1 /*- 2 * Copyright (c) 2009-2011 Spectra Logic Corporation 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions, and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * substantially similar to the "NO WARRANTY" disclaimer below 13 * ("Disclaimer") and any redistribution must be conditioned upon 14 * including a substantially similar Disclaimer requirement for further 15 * binary redistribution. 16 * 17 * NO WARRANTY 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGES. 29 * 30 * Authors: Justin T. Gibbs (Spectra Logic Corporation) 31 * Ken Merry (Spectra Logic Corporation) 32 */ 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /** 37 * \file blkback.c 38 * 39 * \brief Device driver supporting the vending of block storage from 40 * a FreeBSD domain to other domains. 41 */ 42 43 #include "opt_kdtrace.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/kernel.h> 48 #include <sys/malloc.h> 49 50 #include <sys/bio.h> 51 #include <sys/bus.h> 52 #include <sys/conf.h> 53 #include <sys/devicestat.h> 54 #include <sys/disk.h> 55 #include <sys/fcntl.h> 56 #include <sys/filedesc.h> 57 #include <sys/kdb.h> 58 #include <sys/module.h> 59 #include <sys/namei.h> 60 #include <sys/proc.h> 61 #include <sys/rman.h> 62 #include <sys/taskqueue.h> 63 #include <sys/types.h> 64 #include <sys/vnode.h> 65 #include <sys/mount.h> 66 #include <sys/sysctl.h> 67 #include <sys/bitstring.h> 68 #include <sys/sdt.h> 69 70 #include <geom/geom.h> 71 72 #include <machine/_inttypes.h> 73 #include <machine/xen/xen-os.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_extern.h> 77 #include <vm/vm_kern.h> 78 79 #include <xen/blkif.h> 80 #include <xen/evtchn.h> 81 #include <xen/gnttab.h> 82 #include <xen/xen_intr.h> 83 84 #include <xen/interface/event_channel.h> 85 #include <xen/interface/grant_table.h> 86 87 #include <xen/xenbus/xenbusvar.h> 88 89 /*--------------------------- Compile-time Tunables --------------------------*/ 90 /** 91 * The maximum number of outstanding request blocks (request headers plus 92 * additional segment blocks) we will allow in a negotiated block-front/back 93 * communication channel. 94 */ 95 #define XBB_MAX_REQUESTS 256 96 97 /** 98 * \brief Define to force all I/O to be performed on memory owned by the 99 * backend device, with a copy-in/out to the remote domain's memory. 100 * 101 * \note This option is currently required when this driver's domain is 102 * operating in HVM mode on a system using an IOMMU. 103 * 104 * This driver uses Xen's grant table API to gain access to the memory of 105 * the remote domains it serves. When our domain is operating in PV mode, 106 * the grant table mechanism directly updates our domain's page table entries 107 * to point to the physical pages of the remote domain. This scheme guarantees 108 * that blkback and the backing devices it uses can safely perform DMA 109 * operations to satisfy requests. In HVM mode, Xen may use a HW IOMMU to 110 * insure that our domain cannot DMA to pages owned by another domain. As 111 * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant 112 * table API. For this reason, in HVM mode, we must bounce all requests into 113 * memory that is mapped into our domain at domain startup and thus has 114 * valid IOMMU mappings. 115 */ 116 #define XBB_USE_BOUNCE_BUFFERS 117 118 /** 119 * \brief Define to enable rudimentary request logging to the console. 120 */ 121 #undef XBB_DEBUG 122 123 /*---------------------------------- Macros ----------------------------------*/ 124 /** 125 * Custom malloc type for all driver allocations. 126 */ 127 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data"); 128 129 #ifdef XBB_DEBUG 130 #define DPRINTF(fmt, args...) \ 131 printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args) 132 #else 133 #define DPRINTF(fmt, args...) do {} while(0) 134 #endif 135 136 /** 137 * The maximum mapped region size per request we will allow in a negotiated 138 * block-front/back communication channel. 139 */ 140 #define XBB_MAX_REQUEST_SIZE \ 141 MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE) 142 143 /** 144 * The maximum number of segments (within a request header and accompanying 145 * segment blocks) per request we will allow in a negotiated block-front/back 146 * communication channel. 147 */ 148 #define XBB_MAX_SEGMENTS_PER_REQUEST \ 149 (MIN(UIO_MAXIOV, \ 150 MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST, \ 151 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1))) 152 153 /** 154 * The maximum number of shared memory ring pages we will allow in a 155 * negotiated block-front/back communication channel. Allow enough 156 * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd. 157 */ 158 #define XBB_MAX_RING_PAGES \ 159 BLKIF_RING_PAGES(BLKIF_SEGS_TO_BLOCKS(XBB_MAX_SEGMENTS_PER_REQUEST) \ 160 * XBB_MAX_REQUESTS) 161 /** 162 * The maximum number of ring pages that we can allow per request list. 163 * We limit this to the maximum number of segments per request, because 164 * that is already a reasonable number of segments to aggregate. This 165 * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST, 166 * because that would leave situations where we can't dispatch even one 167 * large request. 168 */ 169 #define XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST 170 171 /*--------------------------- Forward Declarations ---------------------------*/ 172 struct xbb_softc; 173 struct xbb_xen_req; 174 175 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, 176 ...) __attribute__((format(printf, 3, 4))); 177 static int xbb_shutdown(struct xbb_softc *xbb); 178 static int xbb_detach(device_t dev); 179 180 /*------------------------------ Data Structures -----------------------------*/ 181 182 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req); 183 184 typedef enum { 185 XBB_REQLIST_NONE = 0x00, 186 XBB_REQLIST_MAPPED = 0x01 187 } xbb_reqlist_flags; 188 189 struct xbb_xen_reqlist { 190 /** 191 * Back reference to the parent block back instance for this 192 * request. Used during bio_done handling. 193 */ 194 struct xbb_softc *xbb; 195 196 /** 197 * BLKIF_OP code for this request. 198 */ 199 int operation; 200 201 /** 202 * Set to BLKIF_RSP_* to indicate request status. 203 * 204 * This field allows an error status to be recorded even if the 205 * delivery of this status must be deferred. Deferred reporting 206 * is necessary, for example, when an error is detected during 207 * completion processing of one bio when other bios for this 208 * request are still outstanding. 209 */ 210 int status; 211 212 /** 213 * Number of 512 byte sectors not transferred. 214 */ 215 int residual_512b_sectors; 216 217 /** 218 * Starting sector number of the first request in the list. 219 */ 220 off_t starting_sector_number; 221 222 /** 223 * If we're going to coalesce, the next contiguous sector would be 224 * this one. 225 */ 226 off_t next_contig_sector; 227 228 /** 229 * Number of child requests in the list. 230 */ 231 int num_children; 232 233 /** 234 * Number of I/O requests dispatched to the backend. 235 */ 236 int pendcnt; 237 238 /** 239 * Total number of segments for requests in the list. 240 */ 241 int nr_segments; 242 243 /** 244 * Flags for this particular request list. 245 */ 246 xbb_reqlist_flags flags; 247 248 /** 249 * Kernel virtual address space reserved for this request 250 * list structure and used to map the remote domain's pages for 251 * this I/O, into our domain's address space. 252 */ 253 uint8_t *kva; 254 255 /** 256 * Base, psuedo-physical address, corresponding to the start 257 * of this request's kva region. 258 */ 259 uint64_t gnt_base; 260 261 262 #ifdef XBB_USE_BOUNCE_BUFFERS 263 /** 264 * Pre-allocated domain local memory used to proxy remote 265 * domain memory during I/O operations. 266 */ 267 uint8_t *bounce; 268 #endif 269 270 /** 271 * Array of grant handles (one per page) used to map this request. 272 */ 273 grant_handle_t *gnt_handles; 274 275 /** 276 * Device statistics request ordering type (ordered or simple). 277 */ 278 devstat_tag_type ds_tag_type; 279 280 /** 281 * Device statistics request type (read, write, no_data). 282 */ 283 devstat_trans_flags ds_trans_type; 284 285 /** 286 * The start time for this request. 287 */ 288 struct bintime ds_t0; 289 290 /** 291 * Linked list of contiguous requests with the same operation type. 292 */ 293 struct xbb_xen_req_list contig_req_list; 294 295 /** 296 * Linked list links used to aggregate idle requests in the 297 * request list free pool (xbb->reqlist_free_stailq) and pending 298 * requests waiting for execution (xbb->reqlist_pending_stailq). 299 */ 300 STAILQ_ENTRY(xbb_xen_reqlist) links; 301 }; 302 303 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist); 304 305 /** 306 * \brief Object tracking an in-flight I/O from a Xen VBD consumer. 307 */ 308 struct xbb_xen_req { 309 /** 310 * Linked list links used to aggregate requests into a reqlist 311 * and to store them in the request free pool. 312 */ 313 STAILQ_ENTRY(xbb_xen_req) links; 314 315 /** 316 * The remote domain's identifier for this I/O request. 317 */ 318 uint64_t id; 319 320 /** 321 * The number of pages currently mapped for this request. 322 */ 323 int nr_pages; 324 325 /** 326 * The number of 512 byte sectors comprising this requests. 327 */ 328 int nr_512b_sectors; 329 330 /** 331 * The number of struct bio requests still outstanding for this 332 * request on the backend device. This field is only used for 333 * device (rather than file) backed I/O. 334 */ 335 int pendcnt; 336 337 /** 338 * BLKIF_OP code for this request. 