1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2009-2012 Spectra Logic Corporation 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * substantially similar to the "NO WARRANTY" disclaimer below 15 * ("Disclaimer") and any redistribution must be conditioned upon 16 * including a substantially similar Disclaimer requirement for further 17 * binary redistribution. 18 * 19 * NO WARRANTY 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 28 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 29 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGES. 31 * 32 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 33 * Ken Merry (Spectra Logic Corporation) 34 */ 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /** 39 * \file blkback.c 40 * 41 * \brief Device driver supporting the vending of block storage from 42 * a FreeBSD domain to other domains. 43 */ 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kernel.h> 48 #include <sys/malloc.h> 49 50 #include <sys/bio.h> 51 #include <sys/bus.h> 52 #include <sys/conf.h> 53 #include <sys/devicestat.h> 54 #include <sys/disk.h> 55 #include <sys/fcntl.h> 56 #include <sys/filedesc.h> 57 #include <sys/kdb.h> 58 #include <sys/module.h> 59 #include <sys/namei.h> 60 #include <sys/proc.h> 61 #include <sys/rman.h> 62 #include <sys/taskqueue.h> 63 #include <sys/types.h> 64 #include <sys/vnode.h> 65 #include <sys/mount.h> 66 #include <sys/sysctl.h> 67 #include <sys/bitstring.h> 68 #include <sys/sdt.h> 69 70 #include <geom/geom.h> 71 72 #include <machine/_inttypes.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_extern.h> 76 #include <vm/vm_kern.h> 77 78 #include <xen/xen-os.h> 79 #include <xen/blkif.h> 80 #include <xen/gnttab.h> 81 #include <xen/xen_intr.h> 82 83 #include <xen/interface/event_channel.h> 84 #include <xen/interface/grant_table.h> 85 86 #include <xen/xenbus/xenbusvar.h> 87 88 /*--------------------------- Compile-time Tunables --------------------------*/ 89 /** 90 * The maximum number of shared memory ring pages we will allow in a 91 * negotiated block-front/back communication channel. Allow enough 92 * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd. 93 */ 94 #define XBB_MAX_RING_PAGES 32 95 96 /** 97 * The maximum number of outstanding request blocks (request headers plus 98 * additional segment blocks) we will allow in a negotiated block-front/back 99 * communication channel. 100 */ 101 #define XBB_MAX_REQUESTS \ 102 __CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES) 103 104 /** 105 * \brief Define to force all I/O to be performed on memory owned by the 106 * backend device, with a copy-in/out to the remote domain's memory. 107 * 108 * \note This option is currently required when this driver's domain is 109 * operating in HVM mode on a system using an IOMMU. 110 * 111 * This driver uses Xen's grant table API to gain access to the memory of 112 * the remote domains it serves. When our domain is operating in PV mode, 113 * the grant table mechanism directly updates our domain's page table entries 114 * to point to the physical pages of the remote domain. This scheme guarantees 115 * that blkback and the backing devices it uses can safely perform DMA 116 * operations to satisfy requests. In HVM mode, Xen may use a HW IOMMU to 117 * insure that our domain cannot DMA to pages owned by another domain. As 118 * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant 119 * table API. For this reason, in HVM mode, we must bounce all requests into 120 * memory that is mapped into our domain at domain startup and thus has 121 * valid IOMMU mappings. 122 */ 123 #define XBB_USE_BOUNCE_BUFFERS 124 125 /** 126 * \brief Define to enable rudimentary request logging to the console. 127 */ 128 #undef XBB_DEBUG 129 130 /*---------------------------------- Macros ----------------------------------*/ 131 /** 132 * Custom malloc type for all driver allocations. 133 */ 134 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data"); 135 136 #ifdef XBB_DEBUG 137 #define DPRINTF(fmt, args...) \ 138 printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) 139 #else 140 #define DPRINTF(fmt, args...) do {} while(0) 141 #endif 142 143 /** 144 * The maximum mapped region size per request we will allow in a negotiated 145 * block-front/back communication channel. 146 * Use old default of MAXPHYS == 128K. 147 */ 148 #define XBB_MAX_REQUEST_SIZE \ 149 MIN(128 * 1024, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE) 150 151 /** 152 * The maximum number of segments (within a request header and accompanying 153 * segment blocks) per request we will allow in a negotiated block-front/back 154 * communication channel. 155 */ 156 #define XBB_MAX_SEGMENTS_PER_REQUEST \ 157 (MIN(UIO_MAXIOV, \ 158 MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST, \ 159 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1))) 160 161 /** 162 * The maximum number of ring pages that we can allow per request list. 163 * We limit this to the maximum number of segments per request, because 164 * that is already a reasonable number of segments to aggregate. This 165 * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST, 166 * because that would leave situations where we can't dispatch even one 167 * large request. 168 */ 169 #define XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST 170 171 /*--------------------------- Forward Declarations ---------------------------*/ 172 struct xbb_softc; 173 struct xbb_xen_req; 174 175 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, 176 ...) __attribute__((format(printf, 3, 4))); 177 static int xbb_shutdown(struct xbb_softc *xbb); 178 179 /*------------------------------ Data Structures -----------------------------*/ 180 181 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req); 182 183 typedef enum { 184 XBB_REQLIST_NONE = 0x00, 185 XBB_REQLIST_MAPPED = 0x01 186 } xbb_reqlist_flags; 187 188 struct xbb_xen_reqlist { 189 /** 190 * Back reference to the parent block back instance for this 191 * request. Used during bio_done handling. 192 */ 193 struct xbb_softc *xbb; 194 195 /** 196 * BLKIF_OP code for this request. 197 */ 198 int operation; 199 200 /** 201 * Set to BLKIF_RSP_* to indicate request status. 202 * 203 * This field allows an error status to be recorded even if the 204 * delivery of this status must be deferred. Deferred reporting 205 * is necessary, for example, when an error is detected during 206 * completion processing of one bio when other bios for this 207 * request are still outstanding. 208 */ 209 int status; 210 211 /** 212 * Number of 512 byte sectors not transferred. 213 */ 214 int residual_512b_sectors; 215 216 /** 217 * Starting sector number of the first request in the list. 218 */ 219 off_t starting_sector_number; 220 221 /** 222 * If we're going to coalesce, the next contiguous sector would be 223 * this one. 224 */ 225 off_t next_contig_sector; 226 227 /** 228 * Number of child requests in the list. 229 */ 230 int num_children; 231 232 /** 233 * Number of I/O requests still pending on the backend. 234 */ 235 int pendcnt; 236 237 /** 238 * Total number of segments for requests in the list. 239 */ 240 int nr_segments; 241 242 /** 243 * Flags for this particular request list. 244 */ 245 xbb_reqlist_flags flags; 246 247 /** 248 * Kernel virtual address space reserved for this request 249 * list structure and used to map the remote domain's pages for 250 * this I/O, into our domain's address space. 251 */ 252 uint8_t *kva; 253 254 /** 255 * Base, pseudo-physical address, corresponding to the start 256 * of this request's kva region. 257 */ 258 uint64_t gnt_base; 259 260 #ifdef XBB_USE_BOUNCE_BUFFERS 261 /** 262 * Pre-allocated domain local memory used to proxy remote 263 * domain memory during I/O operations. 264 */ 265 uint8_t *bounce; 266 #endif 267 268 /** 269 * Array of grant handles (one per page) used to map this request. 270 */ 271 grant_handle_t *gnt_handles; 272 273 /** 274 * Device statistics request ordering type (ordered or simple). 275 */ 276 devstat_tag_type ds_tag_type; 277 278 /** 279 * Device statistics request type (read, write, no_data). 280 */ 281 devstat_trans_flags ds_trans_type; 282 283 /** 284 * The start time for this request. 285 */ 286 struct bintime ds_t0; 287 288 /** 289 * Linked list of contiguous requests with the same operation type. 290 */ 291 struct xbb_xen_req_list contig_req_list; 292 293 /** 294 * Linked list links used to aggregate idle requests in the 295 * request list free pool (xbb->reqlist_free_stailq) and pending 296 * requests waiting for execution (xbb->reqlist_pending_stailq). 297 */ 298 STAILQ_ENTRY(xbb_xen_reqlist) links; 299 }; 300 301 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist); 302 303 /** 304 * \brief Object tracking an in-flight I/O from a Xen VBD consumer. 305 */ 306 struct xbb_xen_req { 307 /** 308 * Linked list links used to aggregate requests into a reqlist 309 * and to store them in the request free pool. 310 */ 311 STAILQ_ENTRY(xbb_xen_req) links; 312 313 /** 314 * The remote domain's identifier for this I/O request. 315 */ 316 uint64_t id; 317 318 /** 319 * The number of pages currently mapped for this request. 320 */ 321 int nr_pages; 322 323 /** 324 * The number of 512 byte sectors comprising this requests. 325 */ 326 int nr_512b_sectors; 327 328 /** 329 * BLKIF_OP code for this request. 330 */ 331 int operation; 332 333 /** 334 * Storage used for non-native ring requests. 335 */ 336 blkif_request_t ring_req_storage; 337 338 /** 339 * Pointer to the Xen request in the ring. 340 */ 341 blkif_request_t *ring_req; 342 343 /** 344 * Consumer index for this request. 345 */ 346 RING_IDX req_ring_idx; 347 348 /** 349 * The start time for this request. 350 */ 351 struct bintime ds_t0; 352 353 /** 354 * Pointer back to our parent request list. 355 */ 356 struct xbb_xen_reqlist *reqlist; 357 }; 358 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req); 359 360 /** 361 * \brief Configuration data for the shared memory request ring 362 * used to communicate with the front-end client of this 363 * this driver. 364 */ 365 struct xbb_ring_config { 366 /** KVA address where ring memory is mapped. */ 367 vm_offset_t va; 368 369 /** The pseudo-physical address where ring memory is mapped.*/ 370 uint64_t gnt_addr; 371 372 /** 373 * Grant table handles, one per-ring page, returned by the 374 * hyperpervisor upon mapping of the ring and required to 375 * unmap it when a connection is torn down. 376 */ 377 grant_handle_t handle[XBB_MAX_RING_PAGES]; 378 379 /** 380 * The device bus address returned by the hypervisor when 381 * mapping the ring and required to unmap it when a connection 382 * is torn down. 383 */ 384 uint64_t bus_addr[XBB_MAX_RING_PAGES]; 385 386 /** The number of ring pages mapped for the current connection. */ 387 u_int ring_pages; 388 389 /** 390 * The grant references, one per-ring page, supplied by the 391 * front-end, allowing us to reference the ring pages in the 392 * front-end's domain and to map these pages into our own domain. 393 */ 394 grant_ref_t ring_ref[XBB_MAX_RING_PAGES]; 395 396 /** The interrupt driven even channel used to signal ring events. */ 397 evtchn_port_t evtchn; 398 }; 399 400 /** 401 * Per-instance connection state flags. 402 */ 403 typedef enum 404 { 405 /** 406 * The front-end requested a read-only mount of the 407 * back-end device/file. 408 */ 409 XBBF_READ_ONLY = 0x01, 410 411 /** Communication with the front-end has been established. */ 412 XBBF_RING_CONNECTED = 0x02, 413 414 /** 415 * Front-end requests exist in the ring and are waiting for 416 * xbb_xen_req objects to free up. 417 */ 418 XBBF_RESOURCE_SHORTAGE = 0x04, 419 420 /** Connection teardown in progress. */ 421 XBBF_SHUTDOWN = 0x08, 422 423 /** A thread is already performing shutdown processing. */ 424 XBBF_IN_SHUTDOWN = 0x10 425 } xbb_flag_t; 426 427 /** Backend device type. */ 428 typedef enum { 429 /** Backend type unknown. */ 430 XBB_TYPE_NONE = 0x00, 431 432 /** 433 * Backend type disk (access via cdev switch 434 * strategy routine). 435 */ 436 XBB_TYPE_DISK = 0x01, 437 438 /** Backend type file (access vnode operations.). */ 439 XBB_TYPE_FILE = 0x02 440 } xbb_type; 441 442 /** 443 * \brief Structure used to memoize information about a per-request 444 * scatter-gather list. 445 * 446 * The chief benefit of using this data structure is it avoids having 447 * to reparse the possibly discontiguous S/G list in the original 448 * request. Due to the way that the mapping of the memory backing an 449 * I/O transaction is handled by Xen, a second pass is unavoidable. 450 * At least this way the second walk is a simple array traversal. 451 * 452 * \note A single Scatter/Gather element in the block interface covers 453 * at most 1 machine page. In this context a sector (blkif 454 * nomenclature, not what I'd choose) is a 512b aligned unit 455 * of mapping within the machine page referenced by an S/G 456 * element. 457 */ 458 struct xbb_sg { 459 /** The number of 512b data chunks mapped in this S/G element. */ 460 int16_t nsect; 461 462 /** 463 * The index (0 based) of the first 512b data chunk mapped 464 * in this S/G element. 465 */ 466 uint8_t first_sect; 467 468 /** 469 * The index (0 based) of the last 512b data chunk mapped 470 * in this S/G element. 471 */ 472 uint8_t last_sect; 473 }; 474 475 /** 476 * Character device backend specific configuration data. 477 */ 478 struct xbb_dev_data { 479 /** Cdev used for device backend access. */ 480 struct cdev *cdev; 481 482 /** Cdev switch used for device backend access. */ 483 struct cdevsw *csw; 484 485 /** Used to hold a reference on opened cdev backend devices. */ 486 int dev_ref; 487 }; 488 489 /** 490 * File backend specific configuration data. 491 */ 492 struct xbb_file_data { 493 /** Credentials to use for vnode backed (file based) I/O. */ 494 struct ucred *cred; 495 496 /** 497 * \brief Array of io vectors used to process file based I/O. 498 * 499 * Only a single file based request is outstanding per-xbb instance, 500 * so we only need one of these. 501 */ 502 struct iovec xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST]; 503 #ifdef XBB_USE_BOUNCE_BUFFERS 504 505 /** 506 * \brief Array of io vectors used to handle bouncing of file reads. 507 * 508 * Vnode operations are free to modify uio data during their 509 * exectuion. In the case of a read with bounce buffering active, 510 * we need some of the data from the original uio in order to 511 * bounce-out the read data. This array serves as the temporary 512 * storage for this saved data. 513 */ 514 struct iovec saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST]; 515 516 /** 517 * \brief Array of memoized bounce buffer kva offsets used 518 * in the file based backend. 