1 /*- 2 * Copyright (c) 2009-2011 Spectra Logic Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions, and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * substantially similar to the "NO WARRANTY" disclaimer below 13 * ("Disclaimer") and any redistribution must be conditioned upon 14 * including a substantially similar Disclaimer requirement for further 15 * binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGES. 29 * 30 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 31 * Alan Somers (Spectra Logic Corporation) 32 * John Suykerbuyk (Spectra Logic Corporation) 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /** 39 * \file netback.c 40 * 41 * \brief Device driver supporting the vending of network access 42 * from this FreeBSD domain to other domains. 43 */ 44 #include "opt_inet.h" 45 #include "opt_global.h" 46 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/kernel.h> 51 52 #include <sys/bus.h> 53 #include <sys/module.h> 54 #include <sys/rman.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/ethernet.h> 62 #include <net/if_dl.h> 63 #include <net/if_media.h> 64 #include <net/if_types.h> 65 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #include <netinet/if_ether.h> 69 #if __FreeBSD_version >= 700000 70 #include <netinet/tcp.h> 71 #endif 72 #include <netinet/ip_icmp.h> 73 #include <netinet/udp.h> 74 #include <machine/in_cksum.h> 75 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_extern.h> 79 #include <vm/vm_kern.h> 80 81 #include <machine/_inttypes.h> 82 83 #include <xen/xen-os.h> 84 #include <xen/hypervisor.h> 85 #include <xen/xen_intr.h> 86 #include <xen/interface/io/netif.h> 87 #include <xen/xenbus/xenbusvar.h> 88 89 #include <machine/xen/xenvar.h> 90 91 /*--------------------------- Compile-time Tunables --------------------------*/ 92 93 /*---------------------------------- Macros ----------------------------------*/ 94 /** 95 * Custom malloc type for all driver allocations. 96 */ 97 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data"); 98 99 #define XNB_SG 1 /* netback driver supports feature-sg */ 100 #define XNB_GSO_TCPV4 1 /* netback driver supports feature-gso-tcpv4 */ 101 #define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */ 102 #define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */ 103 104 #undef XNB_DEBUG 105 #define XNB_DEBUG /* hardcode on during development */ 106 107 #ifdef XNB_DEBUG 108 #define DPRINTF(fmt, args...) \ 109 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) 110 #else 111 #define DPRINTF(fmt, args...) do {} while (0) 112 #endif 113 114 /* Default length for stack-allocated grant tables */ 115 #define GNTTAB_LEN (64) 116 117 /* Features supported by all backends. TSO and LRO can be negotiated */ 118 #define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) 119 120 #define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE) 121 #define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE) 122 123 /** 124 * Two argument version of the standard macro. Second argument is a tentative 125 * value of req_cons 126 */ 127 #define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \ 128 unsigned int req = (_r)->sring->req_prod - cons; \ 129 unsigned int rsp = RING_SIZE(_r) - \ 130 (cons - (_r)->rsp_prod_pvt); \ 131 req < rsp ? req : rsp; \ 132 }) 133 134 #define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT) 135 #define virt_to_offset(x) ((x) & (PAGE_SIZE - 1)) 136 137 /** 138 * Predefined array type of grant table copy descriptors. Used to pass around 139 * statically allocated memory structures. 140 */ 141 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN]; 142 143 /*--------------------------- Forward Declarations ---------------------------*/ 144 struct xnb_softc; 145 struct xnb_pkt; 146 147 static void xnb_attach_failed(struct xnb_softc *xnb, 148 int err, const char *fmt, ...) 149 __printflike(3,4); 150 static int xnb_shutdown(struct xnb_softc *xnb); 151 static int create_netdev(device_t dev); 152 static int xnb_detach(device_t dev); 153 static int xen_net_read_mac(device_t dev, uint8_t mac[]); 154 static int xnb_ifmedia_upd(struct ifnet *ifp); 155 static void xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr); 156 static void xnb_intr(void *arg); 157 static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend, 158 const struct mbuf *mbufc, gnttab_copy_table gnttab); 159 static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, 160 struct mbuf **mbufc, struct ifnet *ifnet, 161 gnttab_copy_table gnttab); 162 static int xnb_ring2pkt(struct xnb_pkt *pkt, 163 const netif_tx_back_ring_t *tx_ring, 164 RING_IDX start); 165 static void xnb_txpkt2rsp(const struct xnb_pkt *pkt, 166 netif_tx_back_ring_t *ring, int error); 167 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp); 168 static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt, 169 const struct mbuf *mbufc, 170 gnttab_copy_table gnttab, 171 const netif_tx_back_ring_t *txb, 172 domid_t otherend_id); 173 static void xnb_update_mbufc(struct mbuf *mbufc, 174 const gnttab_copy_table gnttab, int n_entries); 175 static int xnb_mbufc2pkt(const struct mbuf *mbufc, 176 struct xnb_pkt *pkt, 177 RING_IDX start, int space); 178 static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, 179 const struct mbuf *mbufc, 180 gnttab_copy_table gnttab, 181 const netif_rx_back_ring_t *rxb, 182 domid_t otherend_id); 183 static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt, 184 const gnttab_copy_table gnttab, int n_entries, 185 netif_rx_back_ring_t *ring); 186 static void xnb_add_mbuf_cksum(struct mbuf *mbufc); 187 static void xnb_stop(struct xnb_softc*); 188 static int xnb_ioctl(struct ifnet*, u_long, caddr_t); 189 static void xnb_start_locked(struct ifnet*); 190 static void xnb_start(struct ifnet*); 191 static void xnb_ifinit_locked(struct xnb_softc*); 192 static void xnb_ifinit(void*); 193 #ifdef XNB_DEBUG 194 static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS); 195 static int xnb_dump_rings(SYSCTL_HANDLER_ARGS); 196 #endif 197 /*------------------------------ Data Structures -----------------------------*/ 198 199 200 /** 201 * Representation of a xennet packet. Simplified version of a packet as 202 * stored in the Xen tx ring. Applicable to both RX and TX packets 203 */ 204 struct xnb_pkt{ 205 /** 206 * Array index of the first data-bearing (eg, not extra info) entry 207 * for this packet 208 */ 209 RING_IDX car; 210 211 /** 212 * Array index of the second data-bearing entry for this packet. 213 * Invalid if the packet has only one data-bearing entry. If the 214 * packet has more than two data-bearing entries, then the second 215 * through the last will be sequential modulo the ring size 216 */ 217 RING_IDX cdr; 218 219 /** 220 * Optional extra info. Only valid if flags contains 221 * NETTXF_extra_info. Note that extra.type will always be 222 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback 223 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_* 224 */ 225 netif_extra_info_t extra; 226 227 /** Size of entire packet in bytes. */ 228 uint16_t size; 229 230 /** The size of the first entry's data in bytes */ 231 uint16_t car_size; 232 233 /** 234 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are 235 * not the same for TX and RX packets 236 */ 237 uint16_t flags; 238 239 /** 240 * The number of valid data-bearing entries (either netif_tx_request's 241 * or netif_rx_response's) in the packet. If this is 0, it means the 242 * entire packet is invalid. 243 */ 244 uint16_t list_len; 245 246 /** There was an error processing the packet */ 247 uint8_t error; 248 }; 249 250 /** xnb_pkt method: initialize it */ 251 static inline void 252 xnb_pkt_initialize(struct xnb_pkt *pxnb) 253 { 254 bzero(pxnb, sizeof(*pxnb)); 255 } 256 257 /** xnb_pkt method: mark the packet as valid */ 258 static inline void 259 xnb_pkt_validate(struct xnb_pkt *pxnb) 260 { 261 pxnb->error = 0; 262 }; 263 264 /** xnb_pkt method: mark the packet as invalid */ 265 static inline void 266 xnb_pkt_invalidate(struct xnb_pkt *pxnb) 267 { 268 pxnb->error = 1; 269 }; 270 271 /** xnb_pkt method: Check whether the packet is valid */ 272 static inline int 273 xnb_pkt_is_valid(const struct xnb_pkt *pxnb) 274 { 275 return (! pxnb->error); 276 } 277 278 #ifdef XNB_DEBUG 279 /** xnb_pkt method: print the packet's contents in human-readable format*/ 280 static void __unused 281 xnb_dump_pkt(const struct xnb_pkt *pkt) { 282 if (pkt == NULL) { 283 DPRINTF("Was passed a null pointer.\n"); 284 return; 285 } 286 DPRINTF("pkt address= %p\n", pkt); 287 DPRINTF("pkt->size=%d\n", pkt->size); 288 DPRINTF("pkt->car_size=%d\n", pkt->car_size); 289 DPRINTF("pkt->flags=0x%04x\n", pkt->flags); 290 DPRINTF("pkt->list_len=%d\n", pkt->list_len); 291 /* DPRINTF("pkt->extra"); TODO */ 292 DPRINTF("pkt->car=%d\n", pkt->car); 293 DPRINTF("pkt->cdr=%d\n", pkt->cdr); 294 DPRINTF("pkt->error=%d\n", pkt->error); 295 } 296 #endif /* XNB_DEBUG */ 297 298 static void 299 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq) 300 { 301 if (txreq != NULL) { 302 DPRINTF("netif_tx_request index =%u\n", idx); 303 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref); 304 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset); 305 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags); 306 DPRINTF("netif_tx_request.id =%hu\n", txreq->id); 307 DPRINTF("netif_tx_request.size =%hu\n", txreq->size); 308 } 309 } 310 311 312 /** 313 * \brief Configuration data for a shared memory request ring 314 * used to communicate with the front-end client of this 315 * this driver. 