xref: /freebsd/sys/dev/xen/netback/netback.c (revision 1b386f626f8441099f574cd42a5cbae2d8c3235a)
1 /*-
2  * Copyright (c) 2009-2011 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Alan Somers         (Spectra Logic Corporation)
32  *          John Suykerbuyk     (Spectra Logic Corporation)
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file netback.c
40  *
41  * \brief Device driver supporting the vending of network access
42  * 	  from this FreeBSD domain to other domains.
43  */
44 #include "opt_inet.h"
45 #include "opt_inet6.h"
46 #include "opt_global.h"
47 
48 #include "opt_sctp.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 
53 #include <sys/bus.h>
54 #include <sys/module.h>
55 #include <sys/rman.h>
56 #include <sys/socket.h>
57 #include <sys/sockio.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_ether.h>
71 #if __FreeBSD_version >= 700000
72 #include <netinet/tcp.h>
73 #endif
74 #include <netinet/ip_icmp.h>
75 #include <netinet/udp.h>
76 #include <machine/in_cksum.h>
77 
78 #include <vm/vm.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_kern.h>
82 
83 #include <machine/_inttypes.h>
84 
85 #include <xen/xen-os.h>
86 #include <xen/hypervisor.h>
87 #include <xen/xen_intr.h>
88 #include <xen/interface/io/netif.h>
89 #include <xen/xenbus/xenbusvar.h>
90 
91 #include <machine/xen/xenvar.h>
92 
93 /*--------------------------- Compile-time Tunables --------------------------*/
94 
95 /*---------------------------------- Macros ----------------------------------*/
96 /**
97  * Custom malloc type for all driver allocations.
98  */
99 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
100 
101 #define	XNB_SG	1	/* netback driver supports feature-sg */
102 #define	XNB_GSO_TCPV4 1	/* netback driver supports feature-gso-tcpv4 */
103 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
104 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
105 
106 #undef XNB_DEBUG
107 #define	XNB_DEBUG /* hardcode on during development */
108 
109 #ifdef XNB_DEBUG
110 #define	DPRINTF(fmt, args...) \
111 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
112 #else
113 #define	DPRINTF(fmt, args...) do {} while (0)
114 #endif
115 
116 /* Default length for stack-allocated grant tables */
117 #define	GNTTAB_LEN	(64)
118 
119 /* Features supported by all backends.  TSO and LRO can be negotiated */
120 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
121 
122 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
123 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
124 
125 /**
126  * Two argument version of the standard macro.  Second argument is a tentative
127  * value of req_cons
128  */
129 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
130 	unsigned int req = (_r)->sring->req_prod - cons;          	\
131 	unsigned int rsp = RING_SIZE(_r) -                              \
132 	(cons - (_r)->rsp_prod_pvt);                          		\
133 	req < rsp ? req : rsp;                                          \
134 })
135 
136 #define	virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
137 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
138 
139 /**
140  * Predefined array type of grant table copy descriptors.  Used to pass around
141  * statically allocated memory structures.
142  */
143 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
144 
145 /*--------------------------- Forward Declarations ---------------------------*/
146 struct xnb_softc;
147 struct xnb_pkt;
148 
149 static void	xnb_attach_failed(struct xnb_softc *xnb,
150 				  int err, const char *fmt, ...)
151 				  __printflike(3,4);
152 static int	xnb_shutdown(struct xnb_softc *xnb);
153 static int	create_netdev(device_t dev);
154 static int	xnb_detach(device_t dev);
155 static int	xen_net_read_mac(device_t dev, uint8_t mac[]);
156 static int	xnb_ifmedia_upd(struct ifnet *ifp);
157 static void	xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
158 static void 	xnb_intr(void *arg);
159 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
160 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
161 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
162 			 struct mbuf **mbufc, struct ifnet *ifnet,
163 			 gnttab_copy_table gnttab);
164 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
165 			     const netif_tx_back_ring_t *tx_ring,
166 			     RING_IDX start);
167 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
168 			      netif_tx_back_ring_t *ring, int error);
169 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
170 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
171 				 const struct mbuf *mbufc,
172 				 gnttab_copy_table gnttab,
173 				 const netif_tx_back_ring_t *txb,
174 				 domid_t otherend_id);
175 static void	xnb_update_mbufc(struct mbuf *mbufc,
176 				 const gnttab_copy_table gnttab, int n_entries);
177 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
178 			      struct xnb_pkt *pkt,
179 			      RING_IDX start, int space);
180 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
181 				 const struct mbuf *mbufc,
182 				 gnttab_copy_table gnttab,
183 				 const netif_rx_back_ring_t *rxb,
184 				 domid_t otherend_id);
185 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
186 			      const gnttab_copy_table gnttab, int n_entries,
187 			      netif_rx_back_ring_t *ring);
188 static void	xnb_stop(struct xnb_softc*);
189 static int	xnb_ioctl(struct ifnet*, u_long, caddr_t);
190 static void	xnb_start_locked(struct ifnet*);
191 static void	xnb_start(struct ifnet*);
192 static void	xnb_ifinit_locked(struct xnb_softc*);
193 static void	xnb_ifinit(void*);
194 #ifdef XNB_DEBUG
195 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
196 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
197 #endif
198 #if defined(INET) || defined(INET6)
199 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
200 #endif
201 /*------------------------------ Data Structures -----------------------------*/
202 
203 
204 /**
205  * Representation of a xennet packet.  Simplified version of a packet as
206  * stored in the Xen tx ring.  Applicable to both RX and TX packets
207  */
208 struct xnb_pkt{
209 	/**
210 	 * Array index of the first data-bearing (eg, not extra info) entry
211 	 * for this packet
212 	 */
213 	RING_IDX	car;
214 
215 	/**
216 	 * Array index of the second data-bearing entry for this packet.
217 	 * Invalid if the packet has only one data-bearing entry.  If the
218 	 * packet has more than two data-bearing entries, then the second
219 	 * through the last will be sequential modulo the ring size
220 	 */
221 	RING_IDX	cdr;
222 
223 	/**
224 	 * Optional extra info.  Only valid if flags contains
225 	 * NETTXF_extra_info.  Note that extra.type will always be
226 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
227 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
228 	 */
229 	netif_extra_info_t extra;
230 
231 	/** Size of entire packet in bytes.       */
232 	uint16_t	size;
233 
234 	/** The size of the first entry's data in bytes */
235 	uint16_t	car_size;
236 
237 	/**
238 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
239 	 * not the same for TX and RX packets
240 	 */
241 	uint16_t	flags;
242 
243 	/**
244 	 * The number of valid data-bearing entries (either netif_tx_request's
245 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
246 	 * entire packet is invalid.
247 	 */
248 	uint16_t	list_len;
249 
250 	/** There was an error processing the packet */
251 	uint8_t		error;
252 };
253 
254 /** xnb_pkt method: initialize it */
255 static inline void
256 xnb_pkt_initialize(struct xnb_pkt *pxnb)
257 {
258 	bzero(pxnb, sizeof(*pxnb));
259 }
260 
261 /** xnb_pkt method: mark the packet as valid */
262 static inline void
263 xnb_pkt_validate(struct xnb_pkt *pxnb)
264 {
265 	pxnb->error = 0;
266 };
267 
268 /** xnb_pkt method: mark the packet as invalid */
269 static inline void
270 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
271 {
272 	pxnb->error = 1;
273 };
274 
275 /** xnb_pkt method: Check whether the packet is valid */
276 static inline int
277 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
278 {
279 	return (! pxnb->error);
280 }
281 
282 #ifdef XNB_DEBUG
283 /** xnb_pkt method: print the packet's contents in human-readable format*/
284 static void __unused
285 xnb_dump_pkt(const struct xnb_pkt *pkt) {
286 	if (pkt == NULL) {
287 	  DPRINTF("Was passed a null pointer.\n");
288 	  return;
289 	}
290 	DPRINTF("pkt address= %p\n", pkt);
291 	DPRINTF("pkt->size=%d\n", pkt->size);
292 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
293 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
294 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
295 	/* DPRINTF("pkt->extra");	TODO */
296 	DPRINTF("pkt->car=%d\n", pkt->car);
297 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
298 	DPRINTF("pkt->error=%d\n", pkt->error);
299 }
300 #endif /* XNB_DEBUG */
301 
302 static void
303 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
304 {
305 	if (txreq != NULL) {
306 		DPRINTF("netif_tx_request index =%u\n", idx);
307 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
308 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
309 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
310 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
311 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
312 	}
313 }
314 
315 
316 /**
317  * \brief Configuration data for a shared memory request ring
318  *        used to communicate with the front-end client of this
319  *        this driver.
320  */
321 struct xnb_ring_config {
322 	/**
323 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
324 	 * use different data structures, and that cannot be changed since it
325 	 * is part of the interdomain protocol.
326 	 */
327 	union{
328 		netif_rx_back_ring_t	  rx_ring;
329 		netif_tx_back_ring_t	  tx_ring;
330 	} back_ring;
331 
332 	/**
333 	 * The device bus address returned by the hypervisor when
334 	 * mapping the ring and required to unmap it when a connection
335 	 * is torn down.
336 	 */
337 	uint64_t	bus_addr;
338 
339 	/** The pseudo-physical address where ring memory is mapped.*/
340 	uint64_t	gnt_addr;
341 
342 	/** KVA address where ring memory is mapped. */
343 	vm_offset_t	va;
344 
345 	/**
346 	 * Grant table handles, one per-ring page, returned by the
347 	 * hyperpervisor upon mapping of the ring and required to
348 	 * unmap it when a connection is torn down.
349 	 */
350 	grant_handle_t	handle;
351 
352 	/** The number of ring pages mapped for the current connection. */
353 	unsigned	ring_pages;
354 
355 	/**
356 	 * The grant references, one per-ring page, supplied by the
357 	 * front-end, allowing us to reference the ring pages in the
358 	 * front-end's domain and to map these pages into our own domain.