519 * 520 * Due to the way that the mapping of the memory backing an 521 * I/O transaction is handled by Xen, a second pass through 522 * the request sg elements is unavoidable. We memoize the computed 523 * bounce address here to reduce the cost of the second walk. 524 */ 525 void *xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST]; 526 #endif /* XBB_USE_BOUNCE_BUFFERS */ 527 }; 528 529 /** 530 * Collection of backend type specific data. 531 */ 532 union xbb_backend_data { 533 struct xbb_dev_data dev; 534 struct xbb_file_data file; 535 }; 536 537 /** 538 * Function signature of backend specific I/O handlers. 539 */ 540 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb, 541 struct xbb_xen_reqlist *reqlist, int operation, 542 int flags); 543 544 /** 545 * Per-instance configuration data. 546 */ 547 struct xbb_softc { 548 /** 549 * Task-queue used to process I/O requests. 550 */ 551 struct taskqueue *io_taskqueue; 552 553 /** 554 * Single "run the request queue" task enqueued 555 * on io_taskqueue. 556 */ 557 struct task io_task; 558 559 /** Device type for this instance. */ 560 xbb_type device_type; 561 562 /** NewBus device corresponding to this instance. */ 563 device_t dev; 564 565 /** Backend specific dispatch routine for this instance. */ 566 xbb_dispatch_t dispatch_io; 567 568 /** The number of requests outstanding on the backend device/file. */ 569 int active_request_count; 570 571 /** Free pool of request tracking structures. */ 572 struct xbb_xen_req_list request_free_stailq; 573 574 /** Array, sized at connection time, of request tracking structures. */ 575 struct xbb_xen_req *requests; 576 577 /** Free pool of request list structures. */ 578 struct xbb_xen_reqlist_list reqlist_free_stailq; 579 580 /** List of pending request lists awaiting execution. */ 581 struct xbb_xen_reqlist_list reqlist_pending_stailq; 582 583 /** Array, sized at connection time, of request list structures. */ 584 struct xbb_xen_reqlist *request_lists; 585 586 /** 587 * Global pool of kva used for mapping remote domain ring 588 * and I/O transaction data. 589 */ 590 vm_offset_t kva; 591 592 /** Pseudo-physical address corresponding to kva. */ 593 uint64_t gnt_base_addr; 594 595 /** The size of the global kva pool. */ 596 int kva_size; 597 598 /** The size of the KVA area used for request lists. */ 599 int reqlist_kva_size; 600 601 /** The number of pages of KVA used for request lists */ 602 int reqlist_kva_pages; 603 604 /** Bitmap of free KVA pages */ 605 bitstr_t *kva_free; 606 607 /** 608 * \brief Cached value of the front-end's domain id. 609 * 610 * This value is used at once for each mapped page in 611 * a transaction. We cache it to avoid incuring the 612 * cost of an ivar access every time this is needed. 613 */ 614 domid_t otherend_id; 615 616 /** 617 * \brief The blkif protocol abi in effect. 618 * 619 * There are situations where the back and front ends can 620 * have a different, native abi (e.g. intel x86_64 and 621 * 32bit x86 domains on the same machine). The back-end 622 * always accommodates the front-end's native abi. That 623 * value is pulled from the XenStore and recorded here. 624 */ 625 int abi; 626 627 /** 628 * \brief The maximum number of requests and request lists allowed 629 * to be in flight at a time. 630 * 631 * This value is negotiated via the XenStore. 632 */ 633 u_int max_requests; 634 635 /** 636 * \brief The maximum number of segments (1 page per segment) 637 * that can be mapped by a request. 638 * 639 * This value is negotiated via the XenStore. 640 */ 641 u_int max_request_segments; 642 643 /** 644 * \brief Maximum number of segments per request list. 645 * 646 * This value is derived from and will generally be larger than 647 * max_request_segments. 648 */ 649 u_int max_reqlist_segments; 650 651 /** 652 * The maximum size of any request to this back-end 653 * device. 654 * 655 * This value is negotiated via the XenStore. 656 */ 657 u_int max_request_size; 658 659 /** 660 * The maximum size of any request list. This is derived directly 661 * from max_reqlist_segments. 662 */ 663 u_int max_reqlist_size; 664 665 /** Various configuration and state bit flags. */ 666 xbb_flag_t flags; 667 668 /** Ring mapping and interrupt configuration data. */ 669 struct xbb_ring_config ring_config; 670 671 /** Runtime, cross-abi safe, structures for ring access. */ 672 blkif_back_rings_t rings; 673 674 /** IRQ mapping for the communication ring event channel. */ 675 xen_intr_handle_t xen_intr_handle; 676 677 /** 678 * \brief Backend access mode flags (e.g. write, or read-only). 679 * 680 * This value is passed to us by the front-end via the XenStore. 681 */ 682 char *dev_mode; 683 684 /** 685 * \brief Backend device type (e.g. "disk", "cdrom", "floppy"). 686 * 687 * This value is passed to us by the front-end via the XenStore. 688 * Currently unused. 689 */ 690 char *dev_type; 691 692 /** 693 * \brief Backend device/file identifier. 694 * 695 * This value is passed to us by the front-end via the XenStore. 696 * We expect this to be a POSIX path indicating the file or 697 * device to open. 698 */ 699 char *dev_name; 700 701 /** 702 * Vnode corresponding to the backend device node or file 703 * we are acessing. 704 */ 705 struct vnode *vn; 706 707 union xbb_backend_data backend; 708 709 /** The native sector size of the backend. */ 710 u_int sector_size; 711 712 /** log2 of sector_size. */ 713 u_int sector_size_shift; 714 715 /** Size in bytes of the backend device or file. */ 716 off_t media_size; 717 718 /** 719 * \brief media_size expressed in terms of the backend native 720 * sector size. 721 * 722 * (e.g. xbb->media_size >> xbb->sector_size_shift). 723 */ 724 uint64_t media_num_sectors; 725 726 /** 727 * \brief Array of memoized scatter gather data computed during the 728 * conversion of blkif ring requests to internal xbb_xen_req 729 * structures. 730 * 731 * Ring processing is serialized so we only need one of these. 732 */ 733 struct xbb_sg xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST]; 734 735 /** 736 * Temporary grant table map used in xbb_dispatch_io(). When 737 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the 738 * stack could cause a stack overflow. 739 */ 740 struct gnttab_map_grant_ref maps[XBB_MAX_SEGMENTS_PER_REQLIST]; 741 742 /** Mutex protecting per-instance data. */ 743 struct mtx lock; 744 745 /** 746 * Resource representing allocated physical address space 747 * associated with our per-instance kva region. 748 */ 749 struct resource *pseudo_phys_res; 750 751 /** Resource id for allocated physical address space. */ 752 int pseudo_phys_res_id; 753 754 /** 755 * I/O statistics from BlockBack dispatch down. These are 756 * coalesced requests, and we start them right before execution. 757 */ 758 struct devstat *xbb_stats; 759 760 /** 761 * I/O statistics coming into BlockBack. These are the requests as 762 * we get them from BlockFront. They are started as soon as we 763 * receive a request, and completed when the I/O is complete. 764 */ 765 struct devstat *xbb_stats_in; 766 767 /** Disable sending flush to the backend */ 768 int disable_flush; 769 770 /** Send a real flush for every N flush requests */ 771 int flush_interval; 772 773 /** Count of flush requests in the interval */ 774 int flush_count; 775 776 /** Don't coalesce requests if this is set */ 777 int no_coalesce_reqs; 778 779 /** Number of requests we have received */ 780 uint64_t reqs_received; 781 782 /** Number of requests we have completed*/ 783 uint64_t reqs_completed; 784 785 /** Number of requests we queued but not pushed*/ 786 uint64_t reqs_queued_for_completion; 787 788 /** Number of requests we completed with an error status*/ 789 uint64_t reqs_completed_with_error; 790 791 /** How many forced dispatches (i.e. without coalescing) have happened */ 792 uint64_t forced_dispatch; 793 794 /** How many normal dispatches have happened */ 795 uint64_t normal_dispatch; 796 797 /** How many total dispatches have happened */ 798 uint64_t total_dispatch; 799 800 /** How many times we have run out of KVA */ 801 uint64_t kva_shortages; 802 803 /** How many times we have run out of request structures */ 804 uint64_t request_shortages; 805 806 /** Watch to wait for hotplug script execution */ 807 struct xs_watch hotplug_watch; 808 809 /** Got the needed data from hotplug scripts? */ 810 bool hotplug_done; 811 }; 812 813 /*---------------------------- Request Processing ----------------------------*/ 814 /** 815 * Allocate an internal transaction tracking structure from the free pool. 816 * 817 * \param xbb Per-instance xbb configuration structure. 818 * 819 * \return On success, a pointer to the allocated xbb_xen_req structure. 820 * Otherwise NULL. 821 */ 822 static inline struct xbb_xen_req * 823 xbb_get_req(struct xbb_softc *xbb) 824 { 825 struct xbb_xen_req *req; 826 827 req = NULL; 828 829 mtx_assert(&xbb->lock, MA_OWNED); 830 831 if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) { 832 STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links); 833 xbb->active_request_count++; 834 } 835 836 return (req); 837 } 838 839 /** 840 * Return an allocated transaction tracking structure to the free pool. 841 * 842 * \param xbb Per-instance xbb configuration structure. 843 * \param req The request structure to free. 844 */ 845 static inline void 846 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req) 847 { 848 mtx_assert(&xbb->lock, MA_OWNED); 849 850 STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links); 851 xbb->active_request_count--; 852 853 KASSERT(xbb->active_request_count >= 0, 854 ("xbb_release_req: negative active count")); 855 } 856 857 /** 858 * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool. 859 * 860 * \param xbb Per-instance xbb configuration structure. 861 * \param req_list The list of requests to free. 862 * \param nreqs The number of items in the list. 863 */ 864 static inline void 865 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list, 866 int nreqs) 867 { 868 mtx_assert(&xbb->lock, MA_OWNED); 869 870 STAILQ_CONCAT(&xbb->request_free_stailq, req_list); 871 xbb->active_request_count -= nreqs; 872 873 KASSERT(xbb->active_request_count >= 0, 874 ("xbb_release_reqs: negative active count")); 875 } 876 877 /** 878 * Given a page index and 512b sector offset within that page, 879 * calculate an offset into a request's kva region. 880 * 881 * \param reqlist The request structure whose kva region will be accessed. 882 * \param pagenr The page index used to compute the kva offset. 883 * \param sector The 512b sector index used to compute the page relative 884 * kva offset. 885 * 886 * \return The computed global KVA offset. 887 */ 888 static inline uint8_t * 889 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector) 890 { 891 return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9)); 892 } 893 894 #ifdef XBB_USE_BOUNCE_BUFFERS 895 /** 896 * Given a page index and 512b sector offset within that page, 897 * calculate an offset into a request's local bounce memory region. 898 * 899 * \param reqlist The request structure whose bounce region will be accessed. 900 * \param pagenr The page index used to compute the bounce offset. 901 * \param sector The 512b sector index used to compute the page relative 902 * bounce offset. 903 * 904 * \return The computed global bounce buffer address. 905 */ 906 static inline uint8_t * 907 xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector) 908 { 909 return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9)); 910 } 911 #endif 912 913 /** 914 * Given a page number and 512b sector offset within that page, 915 * calculate an offset into the request's memory region that the 916 * underlying backend device/file should use for I/O. 917 * 918 * \param reqlist The request structure whose I/O region will be accessed. 919 * \param pagenr The page index used to compute the I/O offset. 920 * \param sector The 512b sector index used to compute the page relative 921 * I/O offset. 922 * 923 * \return The computed global I/O address. 924 * 925 * Depending on configuration, this will either be a local bounce buffer 926 * or a pointer to the memory mapped in from the front-end domain for 927 * this request. 928 */ 929 static inline uint8_t * 930 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector) 931 { 932 #ifdef XBB_USE_BOUNCE_BUFFERS 933 return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector)); 934 #else 935 return (xbb_reqlist_vaddr(reqlist, pagenr, sector)); 936 #endif 937 } 938 939 /** 940 * Given a page index and 512b sector offset within that page, calculate 941 * an offset into the local pseudo-physical address space used to map a 942 * front-end's request data into a request. 943 * 944 * \param reqlist The request list structure whose pseudo-physical region 945 * will be accessed. 946 * \param pagenr The page index used to compute the pseudo-physical offset. 947 * \param sector The 512b sector index used to compute the page relative 948 * pseudo-physical offset. 949 * 950 * \return The computed global pseudo-phsyical address. 951 * 952 * Depending on configuration, this will either be a local bounce buffer 953 * or a pointer to the memory mapped in from the front-end domain for 954 * this request. 955 */ 956 static inline uintptr_t 957 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector) 958 { 959 struct xbb_softc *xbb; 960 961 xbb = reqlist->xbb; 962 963 return ((uintptr_t)(xbb->gnt_base_addr + 964 (uintptr_t)(reqlist->kva - xbb->kva) + 965 (PAGE_SIZE * pagenr) + (sector << 9))); 966 } 967 968 /** 969 * Get Kernel Virtual Address space for mapping requests. 970 * 971 * \param xbb Per-instance xbb configuration structure. 972 * \param nr_pages Number of pages needed. 973 * \param check_only If set, check for free KVA but don't allocate it. 974 * \param have_lock If set, xbb lock is already held. 975 * 976 * \return On success, a pointer to the allocated KVA region. Otherwise NULL. 977 * 978 * Note: This should be unnecessary once we have either chaining or 979 * scatter/gather support for struct bio. At that point we'll be able to 980 * put multiple addresses and lengths in one bio/bio chain and won't need 981 * to map everything into one virtual segment. 