1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2009-2011 Spectra Logic Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 19 * NO WARRANTY 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 28 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 29 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGES. 31 * 32 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 33 * Alan Somers (Spectra Logic Corporation) 34 * John Suykerbuyk (Spectra Logic Corporation) 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 /** 41 * \file netback.c 42 * 43 * \brief Device driver supporting the vending of network access 44 * from this FreeBSD domain to other domains. 45 */ 46 #include "opt_inet.h" 47 #include "opt_inet6.h" 48 49 #include <sys/param.h> 50 #include <sys/kernel.h> 51 52 #include <sys/bus.h> 53 #include <sys/module.h> 54 #include <sys/rman.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_arp.h> 62 #include <net/ethernet.h> 63 #include <net/if_dl.h> 64 #include <net/if_media.h> 65 #include <net/if_types.h> 66 67 #include <netinet/in.h> 68 #include <netinet/ip.h> 69 #include <netinet/if_ether.h> 70 #if __FreeBSD_version >= 700000 71 #include <netinet/tcp.h> 72 #endif 73 #include <netinet/ip_icmp.h> 74 #include <netinet/udp.h> 75 #include <machine/in_cksum.h> 76 77 #include <vm/vm.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_extern.h> 80 #include <vm/vm_kern.h> 81 82 #include <machine/_inttypes.h> 83 84 #include <xen/xen-os.h> 85 #include <xen/hypervisor.h> 86 #include <xen/xen_intr.h> 87 #include <xen/interface/io/netif.h> 88 #include <xen/xenbus/xenbusvar.h> 89 90 /*--------------------------- Compile-time Tunables --------------------------*/ 91 92 /*---------------------------------- Macros ----------------------------------*/ 93 /** 94 * Custom malloc type for all driver allocations. 95 */ 96 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data"); 97 98 #define XNB_SG 1 /* netback driver supports feature-sg */ 99 #define XNB_GSO_TCPV4 0 /* netback driver supports feature-gso-tcpv4 */ 100 #define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */ 101 #define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */ 102 103 #undef XNB_DEBUG 104 #define XNB_DEBUG /* hardcode on during development */ 105 106 #ifdef XNB_DEBUG 107 #define DPRINTF(fmt, args...) \ 108 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) 109 #else 110 #define DPRINTF(fmt, args...) do {} while (0) 111 #endif 112 113 /* Default length for stack-allocated grant tables */ 114 #define GNTTAB_LEN (64) 115 116 /* Features supported by all backends. TSO and LRO can be negotiated */ 117 #define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 118 119 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 120 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 121 122 /** 123 * Two argument version of the standard macro. Second argument is a tentative 124 * value of req_cons 125 */ 126 #define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \ 127 unsigned int req = (_r)->sring->req_prod - cons; \ 128 unsigned int rsp = RING_SIZE(_r) - \ 129 (cons - (_r)->rsp_prod_pvt); \ 130 req < rsp ? req : rsp; \ 131 }) 132 133 #define virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT) 134 #define virt_to_offset(x) ((x) & (PAGE_SIZE - 1)) 135 136 /** 137 * Predefined array type of grant table copy descriptors. Used to pass around 138 * statically allocated memory structures. 139 */ 140 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN]; 141 142 /*--------------------------- Forward Declarations ---------------------------*/ 143 struct xnb_softc; 144 struct xnb_pkt; 145 146 static void xnb_attach_failed(struct xnb_softc *xnb, 147 int err, const char *fmt, ...) 148 __printflike(3,4); 149 static int xnb_shutdown(struct xnb_softc *xnb); 150 static int create_netdev(device_t dev); 151 static int xnb_detach(device_t dev); 152 static int xnb_ifmedia_upd(struct ifnet *ifp); 153 static void xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 154 static void xnb_intr(void *arg); 155 static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend, 156 const struct mbuf *mbufc, gnttab_copy_table gnttab); 157 static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, 158 struct mbuf **mbufc, struct ifnet *ifnet, 159 gnttab_copy_table gnttab); 160 static int xnb_ring2pkt(struct xnb_pkt *pkt, 161 const netif_tx_back_ring_t *tx_ring, 162 RING_IDX start); 163 static void xnb_txpkt2rsp(const struct xnb_pkt *pkt, 164 netif_tx_back_ring_t *ring, int error); 165 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp); 166 static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt, 167 struct mbuf *mbufc, 168 gnttab_copy_table gnttab, 169 const netif_tx_back_ring_t *txb, 170 domid_t otherend_id); 171 static void xnb_update_mbufc(struct mbuf *mbufc, 172 const gnttab_copy_table gnttab, int n_entries); 173 static int xnb_mbufc2pkt(const struct mbuf *mbufc, 174 struct xnb_pkt *pkt, 175 RING_IDX start, int space); 176 static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, 177 const struct mbuf *mbufc, 178 gnttab_copy_table gnttab, 179 const netif_rx_back_ring_t *rxb, 180 domid_t otherend_id); 181 static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt, 182 const gnttab_copy_table gnttab, int n_entries, 183 netif_rx_back_ring_t *ring); 184 static void xnb_stop(struct xnb_softc*); 185 static int xnb_ioctl(struct ifnet*, u_long, caddr_t); 186 static void xnb_start_locked(struct ifnet*); 187 static void xnb_start(struct ifnet*); 188 static void xnb_ifinit_locked(struct xnb_softc*); 189 static void xnb_ifinit(void*); 190 #ifdef XNB_DEBUG 191 static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS); 192 static int xnb_dump_rings(SYSCTL_HANDLER_ARGS); 193 #endif 194 #if defined(INET) || defined(INET6) 195 static void xnb_add_mbuf_cksum(struct mbuf *mbufc); 196 #endif 197 /*------------------------------ Data Structures -----------------------------*/ 198 199 200 /** 201 * Representation of a xennet packet. Simplified version of a packet as 202 * stored in the Xen tx ring. Applicable to both RX and TX packets 203 */ 204 struct xnb_pkt{ 205 /** 206 * Array index of the first data-bearing (eg, not extra info) entry 207 * for this packet 208 */ 209 RING_IDX car; 210 211 /** 212 * Array index of the second data-bearing entry for this packet. 213 * Invalid if the packet has only one data-bearing entry. If the 214 * packet has more than two data-bearing entries, then the second 215 * through the last will be sequential modulo the ring size 216 */ 217 RING_IDX cdr; 218 219 /** 220 * Optional extra info. Only valid if flags contains 221 * NETTXF_extra_info. Note that extra.type will always be 222 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback 223 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_* 224 */ 225 netif_extra_info_t extra; 226 227 /** Size of entire packet in bytes. */ 228 uint16_t size; 229 230 /** The size of the first entry's data in bytes */ 231 uint16_t car_size; 232 233 /** 234 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are 235 * not the same for TX and RX packets 236 */ 237 uint16_t flags; 238 239 /** 240 * The number of valid data-bearing entries (either netif_tx_request's 241 * or netif_rx_response's) in the packet. If this is 0, it means the 242 * entire packet is invalid. 243 */ 244 uint16_t list_len; 245 246 /** There was an error processing the packet */ 247 uint8_t error; 248 }; 249 250 /** xnb_pkt method: initialize it */ 251 static inline void 252 xnb_pkt_initialize(struct xnb_pkt *pxnb) 253 { 254 bzero(pxnb, sizeof(*pxnb)); 255 } 256 257 /** xnb_pkt method: mark the packet as valid */ 258 static inline void 259 xnb_pkt_validate(struct xnb_pkt *pxnb) 260 { 261 pxnb->error = 0; 262 }; 263 264 /** xnb_pkt method: mark the packet as invalid */ 265 static inline void 266 xnb_pkt_invalidate(struct xnb_pkt *pxnb) 267 { 268 pxnb->error = 1; 269 }; 270 271 /** xnb_pkt method: Check whether the packet is valid */ 272 static inline int 273 xnb_pkt_is_valid(const struct xnb_pkt *pxnb) 274 { 275 return (! pxnb->error); 276 } 277 278 #ifdef XNB_DEBUG 279 /** xnb_pkt method: print the packet's contents in human-readable format*/ 280 static void __unused 281 xnb_dump_pkt(const struct xnb_pkt *pkt) { 282 if (pkt == NULL) { 283 DPRINTF("Was passed a null pointer.\n"); 284 return; 285 } 286 DPRINTF("pkt address= %p\n", pkt); 287 DPRINTF("pkt->size=%d\n", pkt->size); 288 DPRINTF("pkt->car_size=%d\n", pkt->car_size); 289 DPRINTF("pkt->flags=0x%04x\n", pkt->flags); 290 DPRINTF("pkt->list_len=%d\n", pkt->list_len); 291 /* DPRINTF("pkt->extra"); TODO */ 292 DPRINTF("pkt->car=%d\n", pkt->car); 293 DPRINTF("pkt->cdr=%d\n", pkt->cdr); 294 DPRINTF("pkt->error=%d\n", pkt->error); 295 } 296 #endif /* XNB_DEBUG */ 297 298 static void 299 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq) 300 { 301 if (txreq != NULL) { 302 DPRINTF("netif_tx_request index =%u\n", idx); 303 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref); 304 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset); 305 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags); 306 DPRINTF("netif_tx_request.id =%hu\n", txreq->id); 307 DPRINTF("netif_tx_request.size =%hu\n", txreq->size); 308 } 309 } 310 311 312 /** 313 * \brief Configuration data for a shared memory request ring 314 * used to communicate with the front-end client of this 315 * this driver. 