 /**
1598  * Respond to all the requests that constituted pkt.  Builds the responses and
1599  * writes them to the ring, but doesn't push them to the shared ring.
1600  * \param[in] pkt	the packet that needs a response
1601  * \param[in] error	true if there was an error handling the packet, such
1602  * 			as in the hypervisor copy op or mbuf allocation
1603  * \param[out] ring	Responses go here
1604  */
1605 static void
1606 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1607 	      int error)
1608 {
1609 	/*
1610 	 * Outline:
1611 	 * 1) Respond to the first request
1612 	 * 2) Respond to the extra info reques
1613 	 * Loop through every remaining request in the packet, generating
1614 	 * responses that copy those requests' ids and sets the status
1615 	 * appropriately.
1616 	 */
1617 	netif_tx_request_t *tx;
1618 	netif_tx_response_t *rsp;
1619 	int i;
1620 	uint16_t status;
1621 
1622 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1623 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1624 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1625 	    ("Cannot respond to ring requests out of order"));
1626 
1627 	if (pkt->list_len >= 1) {
1628 		uint16_t id;
1629 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1630 		id = tx->id;
1631 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1632 		rsp->id = id;
1633 		rsp->status = status;
1634 		ring->rsp_prod_pvt++;
1635 
1636 		if (pkt->flags & NETRXF_extra_info) {
1637 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1638 			rsp->status = NETIF_RSP_NULL;
1639 			ring->rsp_prod_pvt++;
1640 		}
1641 	}
1642 
1643 	for (i=0; i < pkt->list_len - 1; i++) {
1644 		uint16_t id;
1645 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1646 		id = tx->id;
1647 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1648 		rsp->id = id;
1649 		rsp->status = status;
1650 		ring->rsp_prod_pvt++;
1651 	}
1652 }
1653 
1654 /**
1655  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1656  * in the mbuf chain, but does not copy the data.  The returned chain must be
1657  * free()'d when no longer needed
1658  * \param[in]	pkt	A packet to model the mbuf chain after
1659  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1660  * 		NULL on failure
1661  */
1662 static struct mbuf*
1663 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1664 {
1665 	/**
1666 	 * \todo consider using a memory pool for mbufs instead of
1667 	 * reallocating them for every packet
1668 	 */
1669 	/** \todo handle extra data */
1670 	struct mbuf *m;
1671 
1672 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1673 
1674 	if (m != NULL) {
1675 		m->m_pkthdr.rcvif = ifp;
1676 		if (pkt->flags & NETTXF_data_validated) {
1677 			/*
1678 			 * We lie to the host OS and always tell it that the
1679 			 * checksums are ok, because the packet is unlikely to
1680 			 * get corrupted going across domains.
1681 			 */
1682 			m->m_pkthdr.csum_flags = (
1683 				CSUM_IP_CHECKED |
1684 				CSUM_IP_VALID   |
1685 				CSUM_DATA_VALID |
1686 				CSUM_PSEUDO_HDR
1687 				);
1688 			m->m_pkthdr.csum_data = 0xffff;
1689 		}
1690 	}
1691 	return m;
1692 }
1693 
1694 /**
1695  * Build a gnttab_copy table that can be used to copy data from a pkt
1696  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1697  * the packet side.
