xref: /freebsd/sys/dev/xen/blkback/blkback.c (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009-2012 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Ken Merry           (Spectra Logic Corporation)
34  */
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file blkback.c
40  *
41  * \brief Device driver supporting the vending of block storage from
42  *        a FreeBSD domain to other domains.
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 
50 #include <sys/bio.h>
51 #include <sys/bus.h>
52 #include <sys/conf.h>
53 #include <sys/devicestat.h>
54 #include <sys/disk.h>
55 #include <sys/fcntl.h>
56 #include <sys/filedesc.h>
57 #include <sys/kdb.h>
58 #include <sys/module.h>
59 #include <sys/namei.h>
60 #include <sys/proc.h>
61 #include <sys/rman.h>
62 #include <sys/taskqueue.h>
63 #include <sys/types.h>
64 #include <sys/vnode.h>
65 #include <sys/mount.h>
66 #include <sys/sysctl.h>
67 #include <sys/bitstring.h>
68 #include <sys/sdt.h>
69 
70 #include <geom/geom.h>
71 
72 #include <machine/_inttypes.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 
78 #include <xen/xen-os.h>
79 #include <xen/blkif.h>
80 #include <xen/gnttab.h>
81 #include <xen/xen_intr.h>
82 
83 #include <xen/interface/event_channel.h>
84 #include <xen/interface/grant_table.h>
85 
86 #include <xen/xenbus/xenbusvar.h>
87 
88 /*--------------------------- Compile-time Tunables --------------------------*/
89 /**
90  * The maximum number of shared memory ring pages we will allow in a
91  * negotiated block-front/back communication channel.  Allow enough
92  * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
93  */
94 #define	XBB_MAX_RING_PAGES		32
95 
96 /**
97  * The maximum number of outstanding request blocks (request headers plus
98  * additional segment blocks) we will allow in a negotiated block-front/back
99  * communication channel.
100  */
101 #define	XBB_MAX_REQUESTS 					\
102 	__CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
103 
104 /**
105  * \brief Define to force all I/O to be performed on memory owned by the
106  *        backend device, with a copy-in/out to the remote domain's memory.
107  *
108  * \note  This option is currently required when this driver's domain is
109  *        operating in HVM mode on a system using an IOMMU.
110  *
111  * This driver uses Xen's grant table API to gain access to the memory of
112  * the remote domains it serves.  When our domain is operating in PV mode,
113  * the grant table mechanism directly updates our domain's page table entries
114  * to point to the physical pages of the remote domain.  This scheme guarantees
115  * that blkback and the backing devices it uses can safely perform DMA
116  * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
117  * insure that our domain cannot DMA to pages owned by another domain.  As
118  * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
119  * table API.  For this reason, in HVM mode, we must bounce all requests into
120  * memory that is mapped into our domain at domain startup and thus has
121  * valid IOMMU mappings.
122  */
123 #define XBB_USE_BOUNCE_BUFFERS
124 
125 /**
126  * \brief Define to enable rudimentary request logging to the console.
127  */
128 #undef XBB_DEBUG
129 
130 /*---------------------------------- Macros ----------------------------------*/
131 /**
132  * Custom malloc type for all driver allocations.
133  */
134 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
135 
136 #ifdef XBB_DEBUG
137 #define DPRINTF(fmt, args...)					\
138     printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
139 #else
140 #define DPRINTF(fmt, args...) do {} while(0)
141 #endif
142 
143 /**
144  * The maximum mapped region size per request we will allow in a negotiated
145  * block-front/back communication channel.
146  * Use old default of MAXPHYS == 128K.
147  */
148 #define	XBB_MAX_REQUEST_SIZE					\
149 	MIN(128 * 1024, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
150 
151 /**
152  * The maximum number of segments (within a request header and accompanying
153  * segment blocks) per request we will allow in a negotiated block-front/back
154  * communication channel.
155  */
156 #define	XBB_MAX_SEGMENTS_PER_REQUEST				\
157 	(MIN(UIO_MAXIOV,					\
158 	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
159 		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
160 
161 /**
162  * The maximum number of ring pages that we can allow per request list.
163  * We limit this to the maximum number of segments per request, because
164  * that is already a reasonable number of segments to aggregate.  This
165  * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
166  * because that would leave situations where we can't dispatch even one
167  * large request.
168  */
169 #define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
170 
171 /*--------------------------- Forward Declarations ---------------------------*/
172 struct xbb_softc;
173 struct xbb_xen_req;
174 
175 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
176 			      ...) __attribute__((format(printf, 3, 4)));
177 static int  xbb_shutdown(struct xbb_softc *xbb);
178 
179 /*------------------------------ Data Structures -----------------------------*/
180 
181 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
182 
183 typedef enum {
184 	XBB_REQLIST_NONE	= 0x00,
185 	XBB_REQLIST_MAPPED	= 0x01
186 } xbb_reqlist_flags;
187 
188 struct xbb_xen_reqlist {
189 	/**
190 	 * Back reference to the parent block back instance for this
191 	 * request.  Used during bio_done handling.
192 	 */
193 	struct xbb_softc        *xbb;
194 
195 	/**
196 	 * BLKIF_OP code for this request.
197 	 */
198 	int			 operation;
199 
200 	/**
201 	 * Set to BLKIF_RSP_* to indicate request status.
202 	 *
203 	 * This field allows an error status to be recorded even if the
204 	 * delivery of this status must be deferred.  Deferred reporting
205 	 * is necessary, for example, when an error is detected during
206 	 * completion processing of one bio when other bios for this
207 	 * request are still outstanding.
208 	 */
209 	int			 status;
210 
211 	/**
212 	 * Number of 512 byte sectors not transferred.
213 	 */
214 	int			 residual_512b_sectors;
215 
216 	/**
217 	 * Starting sector number of the first request in the list.
218 	 */
219 	off_t			 starting_sector_number;
220 
221 	/**
222 	 * If we're going to coalesce, the next contiguous sector would be
223 	 * this one.
224 	 */
225 	off_t			 next_contig_sector;
226 
227 	/**
228 	 * Number of child requests in the list.
229 	 */
230 	int			 num_children;
231 
232 	/**
233 	 * Number of I/O requests still pending on the backend.
234 	 */
235 	int			 pendcnt;
236 
237 	/**
238 	 * Total number of segments for requests in the list.
239 	 */
240 	int			 nr_segments;
241 
242 	/**
243 	 * Flags for this particular request list.
244 	 */
245 	xbb_reqlist_flags	 flags;
246 
247 	/**
248 	 * Kernel virtual address space reserved for this request
249 	 * list structure and used to map the remote domain's pages for
250 	 * this I/O, into our domain's address space.
251 	 */
252 	uint8_t			*kva;
253 
254 	/**
255 	 * Base, pseudo-physical address, corresponding to the start
256 	 * of this request's kva region.
257 	 */
258 	uint64_t	 	 gnt_base;
259 
260 #ifdef XBB_USE_BOUNCE_BUFFERS
261 	/**
262 	 * Pre-allocated domain local memory used to proxy remote
263 	 * domain memory during I/O operations.
264 	 */
265 	uint8_t			*bounce;
266 #endif
267 
268 	/**
269 	 * Array of grant handles (one per page) used to map this request.
270 	 */
271 	grant_handle_t		*gnt_handles;
272 
273 	/**
274 	 * Device statistics request ordering type (ordered or simple).
275 	 */
276 	devstat_tag_type	 ds_tag_type;
277 
278 	/**
279 	 * Device statistics request type (read, write, no_data).
280 	 */
281 	devstat_trans_flags	 ds_trans_type;
282 
283 	/**
284 	 * The start time for this request.
285 	 */
286 	struct bintime		 ds_t0;
287 
288 	/**
289 	 * Linked list of contiguous requests with the same operation type.
290 	 */
291 	struct xbb_xen_req_list	 contig_req_list;
292 
293 	/**
294 	 * Linked list links used to aggregate idle requests in the
295 	 * request list free pool (xbb->reqlist_free_stailq) and pending
296 	 * requests waiting for execution (xbb->reqlist_pending_stailq).
297 	 */
298 	STAILQ_ENTRY(xbb_xen_reqlist) links;
299 };
300 
301 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
302 
303 /**
304  * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
305  */
306 struct xbb_xen_req {
307 	/**
308 	 * Linked list links used to aggregate requests into a reqlist
309 	 * and to store them in the request free pool.
310 	 */
311 	STAILQ_ENTRY(xbb_xen_req) links;
312 
313 	/**
314 	 * The remote domain's identifier for this I/O request.
315 	 */
316 	uint64_t		  id;
317 
318 	/**
319 	 * The number of pages currently mapped for this request.
320 	 */
321 	int			  nr_pages;
322 
323 	/**
324 	 * The number of 512 byte sectors comprising this requests.
325 	 */
326 	int			  nr_512b_sectors;
327 
328 	/**
329 	 * BLKIF_OP code for this request.
330 	 */
331 	int			  operation;
332 
333 	/**
334 	 * Storage used for non-native ring requests.
335 	 */
336 	blkif_request_t		 ring_req_storage;
337 
338 	/**
339 	 * Pointer to the Xen request in the ring.
340 	 */
341 	blkif_request_t		*ring_req;
342 
343 	/**
344 	 * Consumer index for this request.
345 	 */
346 	RING_IDX		 req_ring_idx;
347 
348 	/**
349 	 * The start time for this request.
350 	 */
351 	struct bintime		 ds_t0;
352 
353 	/**
354 	 * Pointer back to our parent request list.
355 	 */
356 	struct xbb_xen_reqlist  *reqlist;
357 };
358 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
359 
360 /**
361  * \brief Configuration data for the shared memory request ring
362  *        used to communicate with the front-end client of this
363  *        this driver.
364  */
365 struct xbb_ring_config {
366 	/** KVA address where ring memory is mapped. */
367 	vm_offset_t	va;
368 
369 	/** The pseudo-physical address where ring memory is mapped.*/
370 	uint64_t	gnt_addr;
371 
372 	/**
373 	 * Grant table handles, one per-ring page, returned by the
374 	 * hyperpervisor upon mapping of the ring and required to
375 	 * unmap it when a connection is torn down.
376 	 */
377 	grant_handle_t	handle[XBB_MAX_RING_PAGES];
378 
379 	/**
380 	 * The device bus address returned by the hypervisor when
381 	 * mapping the ring and required to unmap it when a connection
382 	 * is torn down.
383 	 */
384 	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
385 
386 	/** The number of ring pages mapped for the current connection. */
387 	u_int		ring_pages;
388 
389 	/**
390 	 * The grant references, one per-ring page, supplied by the
391 	 * front-end, allowing us to reference the ring pages in the
392 	 * front-end's domain and to map these pages into our own domain.
393 	 */
394 	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
395 
396 	/** The interrupt driven even channel used to signal ring events. */
397 	evtchn_port_t   evtchn;
398 };
399 
400 /**
401  * Per-instance connection state flags.
402  */
403 typedef enum
404 {
405 	/**
406 	 * The front-end requested a read-only mount of the
407 	 * back-end device/file.
408 	 */
409 	XBBF_READ_ONLY         = 0x01,
410 
411 	/** Communication with the front-end has been established. */
412 	XBBF_RING_CONNECTED    = 0x02,
413 
414 	/**
415 	 * Front-end requests exist in the ring and are waiting for
416 	 * xbb_xen_req objects to free up.
417 	 */
418 	XBBF_RESOURCE_SHORTAGE = 0x04,
419 
420 	/** Connection teardown in progress. */
421 	XBBF_SHUTDOWN          = 0x08,
422 
423 	/** A thread is already performing shutdown processing. */
424 	XBBF_IN_SHUTDOWN       = 0x10
425 } xbb_flag_t;
426 
427 /** Backend device type.  */
428 typedef enum {
429 	/** Backend type unknown. */
430 	XBB_TYPE_NONE		= 0x00,
431 
432 	/**
433 	 * Backend type disk (access via cdev switch
434 	 * strategy routine).
435 	 */
436 	XBB_TYPE_DISK		= 0x01,
437 
438 	/** Backend type file (access vnode operations.). */
439 	XBB_TYPE_FILE		= 0x02
440 } xbb_type;
441 
442 /**
443  * \brief Structure used to memoize information about a per-request
444  *        scatter-gather list.
445  *
446  * The chief benefit of using this data structure is it avoids having
447  * to reparse the possibly discontiguous S/G list in the original
448  * request.  Due to the way that the mapping of the memory backing an
449  * I/O transaction is handled by Xen, a second pass is unavoidable.
450  * At least this way the second walk is a simple array traversal.
451  *
452  * \note A single Scatter/Gather element in the block interface covers
453  *       at most 1 machine page.  In this context a sector (blkif
454  *       nomenclature, not what I'd choose) is a 512b aligned unit
455  *       of mapping within the machine page referenced by an S/G
456  *       element.
457  */
458 struct xbb_sg {
459 	/** The number of 512b data chunks mapped in this S/G element. */
460 	int16_t nsect;
461 
462 	/**
463 	 * The index (0 based) of the first 512b data chunk mapped
464 	 * in this S/G element.
465 	 */
466 	uint8_t first_sect;
467 
468 	/**
469 	 * The index (0 based) of the last 512b data chunk mapped
470 	 * in this S/G element.
471 	 */
472 	uint8_t last_sect;
473 };
474 
475 /**
476  * Character device backend specific configuration data.
477  */
478 struct xbb_dev_data {
479 	/** Cdev used for device backend access.  */
480 	struct cdev   *cdev;
481 
482 	/** Cdev switch used for device backend access.  */
483 	struct cdevsw *csw;
484 
485 	/** Used to hold a reference on opened cdev backend devices. */
486 	int	       dev_ref;
487 };
488 
489 /**
490  * File backend specific configuration data.
491  */
492 struct xbb_file_data {
493 	/** Credentials to use for vnode backed (file based) I/O. */
494 	struct ucred   *cred;
495 
496 	/**
497 	 * \brief Array of io vectors used to process file based I/O.
498 	 *
499 	 * Only a single file based request is outstanding per-xbb instance,
500 	 * so we only need one of these.
501 	 */
502 	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
503 #ifdef XBB_USE_BOUNCE_BUFFERS
504 
505 	/**
506 	 * \brief Array of io vectors used to handle bouncing of file reads.
507 	 *
508 	 * Vnode operations are free to modify uio data during their
509 	 * exectuion.  In the case of a read with bounce buffering active,
510 	 * we need some of the data from the original uio in order to
511 	 * bounce-out the read data.  This array serves as the temporary
512 	 * storage for this saved data.
513 	 */
514 	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
515 
516 	/**
517 	 * \brief Array of memoized bounce buffer kva offsets used
518 	 *        in the file based backend.
519 	 *
520 	 * Due to the way that the mapping of the memory backing an
521 	 * I/O transaction is handled by Xen, a second pass through
522 	 * the request sg elements is unavoidable. We memoize the computed
523 	 * bounce address here to reduce the cost of the second walk.
524 	 */
525 	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
526 #endif /* XBB_USE_BOUNCE_BUFFERS */
527 };
528 
529 /**
530  * Collection of backend type specific data.
531  */
532 union xbb_backend_data {
533 	struct xbb_dev_data  dev;
534 	struct xbb_file_data file;
535 };
536 
537 /**
538  * Function signature of backend specific I/O handlers.
539  */
540 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
541 			      struct xbb_xen_reqlist *reqlist, int operation,
542 			      int flags);
543 
544 /**
545  * Per-instance configuration data.
546  */
547 struct xbb_softc {
548 	/**
549 	 * Task-queue used to process I/O requests.
550 	 */
551 	struct taskqueue	 *io_taskqueue;
552 
553 	/**
554 	 * Single "run the request queue" task enqueued
555 	 * on io_taskqueue.