359 	 */
360 	grant_ref_t	ring_ref;
361 };
362 
363 /**
364  * Per-instance connection state flags.
365  */
366 typedef enum
367 {
368 	/** Communication with the front-end has been established. */
369 	XNBF_RING_CONNECTED    = 0x01,
370 
371 	/**
372 	 * Front-end requests exist in the ring and are waiting for
373 	 * xnb_xen_req objects to free up.
374 	 */
375 	XNBF_RESOURCE_SHORTAGE = 0x02,
376 
377 	/** Connection teardown has started. */
378 	XNBF_SHUTDOWN          = 0x04,
379 
380 	/** A thread is already performing shutdown processing. */
381 	XNBF_IN_SHUTDOWN       = 0x08
382 } xnb_flag_t;
383 
384 /**
385  * Types of rings.  Used for array indices and to identify a ring's control
386  * data structure type
387  */
388 typedef enum{
389 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
390 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
391 	XNB_NUM_RING_TYPES
392 } xnb_ring_type_t;
393 
394 /**
395  * Per-instance configuration data.
396  */
397 struct xnb_softc {
398 	/** NewBus device corresponding to this instance. */
399 	device_t		dev;
400 
401 	/* Media related fields */
402 
403 	/** Generic network media state */
404 	struct ifmedia		sc_media;
405 
406 	/** Media carrier info */
407 	struct ifnet 		*xnb_ifp;
408 
409 	/** Our own private carrier state */
410 	unsigned carrier;
411 
412 	/** Device MAC Address */
413 	uint8_t			mac[ETHER_ADDR_LEN];
414 
415 	/* Xen related fields */
416 
417 	/**
418 	 * \brief The netif protocol abi in effect.
419 	 *
420 	 * There are situations where the back and front ends can
421 	 * have a different, native abi (e.g. intel x86_64 and
422 	 * 32bit x86 domains on the same machine).  The back-end
423 	 * always accomodates the front-end's native abi.  That
424 	 * value is pulled from the XenStore and recorded here.
425 	 */
426 	int			abi;
427 
428 	/**
429 	 * Name of the bridge to which this VIF is connected, if any
430 	 * This field is dynamically allocated by xenbus and must be free()ed
431 	 * when no longer needed
432 	 */
433 	char			*bridge;
434 
435 	/** The interrupt driven even channel used to signal ring events. */
436 	evtchn_port_t		evtchn;
437 
438 	/** Xen device handle.*/
439 	long 			handle;
440 
441 	/** Handle to the communication ring event channel. */
442 	xen_intr_handle_t	xen_intr_handle;
443 
444 	/**
445 	 * \brief Cached value of the front-end's domain id.
446 	 *
447 	 * This value is used at once for each mapped page in
448 	 * a transaction.  We cache it to avoid incuring the
449 	 * cost of an ivar access every time this is needed.
450 	 */
451 	domid_t			otherend_id;
452 
453 	/**
454 	 * Undocumented frontend feature.  Has something to do with
455 	 * scatter/gather IO
456 	 */
457 	uint8_t			can_sg;
458 	/** Undocumented frontend feature */
459 	uint8_t			gso;
460 	/** Undocumented frontend feature */
461 	uint8_t			gso_prefix;
462 	/** Can checksum TCP/UDP over IPv4 */
463 	uint8_t			ip_csum;
464 
465 	/* Implementation related fields */
466 	/**
467 	 * Preallocated grant table copy descriptor for RX operations.
468 	 * Access must be protected by rx_lock
469 	 */
470 	gnttab_copy_table	rx_gnttab;
471 
472 	/**
473 	 * Preallocated grant table copy descriptor for TX operations.
474 	 * Access must be protected by tx_lock
475 	 */
476 	gnttab_copy_table	tx_gnttab;
477 
478 #ifdef XENHVM
479 	/**
480 	 * Resource representing allocated physical address space
481 	 * associated with our per-instance kva region.
482 	 */
483 	struct resource		*pseudo_phys_res;
484 
485 	/** Resource id for allocated physical address space. */
486 	int			pseudo_phys_res_id;
487 #endif
488 
489 	/** Ring mapping and interrupt configuration data. */
490 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
491 
492 	/**
493 	 * Global pool of kva used for mapping remote domain ring
494 	 * and I/O transaction data.
495 	 */
496 	vm_offset_t		kva;
497 
498 	/** Psuedo-physical address corresponding to kva. */
499 	uint64_t		gnt_base_addr;
500 
501 	/** Various configuration and state bit flags. */
502 	xnb_flag_t		flags;
503 
504 	/** Mutex protecting per-instance data in the receive path. */
505 	struct mtx		rx_lock;
506 
507 	/** Mutex protecting per-instance data in the softc structure. */
508 	struct mtx		sc_lock;
509 
510 	/** Mutex protecting per-instance data in the transmit path. */
511 	struct mtx		tx_lock;
512 
513 	/** The size of the global kva pool. */
514 	int			kva_size;
515 };
516 
517 /*---------------------------- Debugging functions ---------------------------*/
518 #ifdef XNB_DEBUG
519 static void __unused
520 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
521 {
522 	if (entry == NULL) {
523 		printf("NULL grant table pointer\n");
524 		return;
525 	}
526 
527 	if (entry->flags & GNTCOPY_dest_gref)
528 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
529 	else
530 		printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
531 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
532 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
533 	if (entry->flags & GNTCOPY_source_gref)
534 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
535 	else
536 		printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
537 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
538 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
539 	printf("gnttab len=\t%hu\n", entry->len);
540 	printf("gnttab flags=\t%hu\n", entry->flags);
541 	printf("gnttab status=\t%hd\n", entry->status);
542 }
543 
544 static int
545 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
546 {
547 	static char results[720];
548 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
549 	netif_rx_back_ring_t const* rxb =
550 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
551 	netif_tx_back_ring_t const* txb =
552 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
553 
554 	/* empty the result strings */
555 	results[0] = 0;
556 
557 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
558 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
559 
560 	snprintf(results, 720,
561 	    "\n\t%35s %18s\n"	/* TX, RX */
562 	    "\t%16s %18d %18d\n"	/* req_cons */
563 	    "\t%16s %18d %18d\n"	/* nr_ents */
564 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
565 	    "\t%16s %18p %18p\n"	/* sring */
566 	    "\t%16s %18d %18d\n"	/* req_prod */
567 	    "\t%16s %18d %18d\n"	/* req_event */
568 	    "\t%16s %18d %18d\n"	/* rsp_prod */
569 	    "\t%16s %18d %18d\n",	/* rsp_event */
570 	    "TX", "RX",
571 	    "req_cons", txb->req_cons, rxb->req_cons,
572 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
573 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
574 	    "sring", txb->sring, rxb->sring,
575 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
576 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
577 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
578 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
579 
580 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
581 }
582 
583 static void __unused
584 xnb_dump_mbuf(const struct mbuf *m)
585 {
586 	int len;
587 	uint8_t *d;
588 	if (m == NULL)
589 		return;
590 
591 	printf("xnb_dump_mbuf:\n");
592 	if (m->m_flags & M_PKTHDR) {
593 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
594 		       "tso_segsz=%5hd\n",
595 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
596 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
597 		printf("    rcvif=%16p,  len=%19d\n",
598 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
599 	}
600 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
601 	       m->m_next, m->m_nextpkt, m->m_data);
602 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
603 	       m->m_len, m->m_flags, m->m_type);
604 
605 	len = m->m_len;
606 	d = mtod(m, uint8_t*);
607 	while (len > 0) {
608 		int i;
609 		printf("                ");
610 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
611 			printf("%02hhx ", *(d++));
612 		}
613 		printf("\n");
614 	}
615 }
616 #endif /* XNB_DEBUG */
617 
618 /*------------------------ Inter-Domain Communication ------------------------*/
619 /**
620  * Free dynamically allocated KVA or pseudo-physical address allocations.
621  *
622  * \param xnb  Per-instance xnb configuration structure.
623  */
624 static void
625 xnb_free_communication_mem(struct xnb_softc *xnb)
626 {
627 	if (xnb->kva != 0) {
628 #ifndef XENHVM
629 		kva_free(xnb->kva, xnb->kva_size);
630 #else
631 		if (xnb->pseudo_phys_res != NULL) {
632 			bus_release_resource(xnb->dev, SYS_RES_MEMORY,
633 			    xnb->pseudo_phys_res_id,
634 			    xnb->pseudo_phys_res);
635 			xnb->pseudo_phys_res = NULL;
636 		}
637 #endif /* XENHVM */
638 	}
639 	xnb->kva = 0;
640 	xnb->gnt_base_addr = 0;
641 }
642 
643 /**
644  * Cleanup all inter-domain communication mechanisms.
645  *
646  * \param xnb  Per-instance xnb configuration structure.
647  */
648 static int
649 xnb_disconnect(struct xnb_softc *xnb)
650 {
651 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
652 	int error;
653 	int i;
654 
655 	if (xnb->xen_intr_handle != NULL)
656 		xen_intr_unbind(&xnb->xen_intr_handle);
657 
658 	/*
659 	 * We may still have another thread currently processing requests.  We
660 	 * must acquire the rx and tx locks to make sure those threads are done,
661 	 * but we can release those locks as soon as we acquire them, because no
662 	 * more interrupts will be arriving.
663 	 */
664 	mtx_lock(&xnb->tx_lock);
665 	mtx_unlock(&xnb->tx_lock);
666 	mtx_lock(&xnb->rx_lock);
667 	mtx_unlock(&xnb->rx_lock);
668 
669 	/* Free malloc'd softc member variables */
670 	if (xnb->bridge != NULL) {
671 		free(xnb->bridge, M_XENSTORE);
672 		xnb->bridge = NULL;
673 	}
674 
675 	/* All request processing has stopped, so unmap the rings */
676 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
677 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
678 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
679 		gnts[i].handle = xnb->ring_configs[i].handle;
680 	}
681 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
682 					  XNB_NUM_RING_TYPES);
683 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
684 
685 	xnb_free_communication_mem(xnb);
686 	/*
687 	 * Zero the ring config structs because the pointers, handles, and
688 	 * grant refs contained therein are no longer valid.