316 */ 317 struct xnb_ring_config { 318 /** 319 * Runtime structures for ring access. Unfortunately, TX and RX rings 320 * use different data structures, and that cannot be changed since it 321 * is part of the interdomain protocol. 322 */ 323 union{ 324 netif_rx_back_ring_t rx_ring; 325 netif_tx_back_ring_t tx_ring; 326 } back_ring; 327 328 /** 329 * The device bus address returned by the hypervisor when 330 * mapping the ring and required to unmap it when a connection 331 * is torn down. 332 */ 333 uint64_t bus_addr; 334 335 /** The pseudo-physical address where ring memory is mapped.*/ 336 uint64_t gnt_addr; 337 338 /** KVA address where ring memory is mapped. */ 339 vm_offset_t va; 340 341 /** 342 * Grant table handles, one per-ring page, returned by the 343 * hyperpervisor upon mapping of the ring and required to 344 * unmap it when a connection is torn down. 345 */ 346 grant_handle_t handle; 347 348 /** The number of ring pages mapped for the current connection. */ 349 unsigned ring_pages; 350 351 /** 352 * The grant references, one per-ring page, supplied by the 353 * front-end, allowing us to reference the ring pages in the 354 * front-end's domain and to map these pages into our own domain. 355 */ 356 grant_ref_t ring_ref; 357 }; 358 359 /** 360 * Per-instance connection state flags. 361 */ 362 typedef enum 363 { 364 /** Communication with the front-end has been established. */ 365 XNBF_RING_CONNECTED = 0x01, 366 367 /** 368 * Front-end requests exist in the ring and are waiting for 369 * xnb_xen_req objects to free up. 370 */ 371 XNBF_RESOURCE_SHORTAGE = 0x02, 372 373 /** Connection teardown has started. */ 374 XNBF_SHUTDOWN = 0x04, 375 376 /** A thread is already performing shutdown processing. */ 377 XNBF_IN_SHUTDOWN = 0x08 378 } xnb_flag_t; 379 380 /** 381 * Types of rings. Used for array indices and to identify a ring's control 382 * data structure type 383 */ 384 typedef enum{ 385 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */ 386 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */ 387 XNB_NUM_RING_TYPES 388 } xnb_ring_type_t; 389 390 /** 391 * Per-instance configuration data. 392 */ 393 struct xnb_softc { 394 /** NewBus device corresponding to this instance. */ 395 device_t dev; 396 397 /* Media related fields */ 398 399 /** Generic network media state */ 400 struct ifmedia sc_media; 401 402 /** Media carrier info */ 403 struct ifnet *xnb_ifp; 404 405 /** Our own private carrier state */ 406 unsigned carrier; 407 408 /** Device MAC Address */ 409 uint8_t mac[ETHER_ADDR_LEN]; 410 411 /* Xen related fields */ 412 413 /** 414 * \brief The netif protocol abi in effect. 415 * 416 * There are situations where the back and front ends can 417 * have a different, native abi (e.g. intel x86_64 and 418 * 32bit x86 domains on the same machine). The back-end 419 * always accommodates the front-end's native abi. That 420 * value is pulled from the XenStore and recorded here. 421 */ 422 int abi; 423 424 /** 425 * Name of the bridge to which this VIF is connected, if any 426 * This field is dynamically allocated by xenbus and must be free()ed 427 * when no longer needed 428 */ 429 char *bridge; 430 431 /** The interrupt driven even channel used to signal ring events. */ 432 evtchn_port_t evtchn; 433 434 /** Xen device handle.*/ 435 long handle; 436 437 /** Handle to the communication ring event channel. */ 438 xen_intr_handle_t xen_intr_handle; 439 440 /** 441 * \brief Cached value of the front-end's domain id. 442 * 443 * This value is used at once for each mapped page in 444 * a transaction. We cache it to avoid incuring the 445 * cost of an ivar access every time this is needed. 446 */ 447 domid_t otherend_id; 448 449 /** 450 * Undocumented frontend feature. Has something to do with 451 * scatter/gather IO 452 */ 453 uint8_t can_sg; 454 /** Undocumented frontend feature */ 455 uint8_t gso; 456 /** Undocumented frontend feature */ 457 uint8_t gso_prefix; 458 /** Can checksum TCP/UDP over IPv4 */ 459 uint8_t ip_csum; 460 461 /* Implementation related fields */ 462 /** 463 * Preallocated grant table copy descriptor for RX operations. 464 * Access must be protected by rx_lock 465 */ 466 gnttab_copy_table rx_gnttab; 467 468 /** 469 * Preallocated grant table copy descriptor for TX operations. 470 * Access must be protected by tx_lock 471 */ 472 gnttab_copy_table tx_gnttab; 473 474 /** 475 * Resource representing allocated physical address space 476 * associated with our per-instance kva region. 477 */ 478 struct resource *pseudo_phys_res; 479 480 /** Resource id for allocated physical address space. */ 481 int pseudo_phys_res_id; 482 483 /** Ring mapping and interrupt configuration data. */ 484 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES]; 485 486 /** 487 * Global pool of kva used for mapping remote domain ring 488 * and I/O transaction data. 489 */ 490 vm_offset_t kva; 491 492 /** Pseudo-physical address corresponding to kva. */ 493 uint64_t gnt_base_addr; 494 495 /** Various configuration and state bit flags. */ 496 xnb_flag_t flags; 497 498 /** Mutex protecting per-instance data in the receive path. */ 499 struct mtx rx_lock; 500 501 /** Mutex protecting per-instance data in the softc structure. */ 502 struct mtx sc_lock; 503 504 /** Mutex protecting per-instance data in the transmit path. */ 505 struct mtx tx_lock; 506 507 /** The size of the global kva pool. */ 508 int kva_size; 509 510 /** Name of the interface */ 511 char if_name[IFNAMSIZ]; 512 }; 513 514 /*---------------------------- Debugging functions ---------------------------*/ 515 #ifdef XNB_DEBUG 516 static void __unused 517 xnb_dump_gnttab_copy(const struct gnttab_copy *entry) 518 { 519 if (entry == NULL) { 520 printf("NULL grant table pointer\n"); 521 return; 522 } 523 524 if (entry->flags & GNTCOPY_dest_gref) 525 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref); 526 else 527 printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n", 528 entry->dest.u.gmfn); 529 printf("gnttab dest offset=\t%hu\n", entry->dest.offset); 530 printf("gnttab dest domid=\t%hu\n", entry->dest.domid); 531 if (entry->flags & GNTCOPY_source_gref) 532 printf("gnttab source ref=\t%u\n", entry->source.u.ref); 533 else 534 printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n", 535 entry->source.u.gmfn); 536 printf("gnttab source offset=\t%hu\n", entry->source.offset); 537 printf("gnttab source domid=\t%hu\n", entry->source.domid); 538 printf("gnttab len=\t%hu\n", entry->len); 539 printf("gnttab flags=\t%hu\n", entry->flags); 540 printf("gnttab status=\t%hd\n", entry->status); 541 } 542 543 static int 544 xnb_dump_rings(SYSCTL_HANDLER_ARGS) 545 { 546 static char results[720]; 547 struct xnb_softc const* xnb = (struct xnb_softc*)arg1; 548 netif_rx_back_ring_t const* rxb = 549 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 550 netif_tx_back_ring_t const* txb = 551 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 552 553 /* empty the result strings */ 554 results[0] = 0; 555 556 if ( !txb || !txb->sring || !rxb || !rxb->sring ) 557 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 558 559 snprintf(results, 720, 560 "\n\t%35s %18s\n" /* TX, RX */ 561 "\t%16s %18d %18d\n" /* req_cons */ 562 "\t%16s %18d %18d\n" /* nr_ents */ 563 "\t%16s %18d %18d\n" /* rsp_prod_pvt */ 564 "\t%16s %18p %18p\n" /* sring */ 565 "\t%16s %18d %18d\n" /* req_prod */ 566 "\t%16s %18d %18d\n" /* req_event */ 567 "\t%16s %18d %18d\n" /* rsp_prod */ 568 "\t%16s %18d %18d\n", /* rsp_event */ 569 "TX", "RX", 570 "req_cons", txb->req_cons, rxb->req_cons, 571 "nr_ents", txb->nr_ents, rxb->nr_ents, 572 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt, 573 "sring", txb->sring, rxb->sring, 574 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod, 575 "sring->req_event", txb->sring->req_event, rxb->sring->req_event, 576 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod, 577 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event); 578 579 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 580 } 581 582 static void __unused 583 xnb_dump_mbuf(const struct mbuf *m) 584 { 585 int len; 586 uint8_t *d; 587 if (m == NULL) 588 return; 589 590 printf("xnb_dump_mbuf:\n"); 591 if (m->m_flags & M_PKTHDR) { 592 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, " 593 "tso_segsz=%5hd\n", 594 m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags, 595 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz); 596 printf(" rcvif=%16p, len=%19d\n", 597 m->m_pkthdr.rcvif, m->m_pkthdr.len); 598 } 599 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n", 600 m->m_next, m->m_nextpkt, m->m_data); 601 printf(" m_len=%17d, m_flags=%#15x, m_type=%18u\n", 602 m->m_len, m->m_flags, m->m_type); 603 604 len = m->m_len; 605 d = mtod(m, uint8_t*); 606 while (len > 0) { 607 int i; 608 printf(" "); 609 for (i = 0; (i < 16) && (len > 0); i++, len--) { 610 printf("%02hhx ", *(d++)); 611 } 612 printf("\n"); 613 } 614 } 615 #endif /* XNB_DEBUG */ 616 617 /*------------------------ Inter-Domain Communication ------------------------*/ 618 /** 619 * Free dynamically allocated KVA or pseudo-physical address allocations. 620 * 621 * \param xnb Per-instance xnb configuration structure. 622 */ 623 static void 624 xnb_free_communication_mem(struct xnb_softc *xnb) 625 { 626 if (xnb->kva != 0) { 627 if (xnb->pseudo_phys_res != NULL) { 628 xenmem_free(xnb->dev, xnb->pseudo_phys_res_id, 629 xnb->pseudo_phys_res); 630 xnb->pseudo_phys_res = NULL; 631 } 632 } 633 xnb->kva = 0; 634 xnb->gnt_base_addr = 0; 635 } 636 637 /** 638 * Cleanup all inter-domain communication mechanisms. 