339 */ 340 int operation; 341 342 /** 343 * Storage used for non-native ring requests. 344 */ 345 blkif_request_t ring_req_storage; 346 347 /** 348 * Pointer to the Xen request in the ring. 349 */ 350 blkif_request_t *ring_req; 351 352 /** 353 * Consumer index for this request. 354 */ 355 RING_IDX req_ring_idx; 356 357 /** 358 * The start time for this request. 359 */ 360 struct bintime ds_t0; 361 362 /** 363 * Pointer back to our parent request list. 364 */ 365 struct xbb_xen_reqlist *reqlist; 366 }; 367 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req); 368 369 /** 370 * \brief Configuration data for the shared memory request ring 371 * used to communicate with the front-end client of this 372 * this driver. 373 */ 374 struct xbb_ring_config { 375 /** KVA address where ring memory is mapped. */ 376 vm_offset_t va; 377 378 /** The pseudo-physical address where ring memory is mapped.*/ 379 uint64_t gnt_addr; 380 381 /** 382 * Grant table handles, one per-ring page, returned by the 383 * hyperpervisor upon mapping of the ring and required to 384 * unmap it when a connection is torn down. 385 */ 386 grant_handle_t handle[XBB_MAX_RING_PAGES]; 387 388 /** 389 * The device bus address returned by the hypervisor when 390 * mapping the ring and required to unmap it when a connection 391 * is torn down. 392 */ 393 uint64_t bus_addr[XBB_MAX_RING_PAGES]; 394 395 /** The number of ring pages mapped for the current connection. */ 396 u_int ring_pages; 397 398 /** 399 * The grant references, one per-ring page, supplied by the 400 * front-end, allowing us to reference the ring pages in the 401 * front-end's domain and to map these pages into our own domain. 402 */ 403 grant_ref_t ring_ref[XBB_MAX_RING_PAGES]; 404 405 /** The interrupt driven even channel used to signal ring events. */ 406 evtchn_port_t evtchn; 407 }; 408 409 /** 410 * Per-instance connection state flags. 411 */ 412 typedef enum 413 { 414 /** 415 * The front-end requested a read-only mount of the 416 * back-end device/file. 417 */ 418 XBBF_READ_ONLY = 0x01, 419 420 /** Communication with the front-end has been established. */ 421 XBBF_RING_CONNECTED = 0x02, 422 423 /** 424 * Front-end requests exist in the ring and are waiting for 425 * xbb_xen_req objects to free up. 426 */ 427 XBBF_RESOURCE_SHORTAGE = 0x04, 428 429 /** Connection teardown in progress. */ 430 XBBF_SHUTDOWN = 0x08, 431 432 /** A thread is already performing shutdown processing. */ 433 XBBF_IN_SHUTDOWN = 0x10 434 } xbb_flag_t; 435 436 /** Backend device type. */ 437 typedef enum { 438 /** Backend type unknown. */ 439 XBB_TYPE_NONE = 0x00, 440 441 /** 442 * Backend type disk (access via cdev switch 443 * strategy routine). 444 */ 445 XBB_TYPE_DISK = 0x01, 446 447 /** Backend type file (access vnode operations.). */ 448 XBB_TYPE_FILE = 0x02 449 } xbb_type; 450 451 /** 452 * \brief Structure used to memoize information about a per-request 453 * scatter-gather list. 454 * 455 * The chief benefit of using this data structure is it avoids having 456 * to reparse the possibly discontiguous S/G list in the original 457 * request. Due to the way that the mapping of the memory backing an 458 * I/O transaction is handled by Xen, a second pass is unavoidable. 459 * At least this way the second walk is a simple array traversal. 460 * 461 * \note A single Scatter/Gather element in the block interface covers 462 * at most 1 machine page. In this context a sector (blkif 463 * nomenclature, not what I'd choose) is a 512b aligned unit 464 * of mapping within the machine page referenced by an S/G 465 * element. 466 */ 467 struct xbb_sg { 468 /** The number of 512b data chunks mapped in this S/G element. */ 469 int16_t nsect; 470 471 /** 472 * The index (0 based) of the first 512b data chunk mapped 473 * in this S/G element. 474 */ 475 uint8_t first_sect; 476 477 /** 478 * The index (0 based) of the last 512b data chunk mapped 479 * in this S/G element. 480 */ 481 uint8_t last_sect; 482 }; 483 484 /** 485 * Character device backend specific configuration data. 486 */ 487 struct xbb_dev_data { 488 /** Cdev used for device backend access. */ 489 struct cdev *cdev; 490 491 /** Cdev switch used for device backend access. */ 492 struct cdevsw *csw; 493 494 /** Used to hold a reference on opened cdev backend devices. */ 495 int dev_ref; 496 }; 497 498 /** 499 * File backend specific configuration data. 500 */ 501 struct xbb_file_data { 502 /** Credentials to use for vnode backed (file based) I/O. */ 503 struct ucred *cred; 504 505 /** 506 * \brief Array of io vectors used to process file based I/O. 507 * 508 * Only a single file based request is outstanding per-xbb instance, 509 * so we only need one of these. 510 */ 511 struct iovec xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST]; 512 #ifdef XBB_USE_BOUNCE_BUFFERS 513 514 /** 515 * \brief Array of io vectors used to handle bouncing of file reads. 516 * 517 * Vnode operations are free to modify uio data during their 518 * exectuion. In the case of a read with bounce buffering active, 519 * we need some of the data from the original uio in order to 520 * bounce-out the read data. This array serves as the temporary 521 * storage for this saved data. 522 */ 523 struct iovec saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST]; 524 525 /** 526 * \brief Array of memoized bounce buffer kva offsets used 527 * in the file based backend. 528 * 529 * Due to the way that the mapping of the memory backing an 530 * I/O transaction is handled by Xen, a second pass through 531 * the request sg elements is unavoidable. We memoize the computed 532 * bounce address here to reduce the cost of the second walk. 533 */ 534 void *xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST]; 535 #endif /* XBB_USE_BOUNCE_BUFFERS */ 536 }; 537 538 /** 539 * Collection of backend type specific data. 540 */ 541 union xbb_backend_data { 542 struct xbb_dev_data dev; 543 struct xbb_file_data file; 544 }; 545 546 /** 547 * Function signature of backend specific I/O handlers. 548 */ 549 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb, 550 struct xbb_xen_reqlist *reqlist, int operation, 551 int flags); 552 553 /** 554 * Per-instance configuration data. 555 */ 556 struct xbb_softc { 557 558 /** 559 * Task-queue used to process I/O requests. 560 */ 561 struct taskqueue *io_taskqueue; 562 563 /** 564 * Single "run the request queue" task enqueued 565 * on io_taskqueue. 566 */ 567 struct task io_task; 568 569 /** Device type for this instance. */ 570 xbb_type device_type; 571 572 /** NewBus device corresponding to this instance. */ 573 device_t dev; 574 575 /** Backend specific dispatch routine for this instance. */ 576 xbb_dispatch_t dispatch_io; 577 578 /** The number of requests outstanding on the backend device/file. */ 579 int active_request_count; 580 581 /** Free pool of request tracking structures. */ 582 struct xbb_xen_req_list request_free_stailq; 583 584 /** Array, sized at connection time, of request tracking structures. */ 585 struct xbb_xen_req *requests; 586 587 /** Free pool of request list structures. */ 588 struct xbb_xen_reqlist_list reqlist_free_stailq; 589 590 /** List of pending request lists awaiting execution. */ 591 struct xbb_xen_reqlist_list reqlist_pending_stailq; 592 593 /** Array, sized at connection time, of request list structures. */ 594 struct xbb_xen_reqlist *request_lists; 595 596 /** 597 * Global pool of kva used for mapping remote domain ring 598 * and I/O transaction data. 599 */ 600 vm_offset_t kva; 601 602 /** Psuedo-physical address corresponding to kva. */ 603 uint64_t gnt_base_addr; 604 605 /** The size of the global kva pool. */ 606 int kva_size; 607 608 /** The size of the KVA area used for request lists. */ 609 int reqlist_kva_size; 610 611 /** The number of pages of KVA used for request lists */ 612 int reqlist_kva_pages; 613 614 /** Bitmap of free KVA pages */ 615 bitstr_t *kva_free; 616 617 /** 618 * \brief Cached value of the front-end's domain id. 619 * 620 * This value is used at once for each mapped page in 621 * a transaction. We cache it to avoid incuring the 622 * cost of an ivar access every time this is needed. 623 */ 624 domid_t otherend_id; 625 626 /** 627 * \brief The blkif protocol abi in effect. 628 * 629 * There are situations where the back and front ends can 630 * have a different, native abi (e.g. intel x86_64 and 631 * 32bit x86 domains on the same machine). The back-end 632 * always accomodates the front-end's native abi. That 633 * value is pulled from the XenStore and recorded here. 634 */ 635 int abi; 636 637 /** 638 * \brief The maximum number of requests and request lists allowed 639 * to be in flight at a time. 640 * 641 * This value is negotiated via the XenStore. 642 */ 643 u_int max_requests; 644 645 /** 646 * \brief The maximum number of segments (1 page per segment) 647 * that can be mapped by a request. 648 * 649 * This value is negotiated via the XenStore. 650 */ 651 u_int max_request_segments; 652 653 /** 654 * \brief Maximum number of segments per request list. 655 * 656 * This value is derived from and will generally be larger than 657 * max_request_segments. 658 */ 659 u_int max_reqlist_segments; 660 661 /** 662 * The maximum size of any request to this back-end 663 * device. 664 * 665 * This value is negotiated via the XenStore. 666 */ 667 u_int max_request_size; 668 669 /** 670 * The maximum size of any request list. This is derived directly 671 * from max_reqlist_segments. 