xref: /freebsd/sys/dev/xen/blkback/blkback.c (revision e4c66ddabdb470bab319705c1834a4867c508a43)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009-2012 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Ken Merry           (Spectra Logic Corporation)
34  */
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file blkback.c
40  *
41  * \brief Device driver supporting the vending of block storage from
42  *        a FreeBSD domain to other domains.
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 
50 #include <sys/bio.h>
51 #include <sys/bus.h>
52 #include <sys/conf.h>
53 #include <sys/devicestat.h>
54 #include <sys/disk.h>
55 #include <sys/fcntl.h>
56 #include <sys/filedesc.h>
57 #include <sys/kdb.h>
58 #include <sys/module.h>
59 #include <sys/namei.h>
60 #include <sys/proc.h>
61 #include <sys/rman.h>
62 #include <sys/taskqueue.h>
63 #include <sys/types.h>
64 #include <sys/vnode.h>
65 #include <sys/mount.h>
66 #include <sys/sysctl.h>
67 #include <sys/bitstring.h>
68 #include <sys/sdt.h>
69 
70 #include <geom/geom.h>
71 
72 #include <machine/_inttypes.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 
78 #include <xen/xen-os.h>
79 #include <xen/blkif.h>
80 #include <xen/gnttab.h>
81 #include <xen/xen_intr.h>
82 
83 #include <xen/interface/event_channel.h>
84 #include <xen/interface/grant_table.h>
85 
86 #include <xen/xenbus/xenbusvar.h>
87 
88 /*--------------------------- Compile-time Tunables --------------------------*/
89 /**
90  * The maximum number of shared memory ring pages we will allow in a
91  * negotiated block-front/back communication channel.  Allow enough
92  * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
93  */
94 #define	XBB_MAX_RING_PAGES		32
95 
96 /**
97  * The maximum number of outstanding request blocks (request headers plus
98  * additional segment blocks) we will allow in a negotiated block-front/back
99  * communication channel.
100  */
101 #define	XBB_MAX_REQUESTS 					\
102 	__CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
103 
104 /**
105  * \brief Define to force all I/O to be performed on memory owned by the
106  *        backend device, with a copy-in/out to the remote domain's memory.
107  *
108  * \note  This option is currently required when this driver's domain is
109  *        operating in HVM mode on a system using an IOMMU.
110  *
111  * This driver uses Xen's grant table API to gain access to the memory of
112  * the remote domains it serves.  When our domain is operating in PV mode,
113  * the grant table mechanism directly updates our domain's page table entries
114  * to point to the physical pages of the remote domain.  This scheme guarantees
115  * that blkback and the backing devices it uses can safely perform DMA
116  * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
117  * insure that our domain cannot DMA to pages owned by another domain.  As
118  * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
119  * table API.  For this reason, in HVM mode, we must bounce all requests into
120  * memory that is mapped into our domain at domain startup and thus has
121  * valid IOMMU mappings.
122  */
123 #define XBB_USE_BOUNCE_BUFFERS
124 
125 /**
126  * \brief Define to enable rudimentary request logging to the console.
127  */
128 #undef XBB_DEBUG
129 
130 /*---------------------------------- Macros ----------------------------------*/
131 /**
132  * Custom malloc type for all driver allocations.
133  */
134 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
135 
136 #ifdef XBB_DEBUG
137 #define DPRINTF(fmt, args...)					\
138     printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
139 #else
140 #define DPRINTF(fmt, args...) do {} while(0)
141 #endif
142 
143 /**
144  * The maximum mapped region size per request we will allow in a negotiated
145  * block-front/back communication channel.
146  */
147 #define	XBB_MAX_REQUEST_SIZE					\
148 	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
149 
150 /**
151  * The maximum number of segments (within a request header and accompanying
152  * segment blocks) per request we will allow in a negotiated block-front/back
153  * communication channel.
154  */
155 #define	XBB_MAX_SEGMENTS_PER_REQUEST				\
156 	(MIN(UIO_MAXIOV,					\
157 	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
158 		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
159 
160 /**
161  * The maximum number of ring pages that we can allow per request list.
162  * We limit this to the maximum number of segments per request, because
163  * that is already a reasonable number of segments to aggregate.  This
164  * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
165  * because that would leave situations where we can't dispatch even one
166  * large request.
167  */
168 #define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
169 
170 /*--------------------------- Forward Declarations ---------------------------*/
171 struct xbb_softc;
172 struct xbb_xen_req;
173 
174 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
175 			      ...) __attribute__((format(printf, 3, 4)));
176 static int  xbb_shutdown(struct xbb_softc *xbb);
177 
178 /*------------------------------ Data Structures -----------------------------*/
179 
180 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
181 
182 typedef enum {
183 	XBB_REQLIST_NONE	= 0x00,
184 	XBB_REQLIST_MAPPED	= 0x01
185 } xbb_reqlist_flags;
186 
187 struct xbb_xen_reqlist {
188 	/**
189 	 * Back reference to the parent block back instance for this
190 	 * request.  Used during bio_done handling.
191 	 */
192 	struct xbb_softc        *xbb;
193 
194 	/**
195 	 * BLKIF_OP code for this request.
196 	 */
197 	int			 operation;
198 
199 	/**
200 	 * Set to BLKIF_RSP_* to indicate request status.
201 	 *
202 	 * This field allows an error status to be recorded even if the
203 	 * delivery of this status must be deferred.  Deferred reporting
204 	 * is necessary, for example, when an error is detected during
205 	 * completion processing of one bio when other bios for this
206 	 * request are still outstanding.
207 	 */
208 	int			 status;
209 
210 	/**
211 	 * Number of 512 byte sectors not transferred.
212 	 */
213 	int			 residual_512b_sectors;
214 
215 	/**
216 	 * Starting sector number of the first request in the list.
217 	 */
218 	off_t			 starting_sector_number;
219 
220 	/**
221 	 * If we're going to coalesce, the next contiguous sector would be
222 	 * this one.
223 	 */
224 	off_t			 next_contig_sector;
225 
226 	/**
227 	 * Number of child requests in the list.
228 	 */
229 	int			 num_children;
230 
231 	/**
232 	 * Number of I/O requests still pending on the backend.
233 	 */
234 	int			 pendcnt;
235 
236 	/**
237 	 * Total number of segments for requests in the list.
238 	 */
239 	int			 nr_segments;
240 
241 	/**
242 	 * Flags for this particular request list.
243 	 */
244 	xbb_reqlist_flags	 flags;
245 
246 	/**
247 	 * Kernel virtual address space reserved for this request
248 	 * list structure and used to map the remote domain's pages for
249 	 * this I/O, into our domain's address space.
250 	 */
251 	uint8_t			*kva;
252 
253 	/**
254 	 * Base, pseudo-physical address, corresponding to the start
255 	 * of this request's kva region.
256 	 */
257 	uint64_t	 	 gnt_base;
258 
259 
260 #ifdef XBB_USE_BOUNCE_BUFFERS
261 	/**
262 	 * Pre-allocated domain local memory used to proxy remote
263 	 * domain memory during I/O operations.
264 	 */
265 	uint8_t			*bounce;
266 #endif
267 
268 	/**
269 	 * Array of grant handles (one per page) used to map this request.
270 	 */
271 	grant_handle_t		*gnt_handles;
272 
273 	/**
274 	 * Device statistics request ordering type (ordered or simple).
275 	 */
276 	devstat_tag_type	 ds_tag_type;
277 
278 	/**
279 	 * Device statistics request type (read, write, no_data).
280 	 */
281 	devstat_trans_flags	 ds_trans_type;
282 
283 	/**
284 	 * The start time for this request.
285 	 */
286 	struct bintime		 ds_t0;
287 
288 	/**
289 	 * Linked list of contiguous requests with the same operation type.
290 	 */
291 	struct xbb_xen_req_list	 contig_req_list;
292 
293 	/**
294 	 * Linked list links used to aggregate idle requests in the
295 	 * request list free pool (xbb->reqlist_free_stailq) and pending
296 	 * requests waiting for execution (xbb->reqlist_pending_stailq).
297 	 */
298 	STAILQ_ENTRY(xbb_xen_reqlist) links;
299 };
300 
301 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
302 
303 /**
304  * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
305  */
306 struct xbb_xen_req {
307 	/**
308 	 * Linked list links used to aggregate requests into a reqlist
309 	 * and to store them in the request free pool.
310 	 */
311 	STAILQ_ENTRY(xbb_xen_req) links;
312 
313 	/**
314 	 * The remote domain's identifier for this I/O request.
315 	 */
316 	uint64_t		  id;
317 
318 	/**
319 	 * The number of pages currently mapped for this request.
320 	 */
321 	int			  nr_pages;
322 
323 	/**
324 	 * The number of 512 byte sectors comprising this requests.
325 	 */
326 	int			  nr_512b_sectors;
327 
328 	/**
329 	 * BLKIF_OP code for this request.
330 	 */
331 	int			  operation;
332 
333 	/**
334 	 * Storage used for non-native ring requests.
335 	 */
336 	blkif_request_t		 ring_req_storage;
337 
338 	/**
339 	 * Pointer to the Xen request in the ring.
340 	 */
341 	blkif_request_t		*ring_req;
342 
343 	/**
344 	 * Consumer index for this request.
345 	 */
346 	RING_IDX		 req_ring_idx;
347 
348 	/**
349 	 * The start time for this request.
350 	 */
351 	struct bintime		 ds_t0;
352 
353 	/**
354 	 * Pointer back to our parent request list.
355 	 */
356 	struct xbb_xen_reqlist  *reqlist;
357 };
358 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
359 
360 /**
361  * \brief Configuration data for the shared memory request ring
362  *        used to communicate with the front-end client of this
363  *        this driver.
364  */
365 struct xbb_ring_config {
366 	/** KVA address where ring memory is mapped. */
367 	vm_offset_t	va;
368 
369 	/** The pseudo-physical address where ring memory is mapped.*/
370 	uint64_t	gnt_addr;
371 
372 	/**
373 	 * Grant table handles, one per-ring page, returned by the
374 	 * hyperpervisor upon mapping of the ring and required to
375 	 * unmap it when a connection is torn down.
376 	 */
377 	grant_handle_t	handle[XBB_MAX_RING_PAGES];
378 
379 	/**
380 	 * The device bus address returned by the hypervisor when
381 	 * mapping the ring and required to unmap it when a connection
382 	 * is torn down.
383 	 */
384 	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
385 
386 	/** The number of ring pages mapped for the current connection. */
387 	u_int		ring_pages;
388 
389 	/**
390 	 * The grant references, one per-ring page, supplied by the
391 	 * front-end, allowing us to reference the ring pages in the
392 	 * front-end's domain and to map these pages into our own domain.
393 	 */
394 	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
395 
396 	/** The interrupt driven even channel used to signal ring events. */
397 	evtchn_port_t   evtchn;
398 };
399 
400 /**
401  * Per-instance connection state flags.
402  */
403 typedef enum
404 {
405 	/**
406 	 * The front-end requested a read-only mount of the
407 	 * back-end device/file.
408 	 */
409 	XBBF_READ_ONLY         = 0x01,
410 
411 	/** Communication with the front-end has been established. */
412 	XBBF_RING_CONNECTED    = 0x02,
413 
414 	/**
415 	 * Front-end requests exist in the ring and are waiting for
416 	 * xbb_xen_req objects to free up.
417 	 */
418 	XBBF_RESOURCE_SHORTAGE = 0x04,
419 
420 	/** Connection teardown in progress. */
421 	XBBF_SHUTDOWN          = 0x08,
422 
423 	/** A thread is already performing shutdown processing. */
424 	XBBF_IN_SHUTDOWN       = 0x10
425 } xbb_flag_t;
426 
427 /** Backend device type.  */
428 typedef enum {
429 	/** Backend type unknown. */
430 	XBB_TYPE_NONE		= 0x00,
431 
432 	/**
433 	 * Backend type disk (access via cdev switch
434 	 * strategy routine).
435 	 */
436 	XBB_TYPE_DISK		= 0x01,
437 
438 	/** Backend type file (access vnode operations.). */
439 	XBB_TYPE_FILE		= 0x02
440 } xbb_type;
441 
442 /**
443  * \brief Structure used to memoize information about a per-request
444  *        scatter-gather list.
445  *
446  * The chief benefit of using this data structure is it avoids having
447  * to reparse the possibly discontiguous S/G list in the original
448  * request.  Due to the way that the mapping of the memory backing an
449  * I/O transaction is handled by Xen, a second pass is unavoidable.
450  * At least this way the second walk is a simple array traversal.
451  *
452  * \note A single Scatter/Gather element in the block interface covers
453  *       at most 1 machine page.  In this context a sector (blkif
454  *       nomenclature, not what I'd choose) is a 512b aligned unit
455  *       of mapping within the machine page referenced by an S/G
456  *       element.
457  */
458 struct xbb_sg {
459 	/** The number of 512b data chunks mapped in this S/G element. */
460 	int16_t nsect;
461 
462 	/**
463 	 * The index (0 based) of the first 512b data chunk mapped
464 	 * in this S/G element.
465 	 */
466 	uint8_t first_sect;
467 
468 	/**
469 	 * The index (0 based) of the last 512b data chunk mapped
470 	 * in this S/G element.
471 	 */
472 	uint8_t last_sect;
473 };
474 
475 /**
476  * Character device backend specific configuration data.
477  */
478 struct xbb_dev_data {
479 	/** Cdev used for device backend access.  */
480 	struct cdev   *cdev;
481 
482 	/** Cdev switch used for device backend access.  */
483 	struct cdevsw *csw;
484 
485 	/** Used to hold a reference on opened cdev backend devices. */
486 	int	       dev_ref;
487 };
488 
489 /**
490  * File backend specific configuration data.
491  */
492 struct xbb_file_data {
493 	/** Credentials to use for vnode backed (file based) I/O. */
494 	struct ucred   *cred;
495 
496 	/**
497 	 * \brief Array of io vectors used to process file based I/O.
498 	 *
499 	 * Only a single file based request is outstanding per-xbb instance,
500 	 * so we only need one of these.
501 	 */
502 	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
503 #ifdef XBB_USE_BOUNCE_BUFFERS
504 
505 	/**
506 	 * \brief Array of io vectors used to handle bouncing of file reads.
507 	 *
508 	 * Vnode operations are free to modify uio data during their
509 	 * exectuion.  In the case of a read with bounce buffering active,
510 	 * we need some of the data from the original uio in order to
511 	 * bounce-out the read data.  This array serves as the temporary
512 	 * storage for this saved data.
513 	 */
514 	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
515 
516 	/**
517 	 * \brief Array of memoized bounce buffer kva offsets used
518 	 *        in the file based backend.
519 	 *
520 	 * Due to the way that the mapping of the memory backing an
521 	 * I/O transaction is handled by Xen, a second pass through
522 	 * the request sg elements is unavoidable. We memoize the computed
523 	 * bounce address here to reduce the cost of the second walk.
524 	 */
525 	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
526 #endif /* XBB_USE_BOUNCE_BUFFERS */
527 };
528 
529 /**
530  * Collection of backend type specific data.
531  */
532 union xbb_backend_data {
533 	struct xbb_dev_data  dev;
534 	struct xbb_file_data file;
535 };
536 
537 /**
538  * Function signature of backend specific I/O handlers.
539  */
540 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
541 			      struct xbb_xen_reqlist *reqlist, int operation,
542 			      int flags);
543 
544 /**
545  * Per-instance configuration data.
546  */
547 struct xbb_softc {
548 
549 	/**
550 	 * Task-queue used to process I/O requests.
551 	 */
552 	struct taskqueue	 *io_taskqueue;
553 
554 	/**
555 	 * Single "run the request queue" task enqueued
556 	 * on io_taskqueue.