639 * 640 * \param xnb Per-instance xnb configuration structure. 641 */ 642 static int 643 xnb_disconnect(struct xnb_softc *xnb) 644 { 645 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES]; 646 int error; 647 int i; 648 649 if (xnb->xen_intr_handle != NULL) 650 xen_intr_unbind(&xnb->xen_intr_handle); 651 652 /* 653 * We may still have another thread currently processing requests. We 654 * must acquire the rx and tx locks to make sure those threads are done, 655 * but we can release those locks as soon as we acquire them, because no 656 * more interrupts will be arriving. 657 */ 658 mtx_lock(&xnb->tx_lock); 659 mtx_unlock(&xnb->tx_lock); 660 mtx_lock(&xnb->rx_lock); 661 mtx_unlock(&xnb->rx_lock); 662 663 mtx_lock(&xnb->sc_lock); 664 /* Free malloc'd softc member variables */ 665 if (xnb->bridge != NULL) { 666 free(xnb->bridge, M_XENSTORE); 667 xnb->bridge = NULL; 668 } 669 670 /* All request processing has stopped, so unmap the rings */ 671 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 672 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr; 673 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr; 674 gnts[i].handle = xnb->ring_configs[i].handle; 675 } 676 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts, 677 XNB_NUM_RING_TYPES); 678 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error)); 679 680 xnb_free_communication_mem(xnb); 681 /* 682 * Zero the ring config structs because the pointers, handles, and 683 * grant refs contained therein are no longer valid. 684 */ 685 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX], 686 sizeof(struct xnb_ring_config)); 687 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX], 688 sizeof(struct xnb_ring_config)); 689 690 xnb->flags &= ~XNBF_RING_CONNECTED; 691 mtx_unlock(&xnb->sc_lock); 692 693 return (0); 694 } 695 696 /** 697 * Map a single shared memory ring into domain local address space and 698 * initialize its control structure 699 * 700 * \param xnb Per-instance xnb configuration structure 701 * \param ring_type Array index of this ring in the xnb's array of rings 702 * \return An errno 703 */ 704 static int 705 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type) 706 { 707 struct gnttab_map_grant_ref gnt; 708 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type]; 709 int error; 710 711 /* TX ring type = 0, RX =1 */ 712 ring->va = xnb->kva + ring_type * PAGE_SIZE; 713 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE; 714 715 gnt.host_addr = ring->gnt_addr; 716 gnt.flags = GNTMAP_host_map; 717 gnt.ref = ring->ring_ref; 718 gnt.dom = xnb->otherend_id; 719 720 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1); 721 if (error != 0) 722 panic("netback: Ring page grant table op failed (%d)", error); 723 724 if (gnt.status != 0) { 725 ring->va = 0; 726 error = EACCES; 727 xenbus_dev_fatal(xnb->dev, error, 728 "Ring shared page mapping failed. " 729 "Status %d.", gnt.status); 730 } else { 731 ring->handle = gnt.handle; 732 ring->bus_addr = gnt.dev_bus_addr; 733 734 if (ring_type == XNB_RING_TYPE_TX) { 735 BACK_RING_INIT(&ring->back_ring.tx_ring, 736 (netif_tx_sring_t*)ring->va, 737 ring->ring_pages * PAGE_SIZE); 738 } else if (ring_type == XNB_RING_TYPE_RX) { 739 BACK_RING_INIT(&ring->back_ring.rx_ring, 740 (netif_rx_sring_t*)ring->va, 741 ring->ring_pages * PAGE_SIZE); 742 } else { 743 xenbus_dev_fatal(xnb->dev, error, 744 "Unknown ring type %d", ring_type); 745 } 746 } 747 748 return error; 749 } 750 751 /** 752 * Setup the shared memory rings and bind an interrupt to the event channel 753 * used to notify us of ring changes. 754 * 755 * \param xnb Per-instance xnb configuration structure. 756 */ 757 static int 758 xnb_connect_comms(struct xnb_softc *xnb) 759 { 760 int error; 761 xnb_ring_type_t i; 762 763 if ((xnb->flags & XNBF_RING_CONNECTED) != 0) 764 return (0); 765 766 /* 767 * Kva for our rings are at the tail of the region of kva allocated 768 * by xnb_alloc_communication_mem(). 769 */ 770 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 771 error = xnb_connect_ring(xnb, i); 772 if (error != 0) 773 return error; 774 } 775 776 xnb->flags |= XNBF_RING_CONNECTED; 777 778 error = xen_intr_bind_remote_port(xnb->dev, 779 xnb->otherend_id, 780 xnb->evtchn, 781 /*filter*/NULL, 782 xnb_intr, /*arg*/xnb, 783 INTR_TYPE_BIO | INTR_MPSAFE, 784 &xnb->xen_intr_handle); 785 if (error != 0) { 786 (void)xnb_disconnect(xnb); 787 xenbus_dev_fatal(xnb->dev, error, "binding event channel"); 788 return (error); 789 } 790 791 DPRINTF("rings connected!\n"); 792 793 return (0); 794 } 795 796 /** 797 * Size KVA and pseudo-physical address allocations based on negotiated 798 * values for the size and number of I/O requests, and the size of our 799 * communication ring. 800 * 801 * \param xnb Per-instance xnb configuration structure. 802 * 803 * These address spaces are used to dynamically map pages in the 804 * front-end's domain into our own. 805 */ 806 static int 807 xnb_alloc_communication_mem(struct xnb_softc *xnb) 808 { 809 xnb_ring_type_t i; 810 811 xnb->kva_size = 0; 812 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 813 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE; 814 } 815 816 /* 817 * Reserve a range of pseudo physical memory that we can map 818 * into kva. These pages will only be backed by machine 819 * pages ("real memory") during the lifetime of front-end requests 820 * via grant table operations. We will map the netif tx and rx rings 821 * into this space. 822 */ 823 xnb->pseudo_phys_res_id = 0; 824 xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id, 825 xnb->kva_size); 826 if (xnb->pseudo_phys_res == NULL) { 827 xnb->kva = 0; 828 return (ENOMEM); 829 } 830 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res); 831 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res); 832 return (0); 833 } 834 835 /** 836 * Collect information from the XenStore related to our device and its frontend 837 * 838 * \param xnb Per-instance xnb configuration structure. 839 */ 840 static int 841 xnb_collect_xenstore_info(struct xnb_softc *xnb) 842 { 843 /** 844 * \todo Linux collects the following info. We should collect most 845 * of this, too: 846 * "feature-rx-notify" 847 */ 848 const char *otherend_path; 849 const char *our_path; 850 int err; 851 unsigned int rx_copy, bridge_len; 852 uint8_t no_csum_offload; 853 854 otherend_path = xenbus_get_otherend_path(xnb->dev); 855 our_path = xenbus_get_node(xnb->dev); 856 857 /* Collect the critical communication parameters */ 858 err = xs_gather(XST_NIL, otherend_path, 859 "tx-ring-ref", "%l" PRIu32, 860 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref, 861 "rx-ring-ref", "%l" PRIu32, 862 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref, 863 "event-channel", "%" PRIu32, &xnb->evtchn, 864 NULL); 865 if (err != 0) { 866 xenbus_dev_fatal(xnb->dev, err, 867 "Unable to retrieve ring information from " 868 "frontend %s. Unable to connect.", 869 otherend_path); 870 return (err); 871 } 872 873 /* Collect the handle from xenstore */ 874 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle); 875 if (err != 0) { 876 xenbus_dev_fatal(xnb->dev, err, 877 "Error reading handle from frontend %s. " 878 "Unable to connect.", otherend_path); 879 } 880 881 /* 882 * Collect the bridgename, if any. We do not need bridge_len; we just 883 * throw it away 884 */ 885 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len, 886 (void**)&xnb->bridge); 887 if (err != 0) 888 xnb->bridge = NULL; 889 890 /* 891 * Does the frontend request that we use rx copy? If not, return an 892 * error because this driver only supports rx copy. 893 */ 894 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL, 895 "%" PRIu32, &rx_copy); 896 if (err == ENOENT) { 897 err = 0; 898 rx_copy = 0; 899 } 900 if (err < 0) { 901 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy", 902 otherend_path); 903 return err; 904 } 905 /** 906 * \todo: figure out the exact meaning of this feature, and when 907 * the frontend will set it to true. It should be set to true 908 * at some point 909 */ 910 /* if (!rx_copy)*/ 911 /* return EOPNOTSUPP;*/ 912 913 /** \todo Collect the rx notify feature */ 914 915 /* Collect the feature-sg. */ 916 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL, 917 "%hhu", &xnb->can_sg) < 0) 918 xnb->can_sg = 0; 919 920 /* Collect remaining frontend features */ 921 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL, 922 "%hhu", &xnb->gso) < 0) 923 xnb->gso = 0; 924 925 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL, 926 "%hhu", &xnb->gso_prefix) < 0) 927 xnb->gso_prefix = 0; 928 929 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL, 930 "%hhu", &no_csum_offload) < 0) 931 no_csum_offload = 0; 932 xnb->ip_csum = (no_csum_offload == 0); 933 934 return (0); 935 } 936 937 /** 938 * Supply information about the physical device to the frontend 939 * via XenBus. 940 * 941 * \param xnb Per-instance xnb configuration structure. 