672 */ 673 u_int max_reqlist_size; 674 675 /** Various configuration and state bit flags. */ 676 xbb_flag_t flags; 677 678 /** Ring mapping and interrupt configuration data. */ 679 struct xbb_ring_config ring_config; 680 681 /** Runtime, cross-abi safe, structures for ring access. */ 682 blkif_back_rings_t rings; 683 684 /** IRQ mapping for the communication ring event channel. */ 685 int irq; 686 687 /** 688 * \brief Backend access mode flags (e.g. write, or read-only). 689 * 690 * This value is passed to us by the front-end via the XenStore. 691 */ 692 char *dev_mode; 693 694 /** 695 * \brief Backend device type (e.g. "disk", "cdrom", "floppy"). 696 * 697 * This value is passed to us by the front-end via the XenStore. 698 * Currently unused. 699 */ 700 char *dev_type; 701 702 /** 703 * \brief Backend device/file identifier. 704 * 705 * This value is passed to us by the front-end via the XenStore. 706 * We expect this to be a POSIX path indicating the file or 707 * device to open. 708 */ 709 char *dev_name; 710 711 /** 712 * Vnode corresponding to the backend device node or file 713 * we are acessing. 714 */ 715 struct vnode *vn; 716 717 union xbb_backend_data backend; 718 719 /** The native sector size of the backend. */ 720 u_int sector_size; 721 722 /** log2 of sector_size. */ 723 u_int sector_size_shift; 724 725 /** Size in bytes of the backend device or file. */ 726 off_t media_size; 727 728 /** 729 * \brief media_size expressed in terms of the backend native 730 * sector size. 731 * 732 * (e.g. xbb->media_size >> xbb->sector_size_shift). 733 */ 734 uint64_t media_num_sectors; 735 736 /** 737 * \brief Array of memoized scatter gather data computed during the 738 * conversion of blkif ring requests to internal xbb_xen_req 739 * structures. 740 * 741 * Ring processing is serialized so we only need one of these. 742 */ 743 struct xbb_sg xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST]; 744 745 /** 746 * Temporary grant table map used in xbb_dispatch_io(). When 747 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the 748 * stack could cause a stack overflow. 749 */ 750 struct gnttab_map_grant_ref maps[XBB_MAX_SEGMENTS_PER_REQLIST]; 751 752 /** Mutex protecting per-instance data. */ 753 struct mtx lock; 754 755 #ifdef XENHVM 756 /** 757 * Resource representing allocated physical address space 758 * associated with our per-instance kva region. 759 */ 760 struct resource *pseudo_phys_res; 761 762 /** Resource id for allocated physical address space. */ 763 int pseudo_phys_res_id; 764 #endif 765 766 /** 767 * I/O statistics from BlockBack dispatch down. These are 768 * coalesced requests, and we start them right before execution. 769 */ 770 struct devstat *xbb_stats; 771 772 /** 773 * I/O statistics coming into BlockBack. These are the requests as 774 * we get them from BlockFront. They are started as soon as we 775 * receive a request, and completed when the I/O is complete. 776 */ 777 struct devstat *xbb_stats_in; 778 779 /** Disable sending flush to the backend */ 780 int disable_flush; 781 782 /** Send a real flush for every N flush requests */ 783 int flush_interval; 784 785 /** Count of flush requests in the interval */ 786 int flush_count; 787 788 /** Don't coalesce requests if this is set */ 789 int no_coalesce_reqs; 790 791 /** Number of requests we have received */ 792 uint64_t reqs_received; 793 794 /** Number of requests we have completed*/ 795 uint64_t reqs_completed; 796 797 /** How many forced dispatches (i.e. without coalescing) have happend */ 798 uint64_t forced_dispatch; 799 800 /** How many normal dispatches have happend */ 801 uint64_t normal_dispatch; 802 803 /** How many total dispatches have happend */ 804 uint64_t total_dispatch; 805 806 /** How many times we have run out of KVA */ 807 uint64_t kva_shortages; 808 809 /** How many times we have run out of request structures */ 810 uint64_t request_shortages; 811 }; 812 813 /*---------------------------- Request Processing ----------------------------*/ 814 /** 815 * Allocate an internal transaction tracking structure from the free pool. 816 * 817 * \param xbb Per-instance xbb configuration structure. 818 * 819 * \return On success, a pointer to the allocated xbb_xen_req structure. 820 * Otherwise NULL. 821 */ 822 static inline struct xbb_xen_req * 823 xbb_get_req(struct xbb_softc *xbb) 824 { 825 struct xbb_xen_req *req; 826 827 req = NULL; 828 829 mtx_assert(&xbb->lock, MA_OWNED); 830 831 if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) { 832 STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links); 833 xbb->active_request_count++; 834 } 835 836 return (req); 837 } 838 839 /** 840 * Return an allocated transaction tracking structure to the free pool. 841 * 842 * \param xbb Per-instance xbb configuration structure. 843 * \param req The request structure to free. 844 */ 845 static inline void 846 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req) 847 { 848 mtx_assert(&xbb->lock, MA_OWNED); 849 850 STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links); 851 xbb->active_request_count--; 852 853 KASSERT(xbb->active_request_count >= 0, 854 ("xbb_release_req: negative active count")); 855 } 856 857 /** 858 * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool. 859 * 860 * \param xbb Per-instance xbb configuration structure. 861 * \param req_list The list of requests to free. 862 * \param nreqs The number of items in the list. 863 */ 864 static inline void 865 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list, 866 int nreqs) 867 { 868 mtx_assert(&xbb->lock, MA_OWNED); 869 870 STAILQ_CONCAT(&xbb->request_free_stailq, req_list); 871 xbb->active_request_count -= nreqs; 872 873 KASSERT(xbb->active_request_count >= 0, 874 ("xbb_release_reqs: negative active count")); 875 } 876 877 /** 878 * Given a page index and 512b sector offset within that page, 879 * calculate an offset into a request's kva region. 880 * 881 * \param reqlist The request structure whose kva region will be accessed. 882 * \param pagenr The page index used to compute the kva offset. 883 * \param sector The 512b sector index used to compute the page relative 884 * kva offset. 885 * 886 * \return The computed global KVA offset. 887 */ 888 static inline uint8_t * 889 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector) 890 { 891 return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9)); 892 } 893 894 #ifdef XBB_USE_BOUNCE_BUFFERS 895 /** 896 * Given a page index and 512b sector offset within that page, 897 * calculate an offset into a request's local bounce memory region. 898 * 899 * \param reqlist The request structure whose bounce region will be accessed. 900 * \param pagenr The page index used to compute the bounce offset. 901 * \param sector The 512b sector index used to compute the page relative 902 * bounce offset. 903 * 904 * \return The computed global bounce buffer address. 905 */ 906 static inline uint8_t * 907 xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector) 908 { 909 return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9)); 910 } 911 #endif 912 913 /** 914 * Given a page number and 512b sector offset within that page, 915 * calculate an offset into the request's memory region that the 916 * underlying backend device/file should use for I/O. 917 * 918 * \param reqlist The request structure whose I/O region will be accessed. 919 * \param pagenr The page index used to compute the I/O offset. 920 * \param sector The 512b sector index used to compute the page relative 921 * I/O offset. 922 * 923 * \return The computed global I/O address. 924 * 925 * Depending on configuration, this will either be a local bounce buffer 926 * or a pointer to the memory mapped in from the front-end domain for 927 * this request. 928 */ 929 static inline uint8_t * 930 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector) 931 { 932 #ifdef XBB_USE_BOUNCE_BUFFERS 933 return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector)); 934 #else 935 return (xbb_reqlist_vaddr(reqlist, pagenr, sector)); 936 #endif 937 } 938 939 /** 940 * Given a page index and 512b sector offset within that page, calculate 941 * an offset into the local psuedo-physical address space used to map a 942 * front-end's request data into a request. 943 * 944 * \param reqlist The request list structure whose pseudo-physical region 945 * will be accessed. 946 * \param pagenr The page index used to compute the pseudo-physical offset. 947 * \param sector The 512b sector index used to compute the page relative 948 * pseudo-physical offset. 949 * 950 * \return The computed global pseudo-phsyical address. 951 * 952 * Depending on configuration, this will either be a local bounce buffer 953 * or a pointer to the memory mapped in from the front-end domain for 954 * this request. 955 */ 956 static inline uintptr_t 957 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector) 958 { 959 struct xbb_softc *xbb; 960 961 xbb = reqlist->xbb; 962 963 return ((uintptr_t)(xbb->gnt_base_addr + 964 (uintptr_t)(reqlist->kva - xbb->kva) + 965 (PAGE_SIZE * pagenr) + (sector << 9))); 966 } 967 968 /** 969 * Get Kernel Virtual Address space for mapping requests. 970 * 971 * \param xbb Per-instance xbb configuration structure. 972 * \param nr_pages Number of pages needed. 973 * \param check_only If set, check for free KVA but don't allocate it. 974 * \param have_lock If set, xbb lock is already held. 975 * 976 * \return On success, a pointer to the allocated KVA region. Otherwise NULL. 977 * 978 * Note: This should be unnecessary once we have either chaining or 979 * scatter/gather support for struct bio. At that point we'll be able to 980 * put multiple addresses and lengths in one bio/bio chain and won't need 981 * to map everything into one virtual segment. 