557 	 */
558 	struct task		  io_task;
559 
560 	/** Device type for this instance. */
561 	xbb_type		  device_type;
562 
563 	/** NewBus device corresponding to this instance. */
564 	device_t		  dev;
565 
566 	/** Backend specific dispatch routine for this instance. */
567 	xbb_dispatch_t		  dispatch_io;
568 
569 	/** The number of requests outstanding on the backend device/file. */
570 	int			  active_request_count;
571 
572 	/** Free pool of request tracking structures. */
573 	struct xbb_xen_req_list   request_free_stailq;
574 
575 	/** Array, sized at connection time, of request tracking structures. */
576 	struct xbb_xen_req	 *requests;
577 
578 	/** Free pool of request list structures. */
579 	struct xbb_xen_reqlist_list reqlist_free_stailq;
580 
581 	/** List of pending request lists awaiting execution. */
582 	struct xbb_xen_reqlist_list reqlist_pending_stailq;
583 
584 	/** Array, sized at connection time, of request list structures. */
585 	struct xbb_xen_reqlist	 *request_lists;
586 
587 	/**
588 	 * Global pool of kva used for mapping remote domain ring
589 	 * and I/O transaction data.
590 	 */
591 	vm_offset_t		  kva;
592 
593 	/** Pseudo-physical address corresponding to kva. */
594 	uint64_t		  gnt_base_addr;
595 
596 	/** The size of the global kva pool. */
597 	int			  kva_size;
598 
599 	/** The size of the KVA area used for request lists. */
600 	int			  reqlist_kva_size;
601 
602 	/** The number of pages of KVA used for request lists */
603 	int			  reqlist_kva_pages;
604 
605 	/** Bitmap of free KVA pages */
606 	bitstr_t		 *kva_free;
607 
608 	/**
609 	 * \brief Cached value of the front-end's domain id.
610 	 *
611 	 * This value is used at once for each mapped page in
612 	 * a transaction.  We cache it to avoid incuring the
613 	 * cost of an ivar access every time this is needed.
614 	 */
615 	domid_t			  otherend_id;
616 
617 	/**
618 	 * \brief The blkif protocol abi in effect.
619 	 *
620 	 * There are situations where the back and front ends can
621 	 * have a different, native abi (e.g. intel x86_64 and
622 	 * 32bit x86 domains on the same machine).  The back-end
623 	 * always accommodates the front-end's native abi.  That
624 	 * value is pulled from the XenStore and recorded here.
625 	 */
626 	int			  abi;
627 
628 	/**
629 	 * \brief The maximum number of requests and request lists allowed
630 	 *        to be in flight at a time.
631 	 *
632 	 * This value is negotiated via the XenStore.
633 	 */
634 	u_int			  max_requests;
635 
636 	/**
637 	 * \brief The maximum number of segments (1 page per segment)
638 	 *	  that can be mapped by a request.
639 	 *
640 	 * This value is negotiated via the XenStore.
641 	 */
642 	u_int			  max_request_segments;
643 
644 	/**
645 	 * \brief Maximum number of segments per request list.
646 	 *
647 	 * This value is derived from and will generally be larger than
648 	 * max_request_segments.
649 	 */
650 	u_int			  max_reqlist_segments;
651 
652 	/**
653 	 * The maximum size of any request to this back-end
654 	 * device.
655 	 *
656 	 * This value is negotiated via the XenStore.
657 	 */
658 	u_int			  max_request_size;
659 
660 	/**
661 	 * The maximum size of any request list.  This is derived directly
662 	 * from max_reqlist_segments.
663 	 */
664 	u_int			  max_reqlist_size;
665 
666 	/** Various configuration and state bit flags. */
667 	xbb_flag_t		  flags;
668 
669 	/** Ring mapping and interrupt configuration data. */
670 	struct xbb_ring_config	  ring_config;
671 
672 	/** Runtime, cross-abi safe, structures for ring access. */
673 	blkif_back_rings_t	  rings;
674 
675 	/** IRQ mapping for the communication ring event channel. */
676 	xen_intr_handle_t	  xen_intr_handle;
677 
678 	/**
679 	 * \brief Backend access mode flags (e.g. write, or read-only).
680 	 *
681 	 * This value is passed to us by the front-end via the XenStore.
682 	 */
683 	char			 *dev_mode;
684 
685 	/**
686 	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
687 	 *
688 	 * This value is passed to us by the front-end via the XenStore.
689 	 * Currently unused.
690 	 */
691 	char			 *dev_type;
692 
693 	/**
694 	 * \brief Backend device/file identifier.
695 	 *
696 	 * This value is passed to us by the front-end via the XenStore.
697 	 * We expect this to be a POSIX path indicating the file or
698 	 * device to open.
699 	 */
700 	char			 *dev_name;
701 
702 	/**
703 	 * Vnode corresponding to the backend device node or file
704 	 * we are acessing.
705 	 */
706 	struct vnode		 *vn;
707 
708 	union xbb_backend_data	  backend;
709 
710 	/** The native sector size of the backend. */
711 	u_int			  sector_size;
712 
713 	/** log2 of sector_size.  */
714 	u_int			  sector_size_shift;
715 
716 	/** Size in bytes of the backend device or file.  */
717 	off_t			  media_size;
718 
719 	/**
720 	 * \brief media_size expressed in terms of the backend native
721 	 *	  sector size.
722 	 *
723 	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
724 	 */
725 	uint64_t		  media_num_sectors;
726 
727 	/**
728 	 * \brief Array of memoized scatter gather data computed during the
729 	 *	  conversion of blkif ring requests to internal xbb_xen_req
730 	 *	  structures.
731 	 *
732 	 * Ring processing is serialized so we only need one of these.
733 	 */
734 	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
735 
736 	/**
737 	 * Temporary grant table map used in xbb_dispatch_io().  When
738 	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
739 	 * stack could cause a stack overflow.
740 	 */
741 	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
742 
743 	/** Mutex protecting per-instance data. */
744 	struct mtx		  lock;
745 
746 	/**
747 	 * Resource representing allocated physical address space
748 	 * associated with our per-instance kva region.
749 	 */
750 	struct resource		 *pseudo_phys_res;
751 
752 	/** Resource id for allocated physical address space. */
753 	int			  pseudo_phys_res_id;
754 
755 	/**
756 	 * I/O statistics from BlockBack dispatch down.  These are
757 	 * coalesced requests, and we start them right before execution.
758 	 */
759 	struct devstat		 *xbb_stats;
760 
761 	/**
762 	 * I/O statistics coming into BlockBack.  These are the requests as
763 	 * we get them from BlockFront.  They are started as soon as we
764 	 * receive a request, and completed when the I/O is complete.
765 	 */
766 	struct devstat		 *xbb_stats_in;
767 
768 	/** Disable sending flush to the backend */
769 	int			  disable_flush;
770 
771 	/** Send a real flush for every N flush requests */
772 	int			  flush_interval;
773 
774 	/** Count of flush requests in the interval */
775 	int			  flush_count;
776 
777 	/** Don't coalesce requests if this is set */
778 	int			  no_coalesce_reqs;
779 
780 	/** Number of requests we have received */
781 	uint64_t		  reqs_received;
782 
783 	/** Number of requests we have completed*/
784 	uint64_t		  reqs_completed;
785 
786 	/** Number of requests we queued but not pushed*/
787 	uint64_t		  reqs_queued_for_completion;
788 
789 	/** Number of requests we completed with an error status*/
790 	uint64_t		  reqs_completed_with_error;
791 
792 	/** How many forced dispatches (i.e. without coalescing) have happened */
793 	uint64_t		  forced_dispatch;
794 
795 	/** How many normal dispatches have happened */
796 	uint64_t		  normal_dispatch;
797 
798 	/** How many total dispatches have happened */
799 	uint64_t		  total_dispatch;
800 
801 	/** How many times we have run out of KVA */
802 	uint64_t		  kva_shortages;
803 
804 	/** How many times we have run out of request structures */
805 	uint64_t		  request_shortages;
806 
807 	/** Watch to wait for hotplug script execution */
808 	struct xs_watch		  hotplug_watch;
809 
810 	/** Got the needed data from hotplug scripts? */
811 	bool			  hotplug_done;
812 };
813 
814 /*---------------------------- Request Processing ----------------------------*/
815 /**
816  * Allocate an internal transaction tracking structure from the free pool.
817  *
818  * \param xbb  Per-instance xbb configuration structure.
819  *
820  * \return  On success, a pointer to the allocated xbb_xen_req structure.
821  *          Otherwise NULL.
822  */
823 static inline struct xbb_xen_req *
824 xbb_get_req(struct xbb_softc *xbb)
825 {
826 	struct xbb_xen_req *req;
827 
828 	req = NULL;
829 
830 	mtx_assert(&xbb->lock, MA_OWNED);
831 
832 	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
833 		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
834 		xbb->active_request_count++;
835 	}
836 
837 	return (req);
838 }
839 
840 /**
841  * Return an allocated transaction tracking structure to the free pool.
842  *
843  * \param xbb  Per-instance xbb configuration structure.
844  * \param req  The request structure to free.
845  */
846 static inline void
847 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
848 {
849 	mtx_assert(&xbb->lock, MA_OWNED);
850 
851 	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
852 	xbb->active_request_count--;
853 
854 	KASSERT(xbb->active_request_count >= 0,
855 		("xbb_release_req: negative active count"));
856 }
857 
858 /**
859  * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
860  *
861  * \param xbb	    Per-instance xbb configuration structure.
862  * \param req_list  The list of requests to free.
863  * \param nreqs	    The number of items in the list.
864  */
865 static inline void
866 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
867 		 int nreqs)
868 {
869 	mtx_assert(&xbb->lock, MA_OWNED);
870 
871 	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
872 	xbb->active_request_count -= nreqs;
873 
874 	KASSERT(xbb->active_request_count >= 0,
875 		("xbb_release_reqs: negative active count"));
876 }
877 
878 /**
879  * Given a page index and 512b sector offset within that page,
880  * calculate an offset into a request's kva region.
881  *
882  * \param reqlist The request structure whose kva region will be accessed.
883  * \param pagenr  The page index used to compute the kva offset.
884  * \param sector  The 512b sector index used to compute the page relative
885  *                kva offset.
886  *
887  * \return  The computed global KVA offset.
888  */
889 static inline uint8_t *
890 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
891 {
892 	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
893 }
894 
895 #ifdef XBB_USE_BOUNCE_BUFFERS
896 /**
897  * Given a page index and 512b sector offset within that page,
898  * calculate an offset into a request's local bounce memory region.
899  *
900  * \param reqlist The request structure whose bounce region will be accessed.
901  * \param pagenr  The page index used to compute the bounce offset.
902  * \param sector  The 512b sector index used to compute the page relative
903  *                bounce offset.
904  *
905  * \return  The computed global bounce buffer address.
906  */
907 static inline uint8_t *
908 xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
909 {
910 	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
911 }
912 #endif
913 
914 /**
915  * Given a page number and 512b sector offset within that page,
916  * calculate an offset into the request's memory region that the
917  * underlying backend device/file should use for I/O.
918  *
919  * \param reqlist The request structure whose I/O region will be accessed.
920  * \param pagenr  The page index used to compute the I/O offset.
921  * \param sector  The 512b sector index used to compute the page relative
922  *                I/O offset.
923  *
924  * \return  The computed global I/O address.
925  *
926  * Depending on configuration, this will either be a local bounce buffer
927  * or a pointer to the memory mapped in from the front-end domain for
928  * this request.
929  */
930 static inline uint8_t *
931 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
932 {
933 #ifdef XBB_USE_BOUNCE_BUFFERS
934 	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
935 #else
936 	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
937 #endif
938 }
939 
940 /**
941  * Given a page index and 512b sector offset within that page, calculate
942  * an offset into the local pseudo-physical address space used to map a
943  * front-end's request data into a request.
944  *
945  * \param reqlist The request list structure whose pseudo-physical region
946  *                will be accessed.
947  * \param pagenr  The page index used to compute the pseudo-physical offset.
948  * \param sector  The 512b sector index used to compute the page relative
949  *                pseudo-physical offset.
950  *
951  * \return  The computed global pseudo-phsyical address.
952  *
953  * Depending on configuration, this will either be a local bounce buffer
954  * or a pointer to the memory mapped in from the front-end domain for
955  * this request.
956  */
957 static inline uintptr_t
958 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
959 {
960 	struct xbb_softc *xbb;
961 
962 	xbb = reqlist->xbb;
963 
964 	return ((uintptr_t)(xbb->gnt_base_addr +
965 		(uintptr_t)(reqlist->kva - xbb->kva) +
966 		(PAGE_SIZE * pagenr) + (sector << 9)));
967 }
968 
969 /**
970  * Get Kernel Virtual Address space for mapping requests.
971  *
972  * \param xbb         Per-instance xbb configuration structure.
973  * \param nr_pages    Number of pages needed.
974  * \param check_only  If set, check for free KVA but don't allocate it.
975  * \param have_lock   If set, xbb lock is already held.
976  *
977  * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
978  *
979  * Note:  This should be unnecessary once we have either chaining or
980  * scatter/gather support for struct bio.  At that point we'll be able to
981  * put multiple addresses and lengths in one bio/bio chain and won't need
982  * to map everything into one virtual segment.
983  */
984 static uint8_t *
985 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
986 {
987 	int first_clear;
988 	int num_clear;
989 	uint8_t *free_kva;
990 	int      i;
991 
992 	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
993 
994 	first_clear = 0;
995 	free_kva = NULL;
996 
997 	mtx_lock(&xbb->lock);
998 
999 	/*
1000 	 * Look for the first available page.  If there are none, we're done.
1001 	 */
1002 	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
1003 
1004 	if (first_clear == -1)
1005 		goto bailout;
1006 
1007 	/*
1008 	 * Starting at the first available page, look for consecutive free
1009 	 * pages that will satisfy the user's request.
1010 	 */
1011 	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1012 		/*
1013 		 * If this is true, the page is used, so we have to reset
1014 		 * the number of clear pages and the first clear page
1015 		 * (since it pointed to a region with an insufficient number
1016 		 * of clear pages).
1017 		 */
1018 		if (bit_test(xbb->kva_free, i)) {
1019 			num_clear = 0;
1020 			first_clear = -1;
1021 			continue;
1022 		}
1023 
1024 		if (first_clear == -1)
1025 			first_clear = i;
1026 
1027 		/*
1028 		 * If this is true, we've found a large enough free region
1029 		 * to satisfy the request.
1030 		 */
1031 		if (++num_clear == nr_pages) {
1032 
1033 			bit_nset(xbb->kva_free, first_clear,
1034 				 first_clear + nr_pages - 1);
1035 
1036 			free_kva = xbb->kva +
1037 				(uint8_t *)((intptr_t)first_clear * PAGE_SIZE);
1038 
1039 			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1040 				free_kva + (nr_pages * PAGE_SIZE) <=
1041 				(uint8_t *)xbb->ring_config.va,
1042 				("Free KVA %p len %d out of range, "
1043 				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1044 				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1045 				 (uintmax_t)xbb->ring_config.va));
1046 			break;
1047 		}
1048 	}
1049 
1050 bailout:
1051 
1052 	if (free_kva == NULL) {
1053 		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1054 		xbb->kva_shortages++;
1055 	}
1056 
1057 	mtx_unlock(&xbb->lock);
1058 
1059 	return (free_kva);
1060 }
1061 
1062 /**
1063  * Free allocated KVA.
1064  *
1065  * \param xbb	    Per-instance xbb configuration structure.
1066  * \param kva_ptr   Pointer to allocated KVA region.
1067  * \param nr_pages  Number of pages in the KVA region.
1068  */
1069 static void
1070 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1071 {
1072 	intptr_t start_page;
1073 
1074 	mtx_assert(&xbb->lock, MA_OWNED);
1075 
1076 	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1077 	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1078 
1079 }
1080 
1081 /**
1082  * Unmap the front-end pages associated with this I/O request.
1083  *
1084  * \param req  The request structure to unmap.
