xref: /freebsd/sys/dev/xen/netback/netback.c (revision 035dd78d30ba28a3dc15c05ec85ad10127165677)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2011 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Alan Somers         (Spectra Logic Corporation)
34  *          John Suykerbuyk     (Spectra Logic Corporation)
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 /**
41  * \file netback.c
42  *
43  * \brief Device driver supporting the vending of network access
44  * 	  from this FreeBSD domain to other domains.
45  */
46 #include "opt_inet.h"
47 #include "opt_inet6.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 
52 #include <sys/bus.h>
53 #include <sys/module.h>
54 #include <sys/rman.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_arp.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/ip.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/tcp.h>
71 #include <netinet/ip_icmp.h>
72 #include <netinet/udp.h>
73 #include <machine/in_cksum.h>
74 
75 #include <vm/vm.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_kern.h>
79 
80 #include <machine/_inttypes.h>
81 
82 #include <xen/xen-os.h>
83 #include <xen/hypervisor.h>
84 #include <xen/xen_intr.h>
85 #include <contrib/xen/io/netif.h>
86 #include <xen/xenbus/xenbusvar.h>
87 
88 /*--------------------------- Compile-time Tunables --------------------------*/
89 
90 /*---------------------------------- Macros ----------------------------------*/
91 /**
92  * Custom malloc type for all driver allocations.
93  */
94 static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
95 
96 #define	XNB_SG	1	/* netback driver supports feature-sg */
97 #define	XNB_GSO_TCPV4 0	/* netback driver supports feature-gso-tcpv4 */
98 #define	XNB_RX_COPY 1	/* netback driver supports feature-rx-copy */
99 #define	XNB_RX_FLIP 0	/* netback driver does not support feature-rx-flip */
100 
101 #undef XNB_DEBUG
102 #define	XNB_DEBUG /* hardcode on during development */
103 
104 #ifdef XNB_DEBUG
105 #define	DPRINTF(fmt, args...) \
106 	printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
107 #else
108 #define	DPRINTF(fmt, args...) do {} while (0)
109 #endif
110 
111 /* Default length for stack-allocated grant tables */
112 #define	GNTTAB_LEN	(64)
113 
114 /* Features supported by all backends.  TSO and LRO can be negotiated */
115 #define	XNB_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
116 
117 #define	NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
118 #define	NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
119 
120 /**
121  * Two argument version of the standard macro.  Second argument is a tentative
122  * value of req_cons
123  */
124 #define	RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({                     \
125 	unsigned int req = (_r)->sring->req_prod - cons;          	\
126 	unsigned int rsp = RING_SIZE(_r) -                              \
127 	(cons - (_r)->rsp_prod_pvt);                          		\
128 	req < rsp ? req : rsp;                                          \
129 })
130 
131 #define	virt_to_mfn(x) (vtophys(x) >> PAGE_SHIFT)
132 #define	virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
133 
134 /**
135  * Predefined array type of grant table copy descriptors.  Used to pass around
136  * statically allocated memory structures.
137  */
138 typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
139 
140 /*--------------------------- Forward Declarations ---------------------------*/
141 struct xnb_softc;
142 struct xnb_pkt;
143 
144 static void	xnb_attach_failed(struct xnb_softc *xnb,
145 				  int err, const char *fmt, ...)
146 				  __printflike(3,4);
147 static int	xnb_shutdown(struct xnb_softc *xnb);
148 static int	create_netdev(device_t dev);
149 static int	xnb_detach(device_t dev);
150 static int	xnb_ifmedia_upd(if_t ifp);
151 static void	xnb_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr);
152 static void 	xnb_intr(void *arg);
153 static int	xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
154 			 const struct mbuf *mbufc, gnttab_copy_table gnttab);
155 static int	xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
156 			 struct mbuf **mbufc, if_t ifnet,
157 			 gnttab_copy_table gnttab);
158 static int	xnb_ring2pkt(struct xnb_pkt *pkt,
159 			     const netif_tx_back_ring_t *tx_ring,
160 			     RING_IDX start);
161 static void	xnb_txpkt2rsp(const struct xnb_pkt *pkt,
162 			      netif_tx_back_ring_t *ring, int error);
163 static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, if_t ifp);
164 static int	xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
165 				 struct mbuf *mbufc,
166 				 gnttab_copy_table gnttab,
167 				 const netif_tx_back_ring_t *txb,
168 				 domid_t otherend_id);
169 static void	xnb_update_mbufc(struct mbuf *mbufc,
170 				 const gnttab_copy_table gnttab, int n_entries);
171 static int	xnb_mbufc2pkt(const struct mbuf *mbufc,
172 			      struct xnb_pkt *pkt,
173 			      RING_IDX start, int space);
174 static int	xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
175 				 const struct mbuf *mbufc,
176 				 gnttab_copy_table gnttab,
177 				 const netif_rx_back_ring_t *rxb,
178 				 domid_t otherend_id);
179 static int	xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
180 			      const gnttab_copy_table gnttab, int n_entries,
181 			      netif_rx_back_ring_t *ring);
182 static void	xnb_stop(struct xnb_softc*);
183 static int	xnb_ioctl(if_t, u_long, caddr_t);
184 static void	xnb_start_locked(if_t);
185 static void	xnb_start(if_t);
186 static void	xnb_ifinit_locked(struct xnb_softc*);
187 static void	xnb_ifinit(void*);
188 #ifdef XNB_DEBUG
189 static int	xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
190 static int	xnb_dump_rings(SYSCTL_HANDLER_ARGS);
191 #endif
192 #if defined(INET) || defined(INET6)
193 static void	xnb_add_mbuf_cksum(struct mbuf *mbufc);
194 #endif
195 /*------------------------------ Data Structures -----------------------------*/
196 
197 /**
198  * Representation of a xennet packet.  Simplified version of a packet as
199  * stored in the Xen tx ring.  Applicable to both RX and TX packets
200  */
201 struct xnb_pkt{
202 	/**
203 	 * Array index of the first data-bearing (eg, not extra info) entry
204 	 * for this packet
205 	 */
206 	RING_IDX	car;
207 
208 	/**
209 	 * Array index of the second data-bearing entry for this packet.
210 	 * Invalid if the packet has only one data-bearing entry.  If the
211 	 * packet has more than two data-bearing entries, then the second
212 	 * through the last will be sequential modulo the ring size
213 	 */
214 	RING_IDX	cdr;
215 
216 	/**
217 	 * Optional extra info.  Only valid if flags contains
218 	 * NETTXF_extra_info.  Note that extra.type will always be
219 	 * XEN_NETIF_EXTRA_TYPE_GSO.  Currently, no known netfront or netback
220 	 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
221 	 */
222 	netif_extra_info_t extra;
223 
224 	/** Size of entire packet in bytes.       */
225 	uint16_t	size;
226 
227 	/** The size of the first entry's data in bytes */
228 	uint16_t	car_size;
229 
230 	/**
231 	 * Either NETTXF_ or NETRXF_ flags.  Note that the flag values are
232 	 * not the same for TX and RX packets
233 	 */
234 	uint16_t	flags;
235 
236 	/**
237 	 * The number of valid data-bearing entries (either netif_tx_request's
238 	 * or netif_rx_response's) in the packet.  If this is 0, it means the
239 	 * entire packet is invalid.
240 	 */
241 	uint16_t	list_len;
242 
243 	/** There was an error processing the packet */
244 	uint8_t		error;
245 };
246 
247 /** xnb_pkt method: initialize it */
248 static inline void
249 xnb_pkt_initialize(struct xnb_pkt *pxnb)
250 {
251 	bzero(pxnb, sizeof(*pxnb));
252 }
253 
254 /** xnb_pkt method: mark the packet as valid */
255 static inline void
256 xnb_pkt_validate(struct xnb_pkt *pxnb)
257 {
258 	pxnb->error = 0;
259 };
260 
261 /** xnb_pkt method: mark the packet as invalid */
262 static inline void
263 xnb_pkt_invalidate(struct xnb_pkt *pxnb)
264 {
265 	pxnb->error = 1;
266 };
267 
268 /** xnb_pkt method: Check whether the packet is valid */
269 static inline int
270 xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
271 {
272 	return (! pxnb->error);
273 }
274 
275 #ifdef XNB_DEBUG
276 /** xnb_pkt method: print the packet's contents in human-readable format*/
277 static void __unused
278 xnb_dump_pkt(const struct xnb_pkt *pkt) {
279 	if (pkt == NULL) {
280 	  DPRINTF("Was passed a null pointer.\n");
281 	  return;
282 	}
283 	DPRINTF("pkt address= %p\n", pkt);
284 	DPRINTF("pkt->size=%d\n", pkt->size);
285 	DPRINTF("pkt->car_size=%d\n", pkt->car_size);
286 	DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
287 	DPRINTF("pkt->list_len=%d\n", pkt->list_len);
288 	/* DPRINTF("pkt->extra");	TODO */
289 	DPRINTF("pkt->car=%d\n", pkt->car);
290 	DPRINTF("pkt->cdr=%d\n", pkt->cdr);
291 	DPRINTF("pkt->error=%d\n", pkt->error);
292 }
293 #endif /* XNB_DEBUG */
294 
295 static void
296 xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
297 {
298 	if (txreq != NULL) {
299 		DPRINTF("netif_tx_request index =%u\n", idx);
300 		DPRINTF("netif_tx_request.gref  =%u\n", txreq->gref);
301 		DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
302 		DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
303 		DPRINTF("netif_tx_request.id    =%hu\n", txreq->id);
304 		DPRINTF("netif_tx_request.size  =%hu\n", txreq->size);
305 	}
306 }
307 
308 /**
309  * \brief Configuration data for a shared memory request ring
310  *        used to communicate with the front-end client of this
311  *        this driver.
312  */
313 struct xnb_ring_config {
314 	/**
315 	 * Runtime structures for ring access.  Unfortunately, TX and RX rings
316 	 * use different data structures, and that cannot be changed since it
317 	 * is part of the interdomain protocol.
318 	 */
319 	union{
320 		netif_rx_back_ring_t	  rx_ring;
321 		netif_tx_back_ring_t	  tx_ring;
322 	} back_ring;
323 
324 	/**
325 	 * The device bus address returned by the hypervisor when
326 	 * mapping the ring and required to unmap it when a connection
327 	 * is torn down.
328 	 */
329 	uint64_t	bus_addr;
330 
331 	/** The pseudo-physical address where ring memory is mapped.*/
332 	uint64_t	gnt_addr;
333 
334 	/** KVA address where ring memory is mapped. */
335 	vm_offset_t	va;
336 
337 	/**
338 	 * Grant table handles, one per-ring page, returned by the
339 	 * hyperpervisor upon mapping of the ring and required to
340 	 * unmap it when a connection is torn down.