982 */ 983 static uint8_t * 984 xbb_get_kva(struct xbb_softc *xbb, int nr_pages) 985 { 986 intptr_t first_clear; 987 intptr_t num_clear; 988 uint8_t *free_kva; 989 int i; 990 991 KASSERT(nr_pages != 0, ("xbb_get_kva of zero length")); 992 993 first_clear = 0; 994 free_kva = NULL; 995 996 mtx_lock(&xbb->lock); 997 998 /* 999 * Look for the first available page. If there are none, we're done. 1000 */ 1001 bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear); 1002 1003 if (first_clear == -1) 1004 goto bailout; 1005 1006 /* 1007 * Starting at the first available page, look for consecutive free 1008 * pages that will satisfy the user's request. 1009 */ 1010 for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) { 1011 /* 1012 * If this is true, the page is used, so we have to reset 1013 * the number of clear pages and the first clear page 1014 * (since it pointed to a region with an insufficient number 1015 * of clear pages). 1016 */ 1017 if (bit_test(xbb->kva_free, i)) { 1018 num_clear = 0; 1019 first_clear = -1; 1020 continue; 1021 } 1022 1023 if (first_clear == -1) 1024 first_clear = i; 1025 1026 /* 1027 * If this is true, we've found a large enough free region 1028 * to satisfy the request. 1029 */ 1030 if (++num_clear == nr_pages) { 1031 1032 bit_nset(xbb->kva_free, first_clear, 1033 first_clear + nr_pages - 1); 1034 1035 free_kva = xbb->kva + 1036 (uint8_t *)(first_clear * PAGE_SIZE); 1037 1038 KASSERT(free_kva >= (uint8_t *)xbb->kva && 1039 free_kva + (nr_pages * PAGE_SIZE) <= 1040 (uint8_t *)xbb->ring_config.va, 1041 ("Free KVA %p len %d out of range, " 1042 "kva = %#jx, ring VA = %#jx\n", free_kva, 1043 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva, 1044 (uintmax_t)xbb->ring_config.va)); 1045 break; 1046 } 1047 } 1048 1049 bailout: 1050 1051 if (free_kva == NULL) { 1052 xbb->flags |= XBBF_RESOURCE_SHORTAGE; 1053 xbb->kva_shortages++; 1054 } 1055 1056 mtx_unlock(&xbb->lock); 1057 1058 return (free_kva); 1059 } 1060 1061 /** 1062 * Free allocated KVA. 1063 * 1064 * \param xbb Per-instance xbb configuration structure. 1065 * \param kva_ptr Pointer to allocated KVA region. 1066 * \param nr_pages Number of pages in the KVA region. 1067 */ 1068 static void 1069 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages) 1070 { 1071 intptr_t start_page; 1072 1073 mtx_assert(&xbb->lock, MA_OWNED); 1074 1075 start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT; 1076 bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1); 1077 1078 } 1079 1080 /** 1081 * Unmap the front-end pages associated with this I/O request. 1082 * 1083 * \param req The request structure to unmap. 1084 */ 1085 static void 1086 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist) 1087 { 1088 struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST]; 1089 u_int i; 1090 u_int invcount; 1091 int error; 1092 1093 invcount = 0; 1094 for (i = 0; i < reqlist->nr_segments; i++) { 1095 1096 if (reqlist->gnt_handles[i] == GRANT_REF_INVALID) 1097 continue; 1098 1099 unmap[invcount].host_addr = xbb_get_gntaddr(reqlist, i, 0); 1100 unmap[invcount].dev_bus_addr = 0; 1101 unmap[invcount].handle = reqlist->gnt_handles[i]; 1102 reqlist->gnt_handles[i] = GRANT_REF_INVALID; 1103 invcount++; 1104 } 1105 1106 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, 1107 unmap, invcount); 1108 KASSERT(error == 0, ("Grant table operation failed")); 1109 } 1110 1111 /** 1112 * Allocate an internal transaction tracking structure from the free pool. 1113 * 1114 * \param xbb Per-instance xbb configuration structure. 1115 * 1116 * \return On success, a pointer to the allocated xbb_xen_reqlist structure. 1117 * Otherwise NULL. 1118 */ 1119 static inline struct xbb_xen_reqlist * 1120 xbb_get_reqlist(struct xbb_softc *xbb) 1121 { 1122 struct xbb_xen_reqlist *reqlist; 1123 1124 reqlist = NULL; 1125 1126 mtx_assert(&xbb->lock, MA_OWNED); 1127 1128 if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) { 1129 1130 STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links); 1131 reqlist->flags = XBB_REQLIST_NONE; 1132 reqlist->kva = NULL; 1133 reqlist->status = BLKIF_RSP_OKAY; 1134 reqlist->residual_512b_sectors = 0; 1135 reqlist->num_children = 0; 1136 reqlist->nr_segments = 0; 1137 STAILQ_INIT(&reqlist->contig_req_list); 1138 } 1139 1140 return (reqlist); 1141 } 1142 1143 /** 1144 * Return an allocated transaction tracking structure to the free pool. 1145 * 1146 * \param xbb Per-instance xbb configuration structure. 1147 * \param req The request list structure to free. 1148 * \param wakeup If set, wakeup the work thread if freeing this reqlist 1149 * during a resource shortage condition. 1150 */ 1151 static inline void 1152 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist, 1153 int wakeup) 1154 { 1155 1156 mtx_lock(&xbb->lock); 1157 1158 if (wakeup) { 1159 wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE; 1160 xbb->flags &= ~XBBF_RESOURCE_SHORTAGE; 1161 } 1162 1163 if (reqlist->kva != NULL) 1164 xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments); 1165 1166 xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children); 1167 1168 STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links); 1169 1170 if ((xbb->flags & XBBF_SHUTDOWN) != 0) { 1171 /* 1172 * Shutdown is in progress. See if we can 1173 * progress further now that one more request 1174 * has completed and been returned to the 1175 * free pool. 1176 */ 1177 xbb_shutdown(xbb); 1178 } 1179 1180 mtx_unlock(&xbb->lock); 1181 1182 if (wakeup != 0) 1183 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 1184 } 1185 1186 /** 1187 * Request resources and do basic request setup. 1188 * 1189 * \param xbb Per-instance xbb configuration structure. 1190 * \param reqlist Pointer to reqlist pointer. 1191 * \param ring_req Pointer to a block ring request. 1192 * \param ring_index The ring index of this request. 1193 * 1194 * \return 0 for success, non-zero for failure. 1195 */ 1196 static int 1197 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist, 1198 blkif_request_t *ring_req, RING_IDX ring_idx) 1199 { 1200 struct xbb_xen_reqlist *nreqlist; 1201 struct xbb_xen_req *nreq; 1202 1203 nreqlist = NULL; 1204 nreq = NULL; 1205 1206 mtx_lock(&xbb->lock); 1207 1208 /* 1209 * We don't allow new resources to be allocated if we're in the 1210 * process of shutting down. 1211 */ 1212 if ((xbb->flags & XBBF_SHUTDOWN) != 0) { 1213 mtx_unlock(&xbb->lock); 1214 return (1); 1215 } 1216 1217 /* 1218 * Allocate a reqlist if the caller doesn't have one already. 1219 */ 1220 if (*reqlist == NULL) { 1221 nreqlist = xbb_get_reqlist(xbb); 1222 if (nreqlist == NULL) 1223 goto bailout_error; 1224 } 1225 1226 /* We always allocate a request. */ 1227 nreq = xbb_get_req(xbb); 1228 if (nreq == NULL) 1229 goto bailout_error; 1230 1231 mtx_unlock(&xbb->lock); 1232 1233 if (*reqlist == NULL) { 1234 *reqlist = nreqlist; 1235 nreqlist->operation = ring_req->operation; 1236 nreqlist->starting_sector_number = ring_req->sector_number; 1237 STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist, 1238 links); 1239 } 1240 1241 nreq->reqlist = *reqlist; 1242 nreq->req_ring_idx = ring_idx; 1243 1244 if (xbb->abi != BLKIF_PROTOCOL_NATIVE) { 1245 bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req)); 1246 nreq->ring_req = &nreq->ring_req_storage; 1247 } else { 1248 nreq->ring_req = ring_req; 1249 } 1250 1251 binuptime(&nreq->ds_t0); 1252 devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0); 1253 STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links); 1254 (*reqlist)->num_children++; 1255 (*reqlist)->nr_segments += ring_req->nr_segments; 1256 1257 return (0); 1258 1259 bailout_error: 1260 1261 /* 1262 * We're out of resources, so set the shortage flag. The next time 1263 * a request is released, we'll try waking up the work thread to 1264 * see if we can allocate more resources. 1265 */ 1266 xbb->flags |= XBBF_RESOURCE_SHORTAGE; 1267 xbb->request_shortages++; 1268 1269 if (nreq != NULL) 1270 xbb_release_req(xbb, nreq); 1271 1272 mtx_unlock(&xbb->lock); 1273 1274 if (nreqlist != NULL) 1275 xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0); 1276 1277 return (1); 1278 } 1279 1280 /** 1281 * Create and transmit a response to a blkif request. 1282 * 1283 * \param xbb Per-instance xbb configuration structure. 1284 * \param req The request structure to which to respond. 1285 * \param status The status code to report. See BLKIF_RSP_* 1286 * in sys/xen/interface/io/blkif.h. 1287 */ 1288 static void 1289 xbb_send_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status) 1290 { 1291 blkif_response_t *resp; 1292 int more_to_do; 1293 int notify; 1294 1295 more_to_do = 0; 1296 1297 /* 1298 * Place on the response ring for the relevant domain. 1299 * For now, only the spacing between entries is different 1300 * in the different ABIs, not the response entry layout. 1301 */ 1302 mtx_lock(&xbb->lock); 1303 switch (xbb->abi) { 1304 case BLKIF_PROTOCOL_NATIVE: 1305 resp = RING_GET_RESPONSE(&xbb->rings.native, 1306 xbb->rings.native.rsp_prod_pvt); 1307 break; 1308 case BLKIF_PROTOCOL_X86_32: 1309 resp = (blkif_response_t *) 1310 RING_GET_RESPONSE(&xbb->rings.x86_32, 1311 xbb->rings.x86_32.rsp_prod_pvt); 1312 break; 1313 case BLKIF_PROTOCOL_X86_64: 1314 resp = (blkif_response_t *) 1315 RING_GET_RESPONSE(&xbb->rings.x86_64, 1316 xbb->rings.x86_64.rsp_prod_pvt); 1317 break; 1318 default: 1319 panic("Unexpected blkif protocol ABI."); 1320 } 1321 1322 resp->id = req->id; 1323 resp->operation = req->operation; 1324 resp->status = status; 1325 1326 xbb->rings.common.rsp_prod_pvt += BLKIF_SEGS_TO_BLOCKS(req->nr_pages); 1327 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, notify); 1328 1329 if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) { 1330 1331 /* 1332 * Tail check for pending requests. Allows frontend to avoid 1333 * notifications if requests are already in flight (lower 1334 * overheads and promotes batching). 