1085  */
1086 static void
1087 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1088 {
1089 	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1090 	u_int			      i;
1091 	u_int			      invcount;
1092 	int			      error;
1093 
1094 	invcount = 0;
1095 	for (i = 0; i < reqlist->nr_segments; i++) {
1096 
1097 		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1098 			continue;
1099 
1100 		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1101 		unmap[invcount].dev_bus_addr = 0;
1102 		unmap[invcount].handle       = reqlist->gnt_handles[i];
1103 		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1104 		invcount++;
1105 	}
1106 
1107 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1108 					  unmap, invcount);
1109 	KASSERT(error == 0, ("Grant table operation failed"));
1110 }
1111 
1112 /**
1113  * Allocate an internal transaction tracking structure from the free pool.
1114  *
1115  * \param xbb  Per-instance xbb configuration structure.
1116  *
1117  * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1118  *          Otherwise NULL.
1119  */
1120 static inline struct xbb_xen_reqlist *
1121 xbb_get_reqlist(struct xbb_softc *xbb)
1122 {
1123 	struct xbb_xen_reqlist *reqlist;
1124 
1125 	reqlist = NULL;
1126 
1127 	mtx_assert(&xbb->lock, MA_OWNED);
1128 
1129 	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1130 
1131 		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1132 		reqlist->flags = XBB_REQLIST_NONE;
1133 		reqlist->kva = NULL;
1134 		reqlist->status = BLKIF_RSP_OKAY;
1135 		reqlist->residual_512b_sectors = 0;
1136 		reqlist->num_children = 0;
1137 		reqlist->nr_segments = 0;
1138 		STAILQ_INIT(&reqlist->contig_req_list);
1139 	}
1140 
1141 	return (reqlist);
1142 }
1143 
1144 /**
1145  * Return an allocated transaction tracking structure to the free pool.
1146  *
1147  * \param xbb        Per-instance xbb configuration structure.
1148  * \param req        The request list structure to free.
1149  * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1150  *                   during a resource shortage condition.
1151  */
1152 static inline void
1153 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1154 		    int wakeup)
1155 {
1156 
1157 	mtx_assert(&xbb->lock, MA_OWNED);
1158 
1159 	if (wakeup) {
1160 		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1161 		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1162 	}
1163 
1164 	if (reqlist->kva != NULL)
1165 		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1166 
1167 	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1168 
1169 	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1170 
1171 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1172 		/*
1173 		 * Shutdown is in progress.  See if we can
1174 		 * progress further now that one more request
1175 		 * has completed and been returned to the
1176 		 * free pool.
1177 		 */
1178 		xbb_shutdown(xbb);
1179 	}
1180 
1181 	if (wakeup != 0)
1182 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1183 }
1184 
1185 /**
1186  * Request resources and do basic request setup.
1187  *
1188  * \param xbb          Per-instance xbb configuration structure.
1189  * \param reqlist      Pointer to reqlist pointer.
1190  * \param ring_req     Pointer to a block ring request.
1191  * \param ring_index   The ring index of this request.
1192  *
1193  * \return  0 for success, non-zero for failure.
1194  */
1195 static int
1196 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1197 		  blkif_request_t *ring_req, RING_IDX ring_idx)
1198 {
1199 	struct xbb_xen_reqlist *nreqlist;
1200 	struct xbb_xen_req     *nreq;
1201 
1202 	nreqlist = NULL;
1203 	nreq     = NULL;
1204 
1205 	mtx_lock(&xbb->lock);
1206 
1207 	/*
1208 	 * We don't allow new resources to be allocated if we're in the
1209 	 * process of shutting down.
1210 	 */
1211 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1212 		mtx_unlock(&xbb->lock);
1213 		return (1);
1214 	}
1215 
1216 	/*
1217 	 * Allocate a reqlist if the caller doesn't have one already.
1218 	 */
1219 	if (*reqlist == NULL) {
1220 		nreqlist = xbb_get_reqlist(xbb);
1221 		if (nreqlist == NULL)
1222 			goto bailout_error;
1223 	}
1224 
1225 	/* We always allocate a request. */
1226 	nreq = xbb_get_req(xbb);
1227 	if (nreq == NULL)
1228 		goto bailout_error;
1229 
1230 	mtx_unlock(&xbb->lock);
1231 
1232 	if (*reqlist == NULL) {
1233 		*reqlist = nreqlist;
1234 		nreqlist->operation = ring_req->operation;
1235 		nreqlist->starting_sector_number = ring_req->sector_number;
1236 		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1237 				   links);
1238 	}
1239 
1240 	nreq->reqlist = *reqlist;
1241 	nreq->req_ring_idx = ring_idx;
1242 	nreq->id = ring_req->id;
1243 	nreq->operation = ring_req->operation;
1244 
1245 	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1246 		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1247 		nreq->ring_req = &nreq->ring_req_storage;
1248 	} else {
1249 		nreq->ring_req = ring_req;
1250 	}
1251 
1252 	binuptime(&nreq->ds_t0);
1253 	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1254 	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1255 	(*reqlist)->num_children++;
1256 	(*reqlist)->nr_segments += ring_req->nr_segments;
1257 
1258 	return (0);
1259 
1260 bailout_error:
1261 
1262 	/*
1263 	 * We're out of resources, so set the shortage flag.  The next time
1264 	 * a request is released, we'll try waking up the work thread to
1265 	 * see if we can allocate more resources.
1266 	 */
1267 	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1268 	xbb->request_shortages++;
1269 
1270 	if (nreq != NULL)
1271 		xbb_release_req(xbb, nreq);
1272 
1273 	if (nreqlist != NULL)
1274 		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1275 
1276 	mtx_unlock(&xbb->lock);
1277 
1278 	return (1);
1279 }
1280 
1281 /**
1282  * Create and queue a response to a blkif request.
1283  *
1284  * \param xbb     Per-instance xbb configuration structure.
1285  * \param req     The request structure to which to respond.
1286  * \param status  The status code to report.  See BLKIF_RSP_*
1287  *                in sys/xen/interface/io/blkif.h.
1288  */
1289 static void
1290 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1291 {
1292 	blkif_response_t *resp;
1293 
1294 	/*
1295 	 * The mutex is required here, and should be held across this call
1296 	 * until after the subsequent call to xbb_push_responses().  This
1297 	 * is to guarantee that another context won't queue responses and
1298 	 * push them while we're active.
1299 	 *
1300 	 * That could lead to the other end being notified of responses
1301 	 * before the resources have been freed on this end.  The other end
1302 	 * would then be able to queue additional I/O, and we may run out
1303  	 * of resources because we haven't freed them all yet.
1304 	 */
1305 	mtx_assert(&xbb->lock, MA_OWNED);
1306 
1307 	/*
1308 	 * Place on the response ring for the relevant domain.
1309 	 * For now, only the spacing between entries is different
1310 	 * in the different ABIs, not the response entry layout.
1311 	 */
1312 	switch (xbb->abi) {
1313 	case BLKIF_PROTOCOL_NATIVE:
1314 		resp = RING_GET_RESPONSE(&xbb->rings.native,
1315 					 xbb->rings.native.rsp_prod_pvt);
1316 		break;
1317 	case BLKIF_PROTOCOL_X86_32:
1318 		resp = (blkif_response_t *)
1319 		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1320 				      xbb->rings.x86_32.rsp_prod_pvt);
1321 		break;
1322 	case BLKIF_PROTOCOL_X86_64:
1323 		resp = (blkif_response_t *)
1324 		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1325 				      xbb->rings.x86_64.rsp_prod_pvt);
1326 		break;
1327 	default:
1328 		panic("Unexpected blkif protocol ABI.");
1329 	}
1330 
1331 	resp->id        = req->id;
1332 	resp->operation = req->operation;
1333 	resp->status    = status;
1334 
1335 	if (status != BLKIF_RSP_OKAY)
1336 		xbb->reqs_completed_with_error++;
1337 
1338 	xbb->rings.common.rsp_prod_pvt++;
1339 
1340 	xbb->reqs_queued_for_completion++;
1341 
1342 }
1343 
1344 /**
1345  * Send queued responses to blkif requests.
1346  *
1347  * \param xbb            Per-instance xbb configuration structure.
1348  * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1349  *			 should be run, 0 if it does not need to be run.
1350  * \param notify	 Flag that is set to 1 if the other end should be
1351  * 			 notified via irq, 0 if the other end should not be
1352  *			 notified.
1353  */
1354 static void
1355 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1356 {
1357 	int more_to_do;
1358 
1359 	/*
1360 	 * The mutex is required here.
1361 	 */
1362 	mtx_assert(&xbb->lock, MA_OWNED);
1363 
1364 	more_to_do = 0;
1365 
1366 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1367 
1368 	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1369 
1370 		/*
1371 		 * Tail check for pending requests. Allows frontend to avoid
1372 		 * notifications if requests are already in flight (lower
1373 		 * overheads and promotes batching).
1374 		 */
1375 		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1376 	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1377 
1378 		more_to_do = 1;
1379 	}
1380 
1381 	xbb->reqs_completed += xbb->reqs_queued_for_completion;
1382 	xbb->reqs_queued_for_completion = 0;
1383 
1384 	*run_taskqueue = more_to_do;
1385 }
1386 
1387 /**
1388  * Complete a request list.
1389  *
1390  * \param xbb        Per-instance xbb configuration structure.
1391  * \param reqlist    Allocated internal request list structure.
1392  */
1393 static void
1394 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1395 {
1396 	struct xbb_xen_req *nreq;
1397 	off_t		    sectors_sent;
1398 	int		    notify, run_taskqueue;
1399 
1400 	sectors_sent = 0;
1401 
1402 	if (reqlist->flags & XBB_REQLIST_MAPPED)
1403 		xbb_unmap_reqlist(reqlist);
1404 
1405 	mtx_lock(&xbb->lock);
1406 
1407 	/*
1408 	 * All I/O is done, send the response. A lock is not necessary
1409 	 * to protect the request list, because all requests have
1410 	 * completed.  Therefore this is the only context accessing this
1411 	 * reqlist right now.  However, in order to make sure that no one
1412 	 * else queues responses onto the queue or pushes them to the other
1413 	 * side while we're active, we need to hold the lock across the
1414 	 * calls to xbb_queue_response() and xbb_push_responses().
1415 	 */
1416 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1417 		off_t cur_sectors_sent;
1418 
1419 		/* Put this response on the ring, but don't push yet */
1420 		xbb_queue_response(xbb, nreq, reqlist->status);
1421 
1422 		/* We don't report bytes sent if there is an error. */
1423 		if (reqlist->status == BLKIF_RSP_OKAY)
1424 			cur_sectors_sent = nreq->nr_512b_sectors;
1425 		else
1426 			cur_sectors_sent = 0;
1427 
1428 		sectors_sent += cur_sectors_sent;
1429 
1430 		devstat_end_transaction(xbb->xbb_stats_in,
1431 					/*bytes*/cur_sectors_sent << 9,
1432 					reqlist->ds_tag_type,
1433 					reqlist->ds_trans_type,
1434 					/*now*/NULL,
1435 					/*then*/&nreq->ds_t0);
1436 	}
1437 
1438 	/*
1439 	 * Take out any sectors not sent.  If we wind up negative (which
1440 	 * might happen if an error is reported as well as a residual), just
1441 	 * report 0 sectors sent.
1442 	 */
1443 	sectors_sent -= reqlist->residual_512b_sectors;
1444 	if (sectors_sent < 0)
1445 		sectors_sent = 0;
1446 
1447 	devstat_end_transaction(xbb->xbb_stats,
1448 				/*bytes*/ sectors_sent << 9,
1449 				reqlist->ds_tag_type,
1450 				reqlist->ds_trans_type,
1451 				/*now*/NULL,
1452 				/*then*/&reqlist->ds_t0);
1453 
1454 	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1455 
1456 	xbb_push_responses(xbb, &run_taskqueue, &notify);
1457 
1458 	mtx_unlock(&xbb->lock);
1459 
1460 	if (run_taskqueue)
1461 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1462 
1463 	if (notify)
1464 		xen_intr_signal(xbb->xen_intr_handle);
1465 }
1466 
1467 /**
1468  * Completion handler for buffer I/O requests issued by the device
1469  * backend driver.
1470  *
1471  * \param bio  The buffer I/O request on which to perform completion
1472  *             processing.
1473  */
1474 static void
1475 xbb_bio_done(struct bio *bio)
1476 {
1477 	struct xbb_softc       *xbb;
1478 	struct xbb_xen_reqlist *reqlist;
1479 
1480 	reqlist = bio->bio_caller1;
1481 	xbb     = reqlist->xbb;
1482 
1483 	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1484 
1485 	/*
1486 	 * This is a bit imprecise.  With aggregated I/O a single
1487 	 * request list can contain multiple front-end requests and
1488 	 * a multiple bios may point to a single request.  By carefully
1489 	 * walking the request list, we could map residuals and errors
1490 	 * back to the original front-end request, but the interface
1491 	 * isn't sufficiently rich for us to properly report the error.
1492 	 * So, we just treat the entire request list as having failed if an
1493 	 * error occurs on any part.  And, if an error occurs, we treat
1494 	 * the amount of data transferred as 0.
1495 	 *
1496 	 * For residuals, we report it on the overall aggregated device,
1497 	 * but not on the individual requests, since we don't currently
1498 	 * do the work to determine which front-end request to which the
1499 	 * residual applies.
1500 	 */
1501 	if (bio->bio_error) {
1502 		DPRINTF("BIO returned error %d for operation on device %s\n",
1503 			bio->bio_error, xbb->dev_name);
1504 		reqlist->status = BLKIF_RSP_ERROR;
1505 
1506 		if (bio->bio_error == ENXIO
1507 		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1508 
1509 			/*
1510 			 * Backend device has disappeared.  Signal the
1511 			 * front-end that we (the device proxy) want to
1512 			 * go away.
1513 			 */
1514 			xenbus_set_state(xbb->dev, XenbusStateClosing);
1515 		}
1516 	}
1517 
1518 #ifdef XBB_USE_BOUNCE_BUFFERS
1519 	if (bio->bio_cmd == BIO_READ) {
1520 		vm_offset_t kva_offset;
1521 
1522 		kva_offset = (vm_offset_t)bio->bio_data
1523 			   - (vm_offset_t)reqlist->bounce;
1524 		memcpy((uint8_t *)reqlist->kva + kva_offset,
1525 		       bio->bio_data, bio->bio_bcount);
1526 	}
1527 #endif /* XBB_USE_BOUNCE_BUFFERS */
1528 
1529 	/*
1530 	 * Decrement the pending count for the request list.  When we're
1531 	 * done with the requests, send status back for all of them.
1532 	 */
1533 	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1534 		xbb_complete_reqlist(xbb, reqlist);
1535 
1536 	g_destroy_bio(bio);
1537 }
1538 
1539 /**
1540  * Parse a blkif request into an internal request structure and send
1541  * it to the backend for processing.
1542  *
1543  * \param xbb       Per-instance xbb configuration structure.
1544  * \param reqlist   Allocated internal request list structure.
1545  *
1546  * \return          On success, 0.  For resource shortages, non-zero.
1547  *
1548  * This routine performs the backend common aspects of request parsing
1549  * including compiling an internal request structure, parsing the S/G
1550  * list and any secondary ring requests in which they may reside, and
1551  * the mapping of front-end I/O pages into our domain.
1552  */
1553 static int
1554 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1555 {
1556 	struct xbb_sg                *xbb_sg;
1557 	struct gnttab_map_grant_ref  *map;
1558 	struct blkif_request_segment *sg;
1559 	struct blkif_request_segment *last_block_sg;
1560 	struct xbb_xen_req	     *nreq;
1561 	u_int			      nseg;
1562 	u_int			      seg_idx;
1563 	u_int			      block_segs;
1564 	int			      nr_sects;
1565 	int			      total_sects;
1566 	int			      operation;
1567 	uint8_t			      bio_flags;
1568 	int			      error;
1569 
1570 	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1571 	bio_flags            = 0;
1572 	total_sects	     = 0;
1573 	nr_sects	     = 0;
1574 
1575 	/*
1576 	 * First determine whether we have enough free KVA to satisfy this
1577 	 * request list.  If not, tell xbb_run_queue() so it can go to
1578 	 * sleep until we have more KVA.