316 */ 317 struct xnb_ring_config { 318 /** 319 * Runtime structures for ring access. Unfortunately, TX and RX rings 320 * use different data structures, and that cannot be changed since it 321 * is part of the interdomain protocol. 322 */ 323 union{ 324 netif_rx_back_ring_t rx_ring; 325 netif_tx_back_ring_t tx_ring; 326 } back_ring; 327 328 /** 329 * The device bus address returned by the hypervisor when 330 * mapping the ring and required to unmap it when a connection 331 * is torn down. 332 */ 333 uint64_t bus_addr; 334 335 /** The pseudo-physical address where ring memory is mapped.*/ 336 uint64_t gnt_addr; 337 338 /** KVA address where ring memory is mapped. */ 339 vm_offset_t va; 340 341 /** 342 * Grant table handles, one per-ring page, returned by the 343 * hyperpervisor upon mapping of the ring and required to 344 * unmap it when a connection is torn down. 345 */ 346 grant_handle_t handle; 347 348 /** The number of ring pages mapped for the current connection. */ 349 unsigned ring_pages; 350 351 /** 352 * The grant references, one per-ring page, supplied by the 353 * front-end, allowing us to reference the ring pages in the 354 * front-end's domain and to map these pages into our own domain. 355 */ 356 grant_ref_t ring_ref; 357 }; 358 359 /** 360 * Per-instance connection state flags. 361 */ 362 typedef enum 363 { 364 /** Communication with the front-end has been established. */ 365 XNBF_RING_CONNECTED = 0x01, 366 367 /** 368 * Front-end requests exist in the ring and are waiting for 369 * xnb_xen_req objects to free up. 370 */ 371 XNBF_RESOURCE_SHORTAGE = 0x02, 372 373 /** Connection teardown has started. */ 374 XNBF_SHUTDOWN = 0x04, 375 376 /** A thread is already performing shutdown processing. */ 377 XNBF_IN_SHUTDOWN = 0x08 378 } xnb_flag_t; 379 380 /** 381 * Types of rings. Used for array indices and to identify a ring's control 382 * data structure type 383 */ 384 typedef enum{ 385 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */ 386 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */ 387 XNB_NUM_RING_TYPES 388 } xnb_ring_type_t; 389 390 /** 391 * Per-instance configuration data. 392 */ 393 struct xnb_softc { 394 /** NewBus device corresponding to this instance. */ 395 device_t dev; 396 397 /* Media related fields */ 398 399 /** Generic network media state */ 400 struct ifmedia sc_media; 401 402 /** Media carrier info */ 403 struct ifnet *xnb_ifp; 404 405 /** Our own private carrier state */ 406 unsigned carrier; 407 408 /** Device MAC Address */ 409 uint8_t mac[ETHER_ADDR_LEN]; 410 411 /* Xen related fields */ 412 413 /** 414 * \brief The netif protocol abi in effect. 415 * 416 * There are situations where the back and front ends can 417 * have a different, native abi (e.g. intel x86_64 and 418 * 32bit x86 domains on the same machine). The back-end 419 * always accomodates the front-end's native abi. That 420 * value is pulled from the XenStore and recorded here. 421 */ 422 int abi; 423 424 /** 425 * Name of the bridge to which this VIF is connected, if any 426 * This field is dynamically allocated by xenbus and must be free()ed 427 * when no longer needed 428 */ 429 char *bridge; 430 431 /** The interrupt driven even channel used to signal ring events. */ 432 evtchn_port_t evtchn; 433 434 /** Xen device handle.*/ 435 long handle; 436 437 /** Handle to the communication ring event channel. */ 438 xen_intr_handle_t xen_intr_handle; 439 440 /** 441 * \brief Cached value of the front-end's domain id. 442 * 443 * This value is used at once for each mapped page in 444 * a transaction. We cache it to avoid incuring the 445 * cost of an ivar access every time this is needed. 446 */ 447 domid_t otherend_id; 448 449 /** 450 * Undocumented frontend feature. Has something to do with 451 * scatter/gather IO 452 */ 453 uint8_t can_sg; 454 /** Undocumented frontend feature */ 455 uint8_t gso; 456 /** Undocumented frontend feature */ 457 uint8_t gso_prefix; 458 /** Can checksum TCP/UDP over IPv4 */ 459 uint8_t ip_csum; 460 461 /* Implementation related fields */ 462 /** 463 * Preallocated grant table copy descriptor for RX operations. 464 * Access must be protected by rx_lock 465 */ 466 gnttab_copy_table rx_gnttab; 467 468 /** 469 * Preallocated grant table copy descriptor for TX operations. 470 * Access must be protected by tx_lock 471 */ 472 gnttab_copy_table tx_gnttab; 473 474 #ifdef XENHVM 475 /** 476 * Resource representing allocated physical address space 477 * associated with our per-instance kva region. 478 */ 479 struct resource *pseudo_phys_res; 480 481 /** Resource id for allocated physical address space. */ 482 int pseudo_phys_res_id; 483 #endif 484 485 /** Ring mapping and interrupt configuration data. */ 486 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES]; 487 488 /** 489 * Global pool of kva used for mapping remote domain ring 490 * and I/O transaction data. 491 */ 492 vm_offset_t kva; 493 494 /** Psuedo-physical address corresponding to kva. */ 495 uint64_t gnt_base_addr; 496 497 /** Various configuration and state bit flags. */ 498 xnb_flag_t flags; 499 500 /** Mutex protecting per-instance data in the receive path. */ 501 struct mtx rx_lock; 502 503 /** Mutex protecting per-instance data in the softc structure. */ 504 struct mtx sc_lock; 505 506 /** Mutex protecting per-instance data in the transmit path. */ 507 struct mtx tx_lock; 508 509 /** The size of the global kva pool. */ 510 int kva_size; 511 }; 512 513 /*---------------------------- Debugging functions ---------------------------*/ 514 #ifdef XNB_DEBUG 515 static void __unused 516 xnb_dump_gnttab_copy(const struct gnttab_copy *entry) 517 { 518 if (entry == NULL) { 519 printf("NULL grant table pointer\n"); 520 return; 521 } 522 523 if (entry->flags & GNTCOPY_dest_gref) 524 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref); 525 else 526 printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn); 527 printf("gnttab dest offset=\t%hu\n", entry->dest.offset); 528 printf("gnttab dest domid=\t%hu\n", entry->dest.domid); 529 if (entry->flags & GNTCOPY_source_gref) 530 printf("gnttab source ref=\t%u\n", entry->source.u.ref); 531 else 532 printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn); 533 printf("gnttab source offset=\t%hu\n", entry->source.offset); 534 printf("gnttab source domid=\t%hu\n", entry->source.domid); 535 printf("gnttab len=\t%hu\n", entry->len); 536 printf("gnttab flags=\t%hu\n", entry->flags); 537 printf("gnttab status=\t%hd\n", entry->status); 538 } 539 540 static int 541 xnb_dump_rings(SYSCTL_HANDLER_ARGS) 542 { 543 static char results[720]; 544 struct xnb_softc const* xnb = (struct xnb_softc*)arg1; 545 netif_rx_back_ring_t const* rxb = 546 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 547 netif_tx_back_ring_t const* txb = 548 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 549 550 /* empty the result strings */ 551 results[0] = 0; 552 553 if ( !txb || !txb->sring || !rxb || !rxb->sring ) 554 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 555 556 snprintf(results, 720, 557 "\n\t%35s %18s\n" /* TX, RX */ 558 "\t%16s %18d %18d\n" /* req_cons */ 559 "\t%16s %18d %18d\n" /* nr_ents */ 560 "\t%16s %18d %18d\n" /* rsp_prod_pvt */ 561 "\t%16s %18p %18p\n" /* sring */ 562 "\t%16s %18d %18d\n" /* req_prod */ 563 "\t%16s %18d %18d\n" /* req_event */ 564 "\t%16s %18d %18d\n" /* rsp_prod */ 565 "\t%16s %18d %18d\n", /* rsp_event */ 566 "TX", "RX", 567 "req_cons", txb->req_cons, rxb->req_cons, 568 "nr_ents", txb->nr_ents, rxb->nr_ents, 569 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt, 570 "sring", txb->sring, rxb->sring, 571 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod, 572 "sring->req_event", txb->sring->req_event, rxb->sring->req_event, 573 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod, 574 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event); 575 576 return (SYSCTL_OUT(req, results, strnlen(results, 720))); 577 } 578 579 static void __unused 580 xnb_dump_mbuf(const struct mbuf *m) 581 { 582 int len; 583 uint8_t *d; 584 if (m == NULL) 585 return; 586 587 printf("xnb_dump_mbuf:\n"); 588 if (m->m_flags & M_PKTHDR) { 589 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, " 590 "tso_segsz=%5hd\n", 591 m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags, 592 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz); 593 printf(" rcvif=%16p, len=%19d\n", 594 m->m_pkthdr.rcvif, m->m_pkthdr.len); 595 } 596 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n", 597 m->m_next, m->m_nextpkt, m->m_data); 598 printf(" m_len=%17d, m_flags=%#15x, m_type=%18u\n", 599 m->m_len, m->m_flags, m->m_type); 600 601 len = m->m_len; 602 d = mtod(m, uint8_t*); 603 while (len > 0) { 604 int i; 605 printf(" "); 606 for (i = 0; (i < 16) && (len > 0); i++, len--) { 607 printf("%02hhx ", *(d++)); 608 } 609 printf("\n"); 610 } 611 } 612 #endif /* XNB_DEBUG */ 613 614 /*------------------------ Inter-Domain Communication ------------------------*/ 615 /** 616 * Free dynamically allocated KVA or pseudo-physical address allocations. 617 * 618 * \param xnb Per-instance xnb configuration structure. 619 */ 620 static void 621 xnb_free_communication_mem(struct xnb_softc *xnb) 622 { 623 if (xnb->kva != 0) { 624 #ifndef XENHVM 625 kva_free(xnb->kva, xnb->kva_size); 626 #else 627 if (xnb->pseudo_phys_res != NULL) { 628 bus_release_resource(xnb->dev, SYS_RES_MEMORY, 629 xnb->pseudo_phys_res_id, 630 xnb->pseudo_phys_res); 631 xnb->pseudo_phys_res = NULL; 632 } 633 #endif /* XENHVM */ 634 } 635 xnb->kva = 0; 636 xnb->gnt_base_addr = 0; 637 } 638 639 /** 640 * Cleanup all inter-domain communication mechanisms. 