341 	 */
342 	grant_handle_t	handle;
343 
344 	/** The number of ring pages mapped for the current connection. */
345 	unsigned	ring_pages;
346 
347 	/**
348 	 * The grant references, one per-ring page, supplied by the
349 	 * front-end, allowing us to reference the ring pages in the
350 	 * front-end's domain and to map these pages into our own domain.
351 	 */
352 	grant_ref_t	ring_ref;
353 };
354 
355 /**
356  * Per-instance connection state flags.
357  */
358 typedef enum
359 {
360 	/** Communication with the front-end has been established. */
361 	XNBF_RING_CONNECTED    = 0x01,
362 
363 	/**
364 	 * Front-end requests exist in the ring and are waiting for
365 	 * xnb_xen_req objects to free up.
366 	 */
367 	XNBF_RESOURCE_SHORTAGE = 0x02,
368 
369 	/** Connection teardown has started. */
370 	XNBF_SHUTDOWN          = 0x04,
371 
372 	/** A thread is already performing shutdown processing. */
373 	XNBF_IN_SHUTDOWN       = 0x08
374 } xnb_flag_t;
375 
376 /**
377  * Types of rings.  Used for array indices and to identify a ring's control
378  * data structure type
379  */
380 typedef enum{
381 	XNB_RING_TYPE_TX = 0,	/* ID of TX rings, used for array indices */
382 	XNB_RING_TYPE_RX = 1,	/* ID of RX rings, used for array indices */
383 	XNB_NUM_RING_TYPES
384 } xnb_ring_type_t;
385 
386 /**
387  * Per-instance configuration data.
388  */
389 struct xnb_softc {
390 	/** NewBus device corresponding to this instance. */
391 	device_t		dev;
392 
393 	/* Media related fields */
394 
395 	/** Generic network media state */
396 	struct ifmedia		sc_media;
397 
398 	/** Media carrier info */
399 	if_t			xnb_ifp;
400 
401 	/** Our own private carrier state */
402 	unsigned carrier;
403 
404 	/** Device MAC Address */
405 	uint8_t			mac[ETHER_ADDR_LEN];
406 
407 	/* Xen related fields */
408 
409 	/**
410 	 * \brief The netif protocol abi in effect.
411 	 *
412 	 * There are situations where the back and front ends can
413 	 * have a different, native abi (e.g. intel x86_64 and
414 	 * 32bit x86 domains on the same machine).  The back-end
415 	 * always accommodates the front-end's native abi.  That
416 	 * value is pulled from the XenStore and recorded here.
417 	 */
418 	int			abi;
419 
420 	/**
421 	 * Name of the bridge to which this VIF is connected, if any
422 	 * This field is dynamically allocated by xenbus and must be free()ed
423 	 * when no longer needed
424 	 */
425 	char			*bridge;
426 
427 	/** The interrupt driven even channel used to signal ring events. */
428 	evtchn_port_t		evtchn;
429 
430 	/** Xen device handle.*/
431 	long 			handle;
432 
433 	/** Handle to the communication ring event channel. */
434 	xen_intr_handle_t	xen_intr_handle;
435 
436 	/**
437 	 * \brief Cached value of the front-end's domain id.
438 	 *
439 	 * This value is used at once for each mapped page in
440 	 * a transaction.  We cache it to avoid incuring the
441 	 * cost of an ivar access every time this is needed.
442 	 */
443 	domid_t			otherend_id;
444 
445 	/**
446 	 * Undocumented frontend feature.  Has something to do with
447 	 * scatter/gather IO
448 	 */
449 	uint8_t			can_sg;
450 	/** Undocumented frontend feature */
451 	uint8_t			gso;
452 	/** Undocumented frontend feature */
453 	uint8_t			gso_prefix;
454 	/** Can checksum TCP/UDP over IPv4 */
455 	uint8_t			ip_csum;
456 
457 	/* Implementation related fields */
458 	/**
459 	 * Preallocated grant table copy descriptor for RX operations.
460 	 * Access must be protected by rx_lock
461 	 */
462 	gnttab_copy_table	rx_gnttab;
463 
464 	/**
465 	 * Preallocated grant table copy descriptor for TX operations.
466 	 * Access must be protected by tx_lock
467 	 */
468 	gnttab_copy_table	tx_gnttab;
469 
470 	/**
471 	 * Resource representing allocated physical address space
472 	 * associated with our per-instance kva region.
473 	 */
474 	struct resource		*pseudo_phys_res;
475 
476 	/** Resource id for allocated physical address space. */
477 	int			pseudo_phys_res_id;
478 
479 	/** Ring mapping and interrupt configuration data. */
480 	struct xnb_ring_config	ring_configs[XNB_NUM_RING_TYPES];
481 
482 	/**
483 	 * Global pool of kva used for mapping remote domain ring
484 	 * and I/O transaction data.
485 	 */
486 	vm_offset_t		kva;
487 
488 	/** Pseudo-physical address corresponding to kva. */
489 	uint64_t		gnt_base_addr;
490 
491 	/** Various configuration and state bit flags. */
492 	xnb_flag_t		flags;
493 
494 	/** Mutex protecting per-instance data in the receive path. */
495 	struct mtx		rx_lock;
496 
497 	/** Mutex protecting per-instance data in the softc structure. */
498 	struct mtx		sc_lock;
499 
500 	/** Mutex protecting per-instance data in the transmit path. */
501 	struct mtx		tx_lock;
502 
503 	/** The size of the global kva pool. */
504 	int			kva_size;
505 
506 	/** Name of the interface */
507 	char			 if_name[IFNAMSIZ];
508 };
509 
510 /*---------------------------- Debugging functions ---------------------------*/
511 #ifdef XNB_DEBUG
512 static void __unused
513 xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
514 {
515 	if (entry == NULL) {
516 		printf("NULL grant table pointer\n");
517 		return;
518 	}
519 
520 	if (entry->flags & GNTCOPY_dest_gref)
521 		printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
522 	else
523 		printf("gnttab dest gmfn=\t%"PRI_xen_pfn"\n",
524 		       entry->dest.u.gmfn);
525 	printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
526 	printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
527 	if (entry->flags & GNTCOPY_source_gref)
528 		printf("gnttab source ref=\t%u\n", entry->source.u.ref);
529 	else
530 		printf("gnttab source gmfn=\t%"PRI_xen_pfn"\n",
531 		       entry->source.u.gmfn);
532 	printf("gnttab source offset=\t%hu\n", entry->source.offset);
533 	printf("gnttab source domid=\t%hu\n", entry->source.domid);
534 	printf("gnttab len=\t%hu\n", entry->len);
535 	printf("gnttab flags=\t%hu\n", entry->flags);
536 	printf("gnttab status=\t%hd\n", entry->status);
537 }
538 
539 static int
540 xnb_dump_rings(SYSCTL_HANDLER_ARGS)
541 {
542 	static char results[720];
543 	struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
544 	netif_rx_back_ring_t const* rxb =
545 		&xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
546 	netif_tx_back_ring_t const* txb =
547 		&xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
548 
549 	/* empty the result strings */
550 	results[0] = 0;
551 
552 	if ( !txb || !txb->sring || !rxb || !rxb->sring )
553 		return (SYSCTL_OUT(req, results, strnlen(results, 720)));
554 
555 	snprintf(results, 720,
556 	    "\n\t%35s %18s\n"	/* TX, RX */
557 	    "\t%16s %18d %18d\n"	/* req_cons */
558 	    "\t%16s %18d %18d\n"	/* nr_ents */
559 	    "\t%16s %18d %18d\n"	/* rsp_prod_pvt */
560 	    "\t%16s %18p %18p\n"	/* sring */
561 	    "\t%16s %18d %18d\n"	/* req_prod */
562 	    "\t%16s %18d %18d\n"	/* req_event */
563 	    "\t%16s %18d %18d\n"	/* rsp_prod */
564 	    "\t%16s %18d %18d\n",	/* rsp_event */
565 	    "TX", "RX",
566 	    "req_cons", txb->req_cons, rxb->req_cons,
567 	    "nr_ents", txb->nr_ents, rxb->nr_ents,
568 	    "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
569 	    "sring", txb->sring, rxb->sring,
570 	    "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
571 	    "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
572 	    "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
573 	    "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
574 
575 	return (SYSCTL_OUT(req, results, strnlen(results, 720)));
576 }
577 
578 static void __unused
579 xnb_dump_mbuf(const struct mbuf *m)
580 {
581 	int len;
582 	uint8_t *d;
583 	if (m == NULL)
584 		return;
585 
586 	printf("xnb_dump_mbuf:\n");
587 	if (m->m_flags & M_PKTHDR) {
588 		printf("    flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
589 		       "tso_segsz=%5hd\n",
590 		       m->m_pkthdr.flowid, (int)m->m_pkthdr.csum_flags,
591 		       m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
592 		printf("    rcvif=%16p,  len=%19d\n",
593 		       m->m_pkthdr.rcvif, m->m_pkthdr.len);
594 	}
595 	printf("    m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
596 	       m->m_next, m->m_nextpkt, m->m_data);
597 	printf("    m_len=%17d, m_flags=%#15x, m_type=%18u\n",
598 	       m->m_len, m->m_flags, m->m_type);
599 
600 	len = m->m_len;
601 	d = mtod(m, uint8_t*);
602 	while (len > 0) {
603 		int i;
604 		printf("                ");
605 		for (i = 0; (i < 16) && (len > 0); i++, len--) {
606 			printf("%02hhx ", *(d++));
607 		}
608 		printf("\n");
609 	}
610 }
611 #endif /* XNB_DEBUG */
612 
613 /*------------------------ Inter-Domain Communication ------------------------*/
614 /**
615  * Free dynamically allocated KVA or pseudo-physical address allocations.
616  *
617  * \param xnb  Per-instance xnb configuration structure.
618  */
619 static void
620 xnb_free_communication_mem(struct xnb_softc *xnb)
621 {
622 	if (xnb->kva != 0) {
623 		if (xnb->pseudo_phys_res != NULL) {
624 			xenmem_free(xnb->dev, xnb->pseudo_phys_res_id,
625 			    xnb->pseudo_phys_res);
626 			xnb->pseudo_phys_res = NULL;
627 		}
628 	}
629 	xnb->kva = 0;
630 	xnb->gnt_base_addr = 0;
631 }
632 
633 /**
634  * Cleanup all inter-domain communication mechanisms.
635  *
636  * \param xnb  Per-instance xnb configuration structure.