1579 	 */
1580 	reqlist->kva = NULL;
1581 	if (reqlist->nr_segments != 0) {
1582 		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1583 		if (reqlist->kva == NULL) {
1584 			/*
1585 			 * If we're out of KVA, return ENOMEM.
1586 			 */
1587 			return (ENOMEM);
1588 		}
1589 	}
1590 
1591 	binuptime(&reqlist->ds_t0);
1592 	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1593 
1594 	switch (reqlist->operation) {
1595 	case BLKIF_OP_WRITE_BARRIER:
1596 		bio_flags       |= BIO_ORDERED;
1597 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1598 		/* FALLTHROUGH */
1599 	case BLKIF_OP_WRITE:
1600 		operation = BIO_WRITE;
1601 		reqlist->ds_trans_type = DEVSTAT_WRITE;
1602 		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1603 			DPRINTF("Attempt to write to read only device %s\n",
1604 				xbb->dev_name);
1605 			reqlist->status = BLKIF_RSP_ERROR;
1606 			goto send_response;
1607 		}
1608 		break;
1609 	case BLKIF_OP_READ:
1610 		operation = BIO_READ;
1611 		reqlist->ds_trans_type = DEVSTAT_READ;
1612 		break;
1613 	case BLKIF_OP_FLUSH_DISKCACHE:
1614 		/*
1615 		 * If this is true, the user has requested that we disable
1616 		 * flush support.  So we just complete the requests
1617 		 * successfully.
1618 		 */
1619 		if (xbb->disable_flush != 0) {
1620 			goto send_response;
1621 		}
1622 
1623 		/*
1624 		 * The user has requested that we only send a real flush
1625 		 * for every N flush requests.  So keep count, and either
1626 		 * complete the request immediately or queue it for the
1627 		 * backend.
1628 		 */
1629 		if (xbb->flush_interval != 0) {
1630 		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1631 				goto send_response;
1632 			} else
1633 				xbb->flush_count = 0;
1634 		}
1635 
1636 		operation = BIO_FLUSH;
1637 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1638 		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1639 		goto do_dispatch;
1640 		/*NOTREACHED*/
1641 	default:
1642 		DPRINTF("error: unknown block io operation [%d]\n",
1643 			reqlist->operation);
1644 		reqlist->status = BLKIF_RSP_ERROR;
1645 		goto send_response;
1646 	}
1647 
1648 	reqlist->xbb  = xbb;
1649 	xbb_sg        = xbb->xbb_sgs;
1650 	map	      = xbb->maps;
1651 	seg_idx	      = 0;
1652 
1653 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1654 		blkif_request_t		*ring_req;
1655 		RING_IDX		 req_ring_idx;
1656 		u_int			 req_seg_idx;
1657 
1658 		ring_req	      = nreq->ring_req;
1659 		req_ring_idx	      = nreq->req_ring_idx;
1660 		nr_sects              = 0;
1661 		nseg                  = ring_req->nr_segments;
1662 		nreq->nr_pages        = nseg;
1663 		nreq->nr_512b_sectors = 0;
1664 		req_seg_idx	      = 0;
1665 		sg	              = NULL;
1666 
1667 		/* Check that number of segments is sane. */
1668 		if (__predict_false(nseg == 0)
1669 		 || __predict_false(nseg > xbb->max_request_segments)) {
1670 			DPRINTF("Bad number of segments in request (%d)\n",
1671 				nseg);
1672 			reqlist->status = BLKIF_RSP_ERROR;
1673 			goto send_response;
1674 		}
1675 
1676 		block_segs    = nseg;
1677 		sg            = ring_req->seg;
1678 		last_block_sg = sg + block_segs;
1679 
1680 		while (sg < last_block_sg) {
1681 			KASSERT(seg_idx <
1682 				XBB_MAX_SEGMENTS_PER_REQLIST,
1683 				("seg_idx %d is too large, max "
1684 				"segs %d\n", seg_idx,
1685 				XBB_MAX_SEGMENTS_PER_REQLIST));
1686 
1687 			xbb_sg->first_sect = sg->first_sect;
1688 			xbb_sg->last_sect  = sg->last_sect;
1689 			xbb_sg->nsect =
1690 			    (int8_t)(sg->last_sect -
1691 			    sg->first_sect + 1);
1692 
1693 			if ((sg->last_sect >= (PAGE_SIZE >> 9))
1694 			 || (xbb_sg->nsect <= 0)) {
1695 				reqlist->status = BLKIF_RSP_ERROR;
1696 				goto send_response;
1697 			}
1698 
1699 			nr_sects += xbb_sg->nsect;
1700 			map->host_addr = xbb_get_gntaddr(reqlist,
1701 						seg_idx, /*sector*/0);
1702 			KASSERT(map->host_addr + PAGE_SIZE <=
1703 				xbb->ring_config.gnt_addr,
1704 				("Host address %#jx len %d overlaps "
1705 				 "ring address %#jx\n",
1706 				(uintmax_t)map->host_addr, PAGE_SIZE,
1707 				(uintmax_t)xbb->ring_config.gnt_addr));
1708 
1709 			map->flags     = GNTMAP_host_map;
1710 			map->ref       = sg->gref;
1711 			map->dom       = xbb->otherend_id;
1712 			if (operation == BIO_WRITE)
1713 				map->flags |= GNTMAP_readonly;
1714 			sg++;
1715 			map++;
1716 			xbb_sg++;
1717 			seg_idx++;
1718 			req_seg_idx++;
1719 		}
1720 
1721 		/* Convert to the disk's sector size */
1722 		nreq->nr_512b_sectors = nr_sects;
1723 		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1724 		total_sects += nr_sects;
1725 
1726 		if ((nreq->nr_512b_sectors &
1727 		    ((xbb->sector_size >> 9) - 1)) != 0) {
1728 			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1729 				      "a multiple of the backing store sector "
1730 				      "size (%d)\n", __func__,
1731 				      nreq->nr_512b_sectors << 9,
1732 				      xbb->sector_size);
1733 			reqlist->status = BLKIF_RSP_ERROR;
1734 			goto send_response;
1735 		}
1736 	}
1737 
1738 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1739 					  xbb->maps, reqlist->nr_segments);
1740 	if (error != 0)
1741 		panic("Grant table operation failed (%d)", error);
1742 
1743 	reqlist->flags |= XBB_REQLIST_MAPPED;
1744 
1745 	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1746 	     seg_idx++, map++){
1747 
1748 		if (__predict_false(map->status != 0)) {
1749 			DPRINTF("invalid buffer -- could not remap "
1750 			        "it (%d)\n", map->status);
1751 			DPRINTF("Mapping(%d): Host Addr 0x%"PRIx64", flags "
1752 			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1753 				map->host_addr, map->flags, map->ref,
1754 				map->dom);
1755 			reqlist->status = BLKIF_RSP_ERROR;
1756 			goto send_response;
1757 		}
1758 
1759 		reqlist->gnt_handles[seg_idx] = map->handle;
1760 	}
1761 	if (reqlist->starting_sector_number + total_sects >
1762 	    xbb->media_num_sectors) {
1763 
1764 		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1765 			"extends past end of device %s\n",
1766 			operation == BIO_READ ? "read" : "write",
1767 			reqlist->starting_sector_number,
1768 			reqlist->starting_sector_number + total_sects,
1769 			xbb->dev_name);
1770 		reqlist->status = BLKIF_RSP_ERROR;
1771 		goto send_response;
1772 	}
1773 
1774 do_dispatch:
1775 
1776 	error = xbb->dispatch_io(xbb,
1777 				 reqlist,
1778 				 operation,
1779 				 bio_flags);
1780 
1781 	if (error != 0) {
1782 		reqlist->status = BLKIF_RSP_ERROR;
1783 		goto send_response;
1784 	}
1785 
1786 	return (0);
1787 
1788 send_response:
1789 
1790 	xbb_complete_reqlist(xbb, reqlist);
1791 
1792 	return (0);
1793 }
1794 
1795 static __inline int
1796 xbb_count_sects(blkif_request_t *ring_req)
1797 {
1798 	int i;
1799 	int cur_size = 0;
1800 
1801 	for (i = 0; i < ring_req->nr_segments; i++) {
1802 		int nsect;
1803 
1804 		nsect = (int8_t)(ring_req->seg[i].last_sect -
1805 			ring_req->seg[i].first_sect + 1);
1806 		if (nsect <= 0)
1807 			break;
1808 
1809 		cur_size += nsect;
1810 	}
1811 
1812 	return (cur_size);
1813 }
1814 
1815 /**
1816  * Process incoming requests from the shared communication ring in response
1817  * to a signal on the ring's event channel.
1818  *
1819  * \param context  Callback argument registerd during task initialization -
1820  *                 the xbb_softc for this instance.
1821  * \param pending  The number of taskqueue_enqueue events that have
1822  *                 occurred since this handler was last run.
1823  */
1824 static void
1825 xbb_run_queue(void *context, int pending)
1826 {
1827 	struct xbb_softc       *xbb;
1828 	blkif_back_rings_t     *rings;
1829 	RING_IDX		rp;
1830 	uint64_t		cur_sector;
1831 	int			cur_operation;
1832 	struct xbb_xen_reqlist *reqlist;
1833 
1834 
1835 	xbb   = (struct xbb_softc *)context;
1836 	rings = &xbb->rings;
1837 
1838 	/*
1839 	 * Work gather and dispatch loop.  Note that we have a bias here
1840 	 * towards gathering I/O sent by blockfront.  We first gather up
1841 	 * everything in the ring, as long as we have resources.  Then we
1842 	 * dispatch one request, and then attempt to gather up any
1843 	 * additional requests that have come in while we were dispatching
1844 	 * the request.
1845 	 *
1846 	 * This allows us to get a clearer picture (via devstat) of how
1847 	 * many requests blockfront is queueing to us at any given time.
1848 	 */
1849 	for (;;) {
1850 		int retval;
1851 
1852 		/*
1853 		 * Initialize reqlist to the last element in the pending
1854 		 * queue, if there is one.  This allows us to add more
1855 		 * requests to that request list, if we have room.
1856 		 */
1857 		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1858 				      xbb_xen_reqlist, links);
1859 		if (reqlist != NULL) {
1860 			cur_sector = reqlist->next_contig_sector;
1861 			cur_operation = reqlist->operation;
1862 		} else {
1863 			cur_operation = 0;
1864 			cur_sector    = 0;
1865 		}
1866 
1867 		/*
1868 		 * Cache req_prod to avoid accessing a cache line shared
1869 		 * with the frontend.
1870 		 */
1871 		rp = rings->common.sring->req_prod;
1872 
1873 		/* Ensure we see queued requests up to 'rp'. */
1874 		rmb();
1875 
1876 		/**
1877 		 * Run so long as there is work to consume and the generation
1878 		 * of a response will not overflow the ring.
1879 		 *
1880 		 * @note There's a 1 to 1 relationship between requests and
1881 		 *       responses, so an overflow should never occur.  This
1882 		 *       test is to protect our domain from digesting bogus
1883 		 *       data.  Shouldn't we log this?
1884 		 */
1885 		while (rings->common.req_cons != rp
1886 		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1887 						  rings->common.req_cons) == 0){
1888 			blkif_request_t	        ring_req_storage;
1889 			blkif_request_t	       *ring_req;
1890 			int			cur_size;
1891 
1892 			switch (xbb->abi) {
1893 			case BLKIF_PROTOCOL_NATIVE:
1894 				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1895 				    rings->common.req_cons);
1896 				break;
1897 			case BLKIF_PROTOCOL_X86_32:
1898 			{
1899 				struct blkif_x86_32_request *ring_req32;
1900 
1901 				ring_req32 = RING_GET_REQUEST(
1902 				    &xbb->rings.x86_32, rings->common.req_cons);
1903 				blkif_get_x86_32_req(&ring_req_storage,
1904 						     ring_req32);
1905 				ring_req = &ring_req_storage;
1906 				break;
1907 			}
1908 			case BLKIF_PROTOCOL_X86_64:
1909 			{
1910 				struct blkif_x86_64_request *ring_req64;
1911 
1912 				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1913 				    rings->common.req_cons);
1914 				blkif_get_x86_64_req(&ring_req_storage,
1915 						     ring_req64);
1916 				ring_req = &ring_req_storage;
1917 				break;
1918 			}
1919 			default:
1920 				panic("Unexpected blkif protocol ABI.");
1921 				/* NOTREACHED */
1922 			}
1923 
1924 			/*
1925 			 * Check for situations that would require closing
1926 			 * off this I/O for further coalescing:
1927 			 *  - Coalescing is turned off.
1928 			 *  - Current I/O is out of sequence with the previous
1929 			 *    I/O.
1930 			 *  - Coalesced I/O would be too large.
1931 			 */
1932 			if ((reqlist != NULL)
1933 			 && ((xbb->no_coalesce_reqs != 0)
1934 			  || ((xbb->no_coalesce_reqs == 0)
1935 			   && ((ring_req->sector_number != cur_sector)
1936 			    || (ring_req->operation != cur_operation)
1937 			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1938 			         xbb->max_reqlist_segments))))) {
1939 				reqlist = NULL;
1940 			}
1941 
1942 			/*
1943 			 * Grab and check for all resources in one shot.
1944 			 * If we can't get all of the resources we need,
1945 			 * the shortage is noted and the thread will get
1946 			 * woken up when more resources are available.
1947 			 */
1948 			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1949 						   xbb->rings.common.req_cons);
1950 
1951 			if (retval != 0) {
1952 				/*
1953 				 * Resource shortage has been recorded.
1954 				 * We'll be scheduled to run once a request
1955 				 * object frees up due to a completion.
1956 				 */
1957 				break;
1958 			}
1959 
1960 			/*
1961 			 * Signify that	we can overwrite this request with
1962 			 * a response by incrementing our consumer index.
1963 			 * The response won't be generated until after
1964 			 * we've already consumed all necessary data out
1965 			 * of the version of the request in the ring buffer
1966 			 * (for native mode).  We must update the consumer
1967 			 * index  before issuing back-end I/O so there is
1968 			 * no possibility that it will complete and a
1969 			 * response be generated before we make room in
1970 			 * the queue for that response.
1971 			 */
1972 			xbb->rings.common.req_cons++;
1973 			xbb->reqs_received++;
1974 
1975 			cur_size = xbb_count_sects(ring_req);
1976 			cur_sector = ring_req->sector_number + cur_size;
1977 			reqlist->next_contig_sector = cur_sector;
1978 			cur_operation = ring_req->operation;
1979 		}
1980 
1981 		/* Check for I/O to dispatch */
1982 		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1983 		if (reqlist == NULL) {
1984 			/*
1985 			 * We're out of work to do, put the task queue to
1986 			 * sleep.
1987 			 */
1988 			break;
1989 		}
1990 
1991 		/*
1992 		 * Grab the first request off the queue and attempt
1993 		 * to dispatch it.
1994 		 */
1995 		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1996 
1997 		retval = xbb_dispatch_io(xbb, reqlist);
1998 		if (retval != 0) {
1999 			/*
2000 			 * xbb_dispatch_io() returns non-zero only when
2001 			 * there is a resource shortage.  If that's the
2002 			 * case, re-queue this request on the head of the
2003 			 * queue, and go to sleep until we have more
2004 			 * resources.
2005 			 */
2006 			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
2007 					   reqlist, links);
2008 			break;
2009 		} else {
2010 			/*
2011 			 * If we still have anything on the queue after
2012 			 * removing the head entry, that is because we
2013 			 * met one of the criteria to create a new
2014 			 * request list (outlined above), and we'll call
2015 			 * that a forced dispatch for statistical purposes.