556 	 */
557 	struct task		  io_task;
558 
559 	/** Device type for this instance. */
560 	xbb_type		  device_type;
561 
562 	/** NewBus device corresponding to this instance. */
563 	device_t		  dev;
564 
565 	/** Backend specific dispatch routine for this instance. */
566 	xbb_dispatch_t		  dispatch_io;
567 
568 	/** The number of requests outstanding on the backend device/file. */
569 	int			  active_request_count;
570 
571 	/** Free pool of request tracking structures. */
572 	struct xbb_xen_req_list   request_free_stailq;
573 
574 	/** Array, sized at connection time, of request tracking structures. */
575 	struct xbb_xen_req	 *requests;
576 
577 	/** Free pool of request list structures. */
578 	struct xbb_xen_reqlist_list reqlist_free_stailq;
579 
580 	/** List of pending request lists awaiting execution. */
581 	struct xbb_xen_reqlist_list reqlist_pending_stailq;
582 
583 	/** Array, sized at connection time, of request list structures. */
584 	struct xbb_xen_reqlist	 *request_lists;
585 
586 	/**
587 	 * Global pool of kva used for mapping remote domain ring
588 	 * and I/O transaction data.
589 	 */
590 	vm_offset_t		  kva;
591 
592 	/** Pseudo-physical address corresponding to kva. */
593 	uint64_t		  gnt_base_addr;
594 
595 	/** The size of the global kva pool. */
596 	int			  kva_size;
597 
598 	/** The size of the KVA area used for request lists. */
599 	int			  reqlist_kva_size;
600 
601 	/** The number of pages of KVA used for request lists */
602 	int			  reqlist_kva_pages;
603 
604 	/** Bitmap of free KVA pages */
605 	bitstr_t		 *kva_free;
606 
607 	/**
608 	 * \brief Cached value of the front-end's domain id.
609 	 *
610 	 * This value is used at once for each mapped page in
611 	 * a transaction.  We cache it to avoid incuring the
612 	 * cost of an ivar access every time this is needed.
613 	 */
614 	domid_t			  otherend_id;
615 
616 	/**
617 	 * \brief The blkif protocol abi in effect.
618 	 *
619 	 * There are situations where the back and front ends can
620 	 * have a different, native abi (e.g. intel x86_64 and
621 	 * 32bit x86 domains on the same machine).  The back-end
622 	 * always accommodates the front-end's native abi.  That
623 	 * value is pulled from the XenStore and recorded here.
624 	 */
625 	int			  abi;
626 
627 	/**
628 	 * \brief The maximum number of requests and request lists allowed
629 	 *        to be in flight at a time.
630 	 *
631 	 * This value is negotiated via the XenStore.
632 	 */
633 	u_int			  max_requests;
634 
635 	/**
636 	 * \brief The maximum number of segments (1 page per segment)
637 	 *	  that can be mapped by a request.
638 	 *
639 	 * This value is negotiated via the XenStore.
640 	 */
641 	u_int			  max_request_segments;
642 
643 	/**
644 	 * \brief Maximum number of segments per request list.
645 	 *
646 	 * This value is derived from and will generally be larger than
647 	 * max_request_segments.
648 	 */
649 	u_int			  max_reqlist_segments;
650 
651 	/**
652 	 * The maximum size of any request to this back-end
653 	 * device.
654 	 *
655 	 * This value is negotiated via the XenStore.
656 	 */
657 	u_int			  max_request_size;
658 
659 	/**
660 	 * The maximum size of any request list.  This is derived directly
661 	 * from max_reqlist_segments.
662 	 */
663 	u_int			  max_reqlist_size;
664 
665 	/** Various configuration and state bit flags. */
666 	xbb_flag_t		  flags;
667 
668 	/** Ring mapping and interrupt configuration data. */
669 	struct xbb_ring_config	  ring_config;
670 
671 	/** Runtime, cross-abi safe, structures for ring access. */
672 	blkif_back_rings_t	  rings;
673 
674 	/** IRQ mapping for the communication ring event channel. */
675 	xen_intr_handle_t	  xen_intr_handle;
676 
677 	/**
678 	 * \brief Backend access mode flags (e.g. write, or read-only).
679 	 *
680 	 * This value is passed to us by the front-end via the XenStore.
681 	 */
682 	char			 *dev_mode;
683 
684 	/**
685 	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
686 	 *
687 	 * This value is passed to us by the front-end via the XenStore.
688 	 * Currently unused.
689 	 */
690 	char			 *dev_type;
691 
692 	/**
693 	 * \brief Backend device/file identifier.
694 	 *
695 	 * This value is passed to us by the front-end via the XenStore.
696 	 * We expect this to be a POSIX path indicating the file or
697 	 * device to open.
698 	 */
699 	char			 *dev_name;
700 
701 	/**
702 	 * Vnode corresponding to the backend device node or file
703 	 * we are acessing.
704 	 */
705 	struct vnode		 *vn;
706 
707 	union xbb_backend_data	  backend;
708 
709 	/** The native sector size of the backend. */
710 	u_int			  sector_size;
711 
712 	/** log2 of sector_size.  */
713 	u_int			  sector_size_shift;
714 
715 	/** Size in bytes of the backend device or file.  */
716 	off_t			  media_size;
717 
718 	/**
719 	 * \brief media_size expressed in terms of the backend native
720 	 *	  sector size.
721 	 *
722 	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
723 	 */
724 	uint64_t		  media_num_sectors;
725 
726 	/**
727 	 * \brief Array of memoized scatter gather data computed during the
728 	 *	  conversion of blkif ring requests to internal xbb_xen_req
729 	 *	  structures.
730 	 *
731 	 * Ring processing is serialized so we only need one of these.
732 	 */
733 	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
734 
735 	/**
736 	 * Temporary grant table map used in xbb_dispatch_io().  When
737 	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
738 	 * stack could cause a stack overflow.
739 	 */
740 	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
741 
742 	/** Mutex protecting per-instance data. */
743 	struct mtx		  lock;
744 
745 	/**
746 	 * Resource representing allocated physical address space
747 	 * associated with our per-instance kva region.
748 	 */
749 	struct resource		 *pseudo_phys_res;
750 
751 	/** Resource id for allocated physical address space. */
752 	int			  pseudo_phys_res_id;
753 
754 	/**
755 	 * I/O statistics from BlockBack dispatch down.  These are
756 	 * coalesced requests, and we start them right before execution.
757 	 */
758 	struct devstat		 *xbb_stats;
759 
760 	/**
761 	 * I/O statistics coming into BlockBack.  These are the requests as
762 	 * we get them from BlockFront.  They are started as soon as we
763 	 * receive a request, and completed when the I/O is complete.
764 	 */
765 	struct devstat		 *xbb_stats_in;
766 
767 	/** Disable sending flush to the backend */
768 	int			  disable_flush;
769 
770 	/** Send a real flush for every N flush requests */
771 	int			  flush_interval;
772 
773 	/** Count of flush requests in the interval */
774 	int			  flush_count;
775 
776 	/** Don't coalesce requests if this is set */
777 	int			  no_coalesce_reqs;
778 
779 	/** Number of requests we have received */
780 	uint64_t		  reqs_received;
781 
782 	/** Number of requests we have completed*/
783 	uint64_t		  reqs_completed;
784 
785 	/** Number of requests we queued but not pushed*/
786 	uint64_t		  reqs_queued_for_completion;
787 
788 	/** Number of requests we completed with an error status*/
789 	uint64_t		  reqs_completed_with_error;
790 
791 	/** How many forced dispatches (i.e. without coalescing) have happened */
792 	uint64_t		  forced_dispatch;
793 
794 	/** How many normal dispatches have happened */
795 	uint64_t		  normal_dispatch;
796 
797 	/** How many total dispatches have happened */
798 	uint64_t		  total_dispatch;
799 
800 	/** How many times we have run out of KVA */
801 	uint64_t		  kva_shortages;
802 
803 	/** How many times we have run out of request structures */
804 	uint64_t		  request_shortages;
805 
806 	/** Watch to wait for hotplug script execution */
807 	struct xs_watch		  hotplug_watch;
808 
809 	/** Got the needed data from hotplug scripts? */
810 	bool			  hotplug_done;
811 };
812 
813 /*---------------------------- Request Processing ----------------------------*/
814 /**
815  * Allocate an internal transaction tracking structure from the free pool.
816  *
817  * \param xbb  Per-instance xbb configuration structure.
818  *
819  * \return  On success, a pointer to the allocated xbb_xen_req structure.
820  *          Otherwise NULL.
821  */
822 static inline struct xbb_xen_req *
823 xbb_get_req(struct xbb_softc *xbb)
824 {
825 	struct xbb_xen_req *req;
826 
827 	req = NULL;
828 
829 	mtx_assert(&xbb->lock, MA_OWNED);
830 
831 	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
832 		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
833 		xbb->active_request_count++;
834 	}
835 
836 	return (req);
837 }
838 
839 /**
840  * Return an allocated transaction tracking structure to the free pool.
841  *
842  * \param xbb  Per-instance xbb configuration structure.
843  * \param req  The request structure to free.
844  */
845 static inline void
846 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
847 {
848 	mtx_assert(&xbb->lock, MA_OWNED);
849 
850 	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
851 	xbb->active_request_count--;
852 
853 	KASSERT(xbb->active_request_count >= 0,
854 		("xbb_release_req: negative active count"));
855 }
856 
857 /**
858  * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
859  *
860  * \param xbb	    Per-instance xbb configuration structure.
861  * \param req_list  The list of requests to free.
862  * \param nreqs	    The number of items in the list.
863  */
864 static inline void
865 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
866 		 int nreqs)
867 {
868 	mtx_assert(&xbb->lock, MA_OWNED);
869 
870 	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
871 	xbb->active_request_count -= nreqs;
872 
873 	KASSERT(xbb->active_request_count >= 0,
874 		("xbb_release_reqs: negative active count"));
875 }
876 
877 /**
878  * Given a page index and 512b sector offset within that page,
879  * calculate an offset into a request's kva region.
880  *
881  * \param reqlist The request structure whose kva region will be accessed.
882  * \param pagenr  The page index used to compute the kva offset.
883  * \param sector  The 512b sector index used to compute the page relative
884  *                kva offset.
885  *
886  * \return  The computed global KVA offset.
887  */
888 static inline uint8_t *
889 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
890 {
891 	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
892 }
893 
894 #ifdef XBB_USE_BOUNCE_BUFFERS
895 /**
896  * Given a page index and 512b sector offset within that page,
897  * calculate an offset into a request's local bounce memory region.
898  *
899  * \param reqlist The request structure whose bounce region will be accessed.
900  * \param pagenr  The page index used to compute the bounce offset.
901  * \param sector  The 512b sector index used to compute the page relative
902  *                bounce offset.
903  *
904  * \return  The computed global bounce buffer address.
905  */
906 static inline uint8_t *
907 xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
908 {
909 	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
910 }
911 #endif
912 
913 /**
914  * Given a page number and 512b sector offset within that page,
915  * calculate an offset into the request's memory region that the
916  * underlying backend device/file should use for I/O.
917  *
918  * \param reqlist The request structure whose I/O region will be accessed.
919  * \param pagenr  The page index used to compute the I/O offset.
920  * \param sector  The 512b sector index used to compute the page relative
921  *                I/O offset.
922  *
923  * \return  The computed global I/O address.
924  *
925  * Depending on configuration, this will either be a local bounce buffer
926  * or a pointer to the memory mapped in from the front-end domain for
927  * this request.
928  */
929 static inline uint8_t *
930 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
931 {
932 #ifdef XBB_USE_BOUNCE_BUFFERS
933 	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
934 #else
935 	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
936 #endif
937 }
938 
939 /**
940  * Given a page index and 512b sector offset within that page, calculate
941  * an offset into the local pseudo-physical address space used to map a
942  * front-end's request data into a request.
943  *
944  * \param reqlist The request list structure whose pseudo-physical region
945  *                will be accessed.
946  * \param pagenr  The page index used to compute the pseudo-physical offset.
947  * \param sector  The 512b sector index used to compute the page relative
948  *                pseudo-physical offset.
949  *
950  * \return  The computed global pseudo-phsyical address.
951  *
952  * Depending on configuration, this will either be a local bounce buffer
953  * or a pointer to the memory mapped in from the front-end domain for
954  * this request.
955  */
956 static inline uintptr_t
957 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
958 {
959 	struct xbb_softc *xbb;
960 
961 	xbb = reqlist->xbb;
962 
963 	return ((uintptr_t)(xbb->gnt_base_addr +
964 		(uintptr_t)(reqlist->kva - xbb->kva) +
965 		(PAGE_SIZE * pagenr) + (sector << 9)));
966 }
967 
968 /**
969  * Get Kernel Virtual Address space for mapping requests.
970  *
971  * \param xbb         Per-instance xbb configuration structure.
972  * \param nr_pages    Number of pages needed.
973  * \param check_only  If set, check for free KVA but don't allocate it.
974  * \param have_lock   If set, xbb lock is already held.
975  *
976  * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
977  *
978  * Note:  This should be unnecessary once we have either chaining or
979  * scatter/gather support for struct bio.  At that point we'll be able to
980  * put multiple addresses and lengths in one bio/bio chain and won't need
981  * to map everything into one virtual segment.
982  */
983 static uint8_t *
984 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
985 {
986 	int first_clear;
987 	int num_clear;
988 	uint8_t *free_kva;
989 	int      i;
990 
991 	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
992 
993 	first_clear = 0;
994 	free_kva = NULL;
995 
996 	mtx_lock(&xbb->lock);
997 
998 	/*
999 	 * Look for the first available page.  If there are none, we're done.
1000 	 */
1001 	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
1002 
1003 	if (first_clear == -1)
1004 		goto bailout;
1005 
1006 	/*
1007 	 * Starting at the first available page, look for consecutive free
1008 	 * pages that will satisfy the user's request.
1009 	 */
1010 	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1011 		/*
1012 		 * If this is true, the page is used, so we have to reset
1013 		 * the number of clear pages and the first clear page
1014 		 * (since it pointed to a region with an insufficient number
1015 		 * of clear pages).
1016 		 */
1017 		if (bit_test(xbb->kva_free, i)) {
1018 			num_clear = 0;
1019 			first_clear = -1;
1020 			continue;
1021 		}
1022 
1023 		if (first_clear == -1)
1024 			first_clear = i;
1025 
1026 		/*
1027 		 * If this is true, we've found a large enough free region
1028 		 * to satisfy the request.
1029 		 */
1030 		if (++num_clear == nr_pages) {
1031 			bit_nset(xbb->kva_free, first_clear,
1032 				 first_clear + nr_pages - 1);
1033 
1034 			free_kva = xbb->kva +
1035 				(uint8_t *)((intptr_t)first_clear * PAGE_SIZE);
1036 
1037 			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1038 				free_kva + (nr_pages * PAGE_SIZE) <=
1039 				(uint8_t *)xbb->ring_config.va,
1040 				("Free KVA %p len %d out of range, "
1041 				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1042 				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1043 				 (uintmax_t)xbb->ring_config.va));
1044 			break;
1045 		}
1046 	}
1047 
1048 bailout:
1049 
1050 	if (free_kva == NULL) {
1051 		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1052 		xbb->kva_shortages++;
1053 	}
1054 
1055 	mtx_unlock(&xbb->lock);
1056 
1057 	return (free_kva);
1058 }
1059 
1060 /**
1061  * Free allocated KVA.
1062  *
1063  * \param xbb	    Per-instance xbb configuration structure.
1064  * \param kva_ptr   Pointer to allocated KVA region.
1065  * \param nr_pages  Number of pages in the KVA region.
1066  */
1067 static void
1068 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1069 {
1070 	intptr_t start_page;
1071 
1072 	mtx_assert(&xbb->lock, MA_OWNED);
1073 
1074 	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1075 	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1076 
1077 }
1078 
1079 /**
1080  * Unmap the front-end pages associated with this I/O request.
1081  *
1082  * \param req  The request structure to unmap.