689 	 */
690 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
691 	    sizeof(struct xnb_ring_config));
692 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
693 	    sizeof(struct xnb_ring_config));
694 
695 	xnb->flags &= ~XNBF_RING_CONNECTED;
696 	return (0);
697 }
698 
699 /**
700  * Map a single shared memory ring into domain local address space and
701  * initialize its control structure
702  *
703  * \param xnb	Per-instance xnb configuration structure
704  * \param ring_type	Array index of this ring in the xnb's array of rings
705  * \return 	An errno
706  */
707 static int
708 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
709 {
710 	struct gnttab_map_grant_ref gnt;
711 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
712 	int error;
713 
714 	/* TX ring type = 0, RX =1 */
715 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
716 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
717 
718 	gnt.host_addr = ring->gnt_addr;
719 	gnt.flags     = GNTMAP_host_map;
720 	gnt.ref       = ring->ring_ref;
721 	gnt.dom       = xnb->otherend_id;
722 
723 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
724 	if (error != 0)
725 		panic("netback: Ring page grant table op failed (%d)", error);
726 
727 	if (gnt.status != 0) {
728 		ring->va = 0;
729 		error = EACCES;
730 		xenbus_dev_fatal(xnb->dev, error,
731 				 "Ring shared page mapping failed. "
732 				 "Status %d.", gnt.status);
733 	} else {
734 		ring->handle = gnt.handle;
735 		ring->bus_addr = gnt.dev_bus_addr;
736 
737 		if (ring_type == XNB_RING_TYPE_TX) {
738 			BACK_RING_INIT(&ring->back_ring.tx_ring,
739 			    (netif_tx_sring_t*)ring->va,
740 			    ring->ring_pages * PAGE_SIZE);
741 		} else if (ring_type == XNB_RING_TYPE_RX) {
742 			BACK_RING_INIT(&ring->back_ring.rx_ring,
743 			    (netif_rx_sring_t*)ring->va,
744 			    ring->ring_pages * PAGE_SIZE);
745 		} else {
746 			xenbus_dev_fatal(xnb->dev, error,
747 				 "Unknown ring type %d", ring_type);
748 		}
749 	}
750 
751 	return error;
752 }
753 
754 /**
755  * Setup the shared memory rings and bind an interrupt to the event channel
756  * used to notify us of ring changes.
757  *
758  * \param xnb  Per-instance xnb configuration structure.
759  */
760 static int
761 xnb_connect_comms(struct xnb_softc *xnb)
762 {
763 	int	error;
764 	xnb_ring_type_t i;
765 
766 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
767 		return (0);
768 
769 	/*
770 	 * Kva for our rings are at the tail of the region of kva allocated
771 	 * by xnb_alloc_communication_mem().
772 	 */
773 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
774 		error = xnb_connect_ring(xnb, i);
775 		if (error != 0)
776 	  		return error;
777 	}
778 
779 	xnb->flags |= XNBF_RING_CONNECTED;
780 
781 	error = xen_intr_bind_remote_port(xnb->dev,
782 					  xnb->otherend_id,
783 					  xnb->evtchn,
784 					  /*filter*/NULL,
785 					  xnb_intr, /*arg*/xnb,
786 					  INTR_TYPE_BIO | INTR_MPSAFE,
787 					  &xnb->xen_intr_handle);
788 	if (error != 0) {
789 		(void)xnb_disconnect(xnb);
790 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
791 		return (error);
792 	}
793 
794 	DPRINTF("rings connected!\n");
795 
796 	return (0);
797 }
798 
799 /**
800  * Size KVA and pseudo-physical address allocations based on negotiated
801  * values for the size and number of I/O requests, and the size of our
802  * communication ring.
803  *
804  * \param xnb  Per-instance xnb configuration structure.
805  *
806  * These address spaces are used to dynamically map pages in the
807  * front-end's domain into our own.
808  */
809 static int
810 xnb_alloc_communication_mem(struct xnb_softc *xnb)
811 {
812 	xnb_ring_type_t i;
813 
814 	xnb->kva_size = 0;
815 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
816 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
817 	}
818 #ifndef XENHVM
819 	xnb->kva = kva_alloc(xnb->kva_size);
820 	if (xnb->kva == 0)
821 		return (ENOMEM);
822 	xnb->gnt_base_addr = xnb->kva;
823 #else /* defined XENHVM */
824 	/*
825 	 * Reserve a range of pseudo physical memory that we can map
826 	 * into kva.  These pages will only be backed by machine
827 	 * pages ("real memory") during the lifetime of front-end requests
828 	 * via grant table operations.  We will map the netif tx and rx rings
829 	 * into this space.
830 	 */
831 	xnb->pseudo_phys_res_id = 0;
832 	xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
833 						  &xnb->pseudo_phys_res_id,
834 						  0, ~0, xnb->kva_size,
835 						  RF_ACTIVE);
836 	if (xnb->pseudo_phys_res == NULL) {
837 		xnb->kva = 0;
838 		return (ENOMEM);
839 	}
840 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
841 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
842 #endif /* !defined XENHVM */
843 	return (0);
844 }
845 
846 /**
847  * Collect information from the XenStore related to our device and its frontend
848  *
849  * \param xnb  Per-instance xnb configuration structure.
850  */
851 static int
852 xnb_collect_xenstore_info(struct xnb_softc *xnb)
853 {
854 	/**
855 	 * \todo Linux collects the following info.  We should collect most
856 	 * of this, too:
857 	 * "feature-rx-notify"
858 	 */
859 	const char *otherend_path;
860 	const char *our_path;
861 	int err;
862 	unsigned int rx_copy, bridge_len;
863 	uint8_t no_csum_offload;
864 
865 	otherend_path = xenbus_get_otherend_path(xnb->dev);
866 	our_path = xenbus_get_node(xnb->dev);
867 
868 	/* Collect the critical communication parameters */
869 	err = xs_gather(XST_NIL, otherend_path,
870 	    "tx-ring-ref", "%l" PRIu32,
871 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
872 	    "rx-ring-ref", "%l" PRIu32,
873 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
874 	    "event-channel", "%" PRIu32, &xnb->evtchn,
875 	    NULL);
876 	if (err != 0) {
877 		xenbus_dev_fatal(xnb->dev, err,
878 				 "Unable to retrieve ring information from "
879 				 "frontend %s.  Unable to connect.",
880 				 otherend_path);
881 		return (err);
882 	}
883 
884 	/* Collect the handle from xenstore */
885 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
886 	if (err != 0) {
887 		xenbus_dev_fatal(xnb->dev, err,
888 		    "Error reading handle from frontend %s.  "
889 		    "Unable to connect.", otherend_path);
890 	}
891 
892 	/*
893 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
894 	 * throw it away
895 	 */
896 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
897 		      (void**)&xnb->bridge);
898 	if (err != 0)
899 		xnb->bridge = NULL;
900 
901 	/*
902 	 * Does the frontend request that we use rx copy?  If not, return an
903 	 * error because this driver only supports rx copy.
904 	 */
905 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
906 		       "%" PRIu32, &rx_copy);
907 	if (err == ENOENT) {
908 		err = 0;
909 	 	rx_copy = 0;
910 	}
911 	if (err < 0) {
912 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
913 				 otherend_path);
914 		return err;
915 	}
916 	/**
917 	 * \todo: figure out the exact meaning of this feature, and when
918 	 * the frontend will set it to true.  It should be set to true
919 	 * at some point
920 	 */
921 /*        if (!rx_copy)*/
922 /*          return EOPNOTSUPP;*/
923 
924 	/** \todo Collect the rx notify feature */
925 
926 	/*  Collect the feature-sg. */
927 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
928 		     "%hhu", &xnb->can_sg) < 0)
929 		xnb->can_sg = 0;
930 
931 	/* Collect remaining frontend features */
932 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
933 		     "%hhu", &xnb->gso) < 0)
934 		xnb->gso = 0;
935 
936 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
937 		     "%hhu", &xnb->gso_prefix) < 0)
938 		xnb->gso_prefix = 0;
939 
940 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
941 		     "%hhu", &no_csum_offload) < 0)
942 		no_csum_offload = 0;
943 	xnb->ip_csum = (no_csum_offload == 0);
944 
945 	return (0);
946 }
947 
948 /**
949  * Supply information about the physical device to the frontend
950  * via XenBus.
951  *
952  * \param xnb  Per-instance xnb configuration structure.
953  */
954 static int
955 xnb_publish_backend_info(struct xnb_softc *xnb)
956 {
957 	struct xs_transaction xst;
958 	const char *our_path;
959 	int error;
960 
961 	our_path = xenbus_get_node(xnb->dev);
962 
963 	do {
964 		error = xs_transaction_start(&xst);
965 		if (error != 0) {
966 			xenbus_dev_fatal(xnb->dev, error,
967 					 "Error publishing backend info "
968 					 "(start transaction)");
969 			break;
970 		}
971 
972 		error = xs_printf(xst, our_path, "feature-sg",
973 				  "%d", XNB_SG);
974 		if (error != 0)
975 			break;
976 
977 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
978 				  "%d", XNB_GSO_TCPV4);
979 		if (error != 0)
980 			break;
981 
982 		error = xs_printf(xst, our_path, "feature-rx-copy",
983 				  "%d", XNB_RX_COPY);
984 		if (error != 0)
985 			break;
986 
987 		error = xs_printf(xst, our_path, "feature-rx-flip",
988 				  "%d", XNB_RX_FLIP);
989 		if (error != 0)
990 			break;
991 
992 		error = xs_transaction_end(xst, 0);
993 		if (error != 0 && error != EAGAIN) {
994 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
995 			break;
996 		}
997 
998 	} while (error == EAGAIN);
999 
1000 	return (error);
1001 }
1002 
1003 /**
1004  * Connect to our netfront peer now that it has completed publishing
1005  * its configuration into the XenStore.