2016 			 *
2017 			 * Otherwise, if there is only one element on the
2018 			 * queue, we coalesced everything available on
2019 			 * the ring and we'll call that a normal dispatch.
2020 			 */
2021 			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2022 
2023 			if (reqlist != NULL)
2024 				xbb->forced_dispatch++;
2025 			else
2026 				xbb->normal_dispatch++;
2027 
2028 			xbb->total_dispatch++;
2029 		}
2030 	}
2031 }
2032 
2033 /**
2034  * Interrupt handler bound to the shared ring's event channel.
2035  *
2036  * \param arg  Callback argument registerd during event channel
2037  *             binding - the xbb_softc for this instance.
2038  */
2039 static int
2040 xbb_filter(void *arg)
2041 {
2042 	struct xbb_softc *xbb;
2043 
2044 	/* Defer to taskqueue thread. */
2045 	xbb = (struct xbb_softc *)arg;
2046 	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2047 
2048 	return (FILTER_HANDLED);
2049 }
2050 
2051 SDT_PROVIDER_DEFINE(xbb);
2052 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
2053 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
2054 		  "uint64_t");
2055 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
2056 		  "uint64_t", "uint64_t");
2057 
2058 /*----------------------------- Backend Handlers -----------------------------*/
2059 /**
2060  * Backend handler for character device access.
2061  *
2062  * \param xbb        Per-instance xbb configuration structure.
2063  * \param reqlist    Allocated internal request list structure.
2064  * \param operation  BIO_* I/O operation code.
2065  * \param bio_flags  Additional bio_flag data to pass to any generated
2066  *                   bios (e.g. BIO_ORDERED)..
2067  *
2068  * \return  0 for success, errno codes for failure.
2069  */
2070 static int
2071 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2072 		 int operation, int bio_flags)
2073 {
2074 	struct xbb_dev_data *dev_data;
2075 	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2076 	off_t                bio_offset;
2077 	struct bio          *bio;
2078 	struct xbb_sg       *xbb_sg;
2079 	u_int	             nbio;
2080 	u_int                bio_idx;
2081 	u_int		     nseg;
2082 	u_int                seg_idx;
2083 	int                  error;
2084 
2085 	dev_data   = &xbb->backend.dev;
2086 	bio_offset = (off_t)reqlist->starting_sector_number
2087 		   << xbb->sector_size_shift;
2088 	error      = 0;
2089 	nbio       = 0;
2090 	bio_idx    = 0;
2091 
2092 	if (operation == BIO_FLUSH) {
2093 		bio = g_new_bio();
2094 		if (__predict_false(bio == NULL)) {
2095 			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2096 			error = ENOMEM;
2097 			return (error);
2098 		}
2099 
2100 		bio->bio_cmd	 = BIO_FLUSH;
2101 		bio->bio_flags	|= BIO_ORDERED;
2102 		bio->bio_dev	 = dev_data->cdev;
2103 		bio->bio_offset	 = 0;
2104 		bio->bio_data	 = 0;
2105 		bio->bio_done	 = xbb_bio_done;
2106 		bio->bio_caller1 = reqlist;
2107 		bio->bio_pblkno	 = 0;
2108 
2109 		reqlist->pendcnt = 1;
2110 
2111 		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2112 			   device_get_unit(xbb->dev));
2113 
2114 		(*dev_data->csw->d_strategy)(bio);
2115 
2116 		return (0);
2117 	}
2118 
2119 	xbb_sg = xbb->xbb_sgs;
2120 	bio    = NULL;
2121 	nseg = reqlist->nr_segments;
2122 
2123 	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2124 
2125 		/*
2126 		 * KVA will not be contiguous, so any additional
2127 		 * I/O will need to be represented in a new bio.
2128 		 */
2129 		if ((bio != NULL)
2130 		 && (xbb_sg->first_sect != 0)) {
2131 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2132 				printf("%s: Discontiguous I/O request "
2133 				       "from domain %d ends on "
2134 				       "non-sector boundary\n",
2135 				       __func__, xbb->otherend_id);
2136 				error = EINVAL;
2137 				goto fail_free_bios;
2138 			}
2139 			bio = NULL;
2140 		}
2141 
2142 		if (bio == NULL) {
2143 			/*
2144 			 * Make sure that the start of this bio is
2145 			 * aligned to a device sector.
2146 			 */
2147 			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2148 				printf("%s: Misaligned I/O request "
2149 				       "from domain %d\n", __func__,
2150 				       xbb->otherend_id);
2151 				error = EINVAL;
2152 				goto fail_free_bios;
2153 			}
2154 
2155 			bio = bios[nbio++] = g_new_bio();
2156 			if (__predict_false(bio == NULL)) {
2157 				error = ENOMEM;
2158 				goto fail_free_bios;
2159 			}
2160 			bio->bio_cmd     = operation;
2161 			bio->bio_flags  |= bio_flags;
2162 			bio->bio_dev     = dev_data->cdev;
2163 			bio->bio_offset  = bio_offset;
2164 			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2165 						xbb_sg->first_sect);
2166 			bio->bio_done    = xbb_bio_done;
2167 			bio->bio_caller1 = reqlist;
2168 			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2169 		}
2170 
2171 		bio->bio_length += xbb_sg->nsect << 9;
2172 		bio->bio_bcount  = bio->bio_length;
2173 		bio_offset      += xbb_sg->nsect << 9;
2174 
2175 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2176 
2177 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2178 				printf("%s: Discontiguous I/O request "
2179 				       "from domain %d ends on "
2180 				       "non-sector boundary\n",
2181 				       __func__, xbb->otherend_id);
2182 				error = EINVAL;
2183 				goto fail_free_bios;
2184 			}
2185 			/*
2186 			 * KVA will not be contiguous, so any additional
2187 			 * I/O will need to be represented in a new bio.
2188 			 */
2189 			bio = NULL;
2190 		}
2191 	}
2192 
2193 	reqlist->pendcnt = nbio;
2194 
2195 	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2196 	{
2197 #ifdef XBB_USE_BOUNCE_BUFFERS
2198 		vm_offset_t kva_offset;
2199 
2200 		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2201 			   - (vm_offset_t)reqlist->bounce;
2202 		if (operation == BIO_WRITE) {
2203 			memcpy(bios[bio_idx]->bio_data,
2204 			       (uint8_t *)reqlist->kva + kva_offset,
2205 			       bios[bio_idx]->bio_bcount);
2206 		}
2207 #endif
2208 		if (operation == BIO_READ) {
2209 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2210 				   device_get_unit(xbb->dev),
2211 				   bios[bio_idx]->bio_offset,
2212 				   bios[bio_idx]->bio_length);
2213 		} else if (operation == BIO_WRITE) {
2214 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2215 				   device_get_unit(xbb->dev),
2216 				   bios[bio_idx]->bio_offset,
2217 				   bios[bio_idx]->bio_length);
2218 		}
2219 		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2220 	}
2221 
2222 	return (error);
2223 
2224 fail_free_bios:
2225 	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2226 		g_destroy_bio(bios[bio_idx]);
2227 
2228 	return (error);
2229 }
2230 
2231 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2232 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2233 		  "uint64_t");
2234 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2235 		  "uint64_t", "uint64_t");
2236 
2237 /**
2238  * Backend handler for file access.
2239  *
2240  * \param xbb        Per-instance xbb configuration structure.
2241  * \param reqlist    Allocated internal request list.
2242  * \param operation  BIO_* I/O operation code.
2243  * \param flags      Additional bio_flag data to pass to any generated bios
2244  *                   (e.g. BIO_ORDERED)..
2245  *
2246  * \return  0 for success, errno codes for failure.
2247  */
2248 static int
2249 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2250 		  int operation, int flags)
2251 {
2252 	struct xbb_file_data *file_data;
2253 	u_int                 seg_idx;
2254 	u_int		      nseg;
2255 	struct uio            xuio;
2256 	struct xbb_sg        *xbb_sg;
2257 	struct iovec         *xiovec;
2258 #ifdef XBB_USE_BOUNCE_BUFFERS
2259 	void                **p_vaddr;
2260 	int                   saved_uio_iovcnt;
2261 #endif /* XBB_USE_BOUNCE_BUFFERS */
2262 	int                   error;
2263 
2264 	file_data = &xbb->backend.file;
2265 	error = 0;
2266 	bzero(&xuio, sizeof(xuio));
2267 
2268 	switch (operation) {
2269 	case BIO_READ:
2270 		xuio.uio_rw = UIO_READ;
2271 		break;
2272 	case BIO_WRITE:
2273 		xuio.uio_rw = UIO_WRITE;
2274 		break;
2275 	case BIO_FLUSH: {
2276 		struct mount *mountpoint;
2277 
2278 		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2279 			   device_get_unit(xbb->dev));
2280 
2281 		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2282 
2283 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2284 		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2285 		VOP_UNLOCK(xbb->vn, 0);
2286 
2287 		vn_finished_write(mountpoint);
2288 
2289 		goto bailout_send_response;
2290 		/* NOTREACHED */
2291 	}
2292 	default:
2293 		panic("invalid operation %d", operation);
2294 		/* NOTREACHED */
2295 	}
2296 	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2297 			<< xbb->sector_size_shift;
2298 	xuio.uio_segflg = UIO_SYSSPACE;
2299 	xuio.uio_iov = file_data->xiovecs;
2300 	xuio.uio_iovcnt = 0;
2301 	xbb_sg = xbb->xbb_sgs;
2302 	nseg = reqlist->nr_segments;
2303 
2304 	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2305 
2306 		/*
2307 		 * If the first sector is not 0, the KVA will
2308 		 * not be contiguous and we'll need to go on
2309 		 * to another segment.
2310 		 */
2311 		if (xbb_sg->first_sect != 0)
2312 			xiovec = NULL;
2313 
2314 		if (xiovec == NULL) {
2315 			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2316 			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2317 			    seg_idx, xbb_sg->first_sect);
2318 #ifdef XBB_USE_BOUNCE_BUFFERS
2319 			/*
2320 			 * Store the address of the incoming
2321 			 * buffer at this particular offset
2322 			 * as well, so we can do the copy
2323 			 * later without having to do more
2324 			 * work to recalculate this address.
2325 		 	 */
2326 			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2327 			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2328 			    xbb_sg->first_sect);
2329 #endif /* XBB_USE_BOUNCE_BUFFERS */
2330 			xiovec->iov_len = 0;
2331 			xuio.uio_iovcnt++;
2332 		}
2333 
2334 		xiovec->iov_len += xbb_sg->nsect << 9;
2335 
2336 		xuio.uio_resid += xbb_sg->nsect << 9;
2337 
2338 		/*
2339 		 * If the last sector is not the full page
2340 		 * size count, the next segment will not be
2341 		 * contiguous in KVA and we need a new iovec.
2342 		 */
2343 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2344 			xiovec = NULL;
2345 	}
2346 
2347 	xuio.uio_td = curthread;
2348 
2349 #ifdef XBB_USE_BOUNCE_BUFFERS
2350 	saved_uio_iovcnt = xuio.uio_iovcnt;
2351 
2352 	if (operation == BIO_WRITE) {
2353 		/* Copy the write data to the local buffer. */
2354 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2355 		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2356 		     seg_idx++, xiovec++, p_vaddr++) {
2357 
2358 			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2359 		}
2360 	} else {
2361 		/*
2362 		 * We only need to save off the iovecs in the case of a
2363 		 * read, because the copy for the read happens after the
2364 		 * VOP_READ().  (The uio will get modified in that call
2365 		 * sequence.)
2366 		 */
2367 		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2368 		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2369 	}
2370 #endif /* XBB_USE_BOUNCE_BUFFERS */
2371 
2372 	switch (operation) {
2373 	case BIO_READ:
2374 
2375 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2376 			   device_get_unit(xbb->dev), xuio.uio_offset,
2377 			   xuio.uio_resid);
2378 
2379 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2380 
2381 		/*
2382 		 * UFS pays attention to IO_DIRECT for reads.  If the
2383 		 * DIRECTIO option is configured into the kernel, it calls
2384 		 * ffs_rawread().  But that only works for single-segment
2385 		 * uios with user space addresses.  In our case, with a
2386 		 * kernel uio, it still reads into the buffer cache, but it
2387 		 * will just try to release the buffer from the cache later
2388 		 * on in ffs_read().
2389 		 *
2390 		 * ZFS does not pay attention to IO_DIRECT for reads.
2391 		 *
2392 		 * UFS does not pay attention to IO_SYNC for reads.
2393 		 *
2394 		 * ZFS pays attention to IO_SYNC (which translates into the
2395 		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2396 		 * attempts to sync the file before reading.
2397 		 *
2398 		 * So, to attempt to provide some barrier semantics in the
2399 		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2400 		 */
2401 		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2402 				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2403 
2404 		VOP_UNLOCK(xbb->vn, 0);
2405 		break;
2406 	case BIO_WRITE: {
2407 		struct mount *mountpoint;
2408 
2409 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2410 			   device_get_unit(xbb->dev), xuio.uio_offset,
2411 			   xuio.uio_resid);
2412 
2413 		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2414 
2415 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2416 
2417 		/*
2418 		 * UFS pays attention to IO_DIRECT for writes.  The write
2419 		 * is done asynchronously.  (Normally the write would just
2420 		 * get put into cache.
2421 		 *
2422 		 * UFS pays attention to IO_SYNC for writes.  It will
2423 		 * attempt to write the buffer out synchronously if that
2424 		 * flag is set.
2425 		 *
2426 		 * ZFS does not pay attention to IO_DIRECT for writes.
2427 		 *
2428 		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2429 		 * for writes.  It will flush the transaction from the
2430 		 * cache before returning.
2431 		 *
2432 		 * So if we've got the BIO_ORDERED flag set, we want
2433 		 * IO_SYNC in either the UFS or ZFS case.
2434 		 */
2435 		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2436 				  IO_SYNC : 0, file_data->cred);
2437 		VOP_UNLOCK(xbb->vn, 0);
2438 
2439 		vn_finished_write(mountpoint);
2440 
2441 		break;
2442 	}
2443 	default:
2444 		panic("invalid operation %d", operation);
2445 		/* NOTREACHED */
2446 	}
2447 
2448 #ifdef XBB_USE_BOUNCE_BUFFERS
2449 	/* We only need to copy here for read operations */
2450 	if (operation == BIO_READ) {
2451 
2452 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2453 		     xiovec = file_data->saved_xiovecs;
2454 		     seg_idx < saved_uio_iovcnt; seg_idx++,
2455 		     xiovec++, p_vaddr++) {
2456 
2457 			/*
2458 			 * Note that we have to use the copy of the
2459 			 * io vector we made above.  uiomove() modifies
2460 			 * the uio and its referenced vector as uiomove
2461 			 * performs the copy, so we can't rely on any
2462 			 * state from the original uio.
2463 			 */
2464 			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2465 		}
2466 	}
2467 #endif /* XBB_USE_BOUNCE_BUFFERS */
2468 
2469 bailout_send_response:
2470 
2471 	if (error != 0)
2472 		reqlist->status = BLKIF_RSP_ERROR;
2473 
2474 	xbb_complete_reqlist(xbb, reqlist);
2475 
2476 	return (0);
2477 }
2478 
2479 /*--------------------------- Backend Configuration --------------------------*/
2480 /**
2481  * Close and cleanup any backend device/file specific state for this
2482  * block back instance.
2483  *
2484  * \param xbb  Per-instance xbb configuration structure.