1083  */
1084 static void
1085 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1086 {
1087 	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1088 	u_int			      i;
1089 	u_int			      invcount;
1090 	int			      error;
1091 
1092 	invcount = 0;
1093 	for (i = 0; i < reqlist->nr_segments; i++) {
1094 		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1095 			continue;
1096 
1097 		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1098 		unmap[invcount].dev_bus_addr = 0;
1099 		unmap[invcount].handle       = reqlist->gnt_handles[i];
1100 		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1101 		invcount++;
1102 	}
1103 
1104 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1105 					  unmap, invcount);
1106 	KASSERT(error == 0, ("Grant table operation failed"));
1107 }
1108 
1109 /**
1110  * Allocate an internal transaction tracking structure from the free pool.
1111  *
1112  * \param xbb  Per-instance xbb configuration structure.
1113  *
1114  * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1115  *          Otherwise NULL.
1116  */
1117 static inline struct xbb_xen_reqlist *
1118 xbb_get_reqlist(struct xbb_softc *xbb)
1119 {
1120 	struct xbb_xen_reqlist *reqlist;
1121 
1122 	reqlist = NULL;
1123 
1124 	mtx_assert(&xbb->lock, MA_OWNED);
1125 
1126 	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1127 		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1128 		reqlist->flags = XBB_REQLIST_NONE;
1129 		reqlist->kva = NULL;
1130 		reqlist->status = BLKIF_RSP_OKAY;
1131 		reqlist->residual_512b_sectors = 0;
1132 		reqlist->num_children = 0;
1133 		reqlist->nr_segments = 0;
1134 		STAILQ_INIT(&reqlist->contig_req_list);
1135 	}
1136 
1137 	return (reqlist);
1138 }
1139 
1140 /**
1141  * Return an allocated transaction tracking structure to the free pool.
1142  *
1143  * \param xbb        Per-instance xbb configuration structure.
1144  * \param req        The request list structure to free.
1145  * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1146  *                   during a resource shortage condition.
1147  */
1148 static inline void
1149 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1150 		    int wakeup)
1151 {
1152 
1153 	mtx_assert(&xbb->lock, MA_OWNED);
1154 
1155 	if (wakeup) {
1156 		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1157 		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1158 	}
1159 
1160 	if (reqlist->kva != NULL)
1161 		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1162 
1163 	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1164 
1165 	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1166 
1167 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1168 		/*
1169 		 * Shutdown is in progress.  See if we can
1170 		 * progress further now that one more request
1171 		 * has completed and been returned to the
1172 		 * free pool.
1173 		 */
1174 		xbb_shutdown(xbb);
1175 	}
1176 
1177 	if (wakeup != 0)
1178 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1179 }
1180 
1181 /**
1182  * Request resources and do basic request setup.
1183  *
1184  * \param xbb          Per-instance xbb configuration structure.
1185  * \param reqlist      Pointer to reqlist pointer.
1186  * \param ring_req     Pointer to a block ring request.
1187  * \param ring_index   The ring index of this request.
1188  *
1189  * \return  0 for success, non-zero for failure.
1190  */
1191 static int
1192 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1193 		  blkif_request_t *ring_req, RING_IDX ring_idx)
1194 {
1195 	struct xbb_xen_reqlist *nreqlist;
1196 	struct xbb_xen_req     *nreq;
1197 
1198 	nreqlist = NULL;
1199 	nreq     = NULL;
1200 
1201 	mtx_lock(&xbb->lock);
1202 
1203 	/*
1204 	 * We don't allow new resources to be allocated if we're in the
1205 	 * process of shutting down.
1206 	 */
1207 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1208 		mtx_unlock(&xbb->lock);
1209 		return (1);
1210 	}
1211 
1212 	/*
1213 	 * Allocate a reqlist if the caller doesn't have one already.
1214 	 */
1215 	if (*reqlist == NULL) {
1216 		nreqlist = xbb_get_reqlist(xbb);
1217 		if (nreqlist == NULL)
1218 			goto bailout_error;
1219 	}
1220 
1221 	/* We always allocate a request. */
1222 	nreq = xbb_get_req(xbb);
1223 	if (nreq == NULL)
1224 		goto bailout_error;
1225 
1226 	mtx_unlock(&xbb->lock);
1227 
1228 	if (*reqlist == NULL) {
1229 		*reqlist = nreqlist;
1230 		nreqlist->operation = ring_req->operation;
1231 		nreqlist->starting_sector_number = ring_req->sector_number;
1232 		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1233 				   links);
1234 	}
1235 
1236 	nreq->reqlist = *reqlist;
1237 	nreq->req_ring_idx = ring_idx;
1238 	nreq->id = ring_req->id;
1239 	nreq->operation = ring_req->operation;
1240 
1241 	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1242 		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1243 		nreq->ring_req = &nreq->ring_req_storage;
1244 	} else {
1245 		nreq->ring_req = ring_req;
1246 	}
1247 
1248 	binuptime(&nreq->ds_t0);
1249 	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1250 	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1251 	(*reqlist)->num_children++;
1252 	(*reqlist)->nr_segments += ring_req->nr_segments;
1253 
1254 	return (0);
1255 
1256 bailout_error:
1257 
1258 	/*
1259 	 * We're out of resources, so set the shortage flag.  The next time
1260 	 * a request is released, we'll try waking up the work thread to
1261 	 * see if we can allocate more resources.
1262 	 */
1263 	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1264 	xbb->request_shortages++;
1265 
1266 	if (nreq != NULL)
1267 		xbb_release_req(xbb, nreq);
1268 
1269 	if (nreqlist != NULL)
1270 		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1271 
1272 	mtx_unlock(&xbb->lock);
1273 
1274 	return (1);
1275 }
1276 
1277 /**
1278  * Create and queue a response to a blkif request.
1279  *
1280  * \param xbb     Per-instance xbb configuration structure.
1281  * \param req     The request structure to which to respond.
1282  * \param status  The status code to report.  See BLKIF_RSP_*
1283  *                in sys/xen/interface/io/blkif.h.
1284  */
1285 static void
1286 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1287 {
1288 	blkif_response_t *resp;
1289 
1290 	/*
1291 	 * The mutex is required here, and should be held across this call
1292 	 * until after the subsequent call to xbb_push_responses().  This
1293 	 * is to guarantee that another context won't queue responses and
1294 	 * push them while we're active.
1295 	 *
1296 	 * That could lead to the other end being notified of responses
1297 	 * before the resources have been freed on this end.  The other end
1298 	 * would then be able to queue additional I/O, and we may run out
1299  	 * of resources because we haven't freed them all yet.
1300 	 */
1301 	mtx_assert(&xbb->lock, MA_OWNED);
1302 
1303 	/*
1304 	 * Place on the response ring for the relevant domain.
1305 	 * For now, only the spacing between entries is different
1306 	 * in the different ABIs, not the response entry layout.
1307 	 */
1308 	switch (xbb->abi) {
1309 	case BLKIF_PROTOCOL_NATIVE:
1310 		resp = RING_GET_RESPONSE(&xbb->rings.native,
1311 					 xbb->rings.native.rsp_prod_pvt);
1312 		break;
1313 	case BLKIF_PROTOCOL_X86_32:
1314 		resp = (blkif_response_t *)
1315 		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1316 				      xbb->rings.x86_32.rsp_prod_pvt);
1317 		break;
1318 	case BLKIF_PROTOCOL_X86_64:
1319 		resp = (blkif_response_t *)
1320 		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1321 				      xbb->rings.x86_64.rsp_prod_pvt);
1322 		break;
1323 	default:
1324 		panic("Unexpected blkif protocol ABI.");
1325 	}
1326 
1327 	resp->id        = req->id;
1328 	resp->operation = req->operation;
1329 	resp->status    = status;
1330 
1331 	if (status != BLKIF_RSP_OKAY)
1332 		xbb->reqs_completed_with_error++;
1333 
1334 	xbb->rings.common.rsp_prod_pvt++;
1335 
1336 	xbb->reqs_queued_for_completion++;
1337 
1338 }
1339 
1340 /**
1341  * Send queued responses to blkif requests.
1342  *
1343  * \param xbb            Per-instance xbb configuration structure.
1344  * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1345  *			 should be run, 0 if it does not need to be run.
1346  * \param notify	 Flag that is set to 1 if the other end should be
1347  * 			 notified via irq, 0 if the other end should not be
1348  *			 notified.
1349  */
1350 static void
1351 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1352 {
1353 	int more_to_do;
1354 
1355 	/*
1356 	 * The mutex is required here.
1357 	 */
1358 	mtx_assert(&xbb->lock, MA_OWNED);
1359 
1360 	more_to_do = 0;
1361 
1362 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1363 
1364 	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1365 		/*
1366 		 * Tail check for pending requests. Allows frontend to avoid
1367 		 * notifications if requests are already in flight (lower
1368 		 * overheads and promotes batching).
1369 		 */
1370 		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1371 	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1372 		more_to_do = 1;
1373 	}
1374 
1375 	xbb->reqs_completed += xbb->reqs_queued_for_completion;
1376 	xbb->reqs_queued_for_completion = 0;
1377 
1378 	*run_taskqueue = more_to_do;
1379 }
1380 
1381 /**
1382  * Complete a request list.
1383  *
1384  * \param xbb        Per-instance xbb configuration structure.
1385  * \param reqlist    Allocated internal request list structure.
1386  */
1387 static void
1388 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1389 {
1390 	struct xbb_xen_req *nreq;
1391 	off_t		    sectors_sent;
1392 	int		    notify, run_taskqueue;
1393 
1394 	sectors_sent = 0;
1395 
1396 	if (reqlist->flags & XBB_REQLIST_MAPPED)
1397 		xbb_unmap_reqlist(reqlist);
1398 
1399 	mtx_lock(&xbb->lock);
1400 
1401 	/*
1402 	 * All I/O is done, send the response. A lock is not necessary
1403 	 * to protect the request list, because all requests have
1404 	 * completed.  Therefore this is the only context accessing this
1405 	 * reqlist right now.  However, in order to make sure that no one
1406 	 * else queues responses onto the queue or pushes them to the other
1407 	 * side while we're active, we need to hold the lock across the
1408 	 * calls to xbb_queue_response() and xbb_push_responses().
1409 	 */
1410 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1411 		off_t cur_sectors_sent;
1412 
1413 		/* Put this response on the ring, but don't push yet */
1414 		xbb_queue_response(xbb, nreq, reqlist->status);
1415 
1416 		/* We don't report bytes sent if there is an error. */
1417 		if (reqlist->status == BLKIF_RSP_OKAY)
1418 			cur_sectors_sent = nreq->nr_512b_sectors;
1419 		else
1420 			cur_sectors_sent = 0;
1421 
1422 		sectors_sent += cur_sectors_sent;
1423 
1424 		devstat_end_transaction(xbb->xbb_stats_in,
1425 					/*bytes*/cur_sectors_sent << 9,
1426 					reqlist->ds_tag_type,
1427 					reqlist->ds_trans_type,
1428 					/*now*/NULL,
1429 					/*then*/&nreq->ds_t0);
1430 	}
1431 
1432 	/*
1433 	 * Take out any sectors not sent.  If we wind up negative (which
1434 	 * might happen if an error is reported as well as a residual), just
1435 	 * report 0 sectors sent.
1436 	 */
1437 	sectors_sent -= reqlist->residual_512b_sectors;
1438 	if (sectors_sent < 0)
1439 		sectors_sent = 0;
1440 
1441 	devstat_end_transaction(xbb->xbb_stats,
1442 				/*bytes*/ sectors_sent << 9,
1443 				reqlist->ds_tag_type,
1444 				reqlist->ds_trans_type,
1445 				/*now*/NULL,
1446 				/*then*/&reqlist->ds_t0);
1447 
1448 	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1449 
1450 	xbb_push_responses(xbb, &run_taskqueue, &notify);
1451 
1452 	mtx_unlock(&xbb->lock);
1453 
1454 	if (run_taskqueue)
1455 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1456 
1457 	if (notify)
1458 		xen_intr_signal(xbb->xen_intr_handle);
1459 }
1460 
1461 /**
1462  * Completion handler for buffer I/O requests issued by the device
1463  * backend driver.
1464  *
1465  * \param bio  The buffer I/O request on which to perform completion
1466  *             processing.
1467  */
1468 static void
1469 xbb_bio_done(struct bio *bio)
1470 {
1471 	struct xbb_softc       *xbb;
1472 	struct xbb_xen_reqlist *reqlist;
1473 
1474 	reqlist = bio->bio_caller1;
1475 	xbb     = reqlist->xbb;
1476 
1477 	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1478 
1479 	/*
1480 	 * This is a bit imprecise.  With aggregated I/O a single
1481 	 * request list can contain multiple front-end requests and
1482 	 * a multiple bios may point to a single request.  By carefully
1483 	 * walking the request list, we could map residuals and errors
1484 	 * back to the original front-end request, but the interface
1485 	 * isn't sufficiently rich for us to properly report the error.
1486 	 * So, we just treat the entire request list as having failed if an
1487 	 * error occurs on any part.  And, if an error occurs, we treat
1488 	 * the amount of data transferred as 0.
1489 	 *
1490 	 * For residuals, we report it on the overall aggregated device,
1491 	 * but not on the individual requests, since we don't currently
1492 	 * do the work to determine which front-end request to which the
1493 	 * residual applies.
1494 	 */
1495 	if (bio->bio_error) {
1496 		DPRINTF("BIO returned error %d for operation on device %s\n",
1497 			bio->bio_error, xbb->dev_name);
1498 		reqlist->status = BLKIF_RSP_ERROR;
1499 
1500 		if (bio->bio_error == ENXIO
1501 		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1502 			/*
1503 			 * Backend device has disappeared.  Signal the
1504 			 * front-end that we (the device proxy) want to
1505 			 * go away.
1506 			 */
1507 			xenbus_set_state(xbb->dev, XenbusStateClosing);
1508 		}
1509 	}
1510 
1511 #ifdef XBB_USE_BOUNCE_BUFFERS
1512 	if (bio->bio_cmd == BIO_READ) {
1513 		vm_offset_t kva_offset;
1514 
1515 		kva_offset = (vm_offset_t)bio->bio_data
1516 			   - (vm_offset_t)reqlist->bounce;
1517 		memcpy((uint8_t *)reqlist->kva + kva_offset,
1518 		       bio->bio_data, bio->bio_bcount);
1519 	}
1520 #endif /* XBB_USE_BOUNCE_BUFFERS */
1521 
1522 	/*
1523 	 * Decrement the pending count for the request list.  When we're
1524 	 * done with the requests, send status back for all of them.
1525 	 */
1526 	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1527 		xbb_complete_reqlist(xbb, reqlist);
1528 
1529 	g_destroy_bio(bio);
1530 }
1531 
1532 /**
1533  * Parse a blkif request into an internal request structure and send
1534  * it to the backend for processing.
1535  *
1536  * \param xbb       Per-instance xbb configuration structure.
1537  * \param reqlist   Allocated internal request list structure.
1538  *
1539  * \return          On success, 0.  For resource shortages, non-zero.
1540  *
1541  * This routine performs the backend common aspects of request parsing
1542  * including compiling an internal request structure, parsing the S/G
1543  * list and any secondary ring requests in which they may reside, and
1544  * the mapping of front-end I/O pages into our domain.
1545  */
1546 static int
1547 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1548 {
1549 	struct xbb_sg                *xbb_sg;
1550 	struct gnttab_map_grant_ref  *map;
1551 	struct blkif_request_segment *sg;
1552 	struct blkif_request_segment *last_block_sg;
1553 	struct xbb_xen_req	     *nreq;
1554 	u_int			      nseg;
1555 	u_int			      seg_idx;
1556 	u_int			      block_segs;
1557 	int			      nr_sects;
1558 	int			      total_sects;
1559 	int			      operation;
1560 	uint8_t			      bio_flags;
1561 	int			      error;
1562 
1563 	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1564 	bio_flags            = 0;
1565 	total_sects	     = 0;
1566 	nr_sects	     = 0;
1567 
1568 	/*
1569 	 * First determine whether we have enough free KVA to satisfy this
1570 	 * request list.  If not, tell xbb_run_queue() so it can go to
1571 	 * sleep until we have more KVA.