1698  * \param[in]	pkt	pkt's associated requests form the src for
1699  * 			the copy operation
1700  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1701  * \param[out]  gnttab	Storage for the returned grant table
1702  * \param[in]	txb	Pointer to the backend ring structure
1703  * \param[in]	otherend_id	The domain ID of the other end of the copy
1704  * \return 		The number of gnttab entries filled
1705  */
1706 static int
1707 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc,
1708 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1709 		 domid_t otherend_id)
1710 {
1711 
1712 	struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1713 	int gnt_idx = 0;		/* index into grant table */
1714 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1715 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1716 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1717 	/* size in bytes that still needs to be represented in the table */
1718 	uint16_t size_remaining = pkt->size;
1719 
1720 	while (size_remaining > 0) {
1721 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1722 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1723 		const size_t req_size =
1724 			r_idx == pkt->car ? pkt->car_size : txq->size;
1725 		const size_t pkt_space = req_size - r_ofs;
1726 		/*
1727 		 * space is the largest amount of data that can be copied in the
1728 		 * grant table's next entry
1729 		 */
1730 		const size_t space = MIN(pkt_space, mbuf_space);
1731 
1732 		/* TODO: handle this error condition without panicking */
1733 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1734 
1735 		gnttab[gnt_idx].source.u.ref = txq->gref;
1736 		gnttab[gnt_idx].source.domid = otherend_id;
1737 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1738 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1739 		    mtod(mbuf, vm_offset_t) + m_ofs);
1740 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1741 		    mtod(mbuf, vm_offset_t) + m_ofs);
1742 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1743 		gnttab[gnt_idx].len = space;
1744 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1745 
1746 		gnt_idx++;
1747 		r_ofs += space;
1748 		m_ofs += space;
1749 		size_remaining -= space;
1750 		if (req_size - r_ofs <= 0) {
1751 			/* Must move to the next tx request */
1752 			r_ofs = 0;
1753 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1754 		}
1755 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1756 			/* Must move to the next mbuf */
1757 			m_ofs = 0;
1758 			mbuf = mbuf->m_next;
1759 		}
1760 	}
1761 
1762 	return gnt_idx;
1763 }
1764 
1765 /**
1766  * Check the status of the grant copy operations, and update mbufs various
1767  * non-data fields to reflect the data present.
1768  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1769  * 			the correct length, and data should already be present
1770  * \param[in] gnttab	A grant table for a just completed copy op
1771  * \param[in] n_entries The number of valid entries in the grant table
1772  */
1773 static void
1774 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1775     		 int n_entries)
1776 {
1777 	struct mbuf *mbuf = mbufc;
1778 	int i;
1779 	size_t total_size = 0;
1780 
1781 	for (i = 0; i < n_entries; i++) {
1782 		KASSERT(gnttab[i].status == GNTST_okay,
1783 		    ("Some gnttab_copy entry had error status %hd\n",
1784 		    gnttab[i].status));
1785 
1786 		mbuf->m_len += gnttab[i].len;
1787 		total_size += gnttab[i].len;
1788 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1789 			mbuf = mbuf->m_next;
1790 		}
1791 	}
1792 	mbufc->m_pkthdr.len = total_size;
1793 
1794 #if defined(INET) || defined(INET6)
1795 	xnb_add_mbuf_cksum(mbufc);
1796 #endif
1797 }
1798 
1799 /**
1800  * Dequeue at most one packet from the shared ring
1801  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1802  * 			its private indices will be updated.  But the indices
1803  * 			will not be pushed to the shared ring.
1804  * \param[in] ifnet	Interface to which the packet will be sent
1805  * \param[in] otherend	Domain ID of the other end of the ring
1806  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1807  * 			networking stack
1808  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1809  * 			this a function parameter so that we will take less
1810  * 			stack space.
1811  * \return		An error code
1812  */
1813 static int
1814 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1815 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1816 {
1817 	struct xnb_pkt pkt;
1818 	/* number of tx requests consumed to build the last packet */
1819 	int num_consumed;
1820 	int nr_ents;
1821 
1822 	*mbufc = NULL;
1823 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1824 	if (num_consumed == 0)
1825 		return 0;	/* Nothing to receive */
1826 
1827 	/* update statistics independent of errors */
1828 	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1829 
1830 	/*
1831 	 * if we got here, then 1 or more requests was consumed, but the packet
1832 	 * is not necessarily valid.
1833 	 */
1834 	if (xnb_pkt_is_valid(&pkt) == 0) {
1835 		/* got a garbage packet, respond and drop it */
1836 		xnb_txpkt2rsp(&pkt, txb, 1);
1837 		txb->req_cons += num_consumed;
1838 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1839 				num_consumed);
1840 		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1841 		return EINVAL;
1842 	}
1843 
1844 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1845 
1846 	if (*mbufc == NULL) {
1847 		/*
1848 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1849 		 * not consume the requests
1850 		 */
1851 		xnb_txpkt2rsp(&pkt, txb, 1);
1852 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1853 		    num_consumed);
1854 		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1855 		return ENOMEM;
1856 	}
1857 
1858 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1859 
1860 	if (nr_ents > 0) {
1861 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1862 		    gnttab, nr_ents);
1863 		KASSERT(hv_ret == 0,
1864 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1865 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1866 	}
1867 
1868 	xnb_txpkt2rsp(&pkt, txb, 0);
1869 	txb->req_cons += num_consumed;
1870 	return 0;
1871 }
1872 
1873 /**
1874  * Create an xnb_pkt based on the contents of an mbuf chain.