1006  *
1007  * \param xnb  Per-instance xnb configuration structure.
1008  */
1009 static void
1010 xnb_connect(struct xnb_softc *xnb)
1011 {
1012 	int	error;
1013 
1014 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1015 		return;
1016 
1017 	if (xnb_collect_xenstore_info(xnb) != 0)
1018 		return;
1019 
1020 	xnb->flags &= ~XNBF_SHUTDOWN;
1021 
1022 	/* Read front end configuration. */
1023 
1024 	/* Allocate resources whose size depends on front-end configuration. */
1025 	error = xnb_alloc_communication_mem(xnb);
1026 	if (error != 0) {
1027 		xenbus_dev_fatal(xnb->dev, error,
1028 				 "Unable to allocate communication memory");
1029 		return;
1030 	}
1031 
1032 	/*
1033 	 * Connect communication channel.
1034 	 */
1035 	error = xnb_connect_comms(xnb);
1036 	if (error != 0) {
1037 		/* Specific errors are reported by xnb_connect_comms(). */
1038 		return;
1039 	}
1040 	xnb->carrier = 1;
1041 
1042 	/* Ready for I/O. */
1043 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1044 }
1045 
1046 /*-------------------------- Device Teardown Support -------------------------*/
1047 /**
1048  * Perform device shutdown functions.
1049  *
1050  * \param xnb  Per-instance xnb configuration structure.
1051  *
1052  * Mark this instance as shutting down, wait for any active requests
1053  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1054  * a thread invoking our detach method) that detach can now proceed.
1055  */
1056 static int
1057 xnb_shutdown(struct xnb_softc *xnb)
1058 {
1059 	/*
1060 	 * Due to the need to drop our mutex during some
1061 	 * xenbus operations, it is possible for two threads
1062 	 * to attempt to close out shutdown processing at
1063 	 * the same time.  Tell the caller that hits this
1064 	 * race to try back later.
1065 	 */
1066 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1067 		return (EAGAIN);
1068 
1069 	xnb->flags |= XNBF_SHUTDOWN;
1070 
1071 	xnb->flags |= XNBF_IN_SHUTDOWN;
1072 
1073 	mtx_unlock(&xnb->sc_lock);
1074 	/* Free the network interface */
1075 	xnb->carrier = 0;
1076 	if (xnb->xnb_ifp != NULL) {
1077 		ether_ifdetach(xnb->xnb_ifp);
1078 		if_free(xnb->xnb_ifp);
1079 		xnb->xnb_ifp = NULL;
1080 	}
1081 	mtx_lock(&xnb->sc_lock);
1082 
1083 	xnb_disconnect(xnb);
1084 
1085 	mtx_unlock(&xnb->sc_lock);
1086 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1087 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1088 	mtx_lock(&xnb->sc_lock);
1089 
1090 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1091 
1092 
1093 	/* Indicate to xnb_detach() that is it safe to proceed. */
1094 	wakeup(xnb);
1095 
1096 	return (0);
1097 }
1098 
1099 /**
1100  * Report an attach time error to the console and Xen, and cleanup
1101  * this instance by forcing immediate detach processing.
1102  *
1103  * \param xnb  Per-instance xnb configuration structure.
1104  * \param err  Errno describing the error.
1105  * \param fmt  Printf style format and arguments
1106  */
1107 static void
1108 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1109 {
1110 	va_list ap;
1111 	va_list ap_hotplug;
1112 
1113 	va_start(ap, fmt);
1114 	va_copy(ap_hotplug, ap);
1115 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1116 		  "hotplug-error", fmt, ap_hotplug);
1117 	va_end(ap_hotplug);
1118 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1119 		  "hotplug-status", "error");
1120 
1121 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1122 	va_end(ap);
1123 
1124 	xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1125 		  "online", "0");
1126 	xnb_detach(xnb->dev);
1127 }
1128 
1129 /*---------------------------- NewBus Entrypoints ----------------------------*/
1130 /**
1131  * Inspect a XenBus device and claim it if is of the appropriate type.
1132  *
1133  * \param dev  NewBus device object representing a candidate XenBus device.
1134  *
1135  * \return  0 for success, errno codes for failure.
1136  */
1137 static int
1138 xnb_probe(device_t dev)
1139 {
1140 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1141 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1142 		    devclass_get_name(device_get_devclass(dev)));
1143 		device_set_desc(dev, "Backend Virtual Network Device");
1144 		device_quiet(dev);
1145 		return (0);
1146 	}
1147 	return (ENXIO);
1148 }
1149 
1150 /**
1151  * Setup sysctl variables to control various Network Back parameters.
1152  *
1153  * \param xnb  Xen Net Back softc.
1154  *
1155  */
1156 static void
1157 xnb_setup_sysctl(struct xnb_softc *xnb)
1158 {
1159 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1160 	struct sysctl_oid      *sysctl_tree = NULL;
1161 
1162 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1163 	if (sysctl_ctx == NULL)
1164 		return;
1165 
1166 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1167 	if (sysctl_tree == NULL)
1168 		return;
1169 
1170 #ifdef XNB_DEBUG
1171 	SYSCTL_ADD_PROC(sysctl_ctx,
1172 			SYSCTL_CHILDREN(sysctl_tree),
1173 			OID_AUTO,
1174 			"unit_test_results",
1175 			CTLTYPE_STRING | CTLFLAG_RD,
1176 			xnb,
1177 			0,
1178 			xnb_unit_test_main,
1179 			"A",
1180 			"Results of builtin unit tests");
1181 
1182 	SYSCTL_ADD_PROC(sysctl_ctx,
1183 			SYSCTL_CHILDREN(sysctl_tree),
1184 			OID_AUTO,
1185 			"dump_rings",
1186 			CTLTYPE_STRING | CTLFLAG_RD,
1187 			xnb,
1188 			0,
1189 			xnb_dump_rings,
1190 			"A",
1191 			"Xennet Back Rings");
1192 #endif /* XNB_DEBUG */
1193 }
1194 
1195 /**
1196  * Create a network device.
1197  * @param handle device handle
1198  */
1199 int
1200 create_netdev(device_t dev)
1201 {
1202 	struct ifnet *ifp;
1203 	struct xnb_softc *xnb;
1204 	int err = 0;
1205 
1206 	xnb = device_get_softc(dev);
1207 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1208 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1209 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1210 
1211 	xnb->dev = dev;
1212 
1213 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1214 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1215 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1216 
1217 	/*
1218 	 * Set the MAC address to a dummy value (00:00:00:00:00),
1219 	 * if the MAC address of the host-facing interface is set
1220 	 * to the same as the guest-facing one (the value found in
1221 	 * xenstore), the bridge would stop delivering packets to
1222 	 * us because it would see that the destination address of
1223 	 * the packet is the same as the interface, and so the bridge
1224 	 * would expect the packet has already been delivered locally
1225 	 * (and just drop it).
1226 	 */
1227 	bzero(&xnb->mac[0], sizeof(xnb->mac));
1228 
1229 	if (err == 0) {
1230 		/* Set up ifnet structure */
1231 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1232 		ifp->if_softc = xnb;
1233 		if_initname(ifp, "xnb",  device_get_unit(dev));
1234 		ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1235 		ifp->if_ioctl = xnb_ioctl;
1236 		ifp->if_output = ether_output;
1237 		ifp->if_start = xnb_start;
1238 #ifdef notyet
1239 		ifp->if_watchdog = xnb_watchdog;
1240 #endif
1241 		ifp->if_init = xnb_ifinit;
1242 		ifp->if_mtu = ETHERMTU;
1243 		ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1244 
1245 		ifp->if_hwassist = XNB_CSUM_FEATURES;
1246 		ifp->if_capabilities = IFCAP_HWCSUM;
1247 		ifp->if_capenable = IFCAP_HWCSUM;
1248 
1249 		ether_ifattach(ifp, xnb->mac);
1250 		xnb->carrier = 0;
1251 	}
1252 
1253 	return err;
1254 }
1255 
1256 /**
1257  * Attach to a XenBus device that has been claimed by our probe routine.
1258  *
1259  * \param dev  NewBus device object representing this Xen Net Back instance.
1260  *
1261  * \return  0 for success, errno codes for failure.
1262  */
1263 static int
1264 xnb_attach(device_t dev)
1265 {
1266 	struct xnb_softc *xnb;
1267 	int	error;
1268 	xnb_ring_type_t	i;
1269 
1270 	error = create_netdev(dev);
1271 	if (error != 0) {
1272 		xenbus_dev_fatal(dev, error, "creating netdev");
1273 		return (error);
1274 	}
1275 
1276 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1277 
1278 	/*
1279 	 * Basic initialization.
1280 	 * After this block it is safe to call xnb_detach()
1281 	 * to clean up any allocated data for this instance.
1282 	 */
1283 	xnb = device_get_softc(dev);
1284 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1285 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1286 		xnb->ring_configs[i].ring_pages = 1;
1287 	}
1288 
1289 	/*
1290 	 * Setup sysctl variables.
1291 	 */
1292 	xnb_setup_sysctl(xnb);
1293 
1294 	/* Update hot-plug status to satisfy xend. */
1295 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1296 			  "hotplug-status", "connected");
1297 	if (error != 0) {
1298 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1299 				  xenbus_get_node(xnb->dev));
1300 		return (error);
1301 	}
1302 
1303 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1304 		/*
1305 		 * If we can't publish our data, we cannot participate
1306 		 * in this connection, and waiting for a front-end state
1307 		 * change will not help the situation.
1308 		 */
1309 		xnb_attach_failed(xnb, error,
1310 		    "Publishing backend status for %s",
1311 				  xenbus_get_node(xnb->dev));
1312 		return error;
1313 	}
1314 
1315 	/* Tell the front end that we are ready to connect. */
1316 	xenbus_set_state(dev, XenbusStateInitWait);
1317 
1318 	return (0);
1319 }
1320 
1321 /**
1322  * Detach from a net back device instance.