1572 	 */
1573 	reqlist->kva = NULL;
1574 	if (reqlist->nr_segments != 0) {
1575 		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1576 		if (reqlist->kva == NULL) {
1577 			/*
1578 			 * If we're out of KVA, return ENOMEM.
1579 			 */
1580 			return (ENOMEM);
1581 		}
1582 	}
1583 
1584 	binuptime(&reqlist->ds_t0);
1585 	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1586 
1587 	switch (reqlist->operation) {
1588 	case BLKIF_OP_WRITE_BARRIER:
1589 		bio_flags       |= BIO_ORDERED;
1590 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1591 		/* FALLTHROUGH */
1592 	case BLKIF_OP_WRITE:
1593 		operation = BIO_WRITE;
1594 		reqlist->ds_trans_type = DEVSTAT_WRITE;
1595 		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1596 			DPRINTF("Attempt to write to read only device %s\n",
1597 				xbb->dev_name);
1598 			reqlist->status = BLKIF_RSP_ERROR;
1599 			goto send_response;
1600 		}
1601 		break;
1602 	case BLKIF_OP_READ:
1603 		operation = BIO_READ;
1604 		reqlist->ds_trans_type = DEVSTAT_READ;
1605 		break;
1606 	case BLKIF_OP_FLUSH_DISKCACHE:
1607 		/*
1608 		 * If this is true, the user has requested that we disable
1609 		 * flush support.  So we just complete the requests
1610 		 * successfully.
1611 		 */
1612 		if (xbb->disable_flush != 0) {
1613 			goto send_response;
1614 		}
1615 
1616 		/*
1617 		 * The user has requested that we only send a real flush
1618 		 * for every N flush requests.  So keep count, and either
1619 		 * complete the request immediately or queue it for the
1620 		 * backend.
1621 		 */
1622 		if (xbb->flush_interval != 0) {
1623 		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1624 				goto send_response;
1625 			} else
1626 				xbb->flush_count = 0;
1627 		}
1628 
1629 		operation = BIO_FLUSH;
1630 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1631 		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1632 		goto do_dispatch;
1633 		/*NOTREACHED*/
1634 	default:
1635 		DPRINTF("error: unknown block io operation [%d]\n",
1636 			reqlist->operation);
1637 		reqlist->status = BLKIF_RSP_ERROR;
1638 		goto send_response;
1639 	}
1640 
1641 	reqlist->xbb  = xbb;
1642 	xbb_sg        = xbb->xbb_sgs;
1643 	map	      = xbb->maps;
1644 	seg_idx	      = 0;
1645 
1646 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1647 		blkif_request_t		*ring_req;
1648 		RING_IDX		 req_ring_idx;
1649 		u_int			 req_seg_idx;
1650 
1651 		ring_req	      = nreq->ring_req;
1652 		req_ring_idx	      = nreq->req_ring_idx;
1653 		nr_sects              = 0;
1654 		nseg                  = ring_req->nr_segments;
1655 		nreq->nr_pages        = nseg;
1656 		nreq->nr_512b_sectors = 0;
1657 		req_seg_idx	      = 0;
1658 		sg	              = NULL;
1659 
1660 		/* Check that number of segments is sane. */
1661 		if (__predict_false(nseg == 0)
1662 		 || __predict_false(nseg > xbb->max_request_segments)) {
1663 			DPRINTF("Bad number of segments in request (%d)\n",
1664 				nseg);
1665 			reqlist->status = BLKIF_RSP_ERROR;
1666 			goto send_response;
1667 		}
1668 
1669 		block_segs    = nseg;
1670 		sg            = ring_req->seg;
1671 		last_block_sg = sg + block_segs;
1672 
1673 		while (sg < last_block_sg) {
1674 			KASSERT(seg_idx <
1675 				XBB_MAX_SEGMENTS_PER_REQLIST,
1676 				("seg_idx %d is too large, max "
1677 				"segs %d\n", seg_idx,
1678 				XBB_MAX_SEGMENTS_PER_REQLIST));
1679 
1680 			xbb_sg->first_sect = sg->first_sect;
1681 			xbb_sg->last_sect  = sg->last_sect;
1682 			xbb_sg->nsect =
1683 			    (int8_t)(sg->last_sect -
1684 			    sg->first_sect + 1);
1685 
1686 			if ((sg->last_sect >= (PAGE_SIZE >> 9))
1687 			 || (xbb_sg->nsect <= 0)) {
1688 				reqlist->status = BLKIF_RSP_ERROR;
1689 				goto send_response;
1690 			}
1691 
1692 			nr_sects += xbb_sg->nsect;
1693 			map->host_addr = xbb_get_gntaddr(reqlist,
1694 						seg_idx, /*sector*/0);
1695 			KASSERT(map->host_addr + PAGE_SIZE <=
1696 				xbb->ring_config.gnt_addr,
1697 				("Host address %#jx len %d overlaps "
1698 				 "ring address %#jx\n",
1699 				(uintmax_t)map->host_addr, PAGE_SIZE,
1700 				(uintmax_t)xbb->ring_config.gnt_addr));
1701 
1702 			map->flags     = GNTMAP_host_map;
1703 			map->ref       = sg->gref;
1704 			map->dom       = xbb->otherend_id;
1705 			if (operation == BIO_WRITE)
1706 				map->flags |= GNTMAP_readonly;
1707 			sg++;
1708 			map++;
1709 			xbb_sg++;
1710 			seg_idx++;
1711 			req_seg_idx++;
1712 		}
1713 
1714 		/* Convert to the disk's sector size */
1715 		nreq->nr_512b_sectors = nr_sects;
1716 		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1717 		total_sects += nr_sects;
1718 
1719 		if ((nreq->nr_512b_sectors &
1720 		    ((xbb->sector_size >> 9) - 1)) != 0) {
1721 			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1722 				      "a multiple of the backing store sector "
1723 				      "size (%d)\n", __func__,
1724 				      nreq->nr_512b_sectors << 9,
1725 				      xbb->sector_size);
1726 			reqlist->status = BLKIF_RSP_ERROR;
1727 			goto send_response;
1728 		}
1729 	}
1730 
1731 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1732 					  xbb->maps, reqlist->nr_segments);
1733 	if (error != 0)
1734 		panic("Grant table operation failed (%d)", error);
1735 
1736 	reqlist->flags |= XBB_REQLIST_MAPPED;
1737 
1738 	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1739 	     seg_idx++, map++){
1740 		if (__predict_false(map->status != 0)) {
1741 			DPRINTF("invalid buffer -- could not remap "
1742 			        "it (%d)\n", map->status);
1743 			DPRINTF("Mapping(%d): Host Addr 0x%"PRIx64", flags "
1744 			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1745 				map->host_addr, map->flags, map->ref,
1746 				map->dom);
1747 			reqlist->status = BLKIF_RSP_ERROR;
1748 			goto send_response;
1749 		}
1750 
1751 		reqlist->gnt_handles[seg_idx] = map->handle;
1752 	}
1753 	if (reqlist->starting_sector_number + total_sects >
1754 	    xbb->media_num_sectors) {
1755 		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1756 			"extends past end of device %s\n",
1757 			operation == BIO_READ ? "read" : "write",
1758 			reqlist->starting_sector_number,
1759 			reqlist->starting_sector_number + total_sects,
1760 			xbb->dev_name);
1761 		reqlist->status = BLKIF_RSP_ERROR;
1762 		goto send_response;
1763 	}
1764 
1765 do_dispatch:
1766 
1767 	error = xbb->dispatch_io(xbb,
1768 				 reqlist,
1769 				 operation,
1770 				 bio_flags);
1771 
1772 	if (error != 0) {
1773 		reqlist->status = BLKIF_RSP_ERROR;
1774 		goto send_response;
1775 	}
1776 
1777 	return (0);
1778 
1779 send_response:
1780 
1781 	xbb_complete_reqlist(xbb, reqlist);
1782 
1783 	return (0);
1784 }
1785 
1786 static __inline int
1787 xbb_count_sects(blkif_request_t *ring_req)
1788 {
1789 	int i;
1790 	int cur_size = 0;
1791 
1792 	for (i = 0; i < ring_req->nr_segments; i++) {
1793 		int nsect;
1794 
1795 		nsect = (int8_t)(ring_req->seg[i].last_sect -
1796 			ring_req->seg[i].first_sect + 1);
1797 		if (nsect <= 0)
1798 			break;
1799 
1800 		cur_size += nsect;
1801 	}
1802 
1803 	return (cur_size);
1804 }
1805 
1806 /**
1807  * Process incoming requests from the shared communication ring in response
1808  * to a signal on the ring's event channel.
1809  *
1810  * \param context  Callback argument registerd during task initialization -
1811  *                 the xbb_softc for this instance.
1812  * \param pending  The number of taskqueue_enqueue events that have
1813  *                 occurred since this handler was last run.
1814  */
1815 static void
1816 xbb_run_queue(void *context, int pending)
1817 {
1818 	struct xbb_softc       *xbb;
1819 	blkif_back_rings_t     *rings;
1820 	RING_IDX		rp;
1821 	uint64_t		cur_sector;
1822 	int			cur_operation;
1823 	struct xbb_xen_reqlist *reqlist;
1824 
1825 	xbb   = (struct xbb_softc *)context;
1826 	rings = &xbb->rings;
1827 
1828 	/*
1829 	 * Work gather and dispatch loop.  Note that we have a bias here
1830 	 * towards gathering I/O sent by blockfront.  We first gather up
1831 	 * everything in the ring, as long as we have resources.  Then we
1832 	 * dispatch one request, and then attempt to gather up any
1833 	 * additional requests that have come in while we were dispatching
1834 	 * the request.
1835 	 *
1836 	 * This allows us to get a clearer picture (via devstat) of how
1837 	 * many requests blockfront is queueing to us at any given time.
1838 	 */
1839 	for (;;) {
1840 		int retval;
1841 
1842 		/*
1843 		 * Initialize reqlist to the last element in the pending
1844 		 * queue, if there is one.  This allows us to add more
1845 		 * requests to that request list, if we have room.
1846 		 */
1847 		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1848 				      xbb_xen_reqlist, links);
1849 		if (reqlist != NULL) {
1850 			cur_sector = reqlist->next_contig_sector;
1851 			cur_operation = reqlist->operation;
1852 		} else {
1853 			cur_operation = 0;
1854 			cur_sector    = 0;
1855 		}
1856 
1857 		/*
1858 		 * Cache req_prod to avoid accessing a cache line shared
1859 		 * with the frontend.
1860 		 */
1861 		rp = rings->common.sring->req_prod;
1862 
1863 		/* Ensure we see queued requests up to 'rp'. */
1864 		rmb();
1865 
1866 		/**
1867 		 * Run so long as there is work to consume and the generation
1868 		 * of a response will not overflow the ring.
1869 		 *
1870 		 * @note There's a 1 to 1 relationship between requests and
1871 		 *       responses, so an overflow should never occur.  This
1872 		 *       test is to protect our domain from digesting bogus
1873 		 *       data.  Shouldn't we log this?
1874 		 */
1875 		while (rings->common.req_cons != rp
1876 		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1877 						  rings->common.req_cons) == 0){
1878 			blkif_request_t	        ring_req_storage;
1879 			blkif_request_t	       *ring_req;
1880 			int			cur_size;
1881 
1882 			switch (xbb->abi) {
1883 			case BLKIF_PROTOCOL_NATIVE:
1884 				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1885 				    rings->common.req_cons);
1886 				break;
1887 			case BLKIF_PROTOCOL_X86_32:
1888 			{
1889 				struct blkif_x86_32_request *ring_req32;
1890 
1891 				ring_req32 = RING_GET_REQUEST(
1892 				    &xbb->rings.x86_32, rings->common.req_cons);
1893 				blkif_get_x86_32_req(&ring_req_storage,
1894 						     ring_req32);
1895 				ring_req = &ring_req_storage;
1896 				break;
1897 			}
1898 			case BLKIF_PROTOCOL_X86_64:
1899 			{
1900 				struct blkif_x86_64_request *ring_req64;
1901 
1902 				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1903 				    rings->common.req_cons);
1904 				blkif_get_x86_64_req(&ring_req_storage,
1905 						     ring_req64);
1906 				ring_req = &ring_req_storage;
1907 				break;
1908 			}
1909 			default:
1910 				panic("Unexpected blkif protocol ABI.");
1911 				/* NOTREACHED */
1912 			}
1913 
1914 			/*
1915 			 * Check for situations that would require closing
1916 			 * off this I/O for further coalescing:
1917 			 *  - Coalescing is turned off.
1918 			 *  - Current I/O is out of sequence with the previous
1919 			 *    I/O.
1920 			 *  - Coalesced I/O would be too large.
1921 			 */
1922 			if ((reqlist != NULL)
1923 			 && ((xbb->no_coalesce_reqs != 0)
1924 			  || ((xbb->no_coalesce_reqs == 0)
1925 			   && ((ring_req->sector_number != cur_sector)
1926 			    || (ring_req->operation != cur_operation)
1927 			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1928 			         xbb->max_reqlist_segments))))) {
1929 				reqlist = NULL;
1930 			}
1931 
1932 			/*
1933 			 * Grab and check for all resources in one shot.
1934 			 * If we can't get all of the resources we need,
1935 			 * the shortage is noted and the thread will get
1936 			 * woken up when more resources are available.
1937 			 */
1938 			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1939 						   xbb->rings.common.req_cons);
1940 
1941 			if (retval != 0) {
1942 				/*
1943 				 * Resource shortage has been recorded.
1944 				 * We'll be scheduled to run once a request
1945 				 * object frees up due to a completion.
1946 				 */
1947 				break;
1948 			}
1949 
1950 			/*
1951 			 * Signify that	we can overwrite this request with
1952 			 * a response by incrementing our consumer index.
1953 			 * The response won't be generated until after
1954 			 * we've already consumed all necessary data out
1955 			 * of the version of the request in the ring buffer
1956 			 * (for native mode).  We must update the consumer
1957 			 * index  before issuing back-end I/O so there is
1958 			 * no possibility that it will complete and a
1959 			 * response be generated before we make room in
1960 			 * the queue for that response.
1961 			 */
1962 			xbb->rings.common.req_cons++;
1963 			xbb->reqs_received++;
1964 
1965 			cur_size = xbb_count_sects(ring_req);
1966 			cur_sector = ring_req->sector_number + cur_size;
1967 			reqlist->next_contig_sector = cur_sector;
1968 			cur_operation = ring_req->operation;
1969 		}
1970 
1971 		/* Check for I/O to dispatch */
1972 		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1973 		if (reqlist == NULL) {
1974 			/*
1975 			 * We're out of work to do, put the task queue to
1976 			 * sleep.
1977 			 */
1978 			break;
1979 		}
1980 
1981 		/*
1982 		 * Grab the first request off the queue and attempt
1983 		 * to dispatch it.
1984 		 */
1985 		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1986 
1987 		retval = xbb_dispatch_io(xbb, reqlist);
1988 		if (retval != 0) {
1989 			/*
1990 			 * xbb_dispatch_io() returns non-zero only when
1991 			 * there is a resource shortage.  If that's the
1992 			 * case, re-queue this request on the head of the
1993 			 * queue, and go to sleep until we have more
1994 			 * resources.
1995 			 */
1996 			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
1997 					   reqlist, links);
1998 			break;
1999 		} else {
2000 			/*
2001 			 * If we still have anything on the queue after
2002 			 * removing the head entry, that is because we
2003 			 * met one of the criteria to create a new
2004 			 * request list (outlined above), and we'll call
2005 			 * that a forced dispatch for statistical purposes.
2006 			 *
2007 			 * Otherwise, if there is only one element on the
2008 			 * queue, we coalesced everything available on
2009 			 * the ring and we'll call that a normal dispatch.