942 */ 943 static int 944 xnb_publish_backend_info(struct xnb_softc *xnb) 945 { 946 struct xs_transaction xst; 947 const char *our_path; 948 int error; 949 950 our_path = xenbus_get_node(xnb->dev); 951 952 do { 953 error = xs_transaction_start(&xst); 954 if (error != 0) { 955 xenbus_dev_fatal(xnb->dev, error, 956 "Error publishing backend info " 957 "(start transaction)"); 958 break; 959 } 960 961 error = xs_printf(xst, our_path, "feature-sg", 962 "%d", XNB_SG); 963 if (error != 0) 964 break; 965 966 error = xs_printf(xst, our_path, "feature-gso-tcpv4", 967 "%d", XNB_GSO_TCPV4); 968 if (error != 0) 969 break; 970 971 error = xs_printf(xst, our_path, "feature-rx-copy", 972 "%d", XNB_RX_COPY); 973 if (error != 0) 974 break; 975 976 error = xs_printf(xst, our_path, "feature-rx-flip", 977 "%d", XNB_RX_FLIP); 978 if (error != 0) 979 break; 980 981 error = xs_transaction_end(xst, 0); 982 if (error != 0 && error != EAGAIN) { 983 xenbus_dev_fatal(xnb->dev, error, "ending transaction"); 984 break; 985 } 986 987 } while (error == EAGAIN); 988 989 return (error); 990 } 991 992 /** 993 * Connect to our netfront peer now that it has completed publishing 994 * its configuration into the XenStore. 995 * 996 * \param xnb Per-instance xnb configuration structure. 997 */ 998 static void 999 xnb_connect(struct xnb_softc *xnb) 1000 { 1001 int error; 1002 1003 if (xenbus_get_state(xnb->dev) == XenbusStateConnected) 1004 return; 1005 1006 if (xnb_collect_xenstore_info(xnb) != 0) 1007 return; 1008 1009 xnb->flags &= ~XNBF_SHUTDOWN; 1010 1011 /* Read front end configuration. */ 1012 1013 /* Allocate resources whose size depends on front-end configuration. */ 1014 error = xnb_alloc_communication_mem(xnb); 1015 if (error != 0) { 1016 xenbus_dev_fatal(xnb->dev, error, 1017 "Unable to allocate communication memory"); 1018 return; 1019 } 1020 1021 /* 1022 * Connect communication channel. 1023 */ 1024 error = xnb_connect_comms(xnb); 1025 if (error != 0) { 1026 /* Specific errors are reported by xnb_connect_comms(). */ 1027 return; 1028 } 1029 xnb->carrier = 1; 1030 1031 /* Ready for I/O. */ 1032 xenbus_set_state(xnb->dev, XenbusStateConnected); 1033 } 1034 1035 /*-------------------------- Device Teardown Support -------------------------*/ 1036 /** 1037 * Perform device shutdown functions. 1038 * 1039 * \param xnb Per-instance xnb configuration structure. 1040 * 1041 * Mark this instance as shutting down, wait for any active requests 1042 * to drain, disconnect from the front-end, and notify any waiters (e.g. 1043 * a thread invoking our detach method) that detach can now proceed. 1044 */ 1045 static int 1046 xnb_shutdown(struct xnb_softc *xnb) 1047 { 1048 /* 1049 * Due to the need to drop our mutex during some 1050 * xenbus operations, it is possible for two threads 1051 * to attempt to close out shutdown processing at 1052 * the same time. Tell the caller that hits this 1053 * race to try back later. 1054 */ 1055 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0) 1056 return (EAGAIN); 1057 1058 xnb->flags |= XNBF_SHUTDOWN; 1059 1060 xnb->flags |= XNBF_IN_SHUTDOWN; 1061 1062 mtx_unlock(&xnb->sc_lock); 1063 /* Free the network interface */ 1064 xnb->carrier = 0; 1065 if (xnb->xnb_ifp != NULL) { 1066 ether_ifdetach(xnb->xnb_ifp); 1067 if_free(xnb->xnb_ifp); 1068 xnb->xnb_ifp = NULL; 1069 } 1070 1071 xnb_disconnect(xnb); 1072 1073 if (xenbus_get_state(xnb->dev) < XenbusStateClosing) 1074 xenbus_set_state(xnb->dev, XenbusStateClosing); 1075 mtx_lock(&xnb->sc_lock); 1076 1077 xnb->flags &= ~XNBF_IN_SHUTDOWN; 1078 1079 /* Indicate to xnb_detach() that is it safe to proceed. */ 1080 wakeup(xnb); 1081 1082 return (0); 1083 } 1084 1085 /** 1086 * Report an attach time error to the console and Xen, and cleanup 1087 * this instance by forcing immediate detach processing. 1088 * 1089 * \param xnb Per-instance xnb configuration structure. 1090 * \param err Errno describing the error. 1091 * \param fmt Printf style format and arguments 1092 */ 1093 static void 1094 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...) 1095 { 1096 va_list ap; 1097 va_list ap_hotplug; 1098 1099 va_start(ap, fmt); 1100 va_copy(ap_hotplug, ap); 1101 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev), 1102 "hotplug-error", fmt, ap_hotplug); 1103 va_end(ap_hotplug); 1104 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1105 "hotplug-status", "error"); 1106 1107 xenbus_dev_vfatal(xnb->dev, err, fmt, ap); 1108 va_end(ap); 1109 1110 (void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0"); 1111 xnb_detach(xnb->dev); 1112 } 1113 1114 /*---------------------------- NewBus Entrypoints ----------------------------*/ 1115 /** 1116 * Inspect a XenBus device and claim it if is of the appropriate type. 1117 * 1118 * \param dev NewBus device object representing a candidate XenBus device. 1119 * 1120 * \return 0 for success, errno codes for failure. 1121 */ 1122 static int 1123 xnb_probe(device_t dev) 1124 { 1125 if (!strcmp(xenbus_get_type(dev), "vif")) { 1126 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev), 1127 devclass_get_name(device_get_devclass(dev))); 1128 device_set_desc(dev, "Backend Virtual Network Device"); 1129 device_quiet(dev); 1130 return (0); 1131 } 1132 return (ENXIO); 1133 } 1134 1135 /** 1136 * Setup sysctl variables to control various Network Back parameters. 1137 * 1138 * \param xnb Xen Net Back softc. 1139 * 1140 */ 1141 static void 1142 xnb_setup_sysctl(struct xnb_softc *xnb) 1143 { 1144 struct sysctl_ctx_list *sysctl_ctx = NULL; 1145 struct sysctl_oid *sysctl_tree = NULL; 1146 1147 sysctl_ctx = device_get_sysctl_ctx(xnb->dev); 1148 if (sysctl_ctx == NULL) 1149 return; 1150 1151 sysctl_tree = device_get_sysctl_tree(xnb->dev); 1152 if (sysctl_tree == NULL) 1153 return; 1154 1155 #ifdef XNB_DEBUG 1156 SYSCTL_ADD_PROC(sysctl_ctx, 1157 SYSCTL_CHILDREN(sysctl_tree), 1158 OID_AUTO, 1159 "unit_test_results", 1160 CTLTYPE_STRING | CTLFLAG_RD, 1161 xnb, 1162 0, 1163 xnb_unit_test_main, 1164 "A", 1165 "Results of builtin unit tests"); 1166 1167 SYSCTL_ADD_PROC(sysctl_ctx, 1168 SYSCTL_CHILDREN(sysctl_tree), 1169 OID_AUTO, 1170 "dump_rings", 1171 CTLTYPE_STRING | CTLFLAG_RD, 1172 xnb, 1173 0, 1174 xnb_dump_rings, 1175 "A", 1176 "Xennet Back Rings"); 1177 #endif /* XNB_DEBUG */ 1178 } 1179 1180 /** 1181 * Create a network device. 1182 * @param handle device handle 1183 */ 1184 int 1185 create_netdev(device_t dev) 1186 { 1187 struct ifnet *ifp; 1188 struct xnb_softc *xnb; 1189 int err = 0; 1190 uint32_t handle; 1191 1192 xnb = device_get_softc(dev); 1193 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF); 1194 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF); 1195 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF); 1196 1197 xnb->dev = dev; 1198 1199 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts); 1200 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1201 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL); 1202 1203 /* 1204 * Set the MAC address to a dummy value (00:00:00:00:00), 1205 * if the MAC address of the host-facing interface is set 1206 * to the same as the guest-facing one (the value found in 1207 * xenstore), the bridge would stop delivering packets to 1208 * us because it would see that the destination address of 1209 * the packet is the same as the interface, and so the bridge 1210 * would expect the packet has already been delivered locally 1211 * (and just drop it). 1212 */ 1213 bzero(&xnb->mac[0], sizeof(xnb->mac)); 1214 1215 /* The interface will be named using the following nomenclature: 1216 * 1217 * xnb<domid>.<handle> 1218 * 1219 * Where handle is the oder of the interface referred to the guest. 1220 */ 1221 err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL, 1222 "%" PRIu32, &handle); 1223 if (err != 0) 1224 return (err); 1225 snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32, 1226 xenbus_get_otherend_id(dev), handle); 1227 1228 if (err == 0) { 1229 /* Set up ifnet structure */ 1230 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER); 1231 ifp->if_softc = xnb; 1232 if_initname(ifp, xnb->if_name, IF_DUNIT_NONE); 1233 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1234 ifp->if_ioctl = xnb_ioctl; 1235 ifp->if_start = xnb_start; 1236 ifp->if_init = xnb_ifinit; 1237 ifp->if_mtu = ETHERMTU; 1238 ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1; 1239 1240 ifp->if_hwassist = XNB_CSUM_FEATURES; 1241 ifp->if_capabilities = IFCAP_HWCSUM; 1242 ifp->if_capenable = IFCAP_HWCSUM; 1243 1244 ether_ifattach(ifp, xnb->mac); 1245 xnb->carrier = 0; 1246 } 1247 1248 return err; 1249 } 1250 1251 /** 1252 * Attach to a XenBus device that has been claimed by our probe routine. 1253 * 1254 * \param dev NewBus device object representing this Xen Net Back instance. 1255 * 1256 * \return 0 for success, errno codes for failure. 1257 */ 1258 static int 1259 xnb_attach(device_t dev) 1260 { 1261 struct xnb_softc *xnb; 1262 int error; 1263 xnb_ring_type_t i; 1264 1265 error = create_netdev(dev); 1266 if (error != 0) { 1267 xenbus_dev_fatal(dev, error, "creating netdev"); 1268 return (error); 1269 } 1270 1271 DPRINTF("Attaching to %s\n", xenbus_get_node(dev)); 1272 1273 /* 1274 * Basic initialization. 1275 * After this block it is safe to call xnb_detach() 1276 * to clean up any allocated data for this instance. 1277 */ 1278 xnb = device_get_softc(dev); 1279 xnb->otherend_id = xenbus_get_otherend_id(dev); 1280 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 1281 xnb->ring_configs[i].ring_pages = 1; 1282 } 1283 1284 /* 1285 * Setup sysctl variables. 1286 */ 1287 xnb_setup_sysctl(xnb); 1288 1289 /* Update hot-plug status to satisfy xend. */ 1290 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1291 "hotplug-status", "connected"); 1292 if (error != 0) { 1293 xnb_attach_failed(xnb, error, "writing %s/hotplug-status", 1294 xenbus_get_node(xnb->dev)); 1295 return (error); 1296 } 1297 1298 if ((error = xnb_publish_backend_info(xnb)) != 0) { 1299 /* 1300 * If we can't publish our data, we cannot participate 1301 * in this connection, and waiting for a front-end state 1302 * change will not help the situation. 