641 * 642 * \param xnb Per-instance xnb configuration structure. 643 */ 644 static int 645 xnb_disconnect(struct xnb_softc *xnb) 646 { 647 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES]; 648 int error; 649 int i; 650 651 xen_intr_unbind(xnb->xen_intr_handle); 652 653 /* 654 * We may still have another thread currently processing requests. We 655 * must acquire the rx and tx locks to make sure those threads are done, 656 * but we can release those locks as soon as we acquire them, because no 657 * more interrupts will be arriving. 658 */ 659 mtx_lock(&xnb->tx_lock); 660 mtx_unlock(&xnb->tx_lock); 661 mtx_lock(&xnb->rx_lock); 662 mtx_unlock(&xnb->rx_lock); 663 664 /* Free malloc'd softc member variables */ 665 if (xnb->bridge != NULL) 666 free(xnb->bridge, M_XENSTORE); 667 668 /* All request processing has stopped, so unmap the rings */ 669 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 670 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr; 671 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr; 672 gnts[i].handle = xnb->ring_configs[i].handle; 673 } 674 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts, 675 XNB_NUM_RING_TYPES); 676 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error)); 677 678 xnb_free_communication_mem(xnb); 679 /* 680 * Zero the ring config structs because the pointers, handles, and 681 * grant refs contained therein are no longer valid. 682 */ 683 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX], 684 sizeof(struct xnb_ring_config)); 685 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX], 686 sizeof(struct xnb_ring_config)); 687 688 xnb->flags &= ~XNBF_RING_CONNECTED; 689 return (0); 690 } 691 692 /** 693 * Map a single shared memory ring into domain local address space and 694 * initialize its control structure 695 * 696 * \param xnb Per-instance xnb configuration structure 697 * \param ring_type Array index of this ring in the xnb's array of rings 698 * \return An errno 699 */ 700 static int 701 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type) 702 { 703 struct gnttab_map_grant_ref gnt; 704 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type]; 705 int error; 706 707 /* TX ring type = 0, RX =1 */ 708 ring->va = xnb->kva + ring_type * PAGE_SIZE; 709 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE; 710 711 gnt.host_addr = ring->gnt_addr; 712 gnt.flags = GNTMAP_host_map; 713 gnt.ref = ring->ring_ref; 714 gnt.dom = xnb->otherend_id; 715 716 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1); 717 if (error != 0) 718 panic("netback: Ring page grant table op failed (%d)", error); 719 720 if (gnt.status != 0) { 721 ring->va = 0; 722 error = EACCES; 723 xenbus_dev_fatal(xnb->dev, error, 724 "Ring shared page mapping failed. " 725 "Status %d.", gnt.status); 726 } else { 727 ring->handle = gnt.handle; 728 ring->bus_addr = gnt.dev_bus_addr; 729 730 if (ring_type == XNB_RING_TYPE_TX) { 731 BACK_RING_INIT(&ring->back_ring.tx_ring, 732 (netif_tx_sring_t*)ring->va, 733 ring->ring_pages * PAGE_SIZE); 734 } else if (ring_type == XNB_RING_TYPE_RX) { 735 BACK_RING_INIT(&ring->back_ring.rx_ring, 736 (netif_rx_sring_t*)ring->va, 737 ring->ring_pages * PAGE_SIZE); 738 } else { 739 xenbus_dev_fatal(xnb->dev, error, 740 "Unknown ring type %d", ring_type); 741 } 742 } 743 744 return error; 745 } 746 747 /** 748 * Setup the shared memory rings and bind an interrupt to the event channel 749 * used to notify us of ring changes. 750 * 751 * \param xnb Per-instance xnb configuration structure. 752 */ 753 static int 754 xnb_connect_comms(struct xnb_softc *xnb) 755 { 756 int error; 757 xnb_ring_type_t i; 758 759 if ((xnb->flags & XNBF_RING_CONNECTED) != 0) 760 return (0); 761 762 /* 763 * Kva for our rings are at the tail of the region of kva allocated 764 * by xnb_alloc_communication_mem(). 765 */ 766 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 767 error = xnb_connect_ring(xnb, i); 768 if (error != 0) 769 return error; 770 } 771 772 xnb->flags |= XNBF_RING_CONNECTED; 773 774 error = xen_intr_bind_remote_port(xnb->dev, 775 xnb->otherend_id, 776 xnb->evtchn, 777 /*filter*/NULL, 778 xnb_intr, /*arg*/xnb, 779 INTR_TYPE_BIO | INTR_MPSAFE, 780 &xnb->xen_intr_handle); 781 if (error != 0) { 782 (void)xnb_disconnect(xnb); 783 xenbus_dev_fatal(xnb->dev, error, "binding event channel"); 784 return (error); 785 } 786 787 DPRINTF("rings connected!\n"); 788 789 return (0); 790 } 791 792 /** 793 * Size KVA and pseudo-physical address allocations based on negotiated 794 * values for the size and number of I/O requests, and the size of our 795 * communication ring. 796 * 797 * \param xnb Per-instance xnb configuration structure. 798 * 799 * These address spaces are used to dynamically map pages in the 800 * front-end's domain into our own. 801 */ 802 static int 803 xnb_alloc_communication_mem(struct xnb_softc *xnb) 804 { 805 xnb_ring_type_t i; 806 807 xnb->kva_size = 0; 808 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 809 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE; 810 } 811 #ifndef XENHVM 812 xnb->kva = kva_alloc(xnb->kva_size); 813 if (xnb->kva == 0) 814 return (ENOMEM); 815 xnb->gnt_base_addr = xnb->kva; 816 #else /* defined XENHVM */ 817 /* 818 * Reserve a range of pseudo physical memory that we can map 819 * into kva. These pages will only be backed by machine 820 * pages ("real memory") during the lifetime of front-end requests 821 * via grant table operations. We will map the netif tx and rx rings 822 * into this space. 823 */ 824 xnb->pseudo_phys_res_id = 0; 825 xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY, 826 &xnb->pseudo_phys_res_id, 827 0, ~0, xnb->kva_size, 828 RF_ACTIVE); 829 if (xnb->pseudo_phys_res == NULL) { 830 xnb->kva = 0; 831 return (ENOMEM); 832 } 833 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res); 834 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res); 835 #endif /* !defined XENHVM */ 836 return (0); 837 } 838 839 /** 840 * Collect information from the XenStore related to our device and its frontend 841 * 842 * \param xnb Per-instance xnb configuration structure. 843 */ 844 static int 845 xnb_collect_xenstore_info(struct xnb_softc *xnb) 846 { 847 /** 848 * \todo Linux collects the following info. We should collect most 849 * of this, too: 850 * "feature-rx-notify" 851 */ 852 const char *otherend_path; 853 const char *our_path; 854 int err; 855 unsigned int rx_copy, bridge_len; 856 uint8_t no_csum_offload; 857 858 otherend_path = xenbus_get_otherend_path(xnb->dev); 859 our_path = xenbus_get_node(xnb->dev); 860 861 /* Collect the critical communication parameters */ 862 err = xs_gather(XST_NIL, otherend_path, 863 "tx-ring-ref", "%l" PRIu32, 864 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref, 865 "rx-ring-ref", "%l" PRIu32, 866 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref, 867 "event-channel", "%" PRIu32, &xnb->evtchn, 868 NULL); 869 if (err != 0) { 870 xenbus_dev_fatal(xnb->dev, err, 871 "Unable to retrieve ring information from " 872 "frontend %s. Unable to connect.", 873 otherend_path); 874 return (err); 875 } 876 877 /* Collect the handle from xenstore */ 878 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle); 879 if (err != 0) { 880 xenbus_dev_fatal(xnb->dev, err, 881 "Error reading handle from frontend %s. " 882 "Unable to connect.", otherend_path); 883 } 884 885 /* 886 * Collect the bridgename, if any. We do not need bridge_len; we just 887 * throw it away 888 */ 889 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len, 890 (void**)&xnb->bridge); 891 if (err != 0) 892 xnb->bridge = NULL; 893 894 /* 895 * Does the frontend request that we use rx copy? If not, return an 896 * error because this driver only supports rx copy. 897 */ 898 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL, 899 "%" PRIu32, &rx_copy); 900 if (err == ENOENT) { 901 err = 0; 902 rx_copy = 0; 903 } 904 if (err < 0) { 905 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy", 906 otherend_path); 907 return err; 908 } 909 /** 910 * \todo: figure out the exact meaning of this feature, and when 911 * the frontend will set it to true. It should be set to true 912 * at some point 913 */ 914 /* if (!rx_copy)*/ 915 /* return EOPNOTSUPP;*/ 916 917 /** \todo Collect the rx notify feature */ 918 919 /* Collect the feature-sg. */ 920 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL, 921 "%hhu", &xnb->can_sg) < 0) 922 xnb->can_sg = 0; 923 924 /* Collect remaining frontend features */ 925 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL, 926 "%hhu", &xnb->gso) < 0) 927 xnb->gso = 0; 928 929 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL, 930 "%hhu", &xnb->gso_prefix) < 0) 931 xnb->gso_prefix = 0; 932 933 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL, 934 "%hhu", &no_csum_offload) < 0) 935 no_csum_offload = 0; 936 xnb->ip_csum = (no_csum_offload == 0); 937 938 return (0); 939 } 940 941 /** 942 * Supply information about the physical device to the frontend 943 * via XenBus. 944 * 945 * \param xnb Per-instance xnb configuration structure. 