2010 			 */
2011 			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2012 
2013 			if (reqlist != NULL)
2014 				xbb->forced_dispatch++;
2015 			else
2016 				xbb->normal_dispatch++;
2017 
2018 			xbb->total_dispatch++;
2019 		}
2020 	}
2021 }
2022 
2023 /**
2024  * Interrupt handler bound to the shared ring's event channel.
2025  *
2026  * \param arg  Callback argument registerd during event channel
2027  *             binding - the xbb_softc for this instance.
2028  */
2029 static int
2030 xbb_filter(void *arg)
2031 {
2032 	struct xbb_softc *xbb;
2033 
2034 	/* Defer to taskqueue thread. */
2035 	xbb = (struct xbb_softc *)arg;
2036 	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2037 
2038 	return (FILTER_HANDLED);
2039 }
2040 
2041 SDT_PROVIDER_DEFINE(xbb);
2042 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
2043 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
2044 		  "uint64_t");
2045 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
2046 		  "uint64_t", "uint64_t");
2047 
2048 /*----------------------------- Backend Handlers -----------------------------*/
2049 /**
2050  * Backend handler for character device access.
2051  *
2052  * \param xbb        Per-instance xbb configuration structure.
2053  * \param reqlist    Allocated internal request list structure.
2054  * \param operation  BIO_* I/O operation code.
2055  * \param bio_flags  Additional bio_flag data to pass to any generated
2056  *                   bios (e.g. BIO_ORDERED)..
2057  *
2058  * \return  0 for success, errno codes for failure.
2059  */
2060 static int
2061 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2062 		 int operation, int bio_flags)
2063 {
2064 	struct xbb_dev_data *dev_data;
2065 	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2066 	off_t                bio_offset;
2067 	struct bio          *bio;
2068 	struct xbb_sg       *xbb_sg;
2069 	u_int	             nbio;
2070 	u_int                bio_idx;
2071 	u_int		     nseg;
2072 	u_int                seg_idx;
2073 	int                  error;
2074 
2075 	dev_data   = &xbb->backend.dev;
2076 	bio_offset = (off_t)reqlist->starting_sector_number
2077 		   << xbb->sector_size_shift;
2078 	error      = 0;
2079 	nbio       = 0;
2080 	bio_idx    = 0;
2081 
2082 	if (operation == BIO_FLUSH) {
2083 		bio = g_new_bio();
2084 		if (__predict_false(bio == NULL)) {
2085 			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2086 			error = ENOMEM;
2087 			return (error);
2088 		}
2089 
2090 		bio->bio_cmd	 = BIO_FLUSH;
2091 		bio->bio_flags	|= BIO_ORDERED;
2092 		bio->bio_dev	 = dev_data->cdev;
2093 		bio->bio_offset	 = 0;
2094 		bio->bio_data	 = 0;
2095 		bio->bio_done	 = xbb_bio_done;
2096 		bio->bio_caller1 = reqlist;
2097 		bio->bio_pblkno	 = 0;
2098 
2099 		reqlist->pendcnt = 1;
2100 
2101 		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2102 			   device_get_unit(xbb->dev));
2103 
2104 		(*dev_data->csw->d_strategy)(bio);
2105 
2106 		return (0);
2107 	}
2108 
2109 	xbb_sg = xbb->xbb_sgs;
2110 	bio    = NULL;
2111 	nseg = reqlist->nr_segments;
2112 
2113 	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2114 		/*
2115 		 * KVA will not be contiguous, so any additional
2116 		 * I/O will need to be represented in a new bio.
2117 		 */
2118 		if ((bio != NULL)
2119 		 && (xbb_sg->first_sect != 0)) {
2120 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2121 				printf("%s: Discontiguous I/O request "
2122 				       "from domain %d ends on "
2123 				       "non-sector boundary\n",
2124 				       __func__, xbb->otherend_id);
2125 				error = EINVAL;
2126 				goto fail_free_bios;
2127 			}
2128 			bio = NULL;
2129 		}
2130 
2131 		if (bio == NULL) {
2132 			/*
2133 			 * Make sure that the start of this bio is
2134 			 * aligned to a device sector.
2135 			 */
2136 			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2137 				printf("%s: Misaligned I/O request "
2138 				       "from domain %d\n", __func__,
2139 				       xbb->otherend_id);
2140 				error = EINVAL;
2141 				goto fail_free_bios;
2142 			}
2143 
2144 			bio = bios[nbio++] = g_new_bio();
2145 			if (__predict_false(bio == NULL)) {
2146 				error = ENOMEM;
2147 				goto fail_free_bios;
2148 			}
2149 			bio->bio_cmd     = operation;
2150 			bio->bio_flags  |= bio_flags;
2151 			bio->bio_dev     = dev_data->cdev;
2152 			bio->bio_offset  = bio_offset;
2153 			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2154 						xbb_sg->first_sect);
2155 			bio->bio_done    = xbb_bio_done;
2156 			bio->bio_caller1 = reqlist;
2157 			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2158 		}
2159 
2160 		bio->bio_length += xbb_sg->nsect << 9;
2161 		bio->bio_bcount  = bio->bio_length;
2162 		bio_offset      += xbb_sg->nsect << 9;
2163 
2164 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2165 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2166 				printf("%s: Discontiguous I/O request "
2167 				       "from domain %d ends on "
2168 				       "non-sector boundary\n",
2169 				       __func__, xbb->otherend_id);
2170 				error = EINVAL;
2171 				goto fail_free_bios;
2172 			}
2173 			/*
2174 			 * KVA will not be contiguous, so any additional
2175 			 * I/O will need to be represented in a new bio.
2176 			 */
2177 			bio = NULL;
2178 		}
2179 	}
2180 
2181 	reqlist->pendcnt = nbio;
2182 
2183 	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2184 	{
2185 #ifdef XBB_USE_BOUNCE_BUFFERS
2186 		vm_offset_t kva_offset;
2187 
2188 		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2189 			   - (vm_offset_t)reqlist->bounce;
2190 		if (operation == BIO_WRITE) {
2191 			memcpy(bios[bio_idx]->bio_data,
2192 			       (uint8_t *)reqlist->kva + kva_offset,
2193 			       bios[bio_idx]->bio_bcount);
2194 		}
2195 #endif
2196 		if (operation == BIO_READ) {
2197 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2198 				   device_get_unit(xbb->dev),
2199 				   bios[bio_idx]->bio_offset,
2200 				   bios[bio_idx]->bio_length);
2201 		} else if (operation == BIO_WRITE) {
2202 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2203 				   device_get_unit(xbb->dev),
2204 				   bios[bio_idx]->bio_offset,
2205 				   bios[bio_idx]->bio_length);
2206 		}
2207 		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2208 	}
2209 
2210 	return (error);
2211 
2212 fail_free_bios:
2213 	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2214 		g_destroy_bio(bios[bio_idx]);
2215 
2216 	return (error);
2217 }
2218 
2219 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2220 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2221 		  "uint64_t");
2222 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2223 		  "uint64_t", "uint64_t");
2224 
2225 /**
2226  * Backend handler for file access.
2227  *
2228  * \param xbb        Per-instance xbb configuration structure.
2229  * \param reqlist    Allocated internal request list.
2230  * \param operation  BIO_* I/O operation code.
2231  * \param flags      Additional bio_flag data to pass to any generated bios
2232  *                   (e.g. BIO_ORDERED)..
2233  *
2234  * \return  0 for success, errno codes for failure.
2235  */
2236 static int
2237 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2238 		  int operation, int flags)
2239 {
2240 	struct xbb_file_data *file_data;
2241 	u_int                 seg_idx;
2242 	u_int		      nseg;
2243 	struct uio            xuio;
2244 	struct xbb_sg        *xbb_sg;
2245 	struct iovec         *xiovec;
2246 #ifdef XBB_USE_BOUNCE_BUFFERS
2247 	void                **p_vaddr;
2248 	int                   saved_uio_iovcnt;
2249 #endif /* XBB_USE_BOUNCE_BUFFERS */
2250 	int                   error;
2251 
2252 	file_data = &xbb->backend.file;
2253 	error = 0;
2254 	bzero(&xuio, sizeof(xuio));
2255 
2256 	switch (operation) {
2257 	case BIO_READ:
2258 		xuio.uio_rw = UIO_READ;
2259 		break;
2260 	case BIO_WRITE:
2261 		xuio.uio_rw = UIO_WRITE;
2262 		break;
2263 	case BIO_FLUSH: {
2264 		struct mount *mountpoint;
2265 
2266 		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2267 			   device_get_unit(xbb->dev));
2268 
2269 		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2270 
2271 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2272 		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2273 		VOP_UNLOCK(xbb->vn);
2274 
2275 		vn_finished_write(mountpoint);
2276 
2277 		goto bailout_send_response;
2278 		/* NOTREACHED */
2279 	}
2280 	default:
2281 		panic("invalid operation %d", operation);
2282 		/* NOTREACHED */
2283 	}
2284 	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2285 			<< xbb->sector_size_shift;
2286 	xuio.uio_segflg = UIO_SYSSPACE;
2287 	xuio.uio_iov = file_data->xiovecs;
2288 	xuio.uio_iovcnt = 0;
2289 	xbb_sg = xbb->xbb_sgs;
2290 	nseg = reqlist->nr_segments;
2291 
2292 	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2293 		/*
2294 		 * If the first sector is not 0, the KVA will
2295 		 * not be contiguous and we'll need to go on
2296 		 * to another segment.
2297 		 */
2298 		if (xbb_sg->first_sect != 0)
2299 			xiovec = NULL;
2300 
2301 		if (xiovec == NULL) {
2302 			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2303 			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2304 			    seg_idx, xbb_sg->first_sect);
2305 #ifdef XBB_USE_BOUNCE_BUFFERS
2306 			/*
2307 			 * Store the address of the incoming
2308 			 * buffer at this particular offset
2309 			 * as well, so we can do the copy
2310 			 * later without having to do more
2311 			 * work to recalculate this address.
2312 		 	 */
2313 			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2314 			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2315 			    xbb_sg->first_sect);
2316 #endif /* XBB_USE_BOUNCE_BUFFERS */
2317 			xiovec->iov_len = 0;
2318 			xuio.uio_iovcnt++;
2319 		}
2320 
2321 		xiovec->iov_len += xbb_sg->nsect << 9;
2322 
2323 		xuio.uio_resid += xbb_sg->nsect << 9;
2324 
2325 		/*
2326 		 * If the last sector is not the full page
2327 		 * size count, the next segment will not be
2328 		 * contiguous in KVA and we need a new iovec.
2329 		 */
2330 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2331 			xiovec = NULL;
2332 	}
2333 
2334 	xuio.uio_td = curthread;
2335 
2336 #ifdef XBB_USE_BOUNCE_BUFFERS
2337 	saved_uio_iovcnt = xuio.uio_iovcnt;
2338 
2339 	if (operation == BIO_WRITE) {
2340 		/* Copy the write data to the local buffer. */
2341 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2342 		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2343 		     seg_idx++, xiovec++, p_vaddr++) {
2344 			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2345 		}
2346 	} else {
2347 		/*
2348 		 * We only need to save off the iovecs in the case of a
2349 		 * read, because the copy for the read happens after the
2350 		 * VOP_READ().  (The uio will get modified in that call
2351 		 * sequence.)
2352 		 */
2353 		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2354 		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2355 	}
2356 #endif /* XBB_USE_BOUNCE_BUFFERS */
2357 
2358 	switch (operation) {
2359 	case BIO_READ:
2360 
2361 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2362 			   device_get_unit(xbb->dev), xuio.uio_offset,
2363 			   xuio.uio_resid);
2364 
2365 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2366 
2367 		/*
2368 		 * UFS pays attention to IO_DIRECT for reads.  If the
2369 		 * DIRECTIO option is configured into the kernel, it calls
2370 		 * ffs_rawread().  But that only works for single-segment
2371 		 * uios with user space addresses.  In our case, with a
2372 		 * kernel uio, it still reads into the buffer cache, but it
2373 		 * will just try to release the buffer from the cache later
2374 		 * on in ffs_read().
2375 		 *
2376 		 * ZFS does not pay attention to IO_DIRECT for reads.
2377 		 *
2378 		 * UFS does not pay attention to IO_SYNC for reads.
2379 		 *
2380 		 * ZFS pays attention to IO_SYNC (which translates into the
2381 		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2382 		 * attempts to sync the file before reading.
2383 		 *
2384 		 * So, to attempt to provide some barrier semantics in the
2385 		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2386 		 */
2387 		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2388 				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2389 
2390 		VOP_UNLOCK(xbb->vn);
2391 		break;
2392 	case BIO_WRITE: {
2393 		struct mount *mountpoint;
2394 
2395 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2396 			   device_get_unit(xbb->dev), xuio.uio_offset,
2397 			   xuio.uio_resid);
2398 
2399 		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2400 
2401 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2402 
2403 		/*
2404 		 * UFS pays attention to IO_DIRECT for writes.  The write
2405 		 * is done asynchronously.  (Normally the write would just
2406 		 * get put into cache.
2407 		 *
2408 		 * UFS pays attention to IO_SYNC for writes.  It will
2409 		 * attempt to write the buffer out synchronously if that
2410 		 * flag is set.
2411 		 *
2412 		 * ZFS does not pay attention to IO_DIRECT for writes.
2413 		 *
2414 		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2415 		 * for writes.  It will flush the transaction from the
2416 		 * cache before returning.
2417 		 *
2418 		 * So if we've got the BIO_ORDERED flag set, we want
2419 		 * IO_SYNC in either the UFS or ZFS case.
2420 		 */
2421 		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2422 				  IO_SYNC : 0, file_data->cred);
2423 		VOP_UNLOCK(xbb->vn);
2424 
2425 		vn_finished_write(mountpoint);
2426 
2427 		break;
2428 	}
2429 	default:
2430 		panic("invalid operation %d", operation);
2431 		/* NOTREACHED */
2432 	}
2433 
2434 #ifdef XBB_USE_BOUNCE_BUFFERS
2435 	/* We only need to copy here for read operations */
2436 	if (operation == BIO_READ) {
2437 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2438 		     xiovec = file_data->saved_xiovecs;
2439 		     seg_idx < saved_uio_iovcnt; seg_idx++,
2440 		     xiovec++, p_vaddr++) {
2441 			/*
2442 			 * Note that we have to use the copy of the
2443 			 * io vector we made above.  uiomove() modifies
2444 			 * the uio and its referenced vector as uiomove
2445 			 * performs the copy, so we can't rely on any
2446 			 * state from the original uio.
2447 			 */
2448 			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2449 		}
2450 	}
2451 #endif /* XBB_USE_BOUNCE_BUFFERS */
2452 
2453 bailout_send_response:
2454 
2455 	if (error != 0)
2456 		reqlist->status = BLKIF_RSP_ERROR;
2457 
2458 	xbb_complete_reqlist(xbb, reqlist);
2459 
2460 	return (0);
2461 }
2462 
2463 /*--------------------------- Backend Configuration --------------------------*/
2464 /**
2465  * Close and cleanup any backend device/file specific state for this
2466  * block back instance.
2467  *
2468  * \param xbb  Per-instance xbb configuration structure.