637  */
638 static int
639 xnb_disconnect(struct xnb_softc *xnb)
640 {
641 	struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
642 	int error __diagused;
643 	int i;
644 
645 	if (xnb->xen_intr_handle != NULL)
646 		xen_intr_unbind(&xnb->xen_intr_handle);
647 
648 	/*
649 	 * We may still have another thread currently processing requests.  We
650 	 * must acquire the rx and tx locks to make sure those threads are done,
651 	 * but we can release those locks as soon as we acquire them, because no
652 	 * more interrupts will be arriving.
653 	 */
654 	mtx_lock(&xnb->tx_lock);
655 	mtx_unlock(&xnb->tx_lock);
656 	mtx_lock(&xnb->rx_lock);
657 	mtx_unlock(&xnb->rx_lock);
658 
659 	mtx_lock(&xnb->sc_lock);
660 	/* Free malloc'd softc member variables */
661 	if (xnb->bridge != NULL) {
662 		free(xnb->bridge, M_XENSTORE);
663 		xnb->bridge = NULL;
664 	}
665 
666 	/* All request processing has stopped, so unmap the rings */
667 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
668 		gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
669 		gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
670 		gnts[i].handle = xnb->ring_configs[i].handle;
671 	}
672 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
673 					  XNB_NUM_RING_TYPES);
674 	KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
675 
676 	xnb_free_communication_mem(xnb);
677 	/*
678 	 * Zero the ring config structs because the pointers, handles, and
679 	 * grant refs contained therein are no longer valid.
680 	 */
681 	bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
682 	    sizeof(struct xnb_ring_config));
683 	bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
684 	    sizeof(struct xnb_ring_config));
685 
686 	xnb->flags &= ~XNBF_RING_CONNECTED;
687 	mtx_unlock(&xnb->sc_lock);
688 
689 	return (0);
690 }
691 
692 /**
693  * Map a single shared memory ring into domain local address space and
694  * initialize its control structure
695  *
696  * \param xnb	Per-instance xnb configuration structure
697  * \param ring_type	Array index of this ring in the xnb's array of rings
698  * \return 	An errno
699  */
700 static int
701 xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
702 {
703 	struct gnttab_map_grant_ref gnt;
704 	struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
705 	int error;
706 
707 	/* TX ring type = 0, RX =1 */
708 	ring->va = xnb->kva + ring_type * PAGE_SIZE;
709 	ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
710 
711 	gnt.host_addr = ring->gnt_addr;
712 	gnt.flags     = GNTMAP_host_map;
713 	gnt.ref       = ring->ring_ref;
714 	gnt.dom       = xnb->otherend_id;
715 
716 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
717 	if (error != 0)
718 		panic("netback: Ring page grant table op failed (%d)", error);
719 
720 	if (gnt.status != 0) {
721 		ring->va = 0;
722 		error = EACCES;
723 		xenbus_dev_fatal(xnb->dev, error,
724 				 "Ring shared page mapping failed. "
725 				 "Status %d.", gnt.status);
726 	} else {
727 		ring->handle = gnt.handle;
728 		ring->bus_addr = gnt.dev_bus_addr;
729 
730 		if (ring_type == XNB_RING_TYPE_TX) {
731 			BACK_RING_INIT(&ring->back_ring.tx_ring,
732 			    (netif_tx_sring_t*)ring->va,
733 			    ring->ring_pages * PAGE_SIZE);
734 		} else if (ring_type == XNB_RING_TYPE_RX) {
735 			BACK_RING_INIT(&ring->back_ring.rx_ring,
736 			    (netif_rx_sring_t*)ring->va,
737 			    ring->ring_pages * PAGE_SIZE);
738 		} else {
739 			xenbus_dev_fatal(xnb->dev, error,
740 				 "Unknown ring type %d", ring_type);
741 		}
742 	}
743 
744 	return error;
745 }
746 
747 /**
748  * Setup the shared memory rings and bind an interrupt to the event channel
749  * used to notify us of ring changes.
750  *
751  * \param xnb  Per-instance xnb configuration structure.
752  */
753 static int
754 xnb_connect_comms(struct xnb_softc *xnb)
755 {
756 	int	error;
757 	xnb_ring_type_t i;
758 
759 	if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
760 		return (0);
761 
762 	/*
763 	 * Kva for our rings are at the tail of the region of kva allocated
764 	 * by xnb_alloc_communication_mem().
765 	 */
766 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
767 		error = xnb_connect_ring(xnb, i);
768 		if (error != 0)
769 	  		return error;
770 	}
771 
772 	xnb->flags |= XNBF_RING_CONNECTED;
773 
774 	error = xen_intr_bind_remote_port(xnb->dev,
775 					  xnb->otherend_id,
776 					  xnb->evtchn,
777 					  /*filter*/NULL,
778 					  xnb_intr, /*arg*/xnb,
779 					  INTR_TYPE_NET | INTR_MPSAFE,
780 					  &xnb->xen_intr_handle);
781 	if (error != 0) {
782 		(void)xnb_disconnect(xnb);
783 		xenbus_dev_fatal(xnb->dev, error, "binding event channel");
784 		return (error);
785 	}
786 
787 	DPRINTF("rings connected!\n");
788 
789 	return (0);
790 }
791 
792 /**
793  * Size KVA and pseudo-physical address allocations based on negotiated
794  * values for the size and number of I/O requests, and the size of our
795  * communication ring.
796  *
797  * \param xnb  Per-instance xnb configuration structure.
798  *
799  * These address spaces are used to dynamically map pages in the
800  * front-end's domain into our own.
801  */
802 static int
803 xnb_alloc_communication_mem(struct xnb_softc *xnb)
804 {
805 	xnb_ring_type_t i;
806 
807 	xnb->kva_size = 0;
808 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
809 		xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
810 	}
811 
812 	/*
813 	 * Reserve a range of pseudo physical memory that we can map
814 	 * into kva.  These pages will only be backed by machine
815 	 * pages ("real memory") during the lifetime of front-end requests
816 	 * via grant table operations.  We will map the netif tx and rx rings
817 	 * into this space.
818 	 */
819 	xnb->pseudo_phys_res_id = 0;
820 	xnb->pseudo_phys_res = xenmem_alloc(xnb->dev, &xnb->pseudo_phys_res_id,
821 	    xnb->kva_size);
822 	if (xnb->pseudo_phys_res == NULL) {
823 		xnb->kva = 0;
824 		return (ENOMEM);
825 	}
826 	xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
827 	xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
828 	return (0);
829 }
830 
831 /**
832  * Collect information from the XenStore related to our device and its frontend
833  *
834  * \param xnb  Per-instance xnb configuration structure.
835  */
836 static int
837 xnb_collect_xenstore_info(struct xnb_softc *xnb)
838 {
839 	/**
840 	 * \todo Linux collects the following info.  We should collect most
841 	 * of this, too:
842 	 * "feature-rx-notify"
843 	 */
844 	const char *otherend_path;
845 	const char *our_path;
846 	int err;
847 	unsigned int rx_copy, bridge_len;
848 	uint8_t no_csum_offload;
849 
850 	otherend_path = xenbus_get_otherend_path(xnb->dev);
851 	our_path = xenbus_get_node(xnb->dev);
852 
853 	/* Collect the critical communication parameters */
854 	err = xs_gather(XST_NIL, otherend_path,
855 	    "tx-ring-ref", "%l" PRIu32,
856 	    	&xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
857 	    "rx-ring-ref", "%l" PRIu32,
858 	    	&xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
859 	    "event-channel", "%" PRIu32, &xnb->evtchn,
860 	    NULL);
861 	if (err != 0) {
862 		xenbus_dev_fatal(xnb->dev, err,
863 				 "Unable to retrieve ring information from "
864 				 "frontend %s.  Unable to connect.",
865 				 otherend_path);
866 		return (err);
867 	}
868 
869 	/* Collect the handle from xenstore */
870 	err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
871 	if (err != 0) {
872 		xenbus_dev_fatal(xnb->dev, err,
873 		    "Error reading handle from frontend %s.  "
874 		    "Unable to connect.", otherend_path);
875 	}
876 
877 	/*
878 	 * Collect the bridgename, if any.  We do not need bridge_len; we just
879 	 * throw it away
880 	 */
881 	err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
882 		      (void**)&xnb->bridge);
883 	if (err != 0)
884 		xnb->bridge = NULL;
885 
886 	/*
887 	 * Does the frontend request that we use rx copy?  If not, return an
888 	 * error because this driver only supports rx copy.
889 	 */
890 	err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
891 		       "%" PRIu32, &rx_copy);
892 	if (err == ENOENT) {
893 		err = 0;
894 	 	rx_copy = 0;
895 	}
896 	if (err < 0) {
897 		xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
898 				 otherend_path);
899 		return err;
900 	}
901 	/**
902 	 * \todo: figure out the exact meaning of this feature, and when
903 	 * the frontend will set it to true.  It should be set to true
904 	 * at some point
905 	 */
906 /*        if (!rx_copy)*/
907 /*          return EOPNOTSUPP;*/
908 
909 	/** \todo Collect the rx notify feature */
910 
911 	/*  Collect the feature-sg. */
912 	if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
913 		     "%hhu", &xnb->can_sg) < 0)
914 		xnb->can_sg = 0;
915 
916 	/* Collect remaining frontend features */
917 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
918 		     "%hhu", &xnb->gso) < 0)
919 		xnb->gso = 0;
920 
921 	if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
922 		     "%hhu", &xnb->gso_prefix) < 0)
923 		xnb->gso_prefix = 0;
924 
925 	if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
926 		     "%hhu", &no_csum_offload) < 0)
927 		no_csum_offload = 0;
928 	xnb->ip_csum = (no_csum_offload == 0);
929 
930 	return (0);
931 }
932 
933 /**
934  * Supply information about the physical device to the frontend
935  * via XenBus.
936  *
937  * \param xnb  Per-instance xnb configuration structure.
938  */
939 static int
940 xnb_publish_backend_info(struct xnb_softc *xnb)
941 {
942 	struct xs_transaction xst;
943 	const char *our_path;
944 	int error;
945 
946 	our_path = xenbus_get_node(xnb->dev);
947 
948 	do {
949 		error = xs_transaction_start(&xst);
950 		if (error != 0) {
951 			xenbus_dev_fatal(xnb->dev, error,
952 					 "Error publishing backend info "
953 					 "(start transaction)");
954 			break;
955 		}
956 
957 		error = xs_printf(xst, our_path, "feature-sg",
958 				  "%d", XNB_SG);
959 		if (error != 0)
960 			break;
961 
962 		error = xs_printf(xst, our_path, "feature-gso-tcpv4",
963 				  "%d", XNB_GSO_TCPV4);
964 		if (error != 0)
965 			break;
966 
967 		error = xs_printf(xst, our_path, "feature-rx-copy",
968 				  "%d", XNB_RX_COPY);
969 		if (error != 0)
970 			break;
971 
972 		error = xs_printf(xst, our_path, "feature-rx-flip",
973 				  "%d", XNB_RX_FLIP);
974 		if (error != 0)
975 			break;
976 
977 		error = xs_transaction_end(xst, 0);
978 		if (error != 0 && error != EAGAIN) {
979 			xenbus_dev_fatal(xnb->dev, error, "ending transaction");
980 			break;
981 		}
982 
983 	} while (error == EAGAIN);
984 
985 	return (error);
986 }
987 
988 /**
989  * Connect to our netfront peer now that it has completed publishing
990  * its configuration into the XenStore.