946 */ 947 static int 948 xnb_publish_backend_info(struct xnb_softc *xnb) 949 { 950 struct xs_transaction xst; 951 const char *our_path; 952 int error; 953 954 our_path = xenbus_get_node(xnb->dev); 955 956 do { 957 error = xs_transaction_start(&xst); 958 if (error != 0) { 959 xenbus_dev_fatal(xnb->dev, error, 960 "Error publishing backend info " 961 "(start transaction)"); 962 break; 963 } 964 965 error = xs_printf(xst, our_path, "feature-sg", 966 "%d", XNB_SG); 967 if (error != 0) 968 break; 969 970 error = xs_printf(xst, our_path, "feature-gso-tcpv4", 971 "%d", XNB_GSO_TCPV4); 972 if (error != 0) 973 break; 974 975 error = xs_printf(xst, our_path, "feature-rx-copy", 976 "%d", XNB_RX_COPY); 977 if (error != 0) 978 break; 979 980 error = xs_printf(xst, our_path, "feature-rx-flip", 981 "%d", XNB_RX_FLIP); 982 if (error != 0) 983 break; 984 985 error = xs_transaction_end(xst, 0); 986 if (error != 0 && error != EAGAIN) { 987 xenbus_dev_fatal(xnb->dev, error, "ending transaction"); 988 break; 989 } 990 991 } while (error == EAGAIN); 992 993 return (error); 994 } 995 996 /** 997 * Connect to our netfront peer now that it has completed publishing 998 * its configuration into the XenStore. 999 * 1000 * \param xnb Per-instance xnb configuration structure. 1001 */ 1002 static void 1003 xnb_connect(struct xnb_softc *xnb) 1004 { 1005 int error; 1006 1007 if (xenbus_get_state(xnb->dev) == XenbusStateConnected) 1008 return; 1009 1010 if (xnb_collect_xenstore_info(xnb) != 0) 1011 return; 1012 1013 xnb->flags &= ~XNBF_SHUTDOWN; 1014 1015 /* Read front end configuration. */ 1016 1017 /* Allocate resources whose size depends on front-end configuration. */ 1018 error = xnb_alloc_communication_mem(xnb); 1019 if (error != 0) { 1020 xenbus_dev_fatal(xnb->dev, error, 1021 "Unable to allocate communication memory"); 1022 return; 1023 } 1024 1025 /* 1026 * Connect communication channel. 1027 */ 1028 error = xnb_connect_comms(xnb); 1029 if (error != 0) { 1030 /* Specific errors are reported by xnb_connect_comms(). */ 1031 return; 1032 } 1033 xnb->carrier = 1; 1034 1035 /* Ready for I/O. */ 1036 xenbus_set_state(xnb->dev, XenbusStateConnected); 1037 } 1038 1039 /*-------------------------- Device Teardown Support -------------------------*/ 1040 /** 1041 * Perform device shutdown functions. 1042 * 1043 * \param xnb Per-instance xnb configuration structure. 1044 * 1045 * Mark this instance as shutting down, wait for any active requests 1046 * to drain, disconnect from the front-end, and notify any waiters (e.g. 1047 * a thread invoking our detach method) that detach can now proceed. 1048 */ 1049 static int 1050 xnb_shutdown(struct xnb_softc *xnb) 1051 { 1052 /* 1053 * Due to the need to drop our mutex during some 1054 * xenbus operations, it is possible for two threads 1055 * to attempt to close out shutdown processing at 1056 * the same time. Tell the caller that hits this 1057 * race to try back later. 1058 */ 1059 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0) 1060 return (EAGAIN); 1061 1062 xnb->flags |= XNBF_SHUTDOWN; 1063 1064 xnb->flags |= XNBF_IN_SHUTDOWN; 1065 1066 mtx_unlock(&xnb->sc_lock); 1067 /* Free the network interface */ 1068 xnb->carrier = 0; 1069 if (xnb->xnb_ifp != NULL) { 1070 ether_ifdetach(xnb->xnb_ifp); 1071 if_free(xnb->xnb_ifp); 1072 xnb->xnb_ifp = NULL; 1073 } 1074 mtx_lock(&xnb->sc_lock); 1075 1076 xnb_disconnect(xnb); 1077 1078 mtx_unlock(&xnb->sc_lock); 1079 if (xenbus_get_state(xnb->dev) < XenbusStateClosing) 1080 xenbus_set_state(xnb->dev, XenbusStateClosing); 1081 mtx_lock(&xnb->sc_lock); 1082 1083 xnb->flags &= ~XNBF_IN_SHUTDOWN; 1084 1085 1086 /* Indicate to xnb_detach() that is it safe to proceed. */ 1087 wakeup(xnb); 1088 1089 return (0); 1090 } 1091 1092 /** 1093 * Report an attach time error to the console and Xen, and cleanup 1094 * this instance by forcing immediate detach processing. 1095 * 1096 * \param xnb Per-instance xnb configuration structure. 1097 * \param err Errno describing the error. 1098 * \param fmt Printf style format and arguments 1099 */ 1100 static void 1101 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...) 1102 { 1103 va_list ap; 1104 va_list ap_hotplug; 1105 1106 va_start(ap, fmt); 1107 va_copy(ap_hotplug, ap); 1108 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev), 1109 "hotplug-error", fmt, ap_hotplug); 1110 va_end(ap_hotplug); 1111 xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1112 "hotplug-status", "error"); 1113 1114 xenbus_dev_vfatal(xnb->dev, err, fmt, ap); 1115 va_end(ap); 1116 1117 xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1118 "online", "0"); 1119 xnb_detach(xnb->dev); 1120 } 1121 1122 /*---------------------------- NewBus Entrypoints ----------------------------*/ 1123 /** 1124 * Inspect a XenBus device and claim it if is of the appropriate type. 1125 * 1126 * \param dev NewBus device object representing a candidate XenBus device. 1127 * 1128 * \return 0 for success, errno codes for failure. 1129 */ 1130 static int 1131 xnb_probe(device_t dev) 1132 { 1133 if (!strcmp(xenbus_get_type(dev), "vif")) { 1134 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev), 1135 devclass_get_name(device_get_devclass(dev))); 1136 device_set_desc(dev, "Backend Virtual Network Device"); 1137 device_quiet(dev); 1138 return (0); 1139 } 1140 return (ENXIO); 1141 } 1142 1143 /** 1144 * Setup sysctl variables to control various Network Back parameters. 1145 * 1146 * \param xnb Xen Net Back softc. 1147 * 1148 */ 1149 static void 1150 xnb_setup_sysctl(struct xnb_softc *xnb) 1151 { 1152 struct sysctl_ctx_list *sysctl_ctx = NULL; 1153 struct sysctl_oid *sysctl_tree = NULL; 1154 1155 sysctl_ctx = device_get_sysctl_ctx(xnb->dev); 1156 if (sysctl_ctx == NULL) 1157 return; 1158 1159 sysctl_tree = device_get_sysctl_tree(xnb->dev); 1160 if (sysctl_tree == NULL) 1161 return; 1162 1163 #ifdef XNB_DEBUG 1164 SYSCTL_ADD_PROC(sysctl_ctx, 1165 SYSCTL_CHILDREN(sysctl_tree), 1166 OID_AUTO, 1167 "unit_test_results", 1168 CTLTYPE_STRING | CTLFLAG_RD, 1169 xnb, 1170 0, 1171 xnb_unit_test_main, 1172 "A", 1173 "Results of builtin unit tests"); 1174 1175 SYSCTL_ADD_PROC(sysctl_ctx, 1176 SYSCTL_CHILDREN(sysctl_tree), 1177 OID_AUTO, 1178 "dump_rings", 1179 CTLTYPE_STRING | CTLFLAG_RD, 1180 xnb, 1181 0, 1182 xnb_dump_rings, 1183 "A", 1184 "Xennet Back Rings"); 1185 #endif /* XNB_DEBUG */ 1186 } 1187 1188 /** 1189 * Create a network device. 1190 * @param handle device handle 1191 */ 1192 int 1193 create_netdev(device_t dev) 1194 { 1195 struct ifnet *ifp; 1196 struct xnb_softc *xnb; 1197 int err = 0; 1198 1199 xnb = device_get_softc(dev); 1200 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF); 1201 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF); 1202 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF); 1203 1204 xnb->dev = dev; 1205 1206 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts); 1207 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); 1208 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL); 1209 1210 err = xen_net_read_mac(dev, xnb->mac); 1211 if (err == 0) { 1212 /* Set up ifnet structure */ 1213 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER); 1214 ifp->if_softc = xnb; 1215 if_initname(ifp, "xnb", device_get_unit(dev)); 1216 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1217 ifp->if_ioctl = xnb_ioctl; 1218 ifp->if_output = ether_output; 1219 ifp->if_start = xnb_start; 1220 #ifdef notyet 1221 ifp->if_watchdog = xnb_watchdog; 1222 #endif 1223 ifp->if_init = xnb_ifinit; 1224 ifp->if_mtu = ETHERMTU; 1225 ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1; 1226 1227 ifp->if_hwassist = XNB_CSUM_FEATURES; 1228 ifp->if_capabilities = IFCAP_HWCSUM; 1229 ifp->if_capenable = IFCAP_HWCSUM; 1230 1231 ether_ifattach(ifp, xnb->mac); 1232 xnb->carrier = 0; 1233 } 1234 1235 return err; 1236 } 1237 1238 /** 1239 * Attach to a XenBus device that has been claimed by our probe routine. 1240 * 1241 * \param dev NewBus device object representing this Xen Net Back instance. 1242 * 1243 * \return 0 for success, errno codes for failure. 1244 */ 1245 static int 1246 xnb_attach(device_t dev) 1247 { 1248 struct xnb_softc *xnb; 1249 int error; 1250 xnb_ring_type_t i; 1251 1252 error = create_netdev(dev); 1253 if (error != 0) { 1254 xenbus_dev_fatal(dev, error, "creating netdev"); 1255 return (error); 1256 } 1257 1258 DPRINTF("Attaching to %s\n", xenbus_get_node(dev)); 1259 1260 /* 1261 * Basic initialization. 1262 * After this block it is safe to call xnb_detach() 1263 * to clean up any allocated data for this instance. 1264 */ 1265 xnb = device_get_softc(dev); 1266 xnb->otherend_id = xenbus_get_otherend_id(dev); 1267 for (i=0; i < XNB_NUM_RING_TYPES; i++) { 1268 xnb->ring_configs[i].ring_pages = 1; 1269 } 1270 1271 /* 1272 * Setup sysctl variables. 1273 */ 1274 xnb_setup_sysctl(xnb); 1275 1276 /* Update hot-plug status to satisfy xend. */ 1277 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev), 1278 "hotplug-status", "connected"); 1279 if (error != 0) { 1280 xnb_attach_failed(xnb, error, "writing %s/hotplug-status", 1281 xenbus_get_node(xnb->dev)); 1282 return (error); 1283 } 1284 1285 if ((error = xnb_publish_backend_info(xnb)) != 0) { 1286 /* 1287 * If we can't publish our data, we cannot participate 1288 * in this connection, and waiting for a front-end state 1289 * change will not help the situation. 1290 */ 1291 xnb_attach_failed(xnb, error, 1292 "Publishing backend status for %s", 1293 xenbus_get_node(xnb->dev)); 1294 return error; 1295 } 1296 1297 /* Tell the front end that we are ready to connect. */ 1298 xenbus_set_state(dev, XenbusStateInitWait); 1299 1300 return (0); 1301 } 1302 1303 /** 1304 * Detach from a net back device instance. 