1875  * \param[in] mbufc	mbuf chain to transform into a packet
1876  * \param[out] pkt	Storage for the newly generated xnb_pkt
1877  * \param[in] start	The ring index of the first available slot in the rx
1878  * 			ring
1879  * \param[in] space	The number of free slots in the rx ring
1880  * \retval 0		Success
1881  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1882  * \retval EAGAIN	There was not enough space in the ring to queue the
1883  * 			packet
1884  */
1885 static int
1886 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1887 	      RING_IDX start, int space)
1888 {
1889 
1890 	int retval = 0;
1891 
1892 	if ((mbufc == NULL) ||
1893 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1894 	     (mbufc->m_pkthdr.len == 0)) {
1895 		xnb_pkt_invalidate(pkt);
1896 		retval = EINVAL;
1897 	} else {
1898 		int slots_required;
1899 
1900 		xnb_pkt_validate(pkt);
1901 		pkt->flags = 0;
1902 		pkt->size = mbufc->m_pkthdr.len;
1903 		pkt->car = start;
1904 		pkt->car_size = mbufc->m_len;
1905 
1906 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1907 			pkt->flags |= NETRXF_extra_info;
1908 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1909 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1910 			pkt->extra.u.gso.pad = 0;
1911 			pkt->extra.u.gso.features = 0;
1912 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1913 			pkt->extra.flags = 0;
1914 			pkt->cdr = start + 2;
1915 		} else {
1916 			pkt->cdr = start + 1;
1917 		}
1918 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1919 			pkt->flags |=
1920 			    (NETRXF_csum_blank | NETRXF_data_validated);
1921 		}
1922 
1923 		/*
1924 		 * Each ring response can have up to PAGE_SIZE of data.
1925 		 * Assume that we can defragment the mbuf chain efficiently
1926 		 * into responses so that each response but the last uses all
1927 		 * PAGE_SIZE bytes.
1928 		 */
1929 		pkt->list_len = howmany(pkt->size, PAGE_SIZE);
1930 
1931 		if (pkt->list_len > 1) {
1932 			pkt->flags |= NETRXF_more_data;
1933 		}
1934 
1935 		slots_required = pkt->list_len +
1936 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1937 		if (slots_required > space) {
1938 			xnb_pkt_invalidate(pkt);
1939 			retval = EAGAIN;
1940 		}
1941 	}
1942 
1943 	return retval;
1944 }
1945 
1946 /**
1947  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1948  * to the frontend's shared buffers.  Does not actually perform the copy.
1949  * Always uses gref's on the other end's side.
1950  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1951  * 			operatoin
1952  * \param[in]	mbufc	The source for the copy operation
1953  * \param[out]	gnttab	Storage for the returned grant table
1954  * \param[in]	rxb	Pointer to the backend ring structure
1955  * \param[in]	otherend_id	The domain ID of the other end of the copy
1956  * \return 		The number of gnttab entries filled
1957  */
1958 static int
1959 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1960 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1961 		 domid_t otherend_id)
1962 {
1963 
1964 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1965 	int gnt_idx = 0;		/* index into grant table */
1966 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1967 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1968 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1969 	/* size in bytes that still needs to be represented in the table */
1970 	uint16_t size_remaining;
1971 
1972 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1973 
1974 	while (size_remaining > 0) {
1975 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1976 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1977 		/* Xen shared pages have an implied size of PAGE_SIZE */
1978 		const size_t req_size = PAGE_SIZE;
1979 		const size_t pkt_space = req_size - r_ofs;
1980 		/*
1981 		 * space is the largest amount of data that can be copied in the
1982 		 * grant table's next entry
1983 		 */
1984 		const size_t space = MIN(pkt_space, mbuf_space);
1985 
1986 		/* TODO: handle this error condition without panicing */
1987 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1988 
1989 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1990 		gnttab[gnt_idx].dest.domid = otherend_id;
1991 		gnttab[gnt_idx].dest.offset = r_ofs;
1992 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1993 		    mtod(mbuf, vm_offset_t) + m_ofs);
1994 		gnttab[gnt_idx].source.offset = virt_to_offset(
1995 		    mtod(mbuf, vm_offset_t) + m_ofs);
1996 		gnttab[gnt_idx].source.domid = DOMID_SELF;
1997 		gnttab[gnt_idx].len = space;
1998 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1999 
2000 		gnt_idx++;
2001 
2002 		r_ofs += space;
2003 		m_ofs += space;
2004 		size_remaining -= space;
2005 		if (req_size - r_ofs <= 0) {
2006 			/* Must move to the next rx request */
2007 			r_ofs = 0;
2008 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2009 		}
2010 		if (mbuf->m_len - m_ofs <= 0) {
2011 			/* Must move to the next mbuf */
2012 			m_ofs = 0;
2013 			mbuf = mbuf->m_next;
2014 		}
2015 	}
2016 
2017 	return gnt_idx;
2018 }
2019 
2020 /**
2021  * Generates responses for all the requests that constituted pkt.  Builds
2022  * responses and writes them to the ring, but doesn't push the shared ring
2023  * indices.