991  *
992  * \param xnb  Per-instance xnb configuration structure.
993  */
994 static void
995 xnb_connect(struct xnb_softc *xnb)
996 {
997 	int	error;
998 
999 	if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1000 		return;
1001 
1002 	if (xnb_collect_xenstore_info(xnb) != 0)
1003 		return;
1004 
1005 	xnb->flags &= ~XNBF_SHUTDOWN;
1006 
1007 	/* Read front end configuration. */
1008 
1009 	/* Allocate resources whose size depends on front-end configuration. */
1010 	error = xnb_alloc_communication_mem(xnb);
1011 	if (error != 0) {
1012 		xenbus_dev_fatal(xnb->dev, error,
1013 				 "Unable to allocate communication memory");
1014 		return;
1015 	}
1016 
1017 	/*
1018 	 * Connect communication channel.
1019 	 */
1020 	error = xnb_connect_comms(xnb);
1021 	if (error != 0) {
1022 		/* Specific errors are reported by xnb_connect_comms(). */
1023 		return;
1024 	}
1025 	xnb->carrier = 1;
1026 
1027 	/* Ready for I/O. */
1028 	xenbus_set_state(xnb->dev, XenbusStateConnected);
1029 }
1030 
1031 /*-------------------------- Device Teardown Support -------------------------*/
1032 /**
1033  * Perform device shutdown functions.
1034  *
1035  * \param xnb  Per-instance xnb configuration structure.
1036  *
1037  * Mark this instance as shutting down, wait for any active requests
1038  * to drain, disconnect from the front-end, and notify any waiters (e.g.
1039  * a thread invoking our detach method) that detach can now proceed.
1040  */
1041 static int
1042 xnb_shutdown(struct xnb_softc *xnb)
1043 {
1044 	/*
1045 	 * Due to the need to drop our mutex during some
1046 	 * xenbus operations, it is possible for two threads
1047 	 * to attempt to close out shutdown processing at
1048 	 * the same time.  Tell the caller that hits this
1049 	 * race to try back later.
1050 	 */
1051 	if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1052 		return (EAGAIN);
1053 
1054 	xnb->flags |= XNBF_SHUTDOWN;
1055 
1056 	xnb->flags |= XNBF_IN_SHUTDOWN;
1057 
1058 	mtx_unlock(&xnb->sc_lock);
1059 	/* Free the network interface */
1060 	xnb->carrier = 0;
1061 	if (xnb->xnb_ifp != NULL) {
1062 		ether_ifdetach(xnb->xnb_ifp);
1063 		if_free(xnb->xnb_ifp);
1064 		xnb->xnb_ifp = NULL;
1065 	}
1066 
1067 	xnb_disconnect(xnb);
1068 
1069 	if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1070 		xenbus_set_state(xnb->dev, XenbusStateClosing);
1071 	mtx_lock(&xnb->sc_lock);
1072 
1073 	xnb->flags &= ~XNBF_IN_SHUTDOWN;
1074 
1075 	/* Indicate to xnb_detach() that is it safe to proceed. */
1076 	wakeup(xnb);
1077 
1078 	return (0);
1079 }
1080 
1081 /**
1082  * Report an attach time error to the console and Xen, and cleanup
1083  * this instance by forcing immediate detach processing.
1084  *
1085  * \param xnb  Per-instance xnb configuration structure.
1086  * \param err  Errno describing the error.
1087  * \param fmt  Printf style format and arguments
1088  */
1089 static void
1090 xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1091 {
1092 	va_list ap;
1093 	va_list ap_hotplug;
1094 
1095 	va_start(ap, fmt);
1096 	va_copy(ap_hotplug, ap);
1097 	xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1098 		  "hotplug-error", fmt, ap_hotplug);
1099 	va_end(ap_hotplug);
1100 	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1101 		  "hotplug-status", "error");
1102 
1103 	xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1104 	va_end(ap);
1105 
1106 	(void)xs_printf(XST_NIL, xenbus_get_node(xnb->dev), "online", "0");
1107 	xnb_detach(xnb->dev);
1108 }
1109 
1110 /*---------------------------- NewBus Entrypoints ----------------------------*/
1111 /**
1112  * Inspect a XenBus device and claim it if is of the appropriate type.
1113  *
1114  * \param dev  NewBus device object representing a candidate XenBus device.
1115  *
1116  * \return  0 for success, errno codes for failure.
1117  */
1118 static int
1119 xnb_probe(device_t dev)
1120 {
1121 	 if (!strcmp(xenbus_get_type(dev), "vif")) {
1122 		DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1123 		    devclass_get_name(device_get_devclass(dev)));
1124 		device_set_desc(dev, "Backend Virtual Network Device");
1125 		device_quiet(dev);
1126 		return (0);
1127 	}
1128 	return (ENXIO);
1129 }
1130 
1131 /**
1132  * Setup sysctl variables to control various Network Back parameters.
1133  *
1134  * \param xnb  Xen Net Back softc.
1135  *
1136  */
1137 static void
1138 xnb_setup_sysctl(struct xnb_softc *xnb)
1139 {
1140 	struct sysctl_ctx_list *sysctl_ctx = NULL;
1141 	struct sysctl_oid      *sysctl_tree = NULL;
1142 
1143 	sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1144 	if (sysctl_ctx == NULL)
1145 		return;
1146 
1147 	sysctl_tree = device_get_sysctl_tree(xnb->dev);
1148 	if (sysctl_tree == NULL)
1149 		return;
1150 
1151 #ifdef XNB_DEBUG
1152 	SYSCTL_ADD_PROC(sysctl_ctx,
1153 			SYSCTL_CHILDREN(sysctl_tree),
1154 			OID_AUTO,
1155 			"unit_test_results",
1156 			CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1157 			xnb,
1158 			0,
1159 			xnb_unit_test_main,
1160 			"A",
1161 			"Results of builtin unit tests");
1162 
1163 	SYSCTL_ADD_PROC(sysctl_ctx,
1164 			SYSCTL_CHILDREN(sysctl_tree),
1165 			OID_AUTO,
1166 			"dump_rings",
1167 			CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
1168 			xnb,
1169 			0,
1170 			xnb_dump_rings,
1171 			"A",
1172 			"Xennet Back Rings");
1173 #endif /* XNB_DEBUG */
1174 }
1175 
1176 /**
1177  * Create a network device.
1178  * @param handle device handle
1179  */
1180 int
1181 create_netdev(device_t dev)
1182 {
1183 	if_t ifp;
1184 	struct xnb_softc *xnb;
1185 	int err = 0;
1186 	uint32_t handle;
1187 
1188 	xnb = device_get_softc(dev);
1189 	mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1190 	mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1191 	mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1192 
1193 	xnb->dev = dev;
1194 
1195 	ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1196 	ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1197 	ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1198 
1199 	/*
1200 	 * Set the MAC address to a dummy value (00:00:00:00:00),
1201 	 * if the MAC address of the host-facing interface is set
1202 	 * to the same as the guest-facing one (the value found in
1203 	 * xenstore), the bridge would stop delivering packets to
1204 	 * us because it would see that the destination address of
1205 	 * the packet is the same as the interface, and so the bridge
1206 	 * would expect the packet has already been delivered locally
1207 	 * (and just drop it).
1208 	 */
1209 	bzero(&xnb->mac[0], sizeof(xnb->mac));
1210 
1211 	/* The interface will be named using the following nomenclature:
1212 	 *
1213 	 * xnb<domid>.<handle>
1214 	 *
1215 	 * Where handle is the oder of the interface referred to the guest.
1216 	 */
1217 	err = xs_scanf(XST_NIL, xenbus_get_node(xnb->dev), "handle", NULL,
1218 		       "%" PRIu32, &handle);
1219 	if (err != 0)
1220 		return (err);
1221 	snprintf(xnb->if_name, IFNAMSIZ, "xnb%" PRIu16 ".%" PRIu32,
1222 	    xenbus_get_otherend_id(dev), handle);
1223 
1224 	if (err == 0) {
1225 		/* Set up ifnet structure */
1226 		ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1227 		if_setsoftc(ifp, xnb);
1228 		if_initname(ifp, xnb->if_name,  IF_DUNIT_NONE);
1229 		if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1230 		if_setioctlfn(ifp, xnb_ioctl);
1231 		if_setstartfn(ifp, xnb_start);
1232 		if_setinitfn(ifp, xnb_ifinit);
1233 		if_setmtu(ifp, ETHERMTU);
1234 		if_setsendqlen(ifp, NET_RX_RING_SIZE - 1);
1235 
1236 		if_sethwassist(ifp, XNB_CSUM_FEATURES);
1237 		if_setcapabilities(ifp, IFCAP_HWCSUM);
1238 		if_setcapenable(ifp, IFCAP_HWCSUM);
1239 
1240 		ether_ifattach(ifp, xnb->mac);
1241 		xnb->carrier = 0;
1242 	}
1243 
1244 	return err;
1245 }
1246 
1247 /**
1248  * Attach to a XenBus device that has been claimed by our probe routine.
1249  *
1250  * \param dev  NewBus device object representing this Xen Net Back instance.
1251  *
1252  * \return  0 for success, errno codes for failure.
1253  */
1254 static int
1255 xnb_attach(device_t dev)
1256 {
1257 	struct xnb_softc *xnb;
1258 	int	error;
1259 	xnb_ring_type_t	i;
1260 
1261 	error = create_netdev(dev);
1262 	if (error != 0) {
1263 		xenbus_dev_fatal(dev, error, "creating netdev");
1264 		return (error);
1265 	}
1266 
1267 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1268 
1269 	/*
1270 	 * Basic initialization.
1271 	 * After this block it is safe to call xnb_detach()
1272 	 * to clean up any allocated data for this instance.
1273 	 */
1274 	xnb = device_get_softc(dev);
1275 	xnb->otherend_id = xenbus_get_otherend_id(dev);
1276 	for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1277 		xnb->ring_configs[i].ring_pages = 1;
1278 	}
1279 
1280 	/*
1281 	 * Setup sysctl variables.