1305 * 1306 * \param dev NewBus device object representing this Xen Net Back instance. 1307 * 1308 * \return 0 for success, errno codes for failure. 1309 * 1310 * \note A net back device may be detached at any time in its life-cycle, 1311 * including part way through the attach process. For this reason, 1312 * initialization order and the intialization state checks in this 1313 * routine must be carefully coupled so that attach time failures 1314 * are gracefully handled. 1315 */ 1316 static int 1317 xnb_detach(device_t dev) 1318 { 1319 struct xnb_softc *xnb; 1320 1321 DPRINTF("\n"); 1322 1323 xnb = device_get_softc(dev); 1324 mtx_lock(&xnb->sc_lock); 1325 while (xnb_shutdown(xnb) == EAGAIN) { 1326 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0, 1327 "xnb_shutdown", 0); 1328 } 1329 mtx_unlock(&xnb->sc_lock); 1330 DPRINTF("\n"); 1331 1332 mtx_destroy(&xnb->tx_lock); 1333 mtx_destroy(&xnb->rx_lock); 1334 mtx_destroy(&xnb->sc_lock); 1335 return (0); 1336 } 1337 1338 /** 1339 * Prepare this net back device for suspension of this VM. 1340 * 1341 * \param dev NewBus device object representing this Xen net Back instance. 1342 * 1343 * \return 0 for success, errno codes for failure. 1344 */ 1345 static int 1346 xnb_suspend(device_t dev) 1347 { 1348 return (0); 1349 } 1350 1351 /** 1352 * Perform any processing required to recover from a suspended state. 1353 * 1354 * \param dev NewBus device object representing this Xen Net Back instance. 1355 * 1356 * \return 0 for success, errno codes for failure. 1357 */ 1358 static int 1359 xnb_resume(device_t dev) 1360 { 1361 return (0); 1362 } 1363 1364 /** 1365 * Handle state changes expressed via the XenStore by our front-end peer. 1366 * 1367 * \param dev NewBus device object representing this Xen 1368 * Net Back instance. 1369 * \param frontend_state The new state of the front-end. 1370 * 1371 * \return 0 for success, errno codes for failure. 1372 */ 1373 static void 1374 xnb_frontend_changed(device_t dev, XenbusState frontend_state) 1375 { 1376 struct xnb_softc *xnb; 1377 1378 xnb = device_get_softc(dev); 1379 1380 DPRINTF("frontend_state=%s, xnb_state=%s\n", 1381 xenbus_strstate(frontend_state), 1382 xenbus_strstate(xenbus_get_state(xnb->dev))); 1383 1384 switch (frontend_state) { 1385 case XenbusStateInitialising: 1386 break; 1387 case XenbusStateInitialised: 1388 case XenbusStateConnected: 1389 xnb_connect(xnb); 1390 break; 1391 case XenbusStateClosing: 1392 case XenbusStateClosed: 1393 mtx_lock(&xnb->sc_lock); 1394 xnb_shutdown(xnb); 1395 mtx_unlock(&xnb->sc_lock); 1396 if (frontend_state == XenbusStateClosed) 1397 xenbus_set_state(xnb->dev, XenbusStateClosed); 1398 break; 1399 default: 1400 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend", 1401 frontend_state); 1402 break; 1403 } 1404 } 1405 1406 1407 /*---------------------------- Request Processing ----------------------------*/ 1408 /** 1409 * Interrupt handler bound to the shared ring's event channel. 1410 * Entry point for the xennet transmit path in netback 1411 * Transfers packets from the Xen ring to the host's generic networking stack 1412 * 1413 * \param arg Callback argument registerd during event channel 1414 * binding - the xnb_softc for this instance. 1415 */ 1416 static void 1417 xnb_intr(void *arg) 1418 { 1419 struct xnb_softc *xnb; 1420 struct ifnet *ifp; 1421 netif_tx_back_ring_t *txb; 1422 RING_IDX req_prod_local; 1423 1424 xnb = (struct xnb_softc *)arg; 1425 ifp = xnb->xnb_ifp; 1426 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring; 1427 1428 mtx_lock(&xnb->tx_lock); 1429 do { 1430 int notify; 1431 req_prod_local = txb->sring->req_prod; 1432 xen_rmb(); 1433 1434 for (;;) { 1435 struct mbuf *mbufc; 1436 int err; 1437 1438 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp, 1439 xnb->tx_gnttab); 1440 if (err || (mbufc == NULL)) 1441 break; 1442 1443 /* Send the packet to the generic network stack */ 1444 (*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc); 1445 } 1446 1447 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify); 1448 if (notify != 0) 1449 xen_intr_signal(xnb->xen_intr_handle); 1450 1451 txb->sring->req_event = txb->req_cons + 1; 1452 xen_mb(); 1453 } while (txb->sring->req_prod != req_prod_local) ; 1454 mtx_unlock(&xnb->tx_lock); 1455 1456 xnb_start(ifp); 1457 } 1458 1459 1460 /** 1461 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring. 1462 * Will read exactly 0 or 1 packets from the ring; never a partial packet. 1463 * \param[out] pkt The returned packet. If there is an error building 1464 * the packet, pkt.list_len will be set to 0. 1465 * \param[in] tx_ring Pointer to the Ring that is the input to this function 1466 * \param[in] start The ring index of the first potential request 1467 * \return The number of requests consumed to build this packet 1468 */ 1469 static int 1470 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring, 1471 RING_IDX start) 1472 { 1473 /* 1474 * Outline: 1475 * 1) Initialize pkt 1476 * 2) Read the first request of the packet 1477 * 3) Read the extras 1478 * 4) Set cdr 1479 * 5) Loop on the remainder of the packet 1480 * 6) Finalize pkt (stuff like car_size and list_len) 1481 */ 1482 int idx = start; 1483 int discard = 0; /* whether to discard the packet */ 1484 int more_data = 0; /* there are more request past the last one */ 1485 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */ 1486 1487 xnb_pkt_initialize(pkt); 1488 1489 /* Read the first request */ 1490 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1491 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1492 pkt->size = tx->size; 1493 pkt->flags = tx->flags & ~NETTXF_more_data; 1494 more_data = tx->flags & NETTXF_more_data; 1495 pkt->list_len++; 1496 pkt->car = idx; 1497 idx++; 1498 } 1499 1500 /* Read the extra info */ 1501 if ((pkt->flags & NETTXF_extra_info) && 1502 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1503 netif_extra_info_t *ext = 1504 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx); 1505 pkt->extra.type = ext->type; 1506 switch (pkt->extra.type) { 1507 case XEN_NETIF_EXTRA_TYPE_GSO: 1508 pkt->extra.u.gso = ext->u.gso; 1509 break; 1510 default: 1511 /* 1512 * The reference Linux netfront driver will 1513 * never set any other extra.type. So we don't 1514 * know what to do with it. Let's print an 1515 * error, then consume and discard the packet 1516 */ 1517 printf("xnb(%s:%d): Unknown extra info type %d." 1518 " Discarding packet\n", 1519 __func__, __LINE__, pkt->extra.type); 1520 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, 1521 start)); 1522 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, 1523 idx)); 1524 discard = 1; 1525 break; 1526 } 1527 1528 pkt->extra.flags = ext->flags; 1529 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) { 1530 /* 1531 * The reference linux netfront driver never sets this 1532 * flag (nor does any other known netfront). So we 1533 * will discard the packet. 1534 */ 1535 printf("xnb(%s:%d): Request sets " 1536 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle " 1537 "that\n", __func__, __LINE__); 1538 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1539 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1540 discard = 1; 1541 } 1542 1543 idx++; 1544 } 1545 1546 /* Set cdr. If there is not more data, cdr is invalid */ 1547 pkt->cdr = idx; 1548 1549 /* Loop on remainder of packet */ 1550 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) { 1551 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx); 1552 pkt->list_len++; 1553 cdr_size += tx->size; 1554 if (tx->flags & ~NETTXF_more_data) { 1555 /* There should be no other flags set at this point */ 1556 printf("xnb(%s:%d): Request sets unknown flags %d " 1557 "after the 1st request in the packet.\n", 1558 __func__, __LINE__, tx->flags); 1559 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start)); 1560 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx)); 1561 } 1562 1563 more_data = tx->flags & NETTXF_more_data; 1564 idx++; 1565 } 1566 1567 /* Finalize packet */ 1568 if (more_data != 0) { 1569 /* The ring ran out of requests before finishing the packet */ 1570 xnb_pkt_invalidate(pkt); 1571 idx = start; /* tell caller that we consumed no requests */ 1572 } else { 1573 /* Calculate car_size */ 1574 pkt->car_size = pkt->size - cdr_size; 1575 } 1576 if (discard != 0) { 1577 xnb_pkt_invalidate(pkt); 1578 } 1579 1580 return idx - start; 1581 } 1582 1583 1584 /** 1585 * Respond to all the requests that constituted pkt. Builds the responses and 1586 * writes them to the ring, but doesn't push them to the shared ring. 1587 * \param[in] pkt the packet that needs a response 1588 * \param[in] error true if there was an error handling the packet, such 1589 * as in the hypervisor copy op or mbuf allocation 1590 * \param[out] ring Responses go here 1591 */ 1592 static void 1593 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring, 1594 int error) 1595 { 1596 /* 1597 * Outline: 1598 * 1) Respond to the first request 1599 * 2) Respond to the extra info reques 1600 * Loop through every remaining request in the packet, generating 1601 * responses that copy those requests' ids and sets the status 1602 * appropriately. 1603 */ 1604 netif_tx_request_t *tx; 1605 netif_tx_response_t *rsp; 1606 int i; 1607 uint16_t status; 1608 1609 status = (xnb_pkt_is_valid(pkt) == 0) || error ? 