1335 */ 1336 RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do); 1337 } else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) { 1338 1339 more_to_do = 1; 1340 } 1341 1342 xbb->reqs_completed++; 1343 1344 mtx_unlock(&xbb->lock); 1345 1346 if (more_to_do) 1347 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 1348 1349 if (notify) 1350 notify_remote_via_irq(xbb->irq); 1351 } 1352 1353 /** 1354 * Complete a request list. 1355 * 1356 * \param xbb Per-instance xbb configuration structure. 1357 * \param reqlist Allocated internal request list structure. 1358 */ 1359 static void 1360 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist) 1361 { 1362 struct xbb_xen_req *nreq; 1363 off_t sectors_sent; 1364 1365 sectors_sent = 0; 1366 1367 if (reqlist->flags & XBB_REQLIST_MAPPED) 1368 xbb_unmap_reqlist(reqlist); 1369 1370 /* 1371 * All I/O is done, send the response. A lock should not be 1372 * necessary here because the request list is complete, and 1373 * therefore this is the only context accessing this request 1374 * right now. The functions we call do their own locking if 1375 * necessary. 1376 */ 1377 STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) { 1378 off_t cur_sectors_sent; 1379 1380 xbb_send_response(xbb, nreq, reqlist->status); 1381 1382 /* We don't report bytes sent if there is an error. */ 1383 if (reqlist->status == BLKIF_RSP_OKAY) 1384 cur_sectors_sent = nreq->nr_512b_sectors; 1385 else 1386 cur_sectors_sent = 0; 1387 1388 sectors_sent += cur_sectors_sent; 1389 1390 devstat_end_transaction(xbb->xbb_stats_in, 1391 /*bytes*/cur_sectors_sent << 9, 1392 reqlist->ds_tag_type, 1393 reqlist->ds_trans_type, 1394 /*now*/NULL, 1395 /*then*/&nreq->ds_t0); 1396 } 1397 1398 /* 1399 * Take out any sectors not sent. If we wind up negative (which 1400 * might happen if an error is reported as well as a residual), just 1401 * report 0 sectors sent. 1402 */ 1403 sectors_sent -= reqlist->residual_512b_sectors; 1404 if (sectors_sent < 0) 1405 sectors_sent = 0; 1406 1407 devstat_end_transaction(xbb->xbb_stats, 1408 /*bytes*/ sectors_sent << 9, 1409 reqlist->ds_tag_type, 1410 reqlist->ds_trans_type, 1411 /*now*/NULL, 1412 /*then*/&reqlist->ds_t0); 1413 1414 xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1); 1415 } 1416 1417 /** 1418 * Completion handler for buffer I/O requests issued by the device 1419 * backend driver. 1420 * 1421 * \param bio The buffer I/O request on which to perform completion 1422 * processing. 1423 */ 1424 static void 1425 xbb_bio_done(struct bio *bio) 1426 { 1427 struct xbb_softc *xbb; 1428 struct xbb_xen_reqlist *reqlist; 1429 1430 reqlist = bio->bio_caller1; 1431 xbb = reqlist->xbb; 1432 1433 reqlist->residual_512b_sectors += bio->bio_resid >> 9; 1434 1435 /* 1436 * This is a bit imprecise. With aggregated I/O a single 1437 * request list can contain multiple front-end requests and 1438 * a multiple bios may point to a single request. By carefully 1439 * walking the request list, we could map residuals and errors 1440 * back to the original front-end request, but the interface 1441 * isn't sufficiently rich for us to properly report the error. 1442 * So, we just treat the entire request list as having failed if an 1443 * error occurs on any part. And, if an error occurs, we treat 1444 * the amount of data transferred as 0. 1445 * 1446 * For residuals, we report it on the overall aggregated device, 1447 * but not on the individual requests, since we don't currently 1448 * do the work to determine which front-end request to which the 1449 * residual applies. 1450 */ 1451 if (bio->bio_error) { 1452 DPRINTF("BIO returned error %d for operation on device %s\n", 1453 bio->bio_error, xbb->dev_name); 1454 reqlist->status = BLKIF_RSP_ERROR; 1455 1456 if (bio->bio_error == ENXIO 1457 && xenbus_get_state(xbb->dev) == XenbusStateConnected) { 1458 1459 /* 1460 * Backend device has disappeared. Signal the 1461 * front-end that we (the device proxy) want to 1462 * go away. 1463 */ 1464 xenbus_set_state(xbb->dev, XenbusStateClosing); 1465 } 1466 } 1467 1468 #ifdef XBB_USE_BOUNCE_BUFFERS 1469 if (bio->bio_cmd == BIO_READ) { 1470 vm_offset_t kva_offset; 1471 1472 kva_offset = (vm_offset_t)bio->bio_data 1473 - (vm_offset_t)reqlist->bounce; 1474 memcpy((uint8_t *)reqlist->kva + kva_offset, 1475 bio->bio_data, bio->bio_bcount); 1476 } 1477 #endif /* XBB_USE_BOUNCE_BUFFERS */ 1478 1479 /* 1480 * Decrement the pending count for the request list. When we're 1481 * done with the requests, send status back for all of them. 1482 */ 1483 if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1) 1484 xbb_complete_reqlist(xbb, reqlist); 1485 1486 g_destroy_bio(bio); 1487 } 1488 1489 /** 1490 * Parse a blkif request into an internal request structure and send 1491 * it to the backend for processing. 1492 * 1493 * \param xbb Per-instance xbb configuration structure. 1494 * \param reqlist Allocated internal request list structure. 1495 * 1496 * \return On success, 0. For resource shortages, non-zero. 1497 * 1498 * This routine performs the backend common aspects of request parsing 1499 * including compiling an internal request structure, parsing the S/G 1500 * list and any secondary ring requests in which they may reside, and 1501 * the mapping of front-end I/O pages into our domain. 1502 */ 1503 static int 1504 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist) 1505 { 1506 struct xbb_sg *xbb_sg; 1507 struct gnttab_map_grant_ref *map; 1508 struct blkif_request_segment *sg; 1509 struct blkif_request_segment *last_block_sg; 1510 struct xbb_xen_req *nreq; 1511 u_int nseg; 1512 u_int seg_idx; 1513 u_int block_segs; 1514 int nr_sects; 1515 int total_sects; 1516 int operation; 1517 uint8_t bio_flags; 1518 int error; 1519 1520 reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE; 1521 bio_flags = 0; 1522 total_sects = 0; 1523 nr_sects = 0; 1524 1525 /* 1526 * First determine whether we have enough free KVA to satisfy this 1527 * request list. If not, tell xbb_run_queue() so it can go to 1528 * sleep until we have more KVA. 1529 */ 1530 reqlist->kva = NULL; 1531 if (reqlist->nr_segments != 0) { 1532 reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments); 1533 if (reqlist->kva == NULL) { 1534 /* 1535 * If we're out of KVA, return ENOMEM. 1536 */ 1537 return (ENOMEM); 1538 } 1539 } 1540 1541 binuptime(&reqlist->ds_t0); 1542 devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0); 1543 1544 switch (reqlist->operation) { 1545 case BLKIF_OP_WRITE_BARRIER: 1546 bio_flags |= BIO_ORDERED; 1547 reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED; 1548 /* FALLTHROUGH */ 1549 case BLKIF_OP_WRITE: 1550 operation = BIO_WRITE; 1551 reqlist->ds_trans_type = DEVSTAT_WRITE; 1552 if ((xbb->flags & XBBF_READ_ONLY) != 0) { 1553 DPRINTF("Attempt to write to read only device %s\n", 1554 xbb->dev_name); 1555 reqlist->status = BLKIF_RSP_ERROR; 1556 goto send_response; 1557 } 1558 break; 1559 case BLKIF_OP_READ: 1560 operation = BIO_READ; 1561 reqlist->ds_trans_type = DEVSTAT_READ; 1562 break; 1563 case BLKIF_OP_FLUSH_DISKCACHE: 1564 /* 1565 * If this is true, the user has requested that we disable 1566 * flush support. So we just complete the requests 1567 * successfully. 1568 */ 1569 if (xbb->disable_flush != 0) { 1570 goto send_response; 1571 } 1572 1573 /* 1574 * The user has requested that we only send a real flush 1575 * for every N flush requests. So keep count, and either 1576 * complete the request immediately or queue it for the 1577 * backend. 1578 */ 1579 if (xbb->flush_interval != 0) { 1580 if (++(xbb->flush_count) < xbb->flush_interval) { 1581 goto send_response; 1582 } else 1583 xbb->flush_count = 0; 1584 } 1585 1586 operation = BIO_FLUSH; 1587 reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED; 1588 reqlist->ds_trans_type = DEVSTAT_NO_DATA; 1589 goto do_dispatch; 1590 /*NOTREACHED*/ 1591 default: 1592 DPRINTF("error: unknown block io operation [%d]\n", 1593 reqlist->operation); 1594 reqlist->status = BLKIF_RSP_ERROR; 1595 goto send_response; 1596 } 1597 1598 reqlist->xbb = xbb; 1599 xbb_sg = xbb->xbb_sgs; 1600 map = xbb->maps; 1601 seg_idx = 0; 1602 1603 STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) { 1604 blkif_request_t *ring_req; 1605 RING_IDX req_ring_idx; 1606 u_int req_seg_idx; 1607 1608 ring_req = nreq->ring_req; 1609 req_ring_idx = nreq->req_ring_idx; 1610 nr_sects = 0; 1611 nseg = ring_req->nr_segments; 1612 nreq->id = ring_req->id; 1613 nreq->nr_pages = nseg; 1614 nreq->nr_512b_sectors = 0; 1615 req_seg_idx = 0; 1616 sg = NULL; 1617 1618 /* Check that number of segments is sane. */ 1619 if (unlikely(nseg == 0) 1620 || unlikely(nseg > xbb->max_request_segments)) { 1621 DPRINTF("Bad number of segments in request (%d)\n", 1622 nseg); 1623 reqlist->status = BLKIF_RSP_ERROR; 1624 goto send_response; 1625 } 1626 1627 block_segs = MIN(nreq->nr_pages, 1628 BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK); 1629 sg = ring_req->seg; 1630 last_block_sg = sg + block_segs; 1631 while (1) { 1632 1633 while (sg < last_block_sg) { 1634 KASSERT(seg_idx < 1635 XBB_MAX_SEGMENTS_PER_REQLIST, 1636 ("seg_idx %d is too large, max " 1637 "segs %d\n", seg_idx, 1638 XBB_MAX_SEGMENTS_PER_REQLIST)); 1639 1640 xbb_sg->first_sect = sg->first_sect; 1641 xbb_sg->last_sect = sg->last_sect; 1642 xbb_sg->nsect = 1643 (int8_t)(sg->last_sect - 1644 sg->first_sect + 1); 1645 1646 if ((sg->last_sect >= (PAGE_SIZE >> 9)) 1647 || (xbb_sg->nsect <= 0)) { 1648 reqlist->status = BLKIF_RSP_ERROR; 1649 goto send_response; 1650 } 1651 1652 nr_sects += xbb_sg->nsect; 1653 map->host_addr = xbb_get_gntaddr(reqlist, 1654 seg_idx, /*sector*/0); 1655 KASSERT(map->host_addr + PAGE_SIZE <= 1656 xbb->ring_config.gnt_addr, 1657 ("Host address %#jx len %d overlaps " 1658 "ring address %#jx\n", 1659 (uintmax_t)map->host_addr, PAGE_SIZE, 1660 (uintmax_t)xbb->ring_config.gnt_addr)); 1661 1662 map->flags = GNTMAP_host_map; 1663 map->ref = sg->gref; 1664 map->dom = xbb->otherend_id; 1665 if (operation == BIO_WRITE) 1666 map->flags |= GNTMAP_readonly; 1667 sg++; 1668 map++; 1669 xbb_sg++; 1670 seg_idx++; 1671 req_seg_idx++; 1672 } 1673 1674 block_segs = MIN(nseg - req_seg_idx, 1675 BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK); 1676 if (block_segs == 0) 1677 break; 1678 1679 /* 1680 * Fetch the next request block full of SG elements. 