2485  */
2486 static void
2487 xbb_close_backend(struct xbb_softc *xbb)
2488 {
2489 	DROP_GIANT();
2490 	DPRINTF("closing dev=%s\n", xbb->dev_name);
2491 	if (xbb->vn) {
2492 		int flags = FREAD;
2493 
2494 		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2495 			flags |= FWRITE;
2496 
2497 		switch (xbb->device_type) {
2498 		case XBB_TYPE_DISK:
2499 			if (xbb->backend.dev.csw) {
2500 				dev_relthread(xbb->backend.dev.cdev,
2501 					      xbb->backend.dev.dev_ref);
2502 				xbb->backend.dev.csw  = NULL;
2503 				xbb->backend.dev.cdev = NULL;
2504 			}
2505 			break;
2506 		case XBB_TYPE_FILE:
2507 			break;
2508 		case XBB_TYPE_NONE:
2509 		default:
2510 			panic("Unexpected backend type.");
2511 			break;
2512 		}
2513 
2514 		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2515 		xbb->vn = NULL;
2516 
2517 		switch (xbb->device_type) {
2518 		case XBB_TYPE_DISK:
2519 			break;
2520 		case XBB_TYPE_FILE:
2521 			if (xbb->backend.file.cred != NULL) {
2522 				crfree(xbb->backend.file.cred);
2523 				xbb->backend.file.cred = NULL;
2524 			}
2525 			break;
2526 		case XBB_TYPE_NONE:
2527 		default:
2528 			panic("Unexpected backend type.");
2529 			break;
2530 		}
2531 	}
2532 	PICKUP_GIANT();
2533 }
2534 
2535 /**
2536  * Open a character device to be used for backend I/O.
2537  *
2538  * \param xbb  Per-instance xbb configuration structure.
2539  *
2540  * \return  0 for success, errno codes for failure.
2541  */
2542 static int
2543 xbb_open_dev(struct xbb_softc *xbb)
2544 {
2545 	struct vattr   vattr;
2546 	struct cdev   *dev;
2547 	struct cdevsw *devsw;
2548 	int	       error;
2549 
2550 	xbb->device_type = XBB_TYPE_DISK;
2551 	xbb->dispatch_io = xbb_dispatch_dev;
2552 	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2553 	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2554 					     &xbb->backend.dev.dev_ref);
2555 	if (xbb->backend.dev.csw == NULL)
2556 		panic("Unable to retrieve device switch");
2557 
2558 	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2559 	if (error) {
2560 		xenbus_dev_fatal(xbb->dev, error, "error getting "
2561 				 "vnode attributes for device %s",
2562 				 xbb->dev_name);
2563 		return (error);
2564 	}
2565 
2566 
2567 	dev = xbb->vn->v_rdev;
2568 	devsw = dev->si_devsw;
2569 	if (!devsw->d_ioctl) {
2570 		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2571 				 "device %s!", xbb->dev_name);
2572 		return (ENODEV);
2573 	}
2574 
2575 	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2576 			       (caddr_t)&xbb->sector_size, FREAD,
2577 			       curthread);
2578 	if (error) {
2579 		xenbus_dev_fatal(xbb->dev, error,
2580 				 "error calling ioctl DIOCGSECTORSIZE "
2581 				 "for device %s", xbb->dev_name);
2582 		return (error);
2583 	}
2584 
2585 	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2586 			       (caddr_t)&xbb->media_size, FREAD,
2587 			       curthread);
2588 	if (error) {
2589 		xenbus_dev_fatal(xbb->dev, error,
2590 				 "error calling ioctl DIOCGMEDIASIZE "
2591 				 "for device %s", xbb->dev_name);
2592 		return (error);
2593 	}
2594 
2595 	return (0);
2596 }
2597 
2598 /**
2599  * Open a file to be used for backend I/O.
2600  *
2601  * \param xbb  Per-instance xbb configuration structure.
2602  *
2603  * \return  0 for success, errno codes for failure.
2604  */
2605 static int
2606 xbb_open_file(struct xbb_softc *xbb)
2607 {
2608 	struct xbb_file_data *file_data;
2609 	struct vattr          vattr;
2610 	int                   error;
2611 
2612 	file_data = &xbb->backend.file;
2613 	xbb->device_type = XBB_TYPE_FILE;
2614 	xbb->dispatch_io = xbb_dispatch_file;
2615 	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2616 	if (error != 0) {
2617 		xenbus_dev_fatal(xbb->dev, error,
2618 				 "error calling VOP_GETATTR()"
2619 				 "for file %s", xbb->dev_name);
2620 		return (error);
2621 	}
2622 
2623 	/*
2624 	 * Verify that we have the ability to upgrade to exclusive
2625 	 * access on this file so we can trap errors at open instead
2626 	 * of reporting them during first access.
2627 	 */
2628 	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2629 		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2630 		if (xbb->vn->v_iflag & VI_DOOMED) {
2631 			error = EBADF;
2632 			xenbus_dev_fatal(xbb->dev, error,
2633 					 "error locking file %s",
2634 					 xbb->dev_name);
2635 
2636 			return (error);
2637 		}
2638 	}
2639 
2640 	file_data->cred = crhold(curthread->td_ucred);
2641 	xbb->media_size = vattr.va_size;
2642 
2643 	/*
2644 	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2645 	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2646 	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2647 	 * may not work with other OSes as well.  So just export a sector
2648 	 * size of 512 bytes, which should work with any OS or
2649 	 * application.  Since our backing is a file, any block size will
2650 	 * work fine for the backing store.
2651 	 */
2652 #if 0
2653 	xbb->sector_size = vattr.va_blocksize;
2654 #endif
2655 	xbb->sector_size = 512;
2656 
2657 	/*
2658 	 * Sanity check.  The media size has to be at least one
2659 	 * sector long.
2660 	 */
2661 	if (xbb->media_size < xbb->sector_size) {
2662 		error = EINVAL;
2663 		xenbus_dev_fatal(xbb->dev, error,
2664 				 "file %s size %ju < block size %u",
2665 				 xbb->dev_name,
2666 				 (uintmax_t)xbb->media_size,
2667 				 xbb->sector_size);
2668 	}
2669 	return (error);
2670 }
2671 
2672 /**
2673  * Open the backend provider for this connection.
2674  *
2675  * \param xbb  Per-instance xbb configuration structure.
2676  *
2677  * \return  0 for success, errno codes for failure.
2678  */
2679 static int
2680 xbb_open_backend(struct xbb_softc *xbb)
2681 {
2682 	struct nameidata nd;
2683 	int		 flags;
2684 	int		 error;
2685 
2686 	flags = FREAD;
2687 	error = 0;
2688 
2689 	DPRINTF("opening dev=%s\n", xbb->dev_name);
2690 
2691 	if (rootvnode == NULL) {
2692 		xenbus_dev_fatal(xbb->dev, ENOENT,
2693 				 "Root file system not mounted");
2694 		return (ENOENT);
2695 	}
2696 
2697 	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2698 		flags |= FWRITE;
2699 
2700 	pwd_ensure_dirs();
2701 
2702  again:
2703 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2704 	error = vn_open(&nd, &flags, 0, NULL);
2705 	if (error) {
2706 		/*
2707 		 * This is the only reasonable guess we can make as far as
2708 		 * path if the user doesn't give us a fully qualified path.
2709 		 * If they want to specify a file, they need to specify the
2710 		 * full path.
2711 		 */
2712 		if (xbb->dev_name[0] != '/') {
2713 			char *dev_path = "/dev/";
2714 			char *dev_name;
2715 
2716 			/* Try adding device path at beginning of name */
2717 			dev_name = malloc(strlen(xbb->dev_name)
2718 					+ strlen(dev_path) + 1,
2719 					  M_XENBLOCKBACK, M_NOWAIT);
2720 			if (dev_name) {
2721 				sprintf(dev_name, "%s%s", dev_path,
2722 					xbb->dev_name);
2723 				free(xbb->dev_name, M_XENBLOCKBACK);
2724 				xbb->dev_name = dev_name;
2725 				goto again;
2726 			}
2727 		}
2728 		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2729 				 xbb->dev_name);
2730 		return (error);
2731 	}
2732 
2733 	NDFREE(&nd, NDF_ONLY_PNBUF);
2734 
2735 	xbb->vn = nd.ni_vp;
2736 
2737 	/* We only support disks and files. */
2738 	if (vn_isdisk(xbb->vn, &error)) {
2739 		error = xbb_open_dev(xbb);
2740 	} else if (xbb->vn->v_type == VREG) {
2741 		error = xbb_open_file(xbb);
2742 	} else {
2743 		error = EINVAL;
2744 		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2745 				 "or file", xbb->dev_name);
2746 	}
2747 	VOP_UNLOCK(xbb->vn, 0);
2748 
2749 	if (error != 0) {
2750 		xbb_close_backend(xbb);
2751 		return (error);
2752 	}
2753 
2754 	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2755 	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2756 
2757 	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2758 		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2759 		xbb->dev_name, xbb->sector_size, xbb->media_size);
2760 
2761 	return (0);
2762 }
2763 
2764 /*------------------------ Inter-Domain Communication ------------------------*/
2765 /**
2766  * Free dynamically allocated KVA or pseudo-physical address allocations.
2767  *
2768  * \param xbb  Per-instance xbb configuration structure.
2769  */
2770 static void
2771 xbb_free_communication_mem(struct xbb_softc *xbb)
2772 {
2773 	if (xbb->kva != 0) {
2774 		if (xbb->pseudo_phys_res != NULL) {
2775 			xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2776 			    xbb->pseudo_phys_res);
2777 			xbb->pseudo_phys_res = NULL;
2778 		}
2779 	}
2780 	xbb->kva = 0;
2781 	xbb->gnt_base_addr = 0;
2782 	if (xbb->kva_free != NULL) {
2783 		free(xbb->kva_free, M_XENBLOCKBACK);
2784 		xbb->kva_free = NULL;
2785 	}
2786 }
2787 
2788 /**
2789  * Cleanup all inter-domain communication mechanisms.
2790  *
2791  * \param xbb  Per-instance xbb configuration structure.
2792  */
2793 static int
2794 xbb_disconnect(struct xbb_softc *xbb)
2795 {
2796 	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2797 	struct gnttab_unmap_grant_ref *op;
2798 	u_int			       ring_idx;
2799 	int			       error;
2800 
2801 	DPRINTF("\n");
2802 
2803 	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2804 		return (0);
2805 
2806 	mtx_unlock(&xbb->lock);
2807 	xen_intr_unbind(&xbb->xen_intr_handle);
2808 	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2809 	mtx_lock(&xbb->lock);
2810 
2811 	/*
2812 	 * No new interrupts can generate work, but we must wait
2813 	 * for all currently active requests to drain.
2814 	 */
2815 	if (xbb->active_request_count != 0)
2816 		return (EAGAIN);
2817 
2818 	for (ring_idx = 0, op = ops;
2819 	     ring_idx < xbb->ring_config.ring_pages;
2820 	     ring_idx++, op++) {
2821 
2822 		op->host_addr    = xbb->ring_config.gnt_addr
2823 			         + (ring_idx * PAGE_SIZE);
2824 		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2825 		op->handle	 = xbb->ring_config.handle[ring_idx];
2826 	}
2827 
2828 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2829 					  xbb->ring_config.ring_pages);
2830 	if (error != 0)
2831 		panic("Grant table op failed (%d)", error);
2832 
2833 	xbb_free_communication_mem(xbb);
2834 
2835 	if (xbb->requests != NULL) {
2836 		free(xbb->requests, M_XENBLOCKBACK);
2837 		xbb->requests = NULL;
2838 	}
2839 
2840 	if (xbb->request_lists != NULL) {
2841 		struct xbb_xen_reqlist *reqlist;
2842 		int i;
2843 
2844 		/* There is one request list for ever allocated request. */
2845 		for (i = 0, reqlist = xbb->request_lists;
2846 		     i < xbb->max_requests; i++, reqlist++){
2847 #ifdef XBB_USE_BOUNCE_BUFFERS
2848 			if (reqlist->bounce != NULL) {
2849 				free(reqlist->bounce, M_XENBLOCKBACK);
2850 				reqlist->bounce = NULL;
2851 			}
2852 #endif
2853 			if (reqlist->gnt_handles != NULL) {
2854 				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2855 				reqlist->gnt_handles = NULL;
2856 			}
2857 		}
2858 		free(xbb->request_lists, M_XENBLOCKBACK);
2859 		xbb->request_lists = NULL;
2860 	}
2861 
2862 	xbb->flags &= ~XBBF_RING_CONNECTED;
2863 	return (0);
2864 }
2865 
2866 /**
2867  * Map shared memory ring into domain local address space, initialize
2868  * ring control structures, and bind an interrupt to the event channel
2869  * used to notify us of ring changes.
2870  *
2871  * \param xbb  Per-instance xbb configuration structure.
2872  */
2873 static int
2874 xbb_connect_ring(struct xbb_softc *xbb)
2875 {
2876 	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2877 	struct gnttab_map_grant_ref *gnt;
2878 	u_int			     ring_idx;
2879 	int			     error;
2880 
2881 	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2882 		return (0);
2883 
2884 	/*
2885 	 * Kva for our ring is at the tail of the region of kva allocated
2886 	 * by xbb_alloc_communication_mem().
2887 	 */
2888 	xbb->ring_config.va = xbb->kva
2889 			    + (xbb->kva_size
2890 			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2891 	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2892 				  + (xbb->kva_size
2893 				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2894 
2895 	for (ring_idx = 0, gnt = gnts;
2896 	     ring_idx < xbb->ring_config.ring_pages;
2897 	     ring_idx++, gnt++) {
2898 
2899 		gnt->host_addr = xbb->ring_config.gnt_addr
2900 			       + (ring_idx * PAGE_SIZE);
2901 		gnt->flags     = GNTMAP_host_map;
2902 		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2903 		gnt->dom       = xbb->otherend_id;
2904 	}
2905 
2906 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2907 					  xbb->ring_config.ring_pages);
2908 	if (error)
2909 		panic("blkback: Ring page grant table op failed (%d)", error);
2910 
2911 	for (ring_idx = 0, gnt = gnts;
2912 	     ring_idx < xbb->ring_config.ring_pages;
2913 	     ring_idx++, gnt++) {
2914 		if (gnt->status != 0) {
2915 			xbb->ring_config.va = 0;
2916 			xenbus_dev_fatal(xbb->dev, EACCES,
2917 					 "Ring shared page mapping failed. "
2918 					 "Status %d.", gnt->status);
2919 			return (EACCES);
2920 		}
2921 		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2922 		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2923 	}
2924 
2925 	/* Initialize the ring based on ABI. */
2926 	switch (xbb->abi) {
2927 	case BLKIF_PROTOCOL_NATIVE:
2928 	{
2929 		blkif_sring_t *sring;
2930 		sring = (blkif_sring_t *)xbb->ring_config.va;
2931 		BACK_RING_INIT(&xbb->rings.native, sring,
2932 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2933 		break;
2934 	}
2935 	case BLKIF_PROTOCOL_X86_32:
2936 	{
2937 		blkif_x86_32_sring_t *sring_x86_32;
2938 		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2939 		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2940 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2941 		break;
2942 	}
2943 	case BLKIF_PROTOCOL_X86_64:
2944 	{
2945 		blkif_x86_64_sring_t *sring_x86_64;
2946 		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2947 		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2948 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2949 		break;
2950 	}
2951 	default:
2952 		panic("Unexpected blkif protocol ABI.");
2953 	}
2954 
2955 	xbb->flags |= XBBF_RING_CONNECTED;
2956 
2957 	error = xen_intr_bind_remote_port(xbb->dev,
2958 					  xbb->otherend_id,
2959 					  xbb->ring_config.evtchn,
2960 					  xbb_filter,
2961 					  /*ithread_handler*/NULL,
2962 					  /*arg*/xbb,
2963 					  INTR_TYPE_BIO | INTR_MPSAFE,
2964 					  &xbb->xen_intr_handle);
2965 	if (error) {
2966 		(void)xbb_disconnect(xbb);
2967 		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2968 		return (error);
2969 	}
2970 
2971 	DPRINTF("rings connected!\n");
2972 
2973 	return 0;
2974 }
2975 
2976 /**
2977  * Size KVA and pseudo-physical address allocations based on negotiated
2978  * values for the size and number of I/O requests, and the size of our
2979  * communication ring.
2980  *
2981  * \param xbb  Per-instance xbb configuration structure.