1610 NETIF_RSP_ERROR : NETIF_RSP_OKAY; 1611 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car), 1612 ("Cannot respond to ring requests out of order")); 1613 1614 if (pkt->list_len >= 1) { 1615 uint16_t id; 1616 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1617 id = tx->id; 1618 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1619 rsp->id = id; 1620 rsp->status = status; 1621 ring->rsp_prod_pvt++; 1622 1623 if (pkt->flags & NETRXF_extra_info) { 1624 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1625 rsp->status = NETIF_RSP_NULL; 1626 ring->rsp_prod_pvt++; 1627 } 1628 } 1629 1630 for (i=0; i < pkt->list_len - 1; i++) { 1631 uint16_t id; 1632 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt); 1633 id = tx->id; 1634 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 1635 rsp->id = id; 1636 rsp->status = status; 1637 ring->rsp_prod_pvt++; 1638 } 1639 } 1640 1641 /** 1642 * Create an mbuf chain to represent a packet. Initializes all of the headers 1643 * in the mbuf chain, but does not copy the data. The returned chain must be 1644 * free()'d when no longer needed 1645 * \param[in] pkt A packet to model the mbuf chain after 1646 * \return A newly allocated mbuf chain, possibly with clusters attached. 1647 * NULL on failure 1648 */ 1649 static struct mbuf* 1650 xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp) 1651 { 1652 /** 1653 * \todo consider using a memory pool for mbufs instead of 1654 * reallocating them for every packet 1655 */ 1656 /** \todo handle extra data */ 1657 struct mbuf *m; 1658 1659 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA); 1660 1661 if (m != NULL) { 1662 m->m_pkthdr.rcvif = ifp; 1663 if (pkt->flags & NETTXF_data_validated) { 1664 /* 1665 * We lie to the host OS and always tell it that the 1666 * checksums are ok, because the packet is unlikely to 1667 * get corrupted going across domains. 1668 */ 1669 m->m_pkthdr.csum_flags = ( 1670 CSUM_IP_CHECKED | 1671 CSUM_IP_VALID | 1672 CSUM_DATA_VALID | 1673 CSUM_PSEUDO_HDR 1674 ); 1675 m->m_pkthdr.csum_data = 0xffff; 1676 } 1677 } 1678 return m; 1679 } 1680 1681 /** 1682 * Build a gnttab_copy table that can be used to copy data from a pkt 1683 * to an mbufc. Does not actually perform the copy. Always uses gref's on 1684 * the packet side. 1685 * \param[in] pkt pkt's associated requests form the src for 1686 * the copy operation 1687 * \param[in] mbufc mbufc's storage forms the dest for the copy operation 1688 * \param[out] gnttab Storage for the returned grant table 1689 * \param[in] txb Pointer to the backend ring structure 1690 * \param[in] otherend_id The domain ID of the other end of the copy 1691 * \return The number of gnttab entries filled 1692 */ 1693 static int 1694 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1695 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb, 1696 domid_t otherend_id) 1697 { 1698 1699 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1700 int gnt_idx = 0; /* index into grant table */ 1701 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */ 1702 int r_ofs = 0; /* offset of next data within tx request's data area */ 1703 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1704 /* size in bytes that still needs to be represented in the table */ 1705 uint16_t size_remaining = pkt->size; 1706 1707 while (size_remaining > 0) { 1708 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx); 1709 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs; 1710 const size_t req_size = 1711 r_idx == pkt->car ? pkt->car_size : txq->size; 1712 const size_t pkt_space = req_size - r_ofs; 1713 /* 1714 * space is the largest amount of data that can be copied in the 1715 * grant table's next entry 1716 */ 1717 const size_t space = MIN(pkt_space, mbuf_space); 1718 1719 /* TODO: handle this error condition without panicking */ 1720 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1721 1722 gnttab[gnt_idx].source.u.ref = txq->gref; 1723 gnttab[gnt_idx].source.domid = otherend_id; 1724 gnttab[gnt_idx].source.offset = txq->offset + r_ofs; 1725 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn( 1726 mtod(mbuf, vm_offset_t) + m_ofs); 1727 gnttab[gnt_idx].dest.offset = virt_to_offset( 1728 mtod(mbuf, vm_offset_t) + m_ofs); 1729 gnttab[gnt_idx].dest.domid = DOMID_SELF; 1730 gnttab[gnt_idx].len = space; 1731 gnttab[gnt_idx].flags = GNTCOPY_source_gref; 1732 1733 gnt_idx++; 1734 r_ofs += space; 1735 m_ofs += space; 1736 size_remaining -= space; 1737 if (req_size - r_ofs <= 0) { 1738 /* Must move to the next tx request */ 1739 r_ofs = 0; 1740 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 1741 } 1742 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) { 1743 /* Must move to the next mbuf */ 1744 m_ofs = 0; 1745 mbuf = mbuf->m_next; 1746 } 1747 } 1748 1749 return gnt_idx; 1750 } 1751 1752 /** 1753 * Check the status of the grant copy operations, and update mbufs various 1754 * non-data fields to reflect the data present. 1755 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of 1756 * the correct length, and data should already be present 1757 * \param[in] gnttab A grant table for a just completed copy op 1758 * \param[in] n_entries The number of valid entries in the grant table 1759 */ 1760 static void 1761 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab, 1762 int n_entries) 1763 { 1764 struct mbuf *mbuf = mbufc; 1765 int i; 1766 size_t total_size = 0; 1767 1768 for (i = 0; i < n_entries; i++) { 1769 KASSERT(gnttab[i].status == GNTST_okay, 1770 ("Some gnttab_copy entry had error status %hd\n", 1771 gnttab[i].status)); 1772 1773 mbuf->m_len += gnttab[i].len; 1774 total_size += gnttab[i].len; 1775 if (M_TRAILINGSPACE(mbuf) <= 0) { 1776 mbuf = mbuf->m_next; 1777 } 1778 } 1779 mbufc->m_pkthdr.len = total_size; 1780 1781 xnb_add_mbuf_cksum(mbufc); 1782 } 1783 1784 /** 1785 * Dequeue at most one packet from the shared ring 1786 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and 1787 * its private indices will be updated. But the indices 1788 * will not be pushed to the shared ring. 1789 * \param[in] ifnet Interface to which the packet will be sent 1790 * \param[in] otherend Domain ID of the other end of the ring 1791 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic 1792 * networking stack 1793 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 1794 * this a function parameter so that we will take less 1795 * stack space. 1796 * \return An error code 1797 */ 1798 static int 1799 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc, 1800 struct ifnet *ifnet, gnttab_copy_table gnttab) 1801 { 1802 struct xnb_pkt pkt; 1803 /* number of tx requests consumed to build the last packet */ 1804 int num_consumed; 1805 int nr_ents; 1806 1807 *mbufc = NULL; 1808 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons); 1809 if (num_consumed == 0) 1810 return 0; /* Nothing to receive */ 1811 1812 /* update statistics independent of errors */ 1813 ifnet->if_ipackets++; 1814 1815 /* 1816 * if we got here, then 1 or more requests was consumed, but the packet 1817 * is not necessarily valid. 1818 */ 1819 if (xnb_pkt_is_valid(&pkt) == 0) { 1820 /* got a garbage packet, respond and drop it */ 1821 xnb_txpkt2rsp(&pkt, txb, 1); 1822 txb->req_cons += num_consumed; 1823 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n", 1824 num_consumed); 1825 ifnet->if_ierrors++; 1826 return EINVAL; 1827 } 1828 1829 *mbufc = xnb_pkt2mbufc(&pkt, ifnet); 1830 1831 if (*mbufc == NULL) { 1832 /* 1833 * Couldn't allocate mbufs. Respond and drop the packet. Do 1834 * not consume the requests 1835 */ 1836 xnb_txpkt2rsp(&pkt, txb, 1); 1837 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n", 1838 num_consumed); 1839 ifnet->if_iqdrops++; 1840 return ENOMEM; 1841 } 1842 1843 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend); 1844 1845 if (nr_ents > 0) { 1846 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 1847 gnttab, nr_ents); 1848 KASSERT(hv_ret == 0, 1849 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret)); 1850 xnb_update_mbufc(*mbufc, gnttab, nr_ents); 1851 } 1852 1853 xnb_txpkt2rsp(&pkt, txb, 0); 1854 txb->req_cons += num_consumed; 1855 return 0; 1856 } 1857 1858 /** 1859 * Create an xnb_pkt based on the contents of an mbuf chain. 1860 * \param[in] mbufc mbuf chain to transform into a packet 1861 * \param[out] pkt Storage for the newly generated xnb_pkt 1862 * \param[in] start The ring index of the first available slot in the rx 1863 * ring 1864 * \param[in] space The number of free slots in the rx ring 1865 * \retval 0 Success 1866 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 1867 * \retval EAGAIN There was not enough space in the ring to queue the 1868 * packet 1869 */ 1870 static int 1871 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt, 1872 RING_IDX start, int space) 1873 { 1874 1875 int retval = 0; 1876 1877 if ((mbufc == NULL) || 1878 ( (mbufc->m_flags & M_PKTHDR) == 0) || 1879 (mbufc->m_pkthdr.len == 0)) { 1880 xnb_pkt_invalidate(pkt); 1881 retval = EINVAL; 1882 } else { 1883 int slots_required; 1884 1885 xnb_pkt_validate(pkt); 1886 pkt->flags = 0; 1887 pkt->size = mbufc->m_pkthdr.len; 1888 pkt->car = start; 1889 pkt->car_size = mbufc->m_len; 1890 1891 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) { 1892 pkt->flags |= NETRXF_extra_info; 1893 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz; 1894 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 1895 pkt->extra.u.gso.pad = 0; 1896 pkt->extra.u.gso.features = 0; 1897 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO; 1898 pkt->extra.flags = 0; 1899 pkt->cdr = start + 2; 1900 } else { 1901 pkt->cdr = start + 1; 1902 } 1903 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) { 1904 pkt->flags |= 1905 (NETRXF_csum_blank | NETRXF_data_validated); 1906 } 1907 1908 /* 1909 * Each ring response can have up to PAGE_SIZE of data. 1910 * Assume that we can defragment the mbuf chain efficiently 1911 * into responses so that each response but the last uses all 1912 * PAGE_SIZE bytes. 