1681 * For now, only the spacing between entries is 1682 * different in the different ABIs, not the sg entry 1683 * layout. 1684 */ 1685 req_ring_idx++; 1686 switch (xbb->abi) { 1687 case BLKIF_PROTOCOL_NATIVE: 1688 sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.native, 1689 req_ring_idx); 1690 break; 1691 case BLKIF_PROTOCOL_X86_32: 1692 { 1693 sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_32, 1694 req_ring_idx); 1695 break; 1696 } 1697 case BLKIF_PROTOCOL_X86_64: 1698 { 1699 sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_64, 1700 req_ring_idx); 1701 break; 1702 } 1703 default: 1704 panic("Unexpected blkif protocol ABI."); 1705 /* NOTREACHED */ 1706 } 1707 last_block_sg = sg + block_segs; 1708 } 1709 1710 /* Convert to the disk's sector size */ 1711 nreq->nr_512b_sectors = nr_sects; 1712 nr_sects = (nr_sects << 9) >> xbb->sector_size_shift; 1713 total_sects += nr_sects; 1714 1715 if ((nreq->nr_512b_sectors & 1716 ((xbb->sector_size >> 9) - 1)) != 0) { 1717 device_printf(xbb->dev, "%s: I/O size (%d) is not " 1718 "a multiple of the backing store sector " 1719 "size (%d)\n", __func__, 1720 nreq->nr_512b_sectors << 9, 1721 xbb->sector_size); 1722 reqlist->status = BLKIF_RSP_ERROR; 1723 goto send_response; 1724 } 1725 } 1726 1727 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, 1728 xbb->maps, reqlist->nr_segments); 1729 if (error != 0) 1730 panic("Grant table operation failed (%d)", error); 1731 1732 reqlist->flags |= XBB_REQLIST_MAPPED; 1733 1734 for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments; 1735 seg_idx++, map++){ 1736 1737 if (unlikely(map->status != 0)) { 1738 DPRINTF("invalid buffer -- could not remap " 1739 "it (%d)\n", map->status); 1740 DPRINTF("Mapping(%d): Host Addr 0x%lx, flags " 1741 "0x%x ref 0x%x, dom %d\n", seg_idx, 1742 map->host_addr, map->flags, map->ref, 1743 map->dom); 1744 reqlist->status = BLKIF_RSP_ERROR; 1745 goto send_response; 1746 } 1747 1748 reqlist->gnt_handles[seg_idx] = map->handle; 1749 } 1750 if (reqlist->starting_sector_number + total_sects > 1751 xbb->media_num_sectors) { 1752 1753 DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] " 1754 "extends past end of device %s\n", 1755 operation == BIO_READ ? "read" : "write", 1756 reqlist->starting_sector_number, 1757 reqlist->starting_sector_number + total_sects, 1758 xbb->dev_name); 1759 reqlist->status = BLKIF_RSP_ERROR; 1760 goto send_response; 1761 } 1762 1763 do_dispatch: 1764 1765 error = xbb->dispatch_io(xbb, 1766 reqlist, 1767 operation, 1768 bio_flags); 1769 1770 if (error != 0) { 1771 reqlist->status = BLKIF_RSP_ERROR; 1772 goto send_response; 1773 } 1774 1775 return (0); 1776 1777 send_response: 1778 1779 xbb_complete_reqlist(xbb, reqlist); 1780 1781 return (0); 1782 } 1783 1784 static __inline int 1785 xbb_count_sects(blkif_request_t *ring_req) 1786 { 1787 int i; 1788 int cur_size = 0; 1789 1790 for (i = 0; i < ring_req->nr_segments; i++) { 1791 int nsect; 1792 1793 nsect = (int8_t)(ring_req->seg[i].last_sect - 1794 ring_req->seg[i].first_sect + 1); 1795 if (nsect <= 0) 1796 break; 1797 1798 cur_size += nsect; 1799 } 1800 1801 return (cur_size); 1802 } 1803 1804 /** 1805 * Process incoming requests from the shared communication ring in response 1806 * to a signal on the ring's event channel. 1807 * 1808 * \param context Callback argument registerd during task initialization - 1809 * the xbb_softc for this instance. 1810 * \param pending The number of taskqueue_enqueue events that have 1811 * occurred since this handler was last run. 1812 */ 1813 static void 1814 xbb_run_queue(void *context, int pending) 1815 { 1816 struct xbb_softc *xbb; 1817 blkif_back_rings_t *rings; 1818 RING_IDX rp; 1819 uint64_t cur_sector; 1820 int cur_operation; 1821 struct xbb_xen_reqlist *reqlist; 1822 1823 1824 xbb = (struct xbb_softc *)context; 1825 rings = &xbb->rings; 1826 1827 /* 1828 * Work gather and dispatch loop. Note that we have a bias here 1829 * towards gathering I/O sent by blockfront. We first gather up 1830 * everything in the ring, as long as we have resources. Then we 1831 * dispatch one request, and then attempt to gather up any 1832 * additional requests that have come in while we were dispatching 1833 * the request. 1834 * 1835 * This allows us to get a clearer picture (via devstat) of how 1836 * many requests blockfront is queueing to us at any given time. 1837 */ 1838 for (;;) { 1839 int retval; 1840 1841 /* 1842 * Initialize reqlist to the last element in the pending 1843 * queue, if there is one. This allows us to add more 1844 * requests to that request list, if we have room. 1845 */ 1846 reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq, 1847 xbb_xen_reqlist, links); 1848 if (reqlist != NULL) { 1849 cur_sector = reqlist->next_contig_sector; 1850 cur_operation = reqlist->operation; 1851 } else { 1852 cur_operation = 0; 1853 cur_sector = 0; 1854 } 1855 1856 /* 1857 * Cache req_prod to avoid accessing a cache line shared 1858 * with the frontend. 1859 */ 1860 rp = rings->common.sring->req_prod; 1861 1862 /* Ensure we see queued requests up to 'rp'. */ 1863 rmb(); 1864 1865 /** 1866 * Run so long as there is work to consume and the generation 1867 * of a response will not overflow the ring. 1868 * 1869 * @note There's a 1 to 1 relationship between requests and 1870 * responses, so an overflow should never occur. This 1871 * test is to protect our domain from digesting bogus 1872 * data. Shouldn't we log this? 1873 */ 1874 while (rings->common.req_cons != rp 1875 && RING_REQUEST_CONS_OVERFLOW(&rings->common, 1876 rings->common.req_cons) == 0){ 1877 blkif_request_t ring_req_storage; 1878 blkif_request_t *ring_req; 1879 int cur_size; 1880 1881 switch (xbb->abi) { 1882 case BLKIF_PROTOCOL_NATIVE: 1883 ring_req = RING_GET_REQUEST(&xbb->rings.native, 1884 rings->common.req_cons); 1885 break; 1886 case BLKIF_PROTOCOL_X86_32: 1887 { 1888 struct blkif_x86_32_request *ring_req32; 1889 1890 ring_req32 = RING_GET_REQUEST( 1891 &xbb->rings.x86_32, rings->common.req_cons); 1892 blkif_get_x86_32_req(&ring_req_storage, 1893 ring_req32); 1894 ring_req = &ring_req_storage; 1895 break; 1896 } 1897 case BLKIF_PROTOCOL_X86_64: 1898 { 1899 struct blkif_x86_64_request *ring_req64; 1900 1901 ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64, 1902 rings->common.req_cons); 1903 blkif_get_x86_64_req(&ring_req_storage, 1904 ring_req64); 1905 ring_req = &ring_req_storage; 1906 break; 1907 } 1908 default: 1909 panic("Unexpected blkif protocol ABI."); 1910 /* NOTREACHED */ 1911 } 1912 1913 /* 1914 * Check for situations that would require closing 1915 * off this I/O for further coalescing: 1916 * - Coalescing is turned off. 1917 * - Current I/O is out of sequence with the previous 1918 * I/O. 1919 * - Coalesced I/O would be too large. 1920 */ 1921 if ((reqlist != NULL) 1922 && ((xbb->no_coalesce_reqs != 0) 1923 || ((xbb->no_coalesce_reqs == 0) 1924 && ((ring_req->sector_number != cur_sector) 1925 || (ring_req->operation != cur_operation) 1926 || ((ring_req->nr_segments + reqlist->nr_segments) > 1927 xbb->max_reqlist_segments))))) { 1928 reqlist = NULL; 1929 } 1930 1931 /* 1932 * Grab and check for all resources in one shot. 1933 * If we can't get all of the resources we need, 1934 * the shortage is noted and the thread will get 1935 * woken up when more resources are available. 1936 */ 1937 retval = xbb_get_resources(xbb, &reqlist, ring_req, 1938 xbb->rings.common.req_cons); 1939 1940 if (retval != 0) { 1941 /* 1942 * Resource shortage has been recorded. 1943 * We'll be scheduled to run once a request 1944 * object frees up due to a completion. 1945 */ 1946 break; 1947 } 1948 1949 /* 1950 * Signify that we can overwrite this request with 1951 * a response by incrementing our consumer index. 1952 * The response won't be generated until after 1953 * we've already consumed all necessary data out 1954 * of the version of the request in the ring buffer 1955 * (for native mode). We must update the consumer 1956 * index before issueing back-end I/O so there is 1957 * no possibility that it will complete and a 1958 * response be generated before we make room in 1959 * the queue for that response. 