1323  *
1324  * \param dev  NewBus device object representing this Xen Net Back instance.
1325  *
1326  * \return  0 for success, errno codes for failure.
1327  *
1328  * \note A net back device may be detached at any time in its life-cycle,
1329  *       including part way through the attach process.  For this reason,
1330  *       initialization order and the intialization state checks in this
1331  *       routine must be carefully coupled so that attach time failures
1332  *       are gracefully handled.
1333  */
1334 static int
1335 xnb_detach(device_t dev)
1336 {
1337 	struct xnb_softc *xnb;
1338 
1339 	DPRINTF("\n");
1340 
1341 	xnb = device_get_softc(dev);
1342 	mtx_lock(&xnb->sc_lock);
1343 	while (xnb_shutdown(xnb) == EAGAIN) {
1344 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1345 		       "xnb_shutdown", 0);
1346 	}
1347 	mtx_unlock(&xnb->sc_lock);
1348 	DPRINTF("\n");
1349 
1350 	mtx_destroy(&xnb->tx_lock);
1351 	mtx_destroy(&xnb->rx_lock);
1352 	mtx_destroy(&xnb->sc_lock);
1353 	return (0);
1354 }
1355 
1356 /**
1357  * Prepare this net back device for suspension of this VM.
1358  *
1359  * \param dev  NewBus device object representing this Xen net Back instance.
1360  *
1361  * \return  0 for success, errno codes for failure.
1362  */
1363 static int
1364 xnb_suspend(device_t dev)
1365 {
1366 	return (0);
1367 }
1368 
1369 /**
1370  * Perform any processing required to recover from a suspended state.
1371  *
1372  * \param dev  NewBus device object representing this Xen Net Back instance.
1373  *
1374  * \return  0 for success, errno codes for failure.
1375  */
1376 static int
1377 xnb_resume(device_t dev)
1378 {
1379 	return (0);
1380 }
1381 
1382 /**
1383  * Handle state changes expressed via the XenStore by our front-end peer.
1384  *
1385  * \param dev             NewBus device object representing this Xen
1386  *                        Net Back instance.
1387  * \param frontend_state  The new state of the front-end.
1388  *
1389  * \return  0 for success, errno codes for failure.
1390  */
1391 static void
1392 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1393 {
1394 	struct xnb_softc *xnb;
1395 
1396 	xnb = device_get_softc(dev);
1397 
1398 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1399 	        xenbus_strstate(frontend_state),
1400 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1401 
1402 	switch (frontend_state) {
1403 	case XenbusStateInitialising:
1404 		break;
1405 	case XenbusStateInitialised:
1406 	case XenbusStateConnected:
1407 		xnb_connect(xnb);
1408 		break;
1409 	case XenbusStateClosing:
1410 	case XenbusStateClosed:
1411 		mtx_lock(&xnb->sc_lock);
1412 		xnb_shutdown(xnb);
1413 		mtx_unlock(&xnb->sc_lock);
1414 		if (frontend_state == XenbusStateClosed)
1415 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1416 		break;
1417 	default:
1418 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1419 				 frontend_state);
1420 		break;
1421 	}
1422 }
1423 
1424 
1425 /*---------------------------- Request Processing ----------------------------*/
1426 /**
1427  * Interrupt handler bound to the shared ring's event channel.
1428  * Entry point for the xennet transmit path in netback
1429  * Transfers packets from the Xen ring to the host's generic networking stack
1430  *
1431  * \param arg  Callback argument registerd during event channel
1432  *             binding - the xnb_softc for this instance.
1433  */
1434 static void
1435 xnb_intr(void *arg)
1436 {
1437 	struct xnb_softc *xnb;
1438 	struct ifnet *ifp;
1439 	netif_tx_back_ring_t *txb;
1440 	RING_IDX req_prod_local;
1441 
1442 	xnb = (struct xnb_softc *)arg;
1443 	ifp = xnb->xnb_ifp;
1444 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1445 
1446 	mtx_lock(&xnb->tx_lock);
1447 	do {
1448 		int notify;
1449 		req_prod_local = txb->sring->req_prod;
1450 		xen_rmb();
1451 
1452 		for (;;) {
1453 			struct mbuf *mbufc;
1454 			int err;
1455 
1456 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1457 			    	       xnb->tx_gnttab);
1458 			if (err || (mbufc == NULL))
1459 				break;
1460 
1461 			/* Send the packet to the generic network stack */
1462 			(*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1463 		}
1464 
1465 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1466 		if (notify != 0)
1467 			xen_intr_signal(xnb->xen_intr_handle);
1468 
1469 		txb->sring->req_event = txb->req_cons + 1;
1470 		xen_mb();
1471 	} while (txb->sring->req_prod != req_prod_local) ;
1472 	mtx_unlock(&xnb->tx_lock);
1473 
1474 	xnb_start(ifp);
1475 }
1476 
1477 
1478 /**
1479  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1480  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1481  * \param[out]	pkt	The returned packet.  If there is an error building
1482  * 			the packet, pkt.list_len will be set to 0.
1483  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1484  * \param[in]	start	The ring index of the first potential request
1485  * \return		The number of requests consumed to build this packet
1486  */
1487 static int
1488 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1489 	     RING_IDX start)
1490 {
1491 	/*
1492 	 * Outline:
1493 	 * 1) Initialize pkt
1494 	 * 2) Read the first request of the packet
1495 	 * 3) Read the extras
1496 	 * 4) Set cdr
1497 	 * 5) Loop on the remainder of the packet
1498 	 * 6) Finalize pkt (stuff like car_size and list_len)
1499 	 */
1500 	int idx = start;
1501 	int discard = 0;	/* whether to discard the packet */
1502 	int more_data = 0;	/* there are more request past the last one */
1503 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1504 
1505 	xnb_pkt_initialize(pkt);
1506 
1507 	/* Read the first request */
1508 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1509 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1510 		pkt->size = tx->size;
1511 		pkt->flags = tx->flags & ~NETTXF_more_data;
1512 		more_data = tx->flags & NETTXF_more_data;
1513 		pkt->list_len++;
1514 		pkt->car = idx;
1515 		idx++;
1516 	}
1517 
1518 	/* Read the extra info */
1519 	if ((pkt->flags & NETTXF_extra_info) &&
1520 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1521 		netif_extra_info_t *ext =
1522 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1523 		pkt->extra.type = ext->type;
1524 		switch (pkt->extra.type) {
1525 			case XEN_NETIF_EXTRA_TYPE_GSO:
1526 				pkt->extra.u.gso = ext->u.gso;
1527 				break;
1528 			default:
1529 				/*
1530 				 * The reference Linux netfront driver will
1531 				 * never set any other extra.type.  So we don't
1532 				 * know what to do with it.  Let's print an
1533 				 * error, then consume and discard the packet
1534 				 */
1535 				printf("xnb(%s:%d): Unknown extra info type %d."
1536 				       "  Discarding packet\n",
1537 				       __func__, __LINE__, pkt->extra.type);
1538 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1539 				    start));
1540 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1541 				    idx));
1542 				discard = 1;
1543 				break;
1544 		}
1545 
1546 		pkt->extra.flags = ext->flags;
1547 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1548 			/*
1549 			 * The reference linux netfront driver never sets this
1550 			 * flag (nor does any other known netfront).  So we
1551 			 * will discard the packet.
1552 			 */
1553 			printf("xnb(%s:%d): Request sets "
1554 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1555 			    "that\n", __func__, __LINE__);
1556 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1557 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1558 			discard = 1;
1559 		}
1560 
1561 		idx++;
1562 	}
1563 
1564 	/* Set cdr.  If there is not more data, cdr is invalid */
1565 	pkt->cdr = idx;
1566 
1567 	/* Loop on remainder of packet */
1568 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1569 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1570 		pkt->list_len++;
1571 		cdr_size += tx->size;
1572 		if (tx->flags & ~NETTXF_more_data) {
1573 			/* There should be no other flags set at this point */
1574 			printf("xnb(%s:%d): Request sets unknown flags %d "
1575 			    "after the 1st request in the packet.\n",
1576 			    __func__, __LINE__, tx->flags);
1577 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1578 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1579 		}
1580 
1581 		more_data = tx->flags & NETTXF_more_data;
1582 		idx++;
1583 	}
1584 
1585 	/* Finalize packet */
1586 	if (more_data != 0) {
1587 		/* The ring ran out of requests before finishing the packet */
1588 		xnb_pkt_invalidate(pkt);
1589 		idx = start;	/* tell caller that we consumed no requests */
1590 	} else {
1591 		/* Calculate car_size */
1592 		pkt->car_size = pkt->size - cdr_size;
1593 	}
1594 	if (discard != 0) {
1595 		xnb_pkt_invalidate(pkt);
1596 	}
1597 
1598 	return idx - start;
1599 }
1600 
1601 
1602 /**
1603  * Respond to all the requests that constituted pkt.  Builds the responses and
1604  * writes them to the ring, but doesn't push them to the shared ring.
1605  * \param[in] pkt	the packet that needs a response
1606  * \param[in] error	true if there was an error handling the packet, such
1607  * 			as in the hypervisor copy op or mbuf allocation
1608  * \param[out] ring	Responses go here
1609  */
1610 static void
1611 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1612 	      int error)
1613 {
1614 	/*
1615 	 * Outline:
1616 	 * 1) Respond to the first request
1617 	 * 2) Respond to the extra info reques
1618 	 * Loop through every remaining request in the packet, generating
1619 	 * responses that copy those requests' ids and sets the status
1620 	 * appropriately.