1282 	 */
1283 	xnb_setup_sysctl(xnb);
1284 
1285 	/* Update hot-plug status to satisfy xend. */
1286 	error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1287 			  "hotplug-status", "connected");
1288 	if (error != 0) {
1289 		xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1290 				  xenbus_get_node(xnb->dev));
1291 		return (error);
1292 	}
1293 
1294 	if ((error = xnb_publish_backend_info(xnb)) != 0) {
1295 		/*
1296 		 * If we can't publish our data, we cannot participate
1297 		 * in this connection, and waiting for a front-end state
1298 		 * change will not help the situation.
1299 		 */
1300 		xnb_attach_failed(xnb, error,
1301 		    "Publishing backend status for %s",
1302 				  xenbus_get_node(xnb->dev));
1303 		return error;
1304 	}
1305 
1306 	/* Tell the front end that we are ready to connect. */
1307 	xenbus_set_state(dev, XenbusStateInitWait);
1308 
1309 	return (0);
1310 }
1311 
1312 /**
1313  * Detach from a net back device instance.
1314  *
1315  * \param dev  NewBus device object representing this Xen Net Back instance.
1316  *
1317  * \return  0 for success, errno codes for failure.
1318  *
1319  * \note A net back device may be detached at any time in its life-cycle,
1320  *       including part way through the attach process.  For this reason,
1321  *       initialization order and the initialization state checks in this
1322  *       routine must be carefully coupled so that attach time failures
1323  *       are gracefully handled.
1324  */
1325 static int
1326 xnb_detach(device_t dev)
1327 {
1328 	struct xnb_softc *xnb;
1329 
1330 	DPRINTF("\n");
1331 
1332 	xnb = device_get_softc(dev);
1333 	mtx_lock(&xnb->sc_lock);
1334 	while (xnb_shutdown(xnb) == EAGAIN) {
1335 		msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1336 		       "xnb_shutdown", 0);
1337 	}
1338 	mtx_unlock(&xnb->sc_lock);
1339 	DPRINTF("\n");
1340 
1341 	mtx_destroy(&xnb->tx_lock);
1342 	mtx_destroy(&xnb->rx_lock);
1343 	mtx_destroy(&xnb->sc_lock);
1344 	return (0);
1345 }
1346 
1347 /**
1348  * Prepare this net back device for suspension of this VM.
1349  *
1350  * \param dev  NewBus device object representing this Xen net Back instance.
1351  *
1352  * \return  0 for success, errno codes for failure.
1353  */
1354 static int
1355 xnb_suspend(device_t dev)
1356 {
1357 	return (0);
1358 }
1359 
1360 /**
1361  * Perform any processing required to recover from a suspended state.
1362  *
1363  * \param dev  NewBus device object representing this Xen Net Back instance.
1364  *
1365  * \return  0 for success, errno codes for failure.
1366  */
1367 static int
1368 xnb_resume(device_t dev)
1369 {
1370 	return (0);
1371 }
1372 
1373 /**
1374  * Handle state changes expressed via the XenStore by our front-end peer.
1375  *
1376  * \param dev             NewBus device object representing this Xen
1377  *                        Net Back instance.
1378  * \param frontend_state  The new state of the front-end.
1379  *
1380  * \return  0 for success, errno codes for failure.
1381  */
1382 static void
1383 xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1384 {
1385 	struct xnb_softc *xnb;
1386 
1387 	xnb = device_get_softc(dev);
1388 
1389 	DPRINTF("frontend_state=%s, xnb_state=%s\n",
1390 	        xenbus_strstate(frontend_state),
1391 		xenbus_strstate(xenbus_get_state(xnb->dev)));
1392 
1393 	switch (frontend_state) {
1394 	case XenbusStateInitialising:
1395 	case XenbusStateInitialised:
1396 		break;
1397 	case XenbusStateConnected:
1398 		xnb_connect(xnb);
1399 		break;
1400 	case XenbusStateClosing:
1401 	case XenbusStateClosed:
1402 		mtx_lock(&xnb->sc_lock);
1403 		xnb_shutdown(xnb);
1404 		mtx_unlock(&xnb->sc_lock);
1405 		if (frontend_state == XenbusStateClosed)
1406 			xenbus_set_state(xnb->dev, XenbusStateClosed);
1407 		break;
1408 	default:
1409 		xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1410 				 frontend_state);
1411 		break;
1412 	}
1413 }
1414 
1415 /*---------------------------- Request Processing ----------------------------*/
1416 /**
1417  * Interrupt handler bound to the shared ring's event channel.
1418  * Entry point for the xennet transmit path in netback
1419  * Transfers packets from the Xen ring to the host's generic networking stack
1420  *
1421  * \param arg  Callback argument registerd during event channel
1422  *             binding - the xnb_softc for this instance.
1423  */
1424 static void
1425 xnb_intr(void *arg)
1426 {
1427 	struct xnb_softc *xnb;
1428 	if_t ifp;
1429 	netif_tx_back_ring_t *txb;
1430 	RING_IDX req_prod_local;
1431 
1432 	xnb = (struct xnb_softc *)arg;
1433 	ifp = xnb->xnb_ifp;
1434 	txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1435 
1436 	mtx_lock(&xnb->tx_lock);
1437 	do {
1438 		int notify;
1439 		req_prod_local = txb->sring->req_prod;
1440 		xen_rmb();
1441 
1442 		for (;;) {
1443 			struct mbuf *mbufc;
1444 			int err;
1445 
1446 			err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1447 			    	       xnb->tx_gnttab);
1448 			if (err || (mbufc == NULL))
1449 				break;
1450 
1451 			/* Send the packet to the generic network stack */
1452 			if_input(xnb->xnb_ifp, mbufc);
1453 		}
1454 
1455 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1456 		if (notify != 0)
1457 			xen_intr_signal(xnb->xen_intr_handle);
1458 
1459 		txb->sring->req_event = txb->req_cons + 1;
1460 		xen_mb();
1461 	} while (txb->sring->req_prod != req_prod_local) ;
1462 	mtx_unlock(&xnb->tx_lock);
1463 
1464 	xnb_start(ifp);
1465 }
1466 
1467 /**
1468  * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1469  * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1470  * \param[out]	pkt	The returned packet.  If there is an error building
1471  * 			the packet, pkt.list_len will be set to 0.
1472  * \param[in]	tx_ring	Pointer to the Ring that is the input to this function
1473  * \param[in]	start	The ring index of the first potential request
1474  * \return		The number of requests consumed to build this packet
1475  */
1476 static int
1477 xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1478 	     RING_IDX start)
1479 {
1480 	/*
1481 	 * Outline:
1482 	 * 1) Initialize pkt
1483 	 * 2) Read the first request of the packet
1484 	 * 3) Read the extras
1485 	 * 4) Set cdr
1486 	 * 5) Loop on the remainder of the packet
1487 	 * 6) Finalize pkt (stuff like car_size and list_len)
1488 	 */
1489 	int idx = start;
1490 	int discard = 0;	/* whether to discard the packet */
1491 	int more_data = 0;	/* there are more request past the last one */
1492 	uint16_t cdr_size = 0;	/* accumulated size of requests 2 through n */
1493 
1494 	xnb_pkt_initialize(pkt);
1495 
1496 	/* Read the first request */
1497 	if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1498 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1499 		pkt->size = tx->size;
1500 		pkt->flags = tx->flags & ~NETTXF_more_data;
1501 		more_data = tx->flags & NETTXF_more_data;
1502 		pkt->list_len++;
1503 		pkt->car = idx;
1504 		idx++;
1505 	}
1506 
1507 	/* Read the extra info */
1508 	if ((pkt->flags & NETTXF_extra_info) &&
1509 	    RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1510 		netif_extra_info_t *ext =
1511 		    (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1512 		pkt->extra.type = ext->type;
1513 		switch (pkt->extra.type) {
1514 			case XEN_NETIF_EXTRA_TYPE_GSO:
1515 				pkt->extra.u.gso = ext->u.gso;
1516 				break;
1517 			default:
1518 				/*
1519 				 * The reference Linux netfront driver will
1520 				 * never set any other extra.type.  So we don't
1521 				 * know what to do with it.  Let's print an
1522 				 * error, then consume and discard the packet
1523 				 */
1524 				printf("xnb(%s:%d): Unknown extra info type %d."
1525 				       "  Discarding packet\n",
1526 				       __func__, __LINE__, pkt->extra.type);
1527 				xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1528 				    start));
1529 				xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1530 				    idx));
1531 				discard = 1;
1532 				break;
1533 		}
1534 
1535 		pkt->extra.flags = ext->flags;
1536 		if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1537 			/*
1538 			 * The reference linux netfront driver never sets this
1539 			 * flag (nor does any other known netfront).  So we
1540 			 * will discard the packet.
1541 			 */
1542 			printf("xnb(%s:%d): Request sets "
1543 			    "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1544 			    "that\n", __func__, __LINE__);
1545 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1546 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1547 			discard = 1;
1548 		}
1549 
1550 		idx++;
1551 	}
1552 
1553 	/* Set cdr.  If there is not more data, cdr is invalid */
1554 	pkt->cdr = idx;
1555 
1556 	/* Loop on remainder of packet */
1557 	while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1558 		netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1559 		pkt->list_len++;
1560 		cdr_size += tx->size;
1561 		if (tx->flags & ~NETTXF_more_data) {
1562 			/* There should be no other flags set at this point */
1563 			printf("xnb(%s:%d): Request sets unknown flags %d "
1564 			    "after the 1st request in the packet.\n",
1565 			    __func__, __LINE__, tx->flags);
1566 			xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1567 			xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1568 		}
1569 
1570 		more_data = tx->flags & NETTXF_more_data;
1571 		idx++;
1572 	}
1573 
1574 	/* Finalize packet */
1575 	if (more_data != 0) {
1576 		/* The ring ran out of requests before finishing the packet */
1577 		xnb_pkt_invalidate(pkt);
1578 		idx = start;	/* tell caller that we consumed no requests */
1579 	} else {
1580 		/* Calculate car_size */
1581 		pkt->car_size = pkt->size - cdr_size;
1582 	}
1583 	if (discard != 0) {
1584 		xnb_pkt_invalidate(pkt);
1585 	}
1586 
1587 	return idx - start;
1588 }
1589 
1590 /**
1591  * Respond to all the requests that constituted pkt.  Builds the responses and
1592  * writes them to the ring, but doesn't push them to the shared ring.
1593  * \param[in] pkt	the packet that needs a response
1594  * \param[in] error	true if there was an error handling the packet, such
1595  * 			as in the hypervisor copy op or mbuf allocation
1596  * \param[out] ring	Responses go here
1597  */
1598 static void
1599 xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1600 	      int error)
1601 {
1602 	/*
1603 	 * Outline:
1604 	 * 1) Respond to the first request
1605 	 * 2) Respond to the extra info reques
1606 	 * Loop through every remaining request in the packet, generating
1607 	 * responses that copy those requests' ids and sets the status
1608 	 * appropriately.