1960 */ 1961 xbb->rings.common.req_cons += 1962 BLKIF_SEGS_TO_BLOCKS(ring_req->nr_segments); 1963 xbb->reqs_received++; 1964 1965 cur_size = xbb_count_sects(ring_req); 1966 cur_sector = ring_req->sector_number + cur_size; 1967 reqlist->next_contig_sector = cur_sector; 1968 cur_operation = ring_req->operation; 1969 } 1970 1971 /* Check for I/O to dispatch */ 1972 reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq); 1973 if (reqlist == NULL) { 1974 /* 1975 * We're out of work to do, put the task queue to 1976 * sleep. 1977 */ 1978 break; 1979 } 1980 1981 /* 1982 * Grab the first request off the queue and attempt 1983 * to dispatch it. 1984 */ 1985 STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links); 1986 1987 retval = xbb_dispatch_io(xbb, reqlist); 1988 if (retval != 0) { 1989 /* 1990 * xbb_dispatch_io() returns non-zero only when 1991 * there is a resource shortage. If that's the 1992 * case, re-queue this request on the head of the 1993 * queue, and go to sleep until we have more 1994 * resources. 1995 */ 1996 STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq, 1997 reqlist, links); 1998 break; 1999 } else { 2000 /* 2001 * If we still have anything on the queue after 2002 * removing the head entry, that is because we 2003 * met one of the criteria to create a new 2004 * request list (outlined above), and we'll call 2005 * that a forced dispatch for statistical purposes. 2006 * 2007 * Otherwise, if there is only one element on the 2008 * queue, we coalesced everything available on 2009 * the ring and we'll call that a normal dispatch. 2010 */ 2011 reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq); 2012 2013 if (reqlist != NULL) 2014 xbb->forced_dispatch++; 2015 else 2016 xbb->normal_dispatch++; 2017 2018 xbb->total_dispatch++; 2019 } 2020 } 2021 } 2022 2023 /** 2024 * Interrupt handler bound to the shared ring's event channel. 2025 * 2026 * \param arg Callback argument registerd during event channel 2027 * binding - the xbb_softc for this instance. 2028 */ 2029 static void 2030 xbb_intr(void *arg) 2031 { 2032 struct xbb_softc *xbb; 2033 2034 /* Defer to kernel thread. */ 2035 xbb = (struct xbb_softc *)arg; 2036 taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task); 2037 } 2038 2039 SDT_PROVIDER_DEFINE(xbb); 2040 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, flush, "int"); 2041 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, read, "int", "uint64_t", 2042 "uint64_t"); 2043 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, write, "int", 2044 "uint64_t", "uint64_t"); 2045 2046 /*----------------------------- Backend Handlers -----------------------------*/ 2047 /** 2048 * Backend handler for character device access. 2049 * 2050 * \param xbb Per-instance xbb configuration structure. 2051 * \param reqlist Allocated internal request list structure. 2052 * \param operation BIO_* I/O operation code. 2053 * \param bio_flags Additional bio_flag data to pass to any generated 2054 * bios (e.g. BIO_ORDERED).. 2055 * 2056 * \return 0 for success, errno codes for failure. 2057 */ 2058 static int 2059 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist, 2060 int operation, int bio_flags) 2061 { 2062 struct xbb_dev_data *dev_data; 2063 struct bio *bios[XBB_MAX_SEGMENTS_PER_REQLIST]; 2064 struct xbb_xen_req *nreq; 2065 off_t bio_offset; 2066 struct bio *bio; 2067 struct xbb_sg *xbb_sg; 2068 u_int nbio; 2069 u_int bio_idx; 2070 u_int nseg; 2071 u_int seg_idx; 2072 int error; 2073 2074 dev_data = &xbb->backend.dev; 2075 bio_offset = (off_t)reqlist->starting_sector_number 2076 << xbb->sector_size_shift; 2077 error = 0; 2078 nbio = 0; 2079 bio_idx = 0; 2080 2081 if (operation == BIO_FLUSH) { 2082 nreq = STAILQ_FIRST(&reqlist->contig_req_list); 2083 bio = g_new_bio(); 2084 if (unlikely(bio == NULL)) { 2085 DPRINTF("Unable to allocate bio for BIO_FLUSH\n"); 2086 error = ENOMEM; 2087 return (error); 2088 } 2089 2090 bio->bio_cmd = BIO_FLUSH; 2091 bio->bio_flags |= BIO_ORDERED; 2092 bio->bio_dev = dev_data->cdev; 2093 bio->bio_offset = 0; 2094 bio->bio_data = 0; 2095 bio->bio_done = xbb_bio_done; 2096 bio->bio_caller1 = nreq; 2097 bio->bio_pblkno = 0; 2098 2099 nreq->pendcnt = 1; 2100 2101 SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush, 2102 device_get_unit(xbb->dev)); 2103 2104 (*dev_data->csw->d_strategy)(bio); 2105 2106 return (0); 2107 } 2108 2109 xbb_sg = xbb->xbb_sgs; 2110 bio = NULL; 2111 nseg = reqlist->nr_segments; 2112 2113 for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) { 2114 2115 /* 2116 * KVA will not be contiguous, so any additional 2117 * I/O will need to be represented in a new bio. 2118 */ 2119 if ((bio != NULL) 2120 && (xbb_sg->first_sect != 0)) { 2121 if ((bio->bio_length & (xbb->sector_size - 1)) != 0) { 2122 printf("%s: Discontiguous I/O request " 2123 "from domain %d ends on " 2124 "non-sector boundary\n", 2125 __func__, xbb->otherend_id); 2126 error = EINVAL; 2127 goto fail_free_bios; 2128 } 2129 bio = NULL; 2130 } 2131 2132 if (bio == NULL) { 2133 /* 2134 * Make sure that the start of this bio is 2135 * aligned to a device sector. 2136 */ 2137 if ((bio_offset & (xbb->sector_size - 1)) != 0){ 2138 printf("%s: Misaligned I/O request " 2139 "from domain %d\n", __func__, 2140 xbb->otherend_id); 2141 error = EINVAL; 2142 goto fail_free_bios; 2143 } 2144 2145 bio = bios[nbio++] = g_new_bio(); 2146 if (unlikely(bio == NULL)) { 2147 error = ENOMEM; 2148 goto fail_free_bios; 2149 } 2150 bio->bio_cmd = operation; 2151 bio->bio_flags |= bio_flags; 2152 bio->bio_dev = dev_data->cdev; 2153 bio->bio_offset = bio_offset; 2154 bio->bio_data = xbb_reqlist_ioaddr(reqlist, seg_idx, 2155 xbb_sg->first_sect); 2156 bio->bio_done = xbb_bio_done; 2157 bio->bio_caller1 = reqlist; 2158 bio->bio_pblkno = bio_offset >> xbb->sector_size_shift; 2159 } 2160 2161 bio->bio_length += xbb_sg->nsect << 9; 2162 bio->bio_bcount = bio->bio_length; 2163 bio_offset += xbb_sg->nsect << 9; 2164 2165 if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) { 2166 2167 if ((bio->bio_length & (xbb->sector_size - 1)) != 0) { 2168 printf("%s: Discontiguous I/O request " 2169 "from domain %d ends on " 2170 "non-sector boundary\n", 2171 __func__, xbb->otherend_id); 2172 error = EINVAL; 2173 goto fail_free_bios; 2174 } 2175 /* 2176 * KVA will not be contiguous, so any additional 2177 * I/O will need to be represented in a new bio. 2178 */ 2179 bio = NULL; 2180 } 2181 } 2182 2183 reqlist->pendcnt = nbio; 2184 2185 for (bio_idx = 0; bio_idx < nbio; bio_idx++) 2186 { 2187 #ifdef XBB_USE_BOUNCE_BUFFERS 2188 vm_offset_t kva_offset; 2189 2190 kva_offset = (vm_offset_t)bios[bio_idx]->bio_data 2191 - (vm_offset_t)reqlist->bounce; 2192 if (operation == BIO_WRITE) { 2193 memcpy(bios[bio_idx]->bio_data, 2194 (uint8_t *)reqlist->kva + kva_offset, 2195 bios[bio_idx]->bio_bcount); 2196 } 2197 #endif 2198 if (operation == BIO_READ) { 2199 SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read, 2200 device_get_unit(xbb->dev), 2201 bios[bio_idx]->bio_offset, 2202 bios[bio_idx]->bio_length); 2203 } else if (operation == BIO_WRITE) { 2204 SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write, 2205 device_get_unit(xbb->dev), 2206 bios[bio_idx]->bio_offset, 2207 bios[bio_idx]->bio_length); 2208 } 2209 (*dev_data->csw->d_strategy)(bios[bio_idx]); 2210 } 2211 2212 return (error); 2213 2214 fail_free_bios: 2215 for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++) 2216 g_destroy_bio(bios[bio_idx]); 2217 2218 return (error); 2219 } 2220 2221 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, flush, "int"); 2222 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, read, "int", "uint64_t", 2223 "uint64_t"); 2224 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, write, "int", 2225 "uint64_t", "uint64_t"); 2226 2227 /** 2228 * Backend handler for file access. 2229 * 2230 * \param xbb Per-instance xbb configuration structure. 2231 * \param reqlist Allocated internal request list. 2232 * \param operation BIO_* I/O operation code. 2233 * \param flags Additional bio_flag data to pass to any generated bios 2234 * (e.g. BIO_ORDERED).. 2235 * 2236 * \return 0 for success, errno codes for failure. 2237 */ 2238 static int 2239 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist, 2240 int operation, int flags) 2241 { 2242 struct xbb_file_data *file_data; 2243 u_int seg_idx; 2244 u_int nseg; 2245 off_t sectors_sent; 2246 struct uio xuio; 2247 struct xbb_sg *xbb_sg; 2248 struct iovec *xiovec; 2249 #ifdef XBB_USE_BOUNCE_BUFFERS 2250 void **p_vaddr; 2251 int saved_uio_iovcnt; 2252 #endif /* XBB_USE_BOUNCE_BUFFERS */ 2253 int error; 2254 2255 file_data = &xbb->backend.file; 2256 sectors_sent = 0; 2257 error = 0; 2258 bzero(&xuio, sizeof(xuio)); 2259 2260 switch (operation) { 2261 case BIO_READ: 2262 xuio.uio_rw = UIO_READ; 2263 break; 2264 case BIO_WRITE: 2265 xuio.uio_rw = UIO_WRITE; 2266 break; 2267 case BIO_FLUSH: { 2268 struct mount *mountpoint; 2269 2270 SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush, 2271 device_get_unit(xbb->dev)); 2272 2273 (void) vn_start_write(xbb->vn, &mountpoint, V_WAIT); 2274 2275 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY); 2276 error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread); 2277 VOP_UNLOCK(xbb->vn, 0); 2278 2279 vn_finished_write(mountpoint); 2280 2281 goto bailout_send_response; 2282 /* NOTREACHED */ 2283 } 2284 default: 2285 panic("invalid operation %d", operation); 2286 /* NOTREACHED */ 2287 } 2288 xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number 2289 << xbb->sector_size_shift; 2290 xuio.uio_segflg = UIO_SYSSPACE; 2291 xuio.uio_iov = file_data->xiovecs; 2292 xuio.uio_iovcnt = 0; 2293 xbb_sg = xbb->xbb_sgs; 2294 nseg = reqlist->nr_segments; 2295 2296 for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) { 2297 2298 /* 2299 * If the first sector is not 0, the KVA will 2300 * not be contiguous and we'll need to go on 2301 * to another segment. 