1303 */ 1304 xnb_attach_failed(xnb, error, 1305 "Publishing backend status for %s", 1306 xenbus_get_node(xnb->dev)); 1307 return error; 1308 } 1309 1310 /* Tell the front end that we are ready to connect. */ 1311 xenbus_set_state(dev, XenbusStateInitWait); 1312 1313 return (0); 1314 } 1315 1316 /** 1317 * Detach from a net back device instance. 1318 * 1319 * \param dev NewBus device object representing this Xen Net Back instance. 1320 * 1321 * \return 0 for success, errno codes for failure. 1322 * 1323 * \note A net back device may be detached at any time in its life-cycle, 1324 * including part way through the attach process. For this reason, 1325 * initialization order and the initialization state checks in this 1326 * routine must be carefully coupled so that attach time failures 1327 * are gracefully handled. 1328 */ 1329 static int 1330 xnb_detach(device_t dev) 1331 { 1332 struct xnb_softc *xnb; 1333 1334 DPRINTF("\n"); 1335 1336 xnb = device_get_softc(dev); 1337 mtx_lock(&xnb->sc_lock); 1338 while (xnb_shutdown(xnb) == EAGAIN) { 1339 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0, 1340 "xnb_shutdown", 0); 1341 } 1342 mtx_unlock(&xnb->sc_lock); 1343 DPRINTF("\n"); 1344 1345 mtx_destroy(&xnb->tx_lock); 1346 mtx_destroy(&xnb->rx_lock); 1347 mtx_destroy(&xnb->sc_lock); 1348 return (0); 1349 } 1350 1351 /** 1352 * Prepare this net back device for suspension of this VM. 1353 * 1354 * \param dev NewBus device object representing this Xen net Back instance. 1355 * 1356 * \return 0 for success, errno codes for failure. 1357 */ 1358 static int 1359 xnb_suspend(device_t dev) 1360 { 1361 return (0); 1362 } 1363 1364 /** 1365 * Perform any processing required to recover from a suspended state. 1366 * 1367 * \param dev NewBus device object representing this Xen Net Back instance. 1368 * 1369 * \return 0 for success, errno codes for failure. 1370 */ 1371 static int 1372 xnb_resume(device_t dev) 1373 { 1374 return (0); 1375 } 1376 1377 /** 1378 * Handle state changes expressed via the XenStore by our front-end peer. 1379 * 1380 * \param dev NewBus device object representing this Xen 1381 * Net Back instance. 1382 * \param frontend_state The new state of the front-end. 1383 * 1384 * \return 0 for success, errno codes for failure. 1385 */ 1386 static void 1387 xnb_frontend_changed(device_t dev, XenbusState frontend_state) 1388 { 1389 struct xnb_softc *xnb; 1390 1391 xnb = device_get_softc(dev); 1392 1393 DPRINTF("frontend_state=%s, xnb_state=%s\n", 1394 xenbus_strstate(frontend_state), 1395 xenbus_strstate(xenbus_get_state(xnb->dev))); 1396 1397 switch (frontend_state) { 1398 case XenbusStateInitialising: 1399 break; 1400 case XenbusStateInitialised: 1401 case XenbusStateConnected: 1402 xnb_connect(xnb); 1403 break; 1404 case XenbusStateClosing: 1405 case XenbusStateClosed: 1406 mtx_lock(&xnb->sc_lock); 1407 xnb_shutdown(xnb); 1408 mtx_unlock(&xnb->sc_lock); 1409 if (frontend_state == XenbusStateClosed) 1410 xenbus_set_state(xnb->dev, XenbusStateClosed); 1411 break; 1412 default: 1413 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend", 1414 frontend_state); 1415 break; 1416 } 1417 } 1418 1419 1420 /*---------------------------- Request Processing ----------------------------*/ 1421 /** 1422 * Interrupt handler bound to the shared ring's event channel. 1423 * Entry point for the xennet transmit path in netback 1424 * Transfers packets from the Xen ring to the host's generic networking stack 1425 * 1426 * \param arg Callback argument registerd during event channel 1427 * binding - the xnb_softc for this instance. 1428 */ 1429 static void 1430 xnb_intr(void *arg) 1431 { 1432 struct xnb_softc *xnb; 1433 struct ifnet *ifp; 1434 netif_tx_back_ring_t *txb; 1435 RING_IDX req_prod_local; 1436 1437 xnb = (struct xnb_softc *)arg; 1438 ifp = xnb->xnb_ifp; 1439 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 1440 1441 mtx_lock(&xnb->tx_lock); 1442 do { 1443 int notify; 1444 req_prod_local = txb->sring->req_prod; 1445 xen_rmb(); 1446 1447 for (;;) { 1448 struct mbuf *mbufc; 1449 int err; 1450 1451 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp, 1452 xnb->tx_gnttab); 1453 if (err || (mbufc == NULL)) 1454 break; 1455 1456 /* Send the packet to the generic network stack */ 1457 (*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc); 1458 } 1459 1460 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify); 1461 if (notify != 0) 1462 xen_intr_signal(xnb->xen_intr_handle); 1463 1464 txb->sring->req_event = txb->req_cons + 1; 1465 xen_mb(); 1466 } while (txb->sring->req_prod != req_prod_local) ; 1467 mtx_unlock(&xnb->tx_lock); 1468 1469 xnb_start(ifp); 1470 } 1471 1472 1473 /** 1474 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring. 1475 * Will read exactly 0 or 1 packets from the ring; never a partial packet. 1476 * \param[out] pkt The returned packet. If there is an error building 1477 * the packet, pkt.list_len will be set to 0. 1478 * \param[in] tx_ring Pointer to the Ring that is the input to this function 1479 * \param[in] start The ring index of the first potential request 1480 * \return The number of requests consumed to build this packet 1481 */ 1482 static int 1483 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring, 1484 RING_IDX start) 1485 { 1486 /* 1487 * Outline: 1488 * 1) Initialize pkt 1489 * 2) Read the first request of the packet 1490 * 3) Read the extras 1491 * 4) Set cdr 1492 * 5) Loop on the remainder of the packet 1493 * 6) Finalize pkt (stuff like car_size and list_len) 1494 */ 1495 int idx = start; 1496 int discard = 0; /* whether to discard the packet */ 1497 int more_data = 0; /* there are more request past the last one */ 1498 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */ 1499 1500 xnb_pkt_initialize(pkt); 1501 1502 /* Read the first request */ 1503 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1504 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1505 pkt->size = tx->size; 1506 pkt->flags = tx->flags & ~NETTXF_more_data; 1507 more_data = tx->flags & NETTXF_more_data; 1508 pkt->list_len++; 1509 pkt->car = idx; 1510 idx++; 1511 } 1512 1513 /* Read the extra info */ 1514 if ((pkt->flags & NETTXF_extra_info) && 1515 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1516 netif_extra_info_t *ext = 1517 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx); 1518 pkt->extra.type = ext->type; 1519 switch (pkt->extra.type) { 1520 case XEN_NETIF_EXTRA_TYPE_GSO: 1521 pkt->extra.u.gso = ext->u.gso; 1522 break; 1523 default: 1524 /* 1525 * The reference Linux netfront driver will 1526 * never set any other extra.type. So we don't 1527 * know what to do with it. Let's print an 1528 * error, then consume and discard the packet 1529 */ 1530 printf("xnb(%s:%d): Unknown extra info type %d." 1531 " Discarding packet\n", 1532 __func__, __LINE__, pkt->extra.type); 1533 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, 1534 start)); 1535 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, 1536 idx)); 1537 discard = 1; 1538 break; 1539 } 1540 1541 pkt->extra.flags = ext->flags; 1542 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) { 1543 /* 1544 * The reference linux netfront driver never sets this 1545 * flag (nor does any other known netfront). So we 1546 * will discard the packet. 1547 */ 1548 printf("xnb(%s:%d): Request sets " 1549 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle " 1550 "that\n", __func__, __LINE__); 1551 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1552 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1553 discard = 1; 1554 } 1555 1556 idx++; 1557 } 1558 1559 /* Set cdr. If there is not more data, cdr is invalid */ 1560 pkt->cdr = idx; 1561 1562 /* Loop on remainder of packet */ 1563 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1564 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1565 pkt->list_len++; 1566 cdr_size += tx->size; 1567 if (tx->flags & ~NETTXF_more_data) { 1568 /* There should be no other flags set at this point */ 1569 printf("xnb(%s:%d): Request sets unknown flags %d " 1570 "after the 1st request in the packet.\n", 1571 __func__, __LINE__, tx->flags); 1572 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1573 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1574 } 1575 1576 more_data = tx->flags & NETTXF_more_data; 1577 idx++; 1578 } 1579 1580 /* Finalize packet */ 1581 if (more_data != 0) { 1582 /* The ring ran out of requests before finishing the packet */ 1583 xnb_pkt_invalidate(pkt); 1584 idx = start; /* tell caller that we consumed no requests */ 1585 } else { 1586 /* Calculate car_size */ 1587 pkt->car_size = pkt->size - cdr_size; 1588 } 1589 if (discard != 0) { 1590 xnb_pkt_invalidate(pkt); 1591 } 1592 1593 return idx - start; 1594 } 1595 1596 1597 /** 1598 * Respond to all the requests that constituted pkt. Builds the responses and 1599 * writes them to the ring, but doesn't push them to the shared ring. 1600 * \param[in] pkt the packet that needs a response 1601 * \param[in] error true if there was an error handling the packet, such 1602 * as in the hypervisor copy op or mbuf allocation 1603 * \param[out] ring Responses go here 1604 */ 1605 static void 1606 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring, 1607 int error) 1608 { 1609 /* 1610 * Outline: 1611 * 1) Respond to the first request 1612 * 2) Respond to the extra info reques 1613 * Loop through every remaining request in the packet, generating 1614 * responses that copy those requests' ids and sets the status 1615 * appropriately. 