2469  */
2470 static void
2471 xbb_close_backend(struct xbb_softc *xbb)
2472 {
2473 	DROP_GIANT();
2474 	DPRINTF("closing dev=%s\n", xbb->dev_name);
2475 	if (xbb->vn) {
2476 		int flags = FREAD;
2477 
2478 		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2479 			flags |= FWRITE;
2480 
2481 		switch (xbb->device_type) {
2482 		case XBB_TYPE_DISK:
2483 			if (xbb->backend.dev.csw) {
2484 				dev_relthread(xbb->backend.dev.cdev,
2485 					      xbb->backend.dev.dev_ref);
2486 				xbb->backend.dev.csw  = NULL;
2487 				xbb->backend.dev.cdev = NULL;
2488 			}
2489 			break;
2490 		case XBB_TYPE_FILE:
2491 			break;
2492 		case XBB_TYPE_NONE:
2493 		default:
2494 			panic("Unexpected backend type.");
2495 			break;
2496 		}
2497 
2498 		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2499 		xbb->vn = NULL;
2500 
2501 		switch (xbb->device_type) {
2502 		case XBB_TYPE_DISK:
2503 			break;
2504 		case XBB_TYPE_FILE:
2505 			if (xbb->backend.file.cred != NULL) {
2506 				crfree(xbb->backend.file.cred);
2507 				xbb->backend.file.cred = NULL;
2508 			}
2509 			break;
2510 		case XBB_TYPE_NONE:
2511 		default:
2512 			panic("Unexpected backend type.");
2513 			break;
2514 		}
2515 	}
2516 	PICKUP_GIANT();
2517 }
2518 
2519 /**
2520  * Open a character device to be used for backend I/O.
2521  *
2522  * \param xbb  Per-instance xbb configuration structure.
2523  *
2524  * \return  0 for success, errno codes for failure.
2525  */
2526 static int
2527 xbb_open_dev(struct xbb_softc *xbb)
2528 {
2529 	struct vattr   vattr;
2530 	struct cdev   *dev;
2531 	struct cdevsw *devsw;
2532 	int	       error;
2533 
2534 	xbb->device_type = XBB_TYPE_DISK;
2535 	xbb->dispatch_io = xbb_dispatch_dev;
2536 	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2537 	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2538 					     &xbb->backend.dev.dev_ref);
2539 	if (xbb->backend.dev.csw == NULL)
2540 		panic("Unable to retrieve device switch");
2541 
2542 	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2543 	if (error) {
2544 		xenbus_dev_fatal(xbb->dev, error, "error getting "
2545 				 "vnode attributes for device %s",
2546 				 xbb->dev_name);
2547 		return (error);
2548 	}
2549 
2550 	dev = xbb->vn->v_rdev;
2551 	devsw = dev->si_devsw;
2552 	if (!devsw->d_ioctl) {
2553 		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2554 				 "device %s!", xbb->dev_name);
2555 		return (ENODEV);
2556 	}
2557 
2558 	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2559 			       (caddr_t)&xbb->sector_size, FREAD,
2560 			       curthread);
2561 	if (error) {
2562 		xenbus_dev_fatal(xbb->dev, error,
2563 				 "error calling ioctl DIOCGSECTORSIZE "
2564 				 "for device %s", xbb->dev_name);
2565 		return (error);
2566 	}
2567 
2568 	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2569 			       (caddr_t)&xbb->media_size, FREAD,
2570 			       curthread);
2571 	if (error) {
2572 		xenbus_dev_fatal(xbb->dev, error,
2573 				 "error calling ioctl DIOCGMEDIASIZE "
2574 				 "for device %s", xbb->dev_name);
2575 		return (error);
2576 	}
2577 
2578 	return (0);
2579 }
2580 
2581 /**
2582  * Open a file to be used for backend I/O.
2583  *
2584  * \param xbb  Per-instance xbb configuration structure.
2585  *
2586  * \return  0 for success, errno codes for failure.
2587  */
2588 static int
2589 xbb_open_file(struct xbb_softc *xbb)
2590 {
2591 	struct xbb_file_data *file_data;
2592 	struct vattr          vattr;
2593 	int                   error;
2594 
2595 	file_data = &xbb->backend.file;
2596 	xbb->device_type = XBB_TYPE_FILE;
2597 	xbb->dispatch_io = xbb_dispatch_file;
2598 	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2599 	if (error != 0) {
2600 		xenbus_dev_fatal(xbb->dev, error,
2601 				 "error calling VOP_GETATTR()"
2602 				 "for file %s", xbb->dev_name);
2603 		return (error);
2604 	}
2605 
2606 	/*
2607 	 * Verify that we have the ability to upgrade to exclusive
2608 	 * access on this file so we can trap errors at open instead
2609 	 * of reporting them during first access.
2610 	 */
2611 	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2612 		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2613 		if (VN_IS_DOOMED(xbb->vn)) {
2614 			error = EBADF;
2615 			xenbus_dev_fatal(xbb->dev, error,
2616 					 "error locking file %s",
2617 					 xbb->dev_name);
2618 
2619 			return (error);
2620 		}
2621 	}
2622 
2623 	file_data->cred = crhold(curthread->td_ucred);
2624 	xbb->media_size = vattr.va_size;
2625 
2626 	/*
2627 	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2628 	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2629 	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2630 	 * may not work with other OSes as well.  So just export a sector
2631 	 * size of 512 bytes, which should work with any OS or
2632 	 * application.  Since our backing is a file, any block size will
2633 	 * work fine for the backing store.
2634 	 */
2635 #if 0
2636 	xbb->sector_size = vattr.va_blocksize;
2637 #endif
2638 	xbb->sector_size = 512;
2639 
2640 	/*
2641 	 * Sanity check.  The media size has to be at least one
2642 	 * sector long.
2643 	 */
2644 	if (xbb->media_size < xbb->sector_size) {
2645 		error = EINVAL;
2646 		xenbus_dev_fatal(xbb->dev, error,
2647 				 "file %s size %ju < block size %u",
2648 				 xbb->dev_name,
2649 				 (uintmax_t)xbb->media_size,
2650 				 xbb->sector_size);
2651 	}
2652 	return (error);
2653 }
2654 
2655 /**
2656  * Open the backend provider for this connection.
2657  *
2658  * \param xbb  Per-instance xbb configuration structure.
2659  *
2660  * \return  0 for success, errno codes for failure.
2661  */
2662 static int
2663 xbb_open_backend(struct xbb_softc *xbb)
2664 {
2665 	struct nameidata nd;
2666 	int		 flags;
2667 	int		 error;
2668 
2669 	flags = FREAD;
2670 	error = 0;
2671 
2672 	DPRINTF("opening dev=%s\n", xbb->dev_name);
2673 
2674 	if (rootvnode == NULL) {
2675 		xenbus_dev_fatal(xbb->dev, ENOENT,
2676 				 "Root file system not mounted");
2677 		return (ENOENT);
2678 	}
2679 
2680 	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2681 		flags |= FWRITE;
2682 
2683 	pwd_ensure_dirs();
2684 
2685  again:
2686 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2687 	error = vn_open(&nd, &flags, 0, NULL);
2688 	if (error) {
2689 		/*
2690 		 * This is the only reasonable guess we can make as far as
2691 		 * path if the user doesn't give us a fully qualified path.
2692 		 * If they want to specify a file, they need to specify the
2693 		 * full path.
2694 		 */
2695 		if (xbb->dev_name[0] != '/') {
2696 			char *dev_path = "/dev/";
2697 			char *dev_name;
2698 
2699 			/* Try adding device path at beginning of name */
2700 			dev_name = malloc(strlen(xbb->dev_name)
2701 					+ strlen(dev_path) + 1,
2702 					  M_XENBLOCKBACK, M_NOWAIT);
2703 			if (dev_name) {
2704 				sprintf(dev_name, "%s%s", dev_path,
2705 					xbb->dev_name);
2706 				free(xbb->dev_name, M_XENBLOCKBACK);
2707 				xbb->dev_name = dev_name;
2708 				goto again;
2709 			}
2710 		}
2711 		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2712 				 xbb->dev_name);
2713 		return (error);
2714 	}
2715 
2716 	NDFREE(&nd, NDF_ONLY_PNBUF);
2717 
2718 	xbb->vn = nd.ni_vp;
2719 
2720 	/* We only support disks and files. */
2721 	if (vn_isdisk_error(xbb->vn, &error)) {
2722 		error = xbb_open_dev(xbb);
2723 	} else if (xbb->vn->v_type == VREG) {
2724 		error = xbb_open_file(xbb);
2725 	} else {
2726 		error = EINVAL;
2727 		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2728 				 "or file", xbb->dev_name);
2729 	}
2730 	VOP_UNLOCK(xbb->vn);
2731 
2732 	if (error != 0) {
2733 		xbb_close_backend(xbb);
2734 		return (error);
2735 	}
2736 
2737 	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2738 	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2739 
2740 	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2741 		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2742 		xbb->dev_name, xbb->sector_size, xbb->media_size);
2743 
2744 	return (0);
2745 }
2746 
2747 /*------------------------ Inter-Domain Communication ------------------------*/
2748 /**
2749  * Free dynamically allocated KVA or pseudo-physical address allocations.
2750  *
2751  * \param xbb  Per-instance xbb configuration structure.
2752  */
2753 static void
2754 xbb_free_communication_mem(struct xbb_softc *xbb)
2755 {
2756 	if (xbb->kva != 0) {
2757 		if (xbb->pseudo_phys_res != NULL) {
2758 			xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2759 			    xbb->pseudo_phys_res);
2760 			xbb->pseudo_phys_res = NULL;
2761 		}
2762 	}
2763 	xbb->kva = 0;
2764 	xbb->gnt_base_addr = 0;
2765 	if (xbb->kva_free != NULL) {
2766 		free(xbb->kva_free, M_XENBLOCKBACK);
2767 		xbb->kva_free = NULL;
2768 	}
2769 }
2770 
2771 /**
2772  * Cleanup all inter-domain communication mechanisms.
2773  *
2774  * \param xbb  Per-instance xbb configuration structure.
2775  */
2776 static int
2777 xbb_disconnect(struct xbb_softc *xbb)
2778 {
2779 	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2780 	struct gnttab_unmap_grant_ref *op;
2781 	u_int			       ring_idx;
2782 	int			       error;
2783 
2784 	DPRINTF("\n");
2785 
2786 	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2787 		return (0);
2788 
2789 	mtx_unlock(&xbb->lock);
2790 	xen_intr_unbind(&xbb->xen_intr_handle);
2791 	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2792 	mtx_lock(&xbb->lock);
2793 
2794 	/*
2795 	 * No new interrupts can generate work, but we must wait
2796 	 * for all currently active requests to drain.
2797 	 */
2798 	if (xbb->active_request_count != 0)
2799 		return (EAGAIN);
2800 
2801 	for (ring_idx = 0, op = ops;
2802 	     ring_idx < xbb->ring_config.ring_pages;
2803 	     ring_idx++, op++) {
2804 		op->host_addr    = xbb->ring_config.gnt_addr
2805 			         + (ring_idx * PAGE_SIZE);
2806 		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2807 		op->handle	 = xbb->ring_config.handle[ring_idx];
2808 	}
2809 
2810 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2811 					  xbb->ring_config.ring_pages);
2812 	if (error != 0)
2813 		panic("Grant table op failed (%d)", error);
2814 
2815 	xbb_free_communication_mem(xbb);
2816 
2817 	if (xbb->requests != NULL) {
2818 		free(xbb->requests, M_XENBLOCKBACK);
2819 		xbb->requests = NULL;
2820 	}
2821 
2822 	if (xbb->request_lists != NULL) {
2823 		struct xbb_xen_reqlist *reqlist;
2824 		int i;
2825 
2826 		/* There is one request list for ever allocated request. */
2827 		for (i = 0, reqlist = xbb->request_lists;
2828 		     i < xbb->max_requests; i++, reqlist++){
2829 #ifdef XBB_USE_BOUNCE_BUFFERS
2830 			if (reqlist->bounce != NULL) {
2831 				free(reqlist->bounce, M_XENBLOCKBACK);
2832 				reqlist->bounce = NULL;
2833 			}
2834 #endif
2835 			if (reqlist->gnt_handles != NULL) {
2836 				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2837 				reqlist->gnt_handles = NULL;
2838 			}
2839 		}
2840 		free(xbb->request_lists, M_XENBLOCKBACK);
2841 		xbb->request_lists = NULL;
2842 	}
2843 
2844 	xbb->flags &= ~XBBF_RING_CONNECTED;
2845 	return (0);
2846 }
2847 
2848 /**
2849  * Map shared memory ring into domain local address space, initialize
2850  * ring control structures, and bind an interrupt to the event channel
2851  * used to notify us of ring changes.
2852  *
2853  * \param xbb  Per-instance xbb configuration structure.
2854  */
2855 static int
2856 xbb_connect_ring(struct xbb_softc *xbb)
2857 {
2858 	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2859 	struct gnttab_map_grant_ref *gnt;
2860 	u_int			     ring_idx;
2861 	int			     error;
2862 
2863 	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2864 		return (0);
2865 
2866 	/*
2867 	 * Kva for our ring is at the tail of the region of kva allocated
2868 	 * by xbb_alloc_communication_mem().
2869 	 */
2870 	xbb->ring_config.va = xbb->kva
2871 			    + (xbb->kva_size
2872 			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2873 	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2874 				  + (xbb->kva_size
2875 				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2876 
2877 	for (ring_idx = 0, gnt = gnts;
2878 	     ring_idx < xbb->ring_config.ring_pages;
2879 	     ring_idx++, gnt++) {
2880 		gnt->host_addr = xbb->ring_config.gnt_addr
2881 			       + (ring_idx * PAGE_SIZE);
2882 		gnt->flags     = GNTMAP_host_map;
2883 		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2884 		gnt->dom       = xbb->otherend_id;
2885 	}
2886 
2887 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2888 					  xbb->ring_config.ring_pages);
2889 	if (error)
2890 		panic("blkback: Ring page grant table op failed (%d)", error);
2891 
2892 	for (ring_idx = 0, gnt = gnts;
2893 	     ring_idx < xbb->ring_config.ring_pages;
2894 	     ring_idx++, gnt++) {
2895 		if (gnt->status != 0) {
2896 			xbb->ring_config.va = 0;
2897 			xenbus_dev_fatal(xbb->dev, EACCES,
2898 					 "Ring shared page mapping failed. "
2899 					 "Status %d.", gnt->status);
2900 			return (EACCES);
2901 		}
2902 		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2903 		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2904 	}
2905 
2906 	/* Initialize the ring based on ABI. */
2907 	switch (xbb->abi) {
2908 	case BLKIF_PROTOCOL_NATIVE:
2909 	{
2910 		blkif_sring_t *sring;
2911 		sring = (blkif_sring_t *)xbb->ring_config.va;
2912 		BACK_RING_INIT(&xbb->rings.native, sring,
2913 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2914 		break;
2915 	}
2916 	case BLKIF_PROTOCOL_X86_32:
2917 	{
2918 		blkif_x86_32_sring_t *sring_x86_32;
2919 		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2920 		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2921 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2922 		break;
2923 	}
2924 	case BLKIF_PROTOCOL_X86_64:
2925 	{
2926 		blkif_x86_64_sring_t *sring_x86_64;
2927 		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2928 		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2929 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2930 		break;
2931 	}
2932 	default:
2933 		panic("Unexpected blkif protocol ABI.");
2934 	}
2935 
2936 	xbb->flags |= XBBF_RING_CONNECTED;
2937 
2938 	error = xen_intr_bind_remote_port(xbb->dev,
2939 					  xbb->otherend_id,
2940 					  xbb->ring_config.evtchn,
2941 					  xbb_filter,
2942 					  /*ithread_handler*/NULL,
2943 					  /*arg*/xbb,
2944 					  INTR_TYPE_BIO | INTR_MPSAFE,
2945 					  &xbb->xen_intr_handle);
2946 	if (error) {
2947 		(void)xbb_disconnect(xbb);
2948 		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2949 		return (error);
2950 	}
2951 
2952 	DPRINTF("rings connected!\n");
2953 
2954 	return 0;
2955 }
2956 
2957 /**
2958  * Size KVA and pseudo-physical address allocations based on negotiated
2959  * values for the size and number of I/O requests, and the size of our
2960  * communication ring.
2961  *
2962  * \param xbb  Per-instance xbb configuration structure.
2963  *
2964  * These address spaces are used to dynamically map pages in the
2965  * front-end's domain into our own.