982 */ 983 static uint8_t * 984 xbb_get_kva(struct xbb_softc *xbb, int nr_pages) 985 { 986 int first_clear; 987 int num_clear; 988 uint8_t *free_kva; 989 int i; 990 991 KASSERT(nr_pages != 0, ("xbb_get_kva of zero length")); 992 993 first_clear = 0; 994 free_kva = NULL; 995 996 mtx_lock(&xbb->lock); 997 998 /* 999 * Look for the first available page. If there are none, we're done. 1000 */ 1001 bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear); 1002 1003 if (first_clear == -1) 1004 goto bailout; 1005 1006 /* 1007 * Starting at the first available page, look for consecutive free 1008 * pages that will satisfy the user's request. 1009 */ 1010 for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) { 1011 /* 1012 * If this is true, the page is used, so we have to reset 1013 * the number of clear pages and the first clear page 1014 * (since it pointed to a region with an insufficient number 1015 * of clear pages). 1016 */ 1017 if (bit_test(xbb->kva_free, i)) { 1018 num_clear = 0; 1019 first_clear = -1; 1020 continue; 1021 } 1022 1023 if (first_clear == -1) 1024 first_clear = i; 1025 1026 /* 1027 * If this is true, we've found a large enough free region 1028 * to satisfy the request. 1029 */ 1030 if (++num_clear == nr_pages) { 1031 bit_nset(xbb->kva_free, first_clear, 1032 first_clear + nr_pages - 1); 1033 1034 free_kva = xbb->kva + 1035 (uint8_t *)((intptr_t)first_clear * PAGE_SIZE); 1036 1037 KASSERT(free_kva >= (uint8_t *)xbb->kva && 1038 free_kva + (nr_pages * PAGE_SIZE) <= 1039 (uint8_t *)xbb->ring_config.va, 1040 ("Free KVA %p len %d out of range, " 1041 "kva = %#jx, ring VA = %#jx\n", free_kva, 1042 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva, 1043 (uintmax_t)xbb->ring_config.va)); 1044 break; 1045 } 1046 } 1047 1048 bailout: 1049 1050 if (free_kva == NULL) { 1051 xbb->flags |= XBBF_RESOURCE_SHORTAGE; 1052 xbb->kva_shortages++; 1053 } 1054 1055 mtx_unlock(&xbb->lock); 1056 1057 return (free_kva); 1058 } 1059 1060 /** 1061 * Free allocated KVA. 1062 * 1063 * \param xbb Per-instance xbb configuration structure. 1064 * \param kva_ptr Pointer to allocated KVA region. 1065 * \param nr_pages Number of pages in the KVA region. 1066 */ 1067 static void 1068 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages) 1069 { 1070 intptr_t start_page; 1071 1072 mtx_assert(&xbb->lock, MA_OWNED); 1073 1074 start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT; 1075 bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1); 1076 1077 } 1078 1079 /** 1080 * Unmap the front-end pages associated with this I/O request. 1081 * 1082 * \param req The request structure to unmap. 1083 */ 1084 static void 1085 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist) 1086 { 1087 struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST]; 1088 u_int i; 1089 u_int invcount; 1090 int error; 1091 1092 invcount = 0; 1093 for (i = 0; i < reqlist->nr_segments; i++) { 1094 if (reqlist->gnt_handles[i] == GRANT_REF_INVALID) 1095 continue; 1096 1097 unmap[invcount].host_addr = xbb_get_gntaddr(reqlist, i, 0); 1098 unmap[invcount].dev_bus_addr = 0; 1099 unmap[invcount].handle = reqlist->gnt_handles[i]; 1100 reqlist->gnt_handles[i] = GRANT_REF_INVALID; 1101 invcount++; 1102 } 1103 1104 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, 1105 unmap, invcount); 1106 KASSERT(error == 0, ("Grant table operation failed")); 1107 } 1108 1109 /** 1110 * Allocate an internal transaction tracking structure from the free pool. 1111 * 1112 * \param xbb Per-instance xbb configuration structure. 1113 * 1114 * \return On success, a pointer to the allocated xbb_xen_reqlist structure. 1115 * Otherwise NULL. 1116 */ 1117 static inline struct xbb_xen_reqlist * 1118 xbb_get_reqlist(struct xbb_softc *xbb) 1119 { 1120 struct xbb_xen_reqlist *reqlist; 1121 1122 reqlist = NULL; 1123 1124 mtx_assert(&xbb->lock, MA_OWNED); 1125 1126 if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) { 1127 STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links); 1128 reqlist->flags = XBB_REQLIST_NONE; 1129 reqlist->kva = NULL; 1130 reqlist->status = BLKIF_RSP_OKAY; 1131 reqlist->residual_512b_sectors = 0; 1132 reqlist->num_children = 0; 1133 reqlist->nr_segments = 0; 1134 STAILQ_INIT(&reqlist->contig_req_list); 1135 } 1136 1137 return (reqlist); 1138 } 1139 1140 /** 1141 * Return an allocated transaction tracking structure to the free pool. 1142 * 1143 * \param xbb Per-instance xbb configuration structure. 1144 * \param req The request list structure to free. 1145 * \param wakeup If set, wakeup the work thread if freeing this reqlist 1146 * during a resource shortage condition. 1147 */ 1148 static inline void 1149 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist, 1150 int wakeup) 1151 { 1152 1153 mtx_assert(&xbb->lock, MA_OWNED); 1154 1155 if (wakeup) { 1156 wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE; 1157 xbb->flags &= ~XBBF_RESOURCE_SHORTAGE; 1158 } 1159 1160 if (reqlist->kva != NULL) 1161 xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments); 1162 1163 xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children); 1164 1165 STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links); 1166 1167 if ((xbb->flags & XBBF_SHUTDOWN) != 0) { 1168 /* 1169 * Shutdown is in progress. See if we can 1170 * progress further now that one more request 1171 * has completed and been returned to the 1172 * free pool. 1173 */ 1174 xbb_shutdown(xbb); 1175 } 1176 1177 if (wakeup != 0) 1178 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 1179 } 1180 1181 /** 1182 * Request resources and do basic request setup. 1183 * 1184 * \param xbb Per-instance xbb configuration structure. 1185 * \param reqlist Pointer to reqlist pointer. 1186 * \param ring_req Pointer to a block ring request. 1187 * \param ring_index The ring index of this request. 1188 * 1189 * \return 0 for success, non-zero for failure. 1190 */ 1191 static int 1192 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist, 1193 blkif_request_t *ring_req, RING_IDX ring_idx) 1194 { 1195 struct xbb_xen_reqlist *nreqlist; 1196 struct xbb_xen_req *nreq; 1197 1198 nreqlist = NULL; 1199 nreq = NULL; 1200 1201 mtx_lock(&xbb->lock); 1202 1203 /* 1204 * We don't allow new resources to be allocated if we're in the 1205 * process of shutting down. 1206 */ 1207 if ((xbb->flags & XBBF_SHUTDOWN) != 0) { 1208 mtx_unlock(&xbb->lock); 1209 return (1); 1210 } 1211 1212 /* 1213 * Allocate a reqlist if the caller doesn't have one already. 1214 */ 1215 if (*reqlist == NULL) { 1216 nreqlist = xbb_get_reqlist(xbb); 1217 if (nreqlist == NULL) 1218 goto bailout_error; 1219 } 1220 1221 /* We always allocate a request. */ 1222 nreq = xbb_get_req(xbb); 1223 if (nreq == NULL) 1224 goto bailout_error; 1225 1226 mtx_unlock(&xbb->lock); 1227 1228 if (*reqlist == NULL) { 1229 *reqlist = nreqlist; 1230 nreqlist->operation = ring_req->operation; 1231 nreqlist->starting_sector_number = ring_req->sector_number; 1232 STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist, 1233 links); 1234 } 1235 1236 nreq->reqlist = *reqlist; 1237 nreq->req_ring_idx = ring_idx; 1238 nreq->id = ring_req->id; 1239 nreq->operation = ring_req->operation; 1240 1241 if (xbb->abi != BLKIF_PROTOCOL_NATIVE) { 1242 bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req)); 1243 nreq->ring_req = &nreq->ring_req_storage; 1244 } else { 1245 nreq->ring_req = ring_req; 1246 } 1247 1248 binuptime(&nreq->ds_t0); 1249 devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0); 1250 STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links); 1251 (*reqlist)->num_children++; 1252 (*reqlist)->nr_segments += ring_req->nr_segments; 1253 1254 return (0); 1255 1256 bailout_error: 1257 1258 /* 1259 * We're out of resources, so set the shortage flag. The next time 1260 * a request is released, we'll try waking up the work thread to 1261 * see if we can allocate more resources. 1262 */ 1263 xbb->flags |= XBBF_RESOURCE_SHORTAGE; 1264 xbb->request_shortages++; 1265 1266 if (nreq != NULL) 1267 xbb_release_req(xbb, nreq); 1268 1269 if (nreqlist != NULL) 1270 xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0); 1271 1272 mtx_unlock(&xbb->lock); 1273 1274 return (1); 1275 } 1276 1277 /** 1278 * Create and queue a response to a blkif request. 1279 * 1280 * \param xbb Per-instance xbb configuration structure. 1281 * \param req The request structure to which to respond. 1282 * \param status The status code to report. See BLKIF_RSP_* 1283 * in sys/xen/interface/io/blkif.h. 1284 */ 1285 static void 1286 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status) 1287 { 1288 blkif_response_t *resp; 1289 1290 /* 1291 * The mutex is required here, and should be held across this call 1292 * until after the subsequent call to xbb_push_responses(). This 1293 * is to guarantee that another context won't queue responses and 1294 * push them while we're active. 1295 * 1296 * That could lead to the other end being notified of responses 1297 * before the resources have been freed on this end. The other end 1298 * would then be able to queue additional I/O, and we may run out 1299 * of resources because we haven't freed them all yet. 1300 */ 1301 mtx_assert(&xbb->lock, MA_OWNED); 1302 1303 /* 1304 * Place on the response ring for the relevant domain. 1305 * For now, only the spacing between entries is different 1306 * in the different ABIs, not the response entry layout. 1307 */ 1308 switch (xbb->abi) { 1309 case BLKIF_PROTOCOL_NATIVE: 1310 resp = RING_GET_RESPONSE(&xbb->rings.native, 1311 xbb->rings.native.rsp_prod_pvt); 1312 break; 1313 case BLKIF_PROTOCOL_X86_32: 1314 resp = (blkif_response_t *) 1315 RING_GET_RESPONSE(&xbb->rings.x86_32, 1316 xbb->rings.x86_32.rsp_prod_pvt); 1317 break; 1318 case BLKIF_PROTOCOL_X86_64: 1319 resp = (blkif_response_t *) 1320 RING_GET_RESPONSE(&xbb->rings.x86_64, 1321 xbb->rings.x86_64.rsp_prod_pvt); 1322 break; 1323 default: 1324 panic("Unexpected blkif protocol ABI."); 1325 } 1326 1327 resp->id = req->id; 1328 resp->operation = req->operation; 1329 resp->status = status; 1330 1331 if (status != BLKIF_RSP_OKAY) 1332 xbb->reqs_completed_with_error++; 1333 1334 xbb->rings.common.rsp_prod_pvt++; 1335 1336 xbb->reqs_queued_for_completion++; 1337 1338 } 1339 1340 /** 1341 * Send queued responses to blkif requests. 1342 * 1343 * \param xbb Per-instance xbb configuration structure. 1344 * \param run_taskqueue Flag that is set to 1 if the taskqueue 1345 * should be run, 0 if it does not need to be run. 1346 * \param notify Flag that is set to 1 if the other end should be 1347 * notified via irq, 0 if the other end should not be 1348 * notified. 1349 */ 1350 static void 1351 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify) 1352 { 1353 int more_to_do; 1354 1355 /* 1356 * The mutex is required here. 1357 */ 1358 mtx_assert(&xbb->lock, MA_OWNED); 1359 1360 more_to_do = 0; 1361 1362 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify); 1363 1364 if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) { 1365 /* 1366 * Tail check for pending requests. Allows frontend to avoid 1367 * notifications if requests are already in flight (lower 1368 * overheads and promotes batching). 1369 */ 1370 RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do); 1371 } else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) { 1372 more_to_do = 1; 1373 } 1374 1375 xbb->reqs_completed += xbb->reqs_queued_for_completion; 1376 xbb->reqs_queued_for_completion = 0; 1377 1378 *run_taskqueue = more_to_do; 1379 } 1380 1381 /** 1382 * Complete a request list. 1383 * 1384 * \param xbb Per-instance xbb configuration structure. 1385 * \param reqlist Allocated internal request list structure. 1386 */ 1387 static void 1388 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist) 1389 { 1390 struct xbb_xen_req *nreq; 1391 off_t sectors_sent; 1392 int notify, run_taskqueue; 1393 1394 sectors_sent = 0; 1395 1396 if (reqlist->flags & XBB_REQLIST_MAPPED) 1397 xbb_unmap_reqlist(reqlist); 1398 1399 mtx_lock(&xbb->lock); 1400 1401 /* 1402 * All I/O is done, send the response. A lock is not necessary 1403 * to protect the request list, because all requests have 1404 * completed. Therefore this is the only context accessing this 1405 * reqlist right now. However, in order to make sure that no one 1406 * else queues responses onto the queue or pushes them to the other 1407 * side while we're active, we need to hold the lock across the 1408 * calls to xbb_queue_response() and xbb_push_responses(). 1409 */ 1410 STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) { 1411 off_t cur_sectors_sent; 1412 1413 /* Put this response on the ring, but don't push yet */ 1414 xbb_queue_response(xbb, nreq, reqlist->status); 1415 1416 /* We don't report bytes sent if there is an error. */ 1417 if (reqlist->status == BLKIF_RSP_OKAY) 1418 cur_sectors_sent = nreq->nr_512b_sectors; 1419 else 1420 cur_sectors_sent = 0; 1421 1422 sectors_sent += cur_sectors_sent; 1423 1424 devstat_end_transaction(xbb->xbb_stats_in, 1425 /*bytes*/cur_sectors_sent << 9, 1426 reqlist->ds_tag_type, 1427 reqlist->ds_trans_type, 1428 /*now*/NULL, 1429 /*then*/&nreq->ds_t0); 1430 } 1431 1432 /* 1433 * Take out any sectors not sent. If we wind up negative (which 1434 * might happen if an error is reported as well as a residual), just 1435 * report 0 sectors sent. 1436 */ 1437 sectors_sent -= reqlist->residual_512b_sectors; 1438 if (sectors_sent < 0) 1439 sectors_sent = 0; 1440 1441 devstat_end_transaction(xbb->xbb_stats, 1442 /*bytes*/ sectors_sent << 9, 1443 reqlist->ds_tag_type, 1444 reqlist->ds_trans_type, 1445 /*now*/NULL, 1446 /*then*/&reqlist->ds_t0); 1447 1448 xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1); 1449 1450 xbb_push_responses(xbb, &run_taskqueue, ¬ify); 1451 1452 mtx_unlock(&xbb->lock); 1453 1454 if (run_taskqueue) 1455 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 1456 1457 if (notify) 1458 xen_intr_signal(xbb->xen_intr_handle); 1459 } 1460 1461 /** 1462 * Completion handler for buffer I/O requests issued by the device 1463 * backend driver. 1464 * 1465 * \param bio The buffer I/O request on which to perform completion 1466 * processing. 1467 */ 1468 static void 1469 xbb_bio_done(struct bio *bio) 1470 { 1471 struct xbb_softc *xbb; 1472 struct xbb_xen_reqlist *reqlist; 1473 1474 reqlist = bio->bio_caller1; 1475 xbb = reqlist->xbb; 1476 1477 reqlist->residual_512b_sectors += bio->bio_resid >> 9; 1478 1479 /* 1480 * This is a bit imprecise. With aggregated I/O a single 1481 * request list can contain multiple front-end requests and 1482 * a multiple bios may point to a single request. By carefully 1483 * walking the request list, we could map residuals and errors 1484 * back to the original front-end request, but the interface 1485 * isn't sufficiently rich for us to properly report the error. 