2982  *
2983  * These address spaces are used to dynamically map pages in the
2984  * front-end's domain into our own.
2985  */
2986 static int
2987 xbb_alloc_communication_mem(struct xbb_softc *xbb)
2988 {
2989 	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2990 	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2991 	xbb->kva_size = xbb->reqlist_kva_size +
2992 			(xbb->ring_config.ring_pages * PAGE_SIZE);
2993 
2994 	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages, M_XENBLOCKBACK, M_NOWAIT);
2995 	if (xbb->kva_free == NULL)
2996 		return (ENOMEM);
2997 
2998 	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2999 		device_get_nameunit(xbb->dev), xbb->kva_size,
3000 		xbb->reqlist_kva_size);
3001 	/*
3002 	 * Reserve a range of pseudo physical memory that we can map
3003 	 * into kva.  These pages will only be backed by machine
3004 	 * pages ("real memory") during the lifetime of front-end requests
3005 	 * via grant table operations.
3006 	 */
3007 	xbb->pseudo_phys_res_id = 0;
3008 	xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
3009 	    xbb->kva_size);
3010 	if (xbb->pseudo_phys_res == NULL) {
3011 		xbb->kva = 0;
3012 		return (ENOMEM);
3013 	}
3014 	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3015 	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3016 
3017 	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3018 		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3019 		(uintmax_t)xbb->gnt_base_addr);
3020 	return (0);
3021 }
3022 
3023 /**
3024  * Collect front-end information from the XenStore.
3025  *
3026  * \param xbb  Per-instance xbb configuration structure.
3027  */
3028 static int
3029 xbb_collect_frontend_info(struct xbb_softc *xbb)
3030 {
3031 	char	    protocol_abi[64];
3032 	const char *otherend_path;
3033 	int	    error;
3034 	u_int	    ring_idx;
3035 	u_int	    ring_page_order;
3036 	size_t	    ring_size;
3037 
3038 	otherend_path = xenbus_get_otherend_path(xbb->dev);
3039 
3040 	/*
3041 	 * Protocol defaults valid even if all negotiation fails.
3042 	 */
3043 	xbb->ring_config.ring_pages = 1;
3044 	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_REQUEST;
3045 	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3046 
3047 	/*
3048 	 * Mandatory data (used in all versions of the protocol) first.
3049 	 */
3050 	error = xs_scanf(XST_NIL, otherend_path,
3051 			 "event-channel", NULL, "%" PRIu32,
3052 			 &xbb->ring_config.evtchn);
3053 	if (error != 0) {
3054 		xenbus_dev_fatal(xbb->dev, error,
3055 				 "Unable to retrieve event-channel information "
3056 				 "from frontend %s.  Unable to connect.",
3057 				 xenbus_get_otherend_path(xbb->dev));
3058 		return (error);
3059 	}
3060 
3061 	/*
3062 	 * These fields are initialized to legacy protocol defaults
3063 	 * so we only need to fail if reading the updated value succeeds
3064 	 * and the new value is outside of its allowed range.
3065 	 *
3066 	 * \note xs_gather() returns on the first encountered error, so
3067 	 *       we must use independent calls in order to guarantee
3068 	 *       we don't miss information in a sparsly populated front-end
3069 	 *       tree.
3070 	 *
3071 	 * \note xs_scanf() does not update variables for unmatched
3072 	 *       fields.
3073 	 */
3074 	ring_page_order = 0;
3075 	xbb->max_requests = 32;
3076 
3077 	(void)xs_scanf(XST_NIL, otherend_path,
3078 		       "ring-page-order", NULL, "%u",
3079 		       &ring_page_order);
3080 	xbb->ring_config.ring_pages = 1 << ring_page_order;
3081 	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3082 	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3083 
3084 	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3085 		xenbus_dev_fatal(xbb->dev, EINVAL,
3086 				 "Front-end specified ring-pages of %u "
3087 				 "exceeds backend limit of %u.  "
3088 				 "Unable to connect.",
3089 				 xbb->ring_config.ring_pages,
3090 				 XBB_MAX_RING_PAGES);
3091 		return (EINVAL);
3092 	}
3093 
3094 	if (xbb->ring_config.ring_pages	== 1) {
3095 		error = xs_gather(XST_NIL, otherend_path,
3096 				  "ring-ref", "%" PRIu32,
3097 				  &xbb->ring_config.ring_ref[0],
3098 				  NULL);
3099 		if (error != 0) {
3100 			xenbus_dev_fatal(xbb->dev, error,
3101 					 "Unable to retrieve ring information "
3102 					 "from frontend %s.  Unable to "
3103 					 "connect.",
3104 					 xenbus_get_otherend_path(xbb->dev));
3105 			return (error);
3106 		}
3107 	} else {
3108 		/* Multi-page ring format. */
3109 		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3110 		     ring_idx++) {
3111 			char ring_ref_name[]= "ring_refXX";
3112 
3113 			snprintf(ring_ref_name, sizeof(ring_ref_name),
3114 				 "ring-ref%u", ring_idx);
3115 			error = xs_scanf(XST_NIL, otherend_path,
3116 					 ring_ref_name, NULL, "%" PRIu32,
3117 					 &xbb->ring_config.ring_ref[ring_idx]);
3118 			if (error != 0) {
3119 				xenbus_dev_fatal(xbb->dev, error,
3120 						 "Failed to retriev grant "
3121 						 "reference for page %u of "
3122 						 "shared ring.  Unable "
3123 						 "to connect.", ring_idx);
3124 				return (error);
3125 			}
3126 		}
3127 	}
3128 
3129 	error = xs_gather(XST_NIL, otherend_path,
3130 			  "protocol", "%63s", protocol_abi,
3131 			  NULL);
3132 	if (error != 0
3133 	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3134 		/*
3135 		 * Assume native if the frontend has not
3136 		 * published ABI data or it has published and
3137 		 * matches our own ABI.
3138 		 */
3139 		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3140 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3141 
3142 		xbb->abi = BLKIF_PROTOCOL_X86_32;
3143 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3144 
3145 		xbb->abi = BLKIF_PROTOCOL_X86_64;
3146 	} else {
3147 
3148 		xenbus_dev_fatal(xbb->dev, EINVAL,
3149 				 "Unknown protocol ABI (%s) published by "
3150 				 "frontend.  Unable to connect.", protocol_abi);
3151 		return (EINVAL);
3152 	}
3153 	return (0);
3154 }
3155 
3156 /**
3157  * Allocate per-request data structures given request size and number
3158  * information negotiated with the front-end.
3159  *
3160  * \param xbb  Per-instance xbb configuration structure.
3161  */
3162 static int
3163 xbb_alloc_requests(struct xbb_softc *xbb)
3164 {
3165 	struct xbb_xen_req *req;
3166 	struct xbb_xen_req *last_req;
3167 
3168 	/*
3169 	 * Allocate request book keeping datastructures.
3170 	 */
3171 	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3172 			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3173 	if (xbb->requests == NULL) {
3174 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3175 				  "Unable to allocate request structures");
3176 		return (ENOMEM);
3177 	}
3178 
3179 	req      = xbb->requests;
3180 	last_req = &xbb->requests[xbb->max_requests - 1];
3181 	STAILQ_INIT(&xbb->request_free_stailq);
3182 	while (req <= last_req) {
3183 		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3184 		req++;
3185 	}
3186 	return (0);
3187 }
3188 
3189 static int
3190 xbb_alloc_request_lists(struct xbb_softc *xbb)
3191 {
3192 	struct xbb_xen_reqlist *reqlist;
3193 	int			i;
3194 
3195 	/*
3196 	 * If no requests can be merged, we need 1 request list per
3197 	 * in flight request.
3198 	 */
3199 	xbb->request_lists = malloc(xbb->max_requests *
3200 		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3201 	if (xbb->request_lists == NULL) {
3202 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3203 				  "Unable to allocate request list structures");
3204 		return (ENOMEM);
3205 	}
3206 
3207 	STAILQ_INIT(&xbb->reqlist_free_stailq);
3208 	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3209 	for (i = 0; i < xbb->max_requests; i++) {
3210 		int seg;
3211 
3212 		reqlist      = &xbb->request_lists[i];
3213 
3214 		reqlist->xbb = xbb;
3215 
3216 #ifdef XBB_USE_BOUNCE_BUFFERS
3217 		reqlist->bounce = malloc(xbb->max_reqlist_size,
3218 					 M_XENBLOCKBACK, M_NOWAIT);
3219 		if (reqlist->bounce == NULL) {
3220 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3221 					 "Unable to allocate request "
3222 					 "bounce buffers");
3223 			return (ENOMEM);
3224 		}
3225 #endif /* XBB_USE_BOUNCE_BUFFERS */
3226 
3227 		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3228 					      sizeof(*reqlist->gnt_handles),
3229 					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3230 		if (reqlist->gnt_handles == NULL) {
3231 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3232 					  "Unable to allocate request "
3233 					  "grant references");
3234 			return (ENOMEM);
3235 		}
3236 
3237 		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3238 			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3239 
3240 		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3241 	}
3242 	return (0);
3243 }
3244 
3245 /**
3246  * Supply information about the physical device to the frontend
3247  * via XenBus.
3248  *
3249  * \param xbb  Per-instance xbb configuration structure.
3250  */
3251 static int
3252 xbb_publish_backend_info(struct xbb_softc *xbb)
3253 {
3254 	struct xs_transaction xst;
3255 	const char	     *our_path;
3256 	const char	     *leaf;
3257 	int		      error;
3258 
3259 	our_path = xenbus_get_node(xbb->dev);
3260 	while (1) {
3261 		error = xs_transaction_start(&xst);
3262 		if (error != 0) {
3263 			xenbus_dev_fatal(xbb->dev, error,
3264 					 "Error publishing backend info "
3265 					 "(start transaction)");
3266 			return (error);
3267 		}
3268 
3269 		leaf = "sectors";
3270 		error = xs_printf(xst, our_path, leaf,
3271 				  "%"PRIu64, xbb->media_num_sectors);
3272 		if (error != 0)
3273 			break;
3274 
3275 		/* XXX Support all VBD attributes here. */
3276 		leaf = "info";
3277 		error = xs_printf(xst, our_path, leaf, "%u",
3278 				  xbb->flags & XBBF_READ_ONLY
3279 				? VDISK_READONLY : 0);
3280 		if (error != 0)
3281 			break;
3282 
3283 		leaf = "sector-size";
3284 		error = xs_printf(xst, our_path, leaf, "%u",
3285 				  xbb->sector_size);
3286 		if (error != 0)
3287 			break;
3288 
3289 		error = xs_transaction_end(xst, 0);
3290 		if (error == 0) {
3291 			return (0);
3292 		} else if (error != EAGAIN) {
3293 			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3294 			return (error);
3295 		}
3296 	}
3297 
3298 	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3299 			our_path, leaf);
3300 	xs_transaction_end(xst, 1);
3301 	return (error);
3302 }
3303 
3304 /**
3305  * Connect to our blkfront peer now that it has completed publishing
3306  * its configuration into the XenStore.
3307  *
3308  * \param xbb  Per-instance xbb configuration structure.
3309  */
3310 static void
3311 xbb_connect(struct xbb_softc *xbb)
3312 {
3313 	int error;
3314 
3315 	if (!xbb->hotplug_done ||
3316 	    (xenbus_get_state(xbb->dev) != XenbusStateInitWait) ||
3317 	    (xbb_collect_frontend_info(xbb) != 0))
3318 		return;
3319 
3320 	xbb->flags &= ~XBBF_SHUTDOWN;
3321 
3322 	/*
3323 	 * We limit the maximum number of reqlist segments to the maximum
3324 	 * number of segments in the ring, or our absolute maximum,
3325 	 * whichever is smaller.
3326 	 */
3327 	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3328 		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3329 
3330 	/*
3331 	 * The maximum size is simply a function of the number of segments
3332 	 * we can handle.
3333 	 */
3334 	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3335 
3336 	/* Allocate resources whose size depends on front-end configuration. */
3337 	error = xbb_alloc_communication_mem(xbb);
3338 	if (error != 0) {
3339 		xenbus_dev_fatal(xbb->dev, error,
3340 				 "Unable to allocate communication memory");
3341 		return;
3342 	}
3343 
3344 	error = xbb_alloc_requests(xbb);
3345 	if (error != 0) {
3346 		/* Specific errors are reported by xbb_alloc_requests(). */
3347 		return;
3348 	}
3349 
3350 	error = xbb_alloc_request_lists(xbb);
3351 	if (error != 0) {
3352 		/* Specific errors are reported by xbb_alloc_request_lists(). */
3353 		return;
3354 	}
3355 
3356 	/*
3357 	 * Connect communication channel.
3358 	 */
3359 	error = xbb_connect_ring(xbb);
3360 	if (error != 0) {
3361 		/* Specific errors are reported by xbb_connect_ring(). */
3362 		return;
3363 	}
3364 
3365 	if (xbb_publish_backend_info(xbb) != 0) {
3366 		/*
3367 		 * If we can't publish our data, we cannot participate
3368 		 * in this connection, and waiting for a front-end state
3369 		 * change will not help the situation.
3370 		 */
3371 		(void)xbb_disconnect(xbb);
3372 		return;
3373 	}
3374 
3375 	/* Ready for I/O. */
3376 	xenbus_set_state(xbb->dev, XenbusStateConnected);
3377 }
3378 
3379 /*-------------------------- Device Teardown Support -------------------------*/
3380 /**
3381  * Perform device shutdown functions.
3382  *
3383  * \param xbb  Per-instance xbb configuration structure.
3384  *
3385  * Mark this instance as shutting down, wait for any active I/O on the
3386  * backend device/file to drain, disconnect from the front-end, and notify
3387  * any waiters (e.g. a thread invoking our detach method) that detach can
3388  * now proceed.
3389  */
3390 static int
3391 xbb_shutdown(struct xbb_softc *xbb)
3392 {
3393 	XenbusState frontState;
3394 	int	    error;
3395 
3396 	DPRINTF("\n");
3397 
3398 	/*
3399 	 * Due to the need to drop our mutex during some
3400 	 * xenbus operations, it is possible for two threads
3401 	 * to attempt to close out shutdown processing at
3402 	 * the same time.  Tell the caller that hits this
3403 	 * race to try back later.
3404 	 */
3405 	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3406 		return (EAGAIN);
3407 
3408 	xbb->flags |= XBBF_IN_SHUTDOWN;
3409 	mtx_unlock(&xbb->lock);
3410 
3411 	if (xbb->hotplug_watch.node != NULL) {
3412 		xs_unregister_watch(&xbb->hotplug_watch);
3413 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3414 		xbb->hotplug_watch.node = NULL;
3415 	}
3416 	xbb->hotplug_done = false;
3417 
3418 	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3419 		xenbus_set_state(xbb->dev, XenbusStateClosing);
3420 
3421 	frontState = xenbus_get_otherend_state(xbb->dev);
3422 	mtx_lock(&xbb->lock);
3423 	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3424 
3425 	/* Wait for the frontend to disconnect (if it's connected). */
3426 	if (frontState == XenbusStateConnected)
3427 		return (EAGAIN);
3428 
3429 	DPRINTF("\n");
3430 
3431 	/* Indicate shutdown is in progress. */
3432 	xbb->flags |= XBBF_SHUTDOWN;
3433 
3434 	/* Disconnect from the front-end. */
3435 	error = xbb_disconnect(xbb);
3436 	if (error != 0) {
3437 		/*
3438 		 * Requests still outstanding.  We'll be called again
3439 		 * once they complete.
3440 		 */
3441 		KASSERT(error == EAGAIN,
3442 			("%s: Unexpected xbb_disconnect() failure %d",
3443 			 __func__, error));
3444 
3445 		return (error);
3446 	}
3447 
3448 	DPRINTF("\n");
3449 
3450 	/* Indicate to xbb_detach() that is it safe to proceed. */
3451 	wakeup(xbb);
3452 
3453 	return (0);
3454 }
3455 
3456 /**
3457  * Report an attach time error to the console and Xen, and cleanup
3458  * this instance by forcing immediate detach processing.