1616 */ 1617 netif_tx_request_t *tx; 1618 netif_tx_response_t *rsp; 1619 int i; 1620 uint16_t status; 1621 1622 status = (xnb_pkt_is_valid(pkt) == 0) || error ? 1623 NETIF_RSP_ERROR : NETIF_RSP_OKAY; 1624 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car), 1625 ("Cannot respond to ring requests out of order")); 1626 1627 if (pkt->list_len >= 1) { 1628 uint16_t id; 1629 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1630 id = tx->id; 1631 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1632 rsp->id = id; 1633 rsp->status = status; 1634 ring->rsp_prod_pvt++; 1635 1636 if (pkt->flags & NETRXF_extra_info) { 1637 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1638 rsp->status = NETIF_RSP_NULL; 1639 ring->rsp_prod_pvt++; 1640 } 1641 } 1642 1643 for (i=0; i < pkt->list_len - 1; i++) { 1644 uint16_t id; 1645 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1646 id = tx->id; 1647 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1648 rsp->id = id; 1649 rsp->status = status; 1650 ring->rsp_prod_pvt++; 1651 } 1652 } 1653 1654 /** 1655 * Create an mbuf chain to represent a packet. Initializes all of the headers 1656 * in the mbuf chain, but does not copy the data. The returned chain must be 1657 * free()'d when no longer needed 1658 * \param[in] pkt A packet to model the mbuf chain after 1659 * \return A newly allocated mbuf chain, possibly with clusters attached. 1660 * NULL on failure 1661 */ 1662 static struct mbuf* 1663 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp) 1664 { 1665 /** 1666 * \todo consider using a memory pool for mbufs instead of 1667 * reallocating them for every packet 1668 */ 1669 /** \todo handle extra data */ 1670 struct mbuf *m; 1671 1672 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA); 1673 1674 if (m != NULL) { 1675 m->m_pkthdr.rcvif = ifp; 1676 if (pkt->flags & NETTXF_data_validated) { 1677 /* 1678 * We lie to the host OS and always tell it that the 1679 * checksums are ok, because the packet is unlikely to 1680 * get corrupted going across domains. 1681 */ 1682 m->m_pkthdr.csum_flags = ( 1683 CSUM_IP_CHECKED | 1684 CSUM_IP_VALID | 1685 CSUM_DATA_VALID | 1686 CSUM_PSEUDO_HDR 1687 ); 1688 m->m_pkthdr.csum_data = 0xffff; 1689 } 1690 } 1691 return m; 1692 } 1693 1694 /** 1695 * Build a gnttab_copy table that can be used to copy data from a pkt 1696 * to an mbufc. Does not actually perform the copy. Always uses gref's on 1697 * the packet side. 1698 * \param[in] pkt pkt's associated requests form the src for 1699 * the copy operation 1700 * \param[in] mbufc mbufc's storage forms the dest for the copy operation 1701 * \param[out] gnttab Storage for the returned grant table 1702 * \param[in] txb Pointer to the backend ring structure 1703 * \param[in] otherend_id The domain ID of the other end of the copy 1704 * \return The number of gnttab entries filled 1705 */ 1706 static int 1707 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc, 1708 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb, 1709 domid_t otherend_id) 1710 { 1711 1712 struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1713 int gnt_idx = 0; /* index into grant table */ 1714 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */ 1715 int r_ofs = 0; /* offset of next data within tx request's data area */ 1716 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1717 /* size in bytes that still needs to be represented in the table */ 1718 uint16_t size_remaining = pkt->size; 1719 1720 while (size_remaining > 0) { 1721 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx); 1722 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs; 1723 const size_t req_size = 1724 r_idx == pkt->car ? pkt->car_size : txq->size; 1725 const size_t pkt_space = req_size - r_ofs; 1726 /* 1727 * space is the largest amount of data that can be copied in the 1728 * grant table's next entry 1729 */ 1730 const size_t space = MIN(pkt_space, mbuf_space); 1731 1732 /* TODO: handle this error condition without panicking */ 1733 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1734 1735 gnttab[gnt_idx].source.u.ref = txq->gref; 1736 gnttab[gnt_idx].source.domid = otherend_id; 1737 gnttab[gnt_idx].source.offset = txq->offset + r_ofs; 1738 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn( 1739 mtod(mbuf, vm_offset_t) + m_ofs); 1740 gnttab[gnt_idx].dest.offset = virt_to_offset( 1741 mtod(mbuf, vm_offset_t) + m_ofs); 1742 gnttab[gnt_idx].dest.domid = DOMID_SELF; 1743 gnttab[gnt_idx].len = space; 1744 gnttab[gnt_idx].flags = GNTCOPY_source_gref; 1745 1746 gnt_idx++; 1747 r_ofs += space; 1748 m_ofs += space; 1749 size_remaining -= space; 1750 if (req_size - r_ofs <= 0) { 1751 /* Must move to the next tx request */ 1752 r_ofs = 0; 1753 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 1754 } 1755 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) { 1756 /* Must move to the next mbuf */ 1757 m_ofs = 0; 1758 mbuf = mbuf->m_next; 1759 } 1760 } 1761 1762 return gnt_idx; 1763 } 1764 1765 /** 1766 * Check the status of the grant copy operations, and update mbufs various 1767 * non-data fields to reflect the data present. 1768 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of 1769 * the correct length, and data should already be present 1770 * \param[in] gnttab A grant table for a just completed copy op 1771 * \param[in] n_entries The number of valid entries in the grant table 1772 */ 1773 static void 1774 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab, 1775 int n_entries) 1776 { 1777 struct mbuf *mbuf = mbufc; 1778 int i; 1779 size_t total_size = 0; 1780 1781 for (i = 0; i < n_entries; i++) { 1782 KASSERT(gnttab[i].status == GNTST_okay, 1783 ("Some gnttab_copy entry had error status %hd\n", 1784 gnttab[i].status)); 1785 1786 mbuf->m_len += gnttab[i].len; 1787 total_size += gnttab[i].len; 1788 if (M_TRAILINGSPACE(mbuf) <= 0) { 1789 mbuf = mbuf->m_next; 1790 } 1791 } 1792 mbufc->m_pkthdr.len = total_size; 1793 1794 #if defined(INET) || defined(INET6) 1795 xnb_add_mbuf_cksum(mbufc); 1796 #endif 1797 } 1798 1799 /** 1800 * Dequeue at most one packet from the shared ring 1801 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and 1802 * its private indices will be updated. But the indices 1803 * will not be pushed to the shared ring. 1804 * \param[in] ifnet Interface to which the packet will be sent 1805 * \param[in] otherend Domain ID of the other end of the ring 1806 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic 1807 * networking stack 1808 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 1809 * this a function parameter so that we will take less 1810 * stack space. 1811 * \return An error code 1812 */ 1813 static int 1814 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc, 1815 struct ifnet *ifnet, gnttab_copy_table gnttab) 1816 { 1817 struct xnb_pkt pkt; 1818 /* number of tx requests consumed to build the last packet */ 1819 int num_consumed; 1820 int nr_ents; 1821 1822 *mbufc = NULL; 1823 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons); 1824 if (num_consumed == 0) 1825 return 0; /* Nothing to receive */ 1826 1827 /* update statistics independent of errors */ 1828 if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1); 1829 1830 /* 1831 * if we got here, then 1 or more requests was consumed, but the packet 1832 * is not necessarily valid. 1833 */ 1834 if (xnb_pkt_is_valid(&pkt) == 0) { 1835 /* got a garbage packet, respond and drop it */ 1836 xnb_txpkt2rsp(&pkt, txb, 1); 1837 txb->req_cons += num_consumed; 1838 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n", 1839 num_consumed); 1840 if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1); 1841 return EINVAL; 1842 } 1843 1844 *mbufc = xnb_pkt2mbufc(&pkt, ifnet); 1845 1846 if (*mbufc == NULL) { 1847 /* 1848 * Couldn't allocate mbufs. Respond and drop the packet. Do 1849 * not consume the requests 1850 */ 1851 xnb_txpkt2rsp(&pkt, txb, 1); 1852 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n", 1853 num_consumed); 1854 if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1); 1855 return ENOMEM; 1856 } 1857 1858 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend); 1859 1860 if (nr_ents > 0) { 1861 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 1862 gnttab, nr_ents); 1863 KASSERT(hv_ret == 0, 1864 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret)); 1865 xnb_update_mbufc(*mbufc, gnttab, nr_ents); 1866 } 1867 1868 xnb_txpkt2rsp(&pkt, txb, 0); 1869 txb->req_cons += num_consumed; 1870 return 0; 1871 } 1872 1873 /** 1874 * Create an xnb_pkt based on the contents of an mbuf chain. 