2966  */
2967 static int
2968 xbb_alloc_communication_mem(struct xbb_softc *xbb)
2969 {
2970 	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2971 	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2972 	xbb->kva_size = xbb->reqlist_kva_size +
2973 			(xbb->ring_config.ring_pages * PAGE_SIZE);
2974 
2975 	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages, M_XENBLOCKBACK, M_NOWAIT);
2976 	if (xbb->kva_free == NULL)
2977 		return (ENOMEM);
2978 
2979 	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2980 		device_get_nameunit(xbb->dev), xbb->kva_size,
2981 		xbb->reqlist_kva_size);
2982 	/*
2983 	 * Reserve a range of pseudo physical memory that we can map
2984 	 * into kva.  These pages will only be backed by machine
2985 	 * pages ("real memory") during the lifetime of front-end requests
2986 	 * via grant table operations.
2987 	 */
2988 	xbb->pseudo_phys_res_id = 0;
2989 	xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
2990 	    xbb->kva_size);
2991 	if (xbb->pseudo_phys_res == NULL) {
2992 		xbb->kva = 0;
2993 		return (ENOMEM);
2994 	}
2995 	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
2996 	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
2997 
2998 	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
2999 		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3000 		(uintmax_t)xbb->gnt_base_addr);
3001 	return (0);
3002 }
3003 
3004 /**
3005  * Collect front-end information from the XenStore.
3006  *
3007  * \param xbb  Per-instance xbb configuration structure.
3008  */
3009 static int
3010 xbb_collect_frontend_info(struct xbb_softc *xbb)
3011 {
3012 	char	    protocol_abi[64];
3013 	const char *otherend_path;
3014 	int	    error;
3015 	u_int	    ring_idx;
3016 	u_int	    ring_page_order;
3017 	size_t	    ring_size;
3018 
3019 	otherend_path = xenbus_get_otherend_path(xbb->dev);
3020 
3021 	/*
3022 	 * Protocol defaults valid even if all negotiation fails.
3023 	 */
3024 	xbb->ring_config.ring_pages = 1;
3025 	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_REQUEST;
3026 	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3027 
3028 	/*
3029 	 * Mandatory data (used in all versions of the protocol) first.
3030 	 */
3031 	error = xs_scanf(XST_NIL, otherend_path,
3032 			 "event-channel", NULL, "%" PRIu32,
3033 			 &xbb->ring_config.evtchn);
3034 	if (error != 0) {
3035 		xenbus_dev_fatal(xbb->dev, error,
3036 				 "Unable to retrieve event-channel information "
3037 				 "from frontend %s.  Unable to connect.",
3038 				 xenbus_get_otherend_path(xbb->dev));
3039 		return (error);
3040 	}
3041 
3042 	/*
3043 	 * These fields are initialized to legacy protocol defaults
3044 	 * so we only need to fail if reading the updated value succeeds
3045 	 * and the new value is outside of its allowed range.
3046 	 *
3047 	 * \note xs_gather() returns on the first encountered error, so
3048 	 *       we must use independent calls in order to guarantee
3049 	 *       we don't miss information in a sparsly populated front-end
3050 	 *       tree.
3051 	 *
3052 	 * \note xs_scanf() does not update variables for unmatched
3053 	 *       fields.
3054 	 */
3055 	ring_page_order = 0;
3056 	xbb->max_requests = 32;
3057 
3058 	(void)xs_scanf(XST_NIL, otherend_path,
3059 		       "ring-page-order", NULL, "%u",
3060 		       &ring_page_order);
3061 	xbb->ring_config.ring_pages = 1 << ring_page_order;
3062 	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3063 	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3064 
3065 	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3066 		xenbus_dev_fatal(xbb->dev, EINVAL,
3067 				 "Front-end specified ring-pages of %u "
3068 				 "exceeds backend limit of %u.  "
3069 				 "Unable to connect.",
3070 				 xbb->ring_config.ring_pages,
3071 				 XBB_MAX_RING_PAGES);
3072 		return (EINVAL);
3073 	}
3074 
3075 	if (xbb->ring_config.ring_pages	== 1) {
3076 		error = xs_gather(XST_NIL, otherend_path,
3077 				  "ring-ref", "%" PRIu32,
3078 				  &xbb->ring_config.ring_ref[0],
3079 				  NULL);
3080 		if (error != 0) {
3081 			xenbus_dev_fatal(xbb->dev, error,
3082 					 "Unable to retrieve ring information "
3083 					 "from frontend %s.  Unable to "
3084 					 "connect.",
3085 					 xenbus_get_otherend_path(xbb->dev));
3086 			return (error);
3087 		}
3088 	} else {
3089 		/* Multi-page ring format. */
3090 		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3091 		     ring_idx++) {
3092 			char ring_ref_name[]= "ring_refXX";
3093 
3094 			snprintf(ring_ref_name, sizeof(ring_ref_name),
3095 				 "ring-ref%u", ring_idx);
3096 			error = xs_scanf(XST_NIL, otherend_path,
3097 					 ring_ref_name, NULL, "%" PRIu32,
3098 					 &xbb->ring_config.ring_ref[ring_idx]);
3099 			if (error != 0) {
3100 				xenbus_dev_fatal(xbb->dev, error,
3101 						 "Failed to retriev grant "
3102 						 "reference for page %u of "
3103 						 "shared ring.  Unable "
3104 						 "to connect.", ring_idx);
3105 				return (error);
3106 			}
3107 		}
3108 	}
3109 
3110 	error = xs_gather(XST_NIL, otherend_path,
3111 			  "protocol", "%63s", protocol_abi,
3112 			  NULL);
3113 	if (error != 0
3114 	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3115 		/*
3116 		 * Assume native if the frontend has not
3117 		 * published ABI data or it has published and
3118 		 * matches our own ABI.
3119 		 */
3120 		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3121 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3122 		xbb->abi = BLKIF_PROTOCOL_X86_32;
3123 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3124 		xbb->abi = BLKIF_PROTOCOL_X86_64;
3125 	} else {
3126 		xenbus_dev_fatal(xbb->dev, EINVAL,
3127 				 "Unknown protocol ABI (%s) published by "
3128 				 "frontend.  Unable to connect.", protocol_abi);
3129 		return (EINVAL);
3130 	}
3131 	return (0);
3132 }
3133 
3134 /**
3135  * Allocate per-request data structures given request size and number
3136  * information negotiated with the front-end.
3137  *
3138  * \param xbb  Per-instance xbb configuration structure.
3139  */
3140 static int
3141 xbb_alloc_requests(struct xbb_softc *xbb)
3142 {
3143 	struct xbb_xen_req *req;
3144 	struct xbb_xen_req *last_req;
3145 
3146 	/*
3147 	 * Allocate request book keeping datastructures.
3148 	 */
3149 	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3150 			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3151 	if (xbb->requests == NULL) {
3152 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3153 				  "Unable to allocate request structures");
3154 		return (ENOMEM);
3155 	}
3156 
3157 	req      = xbb->requests;
3158 	last_req = &xbb->requests[xbb->max_requests - 1];
3159 	STAILQ_INIT(&xbb->request_free_stailq);
3160 	while (req <= last_req) {
3161 		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3162 		req++;
3163 	}
3164 	return (0);
3165 }
3166 
3167 static int
3168 xbb_alloc_request_lists(struct xbb_softc *xbb)
3169 {
3170 	struct xbb_xen_reqlist *reqlist;
3171 	int			i;
3172 
3173 	/*
3174 	 * If no requests can be merged, we need 1 request list per
3175 	 * in flight request.
3176 	 */
3177 	xbb->request_lists = malloc(xbb->max_requests *
3178 		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3179 	if (xbb->request_lists == NULL) {
3180 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3181 				  "Unable to allocate request list structures");
3182 		return (ENOMEM);
3183 	}
3184 
3185 	STAILQ_INIT(&xbb->reqlist_free_stailq);
3186 	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3187 	for (i = 0; i < xbb->max_requests; i++) {
3188 		int seg;
3189 
3190 		reqlist      = &xbb->request_lists[i];
3191 
3192 		reqlist->xbb = xbb;
3193 
3194 #ifdef XBB_USE_BOUNCE_BUFFERS
3195 		reqlist->bounce = malloc(xbb->max_reqlist_size,
3196 					 M_XENBLOCKBACK, M_NOWAIT);
3197 		if (reqlist->bounce == NULL) {
3198 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3199 					 "Unable to allocate request "
3200 					 "bounce buffers");
3201 			return (ENOMEM);
3202 		}
3203 #endif /* XBB_USE_BOUNCE_BUFFERS */
3204 
3205 		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3206 					      sizeof(*reqlist->gnt_handles),
3207 					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3208 		if (reqlist->gnt_handles == NULL) {
3209 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3210 					  "Unable to allocate request "
3211 					  "grant references");
3212 			return (ENOMEM);
3213 		}
3214 
3215 		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3216 			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3217 
3218 		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3219 	}
3220 	return (0);
3221 }
3222 
3223 /**
3224  * Supply information about the physical device to the frontend
3225  * via XenBus.
3226  *
3227  * \param xbb  Per-instance xbb configuration structure.
3228  */
3229 static int
3230 xbb_publish_backend_info(struct xbb_softc *xbb)
3231 {
3232 	struct xs_transaction xst;
3233 	const char	     *our_path;
3234 	const char	     *leaf;
3235 	int		      error;
3236 
3237 	our_path = xenbus_get_node(xbb->dev);
3238 	while (1) {
3239 		error = xs_transaction_start(&xst);
3240 		if (error != 0) {
3241 			xenbus_dev_fatal(xbb->dev, error,
3242 					 "Error publishing backend info "
3243 					 "(start transaction)");
3244 			return (error);
3245 		}
3246 
3247 		leaf = "sectors";
3248 		error = xs_printf(xst, our_path, leaf,
3249 				  "%"PRIu64, xbb->media_num_sectors);
3250 		if (error != 0)
3251 			break;
3252 
3253 		/* XXX Support all VBD attributes here. */
3254 		leaf = "info";
3255 		error = xs_printf(xst, our_path, leaf, "%u",
3256 				  xbb->flags & XBBF_READ_ONLY
3257 				? VDISK_READONLY : 0);
3258 		if (error != 0)
3259 			break;
3260 
3261 		leaf = "sector-size";
3262 		error = xs_printf(xst, our_path, leaf, "%u",
3263 				  xbb->sector_size);
3264 		if (error != 0)
3265 			break;
3266 
3267 		error = xs_transaction_end(xst, 0);
3268 		if (error == 0) {
3269 			return (0);
3270 		} else if (error != EAGAIN) {
3271 			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3272 			return (error);
3273 		}
3274 	}
3275 
3276 	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3277 			our_path, leaf);
3278 	xs_transaction_end(xst, 1);
3279 	return (error);
3280 }
3281 
3282 /**
3283  * Connect to our blkfront peer now that it has completed publishing
3284  * its configuration into the XenStore.
3285  *
3286  * \param xbb  Per-instance xbb configuration structure.
3287  */
3288 static void
3289 xbb_connect(struct xbb_softc *xbb)
3290 {
3291 	int error;
3292 
3293 	if (!xbb->hotplug_done ||
3294 	    (xenbus_get_state(xbb->dev) != XenbusStateInitWait) ||
3295 	    (xbb_collect_frontend_info(xbb) != 0))
3296 		return;
3297 
3298 	xbb->flags &= ~XBBF_SHUTDOWN;
3299 
3300 	/*
3301 	 * We limit the maximum number of reqlist segments to the maximum
3302 	 * number of segments in the ring, or our absolute maximum,
3303 	 * whichever is smaller.
3304 	 */
3305 	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3306 		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3307 
3308 	/*
3309 	 * The maximum size is simply a function of the number of segments
3310 	 * we can handle.
3311 	 */
3312 	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3313 
3314 	/* Allocate resources whose size depends on front-end configuration. */
3315 	error = xbb_alloc_communication_mem(xbb);
3316 	if (error != 0) {
3317 		xenbus_dev_fatal(xbb->dev, error,
3318 				 "Unable to allocate communication memory");
3319 		return;
3320 	}
3321 
3322 	error = xbb_alloc_requests(xbb);
3323 	if (error != 0) {
3324 		/* Specific errors are reported by xbb_alloc_requests(). */
3325 		return;
3326 	}
3327 
3328 	error = xbb_alloc_request_lists(xbb);
3329 	if (error != 0) {
3330 		/* Specific errors are reported by xbb_alloc_request_lists(). */
3331 		return;
3332 	}
3333 
3334 	/*
3335 	 * Connect communication channel.
3336 	 */
3337 	error = xbb_connect_ring(xbb);
3338 	if (error != 0) {
3339 		/* Specific errors are reported by xbb_connect_ring(). */
3340 		return;
3341 	}
3342 
3343 	if (xbb_publish_backend_info(xbb) != 0) {
3344 		/*
3345 		 * If we can't publish our data, we cannot participate
3346 		 * in this connection, and waiting for a front-end state
3347 		 * change will not help the situation.
3348 		 */
3349 		(void)xbb_disconnect(xbb);
3350 		return;
3351 	}
3352 
3353 	/* Ready for I/O. */
3354 	xenbus_set_state(xbb->dev, XenbusStateConnected);
3355 }
3356 
3357 /*-------------------------- Device Teardown Support -------------------------*/
3358 /**
3359  * Perform device shutdown functions.
3360  *
3361  * \param xbb  Per-instance xbb configuration structure.
3362  *
3363  * Mark this instance as shutting down, wait for any active I/O on the
3364  * backend device/file to drain, disconnect from the front-end, and notify
3365  * any waiters (e.g. a thread invoking our detach method) that detach can
3366  * now proceed.
3367  */
3368 static int
3369 xbb_shutdown(struct xbb_softc *xbb)
3370 {
3371 	XenbusState frontState;
3372 	int	    error;
3373 
3374 	DPRINTF("\n");
3375 
3376 	/*
3377 	 * Due to the need to drop our mutex during some
3378 	 * xenbus operations, it is possible for two threads
3379 	 * to attempt to close out shutdown processing at
3380 	 * the same time.  Tell the caller that hits this
3381 	 * race to try back later.
3382 	 */
3383 	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3384 		return (EAGAIN);
3385 
3386 	xbb->flags |= XBBF_IN_SHUTDOWN;
3387 	mtx_unlock(&xbb->lock);
3388 
3389 	if (xbb->hotplug_watch.node != NULL) {
3390 		xs_unregister_watch(&xbb->hotplug_watch);
3391 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3392 		xbb->hotplug_watch.node = NULL;
3393 	}
3394 	xbb->hotplug_done = false;
3395 
3396 	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3397 		xenbus_set_state(xbb->dev, XenbusStateClosing);
3398 
3399 	frontState = xenbus_get_otherend_state(xbb->dev);
3400 	mtx_lock(&xbb->lock);
3401 	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3402 
3403 	/* Wait for the frontend to disconnect (if it's connected). */
3404 	if (frontState == XenbusStateConnected)
3405 		return (EAGAIN);
3406 
3407 	DPRINTF("\n");
3408 
3409 	/* Indicate shutdown is in progress. */
3410 	xbb->flags |= XBBF_SHUTDOWN;
3411 
3412 	/* Disconnect from the front-end. */
3413 	error = xbb_disconnect(xbb);
3414 	if (error != 0) {
3415 		/*
3416 		 * Requests still outstanding.  We'll be called again
3417 		 * once they complete.
3418 		 */
3419 		KASSERT(error == EAGAIN,
3420 			("%s: Unexpected xbb_disconnect() failure %d",
3421 			 __func__, error));
3422 
3423 		return (error);
3424 	}
3425 
3426 	DPRINTF("\n");
3427 
3428 	/* Indicate to xbb_detach() that is it safe to proceed. */
3429 	wakeup(xbb);
3430 
3431 	return (0);
3432 }
3433 
3434 /**
3435  * Report an attach time error to the console and Xen, and cleanup
3436  * this instance by forcing immediate detach processing.