1913 */ 1914 pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE; 1915 1916 if (pkt->list_len > 1) { 1917 pkt->flags |= NETRXF_more_data; 1918 } 1919 1920 slots_required = pkt->list_len + 1921 (pkt->flags & NETRXF_extra_info ? 1 : 0); 1922 if (slots_required > space) { 1923 xnb_pkt_invalidate(pkt); 1924 retval = EAGAIN; 1925 } 1926 } 1927 1928 return retval; 1929 } 1930 1931 /** 1932 * Build a gnttab_copy table that can be used to copy data from an mbuf chain 1933 * to the frontend's shared buffers. Does not actually perform the copy. 1934 * Always uses gref's on the other end's side. 1935 * \param[in] pkt pkt's associated responses form the dest for the copy 1936 * operatoin 1937 * \param[in] mbufc The source for the copy operation 1938 * \param[out] gnttab Storage for the returned grant table 1939 * \param[in] rxb Pointer to the backend ring structure 1940 * \param[in] otherend_id The domain ID of the other end of the copy 1941 * \return The number of gnttab entries filled 1942 */ 1943 static int 1944 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc, 1945 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb, 1946 domid_t otherend_id) 1947 { 1948 1949 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */ 1950 int gnt_idx = 0; /* index into grant table */ 1951 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */ 1952 int r_ofs = 0; /* offset of next data within rx request's data area */ 1953 int m_ofs = 0; /* offset of next data within mbuf's data area */ 1954 /* size in bytes that still needs to be represented in the table */ 1955 uint16_t size_remaining; 1956 1957 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0; 1958 1959 while (size_remaining > 0) { 1960 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx); 1961 const size_t mbuf_space = mbuf->m_len - m_ofs; 1962 /* Xen shared pages have an implied size of PAGE_SIZE */ 1963 const size_t req_size = PAGE_SIZE; 1964 const size_t pkt_space = req_size - r_ofs; 1965 /* 1966 * space is the largest amount of data that can be copied in the 1967 * grant table's next entry 1968 */ 1969 const size_t space = MIN(pkt_space, mbuf_space); 1970 1971 /* TODO: handle this error condition without panicing */ 1972 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short")); 1973 1974 gnttab[gnt_idx].dest.u.ref = rxq->gref; 1975 gnttab[gnt_idx].dest.domid = otherend_id; 1976 gnttab[gnt_idx].dest.offset = r_ofs; 1977 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn( 1978 mtod(mbuf, vm_offset_t) + m_ofs); 1979 gnttab[gnt_idx].source.offset = virt_to_offset( 1980 mtod(mbuf, vm_offset_t) + m_ofs); 1981 gnttab[gnt_idx].source.domid = DOMID_SELF; 1982 gnttab[gnt_idx].len = space; 1983 gnttab[gnt_idx].flags = GNTCOPY_dest_gref; 1984 1985 gnt_idx++; 1986 1987 r_ofs += space; 1988 m_ofs += space; 1989 size_remaining -= space; 1990 if (req_size - r_ofs <= 0) { 1991 /* Must move to the next rx request */ 1992 r_ofs = 0; 1993 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1; 1994 } 1995 if (mbuf->m_len - m_ofs <= 0) { 1996 /* Must move to the next mbuf */ 1997 m_ofs = 0; 1998 mbuf = mbuf->m_next; 1999 } 2000 } 2001 2002 return gnt_idx; 2003 } 2004 2005 /** 2006 * Generates responses for all the requests that constituted pkt. Builds 2007 * responses and writes them to the ring, but doesn't push the shared ring 2008 * indices. 2009 * \param[in] pkt the packet that needs a response 2010 * \param[in] gnttab The grant copy table corresponding to this packet. 2011 * Used to determine how many rsp->netif_rx_response_t's to 2012 * generate. 2013 * \param[in] n_entries Number of relevant entries in the grant table 2014 * \param[out] ring Responses go here 2015 * \return The number of RX requests that were consumed to generate 2016 * the responses 2017 */ 2018 static int 2019 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab, 2020 int n_entries, netif_rx_back_ring_t *ring) 2021 { 2022 /* 2023 * This code makes the following assumptions: 2024 * * All entries in gnttab set GNTCOPY_dest_gref 2025 * * The entries in gnttab are grouped by their grefs: any two 2026 * entries with the same gref must be adjacent 2027 */ 2028 int error = 0; 2029 int gnt_idx, i; 2030 int n_responses = 0; 2031 grant_ref_t last_gref = GRANT_REF_INVALID; 2032 RING_IDX r_idx; 2033 2034 KASSERT(gnttab != NULL, ("Received a null granttable copy")); 2035 2036 /* 2037 * In the event of an error, we only need to send one response to the 2038 * netfront. In that case, we musn't write any data to the responses 2039 * after the one we send. So we must loop all the way through gnttab 2040 * looking for errors before we generate any responses 2041 * 2042 * Since we're looping through the grant table anyway, we'll count the 2043 * number of different gref's in it, which will tell us how many 2044 * responses to generate 2045 */ 2046 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) { 2047 int16_t status = gnttab[gnt_idx].status; 2048 if (status != GNTST_okay) { 2049 DPRINTF( 2050 "Got error %d for hypervisor gnttab_copy status\n", 2051 status); 2052 error = 1; 2053 break; 2054 } 2055 if (gnttab[gnt_idx].dest.u.ref != last_gref) { 2056 n_responses++; 2057 last_gref = gnttab[gnt_idx].dest.u.ref; 2058 } 2059 } 2060 2061 if (error != 0) { 2062 uint16_t id; 2063 netif_rx_response_t *rsp; 2064 2065 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id; 2066 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt); 2067 rsp->id = id; 2068 rsp->status = NETIF_RSP_ERROR; 2069 n_responses = 1; 2070 } else { 2071 gnt_idx = 0; 2072 const int has_extra = pkt->flags & NETRXF_extra_info; 2073 if (has_extra != 0) 2074 n_responses++; 2075 2076 for (i = 0; i < n_responses; i++) { 2077 netif_rx_request_t rxq; 2078 netif_rx_response_t *rsp; 2079 2080 r_idx = ring->rsp_prod_pvt + i; 2081 /* 2082 * We copy the structure of rxq instead of making a 2083 * pointer because it shares the same memory as rsp. 2084 */ 2085 rxq = *(RING_GET_REQUEST(ring, r_idx)); 2086 rsp = RING_GET_RESPONSE(ring, r_idx); 2087 if (has_extra && (i == 1)) { 2088 netif_extra_info_t *ext = 2089 (netif_extra_info_t*)rsp; 2090 ext->type = XEN_NETIF_EXTRA_TYPE_GSO; 2091 ext->flags = 0; 2092 ext->u.gso.size = pkt->extra.u.gso.size; 2093 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4; 2094 ext->u.gso.pad = 0; 2095 ext->u.gso.features = 0; 2096 } else { 2097 rsp->id = rxq.id; 2098 rsp->status = GNTST_okay; 2099 rsp->offset = 0; 2100 rsp->flags = 0; 2101 if (i < pkt->list_len - 1) 2102 rsp->flags |= NETRXF_more_data; 2103 if ((i == 0) && has_extra) 2104 rsp->flags |= NETRXF_extra_info; 2105 if ((i == 0) && 2106 (pkt->flags & NETRXF_data_validated)) { 2107 rsp->flags |= NETRXF_data_validated; 2108 rsp->flags |= NETRXF_csum_blank; 2109 } 2110 rsp->status = 0; 2111 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref; 2112 gnt_idx++) { 2113 rsp->status += gnttab[gnt_idx].len; 2114 } 2115 } 2116 } 2117 } 2118 2119 ring->req_cons += n_responses; 2120 ring->rsp_prod_pvt += n_responses; 2121 return n_responses; 2122 } 2123 2124 /** 2125 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf 2126 * in the chain must start with a struct ether_header. 2127 * 2128 * XXX This function will perform incorrectly on UDP packets that are split up 2129 * into multiple ethernet frames. 2130 */ 2131 static void 2132 xnb_add_mbuf_cksum(struct mbuf *mbufc) 2133 { 2134 struct ether_header *eh; 2135 struct ip *iph; 2136 uint16_t ether_type; 2137 2138 eh = mtod(mbufc, struct ether_header*); 2139 ether_type = ntohs(eh->ether_type); 2140 if (ether_type != ETHERTYPE_IP) { 2141 /* Nothing to calculate */ 2142 return; 2143 } 2144 2145 iph = (struct ip*)(eh + 1); 2146 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2147 iph->ip_sum = 0; 2148 iph->ip_sum = in_cksum_hdr(iph); 2149 } 2150 2151 switch (iph->ip_p) { 2152 case IPPROTO_TCP: 2153 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2154 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip); 2155 struct tcphdr *th = (struct tcphdr*)(iph + 1); 2156 th->th_sum = in_pseudo(iph->ip_src.s_addr, 2157 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen)); 2158 th->th_sum = in_cksum_skip(mbufc, 2159 sizeof(struct ether_header) + ntohs(iph->ip_len), 2160 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2161 } 2162 break; 2163 case IPPROTO_UDP: 2164 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) { 2165 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip); 2166 struct udphdr *uh = (struct udphdr*)(iph + 1); 2167 uh->uh_sum = in_pseudo(iph->ip_src.s_addr, 2168 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen)); 2169 uh->uh_sum = in_cksum_skip(mbufc, 2170 sizeof(struct ether_header) + ntohs(iph->ip_len), 2171 sizeof(struct ether_header) + (iph->ip_hl << 2)); 2172 } 2173 break; 2174 default: 2175 break; 2176 } 2177 } 2178 2179 static void 2180 xnb_stop(struct xnb_softc *xnb) 2181 { 2182 struct ifnet *ifp; 2183 2184 mtx_assert(&xnb->sc_lock, MA_OWNED); 2185 ifp = xnb->xnb_ifp; 2186 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2187 if_link_state_change(ifp, LINK_STATE_DOWN); 2188 } 2189 