2024  * \param[in] pkt	the packet that needs a response
2025  * \param[in] gnttab	The grant copy table corresponding to this packet.
2026  * 			Used to determine how many rsp->netif_rx_response_t's to
2027  * 			generate.
2028  * \param[in] n_entries	Number of relevant entries in the grant table
2029  * \param[out] ring	Responses go here
2030  * \return		The number of RX requests that were consumed to generate
2031  * 			the responses
2032  */
2033 static int
2034 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2035     	      int n_entries, netif_rx_back_ring_t *ring)
2036 {
2037 	/*
2038 	 * This code makes the following assumptions:
2039 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2040 	 *	* The entries in gnttab are grouped by their grefs: any two
2041 	 *	   entries with the same gref must be adjacent
2042 	 */
2043 	int error = 0;
2044 	int gnt_idx, i;
2045 	int n_responses = 0;
2046 	grant_ref_t last_gref = GRANT_REF_INVALID;
2047 	RING_IDX r_idx;
2048 
2049 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2050 
2051 	/*
2052 	 * In the event of an error, we only need to send one response to the
2053 	 * netfront.  In that case, we musn't write any data to the responses
2054 	 * after the one we send.  So we must loop all the way through gnttab
2055 	 * looking for errors before we generate any responses
2056 	 *
2057 	 * Since we're looping through the grant table anyway, we'll count the
2058 	 * number of different gref's in it, which will tell us how many
2059 	 * responses to generate
2060 	 */
2061 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2062 		int16_t status = gnttab[gnt_idx].status;
2063 		if (status != GNTST_okay) {
2064 			DPRINTF(
2065 			    "Got error %d for hypervisor gnttab_copy status\n",
2066 			    status);
2067 			error = 1;
2068 			break;
2069 		}
2070 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2071 			n_responses++;
2072 			last_gref = gnttab[gnt_idx].dest.u.ref;
2073 		}
2074 	}
2075 
2076 	if (error != 0) {
2077 		uint16_t id;
2078 		netif_rx_response_t *rsp;
2079 
2080 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2081 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2082 		rsp->id = id;
2083 		rsp->status = NETIF_RSP_ERROR;
2084 		n_responses = 1;
2085 	} else {
2086 		gnt_idx = 0;
2087 		const int has_extra = pkt->flags & NETRXF_extra_info;
2088 		if (has_extra != 0)
2089 			n_responses++;
2090 
2091 		for (i = 0; i < n_responses; i++) {
2092 			netif_rx_request_t rxq;
2093 			netif_rx_response_t *rsp;
2094 
2095 			r_idx = ring->rsp_prod_pvt + i;
2096 			/*
2097 			 * We copy the structure of rxq instead of making a
2098 			 * pointer because it shares the same memory as rsp.