1609 	 */
1610 	netif_tx_request_t *tx;
1611 	netif_tx_response_t *rsp;
1612 	int i;
1613 	uint16_t status;
1614 
1615 	status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1616 		NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1617 	KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1618 	    ("Cannot respond to ring requests out of order"));
1619 
1620 	if (pkt->list_len >= 1) {
1621 		uint16_t id;
1622 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1623 		id = tx->id;
1624 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1625 		rsp->id = id;
1626 		rsp->status = status;
1627 		ring->rsp_prod_pvt++;
1628 
1629 		if (pkt->flags & NETRXF_extra_info) {
1630 			rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1631 			rsp->status = NETIF_RSP_NULL;
1632 			ring->rsp_prod_pvt++;
1633 		}
1634 	}
1635 
1636 	for (i=0; i < pkt->list_len - 1; i++) {
1637 		uint16_t id;
1638 		tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1639 		id = tx->id;
1640 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1641 		rsp->id = id;
1642 		rsp->status = status;
1643 		ring->rsp_prod_pvt++;
1644 	}
1645 }
1646 
1647 /**
1648  * Create an mbuf chain to represent a packet.  Initializes all of the headers
1649  * in the mbuf chain, but does not copy the data.  The returned chain must be
1650  * free()'d when no longer needed
1651  * \param[in]	pkt	A packet to model the mbuf chain after
1652  * \return	A newly allocated mbuf chain, possibly with clusters attached.
1653  * 		NULL on failure
1654  */
1655 static struct mbuf*
1656 xnb_pkt2mbufc(const struct xnb_pkt *pkt, if_t ifp)
1657 {
1658 	/**
1659 	 * \todo consider using a memory pool for mbufs instead of
1660 	 * reallocating them for every packet
1661 	 */
1662 	/** \todo handle extra data */
1663 	struct mbuf *m;
1664 
1665 	m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1666 
1667 	if (m != NULL) {
1668 		m->m_pkthdr.rcvif = ifp;
1669 		if (pkt->flags & NETTXF_data_validated) {
1670 			/*
1671 			 * We lie to the host OS and always tell it that the
1672 			 * checksums are ok, because the packet is unlikely to
1673 			 * get corrupted going across domains.
1674 			 */
1675 			m->m_pkthdr.csum_flags = (
1676 				CSUM_IP_CHECKED |
1677 				CSUM_IP_VALID   |
1678 				CSUM_DATA_VALID |
1679 				CSUM_PSEUDO_HDR
1680 				);
1681 			m->m_pkthdr.csum_data = 0xffff;
1682 		}
1683 	}
1684 	return m;
1685 }
1686 
1687 /**
1688  * Build a gnttab_copy table that can be used to copy data from a pkt
1689  * to an mbufc.  Does not actually perform the copy.  Always uses gref's on
1690  * the packet side.
1691  * \param[in]	pkt	pkt's associated requests form the src for
1692  * 			the copy operation
1693  * \param[in]	mbufc	mbufc's storage forms the dest for the copy operation
1694  * \param[out]  gnttab	Storage for the returned grant table
1695  * \param[in]	txb	Pointer to the backend ring structure
1696  * \param[in]	otherend_id	The domain ID of the other end of the copy
1697  * \return 		The number of gnttab entries filled
1698  */
1699 static int
1700 xnb_txpkt2gnttab(const struct xnb_pkt *pkt, struct mbuf *mbufc,
1701 		 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1702 		 domid_t otherend_id)
1703 {
1704 
1705 	struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1706 	int gnt_idx = 0;		/* index into grant table */
1707 	RING_IDX r_idx = pkt->car;	/* index into tx ring buffer */
1708 	int r_ofs = 0;	/* offset of next data within tx request's data area */
1709 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1710 	/* size in bytes that still needs to be represented in the table */
1711 	uint16_t size_remaining = pkt->size;
1712 
1713 	while (size_remaining > 0) {
1714 		const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1715 		const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1716 		const size_t req_size =
1717 			r_idx == pkt->car ? pkt->car_size : txq->size;
1718 		const size_t pkt_space = req_size - r_ofs;
1719 		/*
1720 		 * space is the largest amount of data that can be copied in the
1721 		 * grant table's next entry
1722 		 */
1723 		const size_t space = MIN(pkt_space, mbuf_space);
1724 
1725 		/* TODO: handle this error condition without panicking */
1726 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1727 
1728 		gnttab[gnt_idx].source.u.ref = txq->gref;
1729 		gnttab[gnt_idx].source.domid = otherend_id;
1730 		gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1731 		gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1732 		    mtod(mbuf, vm_offset_t) + m_ofs);
1733 		gnttab[gnt_idx].dest.offset = virt_to_offset(
1734 		    mtod(mbuf, vm_offset_t) + m_ofs);
1735 		gnttab[gnt_idx].dest.domid = DOMID_SELF;
1736 		gnttab[gnt_idx].len = space;
1737 		gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1738 
1739 		gnt_idx++;
1740 		r_ofs += space;
1741 		m_ofs += space;
1742 		size_remaining -= space;
1743 		if (req_size - r_ofs <= 0) {
1744 			/* Must move to the next tx request */
1745 			r_ofs = 0;
1746 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1747 		}
1748 		if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1749 			/* Must move to the next mbuf */
1750 			m_ofs = 0;
1751 			mbuf = mbuf->m_next;
1752 		}
1753 	}
1754 
1755 	return gnt_idx;
1756 }
1757 
1758 /**
1759  * Check the status of the grant copy operations, and update mbufs various
1760  * non-data fields to reflect the data present.
1761  * \param[in,out] mbufc	mbuf chain to update.  The chain must be valid and of
1762  * 			the correct length, and data should already be present
1763  * \param[in] gnttab	A grant table for a just completed copy op
1764  * \param[in] n_entries The number of valid entries in the grant table
1765  */
1766 static void
1767 xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1768     		 int n_entries)
1769 {
1770 	struct mbuf *mbuf = mbufc;
1771 	int i;
1772 	size_t total_size = 0;
1773 
1774 	for (i = 0; i < n_entries; i++) {
1775 		KASSERT(gnttab[i].status == GNTST_okay,
1776 		    ("Some gnttab_copy entry had error status %hd\n",
1777 		    gnttab[i].status));
1778 
1779 		mbuf->m_len += gnttab[i].len;
1780 		total_size += gnttab[i].len;
1781 		if (M_TRAILINGSPACE(mbuf) <= 0) {
1782 			mbuf = mbuf->m_next;
1783 		}
1784 	}
1785 	mbufc->m_pkthdr.len = total_size;
1786 
1787 #if defined(INET) || defined(INET6)
1788 	xnb_add_mbuf_cksum(mbufc);
1789 #endif
1790 }
1791 
1792 /**
1793  * Dequeue at most one packet from the shared ring
1794  * \param[in,out] txb	Netif tx ring.  A packet will be removed from it, and
1795  * 			its private indices will be updated.  But the indices
1796  * 			will not be pushed to the shared ring.
1797  * \param[in] ifnet	Interface to which the packet will be sent
1798  * \param[in] otherend	Domain ID of the other end of the ring
1799  * \param[out] mbufc	The assembled mbuf chain, ready to send to the generic
1800  * 			networking stack
1801  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
1802  * 			this a function parameter so that we will take less
1803  * 			stack space.
1804  * \return		An error code
1805  */
1806 static int
1807 xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1808 	 if_t ifnet, gnttab_copy_table gnttab)
1809 {
1810 	struct xnb_pkt pkt;
1811 	/* number of tx requests consumed to build the last packet */
1812 	int num_consumed;
1813 	int nr_ents;
1814 
1815 	*mbufc = NULL;
1816 	num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1817 	if (num_consumed == 0)
1818 		return 0;	/* Nothing to receive */
1819 
1820 	/* update statistics independent of errors */
1821 	if_inc_counter(ifnet, IFCOUNTER_IPACKETS, 1);
1822 
1823 	/*
1824 	 * if we got here, then 1 or more requests was consumed, but the packet
1825 	 * is not necessarily valid.
1826 	 */
1827 	if (xnb_pkt_is_valid(&pkt) == 0) {
1828 		/* got a garbage packet, respond and drop it */
1829 		xnb_txpkt2rsp(&pkt, txb, 1);
1830 		txb->req_cons += num_consumed;
1831 		DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1832 				num_consumed);
1833 		if_inc_counter(ifnet, IFCOUNTER_IERRORS, 1);
1834 		return EINVAL;
1835 	}
1836 
1837 	*mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1838 
1839 	if (*mbufc == NULL) {
1840 		/*
1841 		 * Couldn't allocate mbufs.  Respond and drop the packet.  Do
1842 		 * not consume the requests
1843 		 */
1844 		xnb_txpkt2rsp(&pkt, txb, 1);
1845 		DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1846 		    num_consumed);
1847 		if_inc_counter(ifnet, IFCOUNTER_IQDROPS, 1);
1848 		return ENOMEM;
1849 	}
1850 
1851 	nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1852 
1853 	if (nr_ents > 0) {
1854 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1855 		    gnttab, nr_ents);
1856 		KASSERT(hv_ret == 0,
1857 		    ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1858 		xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1859 	}
1860 
1861 	xnb_txpkt2rsp(&pkt, txb, 0);
1862 	txb->req_cons += num_consumed;
1863 	return 0;
1864 }
1865 
1866 /**
1867  * Create an xnb_pkt based on the contents of an mbuf chain.
1868  * \param[in] mbufc	mbuf chain to transform into a packet
1869  * \param[out] pkt	Storage for the newly generated xnb_pkt
1870  * \param[in] start	The ring index of the first available slot in the rx
1871  * 			ring
1872  * \param[in] space	The number of free slots in the rx ring
1873  * \retval 0		Success
1874  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
1875  * \retval EAGAIN	There was not enough space in the ring to queue the
1876  * 			packet
1877  */
1878 static int
1879 xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1880 	      RING_IDX start, int space)
1881 {
1882 
1883 	int retval = 0;
1884 
1885 	if ((mbufc == NULL) ||
1886 	     ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1887 	     (mbufc->m_pkthdr.len == 0)) {
1888 		xnb_pkt_invalidate(pkt);
1889 		retval = EINVAL;
1890 	} else {
1891 		int slots_required;
1892 
1893 		xnb_pkt_validate(pkt);
1894 		pkt->flags = 0;
1895 		pkt->size = mbufc->m_pkthdr.len;
1896 		pkt->car = start;
1897 		pkt->car_size = mbufc->m_len;
1898 
1899 		if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1900 			pkt->flags |= NETRXF_extra_info;
1901 			pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1902 			pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1903 			pkt->extra.u.gso.pad = 0;
1904 			pkt->extra.u.gso.features = 0;
1905 			pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1906 			pkt->extra.flags = 0;
1907 			pkt->cdr = start + 2;
1908 		} else {
1909 			pkt->cdr = start + 1;
1910 		}
1911 		if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1912 			pkt->flags |=
1913 			    (NETRXF_csum_blank | NETRXF_data_validated);
1914 		}
1915 
1916 		/*
1917 		 * Each ring response can have up to PAGE_SIZE of data.