1621 	 */
1622 	netif_tx_request_t *tx;
1623 	netif_tx_response_t *rsp;
1624 	int i;
1625 	uint16_t status;
1626 
1627 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1628 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1629 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1630 	    ("Cannot respond to ring requests out of order"));
1631 
1632 	if (pkt->list_len >= 1) {
1633 		uint16_t id;
1634 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1635 		id = tx->id;
1636 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1637 		rsp->id = id;
1638 		rsp->status = status;
1639 		ring->rsp_prod_pvt++;
1640 
1641 		if (pkt->flags & NETRXF_extra_info) {
1642 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1643 			rsp->status = NETIF_RSP_NULL;
1644 			ring->rsp_prod_pvt++;
1645 		}
1646 	}
1647 
1648 	for (i=0; i < pkt->list_len - 1; i++) {
1649 		uint16_t id;
1650 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1651 		id = tx->id;
1652 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1653 		rsp->id = id;
1654 		rsp->status = status;
1655 		ring->rsp_prod_pvt++;
1656 	}
1657 }
1658 
1659 /**
1660  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1661  * in the mbuf chain, but does not copy the data.  The returned chain must be
1662  * free()'d when no longer needed
1663  * \param[in]	pkt	A packet to model the mbuf chain after
1664  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1665  * 		NULL on failure
1666  */
1667 static struct mbuf*
1668 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1669 {
1670 	/**
1671 	 * \todo consider using a memory pool for mbufs instead of
1672 	 * reallocating them for every packet
1673 	 */
1674 	/** \todo handle extra data */
1675 	struct mbuf *m;
1676 
1677 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1678 
1679 	if (m != NULL) {
1680 		m->m_pkthdr.rcvif = ifp;
1681 		if (pkt->flags & NETTXF_data_validated) {
1682 			/*
1683 			 * We lie to the host OS and always tell it that the
1684 			 * checksums are ok, because the packet is unlikely to
1685 			 * get corrupted going across domains.
1686 			 */
1687 			m->m_pkthdr.csum_flags = (
1688 				CSUM_IP_CHECKED |
1689 				CSUM_IP_VALID   |
1690 				CSUM_DATA_VALID |
1691 				CSUM_PSEUDO_HDR
1692 				);
1693 			m->m_pkthdr.csum_data = 0xffff;
1694 		}
1695 	}
1696 	return m;
1697 }
1698 
1699 /**
1700  * Build a gnttab_copy table that can be used to copy data from a pkt
1701  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1702  * the packet side.
1703  * \param[in]	pkt	pkt's associated requests form the src for
1704  * 			the copy operation
1705  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1706  * \param[out]  gnttab	Storage for the returned grant table
1707  * \param[in]	txb	Pointer to the backend ring structure
1708  * \param[in]	otherend_id	The domain ID of the other end of the copy
1709  * \return 		The number of gnttab entries filled
1710  */
1711 static int
1712 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1713 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1714 		 domid_t otherend_id)
1715 {
1716 
1717 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1718 	int gnt_idx = 0;		/* index into grant table */
1719 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1720 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1721 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1722 	/* size in bytes that still needs to be represented in the table */
1723 	uint16_t size_remaining = pkt->size;
1724 
1725 	while (size_remaining > 0) {
1726 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1727 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1728 		const size_t req_size =
1729 			r_idx == pkt->car ? pkt->car_size : txq->size;
1730 		const size_t pkt_space = req_size - r_ofs;
1731 		/*
1732 		 * space is the largest amount of data that can be copied in the
1733 		 * grant table's next entry
1734 		 */
1735 		const size_t space = MIN(pkt_space, mbuf_space);
1736 
1737 		/* TODO: handle this error condition without panicking */
1738 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1739 
1740 		gnttab[gnt_idx].source.u.ref = txq->gref;
1741 		gnttab[gnt_idx].source.domid = otherend_id;
1742 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1743 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1744 		    mtod(mbuf, vm_offset_t) + m_ofs);
1745 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1746 		    mtod(mbuf, vm_offset_t) + m_ofs);
1747 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1748 		gnttab[gnt_idx].len = space;
1749 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1750 
1751 		gnt_idx++;
1752 		r_ofs += space;
1753 		m_ofs += space;
1754 		size_remaining -= space;
1755 		if (req_size - r_ofs <= 0) {
1756 			/* Must move to the next tx request */
1757 			r_ofs = 0;
1758 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1759 		}
1760 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1761 			/* Must move to the next mbuf */
1762 			m_ofs = 0;
1763 			mbuf = mbuf->m_next;
1764 		}
1765 	}
1766 
1767 	return gnt_idx;
1768 }
1769 
1770 /**
1771  * Check the status of the grant copy operations, and update mbufs various
1772  * non-data fields to reflect the data present.
1773  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1774  * 			the correct length, and data should already be present
1775  * \param[in] gnttab	A grant table for a just completed copy op
1776  * \param[in] n_entries The number of valid entries in the grant table
1777  */
1778 static void
1779 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1780     		 int n_entries)
1781 {
1782 	struct mbuf *mbuf = mbufc;
1783 	int i;
1784 	size_t total_size = 0;
1785 
1786 	for (i = 0; i < n_entries; i++) {
1787 		KASSERT(gnttab[i].status == GNTST_okay,
1788 		    ("Some gnttab_copy entry had error status %hd\n",
1789 		    gnttab[i].status));
1790 
1791 		mbuf->m_len += gnttab[i].len;
1792 		total_size += gnttab[i].len;
1793 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1794 			mbuf = mbuf->m_next;
1795 		}
1796 	}
1797 	mbufc->m_pkthdr.len = total_size;
1798 
1799 #if defined(INET) || defined(INET6)
1800 	xnb_add_mbuf_cksum(mbufc);
1801 #endif
1802 }
1803 
1804 /**
1805  * Dequeue at most one packet from the shared ring
1806  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1807  * 			its private indices will be updated.  But the indices
1808  * 			will not be pushed to the shared ring.
1809  * \param[in] ifnet	Interface to which the packet will be sent
1810  * \param[in] otherend	Domain ID of the other end of the ring
1811  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1812  * 			networking stack
1813  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1814  * 			this a function parameter so that we will take less
1815  * 			stack space.
1816  * \return		An error code
1817  */
1818 static int
1819 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1820 	 struct ifnet *ifnet, gnttab_copy_table gnttab)
1821 {
1822 	struct xnb_pkt pkt;
1823 	/* number of tx requests consumed to build the last packet */
1824 	int num_consumed;
1825 	int nr_ents;
1826 
1827 	*mbufc = NULL;
1828 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1829 	if (num_consumed == 0)
1830 		return 0;	/* Nothing to receive */
1831 
1832 	/* update statistics independent of errors */
1833 	ifnet->if_ipackets++;
1834 
1835 	/*
1836 	 * if we got here, then 1 or more requests was consumed, but the packet
1837 	 * is not necessarily valid.
1838 	 */
1839 	if (xnb_pkt_is_valid(&pkt) == 0) {
1840 		/* got a garbage packet, respond and drop it */
1841 		xnb_txpkt2rsp(&pkt, txb, 1);
1842 		txb->req_cons += num_consumed;
1843 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1844 				num_consumed);
1845 		ifnet->if_ierrors++;
1846 		return EINVAL;
1847 	}
1848 
1849 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1850 
1851 	if (*mbufc == NULL) {
1852 		/*
1853 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1854 		 * not consume the requests
1855 		 */
1856 		xnb_txpkt2rsp(&pkt, txb, 1);
1857 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1858 		    num_consumed);
1859 		ifnet->if_iqdrops++;
1860 		return ENOMEM;
1861 	}
1862 
1863 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1864 
1865 	if (nr_ents > 0) {
1866 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1867 		    gnttab, nr_ents);
1868 		KASSERT(hv_ret == 0,
1869 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1870 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1871 	}
1872 
1873 	xnb_txpkt2rsp(&pkt, txb, 0);
1874 	txb->req_cons += num_consumed;
1875 	return 0;
1876 }
1877 
1878 /**
1879  * Create an xnb_pkt based on the contents of an mbuf chain.
1880  * \param[in] mbufc	mbuf chain to transform into a packet
1881  * \param[out] pkt	Storage for the newly generated xnb_pkt
1882  * \param[in] start	The ring index of the first available slot in the rx
1883  * 			ring
1884  * \param[in] space	The number of free slots in the rx ring
1885  * \retval 0		Success
1886  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1887  * \retval EAGAIN	There was not enough space in the ring to queue the
1888  * 			packet
1889  */
1890 static int
1891 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1892 	      RING_IDX start, int space)
1893 {
1894 
1895 	int retval = 0;
1896 
1897 	if ((mbufc == NULL) ||
1898 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1899 	     (mbufc->m_pkthdr.len == 0)) {
1900 		xnb_pkt_invalidate(pkt);
1901 		retval = EINVAL;
1902 	} else {
1903 		int slots_required;
1904 
1905 		xnb_pkt_validate(pkt);
1906 		pkt->flags = 0;
1907 		pkt->size = mbufc->m_pkthdr.len;
1908 		pkt->car = start;
1909 		pkt->car_size = mbufc->m_len;
1910 
1911 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1912 			pkt->flags |= NETRXF_extra_info;
1913 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1914 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1915 			pkt->extra.u.gso.pad = 0;
1916 			pkt->extra.u.gso.features = 0;
1917 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1918 			pkt->extra.flags = 0;
1919 			pkt->cdr = start + 2;
1920 		} else {
1921 			pkt->cdr = start + 1;
1922 		}
1923 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1924 			pkt->flags |=
1925 			    (NETRXF_csum_blank | NETRXF_data_validated);
1926 		}
1927 
1928 		/*
1929 		 * Each ring response can have up to PAGE_SIZE of data.
1930 		 * Assume that we can defragment the mbuf chain efficiently
1931 		 * into responses so that each response but the last uses all
1932 		 * PAGE_SIZE bytes.
1933 		 */
1934 		pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1935 
1936 		if (pkt->list_len > 1) {
1937 			pkt->flags |= NETRXF_more_data;
1938 		}
1939 
1940 		slots_required = pkt->list_len +
1941 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1942 		if (slots_required > space) {
1943 			xnb_pkt_invalidate(pkt);
1944 			retval = EAGAIN;
1945 		}
1946 	}
1947 
1948 	return retval;
1949 }
1950 
1951 /**
1952  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1953  * to the frontend's shared buffers.  Does not actually perform the copy.