3459  *
3460  * \param xbb  Per-instance xbb configuration structure.
3461  * \param err  Errno describing the error.
3462  * \param fmt  Printf style format and arguments
3463  */
3464 static void
3465 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3466 {
3467 	va_list ap;
3468 	va_list ap_hotplug;
3469 
3470 	va_start(ap, fmt);
3471 	va_copy(ap_hotplug, ap);
3472 	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3473 		  "hotplug-error", fmt, ap_hotplug);
3474 	va_end(ap_hotplug);
3475 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3476 		  "hotplug-status", "error");
3477 
3478 	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3479 	va_end(ap);
3480 
3481 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3482 		  "online", "0");
3483 	mtx_lock(&xbb->lock);
3484 	xbb_shutdown(xbb);
3485 	mtx_unlock(&xbb->lock);
3486 }
3487 
3488 /*---------------------------- NewBus Entrypoints ----------------------------*/
3489 /**
3490  * Inspect a XenBus device and claim it if is of the appropriate type.
3491  *
3492  * \param dev  NewBus device object representing a candidate XenBus device.
3493  *
3494  * \return  0 for success, errno codes for failure.
3495  */
3496 static int
3497 xbb_probe(device_t dev)
3498 {
3499 
3500         if (!strcmp(xenbus_get_type(dev), "vbd")) {
3501                 device_set_desc(dev, "Backend Virtual Block Device");
3502                 device_quiet(dev);
3503                 return (0);
3504         }
3505 
3506         return (ENXIO);
3507 }
3508 
3509 /**
3510  * Setup sysctl variables to control various Block Back parameters.
3511  *
3512  * \param xbb  Xen Block Back softc.
3513  *
3514  */
3515 static void
3516 xbb_setup_sysctl(struct xbb_softc *xbb)
3517 {
3518 	struct sysctl_ctx_list *sysctl_ctx = NULL;
3519 	struct sysctl_oid      *sysctl_tree = NULL;
3520 
3521 	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3522 	if (sysctl_ctx == NULL)
3523 		return;
3524 
3525 	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3526 	if (sysctl_tree == NULL)
3527 		return;
3528 
3529 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3530 		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3531 		       "fake the flush command");
3532 
3533 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3534 		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3535 		       "send a real flush for N flush requests");
3536 
3537 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3538 		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3539 		       "Don't coalesce contiguous requests");
3540 
3541 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3542 			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3543 			 "how many I/O requests we have received");
3544 
3545 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3546 			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3547 			 "how many I/O requests have been completed");
3548 
3549 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3550 			 "reqs_queued_for_completion", CTLFLAG_RW,
3551 			 &xbb->reqs_queued_for_completion,
3552 			 "how many I/O requests queued but not yet pushed");
3553 
3554 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3555 			 "reqs_completed_with_error", CTLFLAG_RW,
3556 			 &xbb->reqs_completed_with_error,
3557 			 "how many I/O requests completed with error status");
3558 
3559 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3560 			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3561 			 "how many I/O dispatches were forced");
3562 
3563 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3564 			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3565 			 "how many I/O dispatches were normal");
3566 
3567 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3568 			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3569 			 "total number of I/O dispatches");
3570 
3571 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3572 			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3573 			 "how many times we have run out of KVA");
3574 
3575 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3576 			 "request_shortages", CTLFLAG_RW,
3577 			 &xbb->request_shortages,
3578 			 "how many times we have run out of requests");
3579 
3580 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3581 		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3582 		        "maximum outstanding requests (negotiated)");
3583 
3584 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3585 		        "max_request_segments", CTLFLAG_RD,
3586 		        &xbb->max_request_segments, 0,
3587 		        "maximum number of pages per requests (negotiated)");
3588 
3589 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3590 		        "max_request_size", CTLFLAG_RD,
3591 		        &xbb->max_request_size, 0,
3592 		        "maximum size in bytes of a request (negotiated)");
3593 
3594 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3595 		        "ring_pages", CTLFLAG_RD,
3596 		        &xbb->ring_config.ring_pages, 0,
3597 		        "communication channel pages (negotiated)");
3598 }
3599 
3600 static void
3601 xbb_attach_disk(struct xs_watch *watch, const char **vec, unsigned int len)
3602 {
3603 	device_t		 dev;
3604 	struct xbb_softc	*xbb;
3605 	int			 error;
3606 
3607 	dev = (device_t) watch->callback_data;
3608 	xbb = device_get_softc(dev);
3609 
3610 	error = xs_gather(XST_NIL, xenbus_get_node(dev), "physical-device-path",
3611 	    NULL, &xbb->dev_name, NULL);
3612 	if (error != 0)
3613 		return;
3614 
3615 	xs_unregister_watch(watch);
3616 	free(watch->node, M_XENBLOCKBACK);
3617 	watch->node = NULL;
3618 
3619 	/* Collect physical device information. */
3620 	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3621 			  "device-type", NULL, &xbb->dev_type,
3622 			  NULL);
3623 	if (error != 0)
3624 		xbb->dev_type = NULL;
3625 
3626 	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3627                           "mode", NULL, &xbb->dev_mode,
3628                           NULL);
3629 	if (error != 0) {
3630 		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3631 				  xenbus_get_node(dev));
3632                 return;
3633         }
3634 
3635 	/* Parse fopen style mode flags. */
3636 	if (strchr(xbb->dev_mode, 'w') == NULL)
3637 		xbb->flags |= XBBF_READ_ONLY;
3638 
3639 	/*
3640 	 * Verify the physical device is present and can support
3641 	 * the desired I/O mode.
3642 	 */
3643 	error = xbb_open_backend(xbb);
3644 	if (error != 0) {
3645 		xbb_attach_failed(xbb, error, "Unable to open %s",
3646 				  xbb->dev_name);
3647 		return;
3648 	}
3649 
3650 	/* Use devstat(9) for recording statistics. */
3651 	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3652 					   xbb->sector_size,
3653 					   DEVSTAT_ALL_SUPPORTED,
3654 					   DEVSTAT_TYPE_DIRECT
3655 					 | DEVSTAT_TYPE_IF_OTHER,
3656 					   DEVSTAT_PRIORITY_OTHER);
3657 
3658 	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3659 					      xbb->sector_size,
3660 					      DEVSTAT_ALL_SUPPORTED,
3661 					      DEVSTAT_TYPE_DIRECT
3662 					    | DEVSTAT_TYPE_IF_OTHER,
3663 					      DEVSTAT_PRIORITY_OTHER);
3664 	/*
3665 	 * Setup sysctl variables.
3666 	 */
3667 	xbb_setup_sysctl(xbb);
3668 
3669 	/*
3670 	 * Create a taskqueue for doing work that must occur from a
3671 	 * thread context.
3672 	 */
3673 	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3674 						  M_NOWAIT,
3675 						  taskqueue_thread_enqueue,
3676 						  /*contxt*/&xbb->io_taskqueue);
3677 	if (xbb->io_taskqueue == NULL) {
3678 		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3679 		return;
3680 	}
3681 
3682 	taskqueue_start_threads(&xbb->io_taskqueue,
3683 				/*num threads*/1,
3684 				/*priority*/PWAIT,
3685 				/*thread name*/
3686 				"%s taskq", device_get_nameunit(dev));
3687 
3688 	/* Update hot-plug status to satisfy xend. */
3689 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3690 			  "hotplug-status", "connected");
3691 	if (error) {
3692 		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3693 				  xenbus_get_node(xbb->dev));
3694 		return;
3695 	}
3696 
3697 	xbb->hotplug_done = true;
3698 
3699 	/* The front end might be waiting for the backend, attach if so. */
3700 	if (xenbus_get_otherend_state(xbb->dev) == XenbusStateInitialised)
3701 		xbb_connect(xbb);
3702 }
3703 
3704 /**
3705  * Attach to a XenBus device that has been claimed by our probe routine.
3706  *
3707  * \param dev  NewBus device object representing this Xen Block Back instance.
3708  *
3709  * \return  0 for success, errno codes for failure.
3710  */
3711 static int
3712 xbb_attach(device_t dev)
3713 {
3714 	struct xbb_softc	*xbb;
3715 	int			 error;
3716 	u_int			 max_ring_page_order;
3717 	struct sbuf		*watch_path;
3718 
3719 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3720 
3721 	/*
3722 	 * Basic initialization.
3723 	 * After this block it is safe to call xbb_detach()
3724 	 * to clean up any allocated data for this instance.
3725 	 */
3726 	xbb = device_get_softc(dev);
3727 	xbb->dev = dev;
3728 	xbb->otherend_id = xenbus_get_otherend_id(dev);
3729 	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3730 	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3731 
3732 	/*
3733 	 * Publish protocol capabilities for consumption by the
3734 	 * front-end.
3735 	 */
3736 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3737 			  "feature-barrier", "1");
3738 	if (error) {
3739 		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3740 				  xenbus_get_node(xbb->dev));
3741 		return (error);
3742 	}
3743 
3744 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3745 			  "feature-flush-cache", "1");
3746 	if (error) {
3747 		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3748 				  xenbus_get_node(xbb->dev));
3749 		return (error);
3750 	}
3751 
3752 	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3753 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3754 			  "max-ring-page-order", "%u", max_ring_page_order);
3755 	if (error) {
3756 		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3757 				  xenbus_get_node(xbb->dev));
3758 		return (error);
3759 	}
3760 
3761 	/*
3762 	 * We need to wait for hotplug script execution before
3763 	 * moving forward.
3764 	 */
3765 	KASSERT(!xbb->hotplug_done, ("Hotplug scripts already executed"));
3766 	watch_path = xs_join(xenbus_get_node(xbb->dev), "physical-device-path");
3767 	xbb->hotplug_watch.callback_data = (uintptr_t)dev;
3768 	xbb->hotplug_watch.callback = xbb_attach_disk;
3769 	KASSERT(xbb->hotplug_watch.node == NULL, ("watch node already setup"));
3770 	xbb->hotplug_watch.node = strdup(sbuf_data(watch_path), M_XENBLOCKBACK);
3771 	sbuf_delete(watch_path);
3772 	error = xs_register_watch(&xbb->hotplug_watch);
3773 	if (error != 0) {
3774 		xbb_attach_failed(xbb, error, "failed to create watch on %s",
3775 		    xbb->hotplug_watch.node);
3776 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3777 		return (error);
3778 	}
3779 
3780 	/* Tell the toolstack blkback has attached. */
3781 	xenbus_set_state(dev, XenbusStateInitWait);
3782 
3783 	return (0);
3784 }
3785 
3786 /**
3787  * Detach from a block back device instance.
3788  *
3789  * \param dev  NewBus device object representing this Xen Block Back instance.
3790  *
3791  * \return  0 for success, errno codes for failure.
3792  *
3793  * \note A block back device may be detached at any time in its life-cycle,
3794  *       including part way through the attach process.  For this reason,
3795  *       initialization order and the initialization state checks in this
3796  *       routine must be carefully coupled so that attach time failures
3797  *       are gracefully handled.
3798  */
3799 static int
3800 xbb_detach(device_t dev)
3801 {
3802         struct xbb_softc *xbb;
3803 
3804 	DPRINTF("\n");
3805 
3806         xbb = device_get_softc(dev);
3807 	mtx_lock(&xbb->lock);
3808 	while (xbb_shutdown(xbb) == EAGAIN) {
3809 		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3810 		       "xbb_shutdown", 0);
3811 	}
3812 	mtx_unlock(&xbb->lock);
3813 
3814 	DPRINTF("\n");
3815 
3816 	if (xbb->io_taskqueue != NULL)
3817 		taskqueue_free(xbb->io_taskqueue);
3818 
3819 	if (xbb->xbb_stats != NULL)
3820 		devstat_remove_entry(xbb->xbb_stats);
3821 
3822 	if (xbb->xbb_stats_in != NULL)
3823 		devstat_remove_entry(xbb->xbb_stats_in);
3824 
3825 	xbb_close_backend(xbb);
3826 
3827 	if (xbb->dev_mode != NULL) {
3828 		free(xbb->dev_mode, M_XENSTORE);
3829 		xbb->dev_mode = NULL;
3830 	}
3831 
3832 	if (xbb->dev_type != NULL) {
3833 		free(xbb->dev_type, M_XENSTORE);
3834 		xbb->dev_type = NULL;
3835 	}
3836 
3837 	if (xbb->dev_name != NULL) {
3838 		free(xbb->dev_name, M_XENSTORE);
3839 		xbb->dev_name = NULL;
3840 	}
3841 
3842 	mtx_destroy(&xbb->lock);
3843         return (0);
3844 }
3845 
3846 /**
3847  * Prepare this block back device for suspension of this VM.
3848  *
3849  * \param dev  NewBus device object representing this Xen Block Back instance.
3850  *
3851  * \return  0 for success, errno codes for failure.
3852  */
3853 static int
3854 xbb_suspend(device_t dev)
3855 {
3856 #ifdef NOT_YET
3857         struct xbb_softc *sc = device_get_softc(dev);
3858 
3859         /* Prevent new requests being issued until we fix things up. */
3860         mtx_lock(&sc->xb_io_lock);
3861         sc->connected = BLKIF_STATE_SUSPENDED;
3862         mtx_unlock(&sc->xb_io_lock);
3863 #endif
3864 
3865         return (0);
3866 }
3867 
3868 /**
3869  * Perform any processing required to recover from a suspended state.
3870  *
3871  * \param dev  NewBus device object representing this Xen Block Back instance.
3872  *
3873  * \return  0 for success, errno codes for failure.
3874  */
3875 static int
3876 xbb_resume(device_t dev)
3877 {
3878 	return (0);
3879 }
3880 
3881 /**
3882  * Handle state changes expressed via the XenStore by our front-end peer.
3883  *
3884  * \param dev             NewBus device object representing this Xen
3885  *                        Block Back instance.
3886  * \param frontend_state  The new state of the front-end.
3887  *
3888  * \return  0 for success, errno codes for failure.
3889  */
3890 static void
3891 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3892 {
3893 	struct xbb_softc *xbb = device_get_softc(dev);
3894 
3895 	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3896 	        xenbus_strstate(frontend_state),
3897 		xenbus_strstate(xenbus_get_state(xbb->dev)));
3898 
3899 	switch (frontend_state) {
3900 	case XenbusStateInitialising:
3901 		break;
3902 	case XenbusStateInitialised:
3903 	case XenbusStateConnected:
3904 		xbb_connect(xbb);
3905 		break;
3906 	case XenbusStateClosing:
3907 	case XenbusStateClosed:
3908 		mtx_lock(&xbb->lock);
3909 		xbb_shutdown(xbb);
3910 		mtx_unlock(&xbb->lock);
3911 		if (frontend_state == XenbusStateClosed)
3912 			xenbus_set_state(xbb->dev, XenbusStateClosed);
3913 		break;
3914 	default:
3915 		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3916 				 frontend_state);
3917 		break;
3918 	}
3919 }
3920 
3921 /*---------------------------- NewBus Registration ---------------------------*/
3922 static device_method_t xbb_methods[] = {
3923 	/* Device interface */
3924 	DEVMETHOD(device_probe,		xbb_probe),
3925 	DEVMETHOD(device_attach,	xbb_attach),
3926 	DEVMETHOD(device_detach,	xbb_detach),
3927 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3928 	DEVMETHOD(device_suspend,	xbb_suspend),
3929 	DEVMETHOD(device_resume,	xbb_resume),
3930 
3931 	/* Xenbus interface */
3932 	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3933 
3934 	{ 0, 0 }
3935 };
3936 
3937 static driver_t xbb_driver = {
3938         "xbbd",
3939         xbb_methods,
3940         sizeof(struct xbb_softc),
3941 };
3942 devclass_t xbb_devclass;
3943 
3944 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
3945