1486 * So, we just treat the entire request list as having failed if an 1487 * error occurs on any part. And, if an error occurs, we treat 1488 * the amount of data transferred as 0. 1489 * 1490 * For residuals, we report it on the overall aggregated device, 1491 * but not on the individual requests, since we don't currently 1492 * do the work to determine which front-end request to which the 1493 * residual applies. 1494 */ 1495 if (bio->bio_error) { 1496 DPRINTF("BIO returned error %d for operation on device %s\n", 1497 bio->bio_error, xbb->dev_name); 1498 reqlist->status = BLKIF_RSP_ERROR; 1499 1500 if (bio->bio_error == ENXIO 1501 && xenbus_get_state(xbb->dev) == XenbusStateConnected) { 1502 /* 1503 * Backend device has disappeared. Signal the 1504 * front-end that we (the device proxy) want to 1505 * go away. 1506 */ 1507 xenbus_set_state(xbb->dev, XenbusStateClosing); 1508 } 1509 } 1510 1511 #ifdef XBB_USE_BOUNCE_BUFFERS 1512 if (bio->bio_cmd == BIO_READ) { 1513 vm_offset_t kva_offset; 1514 1515 kva_offset = (vm_offset_t)bio->bio_data 1516 - (vm_offset_t)reqlist->bounce; 1517 memcpy((uint8_t *)reqlist->kva + kva_offset, 1518 bio->bio_data, bio->bio_bcount); 1519 } 1520 #endif /* XBB_USE_BOUNCE_BUFFERS */ 1521 1522 /* 1523 * Decrement the pending count for the request list. When we're 1524 * done with the requests, send status back for all of them. 1525 */ 1526 if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1) 1527 xbb_complete_reqlist(xbb, reqlist); 1528 1529 g_destroy_bio(bio); 1530 } 1531 1532 /** 1533 * Parse a blkif request into an internal request structure and send 1534 * it to the backend for processing. 1535 * 1536 * \param xbb Per-instance xbb configuration structure. 1537 * \param reqlist Allocated internal request list structure. 1538 * 1539 * \return On success, 0. For resource shortages, non-zero. 1540 * 1541 * This routine performs the backend common aspects of request parsing 1542 * including compiling an internal request structure, parsing the S/G 1543 * list and any secondary ring requests in which they may reside, and 1544 * the mapping of front-end I/O pages into our domain. 1545 */ 1546 static int 1547 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist) 1548 { 1549 struct xbb_sg *xbb_sg; 1550 struct gnttab_map_grant_ref *map; 1551 struct blkif_request_segment *sg; 1552 struct blkif_request_segment *last_block_sg; 1553 struct xbb_xen_req *nreq; 1554 u_int nseg; 1555 u_int seg_idx; 1556 u_int block_segs; 1557 int nr_sects; 1558 int total_sects; 1559 int operation; 1560 uint8_t bio_flags; 1561 int error; 1562 1563 reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE; 1564 bio_flags = 0; 1565 total_sects = 0; 1566 nr_sects = 0; 1567 1568 /* 1569 * First determine whether we have enough free KVA to satisfy this 1570 * request list. If not, tell xbb_run_queue() so it can go to 1571 * sleep until we have more KVA. 1572 */ 1573 reqlist->kva = NULL; 1574 if (reqlist->nr_segments != 0) { 1575 reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments); 1576 if (reqlist->kva == NULL) { 1577 /* 1578 * If we're out of KVA, return ENOMEM. 1579 */ 1580 return (ENOMEM); 1581 } 1582 } 1583 1584 binuptime(&reqlist->ds_t0); 1585 devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0); 1586 1587 switch (reqlist->operation) { 1588 case BLKIF_OP_WRITE_BARRIER: 1589 bio_flags |= BIO_ORDERED; 1590 reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED; 1591 /* FALLTHROUGH */ 1592 case BLKIF_OP_WRITE: 1593 operation = BIO_WRITE; 1594 reqlist->ds_trans_type = DEVSTAT_WRITE; 1595 if ((xbb->flags & XBBF_READ_ONLY) != 0) { 1596 DPRINTF("Attempt to write to read only device %s\n", 1597 xbb->dev_name); 1598 reqlist->status = BLKIF_RSP_ERROR; 1599 goto send_response; 1600 } 1601 break; 1602 case BLKIF_OP_READ: 1603 operation = BIO_READ; 1604 reqlist->ds_trans_type = DEVSTAT_READ; 1605 break; 1606 case BLKIF_OP_FLUSH_DISKCACHE: 1607 /* 1608 * If this is true, the user has requested that we disable 1609 * flush support. So we just complete the requests 1610 * successfully. 1611 */ 1612 if (xbb->disable_flush != 0) { 1613 goto send_response; 1614 } 1615 1616 /* 1617 * The user has requested that we only send a real flush 1618 * for every N flush requests. So keep count, and either 1619 * complete the request immediately or queue it for the 1620 * backend. 1621 */ 1622 if (xbb->flush_interval != 0) { 1623 if (++(xbb->flush_count) < xbb->flush_interval) { 1624 goto send_response; 1625 } else 1626 xbb->flush_count = 0; 1627 } 1628 1629 operation = BIO_FLUSH; 1630 reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED; 1631 reqlist->ds_trans_type = DEVSTAT_NO_DATA; 1632 goto do_dispatch; 1633 /*NOTREACHED*/ 1634 default: 1635 DPRINTF("error: unknown block io operation [%d]\n", 1636 reqlist->operation); 1637 reqlist->status = BLKIF_RSP_ERROR; 1638 goto send_response; 1639 } 1640 1641 reqlist->xbb = xbb; 1642 xbb_sg = xbb->xbb_sgs; 1643 map = xbb->maps; 1644 seg_idx = 0; 1645 1646 STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) { 1647 blkif_request_t *ring_req; 1648 RING_IDX req_ring_idx; 1649 u_int req_seg_idx; 1650 1651 ring_req = nreq->ring_req; 1652 req_ring_idx = nreq->req_ring_idx; 1653 nr_sects = 0; 1654 nseg = ring_req->nr_segments; 1655 nreq->nr_pages = nseg; 1656 nreq->nr_512b_sectors = 0; 1657 req_seg_idx = 0; 1658 sg = NULL; 1659 1660 /* Check that number of segments is sane. */ 1661 if (__predict_false(nseg == 0) 1662 || __predict_false(nseg > xbb->max_request_segments)) { 1663 DPRINTF("Bad number of segments in request (%d)\n", 1664 nseg); 1665 reqlist->status = BLKIF_RSP_ERROR; 1666 goto send_response; 1667 } 1668 1669 block_segs = nseg; 1670 sg = ring_req->seg; 1671 last_block_sg = sg + block_segs; 1672 1673 while (sg < last_block_sg) { 1674 KASSERT(seg_idx < 1675 XBB_MAX_SEGMENTS_PER_REQLIST, 1676 ("seg_idx %d is too large, max " 1677 "segs %d\n", seg_idx, 1678 XBB_MAX_SEGMENTS_PER_REQLIST)); 1679 1680 xbb_sg->first_sect = sg->first_sect; 1681 xbb_sg->last_sect = sg->last_sect; 1682 xbb_sg->nsect = 1683 (int8_t)(sg->last_sect - 1684 sg->first_sect + 1); 1685 1686 if ((sg->last_sect >= (PAGE_SIZE >> 9)) 1687 || (xbb_sg->nsect <= 0)) { 1688 reqlist->status = BLKIF_RSP_ERROR; 1689 goto send_response; 1690 } 1691 1692 nr_sects += xbb_sg->nsect; 1693 map->host_addr = xbb_get_gntaddr(reqlist, 1694 seg_idx, /*sector*/0); 1695 KASSERT(map->host_addr + PAGE_SIZE <= 1696 xbb->ring_config.gnt_addr, 1697 ("Host address %#jx len %d overlaps " 1698 "ring address %#jx\n", 1699 (uintmax_t)map->host_addr, PAGE_SIZE, 1700 (uintmax_t)xbb->ring_config.gnt_addr)); 1701 1702 map->flags = GNTMAP_host_map; 1703 map->ref = sg->gref; 1704 map->dom = xbb->otherend_id; 1705 if (operation == BIO_WRITE) 1706 map->flags |= GNTMAP_readonly; 1707 sg++; 1708 map++; 1709 xbb_sg++; 1710 seg_idx++; 1711 req_seg_idx++; 1712 } 1713 1714 /* Convert to the disk's sector size */ 1715 nreq->nr_512b_sectors = nr_sects; 1716 nr_sects = (nr_sects << 9) >> xbb->sector_size_shift; 1717 total_sects += nr_sects; 1718 1719 if ((nreq->nr_512b_sectors & 1720 ((xbb->sector_size >> 9) - 1)) != 0) { 1721 device_printf(xbb->dev, "%s: I/O size (%d) is not " 1722 "a multiple of the backing store sector " 1723 "size (%d)\n", __func__, 1724 nreq->nr_512b_sectors << 9, 1725 xbb->sector_size); 1726 reqlist->status = BLKIF_RSP_ERROR; 1727 goto send_response; 1728 } 1729 } 1730 1731 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, 1732 xbb->maps, reqlist->nr_segments); 1733 if (error != 0) 1734 panic("Grant table operation failed (%d)", error); 1735 1736 reqlist->flags |= XBB_REQLIST_MAPPED; 1737 1738 for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments; 1739 seg_idx++, map++){ 1740 if (__predict_false(map->status != 0)) { 1741 DPRINTF("invalid buffer -- could not remap " 1742 "it (%d)\n", map->status); 1743 DPRINTF("Mapping(%d): Host Addr 0x%"PRIx64", flags " 1744 "0x%x ref 0x%x, dom %d\n", seg_idx, 1745 map->host_addr, map->flags, map->ref, 1746 map->dom); 1747 reqlist->status = BLKIF_RSP_ERROR; 1748 goto send_response; 1749 } 1750 1751 reqlist->gnt_handles[seg_idx] = map->handle; 1752 } 1753 if (reqlist->starting_sector_number + total_sects > 1754 xbb->media_num_sectors) { 1755 DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] " 1756 "extends past end of device %s\n", 1757 operation == BIO_READ ? "read" : "write", 1758 reqlist->starting_sector_number, 1759 reqlist->starting_sector_number + total_sects, 1760 xbb->dev_name); 1761 reqlist->status = BLKIF_RSP_ERROR; 1762 goto send_response; 1763 } 1764 1765 do_dispatch: 1766 1767 error = xbb->dispatch_io(xbb, 1768 reqlist, 1769 operation, 1770 bio_flags); 1771 1772 if (error != 0) { 1773 reqlist->status = BLKIF_RSP_ERROR; 1774 goto send_response; 1775 } 1776 1777 return (0); 1778 1779 send_response: 1780 1781 xbb_complete_reqlist(xbb, reqlist); 1782 1783 return (0); 1784 } 1785 1786 static __inline int 1787 xbb_count_sects(blkif_request_t *ring_req) 1788 { 1789 int i; 1790 int cur_size = 0; 1791 1792 for (i = 0; i < ring_req->nr_segments; i++) { 1793 int nsect; 1794 1795 nsect = (int8_t)(ring_req->seg[i].last_sect - 1796 ring_req->seg[i].first_sect + 1); 1797 if (nsect <= 0) 1798 break; 1799 1800 cur_size += nsect; 1801 } 1802 1803 return (cur_size); 1804 } 1805 1806 /** 1807 * Process incoming requests from the shared communication ring in response 1808 * to a signal on the ring's event channel. 1809 * 1810 * \param context Callback argument registerd during task initialization - 1811 * the xbb_softc for this instance. 1812 * \param pending The number of taskqueue_enqueue events that have 1813 * occurred since this handler was last run. 1814 */ 1815 static void 1816 xbb_run_queue(void *context, int pending) 1817 { 1818 struct xbb_softc *xbb; 1819 blkif_back_rings_t *rings; 1820 RING_IDX rp; 1821 uint64_t cur_sector; 1822 int cur_operation; 1823 struct xbb_xen_reqlist *reqlist; 1824 1825 xbb = (struct xbb_softc *)context; 1826 rings = &xbb->rings; 1827 1828 /* 1829 * Work gather and dispatch loop. Note that we have a bias here 1830 * towards gathering I/O sent by blockfront. We first gather up 1831 * everything in the ring, as long as we have resources. Then we 1832 * dispatch one request, and then attempt to gather up any 1833 * additional requests that have come in while we were dispatching 1834 * the request. 1835 * 1836 * This allows us to get a clearer picture (via devstat) of how 1837 * many requests blockfront is queueing to us at any given time. 1838 */ 1839 for (;;) { 1840 int retval; 1841 1842 /* 1843 * Initialize reqlist to the last element in the pending 1844 * queue, if there is one. This allows us to add more 1845 * requests to that request list, if we have room. 1846 */ 1847 reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq, 1848 xbb_xen_reqlist, links); 1849 if (reqlist != NULL) { 1850 cur_sector = reqlist->next_contig_sector; 1851 cur_operation = reqlist->operation; 1852 } else { 1853 cur_operation = 0; 1854 cur_sector = 0; 1855 } 1856 1857 /* 1858 * Cache req_prod to avoid accessing a cache line shared 1859 * with the frontend. 1860 */ 1861 rp = rings->common.sring->req_prod; 1862 1863 /* Ensure we see queued requests up to 'rp'. */ 1864 rmb(); 1865 1866 /** 1867 * Run so long as there is work to consume and the generation 1868 * of a response will not overflow the ring. 1869 * 1870 * @note There's a 1 to 1 relationship between requests and 1871 * responses, so an overflow should never occur. This 1872 * test is to protect our domain from digesting bogus 1873 * data. Shouldn't we log this? 1874 */ 1875 while (rings->common.req_cons != rp 1876 && RING_REQUEST_CONS_OVERFLOW(&rings->common, 1877 rings->common.req_cons) == 0){ 1878 blkif_request_t ring_req_storage; 1879 blkif_request_t *ring_req; 1880 int cur_size; 1881 1882 switch (xbb->abi) { 1883 case BLKIF_PROTOCOL_NATIVE: 1884 ring_req = RING_GET_REQUEST(&xbb->rings.native, 1885 rings->common.req_cons); 1886 break; 1887 case BLKIF_PROTOCOL_X86_32: 1888 { 1889 struct blkif_x86_32_request *ring_req32; 1890 1891 ring_req32 = RING_GET_REQUEST( 1892 &xbb->rings.x86_32, rings->common.req_cons); 1893 blkif_get_x86_32_req(&ring_req_storage, 1894 ring_req32); 1895 ring_req = &ring_req_storage; 1896 break; 1897 } 1898 case BLKIF_PROTOCOL_X86_64: 1899 { 1900 struct blkif_x86_64_request *ring_req64; 1901 1902 ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64, 1903 rings->common.req_cons); 1904 blkif_get_x86_64_req(&ring_req_storage, 1905 ring_req64); 1906 ring_req = &ring_req_storage; 1907 break; 1908 } 1909 default: 1910 panic("Unexpected blkif protocol ABI."); 1911 /* NOTREACHED */ 1912 } 1913 1914 /* 1915 * Check for situations that would require closing 1916 * off this I/O for further coalescing: 1917 * - Coalescing is turned off. 1918 * - Current I/O is out of sequence with the previous 1919 * I/O. 1920 * - Coalesced I/O would be too large. 1921 */ 1922 if ((reqlist != NULL) 1923 && ((xbb->no_coalesce_reqs != 0) 1924 || ((xbb->no_coalesce_reqs == 0) 1925 && ((ring_req->sector_number != cur_sector) 1926 || (ring_req->operation != cur_operation) 1927 || ((ring_req->nr_segments + reqlist->nr_segments) > 1928 xbb->max_reqlist_segments))))) { 1929 reqlist = NULL; 1930 } 1931 1932 /* 1933 * Grab and check for all resources in one shot. 1934 * If we can't get all of the resources we need, 1935 * the shortage is noted and the thread will get 1936 * woken up when more resources are available. 1937 */ 1938 retval = xbb_get_resources(xbb, &reqlist, ring_req, 1939 xbb->rings.common.req_cons); 1940 1941 if (retval != 0) { 1942 /* 1943 * Resource shortage has been recorded. 1944 * We'll be scheduled to run once a request 1945 * object frees up due to a completion. 1946 */ 1947 break; 1948 } 1949 1950 /* 1951 * Signify that we can overwrite this request with 1952 * a response by incrementing our consumer index. 1953 * The response won't be generated until after 1954 * we've already consumed all necessary data out 1955 * of the version of the request in the ring buffer 1956 * (for native mode). We must update the consumer 1957 * index before issuing back-end I/O so there is 1958 * no possibility that it will complete and a 1959 * response be generated before we make room in 1960 * the queue for that response. 1961 */ 1962 xbb->rings.common.req_cons++; 1963 xbb->reqs_received++; 1964 1965 cur_size = xbb_count_sects(ring_req); 1966 cur_sector = ring_req->sector_number + cur_size; 1967 reqlist->next_contig_sector = cur_sector; 1968 cur_operation = ring_req->operation; 1969 } 1970 1971 /* Check for I/O to dispatch */ 1972 reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq); 1973 if (reqlist == NULL) { 1974 /* 1975 * We're out of work to do, put the task queue to 1976 * sleep. 