1954  * Always uses gref's on the other end's side.
1955  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1956  * 			operatoin
1957  * \param[in]	mbufc	The source for the copy operation
1958  * \param[out]	gnttab	Storage for the returned grant table
1959  * \param[in]	rxb	Pointer to the backend ring structure
1960  * \param[in]	otherend_id	The domain ID of the other end of the copy
1961  * \return 		The number of gnttab entries filled
1962  */
1963 static int
1964 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1965 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1966 		 domid_t otherend_id)
1967 {
1968 
1969 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1970 	int gnt_idx = 0;		/* index into grant table */
1971 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1972 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1973 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1974 	/* size in bytes that still needs to be represented in the table */
1975 	uint16_t size_remaining;
1976 
1977 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1978 
1979 	while (size_remaining > 0) {
1980 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1981 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1982 		/* Xen shared pages have an implied size of PAGE_SIZE */
1983 		const size_t req_size = PAGE_SIZE;
1984 		const size_t pkt_space = req_size - r_ofs;
1985 		/*
1986 		 * space is the largest amount of data that can be copied in the
1987 		 * grant table's next entry
1988 		 */
1989 		const size_t space = MIN(pkt_space, mbuf_space);
1990 
1991 		/* TODO: handle this error condition without panicing */
1992 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1993 
1994 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1995 		gnttab[gnt_idx].dest.domid = otherend_id;
1996 		gnttab[gnt_idx].dest.offset = r_ofs;
1997 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1998 		    mtod(mbuf, vm_offset_t) + m_ofs);
1999 		gnttab[gnt_idx].source.offset = virt_to_offset(
2000 		    mtod(mbuf, vm_offset_t) + m_ofs);
2001 		gnttab[gnt_idx].source.domid = DOMID_SELF;
2002 		gnttab[gnt_idx].len = space;
2003 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
2004 
2005 		gnt_idx++;
2006 
2007 		r_ofs += space;
2008 		m_ofs += space;
2009 		size_remaining -= space;
2010 		if (req_size - r_ofs <= 0) {
2011 			/* Must move to the next rx request */
2012 			r_ofs = 0;
2013 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2014 		}
2015 		if (mbuf->m_len - m_ofs <= 0) {
2016 			/* Must move to the next mbuf */
2017 			m_ofs = 0;
2018 			mbuf = mbuf->m_next;
2019 		}
2020 	}
2021 
2022 	return gnt_idx;
2023 }
2024 
2025 /**
2026  * Generates responses for all the requests that constituted pkt.  Builds
2027  * responses and writes them to the ring, but doesn't push the shared ring
2028  * indices.
2029  * \param[in] pkt	the packet that needs a response
2030  * \param[in] gnttab	The grant copy table corresponding to this packet.
2031  * 			Used to determine how many rsp->netif_rx_response_t's to
2032  * 			generate.
2033  * \param[in] n_entries	Number of relevant entries in the grant table
2034  * \param[out] ring	Responses go here
2035  * \return		The number of RX requests that were consumed to generate
2036  * 			the responses
2037  */
2038 static int
2039 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2040     	      int n_entries, netif_rx_back_ring_t *ring)
2041 {
2042 	/*
2043 	 * This code makes the following assumptions:
2044 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2045 	 *	* The entries in gnttab are grouped by their grefs: any two
2046 	 *	   entries with the same gref must be adjacent
2047 	 */
2048 	int error = 0;
2049 	int gnt_idx, i;
2050 	int n_responses = 0;
2051 	grant_ref_t last_gref = GRANT_REF_INVALID;
2052 	RING_IDX r_idx;
2053 
2054 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2055 
2056 	/*
2057 	 * In the event of an error, we only need to send one response to the
2058 	 * netfront.  In that case, we musn't write any data to the responses
2059 	 * after the one we send.  So we must loop all the way through gnttab
2060 	 * looking for errors before we generate any responses
2061 	 *
2062 	 * Since we're looping through the grant table anyway, we'll count the
2063 	 * number of different gref's in it, which will tell us how many
2064 	 * responses to generate
2065 	 */
2066 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2067 		int16_t status = gnttab[gnt_idx].status;
2068 		if (status != GNTST_okay) {
2069 			DPRINTF(
2070 			    "Got error %d for hypervisor gnttab_copy status\n",
2071 			    status);
2072 			error = 1;
2073 			break;
2074 		}
2075 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2076 			n_responses++;
2077 			last_gref = gnttab[gnt_idx].dest.u.ref;
2078 		}
2079 	}
2080 
2081 	if (error != 0) {
2082 		uint16_t id;
2083 		netif_rx_response_t *rsp;
2084 
2085 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2086 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2087 		rsp->id = id;
2088 		rsp->status = NETIF_RSP_ERROR;
2089 		n_responses = 1;
2090 	} else {
2091 		gnt_idx = 0;
2092 		const int has_extra = pkt->flags & NETRXF_extra_info;
2093 		if (has_extra != 0)
2094 			n_responses++;
2095 
2096 		for (i = 0; i < n_responses; i++) {
2097 			netif_rx_request_t rxq;
2098 			netif_rx_response_t *rsp;
2099 
2100 			r_idx = ring->rsp_prod_pvt + i;
2101 			/*
2102 			 * We copy the structure of rxq instead of making a
2103 			 * pointer because it shares the same memory as rsp.
2104 			 */
2105 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2106 			rsp = RING_GET_RESPONSE(ring, r_idx);
2107 			if (has_extra && (i == 1)) {
2108 				netif_extra_info_t *ext =
2109 					(netif_extra_info_t*)rsp;
2110 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2111 				ext->flags = 0;
2112 				ext->u.gso.size = pkt->extra.u.gso.size;
2113 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2114 				ext->u.gso.pad = 0;
2115 				ext->u.gso.features = 0;
2116 			} else {
2117 				rsp->id = rxq.id;
2118 				rsp->status = GNTST_okay;
2119 				rsp->offset = 0;
2120 				rsp->flags = 0;
2121 				if (i < pkt->list_len - 1)
2122 					rsp->flags |= NETRXF_more_data;
2123 				if ((i == 0) && has_extra)
2124 					rsp->flags |= NETRXF_extra_info;
2125 				if ((i == 0) &&
2126 					(pkt->flags & NETRXF_data_validated)) {
2127 					rsp->flags |= NETRXF_data_validated;
2128 					rsp->flags |= NETRXF_csum_blank;
2129 				}
2130 				rsp->status = 0;
2131 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2132 				    gnt_idx++) {
2133 					rsp->status += gnttab[gnt_idx].len;
2134 				}
2135 			}
2136 		}
2137 	}
2138 
2139 	ring->req_cons += n_responses;
2140 	ring->rsp_prod_pvt += n_responses;
2141 	return n_responses;
2142 }
2143 
2144 #if defined(INET) || defined(INET6)
2145 /**
2146  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2147  * in the chain must start with a struct ether_header.
2148  *
2149  * XXX This function will perform incorrectly on UDP packets that are split up
2150  * into multiple ethernet frames.