2099 			 */
2100 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2101 			rsp = RING_GET_RESPONSE(ring, r_idx);
2102 			if (has_extra && (i == 1)) {
2103 				netif_extra_info_t *ext =
2104 					(netif_extra_info_t*)rsp;
2105 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2106 				ext->flags = 0;
2107 				ext->u.gso.size = pkt->extra.u.gso.size;
2108 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2109 				ext->u.gso.pad = 0;
2110 				ext->u.gso.features = 0;
2111 			} else {
2112 				rsp->id = rxq.id;
2113 				rsp->status = GNTST_okay;
2114 				rsp->offset = 0;
2115 				rsp->flags = 0;
2116 				if (i < pkt->list_len - 1)
2117 					rsp->flags |= NETRXF_more_data;
2118 				if ((i == 0) && has_extra)
2119 					rsp->flags |= NETRXF_extra_info;
2120 				if ((i == 0) &&
2121 					(pkt->flags & NETRXF_data_validated)) {
2122 					rsp->flags |= NETRXF_data_validated;
2123 					rsp->flags |= NETRXF_csum_blank;
2124 				}
2125 				rsp->status = 0;
2126 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2127 				    gnt_idx++) {
2128 					rsp->status += gnttab[gnt_idx].len;
2129 				}
2130 			}
2131 		}
2132 	}
2133 
2134 	ring->req_cons += n_responses;
2135 	ring->rsp_prod_pvt += n_responses;
2136 	return n_responses;
2137 }
2138 
2139 #if defined(INET) || defined(INET6)
2140 /**
2141  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2142  * in the chain must start with a struct ether_header.
2143  *
2144  * XXX This function will perform incorrectly on UDP packets that are split up
2145  * into multiple ethernet frames.
2146  */
2147 static void
2148 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2149 {
2150 	struct ether_header *eh;
2151 	struct ip *iph;
2152 	uint16_t ether_type;
2153 
2154 	eh = mtod(mbufc, struct ether_header*);
2155 	ether_type = ntohs(eh->ether_type);
2156 	if (ether_type != ETHERTYPE_IP) {
2157 		/* Nothing to calculate */
2158 		return;
2159 	}
2160 
2161 	iph = (struct ip*)(eh + 1);
2162 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2163 		iph->ip_sum = 0;
2164 		iph->ip_sum = in_cksum_hdr(iph);
2165 	}
2166 
2167 	switch (iph->ip_p) {
2168 	case IPPROTO_TCP:
2169 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2170 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2171 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2172 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2173 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2174 			th->th_sum = in_cksum_skip(mbufc,
2175 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2176 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2177 		}
2178 		break;
2179 	case IPPROTO_UDP:
2180 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2181 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2182 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2183 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2184 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2185 			uh->uh_sum = in_cksum_skip(mbufc,
2186 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2187 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2188 		}
2189 		break;
2190 	default:
2191 		break;
2192 	}
2193 }
2194 #endif /* INET || INET6 */
2195 
2196 static void
2197 xnb_stop(struct xnb_softc *xnb)
2198 {
2199 	struct ifnet *ifp;
2200 
2201 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2202 	ifp = xnb->xnb_ifp;
2203 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2204 	if_link_state_change(ifp, LINK_STATE_DOWN);
2205 }
2206 
2207 static int
2208 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2209 {
2210 	struct xnb_softc *xnb = ifp->if_softc;
2211 	struct ifreq *ifr = (struct ifreq*) data;
2212 #ifdef INET
2213 	struct ifaddr *ifa = (struct ifaddr*)data;
2214 #endif
2215 	int error = 0;
2216 
2217 	switch (cmd) {
2218 		case SIOCSIFFLAGS:
2219 			mtx_lock(&xnb->sc_lock);
2220 			if (ifp->if_flags & IFF_UP) {
2221 				xnb_ifinit_locked(xnb);
2222 			} else {
2223 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2224 					xnb_stop(xnb);
2225 				}
2226 			}
2227 			/*
2228 			 * Note: netfront sets a variable named xn_if_flags