1875 * \param[in] mbufc mbuf chain to transform into a packet 1876 * \param[out] pkt Storage for the newly generated xnb_pkt 1877 * \param[in] start The ring index of the first available slot in the rx 1878 * ring 1879 * \param[in] space The number of free slots in the rx ring 1880 * \retval 0 Success 1881 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 1882 * \retval EAGAIN There was not enough space in the ring to queue the 1883 * packet 1884 */ 1885 static int 1886 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt, 1887 RING_IDX start, int space) 1888 { 1889 1890 int retval = 0; 1891 1892 if ((mbufc == NULL) || 1893 ( (mbufc->m_flags & M_PKTHDR) == 0) || 1894 (mbufc->m_pkthdr.len == 0)) { 1895 xnb_pkt_invalidate(pkt); 1896 retval = EINVAL; 1897 } else { 1898 int slots_required; 1899 1900 xnb_pkt_validate(pkt); 1901 pkt->flags = 0; 1902 pkt->size = mbufc->m_pkthdr.len; 1903 pkt->car = start; 1904 pkt->car_size = mbufc->m_len; 1905 1906 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) { 1907 pkt->flags |= NETRXF_extra_info; 1908 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz; 1909 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 1910 pkt->extra.u.gso.pad = 0; 1911 pkt->extra.u.gso.features = 0; 1912 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO; 1913 pkt->extra.flags = 0; 1914 pkt->cdr = start + 2; 1915 } else { 1916 pkt->cdr = start + 1; 1917 } 1918 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) { 1919 pkt->flags |= 1920 (NETRXF_csum_blank | NETRXF_data_validated); 1921 } 1922 1923 /* 1924 * Each ring response can have up to PAGE_SIZE of data. 1925 * Assume that we can defragment the mbuf chain efficiently 1926 * into responses so that each response but the last uses all 1927 * PAGE_SIZE bytes. 1928 */ 1929 pkt->list_len = howmany(pkt->size, PAGE_SIZE); 1930 1931 if (pkt->list_len > 1) { 1932 pkt->flags |= NETRXF_more_data; 1933 } 1934 1935 slots_required = pkt->list_len + 1936 (pkt->flags & NETRXF_extra_info ? 1 : 0); 1937 if (slots_required > space) { 1938 xnb_pkt_invalidate(pkt); 1939 retval = EAGAIN; 1940 } 1941 } 1942 1943 return retval; 1944 } 1945 1946 /** 1947 * Build a gnttab_copy table that can be used to copy data from an mbuf chain 1948 * to the frontend's shared buffers. Does not actually perform the copy. 1949 * Always uses gref's on the other end's side. 1950 * \param[in] pkt pkt's associated responses form the dest for the copy 1951 * operatoin 1952 * \param[in] mbufc The source for the copy operation 1953 * \param[out] gnttab Storage for the returned grant table 1954 * \param[in] rxb Pointer to the backend ring structure 1955 * \param[in] otherend_id The domain ID of the other end of the copy 1956 * \return The number of gnttab entries filled 1957 */ 1958 static int 1959 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1960 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb, 1961 domid_t otherend_id) 1962 { 1963 1964 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1965 int gnt_idx = 0; /* index into grant table */ 1966 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */ 1967 int r_ofs = 0; /* offset of next data within rx request's data area */ 1968 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1969 /* size in bytes that still needs to be represented in the table */ 1970 uint16_t size_remaining; 1971 1972 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0; 1973 1974 while (size_remaining > 0) { 1975 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx); 1976 const size_t mbuf_space = mbuf->m_len - m_ofs; 1977 /* Xen shared pages have an implied size of PAGE_SIZE */ 1978 const size_t req_size = PAGE_SIZE; 1979 const size_t pkt_space = req_size - r_ofs; 1980 /* 1981 * space is the largest amount of data that can be copied in the 1982 * grant table's next entry 1983 */ 1984 const size_t space = MIN(pkt_space, mbuf_space); 1985 1986 /* TODO: handle this error condition without panicing */ 1987 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1988 1989 gnttab[gnt_idx].dest.u.ref = rxq->gref; 1990 gnttab[gnt_idx].dest.domid = otherend_id; 1991 gnttab[gnt_idx].dest.offset = r_ofs; 1992 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn( 1993 mtod(mbuf, vm_offset_t) + m_ofs); 1994 gnttab[gnt_idx].source.offset = virt_to_offset( 1995 mtod(mbuf, vm_offset_t) + m_ofs); 1996 gnttab[gnt_idx].source.domid = DOMID_SELF; 1997 gnttab[gnt_idx].len = space; 1998 gnttab[gnt_idx].flags = GNTCOPY_dest_gref; 1999 2000 gnt_idx++; 2001 2002 r_ofs += space; 2003 m_ofs += space; 2004 size_remaining -= space; 2005 if (req_size - r_ofs <= 0) { 2006 /* Must move to the next rx request */ 2007 r_ofs = 0; 2008 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 2009 } 2010 if (mbuf->m_len - m_ofs <= 0) { 2011 /* Must move to the next mbuf */ 2012 m_ofs = 0; 2013 mbuf = mbuf->m_next; 2014 } 2015 } 2016 2017 return gnt_idx; 2018 } 2019 2020 /** 2021 * Generates responses for all the requests that constituted pkt. Builds 2022 * responses and writes them to the ring, but doesn't push the shared ring 2023 * indices. 2024 * \param[in] pkt the packet that needs a response 2025 * \param[in] gnttab The grant copy table corresponding to this packet. 2026 * Used to determine how many rsp->netif_rx_response_t's to 2027 * generate. 2028 * \param[in] n_entries Number of relevant entries in the grant table 2029 * \param[out] ring Responses go here 2030 * \return The number of RX requests that were consumed to generate 2031 * the responses 2032 */ 2033 static int 2034 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab, 2035 int n_entries, netif_rx_back_ring_t *ring) 2036 { 2037 /* 2038 * This code makes the following assumptions: 2039 * * All entries in gnttab set GNTCOPY_dest_gref 2040 * * The entries in gnttab are grouped by their grefs: any two 2041 * entries with the same gref must be adjacent 2042 */ 2043 int error = 0; 2044 int gnt_idx, i; 2045 int n_responses = 0; 2046 grant_ref_t last_gref = GRANT_REF_INVALID; 2047 RING_IDX r_idx; 2048 2049 KASSERT(gnttab != NULL, ("Received a null granttable copy")); 2050 2051 /* 2052 * In the event of an error, we only need to send one response to the 2053 * netfront. In that case, we musn't write any data to the responses 2054 * after the one we send. So we must loop all the way through gnttab 2055 * looking for errors before we generate any responses 2056 * 2057 * Since we're looping through the grant table anyway, we'll count the 2058 * number of different gref's in it, which will tell us how many 2059 * responses to generate 2060 */ 2061 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) { 2062 int16_t status = gnttab[gnt_idx].status; 2063 if (status != GNTST_okay) { 2064 DPRINTF( 2065 "Got error %d for hypervisor gnttab_copy status\n", 2066 status); 2067 error = 1; 2068 break; 2069 } 2070 if (gnttab[gnt_idx].dest.u.ref != last_gref) { 2071 n_responses++; 2072 last_gref = gnttab[gnt_idx].dest.u.ref; 2073 } 2074 } 2075 2076 if (error != 0) { 2077 uint16_t id; 2078 netif_rx_response_t *rsp; 2079 2080 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id; 2081 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 2082 rsp->id = id; 2083 rsp->status = NETIF_RSP_ERROR; 2084 n_responses = 1; 2085 } else { 2086 gnt_idx = 0; 2087 const int has_extra = pkt->flags & NETRXF_extra_info; 2088 if (has_extra != 0) 2089 n_responses++; 2090 2091 for (i = 0; i < n_responses; i++) { 2092 netif_rx_request_t rxq; 2093 netif_rx_response_t *rsp; 2094 2095 r_idx = ring->rsp_prod_pvt + i; 2096 /* 2097 * We copy the structure of rxq instead of making a 2098 * pointer because it shares the same memory as rsp. 2099 */ 2100 rxq = *(RING_GET_REQUEST(ring, r_idx)); 2101 rsp = RING_GET_RESPONSE(ring, r_idx); 2102 if (has_extra && (i == 1)) { 2103 netif_extra_info_t *ext = 2104 (netif_extra_info_t*)rsp; 2105 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 2106 ext->flags = 0; 2107 ext->u.gso.size = pkt->extra.u.gso.size; 2108 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 2109 ext->u.gso.pad = 0; 2110 ext->u.gso.features = 0; 2111 } else { 2112 rsp->id = rxq.id; 2113 rsp->status = GNTST_okay; 2114 rsp->offset = 0; 2115 rsp->flags = 0; 2116 if (i < pkt->list_len - 1) 2117 rsp->flags |= NETRXF_more_data; 2118 if ((i == 0) && has_extra) 2119 rsp->flags |= NETRXF_extra_info; 2120 if ((i == 0) && 2121 (pkt->flags & NETRXF_data_validated)) { 2122 rsp->flags |= NETRXF_data_validated; 2123 rsp->flags |= NETRXF_csum_blank; 2124 } 2125 rsp->status = 0; 2126 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref; 2127 gnt_idx++) { 2128 rsp->status += gnttab[gnt_idx].len; 2129 } 2130 } 2131 } 2132 } 2133 2134 ring->req_cons += n_responses; 2135 ring->rsp_prod_pvt += n_responses; 2136 return n_responses; 2137 } 2138 2139 #if defined(INET) || defined(INET6) 2140 /** 2141 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf 2142 * in the chain must start with a struct ether_header. 2143 * 2144 * XXX This function will perform incorrectly on UDP packets that are split up 2145 * into multiple ethernet frames. 