1977 */ 1978 break; 1979 } 1980 1981 /* 1982 * Grab the first request off the queue and attempt 1983 * to dispatch it. 1984 */ 1985 STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links); 1986 1987 retval = xbb_dispatch_io(xbb, reqlist); 1988 if (retval != 0) { 1989 /* 1990 * xbb_dispatch_io() returns non-zero only when 1991 * there is a resource shortage. If that's the 1992 * case, re-queue this request on the head of the 1993 * queue, and go to sleep until we have more 1994 * resources. 1995 */ 1996 STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq, 1997 reqlist, links); 1998 break; 1999 } else { 2000 /* 2001 * If we still have anything on the queue after 2002 * removing the head entry, that is because we 2003 * met one of the criteria to create a new 2004 * request list (outlined above), and we'll call 2005 * that a forced dispatch for statistical purposes. 2006 * 2007 * Otherwise, if there is only one element on the 2008 * queue, we coalesced everything available on 2009 * the ring and we'll call that a normal dispatch. 2010 */ 2011 reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq); 2012 2013 if (reqlist != NULL) 2014 xbb->forced_dispatch++; 2015 else 2016 xbb->normal_dispatch++; 2017 2018 xbb->total_dispatch++; 2019 } 2020 } 2021 } 2022 2023 /** 2024 * Interrupt handler bound to the shared ring's event channel. 2025 * 2026 * \param arg Callback argument registerd during event channel 2027 * binding - the xbb_softc for this instance. 2028 */ 2029 static int 2030 xbb_filter(void *arg) 2031 { 2032 struct xbb_softc *xbb; 2033 2034 /* Defer to taskqueue thread. */ 2035 xbb = (struct xbb_softc *)arg; 2036 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 2037 2038 return (FILTER_HANDLED); 2039 } 2040 2041 SDT_PROVIDER_DEFINE(xbb); 2042 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int"); 2043 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t", 2044 "uint64_t"); 2045 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int", 2046 "uint64_t", "uint64_t"); 2047 2048 /*----------------------------- Backend Handlers -----------------------------*/ 2049 /** 2050 * Backend handler for character device access. 2051 * 2052 * \param xbb Per-instance xbb configuration structure. 2053 * \param reqlist Allocated internal request list structure. 2054 * \param operation BIO_* I/O operation code. 2055 * \param bio_flags Additional bio_flag data to pass to any generated 2056 * bios (e.g. BIO_ORDERED).. 2057 * 2058 * \return 0 for success, errno codes for failure. 2059 */ 2060 static int 2061 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist, 2062 int operation, int bio_flags) 2063 { 2064 struct xbb_dev_data *dev_data; 2065 struct bio *bios[XBB_MAX_SEGMENTS_PER_REQLIST]; 2066 off_t bio_offset; 2067 struct bio *bio; 2068 struct xbb_sg *xbb_sg; 2069 u_int nbio; 2070 u_int bio_idx; 2071 u_int nseg; 2072 u_int seg_idx; 2073 int error; 2074 2075 dev_data = &xbb->backend.dev; 2076 bio_offset = (off_t)reqlist->starting_sector_number 2077 << xbb->sector_size_shift; 2078 error = 0; 2079 nbio = 0; 2080 bio_idx = 0; 2081 2082 if (operation == BIO_FLUSH) { 2083 bio = g_new_bio(); 2084 if (__predict_false(bio == NULL)) { 2085 DPRINTF("Unable to allocate bio for BIO_FLUSH\n"); 2086 error = ENOMEM; 2087 return (error); 2088 } 2089 2090 bio->bio_cmd = BIO_FLUSH; 2091 bio->bio_flags |= BIO_ORDERED; 2092 bio->bio_dev = dev_data->cdev; 2093 bio->bio_offset = 0; 2094 bio->bio_data = 0; 2095 bio->bio_done = xbb_bio_done; 2096 bio->bio_caller1 = reqlist; 2097 bio->bio_pblkno = 0; 2098 2099 reqlist->pendcnt = 1; 2100 2101 SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush, 2102 device_get_unit(xbb->dev)); 2103 2104 (*dev_data->csw->d_strategy)(bio); 2105 2106 return (0); 2107 } 2108 2109 xbb_sg = xbb->xbb_sgs; 2110 bio = NULL; 2111 nseg = reqlist->nr_segments; 2112 2113 for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) { 2114 /* 2115 * KVA will not be contiguous, so any additional 2116 * I/O will need to be represented in a new bio. 2117 */ 2118 if ((bio != NULL) 2119 && (xbb_sg->first_sect != 0)) { 2120 if ((bio->bio_length & (xbb->sector_size - 1)) != 0) { 2121 printf("%s: Discontiguous I/O request " 2122 "from domain %d ends on " 2123 "non-sector boundary\n", 2124 __func__, xbb->otherend_id); 2125 error = EINVAL; 2126 goto fail_free_bios; 2127 } 2128 bio = NULL; 2129 } 2130 2131 if (bio == NULL) { 2132 /* 2133 * Make sure that the start of this bio is 2134 * aligned to a device sector. 2135 */ 2136 if ((bio_offset & (xbb->sector_size - 1)) != 0){ 2137 printf("%s: Misaligned I/O request " 2138 "from domain %d\n", __func__, 2139 xbb->otherend_id); 2140 error = EINVAL; 2141 goto fail_free_bios; 2142 } 2143 2144 bio = bios[nbio++] = g_new_bio(); 2145 if (__predict_false(bio == NULL)) { 2146 error = ENOMEM; 2147 goto fail_free_bios; 2148 } 2149 bio->bio_cmd = operation; 2150 bio->bio_flags |= bio_flags; 2151 bio->bio_dev = dev_data->cdev; 2152 bio->bio_offset = bio_offset; 2153 bio->bio_data = xbb_reqlist_ioaddr(reqlist, seg_idx, 2154 xbb_sg->first_sect); 2155 bio->bio_done = xbb_bio_done; 2156 bio->bio_caller1 = reqlist; 2157 bio->bio_pblkno = bio_offset >> xbb->sector_size_shift; 2158 } 2159 2160 bio->bio_length += xbb_sg->nsect << 9; 2161 bio->bio_bcount = bio->bio_length; 2162 bio_offset += xbb_sg->nsect << 9; 2163 2164 if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) { 2165 if ((bio->bio_length & (xbb->sector_size - 1)) != 0) { 2166 printf("%s: Discontiguous I/O request " 2167 "from domain %d ends on " 2168 "non-sector boundary\n", 2169 __func__, xbb->otherend_id); 2170 error = EINVAL; 2171 goto fail_free_bios; 2172 } 2173 /* 2174 * KVA will not be contiguous, so any additional 2175 * I/O will need to be represented in a new bio. 2176 */ 2177 bio = NULL; 2178 } 2179 } 2180 2181 reqlist->pendcnt = nbio; 2182 2183 for (bio_idx = 0; bio_idx < nbio; bio_idx++) 2184 { 2185 #ifdef XBB_USE_BOUNCE_BUFFERS 2186 vm_offset_t kva_offset; 2187 2188 kva_offset = (vm_offset_t)bios[bio_idx]->bio_data 2189 - (vm_offset_t)reqlist->bounce; 2190 if (operation == BIO_WRITE) { 2191 memcpy(bios[bio_idx]->bio_data, 2192 (uint8_t *)reqlist->kva + kva_offset, 2193 bios[bio_idx]->bio_bcount); 2194 } 2195 #endif 2196 if (operation == BIO_READ) { 2197 SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read, 2198 device_get_unit(xbb->dev), 2199 bios[bio_idx]->bio_offset, 2200 bios[bio_idx]->bio_length); 2201 } else if (operation == BIO_WRITE) { 2202 SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write, 2203 device_get_unit(xbb->dev), 2204 bios[bio_idx]->bio_offset, 2205 bios[bio_idx]->bio_length); 2206 } 2207 (*dev_data->csw->d_strategy)(bios[bio_idx]); 2208 } 2209 2210 return (error); 2211 2212 fail_free_bios: 2213 for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++) 2214 g_destroy_bio(bios[bio_idx]); 2215 2216 return (error); 2217 } 2218 2219 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int"); 2220 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t", 2221 "uint64_t"); 2222 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int", 2223 "uint64_t", "uint64_t"); 2224 2225 /** 2226 * Backend handler for file access. 2227 * 2228 * \param xbb Per-instance xbb configuration structure. 2229 * \param reqlist Allocated internal request list. 2230 * \param operation BIO_* I/O operation code. 2231 * \param flags Additional bio_flag data to pass to any generated bios 2232 * (e.g. BIO_ORDERED).. 2233 * 2234 * \return 0 for success, errno codes for failure. 2235 */ 2236 static int 2237 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist, 2238 int operation, int flags) 2239 { 2240 struct xbb_file_data *file_data; 2241 u_int seg_idx; 2242 u_int nseg; 2243 struct uio xuio; 2244 struct xbb_sg *xbb_sg; 2245 struct iovec *xiovec; 2246 #ifdef XBB_USE_BOUNCE_BUFFERS 2247 void **p_vaddr; 2248 int saved_uio_iovcnt; 2249 #endif /* XBB_USE_BOUNCE_BUFFERS */ 2250 int error; 2251 2252 file_data = &xbb->backend.file; 2253 error = 0; 2254 bzero(&xuio, sizeof(xuio)); 2255 2256 switch (operation) { 2257 case BIO_READ: 2258 xuio.uio_rw = UIO_READ; 2259 break; 2260 case BIO_WRITE: 2261 xuio.uio_rw = UIO_WRITE; 2262 break; 2263 case BIO_FLUSH: { 2264 struct mount *mountpoint; 2265 2266 SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush, 2267 device_get_unit(xbb->dev)); 2268 2269 (void) vn_start_write(xbb->vn, &mountpoint, V_WAIT); 2270 2271 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY); 2272 error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread); 2273 VOP_UNLOCK(xbb->vn); 2274 2275 vn_finished_write(mountpoint); 2276 2277 goto bailout_send_response; 2278 /* NOTREACHED */ 2279 } 2280 default: 2281 panic("invalid operation %d", operation); 2282 /* NOTREACHED */ 2283 } 2284 xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number 2285 << xbb->sector_size_shift; 2286 xuio.uio_segflg = UIO_SYSSPACE; 2287 xuio.uio_iov = file_data->xiovecs; 2288 xuio.uio_iovcnt = 0; 2289 xbb_sg = xbb->xbb_sgs; 2290 nseg = reqlist->nr_segments; 2291 2292 for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) { 2293 /* 2294 * If the first sector is not 0, the KVA will 2295 * not be contiguous and we'll need to go on 2296 * to another segment. 2297 */ 2298 if (xbb_sg->first_sect != 0) 2299 xiovec = NULL; 2300 2301 if (xiovec == NULL) { 2302 xiovec = &file_data->xiovecs[xuio.uio_iovcnt]; 2303 xiovec->iov_base = xbb_reqlist_ioaddr(reqlist, 2304 seg_idx, xbb_sg->first_sect); 2305 #ifdef XBB_USE_BOUNCE_BUFFERS 2306 /* 2307 * Store the address of the incoming 2308 * buffer at this particular offset 2309 * as well, so we can do the copy 2310 * later without having to do more 2311 * work to recalculate this address. 2312 */ 2313 p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt]; 2314 *p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx, 2315 xbb_sg->first_sect); 2316 #endif /* XBB_USE_BOUNCE_BUFFERS */ 2317 xiovec->iov_len = 0; 2318 xuio.uio_iovcnt++; 2319 } 2320 2321 xiovec->iov_len += xbb_sg->nsect << 9; 2322 2323 xuio.uio_resid += xbb_sg->nsect << 9; 2324 2325 /* 2326 * If the last sector is not the full page 2327 * size count, the next segment will not be 2328 * contiguous in KVA and we need a new iovec. 2329 */ 2330 if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) 2331 xiovec = NULL; 2332 } 2333 2334 xuio.uio_td = curthread; 2335 2336 #ifdef XBB_USE_BOUNCE_BUFFERS 2337 saved_uio_iovcnt = xuio.uio_iovcnt; 2338 2339 if (operation == BIO_WRITE) { 2340 /* Copy the write data to the local buffer. */ 2341 for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr, 2342 xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt; 2343 seg_idx++, xiovec++, p_vaddr++) { 2344 memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len); 2345 } 2346 } else { 2347 /* 2348 * We only need to save off the iovecs in the case of a 2349 * read, because the copy for the read happens after the 2350 * VOP_READ(). (The uio will get modified in that call 2351 * sequence.) 2352 */ 2353 memcpy(file_data->saved_xiovecs, xuio.uio_iov, 2354 xuio.uio_iovcnt * sizeof(xuio.uio_iov[0])); 2355 } 2356 #endif /* XBB_USE_BOUNCE_BUFFERS */ 2357 2358 switch (operation) { 2359 case BIO_READ: 2360 2361 SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read, 2362 device_get_unit(xbb->dev), xuio.uio_offset, 2363 xuio.uio_resid); 2364 2365 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY); 2366 2367 /* 2368 * UFS pays attention to IO_DIRECT for reads. If the 2369 * DIRECTIO option is configured into the kernel, it calls 2370 * ffs_rawread(). But that only works for single-segment 2371 * uios with user space addresses. In our case, with a 2372 * kernel uio, it still reads into the buffer cache, but it 2373 * will just try to release the buffer from the cache later 2374 * on in ffs_read(). 2375 * 2376 * ZFS does not pay attention to IO_DIRECT for reads. 2377 * 2378 * UFS does not pay attention to IO_SYNC for reads. 2379 * 2380 * ZFS pays attention to IO_SYNC (which translates into the 2381 * Solaris define FRSYNC for zfs_read()) for reads. It 2382 * attempts to sync the file before reading. 2383 * 2384 * So, to attempt to provide some barrier semantics in the 2385 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC. 2386 */ 2387 error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ? 2388 (IO_DIRECT|IO_SYNC) : 0, file_data->cred); 2389 2390 VOP_UNLOCK(xbb->vn); 2391 break; 2392 case BIO_WRITE: { 2393 struct mount *mountpoint; 2394 2395 SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write, 2396 device_get_unit(xbb->dev), xuio.uio_offset, 2397 xuio.uio_resid); 2398 2399 (void)vn_start_write(xbb->vn, &mountpoint, V_WAIT); 2400 2401 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY); 2402 2403 /* 2404 * UFS pays attention to IO_DIRECT for writes. The write 2405 * is done asynchronously. (Normally the write would just 2406 * get put into cache. 2407 * 2408 * UFS pays attention to IO_SYNC for writes. It will 2409 * attempt to write the buffer out synchronously if that 2410 * flag is set. 2411 * 2412 * ZFS does not pay attention to IO_DIRECT for writes. 2413 * 2414 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC) 2415 * for writes. It will flush the transaction from the 2416 * cache before returning. 2417 * 2418 * So if we've got the BIO_ORDERED flag set, we want 2419 * IO_SYNC in either the UFS or ZFS case. 2420 */ 2421 error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ? 2422 IO_SYNC : 0, file_data->cred); 2423 VOP_UNLOCK(xbb->vn); 2424 2425 vn_finished_write(mountpoint); 2426 2427 break; 2428 } 2429 default: 2430 panic("invalid operation %d", operation); 2431 /* NOTREACHED */ 2432 } 2433 2434 #ifdef XBB_USE_BOUNCE_BUFFERS 2435 /* We only need to copy here for read operations */ 2436 if (operation == BIO_READ) { 2437 for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr, 2438 xiovec = file_data->saved_xiovecs; 2439 seg_idx < saved_uio_iovcnt; seg_idx++, 2440 xiovec++, p_vaddr++) { 2441 /* 2442 * Note that we have to use the copy of the 2443 * io vector we made above. uiomove() modifies 2444 * the uio and its referenced vector as uiomove 2445 * performs the copy, so we can't rely on any 2446 * state from the original uio. 2447 */ 2448 memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len); 2449 } 2450 } 2451 #endif /* XBB_USE_BOUNCE_BUFFERS */ 2452 2453 bailout_send_response: 2454 2455 if (error != 0) 2456 reqlist->status = BLKIF_RSP_ERROR; 2457 2458 xbb_complete_reqlist(xbb, reqlist); 2459 2460 return (0); 2461 } 2462 2463 /*--------------------------- Backend Configuration --------------------------*/ 2464 /** 2465 * Close and cleanup any backend device/file specific state for this 2466 * block back instance. 