2151  */
2152 static void
2153 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2154 {
2155 	struct ether_header *eh;
2156 	struct ip *iph;
2157 	uint16_t ether_type;
2158 
2159 	eh = mtod(mbufc, struct ether_header*);
2160 	ether_type = ntohs(eh->ether_type);
2161 	if (ether_type != ETHERTYPE_IP) {
2162 		/* Nothing to calculate */
2163 		return;
2164 	}
2165 
2166 	iph = (struct ip*)(eh + 1);
2167 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2168 		iph->ip_sum = 0;
2169 		iph->ip_sum = in_cksum_hdr(iph);
2170 	}
2171 
2172 	switch (iph->ip_p) {
2173 	case IPPROTO_TCP:
2174 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2175 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2176 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2177 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2178 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2179 			th->th_sum = in_cksum_skip(mbufc,
2180 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2181 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2182 		}
2183 		break;
2184 	case IPPROTO_UDP:
2185 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2186 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2187 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2188 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2189 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2190 			uh->uh_sum = in_cksum_skip(mbufc,
2191 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2192 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2193 		}
2194 		break;
2195 	default:
2196 		break;
2197 	}
2198 }
2199 #endif /* INET || INET6 */
2200 
2201 static void
2202 xnb_stop(struct xnb_softc *xnb)
2203 {
2204 	struct ifnet *ifp;
2205 
2206 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2207 	ifp = xnb->xnb_ifp;
2208 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2209 	if_link_state_change(ifp, LINK_STATE_DOWN);
2210 }
2211 
2212 static int
2213 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2214 {
2215 	struct xnb_softc *xnb = ifp->if_softc;
2216 	struct ifreq *ifr = (struct ifreq*) data;
2217 #ifdef INET
2218 	struct ifaddr *ifa = (struct ifaddr*)data;
2219 #endif
2220 	int error = 0;
2221 
2222 	switch (cmd) {
2223 		case SIOCSIFFLAGS:
2224 			mtx_lock(&xnb->sc_lock);
2225 			if (ifp->if_flags & IFF_UP) {
2226 				xnb_ifinit_locked(xnb);
2227 			} else {
2228 				if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2229 					xnb_stop(xnb);
2230 				}
2231 			}
2232 			/*
2233 			 * Note: netfront sets a variable named xn_if_flags
2234 			 * here, but that variable is never read
2235 			 */
2236 			mtx_unlock(&xnb->sc_lock);
2237 			break;
2238 		case SIOCSIFADDR:
2239 		case SIOCGIFADDR:
2240 #ifdef INET
2241 			mtx_lock(&xnb->sc_lock);
2242 			if (ifa->ifa_addr->sa_family == AF_INET) {
2243 				ifp->if_flags |= IFF_UP;
2244 				if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2245 					ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2246 							IFF_DRV_OACTIVE);
2247 					if_link_state_change(ifp,
2248 							LINK_STATE_DOWN);
2249 					ifp->if_drv_flags |= IFF_DRV_RUNNING;
2250 					ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2251 					if_link_state_change(ifp,
2252 					    LINK_STATE_UP);
2253 				}
2254 				arp_ifinit(ifp, ifa);
2255 				mtx_unlock(&xnb->sc_lock);
2256 			} else {
2257 				mtx_unlock(&xnb->sc_lock);
2258 #endif
2259 				error = ether_ioctl(ifp, cmd, data);
2260 #ifdef INET
2261 			}
2262 #endif
2263 			break;
2264 		case SIOCSIFCAP:
2265 			mtx_lock(&xnb->sc_lock);
2266 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2267 				ifp->if_capenable |= IFCAP_TXCSUM;
2268 				ifp->if_hwassist |= XNB_CSUM_FEATURES;
2269 			} else {
2270 				ifp->if_capenable &= ~(IFCAP_TXCSUM);
2271 				ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2272 			}
2273 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2274 				ifp->if_capenable |= IFCAP_RXCSUM;
2275 			} else {
2276 				ifp->if_capenable &= ~(IFCAP_RXCSUM);
2277 			}
2278 			/*
2279 			 * TODO enable TSO4 and LRO once we no longer need
2280 			 * to calculate checksums in software
2281 			 */
2282 #if 0
2283 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2284 				if (IFCAP_TXCSUM & ifp->if_capenable) {
2285 					printf("xnb: Xen netif requires that "
2286 						"TXCSUM be enabled in order "
2287 						"to use TSO4\n");
2288 					error = EINVAL;
2289 				} else {
2290 					ifp->if_capenable |= IFCAP_TSO4;
2291 					ifp->if_hwassist |= CSUM_TSO;
2292 				}
2293 			} else {
2294 				ifp->if_capenable &= ~(IFCAP_TSO4);
2295 				ifp->if_hwassist &= ~(CSUM_TSO);
2296 			}
2297 			if (ifr->ifreqcap |= IFCAP_LRO) {
2298 				ifp->if_capenable |= IFCAP_LRO;
2299 			} else {
2300 				ifp->if_capenable &= ~(IFCAP_LRO);
2301 			}
2302 #endif
2303 			mtx_unlock(&xnb->sc_lock);
2304 			break;
2305 		case SIOCSIFMTU:
2306 			ifp->if_mtu = ifr->ifr_mtu;
2307 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2308 			xnb_ifinit(xnb);
2309 			break;
2310 		case SIOCADDMULTI:
2311 		case SIOCDELMULTI:
2312 		case SIOCSIFMEDIA:
2313 		case SIOCGIFMEDIA:
2314 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2315 			break;
2316 		default:
2317 			error = ether_ioctl(ifp, cmd, data);
2318 			break;
2319 	}
2320 	return (error);
2321 }
2322 
2323 static void
2324 xnb_start_locked(struct ifnet *ifp)
2325 {
2326 	netif_rx_back_ring_t *rxb;
2327 	struct xnb_softc *xnb;
2328 	struct mbuf *mbufc;
2329 	RING_IDX req_prod_local;
2330 
2331 	xnb = ifp->if_softc;
2332 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2333 
2334 	if (!xnb->carrier)
2335 		return;
2336 
2337 	do {
2338 		int out_of_space = 0;
2339 		int notify;
2340 		req_prod_local = rxb->sring->req_prod;
2341 		xen_rmb();
2342 		for (;;) {
2343 			int error;
2344 
2345 			IF_DEQUEUE(&ifp->if_snd, mbufc);
2346 			if (mbufc == NULL)
2347 				break;
2348 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2349 			    		 xnb->rx_gnttab);
2350 			switch (error) {
2351 				case EAGAIN:
2352 					/*
2353 					 * Insufficient space in the ring.
2354 					 * Requeue pkt and send when space is
2355 					 * available.
2356 					 */
2357 					IF_PREPEND(&ifp->if_snd, mbufc);
2358 					/*
2359 					 * Perhaps the frontend missed an IRQ
2360 					 * and went to sleep.  Notify it to wake
2361 					 * it up.
2362 					 */
2363 					out_of_space = 1;
2364 					break;
2365 
2366 				case EINVAL:
2367 					/* OS gave a corrupt packet.  Drop it.*/
2368 					ifp->if_oerrors++;
2369 					/* FALLTHROUGH */
2370 				default:
2371 					/* Send succeeded, or packet had error.
2372 					 * Free the packet */
2373 					ifp->if_opackets++;
2374 					if (mbufc)
2375 						m_freem(mbufc);
2376 					break;
2377 			}
2378 			if (out_of_space != 0)
2379 				break;
2380 		}
2381 
2382 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2383 		if ((notify != 0) || (out_of_space != 0))
2384 			xen_intr_signal(xnb->xen_intr_handle);
2385 		rxb->sring->req_event = req_prod_local + 1;
2386 		xen_mb();
2387 	} while (rxb->sring->req_prod != req_prod_local) ;
2388 }
2389 
2390 /**
2391  * Sends one packet to the ring.  Blocks until the packet is on the ring
2392  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2393  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2394  * 			otherend will not be notified.
2395  * \param[in]	otherend The domain ID of the other end of the connection
2396  * \retval	EAGAIN	The ring did not have enough space for the packet.
2397  * 			The ring has not been modified
2398  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2399  * 			this a function parameter so that we will take less
2400  * 			stack space.
2401  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2402  */
2403 static int
2404 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2405 	 gnttab_copy_table gnttab)
2406 {
2407 	struct xnb_pkt pkt;
2408 	int error, n_entries, n_reqs;
2409 	RING_IDX space;
2410 
2411 	space = ring->sring->req_prod - ring->req_cons;
2412 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2413 	if (error != 0)
2414 		return error;
2415 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2416 	if (n_entries != 0) {
2417 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2418 		    gnttab, n_entries);
2419 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2420 		    hv_ret));
2421 	}
2422 
2423 	n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2424 
2425 	return 0;
2426 }
2427 
2428 static void
2429 xnb_start(struct ifnet *ifp)
2430 {
2431 	struct xnb_softc *xnb;
2432 
2433 	xnb = ifp->if_softc;
2434 	mtx_lock(&xnb->rx_lock);
2435 	xnb_start_locked(ifp);
2436 	mtx_unlock(&xnb->rx_lock);
2437 }
2438 
2439 /* equivalent of network_open() in Linux */
2440 static void
2441 xnb_ifinit_locked(struct xnb_softc *xnb)
2442 {
2443 	struct ifnet *ifp;
2444 
2445 	ifp = xnb->xnb_ifp;
2446 
2447 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2448 
2449 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2450 		return;
2451 
2452 	xnb_stop(xnb);
2453 
2454 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2455 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2456 	if_link_state_change(ifp, LINK_STATE_UP);
2457 }
2458 
2459 
2460 static void
2461 xnb_ifinit(void *xsc)
2462 {
2463 	struct xnb_softc *xnb = xsc;
2464 
2465 	mtx_lock(&xnb->sc_lock);
2466 	xnb_ifinit_locked(xnb);
2467 	mtx_unlock(&xnb->sc_lock);
2468 }
2469 
2470 
2471 /**
2472  * Read the 'mac' node at the given device's node in the store, and parse that
2473  * as colon-separated octets, placing result the given mac array.  mac must be
2474  * a preallocated array of length ETHER_ADDR_LEN ETH_ALEN (as declared in
2475  * net/ethernet.h).
2476  * Return 0 on success, or errno on error.
2477  */
2478 static int
2479 xen_net_read_mac(device_t dev, uint8_t mac[])
2480 {
2481 	char *s, *e, *macstr;
2482 	const char *path;
2483 	int error = 0;
2484 	int i;
2485 
2486 	path = xenbus_get_node(dev);
2487 	error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
2488 	if (error != 0) {
2489 		xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
2490 	} else {
2491 	        s = macstr;
2492 	        for (i = 0; i < ETHER_ADDR_LEN; i++) {
2493 		        mac[i] = strtoul(s, &e, 16);
2494 		        if (s == e || (e[0] != ':' && e[0] != 0)) {
2495 				error = ENOENT;
2496 				break;
2497 		        }
2498 		        s = &e[1];
2499 	        }
2500 	        free(macstr, M_XENBUS);
2501 	}
2502 	return error;
2503 }
2504 
2505 
2506 /**
2507  * Callback used by the generic networking code to tell us when our carrier
2508  * state has changed.  Since we don't have a physical carrier, we don't care
2509  */
2510 static int
2511 xnb_ifmedia_upd(struct ifnet *ifp)
2512 {
2513 	return (0);
2514 }
2515 
2516 /**
2517  * Callback used by the generic networking code to ask us what our carrier
2518  * state is.  Since we don't have a physical carrier, this is very simple
2519  */
2520 static void
2521 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2522 {
2523 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2524 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2525 }
2526 
2527 
2528 /*---------------------------- NewBus Registration ---------------------------*/
2529 static device_method_t xnb_methods[] = {
2530 	/* Device interface */
2531 	DEVMETHOD(device_probe,		xnb_probe),
2532 	DEVMETHOD(device_attach,	xnb_attach),
2533 	DEVMETHOD(device_detach,	xnb_detach),
2534 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2535 	DEVMETHOD(device_suspend,	xnb_suspend),
2536 	DEVMETHOD(device_resume,	xnb_resume),
2537 
2538 	/* Xenbus interface */
2539 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2540 
2541 	{ 0, 0 }
2542 };
2543 
2544 static driver_t xnb_driver = {
2545 	"xnb",
2546 	xnb_methods,
2547 	sizeof(struct xnb_softc),
2548 };
2549 devclass_t xnb_devclass;
2550 
2551 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2552 
2553 
2554 /*-------------------------- Unit Tests -------------------------------------*/
2555 #ifdef XNB_DEBUG
2556 #include "netback_unit_tests.c"
2557 #endif
2558