2190 static int 2191 xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2192 { 2193 struct xnb_softc *xnb = ifp->if_softc; 2194 #ifdef INET 2195 struct ifreq *ifr = (struct ifreq*) data; 2196 struct ifaddr *ifa = (struct ifaddr*)data; 2197 #endif 2198 int error = 0; 2199 2200 switch (cmd) { 2201 case SIOCSIFFLAGS: 2202 mtx_lock(&xnb->sc_lock); 2203 if (ifp->if_flags & IFF_UP) { 2204 xnb_ifinit_locked(xnb); 2205 } else { 2206 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2207 xnb_stop(xnb); 2208 } 2209 } 2210 /* 2211 * Note: netfront sets a variable named xn_if_flags 2212 * here, but that variable is never read 2213 */ 2214 mtx_unlock(&xnb->sc_lock); 2215 break; 2216 case SIOCSIFADDR: 2217 case SIOCGIFADDR: 2218 #ifdef INET 2219 mtx_lock(&xnb->sc_lock); 2220 if (ifa->ifa_addr->sa_family == AF_INET) { 2221 ifp->if_flags |= IFF_UP; 2222 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2223 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | 2224 IFF_DRV_OACTIVE); 2225 if_link_state_change(ifp, 2226 LINK_STATE_DOWN); 2227 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2228 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2229 if_link_state_change(ifp, 2230 LINK_STATE_UP); 2231 } 2232 arp_ifinit(ifp, ifa); 2233 mtx_unlock(&xnb->sc_lock); 2234 } else { 2235 mtx_unlock(&xnb->sc_lock); 2236 #endif 2237 error = ether_ioctl(ifp, cmd, data); 2238 #ifdef INET 2239 } 2240 #endif 2241 break; 2242 case SIOCSIFCAP: 2243 mtx_lock(&xnb->sc_lock); 2244 if (ifr->ifr_reqcap & IFCAP_TXCSUM) { 2245 ifp->if_capenable |= IFCAP_TXCSUM; 2246 ifp->if_hwassist |= XNB_CSUM_FEATURES; 2247 } else { 2248 ifp->if_capenable &= ~(IFCAP_TXCSUM); 2249 ifp->if_hwassist &= ~(XNB_CSUM_FEATURES); 2250 } 2251 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) { 2252 ifp->if_capenable |= IFCAP_RXCSUM; 2253 } else { 2254 ifp->if_capenable &= ~(IFCAP_RXCSUM); 2255 } 2256 /* 2257 * TODO enable TSO4 and LRO once we no longer need 2258 * to calculate checksums in software 2259 */ 2260 #if 0 2261 if (ifr->if_reqcap |= IFCAP_TSO4) { 2262 if (IFCAP_TXCSUM & ifp->if_capenable) { 2263 printf("xnb: Xen netif requires that " 2264 "TXCSUM be enabled in order " 2265 "to use TSO4\n"); 2266 error = EINVAL; 2267 } else { 2268 ifp->if_capenable |= IFCAP_TSO4; 2269 ifp->if_hwassist |= CSUM_TSO; 2270 } 2271 } else { 2272 ifp->if_capenable &= ~(IFCAP_TSO4); 2273 ifp->if_hwassist &= ~(CSUM_TSO); 2274 } 2275 if (ifr->ifreqcap |= IFCAP_LRO) { 2276 ifp->if_capenable |= IFCAP_LRO; 2277 } else { 2278 ifp->if_capenable &= ~(IFCAP_LRO); 2279 } 2280 #endif 2281 mtx_unlock(&xnb->sc_lock); 2282 break; 2283 case SIOCSIFMTU: 2284 ifp->if_mtu = ifr->ifr_mtu; 2285 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2286 xnb_ifinit(xnb); 2287 break; 2288 case SIOCADDMULTI: 2289 case SIOCDELMULTI: 2290 case SIOCSIFMEDIA: 2291 case SIOCGIFMEDIA: 2292 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd); 2293 break; 2294 default: 2295 error = ether_ioctl(ifp, cmd, data); 2296 break; 2297 } 2298 return (error); 2299 } 2300 2301 static void 2302 xnb_start_locked(struct ifnet *ifp) 2303 { 2304 netif_rx_back_ring_t *rxb; 2305 struct xnb_softc *xnb; 2306 struct mbuf *mbufc; 2307 RING_IDX req_prod_local; 2308 2309 xnb = ifp->if_softc; 2310 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring; 2311 2312 if (!xnb->carrier) 2313 return; 2314 2315 do { 2316 int out_of_space = 0; 2317 int notify; 2318 req_prod_local = rxb->sring->req_prod; 2319 xen_rmb(); 2320 for (;;) { 2321 int error; 2322 2323 IF_DEQUEUE(&ifp->if_snd, mbufc); 2324 if (mbufc == NULL) 2325 break; 2326 error = xnb_send(rxb, xnb->otherend_id, mbufc, 2327 xnb->rx_gnttab); 2328 switch (error) { 2329 case EAGAIN: 2330 /* 2331 * Insufficient space in the ring. 2332 * Requeue pkt and send when space is 2333 * available. 2334 */ 2335 IF_PREPEND(&ifp->if_snd, mbufc); 2336 /* 2337 * Perhaps the frontend missed an IRQ 2338 * and went to sleep. Notify it to wake 2339 * it up. 2340 */ 2341 out_of_space = 1; 2342 break; 2343 2344 case EINVAL: 2345 /* OS gave a corrupt packet. Drop it.*/ 2346 ifp->if_oerrors++; 2347 /* FALLTHROUGH */ 2348 default: 2349 /* Send succeeded, or packet had error. 2350 * Free the packet */ 2351 ifp->if_opackets++; 2352 if (mbufc) 2353 m_freem(mbufc); 2354 break; 2355 } 2356 if (out_of_space != 0) 2357 break; 2358 } 2359 2360 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify); 2361 if ((notify != 0) || (out_of_space != 0)) 2362 xen_intr_signal(xnb->xen_intr_handle); 2363 rxb->sring->req_event = req_prod_local + 1; 2364 xen_mb(); 2365 } while (rxb->sring->req_prod != req_prod_local) ; 2366 } 2367 2368 /** 2369 * Sends one packet to the ring. Blocks until the packet is on the ring 2370 * \param[in] mbufc Contains one packet to send. Caller must free 2371 * \param[in,out] rxb The packet will be pushed onto this ring, but the 2372 * otherend will not be notified. 2373 * \param[in] otherend The domain ID of the other end of the connection 2374 * \retval EAGAIN The ring did not have enough space for the packet. 2375 * The ring has not been modified 2376 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make 2377 * this a function parameter so that we will take less 2378 * stack space. 2379 * \retval EINVAL mbufc was corrupt or not convertible into a pkt 2380 */ 2381 static int 2382 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc, 2383 gnttab_copy_table gnttab) 2384 { 2385 struct xnb_pkt pkt; 2386 int error, n_entries, n_reqs; 2387 RING_IDX space; 2388 2389 space = ring->sring->req_prod - ring->req_cons; 2390 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space); 2391 if (error != 0) 2392 return error; 2393 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend); 2394 if (n_entries != 0) { 2395 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy, 2396 gnttab, n_entries); 2397 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n", 2398 hv_ret)); 2399 } 2400 2401 n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring); 2402 2403 return 0; 2404 } 2405 2406 static void 2407 xnb_start(struct ifnet *ifp) 2408 { 2409 struct xnb_softc *xnb; 2410 2411 xnb = ifp->if_softc; 2412 mtx_lock(&xnb->rx_lock); 2413 xnb_start_locked(ifp); 2414 mtx_unlock(&xnb->rx_lock); 2415 } 2416 2417 /* equivalent of network_open() in Linux */ 2418 static void 2419 xnb_ifinit_locked(struct xnb_softc *xnb) 2420 { 2421 struct ifnet *ifp; 2422 2423 ifp = xnb->xnb_ifp; 2424 2425 mtx_assert(&xnb->sc_lock, MA_OWNED); 2426 2427 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2428 return; 2429 2430 xnb_stop(xnb); 2431 2432 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2433 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2434 if_link_state_change(ifp, LINK_STATE_UP); 2435 } 2436 2437 2438 static void 2439 xnb_ifinit(void *xsc) 2440 { 2441 struct xnb_softc *xnb = xsc; 2442 2443 mtx_lock(&xnb->sc_lock); 2444 xnb_ifinit_locked(xnb); 2445 mtx_unlock(&xnb->sc_lock); 2446 } 2447 2448 2449 /** 2450 * Read the 'mac' node at the given device's node in the store, and parse that 2451 * as colon-separated octets, placing result the given mac array. mac must be 2452 * a preallocated array of length ETHER_ADDR_LEN ETH_ALEN (as declared in 2453 * net/ethernet.h). 2454 * Return 0 on success, or errno on error. 2455 */ 2456 static int 2457 xen_net_read_mac(device_t dev, uint8_t mac[]) 2458 { 2459 char *s, *e, *macstr; 2460 const char *path; 2461 int error = 0; 2462 int i; 2463 2464 path = xenbus_get_node(dev); 2465 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr); 2466 if (error != 0) { 2467 xenbus_dev_fatal(dev, error, "parsing %s/mac", path); 2468 } else { 2469 s = macstr; 2470 for (i = 0; i < ETHER_ADDR_LEN; i++) { 2471 mac[i] = strtoul(s, &e, 16); 2472 if (s == e || (e[0] != ':' && e[0] != 0)) { 2473 error = ENOENT; 2474 break; 2475 } 2476 s = &e[1]; 2477 } 2478 free(macstr, M_XENBUS); 2479 } 2480 return error; 2481 } 2482 2483 2484 /** 2485 * Callback used by the generic networking code to tell us when our carrier 2486 * state has changed. Since we don't have a physical carrier, we don't care 2487 */ 2488 static int 2489 xnb_ifmedia_upd(struct ifnet *ifp) 2490 { 2491 return (0); 2492 } 2493 2494 /** 2495 * Callback used by the generic networking code to ask us what our carrier 2496 * state is. Since we don't have a physical carrier, this is very simple 2497 */ 2498 static void 2499 xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2500 { 2501 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; 2502 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; 2503 } 2504 2505 2506 /*---------------------------- NewBus Registration ---------------------------*/ 2507 static device_method_t xnb_methods[] = { 2508 /* Device interface */ 2509 DEVMETHOD(device_probe, xnb_probe), 2510 DEVMETHOD(device_attach, xnb_attach), 2511 DEVMETHOD(device_detach, xnb_detach), 2512 DEVMETHOD(device_shutdown, bus_generic_shutdown), 2513 DEVMETHOD(device_suspend, xnb_suspend), 2514 DEVMETHOD(device_resume, xnb_resume), 2515 2516 /* Xenbus interface */ 2517 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed), 2518 2519 { 0, 0 } 2520 }; 2521 2522 static driver_t xnb_driver = { 2523 "xnb", 2524 xnb_methods, 2525 sizeof(struct xnb_softc), 2526 }; 2527 devclass_t xnb_devclass; 2528 2529 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0); 2530 2531 2532 /*-------------------------- Unit Tests -------------------------------------*/ 2533 #ifdef XNB_DEBUG 2534 #include "netback_unit_tests.c" 2535 #endif 2536