2146 */ 2147 static void 2148 xnb_add_mbuf_cksum(struct mbuf *mbufc) 2149 { 2150 struct ether_header *eh; 2151 struct ip *iph; 2152 uint16_t ether_type; 2153 2154 eh = mtod(mbufc, struct ether_header*); 2155 ether_type = ntohs(eh->ether_type); 2156 if (ether_type != ETHERTYPE_IP) { 2157 /* Nothing to calculate */ 2158 return; 2159 } 2160 2161 iph = (struct ip*)(eh + 1); 2162 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2163 iph->ip_sum = 0; 2164 iph->ip_sum = in_cksum_hdr(iph); 2165 } 2166 2167 switch (iph->ip_p) { 2168 case IPPROTO_TCP: 2169 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2170 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip); 2171 struct tcphdr *th = (struct tcphdr*)(iph + 1); 2172 th->th_sum = in_pseudo(iph->ip_src.s_addr, 2173 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen)); 2174 th->th_sum = in_cksum_skip(mbufc, 2175 sizeof(struct ether_header) + ntohs(iph->ip_len), 2176 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2177 } 2178 break; 2179 case IPPROTO_UDP: 2180 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2181 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip); 2182 struct udphdr *uh = (struct udphdr*)(iph + 1); 2183 uh->uh_sum = in_pseudo(iph->ip_src.s_addr, 2184 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen)); 2185 uh->uh_sum = in_cksum_skip(mbufc, 2186 sizeof(struct ether_header) + ntohs(iph->ip_len), 2187 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2188 } 2189 break; 2190 default: 2191 break; 2192 } 2193 } 2194 #endif /* INET || INET6 */ 2195 2196 static void 2197 xnb_stop(struct xnb_softc *xnb) 2198 { 2199 struct ifnet *ifp; 2200 2201 mtx_assert(&xnb->sc_lock, MA_OWNED); 2202 ifp = xnb->xnb_ifp; 2203 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2204 if_link_state_change(ifp, LINK_STATE_DOWN); 2205 } 2206 2207 static int 2208 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2209 { 2210 struct xnb_softc *xnb = ifp->if_softc; 2211 struct ifreq *ifr = (struct ifreq*) data; 2212 #ifdef INET 2213 struct ifaddr *ifa = (struct ifaddr*)data; 2214 #endif 2215 int error = 0; 2216 2217 switch (cmd) { 2218 case SIOCSIFFLAGS: 2219 mtx_lock(&xnb->sc_lock); 2220 if (ifp->if_flags & IFF_UP) { 2221 xnb_ifinit_locked(xnb); 2222 } else { 2223 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2224 xnb_stop(xnb); 2225 } 2226 } 2227 /* 2228 * Note: netfront sets a variable named xn_if_flags 2229 * here, but that variable is never read 2230 */ 2231 mtx_unlock(&xnb->sc_lock); 2232 break; 2233 case SIOCSIFADDR: 2234 #ifdef INET 2235 mtx_lock(&xnb->sc_lock); 2236 if (ifa->ifa_addr->sa_family == AF_INET) { 2237 ifp->if_flags |= IFF_UP; 2238 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2239 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | 2240 IFF_DRV_OACTIVE); 2241 if_link_state_change(ifp, 2242 LINK_STATE_DOWN); 2243 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2244 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2245 if_link_state_change(ifp, 2246 LINK_STATE_UP); 2247 } 2248 arp_ifinit(ifp, ifa); 2249 mtx_unlock(&xnb->sc_lock); 2250 } else { 2251 mtx_unlock(&xnb->sc_lock); 2252 #endif 2253 error = ether_ioctl(ifp, cmd, data); 2254 #ifdef INET 2255 } 2256 #endif 2257 break; 2258 case SIOCSIFCAP: 2259 mtx_lock(&xnb->sc_lock); 2260 if (ifr->ifr_reqcap & IFCAP_TXCSUM) { 2261 ifp->if_capenable |= IFCAP_TXCSUM; 2262 ifp->if_hwassist |= XNB_CSUM_FEATURES; 2263 } else { 2264 ifp->if_capenable &= ~(IFCAP_TXCSUM); 2265 ifp->if_hwassist &= ~(XNB_CSUM_FEATURES); 2266 } 2267 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) { 2268 ifp->if_capenable |= IFCAP_RXCSUM; 2269 } else { 2270 ifp->if_capenable &= ~(IFCAP_RXCSUM); 2271 } 2272 /* 2273 * TODO enable TSO4 and LRO once we no longer need 2274 * to calculate checksums in software 2275 */ 2276 #if 0 2277 if (ifr->if_reqcap |= IFCAP_TSO4) { 2278 if (IFCAP_TXCSUM & ifp->if_capenable) { 2279 printf("xnb: Xen netif requires that " 2280 "TXCSUM be enabled in order " 2281 "to use TSO4\n"); 2282 error = EINVAL; 2283 } else { 2284 ifp->if_capenable |= IFCAP_TSO4; 2285 ifp->if_hwassist |= CSUM_TSO; 2286 } 2287 } else { 2288 ifp->if_capenable &= ~(IFCAP_TSO4); 2289 ifp->if_hwassist &= ~(CSUM_TSO); 2290 } 2291 if (ifr->ifreqcap |= IFCAP_LRO) { 2292 ifp->if_capenable |= IFCAP_LRO; 2293 } else { 2294 ifp->if_capenable &= ~(IFCAP_LRO); 2295 } 2296 #endif 2297 mtx_unlock(&xnb->sc_lock); 2298 break; 2299 case SIOCSIFMTU: 2300 ifp->if_mtu = ifr->ifr_mtu; 2301 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2302 xnb_ifinit(xnb); 2303 break; 2304 case SIOCADDMULTI: 2305 case SIOCDELMULTI: 2306 case SIOCSIFMEDIA: 2307 case SIOCGIFMEDIA: 2308 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd); 2309 break; 2310 default: 2311 error = ether_ioctl(ifp, cmd, data); 2312 break; 2313 } 2314 return (error); 2315 } 2316 2317 static void 2318 xnb_start_locked(struct ifnet *ifp) 2319 { 2320 netif_rx_back_ring_t *rxb; 2321 struct xnb_softc *xnb; 2322 struct mbuf *mbufc; 2323 RING_IDX req_prod_local; 2324 2325 xnb = ifp->if_softc; 2326 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 2327 2328 if (!xnb->carrier) 2329 return; 2330 2331 do { 2332 int out_of_space = 0; 2333 int notify; 2334 req_prod_local = rxb->sring->req_prod; 2335 xen_rmb(); 2336 for (;;) { 2337 int error; 2338 2339 IF_DEQUEUE(&ifp->if_snd, mbufc); 2340 if (mbufc == NULL) 2341 break; 2342 error = xnb_send(rxb, xnb->otherend_id, mbufc, 2343 xnb->rx_gnttab); 2344 switch (error) { 2345 case EAGAIN: 2346 /* 2347 * Insufficient space in the ring. 2348 * Requeue pkt and send when space is 2349 * available. 2350 */ 2351 IF_PREPEND(&ifp->if_snd, mbufc); 2352 /* 2353 * Perhaps the frontend missed an IRQ 2354 * and went to sleep. Notify it to wake 2355 * it up. 2356 */ 2357 out_of_space = 1; 2358 break; 2359 2360 case EINVAL: 2361 /* OS gave a corrupt packet. Drop it.*/ 2362 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2363 /* FALLTHROUGH */ 2364 default: 2365 /* Send succeeded, or packet had error. 2366 * Free the packet */ 2367 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2368 if (mbufc) 2369 m_freem(mbufc); 2370 break; 2371 } 2372 if (out_of_space != 0) 2373 break; 2374 } 2375 2376 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify); 2377 if ((notify != 0) || (out_of_space != 0)) 2378 xen_intr_signal(xnb->xen_intr_handle); 2379 rxb->sring->req_event = req_prod_local + 1; 2380 xen_mb(); 2381 } while (rxb->sring->req_prod != req_prod_local) ; 2382 } 2383 2384 /** 2385 * Sends one packet to the ring. Blocks until the packet is on the ring 2386 * \param[in] mbufc Contains one packet to send. Caller must free 2387 * \param[in,out] rxb The packet will be pushed onto this ring, but the 2388 * otherend will not be notified. 2389 * \param[in] otherend The domain ID of the other end of the connection 2390 * \retval EAGAIN The ring did not have enough space for the packet. 2391 * The ring has not been modified 2392 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 2393 * this a function parameter so that we will take less 2394 * stack space. 2395 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 2396 */ 2397 static int 2398 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc, 2399 gnttab_copy_table gnttab) 2400 { 2401 struct xnb_pkt pkt; 2402 int error, n_entries, n_reqs; 2403 RING_IDX space; 2404 2405 space = ring->sring->req_prod - ring->req_cons; 2406 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space); 2407 if (error != 0) 2408 return error; 2409 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend); 2410 if (n_entries != 0) { 2411 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 2412 gnttab, n_entries); 2413 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n", 2414 hv_ret)); 2415 } 2416 2417 n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring); 2418 2419 return 0; 2420 } 2421 2422 static void 2423 xnb_start(struct ifnet *ifp) 2424 { 2425 struct xnb_softc *xnb; 2426 2427 xnb = ifp->if_softc; 2428 mtx_lock(&xnb->rx_lock); 2429 xnb_start_locked(ifp); 2430 mtx_unlock(&xnb->rx_lock); 2431 } 2432 2433 /* equivalent of network_open() in Linux */ 2434 static void 2435 xnb_ifinit_locked(struct xnb_softc *xnb) 2436 { 2437 struct ifnet *ifp; 2438 2439 ifp = xnb->xnb_ifp; 2440 2441 mtx_assert(&xnb->sc_lock, MA_OWNED); 2442 2443 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2444 return; 2445 2446 xnb_stop(xnb); 2447 2448 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2449 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2450 if_link_state_change(ifp, LINK_STATE_UP); 2451 } 2452 2453 2454 static void 2455 xnb_ifinit(void *xsc) 2456 { 2457 struct xnb_softc *xnb = xsc; 2458 2459 mtx_lock(&xnb->sc_lock); 2460 xnb_ifinit_locked(xnb); 2461 mtx_unlock(&xnb->sc_lock); 2462 } 2463 2464 /** 2465 * Callback used by the generic networking code to tell us when our carrier 2466 * state has changed. Since we don't have a physical carrier, we don't care 2467 */ 2468 static int 2469 xnb_ifmedia_upd(struct ifnet *ifp) 2470 { 2471 return (0); 2472 } 2473 2474 /** 2475 * Callback used by the generic networking code to ask us what our carrier 2476 * state is. Since we don't have a physical carrier, this is very simple 2477 */ 2478 static void 2479 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2480 { 2481 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2482 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2483 } 2484 2485 2486 /*---------------------------- NewBus Registration ---------------------------*/ 2487 static device_method_t xnb_methods[] = { 2488 /* Device interface */ 2489 DEVMETHOD(device_probe, xnb_probe), 2490 DEVMETHOD(device_attach, xnb_attach), 2491 DEVMETHOD(device_detach, xnb_detach), 2492 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2493 DEVMETHOD(device_suspend, xnb_suspend), 2494 DEVMETHOD(device_resume, xnb_resume), 2495 2496 /* Xenbus interface */ 2497 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed), 2498 2499 { 0, 0 } 2500 }; 2501 2502 static driver_t xnb_driver = { 2503 "xnb", 2504 xnb_methods, 2505 sizeof(struct xnb_softc), 2506 }; 2507 devclass_t xnb_devclass; 2508 2509 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0); 2510 2511 2512 /*-------------------------- Unit Tests -------------------------------------*/ 2513 #ifdef XNB_DEBUG 2514 #include "netback_unit_tests.c" 2515 #endif 2516