1918 		 * Assume that we can defragment the mbuf chain efficiently
1919 		 * into responses so that each response but the last uses all
1920 		 * PAGE_SIZE bytes.
1921 		 */
1922 		pkt->list_len = howmany(pkt->size, PAGE_SIZE);
1923 
1924 		if (pkt->list_len > 1) {
1925 			pkt->flags |= NETRXF_more_data;
1926 		}
1927 
1928 		slots_required = pkt->list_len +
1929 			(pkt->flags & NETRXF_extra_info ? 1 : 0);
1930 		if (slots_required > space) {
1931 			xnb_pkt_invalidate(pkt);
1932 			retval = EAGAIN;
1933 		}
1934 	}
1935 
1936 	return retval;
1937 }
1938 
1939 /**
1940  * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1941  * to the frontend's shared buffers.  Does not actually perform the copy.
1942  * Always uses gref's on the other end's side.
1943  * \param[in]	pkt	pkt's associated responses form the dest for the copy
1944  * 			operatoin
1945  * \param[in]	mbufc	The source for the copy operation
1946  * \param[out]	gnttab	Storage for the returned grant table
1947  * \param[in]	rxb	Pointer to the backend ring structure
1948  * \param[in]	otherend_id	The domain ID of the other end of the copy
1949  * \return 		The number of gnttab entries filled
1950  */
1951 static int
1952 xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1953 		 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1954 		 domid_t otherend_id)
1955 {
1956 
1957 	const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1958 	int gnt_idx = 0;		/* index into grant table */
1959 	RING_IDX r_idx = pkt->car;	/* index into rx ring buffer */
1960 	int r_ofs = 0;	/* offset of next data within rx request's data area */
1961 	int m_ofs = 0;	/* offset of next data within mbuf's data area */
1962 	/* size in bytes that still needs to be represented in the table */
1963 	uint16_t size_remaining;
1964 
1965 	size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1966 
1967 	while (size_remaining > 0) {
1968 		const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1969 		const size_t mbuf_space = mbuf->m_len - m_ofs;
1970 		/* Xen shared pages have an implied size of PAGE_SIZE */
1971 		const size_t req_size = PAGE_SIZE;
1972 		const size_t pkt_space = req_size - r_ofs;
1973 		/*
1974 		 * space is the largest amount of data that can be copied in the
1975 		 * grant table's next entry
1976 		 */
1977 		const size_t space = MIN(pkt_space, mbuf_space);
1978 
1979 		/* TODO: handle this error condition without panicing */
1980 		KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1981 
1982 		gnttab[gnt_idx].dest.u.ref = rxq->gref;
1983 		gnttab[gnt_idx].dest.domid = otherend_id;
1984 		gnttab[gnt_idx].dest.offset = r_ofs;
1985 		gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1986 		    mtod(mbuf, vm_offset_t) + m_ofs);
1987 		gnttab[gnt_idx].source.offset = virt_to_offset(
1988 		    mtod(mbuf, vm_offset_t) + m_ofs);
1989 		gnttab[gnt_idx].source.domid = DOMID_SELF;
1990 		gnttab[gnt_idx].len = space;
1991 		gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1992 
1993 		gnt_idx++;
1994 
1995 		r_ofs += space;
1996 		m_ofs += space;
1997 		size_remaining -= space;
1998 		if (req_size - r_ofs <= 0) {
1999 			/* Must move to the next rx request */
2000 			r_ofs = 0;
2001 			r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
2002 		}
2003 		if (mbuf->m_len - m_ofs <= 0) {
2004 			/* Must move to the next mbuf */
2005 			m_ofs = 0;
2006 			mbuf = mbuf->m_next;
2007 		}
2008 	}
2009 
2010 	return gnt_idx;
2011 }
2012 
2013 /**
2014  * Generates responses for all the requests that constituted pkt.  Builds
2015  * responses and writes them to the ring, but doesn't push the shared ring
2016  * indices.
2017  * \param[in] pkt	the packet that needs a response
2018  * \param[in] gnttab	The grant copy table corresponding to this packet.
2019  * 			Used to determine how many rsp->netif_rx_response_t's to
2020  * 			generate.
2021  * \param[in] n_entries	Number of relevant entries in the grant table
2022  * \param[out] ring	Responses go here
2023  * \return		The number of RX requests that were consumed to generate
2024  * 			the responses
2025  */
2026 static int
2027 xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2028     	      int n_entries, netif_rx_back_ring_t *ring)
2029 {
2030 	/*
2031 	 * This code makes the following assumptions:
2032 	 *	* All entries in gnttab set GNTCOPY_dest_gref
2033 	 *	* The entries in gnttab are grouped by their grefs: any two
2034 	 *	   entries with the same gref must be adjacent
2035 	 */
2036 	int error = 0;
2037 	int gnt_idx, i;
2038 	int n_responses = 0;
2039 	grant_ref_t last_gref = GRANT_REF_INVALID;
2040 	RING_IDX r_idx;
2041 
2042 	KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2043 
2044 	/*
2045 	 * In the event of an error, we only need to send one response to the
2046 	 * netfront.  In that case, we musn't write any data to the responses
2047 	 * after the one we send.  So we must loop all the way through gnttab
2048 	 * looking for errors before we generate any responses
2049 	 *
2050 	 * Since we're looping through the grant table anyway, we'll count the
2051 	 * number of different gref's in it, which will tell us how many
2052 	 * responses to generate
2053 	 */
2054 	for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2055 		int16_t status = gnttab[gnt_idx].status;
2056 		if (status != GNTST_okay) {
2057 			DPRINTF(
2058 			    "Got error %d for hypervisor gnttab_copy status\n",
2059 			    status);
2060 			error = 1;
2061 			break;
2062 		}
2063 		if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2064 			n_responses++;
2065 			last_gref = gnttab[gnt_idx].dest.u.ref;
2066 		}
2067 	}
2068 
2069 	if (error != 0) {
2070 		uint16_t id;
2071 		netif_rx_response_t *rsp;
2072 
2073 		id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2074 		rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2075 		rsp->id = id;
2076 		rsp->status = NETIF_RSP_ERROR;
2077 		n_responses = 1;
2078 	} else {
2079 		gnt_idx = 0;
2080 		const int has_extra = pkt->flags & NETRXF_extra_info;
2081 		if (has_extra != 0)
2082 			n_responses++;
2083 
2084 		for (i = 0; i < n_responses; i++) {
2085 			netif_rx_request_t rxq;
2086 			netif_rx_response_t *rsp;
2087 
2088 			r_idx = ring->rsp_prod_pvt + i;
2089 			/*
2090 			 * We copy the structure of rxq instead of making a
2091 			 * pointer because it shares the same memory as rsp.
2092 			 */
2093 			rxq = *(RING_GET_REQUEST(ring, r_idx));
2094 			rsp = RING_GET_RESPONSE(ring, r_idx);
2095 			if (has_extra && (i == 1)) {
2096 				netif_extra_info_t *ext =
2097 					(netif_extra_info_t*)rsp;
2098 				ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2099 				ext->flags = 0;
2100 				ext->u.gso.size = pkt->extra.u.gso.size;
2101 				ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2102 				ext->u.gso.pad = 0;
2103 				ext->u.gso.features = 0;
2104 			} else {
2105 				rsp->id = rxq.id;
2106 				rsp->status = GNTST_okay;
2107 				rsp->offset = 0;
2108 				rsp->flags = 0;
2109 				if (i < pkt->list_len - 1)
2110 					rsp->flags |= NETRXF_more_data;
2111 				if ((i == 0) && has_extra)
2112 					rsp->flags |= NETRXF_extra_info;
2113 				if ((i == 0) &&
2114 					(pkt->flags & NETRXF_data_validated)) {
2115 					rsp->flags |= NETRXF_data_validated;
2116 					rsp->flags |= NETRXF_csum_blank;
2117 				}
2118 				rsp->status = 0;
2119 				for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2120 				    gnt_idx++) {
2121 					rsp->status += gnttab[gnt_idx].len;
2122 				}
2123 			}
2124 		}
2125 	}
2126 
2127 	ring->req_cons += n_responses;
2128 	ring->rsp_prod_pvt += n_responses;
2129 	return n_responses;
2130 }
2131 
2132 #if defined(INET) || defined(INET6)
2133 /**
2134  * Add IP, TCP, and/or UDP checksums to every mbuf in a chain.  The first mbuf
2135  * in the chain must start with a struct ether_header.
2136  *
2137  * XXX This function will perform incorrectly on UDP packets that are split up
2138  * into multiple ethernet frames.