3437  *
3438  * \param xbb  Per-instance xbb configuration structure.
3439  * \param err  Errno describing the error.
3440  * \param fmt  Printf style format and arguments
3441  */
3442 static void
3443 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3444 {
3445 	va_list ap;
3446 	va_list ap_hotplug;
3447 
3448 	va_start(ap, fmt);
3449 	va_copy(ap_hotplug, ap);
3450 	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3451 		  "hotplug-error", fmt, ap_hotplug);
3452 	va_end(ap_hotplug);
3453 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3454 		  "hotplug-status", "error");
3455 
3456 	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3457 	va_end(ap);
3458 
3459 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3460 		  "online", "0");
3461 	mtx_lock(&xbb->lock);
3462 	xbb_shutdown(xbb);
3463 	mtx_unlock(&xbb->lock);
3464 }
3465 
3466 /*---------------------------- NewBus Entrypoints ----------------------------*/
3467 /**
3468  * Inspect a XenBus device and claim it if is of the appropriate type.
3469  *
3470  * \param dev  NewBus device object representing a candidate XenBus device.
3471  *
3472  * \return  0 for success, errno codes for failure.
3473  */
3474 static int
3475 xbb_probe(device_t dev)
3476 {
3477 
3478         if (!strcmp(xenbus_get_type(dev), "vbd")) {
3479                 device_set_desc(dev, "Backend Virtual Block Device");
3480                 device_quiet(dev);
3481                 return (0);
3482         }
3483 
3484         return (ENXIO);
3485 }
3486 
3487 /**
3488  * Setup sysctl variables to control various Block Back parameters.
3489  *
3490  * \param xbb  Xen Block Back softc.
3491  *
3492  */
3493 static void
3494 xbb_setup_sysctl(struct xbb_softc *xbb)
3495 {
3496 	struct sysctl_ctx_list *sysctl_ctx = NULL;
3497 	struct sysctl_oid      *sysctl_tree = NULL;
3498 
3499 	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3500 	if (sysctl_ctx == NULL)
3501 		return;
3502 
3503 	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3504 	if (sysctl_tree == NULL)
3505 		return;
3506 
3507 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3508 		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3509 		       "fake the flush command");
3510 
3511 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3512 		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3513 		       "send a real flush for N flush requests");
3514 
3515 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3516 		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3517 		       "Don't coalesce contiguous requests");
3518 
3519 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3520 			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3521 			 "how many I/O requests we have received");
3522 
3523 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3524 			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3525 			 "how many I/O requests have been completed");
3526 
3527 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3528 			 "reqs_queued_for_completion", CTLFLAG_RW,
3529 			 &xbb->reqs_queued_for_completion,
3530 			 "how many I/O requests queued but not yet pushed");
3531 
3532 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3533 			 "reqs_completed_with_error", CTLFLAG_RW,
3534 			 &xbb->reqs_completed_with_error,
3535 			 "how many I/O requests completed with error status");
3536 
3537 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3538 			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3539 			 "how many I/O dispatches were forced");
3540 
3541 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3542 			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3543 			 "how many I/O dispatches were normal");
3544 
3545 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3546 			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3547 			 "total number of I/O dispatches");
3548 
3549 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3550 			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3551 			 "how many times we have run out of KVA");
3552 
3553 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3554 			 "request_shortages", CTLFLAG_RW,
3555 			 &xbb->request_shortages,
3556 			 "how many times we have run out of requests");
3557 
3558 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3559 		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3560 		        "maximum outstanding requests (negotiated)");
3561 
3562 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3563 		        "max_request_segments", CTLFLAG_RD,
3564 		        &xbb->max_request_segments, 0,
3565 		        "maximum number of pages per requests (negotiated)");
3566 
3567 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3568 		        "max_request_size", CTLFLAG_RD,
3569 		        &xbb->max_request_size, 0,
3570 		        "maximum size in bytes of a request (negotiated)");
3571 
3572 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3573 		        "ring_pages", CTLFLAG_RD,
3574 		        &xbb->ring_config.ring_pages, 0,
3575 		        "communication channel pages (negotiated)");
3576 }
3577 
3578 static void
3579 xbb_attach_disk(struct xs_watch *watch, const char **vec, unsigned int len)
3580 {
3581 	device_t		 dev;
3582 	struct xbb_softc	*xbb;
3583 	int			 error;
3584 
3585 	dev = (device_t) watch->callback_data;
3586 	xbb = device_get_softc(dev);
3587 
3588 	error = xs_gather(XST_NIL, xenbus_get_node(dev), "physical-device-path",
3589 	    NULL, &xbb->dev_name, NULL);
3590 	if (error != 0)
3591 		return;
3592 
3593 	xs_unregister_watch(watch);
3594 	free(watch->node, M_XENBLOCKBACK);
3595 	watch->node = NULL;
3596 
3597 	/* Collect physical device information. */
3598 	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3599 			  "device-type", NULL, &xbb->dev_type,
3600 			  NULL);
3601 	if (error != 0)
3602 		xbb->dev_type = NULL;
3603 
3604 	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3605                           "mode", NULL, &xbb->dev_mode,
3606                           NULL);
3607 	if (error != 0) {
3608 		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3609 				  xenbus_get_node(dev));
3610                 return;
3611         }
3612 
3613 	/* Parse fopen style mode flags. */
3614 	if (strchr(xbb->dev_mode, 'w') == NULL)
3615 		xbb->flags |= XBBF_READ_ONLY;
3616 
3617 	/*
3618 	 * Verify the physical device is present and can support
3619 	 * the desired I/O mode.
3620 	 */
3621 	error = xbb_open_backend(xbb);
3622 	if (error != 0) {
3623 		xbb_attach_failed(xbb, error, "Unable to open %s",
3624 				  xbb->dev_name);
3625 		return;
3626 	}
3627 
3628 	/* Use devstat(9) for recording statistics. */
3629 	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3630 					   xbb->sector_size,
3631 					   DEVSTAT_ALL_SUPPORTED,
3632 					   DEVSTAT_TYPE_DIRECT
3633 					 | DEVSTAT_TYPE_IF_OTHER,
3634 					   DEVSTAT_PRIORITY_OTHER);
3635 
3636 	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3637 					      xbb->sector_size,
3638 					      DEVSTAT_ALL_SUPPORTED,
3639 					      DEVSTAT_TYPE_DIRECT
3640 					    | DEVSTAT_TYPE_IF_OTHER,
3641 					      DEVSTAT_PRIORITY_OTHER);
3642 	/*
3643 	 * Setup sysctl variables.
3644 	 */
3645 	xbb_setup_sysctl(xbb);
3646 
3647 	/*
3648 	 * Create a taskqueue for doing work that must occur from a
3649 	 * thread context.
3650 	 */
3651 	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3652 						  M_NOWAIT,
3653 						  taskqueue_thread_enqueue,
3654 						  /*contxt*/&xbb->io_taskqueue);
3655 	if (xbb->io_taskqueue == NULL) {
3656 		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3657 		return;
3658 	}
3659 
3660 	taskqueue_start_threads(&xbb->io_taskqueue,
3661 				/*num threads*/1,
3662 				/*priority*/PWAIT,
3663 				/*thread name*/
3664 				"%s taskq", device_get_nameunit(dev));
3665 
3666 	/* Update hot-plug status to satisfy xend. */
3667 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3668 			  "hotplug-status", "connected");
3669 	if (error) {
3670 		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3671 				  xenbus_get_node(xbb->dev));
3672 		return;
3673 	}
3674 
3675 	xbb->hotplug_done = true;
3676 
3677 	/* The front end might be waiting for the backend, attach if so. */
3678 	if (xenbus_get_otherend_state(xbb->dev) == XenbusStateInitialised)
3679 		xbb_connect(xbb);
3680 }
3681 
3682 /**
3683  * Attach to a XenBus device that has been claimed by our probe routine.
3684  *
3685  * \param dev  NewBus device object representing this Xen Block Back instance.
3686  *
3687  * \return  0 for success, errno codes for failure.
3688  */
3689 static int
3690 xbb_attach(device_t dev)
3691 {
3692 	struct xbb_softc	*xbb;
3693 	int			 error;
3694 	u_int			 max_ring_page_order;
3695 	struct sbuf		*watch_path;
3696 
3697 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3698 
3699 	/*
3700 	 * Basic initialization.
3701 	 * After this block it is safe to call xbb_detach()
3702 	 * to clean up any allocated data for this instance.
3703 	 */
3704 	xbb = device_get_softc(dev);
3705 	xbb->dev = dev;
3706 	xbb->otherend_id = xenbus_get_otherend_id(dev);
3707 	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3708 	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3709 
3710 	/*
3711 	 * Publish protocol capabilities for consumption by the
3712 	 * front-end.
3713 	 */
3714 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3715 			  "feature-barrier", "1");
3716 	if (error) {
3717 		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3718 				  xenbus_get_node(xbb->dev));
3719 		return (error);
3720 	}
3721 
3722 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3723 			  "feature-flush-cache", "1");
3724 	if (error) {
3725 		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3726 				  xenbus_get_node(xbb->dev));
3727 		return (error);
3728 	}
3729 
3730 	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3731 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3732 			  "max-ring-page-order", "%u", max_ring_page_order);
3733 	if (error) {
3734 		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3735 				  xenbus_get_node(xbb->dev));
3736 		return (error);
3737 	}
3738 
3739 	/*
3740 	 * We need to wait for hotplug script execution before
3741 	 * moving forward.
3742 	 */
3743 	KASSERT(!xbb->hotplug_done, ("Hotplug scripts already executed"));
3744 	watch_path = xs_join(xenbus_get_node(xbb->dev), "physical-device-path");
3745 	xbb->hotplug_watch.callback_data = (uintptr_t)dev;
3746 	xbb->hotplug_watch.callback = xbb_attach_disk;
3747 	KASSERT(xbb->hotplug_watch.node == NULL, ("watch node already setup"));
3748 	xbb->hotplug_watch.node = strdup(sbuf_data(watch_path), M_XENBLOCKBACK);
3749 	/*
3750 	 * We don't care about the path updated, just about the value changes
3751 	 * on that single node, hence there's no need to queue more that one
3752 	 * event.
3753 	 */
3754 	xbb->hotplug_watch.max_pending = 1;
3755 	sbuf_delete(watch_path);
3756 	error = xs_register_watch(&xbb->hotplug_watch);
3757 	if (error != 0) {
3758 		xbb_attach_failed(xbb, error, "failed to create watch on %s",
3759 		    xbb->hotplug_watch.node);
3760 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3761 		return (error);
3762 	}
3763 
3764 	/* Tell the toolstack blkback has attached. */
3765 	xenbus_set_state(dev, XenbusStateInitWait);
3766 
3767 	return (0);
3768 }
3769 
3770 /**
3771  * Detach from a block back device instance.
3772  *
3773  * \param dev  NewBus device object representing this Xen Block Back instance.
3774  *
3775  * \return  0 for success, errno codes for failure.
3776  *
3777  * \note A block back device may be detached at any time in its life-cycle,
3778  *       including part way through the attach process.  For this reason,
3779  *       initialization order and the initialization state checks in this
3780  *       routine must be carefully coupled so that attach time failures
3781  *       are gracefully handled.
3782  */
3783 static int
3784 xbb_detach(device_t dev)
3785 {
3786         struct xbb_softc *xbb;
3787 
3788 	DPRINTF("\n");
3789 
3790         xbb = device_get_softc(dev);
3791 	mtx_lock(&xbb->lock);
3792 	while (xbb_shutdown(xbb) == EAGAIN) {
3793 		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3794 		       "xbb_shutdown", 0);
3795 	}
3796 	mtx_unlock(&xbb->lock);
3797 
3798 	DPRINTF("\n");
3799 
3800 	if (xbb->io_taskqueue != NULL)
3801 		taskqueue_free(xbb->io_taskqueue);
3802 
3803 	if (xbb->xbb_stats != NULL)
3804 		devstat_remove_entry(xbb->xbb_stats);
3805 
3806 	if (xbb->xbb_stats_in != NULL)
3807 		devstat_remove_entry(xbb->xbb_stats_in);
3808 
3809 	xbb_close_backend(xbb);
3810 
3811 	if (xbb->dev_mode != NULL) {
3812 		free(xbb->dev_mode, M_XENSTORE);
3813 		xbb->dev_mode = NULL;
3814 	}
3815 
3816 	if (xbb->dev_type != NULL) {
3817 		free(xbb->dev_type, M_XENSTORE);
3818 		xbb->dev_type = NULL;
3819 	}
3820 
3821 	if (xbb->dev_name != NULL) {
3822 		free(xbb->dev_name, M_XENSTORE);
3823 		xbb->dev_name = NULL;
3824 	}
3825 
3826 	mtx_destroy(&xbb->lock);
3827         return (0);
3828 }
3829 
3830 /**
3831  * Prepare this block back device for suspension of this VM.
3832  *
3833  * \param dev  NewBus device object representing this Xen Block Back instance.
3834  *
3835  * \return  0 for success, errno codes for failure.
3836  */
3837 static int
3838 xbb_suspend(device_t dev)
3839 {
3840 #ifdef NOT_YET
3841         struct xbb_softc *sc = device_get_softc(dev);
3842 
3843         /* Prevent new requests being issued until we fix things up. */
3844         mtx_lock(&sc->xb_io_lock);
3845         sc->connected = BLKIF_STATE_SUSPENDED;
3846         mtx_unlock(&sc->xb_io_lock);
3847 #endif
3848 
3849         return (0);
3850 }
3851 
3852 /**
3853  * Perform any processing required to recover from a suspended state.
3854  *
3855  * \param dev  NewBus device object representing this Xen Block Back instance.
3856  *
3857  * \return  0 for success, errno codes for failure.
3858  */
3859 static int
3860 xbb_resume(device_t dev)
3861 {
3862 	return (0);
3863 }
3864 
3865 /**
3866  * Handle state changes expressed via the XenStore by our front-end peer.
3867  *
3868  * \param dev             NewBus device object representing this Xen
3869  *                        Block Back instance.
3870  * \param frontend_state  The new state of the front-end.
3871  *
3872  * \return  0 for success, errno codes for failure.
3873  */
3874 static void
3875 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3876 {
3877 	struct xbb_softc *xbb = device_get_softc(dev);
3878 
3879 	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3880 	        xenbus_strstate(frontend_state),
3881 		xenbus_strstate(xenbus_get_state(xbb->dev)));
3882 
3883 	switch (frontend_state) {
3884 	case XenbusStateInitialising:
3885 		break;
3886 	case XenbusStateInitialised:
3887 	case XenbusStateConnected:
3888 		xbb_connect(xbb);
3889 		break;
3890 	case XenbusStateClosing:
3891 	case XenbusStateClosed:
3892 		mtx_lock(&xbb->lock);
3893 		xbb_shutdown(xbb);
3894 		mtx_unlock(&xbb->lock);
3895 		if (frontend_state == XenbusStateClosed)
3896 			xenbus_set_state(xbb->dev, XenbusStateClosed);
3897 		break;
3898 	default:
3899 		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3900 				 frontend_state);
3901 		break;
3902 	}
3903 }
3904 
3905 /*---------------------------- NewBus Registration ---------------------------*/
3906 static device_method_t xbb_methods[] = {
3907 	/* Device interface */
3908 	DEVMETHOD(device_probe,		xbb_probe),
3909 	DEVMETHOD(device_attach,	xbb_attach),
3910 	DEVMETHOD(device_detach,	xbb_detach),
3911 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3912 	DEVMETHOD(device_suspend,	xbb_suspend),
3913 	DEVMETHOD(device_resume,	xbb_resume),
3914 
3915 	/* Xenbus interface */
3916 	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3917 	{ 0, 0 }
3918 };
3919 
3920 static driver_t xbb_driver = {
3921         "xbbd",
3922         xbb_methods,
3923         sizeof(struct xbb_softc),
3924 };
3925 devclass_t xbb_devclass;
3926 
3927 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
3928