2229 			 * here, but that variable is never read
2230 			 */
2231 			mtx_unlock(&xnb->sc_lock);
2232 			break;
2233 		case SIOCSIFADDR:
2234 #ifdef INET
2235 			mtx_lock(&xnb->sc_lock);
2236 			if (ifa->ifa_addr->sa_family == AF_INET) {
2237 				ifp->if_flags |= IFF_UP;
2238 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2239 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2240 							IFF_DRV_OACTIVE);
2241 					if_link_state_change(ifp,
2242 							LINK_STATE_DOWN);
2243 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2244 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2245 					if_link_state_change(ifp,
2246 					    LINK_STATE_UP);
2247 				}
2248 				arp_ifinit(ifp, ifa);
2249 				mtx_unlock(&xnb->sc_lock);
2250 			} else {
2251 				mtx_unlock(&xnb->sc_lock);
2252 #endif
2253 				error = ether_ioctl(ifp, cmd, data);
2254 #ifdef INET
2255 			}
2256 #endif
2257 			break;
2258 		case SIOCSIFCAP:
2259 			mtx_lock(&xnb->sc_lock);
2260 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2261 				ifp->if_capenable |= IFCAP_TXCSUM;
2262 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2263 			} else {
2264 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2265 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2266 			}
2267 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2268 				ifp->if_capenable |= IFCAP_RXCSUM;
2269 			} else {
2270 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2271 			}
2272 			/*
2273 			 * TODO enable TSO4 and LRO once we no longer need
2274 			 * to calculate checksums in software
2275 			 */
2276 #if 0
2277 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2278 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2279 					printf("xnb: Xen netif requires that "
2280 						"TXCSUM be enabled in order "
2281 						"to use TSO4\n");
2282 					error = EINVAL;
2283 				} else {
2284 					ifp->if_capenable |= IFCAP_TSO4;
2285 					ifp->if_hwassist |= CSUM_TSO;
2286 				}
2287 			} else {
2288 				ifp->if_capenable &= ~(IFCAP_TSO4);
2289 				ifp->if_hwassist &= ~(CSUM_TSO);
2290 			}
2291 			if (ifr->ifreqcap |= IFCAP_LRO) {
2292 				ifp->if_capenable |= IFCAP_LRO;
2293 			} else {
2294 				ifp->if_capenable &= ~(IFCAP_LRO);
2295 			}
2296 #endif
2297 			mtx_unlock(&xnb->sc_lock);
2298 			break;
2299 		case SIOCSIFMTU:
2300 			ifp->if_mtu = ifr->ifr_mtu;
2301 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2302 			xnb_ifinit(xnb);
2303 			break;
2304 		case SIOCADDMULTI:
2305 		case SIOCDELMULTI:
2306 		case SIOCSIFMEDIA:
2307 		case SIOCGIFMEDIA:
2308 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2309 			break;
2310 		default:
2311 			error = ether_ioctl(ifp, cmd, data);
2312 			break;
2313 	}
2314 	return (error);
2315 }
2316 
2317 static void
2318 xnb_start_locked(struct ifnet *ifp)
2319 {
2320 	netif_rx_back_ring_t *rxb;
2321 	struct xnb_softc *xnb;
2322 	struct mbuf *mbufc;
2323 	RING_IDX req_prod_local;
2324 
2325 	xnb = ifp->if_softc;
2326 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2327 
2328 	if (!xnb->carrier)
2329 		return;
2330 
2331 	do {
2332 		int out_of_space = 0;
2333 		int notify;
2334 		req_prod_local = rxb->sring->req_prod;
2335 		xen_rmb();
2336 		for (;;) {
2337 			int error;
2338 
2339 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2340 			if (mbufc == NULL)
2341 				break;
2342 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2343 			    		 xnb->rx_gnttab);
2344 			switch (error) {
2345 				case EAGAIN:
2346 					/*
2347 					 * Insufficient space in the ring.
2348 					 * Requeue pkt and send when space is
2349 					 * available.
2350 					 */
2351 					IF_PREPEND(&ifp->if_snd, mbufc);
2352 					/*
2353 					 * Perhaps the frontend missed an IRQ
2354 					 * and went to sleep.  Notify it to wake
2355 					 * it up.
2356 					 */
2357 					out_of_space = 1;
2358 					break;
2359 
2360 				case EINVAL:
2361 					/* OS gave a corrupt packet.  Drop it.*/
2362 					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2363 					/* FALLTHROUGH */
2364 				default:
2365 					/* Send succeeded, or packet had error.