2467 * 2468 * \param xbb Per-instance xbb configuration structure. 2469 */ 2470 static void 2471 xbb_close_backend(struct xbb_softc *xbb) 2472 { 2473 DROP_GIANT(); 2474 DPRINTF("closing dev=%s\n", xbb->dev_name); 2475 if (xbb->vn) { 2476 int flags = FREAD; 2477 2478 if ((xbb->flags & XBBF_READ_ONLY) == 0) 2479 flags |= FWRITE; 2480 2481 switch (xbb->device_type) { 2482 case XBB_TYPE_DISK: 2483 if (xbb->backend.dev.csw) { 2484 dev_relthread(xbb->backend.dev.cdev, 2485 xbb->backend.dev.dev_ref); 2486 xbb->backend.dev.csw = NULL; 2487 xbb->backend.dev.cdev = NULL; 2488 } 2489 break; 2490 case XBB_TYPE_FILE: 2491 break; 2492 case XBB_TYPE_NONE: 2493 default: 2494 panic("Unexpected backend type."); 2495 break; 2496 } 2497 2498 (void)vn_close(xbb->vn, flags, NOCRED, curthread); 2499 xbb->vn = NULL; 2500 2501 switch (xbb->device_type) { 2502 case XBB_TYPE_DISK: 2503 break; 2504 case XBB_TYPE_FILE: 2505 if (xbb->backend.file.cred != NULL) { 2506 crfree(xbb->backend.file.cred); 2507 xbb->backend.file.cred = NULL; 2508 } 2509 break; 2510 case XBB_TYPE_NONE: 2511 default: 2512 panic("Unexpected backend type."); 2513 break; 2514 } 2515 } 2516 PICKUP_GIANT(); 2517 } 2518 2519 /** 2520 * Open a character device to be used for backend I/O. 2521 * 2522 * \param xbb Per-instance xbb configuration structure. 2523 * 2524 * \return 0 for success, errno codes for failure. 2525 */ 2526 static int 2527 xbb_open_dev(struct xbb_softc *xbb) 2528 { 2529 struct vattr vattr; 2530 struct cdev *dev; 2531 struct cdevsw *devsw; 2532 int error; 2533 2534 xbb->device_type = XBB_TYPE_DISK; 2535 xbb->dispatch_io = xbb_dispatch_dev; 2536 xbb->backend.dev.cdev = xbb->vn->v_rdev; 2537 xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev, 2538 &xbb->backend.dev.dev_ref); 2539 if (xbb->backend.dev.csw == NULL) 2540 panic("Unable to retrieve device switch"); 2541 2542 error = VOP_GETATTR(xbb->vn, &vattr, NOCRED); 2543 if (error) { 2544 xenbus_dev_fatal(xbb->dev, error, "error getting " 2545 "vnode attributes for device %s", 2546 xbb->dev_name); 2547 return (error); 2548 } 2549 2550 dev = xbb->vn->v_rdev; 2551 devsw = dev->si_devsw; 2552 if (!devsw->d_ioctl) { 2553 xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for " 2554 "device %s!", xbb->dev_name); 2555 return (ENODEV); 2556 } 2557 2558 error = devsw->d_ioctl(dev, DIOCGSECTORSIZE, 2559 (caddr_t)&xbb->sector_size, FREAD, 2560 curthread); 2561 if (error) { 2562 xenbus_dev_fatal(xbb->dev, error, 2563 "error calling ioctl DIOCGSECTORSIZE " 2564 "for device %s", xbb->dev_name); 2565 return (error); 2566 } 2567 2568 error = devsw->d_ioctl(dev, DIOCGMEDIASIZE, 2569 (caddr_t)&xbb->media_size, FREAD, 2570 curthread); 2571 if (error) { 2572 xenbus_dev_fatal(xbb->dev, error, 2573 "error calling ioctl DIOCGMEDIASIZE " 2574 "for device %s", xbb->dev_name); 2575 return (error); 2576 } 2577 2578 return (0); 2579 } 2580 2581 /** 2582 * Open a file to be used for backend I/O. 2583 * 2584 * \param xbb Per-instance xbb configuration structure. 2585 * 2586 * \return 0 for success, errno codes for failure. 2587 */ 2588 static int 2589 xbb_open_file(struct xbb_softc *xbb) 2590 { 2591 struct xbb_file_data *file_data; 2592 struct vattr vattr; 2593 int error; 2594 2595 file_data = &xbb->backend.file; 2596 xbb->device_type = XBB_TYPE_FILE; 2597 xbb->dispatch_io = xbb_dispatch_file; 2598 error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred); 2599 if (error != 0) { 2600 xenbus_dev_fatal(xbb->dev, error, 2601 "error calling VOP_GETATTR()" 2602 "for file %s", xbb->dev_name); 2603 return (error); 2604 } 2605 2606 /* 2607 * Verify that we have the ability to upgrade to exclusive 2608 * access on this file so we can trap errors at open instead 2609 * of reporting them during first access. 2610 */ 2611 if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) { 2612 vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY); 2613 if (VN_IS_DOOMED(xbb->vn)) { 2614 error = EBADF; 2615 xenbus_dev_fatal(xbb->dev, error, 2616 "error locking file %s", 2617 xbb->dev_name); 2618 2619 return (error); 2620 } 2621 } 2622 2623 file_data->cred = crhold(curthread->td_ucred); 2624 xbb->media_size = vattr.va_size; 2625 2626 /* 2627 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here. 2628 * With ZFS, it is 131072 bytes. Block sizes that large don't work 2629 * with disklabel and UFS on FreeBSD at least. Large block sizes 2630 * may not work with other OSes as well. So just export a sector 2631 * size of 512 bytes, which should work with any OS or 2632 * application. Since our backing is a file, any block size will 2633 * work fine for the backing store. 2634 */ 2635 #if 0 2636 xbb->sector_size = vattr.va_blocksize; 2637 #endif 2638 xbb->sector_size = 512; 2639 2640 /* 2641 * Sanity check. The media size has to be at least one 2642 * sector long. 2643 */ 2644 if (xbb->media_size < xbb->sector_size) { 2645 error = EINVAL; 2646 xenbus_dev_fatal(xbb->dev, error, 2647 "file %s size %ju < block size %u", 2648 xbb->dev_name, 2649 (uintmax_t)xbb->media_size, 2650 xbb->sector_size); 2651 } 2652 return (error); 2653 } 2654 2655 /** 2656 * Open the backend provider for this connection. 2657 * 2658 * \param xbb Per-instance xbb configuration structure. 2659 * 2660 * \return 0 for success, errno codes for failure. 2661 */ 2662 static int 2663 xbb_open_backend(struct xbb_softc *xbb) 2664 { 2665 struct nameidata nd; 2666 int flags; 2667 int error; 2668 2669 flags = FREAD; 2670 error = 0; 2671 2672 DPRINTF("opening dev=%s\n", xbb->dev_name); 2673 2674 if (rootvnode == NULL) { 2675 xenbus_dev_fatal(xbb->dev, ENOENT, 2676 "Root file system not mounted"); 2677 return (ENOENT); 2678 } 2679 2680 if ((xbb->flags & XBBF_READ_ONLY) == 0) 2681 flags |= FWRITE; 2682 2683 pwd_ensure_dirs(); 2684 2685 again: 2686 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread); 2687 error = vn_open(&nd, &flags, 0, NULL); 2688 if (error) { 2689 /* 2690 * This is the only reasonable guess we can make as far as 2691 * path if the user doesn't give us a fully qualified path. 2692 * If they want to specify a file, they need to specify the 2693 * full path. 2694 */ 2695 if (xbb->dev_name[0] != '/') { 2696 char *dev_path = "/dev/"; 2697 char *dev_name; 2698 2699 /* Try adding device path at beginning of name */ 2700 dev_name = malloc(strlen(xbb->dev_name) 2701 + strlen(dev_path) + 1, 2702 M_XENBLOCKBACK, M_NOWAIT); 2703 if (dev_name) { 2704 sprintf(dev_name, "%s%s", dev_path, 2705 xbb->dev_name); 2706 free(xbb->dev_name, M_XENBLOCKBACK); 2707 xbb->dev_name = dev_name; 2708 goto again; 2709 } 2710 } 2711 xenbus_dev_fatal(xbb->dev, error, "error opening device %s", 2712 xbb->dev_name); 2713 return (error); 2714 } 2715 2716 NDFREE(&nd, NDF_ONLY_PNBUF); 2717 2718 xbb->vn = nd.ni_vp; 2719 2720 /* We only support disks and files. */ 2721 if (vn_isdisk_error(xbb->vn, &error)) { 2722 error = xbb_open_dev(xbb); 2723 } else if (xbb->vn->v_type == VREG) { 2724 error = xbb_open_file(xbb); 2725 } else { 2726 error = EINVAL; 2727 xenbus_dev_fatal(xbb->dev, error, "%s is not a disk " 2728 "or file", xbb->dev_name); 2729 } 2730 VOP_UNLOCK(xbb->vn); 2731 2732 if (error != 0) { 2733 xbb_close_backend(xbb); 2734 return (error); 2735 } 2736 2737 xbb->sector_size_shift = fls(xbb->sector_size) - 1; 2738 xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift; 2739 2740 DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n", 2741 (xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file", 2742 xbb->dev_name, xbb->sector_size, xbb->media_size); 2743 2744 return (0); 2745 } 2746 2747 /*------------------------ Inter-Domain Communication ------------------------*/ 2748 /** 2749 * Free dynamically allocated KVA or pseudo-physical address allocations. 2750 * 2751 * \param xbb Per-instance xbb configuration structure. 2752 */ 2753 static void 2754 xbb_free_communication_mem(struct xbb_softc *xbb) 2755 { 2756 if (xbb->kva != 0) { 2757 if (xbb->pseudo_phys_res != NULL) { 2758 xenmem_free(xbb->dev, xbb->pseudo_phys_res_id, 2759 xbb->pseudo_phys_res); 2760 xbb->pseudo_phys_res = NULL; 2761 } 2762 } 2763 xbb->kva = 0; 2764 xbb->gnt_base_addr = 0; 2765 if (xbb->kva_free != NULL) { 2766 free(xbb->kva_free, M_XENBLOCKBACK); 2767 xbb->kva_free = NULL; 2768 } 2769 } 2770 2771 /** 2772 * Cleanup all inter-domain communication mechanisms. 2773 * 2774 * \param xbb Per-instance xbb configuration structure. 2775 */ 2776 static int 2777 xbb_disconnect(struct xbb_softc *xbb) 2778 { 2779 struct gnttab_unmap_grant_ref ops[XBB_MAX_RING_PAGES]; 2780 struct gnttab_unmap_grant_ref *op; 2781 u_int ring_idx; 2782 int error; 2783 2784 DPRINTF("\n"); 2785 2786 if ((xbb->flags & XBBF_RING_CONNECTED) == 0) 2787 return (0); 2788 2789 mtx_unlock(&xbb->lock); 2790 xen_intr_unbind(&xbb->xen_intr_handle); 2791 taskqueue_drain(xbb->io_taskqueue, &xbb->io_task); 2792 mtx_lock(&xbb->lock); 2793 2794 /* 2795 * No new interrupts can generate work, but we must wait 2796 * for all currently active requests to drain. 2797 */ 2798 if (xbb->active_request_count != 0) 2799 return (EAGAIN); 2800 2801 for (ring_idx = 0, op = ops; 2802 ring_idx < xbb->ring_config.ring_pages; 2803 ring_idx++, op++) { 2804 op->host_addr = xbb->ring_config.gnt_addr 2805 + (ring_idx * PAGE_SIZE); 2806 op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx]; 2807 op->handle = xbb->ring_config.handle[ring_idx]; 2808 } 2809 2810 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops, 2811 xbb->ring_config.ring_pages); 2812 if (error != 0) 2813 panic("Grant table op failed (%d)", error); 2814 2815 xbb_free_communication_mem(xbb); 2816 2817 if (xbb->requests != NULL) { 2818 free(xbb->requests, M_XENBLOCKBACK); 2819 xbb->requests = NULL; 2820 } 2821 2822 if (xbb->request_lists != NULL) { 2823 struct xbb_xen_reqlist *reqlist; 2824 int i; 2825 2826 /* There is one request list for ever allocated request. */ 2827 for (i = 0, reqlist = xbb->request_lists; 2828 i < xbb->max_requests; i++, reqlist++){ 2829 #ifdef XBB_USE_BOUNCE_BUFFERS 2830 if (reqlist->bounce != NULL) { 2831 free(reqlist->bounce, M_XENBLOCKBACK); 2832 reqlist->bounce = NULL; 2833 } 2834 #endif 2835 if (reqlist->gnt_handles != NULL) { 2836 free(reqlist->gnt_handles, M_XENBLOCKBACK); 2837 reqlist->gnt_handles = NULL; 2838 } 2839 } 2840 free(xbb->request_lists, M_XENBLOCKBACK); 2841 xbb->request_lists = NULL; 2842 } 2843 2844 xbb->flags &= ~XBBF_RING_CONNECTED; 2845 return (0); 2846 } 2847 2848 /** 2849 * Map shared memory ring into domain local address space, initialize 2850 * ring control structures, and bind an interrupt to the event channel 2851 * used to notify us of ring changes. 2852 * 2853 * \param xbb Per-instance xbb configuration structure. 2854 */ 2855 static int 2856 xbb_connect_ring(struct xbb_softc *xbb) 2857 { 2858 struct gnttab_map_grant_ref gnts[XBB_MAX_RING_PAGES]; 2859 struct gnttab_map_grant_ref *gnt; 2860 u_int ring_idx; 2861 int error; 2862 2863 if ((xbb->flags & XBBF_RING_CONNECTED) != 0) 2864 return (0); 2865 2866 /* 2867 * Kva for our ring is at the tail of the region of kva allocated 2868 * by xbb_alloc_communication_mem(). 2869 */ 2870 xbb->ring_config.va = xbb->kva 2871 + (xbb->kva_size 2872 - (xbb->ring_config.ring_pages * PAGE_SIZE)); 2873 xbb->ring_config.gnt_addr = xbb->gnt_base_addr 2874 + (xbb->kva_size 2875 - (xbb->ring_config.ring_pages * PAGE_SIZE)); 2876 2877 for (ring_idx = 0, gnt = gnts; 2878 ring_idx < xbb->ring_config.ring_pages; 2879 ring_idx++, gnt++) { 2880 gnt->host_addr = xbb->ring_config.gnt_addr 2881 + (ring_idx * PAGE_SIZE); 2882 gnt->flags = GNTMAP_host_map; 2883 gnt->ref = xbb->ring_config.ring_ref[ring_idx]; 2884 gnt->dom = xbb->otherend_id; 2885 } 2886 2887 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts, 2888 xbb->ring_config.ring_pages); 2889 if (error) 2890 panic("blkback: Ring page grant table op failed (%d)", error); 2891 2892 for (ring_idx = 0, gnt = gnts; 2893 ring_idx < xbb->ring_config.ring_pages; 2894 ring_idx++, gnt++) { 2895 if (gnt->status != 0) { 2896 struct gnttab_unmap_grant_ref unmap[XBB_MAX_RING_PAGES]; 2897 unsigned int i, j; 2898 2899 xbb->ring_config.va = 0; 2900 xenbus_dev_fatal(xbb->dev, EACCES, 2901 "Ring shared page mapping failed. " 2902 "Status %d.", gnt->status); 2903 2904 /* Unmap everything to avoid leaking grant table maps */ 2905 for (i = 0, j = 0; i < xbb->ring_config.ring_pages; 2906 i++) { 2907 if (gnts[i].status != GNTST_okay) 2908 continue; 2909 2910 unmap[j].host_addr = gnts[i].host_addr; 2911 unmap[j].dev_bus_addr = gnts[i].dev_bus_addr; 2912 unmap[j++].handle = gnts[i].handle; 2913 } 2914 if (j != 0) { 2915 error = HYPERVISOR_grant_table_op( 2916 GNTTABOP_unmap_grant_ref, unmap, j); 2917 if (error != 0) 2918 panic("Unable to unmap grants (%d)", 2919 error); 2920 } 2921 return (EACCES); 2922 } 2923 xbb->ring_config.handle[ring_idx] = gnt->handle; 2924 xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr; 2925 } 2926 2927 /* Initialize the ring based on ABI. */ 2928 switch (xbb->abi) { 2929 case BLKIF_PROTOCOL_NATIVE: 2930 { 2931 blkif_sring_t *sring; 2932 sring = (blkif_sring_t *)xbb->ring_config.va; 2933 BACK_RING_INIT(&xbb->rings.native, sring, 2934 xbb->ring_config.ring_pages * PAGE_SIZE); 2935 break; 2936 } 2937 case BLKIF_PROTOCOL_X86_32: 2938 { 2939 blkif_x86_32_sring_t *sring_x86_32; 2940 sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va; 2941 BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32, 2942 xbb->ring_config.ring_pages * PAGE_SIZE); 2943 break; 2944 } 2945 case BLKIF_PROTOCOL_X86_64: 2946 { 2947 blkif_x86_64_sring_t *sring_x86_64; 2948 sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va; 2949 BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64, 2950 xbb->ring_config.ring_pages * PAGE_SIZE); 2951 break; 2952 } 2953 default: 2954 panic("Unexpected blkif protocol ABI."); 2955 } 2956 2957 xbb->flags |= XBBF_RING_CONNECTED; 2958 2959 error = xen_intr_bind_remote_port(xbb->dev, 2960 xbb->otherend_id, 2961 xbb->ring_config.evtchn, 2962 xbb_filter, 2963 /*ithread_handler*/NULL, 2964 /*arg*/xbb, 2965 INTR_TYPE_BIO | INTR_MPSAFE, 2966 &xbb->xen_intr_handle); 2967 if (error) { 2968 (void)xbb_disconnect(xbb); 2969 xenbus_dev_fatal(xbb->dev, error, "binding event channel"); 2970 return (error); 2971 } 2972 2973 DPRINTF("rings connected!\n"); 2974 2975 return 0; 2976 } 2977 2978 /** 2979 * Size KVA and pseudo-physical address allocations based on negotiated 2980 * values for the size and number of I/O requests, and the size of our 2981 * communication ring. 2982 * 2983 * \param xbb Per-instance xbb configuration structure. 