2139  */
2140 static void
2141 xnb_add_mbuf_cksum(struct mbuf *mbufc)
2142 {
2143 	struct ether_header *eh;
2144 	struct ip *iph;
2145 	uint16_t ether_type;
2146 
2147 	eh = mtod(mbufc, struct ether_header*);
2148 	ether_type = ntohs(eh->ether_type);
2149 	if (ether_type != ETHERTYPE_IP) {
2150 		/* Nothing to calculate */
2151 		return;
2152 	}
2153 
2154 	iph = (struct ip*)(eh + 1);
2155 	if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2156 		iph->ip_sum = 0;
2157 		iph->ip_sum = in_cksum_hdr(iph);
2158 	}
2159 
2160 	switch (iph->ip_p) {
2161 	case IPPROTO_TCP:
2162 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2163 			size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2164 			struct tcphdr *th = (struct tcphdr*)(iph + 1);
2165 			th->th_sum = in_pseudo(iph->ip_src.s_addr,
2166 			    iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2167 			th->th_sum = in_cksum_skip(mbufc,
2168 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2169 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2170 		}
2171 		break;
2172 	case IPPROTO_UDP:
2173 		if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2174 			size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2175 			struct udphdr *uh = (struct udphdr*)(iph + 1);
2176 			uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2177 			    iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2178 			uh->uh_sum = in_cksum_skip(mbufc,
2179 			    sizeof(struct ether_header) + ntohs(iph->ip_len),
2180 			    sizeof(struct ether_header) + (iph->ip_hl << 2));
2181 		}
2182 		break;
2183 	default:
2184 		break;
2185 	}
2186 }
2187 #endif /* INET || INET6 */
2188 
2189 static void
2190 xnb_stop(struct xnb_softc *xnb)
2191 {
2192 	if_t ifp;
2193 
2194 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2195 	ifp = xnb->xnb_ifp;
2196 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2197 	if_link_state_change(ifp, LINK_STATE_DOWN);
2198 }
2199 
2200 static int
2201 xnb_ioctl(if_t ifp, u_long cmd, caddr_t data)
2202 {
2203 	struct xnb_softc *xnb = if_getsoftc(ifp);
2204 	struct ifreq *ifr = (struct ifreq*) data;
2205 #ifdef INET
2206 	struct ifaddr *ifa = (struct ifaddr*)data;
2207 #endif
2208 	int error = 0;
2209 
2210 	switch (cmd) {
2211 		case SIOCSIFFLAGS:
2212 			mtx_lock(&xnb->sc_lock);
2213 			if (if_getflags(ifp) & IFF_UP) {
2214 				xnb_ifinit_locked(xnb);
2215 			} else {
2216 				if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2217 					xnb_stop(xnb);
2218 				}
2219 			}
2220 			/*
2221 			 * Note: netfront sets a variable named xn_if_flags
2222 			 * here, but that variable is never read
2223 			 */
2224 			mtx_unlock(&xnb->sc_lock);
2225 			break;
2226 		case SIOCSIFADDR:
2227 #ifdef INET
2228 			mtx_lock(&xnb->sc_lock);
2229 			if (ifa->ifa_addr->sa_family == AF_INET) {
2230 				if_setflagbits(ifp, IFF_UP, 0);
2231 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
2232 					if_setdrvflagbits(ifp, 0,
2233 					    IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2234 					if_link_state_change(ifp,
2235 							LINK_STATE_DOWN);
2236 					if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2237 					if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2238 					if_link_state_change(ifp,
2239 					    LINK_STATE_UP);
2240 				}
2241 				arp_ifinit(ifp, ifa);
2242 				mtx_unlock(&xnb->sc_lock);
2243 			} else {
2244 				mtx_unlock(&xnb->sc_lock);
2245 #endif
2246 				error = ether_ioctl(ifp, cmd, data);
2247 #ifdef INET
2248 			}
2249 #endif
2250 			break;
2251 		case SIOCSIFCAP:
2252 			mtx_lock(&xnb->sc_lock);
2253 			if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2254 				if_setcapenablebit(ifp, IFCAP_TXCSUM, 0);
2255 				if_sethwassistbits(ifp, XNB_CSUM_FEATURES, 0);
2256 			} else {
2257 				if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
2258 				if_sethwassistbits(ifp, 0, XNB_CSUM_FEATURES);
2259 			}
2260 			if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2261 				if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
2262 			} else {
2263 				if_setcapenablebit(ifp, 0, IFCAP_RXCSUM);
2264 			}
2265 			/*
2266 			 * TODO enable TSO4 and LRO once we no longer need
2267 			 * to calculate checksums in software
2268 			 */
2269 #if 0
2270 			if (ifr->if_reqcap |= IFCAP_TSO4) {
2271 				if (IFCAP_TXCSUM & if_getcapenable(ifp)) {
2272 					printf("xnb: Xen netif requires that "
2273 						"TXCSUM be enabled in order "
2274 						"to use TSO4\n");
2275 					error = EINVAL;
2276 				} else {
2277 					if_setcapenablebit(ifp, IFCAP_TSO4, 0);
2278 					if_sethwassistbits(ifp, CSUM_TSO, 0);
2279 				}
2280 			} else {
2281 				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2282 				if_sethwassistbits(ifp, 0, (CSUM_TSO));
2283 			}
2284 			if (ifr->ifreqcap |= IFCAP_LRO) {
2285 				if_setcapenablebit(ifp, IFCAP_LRO, 0);
2286 			} else {
2287 				if_setcapenablebit(ifp, 0, IFCAP_LRO);
2288 			}
2289 #endif
2290 			mtx_unlock(&xnb->sc_lock);
2291 			break;
2292 		case SIOCSIFMTU:
2293 			if_setmtu(ifp, ifr->ifr_mtu);
2294 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2295 			xnb_ifinit(xnb);
2296 			break;
2297 		case SIOCADDMULTI:
2298 		case SIOCDELMULTI:
2299 			break;
2300 		case SIOCSIFMEDIA:
2301 		case SIOCGIFMEDIA:
2302 			error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2303 			break;
2304 		default:
2305 			error = ether_ioctl(ifp, cmd, data);
2306 			break;
2307 	}
2308 	return (error);
2309 }
2310 
2311 static void
2312 xnb_start_locked(if_t ifp)
2313 {
2314 	netif_rx_back_ring_t *rxb;
2315 	struct xnb_softc *xnb;
2316 	struct mbuf *mbufc;
2317 	RING_IDX req_prod_local;
2318 
2319 	xnb = if_getsoftc(ifp);
2320 	rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2321 
2322 	if (!xnb->carrier)
2323 		return;
2324 
2325 	do {
2326 		int out_of_space = 0;
2327 		int notify;
2328 		req_prod_local = rxb->sring->req_prod;
2329 		xen_rmb();
2330 		for (;;) {
2331 			int error;
2332 
2333 			mbufc = if_dequeue(ifp);
2334 			if (mbufc == NULL)
2335 				break;
2336 			error = xnb_send(rxb, xnb->otherend_id, mbufc,
2337 			    		 xnb->rx_gnttab);
2338 			switch (error) {
2339 				case EAGAIN:
2340 					/*
2341 					 * Insufficient space in the ring.
2342 					 * Requeue pkt and send when space is
2343 					 * available.
2344 					 */
2345 					if_sendq_prepend(ifp, mbufc);
2346 					/*
2347 					 * Perhaps the frontend missed an IRQ
2348 					 * and went to sleep.  Notify it to wake
2349 					 * it up.
2350 					 */
2351 					out_of_space = 1;
2352 					break;
2353 
2354 				case EINVAL:
2355 					/* OS gave a corrupt packet.  Drop it.*/
2356 					if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2357 					/* FALLTHROUGH */
2358 				default:
2359 					/* Send succeeded, or packet had error.
2360 					 * Free the packet */
2361 					if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2362 					if (mbufc)
2363 						m_freem(mbufc);
2364 					break;
2365 			}
2366 			if (out_of_space != 0)
2367 				break;
2368 		}
2369 
2370 		RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2371 		if ((notify != 0) || (out_of_space != 0))
2372 			xen_intr_signal(xnb->xen_intr_handle);
2373 		rxb->sring->req_event = req_prod_local + 1;
2374 		xen_mb();
2375 	} while (rxb->sring->req_prod != req_prod_local) ;
2376 }
2377 
2378 /**
2379  * Sends one packet to the ring.  Blocks until the packet is on the ring
2380  * \param[in]	mbufc	Contains one packet to send.  Caller must free
2381  * \param[in,out] rxb	The packet will be pushed onto this ring, but the
2382  * 			otherend will not be notified.
2383  * \param[in]	otherend The domain ID of the other end of the connection
2384  * \retval	EAGAIN	The ring did not have enough space for the packet.
2385  * 			The ring has not been modified
2386  * \param[in,out] gnttab Pointer to enough memory for a grant table.  We make
2387  * 			this a function parameter so that we will take less
2388  * 			stack space.
2389  * \retval EINVAL	mbufc was corrupt or not convertible into a pkt
2390  */
2391 static int
2392 xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2393 	 gnttab_copy_table gnttab)
2394 {
2395 	struct xnb_pkt pkt;
2396 	int error, n_entries;
2397 	RING_IDX space;
2398 
2399 	space = ring->sring->req_prod - ring->req_cons;
2400 	error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2401 	if (error != 0)
2402 		return error;
2403 	n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2404 	if (n_entries != 0) {
2405 		int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2406 		    gnttab, n_entries);
2407 		KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2408 		    hv_ret));
2409 	}
2410 
2411 	xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2412 
2413 	return 0;
2414 }
2415 
2416 static void
2417 xnb_start(if_t ifp)
2418 {
2419 	struct xnb_softc *xnb;
2420 
2421 	xnb = if_getsoftc(ifp);
2422 	mtx_lock(&xnb->rx_lock);
2423 	xnb_start_locked(ifp);
2424 	mtx_unlock(&xnb->rx_lock);
2425 }
2426 
2427 /* equivalent of network_open() in Linux */
2428 static void
2429 xnb_ifinit_locked(struct xnb_softc *xnb)
2430 {
2431 	if_t ifp;
2432 
2433 	ifp = xnb->xnb_ifp;
2434 
2435 	mtx_assert(&xnb->sc_lock, MA_OWNED);
2436 
2437 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2438 		return;
2439 
2440 	xnb_stop(xnb);
2441 
2442 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2443 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2444 	if_link_state_change(ifp, LINK_STATE_UP);
2445 }
2446 
2447 static void
2448 xnb_ifinit(void *xsc)
2449 {
2450 	struct xnb_softc *xnb = xsc;
2451 
2452 	mtx_lock(&xnb->sc_lock);
2453 	xnb_ifinit_locked(xnb);
2454 	mtx_unlock(&xnb->sc_lock);
2455 }
2456 
2457 /**
2458  * Callback used by the generic networking code to tell us when our carrier
2459  * state has changed.  Since we don't have a physical carrier, we don't care
2460  */
2461 static int
2462 xnb_ifmedia_upd(if_t ifp)
2463 {
2464 	return (0);
2465 }
2466 
2467 /**
2468  * Callback used by the generic networking code to ask us what our carrier
2469  * state is.  Since we don't have a physical carrier, this is very simple
2470  */
2471 static void
2472 xnb_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
2473 {
2474 	ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2475 	ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2476 }
2477 
2478 /*---------------------------- NewBus Registration ---------------------------*/
2479 static device_method_t xnb_methods[] = {
2480 	/* Device interface */
2481 	DEVMETHOD(device_probe,		xnb_probe),
2482 	DEVMETHOD(device_attach,	xnb_attach),
2483 	DEVMETHOD(device_detach,	xnb_detach),
2484 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
2485 	DEVMETHOD(device_suspend,	xnb_suspend),
2486 	DEVMETHOD(device_resume,	xnb_resume),
2487 
2488 	/* Xenbus interface */
2489 	DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2490 	{ 0, 0 }
2491 };
2492 
2493 static driver_t xnb_driver = {
2494 	"xnb",
2495 	xnb_methods,
2496 	sizeof(struct xnb_softc),
2497 };
2498 
2499 DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, 0, 0);
2500 
2501 /*-------------------------- Unit Tests -------------------------------------*/
2502 #ifdef XNB_DEBUG
2503 #include "netback_unit_tests.c"
2504 #endif
2505