2366 					 * Free the packet */
2367 					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2368 					if (mbufc)
2369 						m_freem(mbufc);
2370 					break;
2371 			}
2372 			if (out_of_space != 0)
2373 				break;
2374 		}
2375 
2376 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2377 		if ((notify != 0) || (out_of_space != 0))
2378 			xen_intr_signal(xnb->xen_intr_handle);
2379 		rxb->sring->req_event = req_prod_local + 1;
2380 		xen_mb();
2381 	} while (rxb->sring->req_prod != req_prod_local) ;
2382 }
2383 
2384 /**
2385  * Sends one packet to the ring.  Blocks until the packet is on the ring
2386  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2387  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2388  * 			otherend will not be notified.
2389  * \param[in]	otherend The domain ID of the other end of the connection
2390  * \retval	EAGAIN	The ring did not have enough space for the packet.
2391  * 			The ring has not been modified
2392  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2393  * 			this a function parameter so that we will take less
2394  * 			stack space.
2395  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2396  */
2397 static int
2398 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2399 	 gnttab_copy_table gnttab)
2400 {
2401 	struct xnb_pkt pkt;
2402 	int error, n_entries, n_reqs;
2403 	RING_IDX space;
2404 
2405 	space = ring->sring->req_prod - ring->req_cons;
2406 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2407 	if (error != 0)
2408 		return error;
2409 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2410 	if (n_entries != 0) {
2411 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2412 		    gnttab, n_entries);
2413 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2414 		    hv_ret));
2415 	}
2416 
2417 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2418 
2419 	return 0;
2420 }
2421 
2422 static void
2423 xnb_start(struct ifnet *ifp)
2424 {
2425 	struct xnb_softc *xnb;
2426 
2427 	xnb = ifp->if_softc;
2428 	mtx_lock(&xnb->rx_lock);
2429 	xnb_start_locked(ifp);
2430 	mtx_unlock(&xnb->rx_lock);
2431 }
2432 
2433 /* equivalent of network_open() in Linux */
2434 static void
2435 xnb_ifinit_locked(struct xnb_softc *xnb)
2436 {
2437 	struct ifnet *ifp;
2438 
2439 	ifp = xnb->xnb_ifp;
2440 
2441 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2442 
2443 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2444 		return;
2445 
2446 	xnb_stop(xnb);
2447 
2448 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2449 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2450 	if_link_state_change(ifp, LINK_STATE_UP);
2451 }
2452 
2453 
2454 static void
2455 xnb_ifinit(void *xsc)
2456 {
2457 	struct xnb_softc *xnb = xsc;
2458 
2459 	mtx_lock(&xnb->sc_lock);
2460 	xnb_ifinit_locked(xnb);
2461 	mtx_unlock(&xnb->sc_lock);
2462 }
2463 
2464 /**
2465  * Callback used by the generic networking code to tell us when our carrier
2466  * state has changed.  Since we don't have a physical carrier, we don't care
2467  */
2468 static int
2469 xnb_ifmedia_upd(struct ifnet *ifp)
2470 {
2471 	return (0);
2472 }
2473 
2474 /**
2475  * Callback used by the generic networking code to ask us what our carrier
2476  * state is.  Since we don't have a physical carrier, this is very simple
2477  */
2478 static void
2479 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2480 {
2481 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2482 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2483 }
2484 
2485 
2486 /*---------------------------- NewBus Registration ---------------------------*/
2487 static device_method_t xnb_methods[] = {
2488 	/* Device interface */
2489 	DEVMETHOD(device_probe,		xnb_probe),
2490 	DEVMETHOD(device_attach,	xnb_attach),
2491 	DEVMETHOD(device_detach,	xnb_detach),
2492 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2493 	DEVMETHOD(device_suspend,	xnb_suspend),
2494 	DEVMETHOD(device_resume,	xnb_resume),
2495 
2496 	/* Xenbus interface */
2497 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2498 
2499 	{ 0, 0 }
2500 };
2501 
2502 static driver_t xnb_driver = {
2503 	"xnb",
2504 	xnb_methods,
2505 	sizeof(struct xnb_softc),
2506 };
2507 devclass_t xnb_devclass;
2508 
2509 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2510 
2511 
2512 /*-------------------------- Unit Tests -------------------------------------*/
2513 #ifdef XNB_DEBUG
2514 #include "netback_unit_tests.c"
2515 #endif
2516