2984 * 2985 * These address spaces are used to dynamically map pages in the 2986 * front-end's domain into our own. 2987 */ 2988 static int 2989 xbb_alloc_communication_mem(struct xbb_softc *xbb) 2990 { 2991 xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments; 2992 xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE; 2993 xbb->kva_size = xbb->reqlist_kva_size + 2994 (xbb->ring_config.ring_pages * PAGE_SIZE); 2995 2996 xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages, M_XENBLOCKBACK, M_NOWAIT); 2997 if (xbb->kva_free == NULL) 2998 return (ENOMEM); 2999 3000 DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n", 3001 device_get_nameunit(xbb->dev), xbb->kva_size, 3002 xbb->reqlist_kva_size); 3003 /* 3004 * Reserve a range of pseudo physical memory that we can map 3005 * into kva. These pages will only be backed by machine 3006 * pages ("real memory") during the lifetime of front-end requests 3007 * via grant table operations. 3008 */ 3009 xbb->pseudo_phys_res_id = 0; 3010 xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id, 3011 xbb->kva_size); 3012 if (xbb->pseudo_phys_res == NULL) { 3013 xbb->kva = 0; 3014 return (ENOMEM); 3015 } 3016 xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res); 3017 xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res); 3018 3019 DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n", 3020 device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva, 3021 (uintmax_t)xbb->gnt_base_addr); 3022 return (0); 3023 } 3024 3025 /** 3026 * Collect front-end information from the XenStore. 3027 * 3028 * \param xbb Per-instance xbb configuration structure. 3029 */ 3030 static int 3031 xbb_collect_frontend_info(struct xbb_softc *xbb) 3032 { 3033 char protocol_abi[64]; 3034 const char *otherend_path; 3035 int error; 3036 u_int ring_idx; 3037 u_int ring_page_order; 3038 size_t ring_size; 3039 3040 otherend_path = xenbus_get_otherend_path(xbb->dev); 3041 3042 /* 3043 * Protocol defaults valid even if all negotiation fails. 3044 */ 3045 xbb->ring_config.ring_pages = 1; 3046 xbb->max_request_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST; 3047 xbb->max_request_size = xbb->max_request_segments * PAGE_SIZE; 3048 3049 /* 3050 * Mandatory data (used in all versions of the protocol) first. 3051 */ 3052 error = xs_scanf(XST_NIL, otherend_path, 3053 "event-channel", NULL, "%" PRIu32, 3054 &xbb->ring_config.evtchn); 3055 if (error != 0) { 3056 xenbus_dev_fatal(xbb->dev, error, 3057 "Unable to retrieve event-channel information " 3058 "from frontend %s. Unable to connect.", 3059 xenbus_get_otherend_path(xbb->dev)); 3060 return (error); 3061 } 3062 3063 /* 3064 * These fields are initialized to legacy protocol defaults 3065 * so we only need to fail if reading the updated value succeeds 3066 * and the new value is outside of its allowed range. 3067 * 3068 * \note xs_gather() returns on the first encountered error, so 3069 * we must use independent calls in order to guarantee 3070 * we don't miss information in a sparsly populated front-end 3071 * tree. 3072 * 3073 * \note xs_scanf() does not update variables for unmatched 3074 * fields. 3075 */ 3076 ring_page_order = 0; 3077 xbb->max_requests = 32; 3078 3079 (void)xs_scanf(XST_NIL, otherend_path, 3080 "ring-page-order", NULL, "%u", 3081 &ring_page_order); 3082 xbb->ring_config.ring_pages = 1 << ring_page_order; 3083 ring_size = PAGE_SIZE * xbb->ring_config.ring_pages; 3084 xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size); 3085 3086 if (xbb->ring_config.ring_pages > XBB_MAX_RING_PAGES) { 3087 xenbus_dev_fatal(xbb->dev, EINVAL, 3088 "Front-end specified ring-pages of %u " 3089 "exceeds backend limit of %u. " 3090 "Unable to connect.", 3091 xbb->ring_config.ring_pages, 3092 XBB_MAX_RING_PAGES); 3093 return (EINVAL); 3094 } 3095 3096 if (xbb->ring_config.ring_pages == 1) { 3097 error = xs_gather(XST_NIL, otherend_path, 3098 "ring-ref", "%" PRIu32, 3099 &xbb->ring_config.ring_ref[0], 3100 NULL); 3101 if (error != 0) { 3102 xenbus_dev_fatal(xbb->dev, error, 3103 "Unable to retrieve ring information " 3104 "from frontend %s. Unable to " 3105 "connect.", 3106 xenbus_get_otherend_path(xbb->dev)); 3107 return (error); 3108 } 3109 } else { 3110 /* Multi-page ring format. */ 3111 for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages; 3112 ring_idx++) { 3113 char ring_ref_name[]= "ring_refXX"; 3114 3115 snprintf(ring_ref_name, sizeof(ring_ref_name), 3116 "ring-ref%u", ring_idx); 3117 error = xs_scanf(XST_NIL, otherend_path, 3118 ring_ref_name, NULL, "%" PRIu32, 3119 &xbb->ring_config.ring_ref[ring_idx]); 3120 if (error != 0) { 3121 xenbus_dev_fatal(xbb->dev, error, 3122 "Failed to retriev grant " 3123 "reference for page %u of " 3124 "shared ring. Unable " 3125 "to connect.", ring_idx); 3126 return (error); 3127 } 3128 } 3129 } 3130 3131 error = xs_gather(XST_NIL, otherend_path, 3132 "protocol", "%63s", protocol_abi, 3133 NULL); 3134 if (error != 0 3135 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) { 3136 /* 3137 * Assume native if the frontend has not 3138 * published ABI data or it has published and 3139 * matches our own ABI. 3140 */ 3141 xbb->abi = BLKIF_PROTOCOL_NATIVE; 3142 } else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) { 3143 xbb->abi = BLKIF_PROTOCOL_X86_32; 3144 } else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) { 3145 xbb->abi = BLKIF_PROTOCOL_X86_64; 3146 } else { 3147 xenbus_dev_fatal(xbb->dev, EINVAL, 3148 "Unknown protocol ABI (%s) published by " 3149 "frontend. Unable to connect.", protocol_abi); 3150 return (EINVAL); 3151 } 3152 return (0); 3153 } 3154 3155 /** 3156 * Allocate per-request data structures given request size and number 3157 * information negotiated with the front-end. 3158 * 3159 * \param xbb Per-instance xbb configuration structure. 3160 */ 3161 static int 3162 xbb_alloc_requests(struct xbb_softc *xbb) 3163 { 3164 struct xbb_xen_req *req; 3165 struct xbb_xen_req *last_req; 3166 3167 /* 3168 * Allocate request book keeping datastructures. 3169 */ 3170 xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests), 3171 M_XENBLOCKBACK, M_NOWAIT|M_ZERO); 3172 if (xbb->requests == NULL) { 3173 xenbus_dev_fatal(xbb->dev, ENOMEM, 3174 "Unable to allocate request structures"); 3175 return (ENOMEM); 3176 } 3177 3178 req = xbb->requests; 3179 last_req = &xbb->requests[xbb->max_requests - 1]; 3180 STAILQ_INIT(&xbb->request_free_stailq); 3181 while (req <= last_req) { 3182 STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links); 3183 req++; 3184 } 3185 return (0); 3186 } 3187 3188 static int 3189 xbb_alloc_request_lists(struct xbb_softc *xbb) 3190 { 3191 struct xbb_xen_reqlist *reqlist; 3192 int i; 3193 3194 /* 3195 * If no requests can be merged, we need 1 request list per 3196 * in flight request. 3197 */ 3198 xbb->request_lists = malloc(xbb->max_requests * 3199 sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO); 3200 if (xbb->request_lists == NULL) { 3201 xenbus_dev_fatal(xbb->dev, ENOMEM, 3202 "Unable to allocate request list structures"); 3203 return (ENOMEM); 3204 } 3205 3206 STAILQ_INIT(&xbb->reqlist_free_stailq); 3207 STAILQ_INIT(&xbb->reqlist_pending_stailq); 3208 for (i = 0; i < xbb->max_requests; i++) { 3209 int seg; 3210 3211 reqlist = &xbb->request_lists[i]; 3212 3213 reqlist->xbb = xbb; 3214 3215 #ifdef XBB_USE_BOUNCE_BUFFERS 3216 reqlist->bounce = malloc(xbb->max_reqlist_size, 3217 M_XENBLOCKBACK, M_NOWAIT); 3218 if (reqlist->bounce == NULL) { 3219 xenbus_dev_fatal(xbb->dev, ENOMEM, 3220 "Unable to allocate request " 3221 "bounce buffers"); 3222 return (ENOMEM); 3223 } 3224 #endif /* XBB_USE_BOUNCE_BUFFERS */ 3225 3226 reqlist->gnt_handles = malloc(xbb->max_reqlist_segments * 3227 sizeof(*reqlist->gnt_handles), 3228 M_XENBLOCKBACK, M_NOWAIT|M_ZERO); 3229 if (reqlist->gnt_handles == NULL) { 3230 xenbus_dev_fatal(xbb->dev, ENOMEM, 3231 "Unable to allocate request " 3232 "grant references"); 3233 return (ENOMEM); 3234 } 3235 3236 for (seg = 0; seg < xbb->max_reqlist_segments; seg++) 3237 reqlist->gnt_handles[seg] = GRANT_REF_INVALID; 3238 3239 STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links); 3240 } 3241 return (0); 3242 } 3243 3244 /** 3245 * Supply information about the physical device to the frontend 3246 * via XenBus. 3247 * 3248 * \param xbb Per-instance xbb configuration structure. 3249 */ 3250 static int 3251 xbb_publish_backend_info(struct xbb_softc *xbb) 3252 { 3253 struct xs_transaction xst; 3254 const char *our_path; 3255 const char *leaf; 3256 int error; 3257 3258 our_path = xenbus_get_node(xbb->dev); 3259 while (1) { 3260 error = xs_transaction_start(&xst); 3261 if (error != 0) { 3262 xenbus_dev_fatal(xbb->dev, error, 3263 "Error publishing backend info " 3264 "(start transaction)"); 3265 return (error); 3266 } 3267 3268 leaf = "sectors"; 3269 error = xs_printf(xst, our_path, leaf, 3270 "%"PRIu64, xbb->media_num_sectors); 3271 if (error != 0) 3272 break; 3273 3274 /* XXX Support all VBD attributes here. */ 3275 leaf = "info"; 3276 error = xs_printf(xst, our_path, leaf, "%u", 3277 xbb->flags & XBBF_READ_ONLY 3278 ? VDISK_READONLY : 0); 3279 if (error != 0) 3280 break; 3281 3282 leaf = "sector-size"; 3283 error = xs_printf(xst, our_path, leaf, "%u", 3284 xbb->sector_size); 3285 if (error != 0) 3286 break; 3287 3288 error = xs_transaction_end(xst, 0); 3289 if (error == 0) { 3290 return (0); 3291 } else if (error != EAGAIN) { 3292 xenbus_dev_fatal(xbb->dev, error, "ending transaction"); 3293 return (error); 3294 } 3295 } 3296 3297 xenbus_dev_fatal(xbb->dev, error, "writing %s/%s", 3298 our_path, leaf); 3299 xs_transaction_end(xst, 1); 3300 return (error); 3301 } 3302 3303 /** 3304 * Connect to our blkfront peer now that it has completed publishing 3305 * its configuration into the XenStore. 3306 * 3307 * \param xbb Per-instance xbb configuration structure. 3308 */ 3309 static void 3310 xbb_connect(struct xbb_softc *xbb) 3311 { 3312 int error; 3313 3314 if (!xbb->hotplug_done || 3315 (xenbus_get_state(xbb->dev) != XenbusStateInitWait) || 3316 (xbb_collect_frontend_info(xbb) != 0)) 3317 return; 3318 3319 xbb->flags &= ~XBBF_SHUTDOWN; 3320 3321 /* 3322 * We limit the maximum number of reqlist segments to the maximum 3323 * number of segments in the ring, or our absolute maximum, 3324 * whichever is smaller. 3325 */ 3326 xbb->max_reqlist_segments = MIN(xbb->max_request_segments * 3327 xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST); 3328 3329 /* 3330 * The maximum size is simply a function of the number of segments 3331 * we can handle. 3332 */ 3333 xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE; 3334 3335 /* Allocate resources whose size depends on front-end configuration. */ 3336 error = xbb_alloc_communication_mem(xbb); 3337 if (error != 0) { 3338 xenbus_dev_fatal(xbb->dev, error, 3339 "Unable to allocate communication memory"); 3340 return; 3341 } 3342 3343 error = xbb_alloc_requests(xbb); 3344 if (error != 0) { 3345 /* Specific errors are reported by xbb_alloc_requests(). */ 3346 return; 3347 } 3348 3349 error = xbb_alloc_request_lists(xbb); 3350 if (error != 0) { 3351 /* Specific errors are reported by xbb_alloc_request_lists(). */ 3352 return; 3353 } 3354 3355 /* 3356 * Connect communication channel. 3357 */ 3358 error = xbb_connect_ring(xbb); 3359 if (error != 0) { 3360 /* Specific errors are reported by xbb_connect_ring(). */ 3361 return; 3362 } 3363 3364 if (xbb_publish_backend_info(xbb) != 0) { 3365 /* 3366 * If we can't publish our data, we cannot participate 3367 * in this connection, and waiting for a front-end state 3368 * change will not help the situation. 3369 */ 3370 (void)xbb_disconnect(xbb); 3371 return; 3372 } 3373 3374 /* Ready for I/O. */ 3375 xenbus_set_state(xbb->dev, XenbusStateConnected); 3376 } 3377 3378 /*-------------------------- Device Teardown Support -------------------------*/ 3379 /** 3380 * Perform device shutdown functions. 3381 * 3382 * \param xbb Per-instance xbb configuration structure. 3383 * 3384 * Mark this instance as shutting down, wait for any active I/O on the 3385 * backend device/file to drain, disconnect from the front-end, and notify 3386 * any waiters (e.g. a thread invoking our detach method) that detach can 3387 * now proceed. 3388 */ 3389 static int 3390 xbb_shutdown(struct xbb_softc *xbb) 3391 { 3392 XenbusState frontState; 3393 int error; 3394 3395 DPRINTF("\n"); 3396 3397 /* 3398 * Due to the need to drop our mutex during some 3399 * xenbus operations, it is possible for two threads 3400 * to attempt to close out shutdown processing at 3401 * the same time. Tell the caller that hits this 3402 * race to try back later. 3403 */ 3404 if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0) 3405 return (EAGAIN); 3406 3407 xbb->flags |= XBBF_IN_SHUTDOWN; 3408 mtx_unlock(&xbb->lock); 3409 3410 if (xbb->hotplug_watch.node != NULL) { 3411 xs_unregister_watch(&xbb->hotplug_watch); 3412 free(xbb->hotplug_watch.node, M_XENBLOCKBACK); 3413 xbb->hotplug_watch.node = NULL; 3414 } 3415 xbb->hotplug_done = false; 3416 3417 if (xenbus_get_state(xbb->dev) < XenbusStateClosing) 3418 xenbus_set_state(xbb->dev, XenbusStateClosing); 3419 3420 frontState = xenbus_get_otherend_state(xbb->dev); 3421 mtx_lock(&xbb->lock); 3422 xbb->flags &= ~XBBF_IN_SHUTDOWN; 3423 3424 /* Wait for the frontend to disconnect (if it's connected). */ 3425 if (frontState == XenbusStateConnected) 3426 return (EAGAIN); 3427 3428 DPRINTF("\n"); 3429 3430 /* Indicate shutdown is in progress. */ 3431 xbb->flags |= XBBF_SHUTDOWN; 3432 3433 /* Disconnect from the front-end. */ 3434 error = xbb_disconnect(xbb); 3435 if (error != 0) { 3436 /* 3437 * Requests still outstanding. We'll be called again 3438 * once they complete. 3439 */ 3440 KASSERT(error == EAGAIN, 3441 ("%s: Unexpected xbb_disconnect() failure %d", 3442 __func__, error)); 3443 3444 return (error); 3445 } 3446 3447 DPRINTF("\n"); 3448 3449 /* Indicate to xbb_detach() that is it safe to proceed. */ 3450 wakeup(xbb); 3451 3452 return (0); 3453 } 3454 3455 /** 3456 * Report an attach time error to the console and Xen, and cleanup 3457 * this instance by forcing immediate detach processing. 3458 * 3459 * \param xbb Per-instance xbb configuration structure. 3460 * \param err Errno describing the error. 3461 * \param fmt Printf style format and arguments 3462 */ 3463 static void 3464 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...) 3465 { 3466 va_list ap; 3467 va_list ap_hotplug; 3468 3469 va_start(ap, fmt); 3470 va_copy(ap_hotplug, ap); 3471 xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev), 3472 "hotplug-error", fmt, ap_hotplug); 3473 va_end(ap_hotplug); 3474 xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3475 "hotplug-status", "error"); 3476 3477 xenbus_dev_vfatal(xbb->dev, err, fmt, ap); 3478 va_end(ap); 3479 3480 xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3481 "online", "0"); 3482 mtx_lock(&xbb->lock); 3483 xbb_shutdown(xbb); 3484 mtx_unlock(&xbb->lock); 3485 } 3486 3487 /*---------------------------- NewBus Entrypoints ----------------------------*/ 3488 /** 3489 * Inspect a XenBus device and claim it if is of the appropriate type. 3490 * 3491 * \param dev NewBus device object representing a candidate XenBus device. 3492 * 3493 * \return 0 for success, errno codes for failure. 3494 */ 3495 static int 3496 xbb_probe(device_t dev) 3497 { 3498 3499 if (!strcmp(xenbus_get_type(dev), "vbd")) { 3500 device_set_desc(dev, "Backend Virtual Block Device"); 3501 device_quiet(dev); 3502 return (0); 3503 } 3504 3505 return (ENXIO); 3506 } 3507 3508 /** 3509 * Setup sysctl variables to control various Block Back parameters. 3510 * 3511 * \param xbb Xen Block Back softc. 3512 * 3513 */ 3514 static void 3515 xbb_setup_sysctl(struct xbb_softc *xbb) 3516 { 3517 struct sysctl_ctx_list *sysctl_ctx = NULL; 3518 struct sysctl_oid *sysctl_tree = NULL; 3519 3520 sysctl_ctx = device_get_sysctl_ctx(xbb->dev); 3521 if (sysctl_ctx == NULL) 3522 return; 3523 3524 sysctl_tree = device_get_sysctl_tree(xbb->dev); 3525 if (sysctl_tree == NULL) 3526 return; 3527 3528 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3529 "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0, 3530 "fake the flush command"); 3531 3532 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3533 "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0, 3534 "send a real flush for N flush requests"); 3535 3536 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3537 "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0, 3538 "Don't coalesce contiguous requests"); 3539 3540 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3541 "reqs_received", CTLFLAG_RW, &xbb->reqs_received, 3542 "how many I/O requests we have received"); 3543 3544 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3545 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed, 3546 "how many I/O requests have been completed"); 3547 3548 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3549 "reqs_queued_for_completion", CTLFLAG_RW, 3550 &xbb->reqs_queued_for_completion, 3551 "how many I/O requests queued but not yet pushed"); 3552 3553 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3554 "reqs_completed_with_error", CTLFLAG_RW, 3555 &xbb->reqs_completed_with_error, 3556 "how many I/O requests completed with error status"); 3557 3558 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3559 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch, 3560 "how many I/O dispatches were forced"); 3561 3562 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3563 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch, 3564 "how many I/O dispatches were normal"); 3565 3566 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3567 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch, 3568 "total number of I/O dispatches"); 3569 3570 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3571 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages, 3572 "how many times we have run out of KVA"); 3573 3574 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3575 "request_shortages", CTLFLAG_RW, 3576 &xbb->request_shortages, 3577 "how many times we have run out of requests"); 3578 3579 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3580 "max_requests", CTLFLAG_RD, &xbb->max_requests, 0, 3581 "maximum outstanding requests (negotiated)"); 3582 3583 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3584 "max_request_segments", CTLFLAG_RD, 3585 &xbb->max_request_segments, 0, 3586 "maximum number of pages per requests (negotiated)"); 3587 3588 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3589 "max_request_size", CTLFLAG_RD, 3590 &xbb->max_request_size, 0, 3591 "maximum size in bytes of a request (negotiated)"); 3592 3593 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3594 "ring_pages", CTLFLAG_RD, 3595 &xbb->ring_config.ring_pages, 0, 3596 "communication channel pages (negotiated)"); 3597 } 3598 3599 static void 3600 xbb_attach_disk(struct xs_watch *watch, const char **vec, unsigned int len) 3601 { 3602 device_t dev; 3603 struct xbb_softc *xbb; 3604 int error; 3605 3606 dev = (device_t) watch->callback_data; 3607 xbb = device_get_softc(dev); 3608 3609 error = xs_gather(XST_NIL, xenbus_get_node(dev), "physical-device-path", 3610 NULL, &xbb->dev_name, NULL); 3611 if (error != 0) 3612 return; 3613 3614 xs_unregister_watch(watch); 3615 free(watch->node, M_XENBLOCKBACK); 3616 watch->node = NULL; 3617 3618 /* Collect physical device information. */ 3619 error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev), 3620 "device-type", NULL, &xbb->dev_type, 3621 NULL); 3622 if (error != 0) 3623 xbb->dev_type = NULL; 3624 3625 error = xs_gather(XST_NIL, xenbus_get_node(dev), 3626 "mode", NULL, &xbb->dev_mode, 3627 NULL); 3628 if (error != 0) { 3629 xbb_attach_failed(xbb, error, "reading backend fields at %s", 3630 xenbus_get_node(dev)); 3631 return; 3632 } 3633 3634 /* Parse fopen style mode flags. */ 3635 if (strchr(xbb->dev_mode, 'w') == NULL) 3636 xbb->flags |= XBBF_READ_ONLY; 3637 3638 /* 3639 * Verify the physical device is present and can support 3640 * the desired I/O mode. 3641 */ 3642 error = xbb_open_backend(xbb); 3643 if (error != 0) { 3644 xbb_attach_failed(xbb, error, "Unable to open %s", 3645 xbb->dev_name); 3646 return; 3647 } 3648 3649 /* Use devstat(9) for recording statistics. */ 3650 xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev), 3651 xbb->sector_size, 3652 DEVSTAT_ALL_SUPPORTED, 3653 DEVSTAT_TYPE_DIRECT 3654 | DEVSTAT_TYPE_IF_OTHER, 3655 DEVSTAT_PRIORITY_OTHER); 3656 3657 xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev), 3658 xbb->sector_size, 3659 DEVSTAT_ALL_SUPPORTED, 3660 DEVSTAT_TYPE_DIRECT 3661 | DEVSTAT_TYPE_IF_OTHER, 3662 DEVSTAT_PRIORITY_OTHER); 3663 /* 3664 * Setup sysctl variables. 3665 */ 3666 xbb_setup_sysctl(xbb); 3667 3668 /* 3669 * Create a taskqueue for doing work that must occur from a 3670 * thread context. 3671 */ 3672 xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev), 3673 M_NOWAIT, 3674 taskqueue_thread_enqueue, 3675 /*contxt*/&xbb->io_taskqueue); 3676 if (xbb->io_taskqueue == NULL) { 3677 xbb_attach_failed(xbb, error, "Unable to create taskqueue"); 3678 return; 3679 } 3680 3681 taskqueue_start_threads(&xbb->io_taskqueue, 3682 /*num threads*/1, 3683 /*priority*/PWAIT, 3684 /*thread name*/ 3685 "%s taskq", device_get_nameunit(dev)); 3686 3687 /* Update hot-plug status to satisfy xend. */ 3688 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3689 "hotplug-status", "connected"); 3690 if (error) { 3691 xbb_attach_failed(xbb, error, "writing %s/hotplug-status", 3692 xenbus_get_node(xbb->dev)); 3693 return; 3694 } 3695 3696 xbb->hotplug_done = true; 3697 3698 /* The front end might be waiting for the backend, attach if so. */ 3699 if (xenbus_get_otherend_state(xbb->dev) == XenbusStateInitialised) 3700 xbb_connect(xbb); 3701 } 3702 3703 /** 3704 * Attach to a XenBus device that has been claimed by our probe routine. 3705 * 3706 * \param dev NewBus device object representing this Xen Block Back instance. 3707 * 3708 * \return 0 for success, errno codes for failure. 3709 */ 3710 static int 3711 xbb_attach(device_t dev) 3712 { 3713 struct xbb_softc *xbb; 3714 int error; 3715 u_int max_ring_page_order; 3716 struct sbuf *watch_path; 3717 3718 DPRINTF("Attaching to %s\n", xenbus_get_node(dev)); 3719 3720 /* 3721 * Basic initialization. 3722 * After this block it is safe to call xbb_detach() 3723 * to clean up any allocated data for this instance. 3724 */ 3725 xbb = device_get_softc(dev); 3726 xbb->dev = dev; 3727 xbb->otherend_id = xenbus_get_otherend_id(dev); 3728 TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb); 3729 mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF); 3730 3731 /* 3732 * Publish protocol capabilities for consumption by the 3733 * front-end. 3734 */ 3735 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3736 "feature-barrier", "1"); 3737 if (error) { 3738 xbb_attach_failed(xbb, error, "writing %s/feature-barrier", 3739 xenbus_get_node(xbb->dev)); 3740 return (error); 3741 } 3742 3743 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3744 "feature-flush-cache", "1"); 3745 if (error) { 3746 xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache", 3747 xenbus_get_node(xbb->dev)); 3748 return (error); 3749 } 3750 3751 max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1; 3752 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3753 "max-ring-page-order", "%u", max_ring_page_order); 3754 if (error) { 3755 xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order", 3756 xenbus_get_node(xbb->dev)); 3757 return (error); 3758 } 3759 3760 /* 3761 * We need to wait for hotplug script execution before 3762 * moving forward. 3763 */ 3764 KASSERT(!xbb->hotplug_done, ("Hotplug scripts already executed")); 3765 watch_path = xs_join(xenbus_get_node(xbb->dev), "physical-device-path"); 3766 xbb->hotplug_watch.callback_data = (uintptr_t)dev; 3767 xbb->hotplug_watch.callback = xbb_attach_disk; 3768 KASSERT(xbb->hotplug_watch.node == NULL, ("watch node already setup")); 3769 xbb->hotplug_watch.node = strdup(sbuf_data(watch_path), M_XENBLOCKBACK); 3770 /* 3771 * We don't care about the path updated, just about the value changes 3772 * on that single node, hence there's no need to queue more that one 3773 * event. 3774 */ 3775 xbb->hotplug_watch.max_pending = 1; 3776 sbuf_delete(watch_path); 3777 error = xs_register_watch(&xbb->hotplug_watch); 3778 if (error != 0) { 3779 xbb_attach_failed(xbb, error, "failed to create watch on %s", 3780 xbb->hotplug_watch.node); 3781 free(xbb->hotplug_watch.node, M_XENBLOCKBACK); 3782 return (error); 3783 } 3784 3785 /* Tell the toolstack blkback has attached. */ 3786 xenbus_set_state(dev, XenbusStateInitWait); 3787 3788 return (0); 3789 } 3790 3791 /** 3792 * Detach from a block back device instance. 3793 * 3794 * \param dev NewBus device object representing this Xen Block Back instance. 3795 * 3796 * \return 0 for success, errno codes for failure. 3797 * 3798 * \note A block back device may be detached at any time in its life-cycle, 3799 * including part way through the attach process. For this reason, 3800 * initialization order and the initialization state checks in this 3801 * routine must be carefully coupled so that attach time failures 3802 * are gracefully handled. 3803 */ 3804 static int 3805 xbb_detach(device_t dev) 3806 { 3807 struct xbb_softc *xbb; 3808 3809 DPRINTF("\n"); 3810 3811 xbb = device_get_softc(dev); 3812 mtx_lock(&xbb->lock); 3813 while (xbb_shutdown(xbb) == EAGAIN) { 3814 msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0, 3815 "xbb_shutdown", 0); 3816 } 3817 mtx_unlock(&xbb->lock); 3818 3819 DPRINTF("\n"); 3820 3821 if (xbb->io_taskqueue != NULL) 3822 taskqueue_free(xbb->io_taskqueue); 3823 3824 if (xbb->xbb_stats != NULL) 3825 devstat_remove_entry(xbb->xbb_stats); 3826 3827 if (xbb->xbb_stats_in != NULL) 3828 devstat_remove_entry(xbb->xbb_stats_in); 3829 3830 xbb_close_backend(xbb); 3831 3832 if (xbb->dev_mode != NULL) { 3833 free(xbb->dev_mode, M_XENSTORE); 3834 xbb->dev_mode = NULL; 3835 } 3836 3837 if (xbb->dev_type != NULL) { 3838 free(xbb->dev_type, M_XENSTORE); 3839 xbb->dev_type = NULL; 3840 } 3841 3842 if (xbb->dev_name != NULL) { 3843 free(xbb->dev_name, M_XENSTORE); 3844 xbb->dev_name = NULL; 3845 } 3846 3847 mtx_destroy(&xbb->lock); 3848 return (0); 3849 } 3850 3851 /** 3852 * Prepare this block back device for suspension of this VM. 3853 * 3854 * \param dev NewBus device object representing this Xen Block Back instance. 3855 * 3856 * \return 0 for success, errno codes for failure. 3857 */ 3858 static int 3859 xbb_suspend(device_t dev) 3860 { 3861 #ifdef NOT_YET 3862 struct xbb_softc *sc = device_get_softc(dev); 3863 3864 /* Prevent new requests being issued until we fix things up. */ 3865 mtx_lock(&sc->xb_io_lock); 3866 sc->connected = BLKIF_STATE_SUSPENDED; 3867 mtx_unlock(&sc->xb_io_lock); 3868 #endif 3869 3870 return (0); 3871 } 3872 3873 /** 3874 * Perform any processing required to recover from a suspended state. 3875 * 3876 * \param dev NewBus device object representing this Xen Block Back instance. 3877 * 3878 * \return 0 for success, errno codes for failure. 3879 */ 3880 static int 3881 xbb_resume(device_t dev) 3882 { 3883 return (0); 3884 } 3885 3886 /** 3887 * Handle state changes expressed via the XenStore by our front-end peer. 3888 * 3889 * \param dev NewBus device object representing this Xen 3890 * Block Back instance. 3891 * \param frontend_state The new state of the front-end. 3892 * 3893 * \return 0 for success, errno codes for failure. 3894 */ 3895 static void 3896 xbb_frontend_changed(device_t dev, XenbusState frontend_state) 3897 { 3898 struct xbb_softc *xbb = device_get_softc(dev); 3899 3900 DPRINTF("frontend_state=%s, xbb_state=%s\n", 3901 xenbus_strstate(frontend_state), 3902 xenbus_strstate(xenbus_get_state(xbb->dev))); 3903 3904 switch (frontend_state) { 3905 case XenbusStateInitialising: 3906 break; 3907 case XenbusStateInitialised: 3908 case XenbusStateConnected: 3909 xbb_connect(xbb); 3910 break; 3911 case XenbusStateClosing: 3912 case XenbusStateClosed: 3913 mtx_lock(&xbb->lock); 3914 xbb_shutdown(xbb); 3915 mtx_unlock(&xbb->lock); 3916 if (frontend_state == XenbusStateClosed) 3917 xenbus_set_state(xbb->dev, XenbusStateClosed); 3918 break; 3919 default: 3920 xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend", 3921 frontend_state); 3922 break; 3923 } 3924 } 3925 3926 /*---------------------------- NewBus Registration ---------------------------*/ 3927 static device_method_t xbb_methods[] = { 3928 /* Device interface */ 3929 DEVMETHOD(device_probe, xbb_probe), 3930 DEVMETHOD(device_attach, xbb_attach), 3931 DEVMETHOD(device_detach, xbb_detach), 3932 DEVMETHOD(device_shutdown, bus_generic_shutdown), 3933 DEVMETHOD(device_suspend, xbb_suspend), 3934 DEVMETHOD(device_resume, xbb_resume), 3935 3936 /* Xenbus interface */ 3937 DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed), 3938 { 0, 0 } 3939 }; 3940 3941 static driver_t xbb_driver = { 3942 "xbbd", 3943 xbb_methods, 3944 sizeof(struct xbb_softc), 3945 }; 3946 devclass_t xbb_devclass; 3947 3948 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0); 3949