2302 */ 2303 if (xbb_sg->first_sect != 0) 2304 xiovec = NULL; 2305 2306 if (xiovec == NULL) { 2307 xiovec = &file_data->xiovecs[xuio.uio_iovcnt]; 2308 xiovec->iov_base = xbb_reqlist_ioaddr(reqlist, 2309 seg_idx, xbb_sg->first_sect); 2310 #ifdef XBB_USE_BOUNCE_BUFFERS 2311 /* 2312 * Store the address of the incoming 2313 * buffer at this particular offset 2314 * as well, so we can do the copy 2315 * later without having to do more 2316 * work to recalculate this address. 2317 */ 2318 p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt]; 2319 *p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx, 2320 xbb_sg->first_sect); 2321 #endif /* XBB_USE_BOUNCE_BUFFERS */ 2322 xiovec->iov_len = 0; 2323 xuio.uio_iovcnt++; 2324 } 2325 2326 xiovec->iov_len += xbb_sg->nsect << 9; 2327 2328 xuio.uio_resid += xbb_sg->nsect << 9; 2329 2330 /* 2331 * If the last sector is not the full page 2332 * size count, the next segment will not be 2333 * contiguous in KVA and we need a new iovec. 2334 */ 2335 if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) 2336 xiovec = NULL; 2337 } 2338 2339 xuio.uio_td = curthread; 2340 2341 #ifdef XBB_USE_BOUNCE_BUFFERS 2342 saved_uio_iovcnt = xuio.uio_iovcnt; 2343 2344 if (operation == BIO_WRITE) { 2345 /* Copy the write data to the local buffer. */ 2346 for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr, 2347 xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt; 2348 seg_idx++, xiovec++, p_vaddr++) { 2349 2350 memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len); 2351 } 2352 } else { 2353 /* 2354 * We only need to save off the iovecs in the case of a 2355 * read, because the copy for the read happens after the 2356 * VOP_READ(). (The uio will get modified in that call 2357 * sequence.) 2358 */ 2359 memcpy(file_data->saved_xiovecs, xuio.uio_iov, 2360 xuio.uio_iovcnt * sizeof(xuio.uio_iov[0])); 2361 } 2362 #endif /* XBB_USE_BOUNCE_BUFFERS */ 2363 2364 switch (operation) { 2365 case BIO_READ: 2366 2367 SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read, 2368 device_get_unit(xbb->dev), xuio.uio_offset, 2369 xuio.uio_resid); 2370 2371 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY); 2372 2373 /* 2374 * UFS pays attention to IO_DIRECT for reads. If the 2375 * DIRECTIO option is configured into the kernel, it calls 2376 * ffs_rawread(). But that only works for single-segment 2377 * uios with user space addresses. In our case, with a 2378 * kernel uio, it still reads into the buffer cache, but it 2379 * will just try to release the buffer from the cache later 2380 * on in ffs_read(). 2381 * 2382 * ZFS does not pay attention to IO_DIRECT for reads. 2383 * 2384 * UFS does not pay attention to IO_SYNC for reads. 2385 * 2386 * ZFS pays attention to IO_SYNC (which translates into the 2387 * Solaris define FRSYNC for zfs_read()) for reads. It 2388 * attempts to sync the file before reading. 2389 * 2390 * So, to attempt to provide some barrier semantics in the 2391 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC. 2392 */ 2393 error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ? 2394 (IO_DIRECT|IO_SYNC) : 0, file_data->cred); 2395 2396 VOP_UNLOCK(xbb->vn, 0); 2397 break; 2398 case BIO_WRITE: { 2399 struct mount *mountpoint; 2400 2401 SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write, 2402 device_get_unit(xbb->dev), xuio.uio_offset, 2403 xuio.uio_resid); 2404 2405 (void)vn_start_write(xbb->vn, &mountpoint, V_WAIT); 2406 2407 vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY); 2408 2409 /* 2410 * UFS pays attention to IO_DIRECT for writes. The write 2411 * is done asynchronously. (Normally the write would just 2412 * get put into cache. 2413 * 2414 * UFS pays attention to IO_SYNC for writes. It will 2415 * attempt to write the buffer out synchronously if that 2416 * flag is set. 2417 * 2418 * ZFS does not pay attention to IO_DIRECT for writes. 2419 * 2420 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC) 2421 * for writes. It will flush the transaction from the 2422 * cache before returning. 2423 * 2424 * So if we've got the BIO_ORDERED flag set, we want 2425 * IO_SYNC in either the UFS or ZFS case. 2426 */ 2427 error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ? 2428 IO_SYNC : 0, file_data->cred); 2429 VOP_UNLOCK(xbb->vn, 0); 2430 2431 vn_finished_write(mountpoint); 2432 2433 break; 2434 } 2435 default: 2436 panic("invalid operation %d", operation); 2437 /* NOTREACHED */ 2438 } 2439 2440 #ifdef XBB_USE_BOUNCE_BUFFERS 2441 /* We only need to copy here for read operations */ 2442 if (operation == BIO_READ) { 2443 2444 for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr, 2445 xiovec = file_data->saved_xiovecs; 2446 seg_idx < saved_uio_iovcnt; seg_idx++, 2447 xiovec++, p_vaddr++) { 2448 2449 /* 2450 * Note that we have to use the copy of the 2451 * io vector we made above. uiomove() modifies 2452 * the uio and its referenced vector as uiomove 2453 * performs the copy, so we can't rely on any 2454 * state from the original uio. 2455 */ 2456 memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len); 2457 } 2458 } 2459 #endif /* XBB_USE_BOUNCE_BUFFERS */ 2460 2461 bailout_send_response: 2462 2463 if (error != 0) 2464 reqlist->status = BLKIF_RSP_ERROR; 2465 2466 xbb_complete_reqlist(xbb, reqlist); 2467 2468 return (0); 2469 } 2470 2471 /*--------------------------- Backend Configuration --------------------------*/ 2472 /** 2473 * Close and cleanup any backend device/file specific state for this 2474 * block back instance. 2475 * 2476 * \param xbb Per-instance xbb configuration structure. 2477 */ 2478 static void 2479 xbb_close_backend(struct xbb_softc *xbb) 2480 { 2481 DROP_GIANT(); 2482 DPRINTF("closing dev=%s\n", xbb->dev_name); 2483 if (xbb->vn) { 2484 int flags = FREAD; 2485 2486 if ((xbb->flags & XBBF_READ_ONLY) == 0) 2487 flags |= FWRITE; 2488 2489 switch (xbb->device_type) { 2490 case XBB_TYPE_DISK: 2491 if (xbb->backend.dev.csw) { 2492 dev_relthread(xbb->backend.dev.cdev, 2493 xbb->backend.dev.dev_ref); 2494 xbb->backend.dev.csw = NULL; 2495 xbb->backend.dev.cdev = NULL; 2496 } 2497 break; 2498 case XBB_TYPE_FILE: 2499 break; 2500 case XBB_TYPE_NONE: 2501 default: 2502 panic("Unexpected backend type."); 2503 break; 2504 } 2505 2506 (void)vn_close(xbb->vn, flags, NOCRED, curthread); 2507 xbb->vn = NULL; 2508 2509 switch (xbb->device_type) { 2510 case XBB_TYPE_DISK: 2511 break; 2512 case XBB_TYPE_FILE: 2513 if (xbb->backend.file.cred != NULL) { 2514 crfree(xbb->backend.file.cred); 2515 xbb->backend.file.cred = NULL; 2516 } 2517 break; 2518 case XBB_TYPE_NONE: 2519 default: 2520 panic("Unexpected backend type."); 2521 break; 2522 } 2523 } 2524 PICKUP_GIANT(); 2525 } 2526 2527 /** 2528 * Open a character device to be used for backend I/O. 2529 * 2530 * \param xbb Per-instance xbb configuration structure. 2531 * 2532 * \return 0 for success, errno codes for failure. 2533 */ 2534 static int 2535 xbb_open_dev(struct xbb_softc *xbb) 2536 { 2537 struct vattr vattr; 2538 struct cdev *dev; 2539 struct cdevsw *devsw; 2540 int error; 2541 2542 xbb->device_type = XBB_TYPE_DISK; 2543 xbb->dispatch_io = xbb_dispatch_dev; 2544 xbb->backend.dev.cdev = xbb->vn->v_rdev; 2545 xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev, 2546 &xbb->backend.dev.dev_ref); 2547 if (xbb->backend.dev.csw == NULL) 2548 panic("Unable to retrieve device switch"); 2549 2550 error = VOP_GETATTR(xbb->vn, &vattr, NOCRED); 2551 if (error) { 2552 xenbus_dev_fatal(xbb->dev, error, "error getting " 2553 "vnode attributes for device %s", 2554 xbb->dev_name); 2555 return (error); 2556 } 2557 2558 2559 dev = xbb->vn->v_rdev; 2560 devsw = dev->si_devsw; 2561 if (!devsw->d_ioctl) { 2562 xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for " 2563 "device %s!", xbb->dev_name); 2564 return (ENODEV); 2565 } 2566 2567 error = devsw->d_ioctl(dev, DIOCGSECTORSIZE, 2568 (caddr_t)&xbb->sector_size, FREAD, 2569 curthread); 2570 if (error) { 2571 xenbus_dev_fatal(xbb->dev, error, 2572 "error calling ioctl DIOCGSECTORSIZE " 2573 "for device %s", xbb->dev_name); 2574 return (error); 2575 } 2576 2577 error = devsw->d_ioctl(dev, DIOCGMEDIASIZE, 2578 (caddr_t)&xbb->media_size, FREAD, 2579 curthread); 2580 if (error) { 2581 xenbus_dev_fatal(xbb->dev, error, 2582 "error calling ioctl DIOCGMEDIASIZE " 2583 "for device %s", xbb->dev_name); 2584 return (error); 2585 } 2586 2587 return (0); 2588 } 2589 2590 /** 2591 * Open a file to be used for backend I/O. 2592 * 2593 * \param xbb Per-instance xbb configuration structure. 2594 * 2595 * \return 0 for success, errno codes for failure. 2596 */ 2597 static int 2598 xbb_open_file(struct xbb_softc *xbb) 2599 { 2600 struct xbb_file_data *file_data; 2601 struct vattr vattr; 2602 int error; 2603 2604 file_data = &xbb->backend.file; 2605 xbb->device_type = XBB_TYPE_FILE; 2606 xbb->dispatch_io = xbb_dispatch_file; 2607 error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred); 2608 if (error != 0) { 2609 xenbus_dev_fatal(xbb->dev, error, 2610 "error calling VOP_GETATTR()" 2611 "for file %s", xbb->dev_name); 2612 return (error); 2613 } 2614 2615 /* 2616 * Verify that we have the ability to upgrade to exclusive 2617 * access on this file so we can trap errors at open instead 2618 * of reporting them during first access. 2619 */ 2620 if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) { 2621 vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY); 2622 if (xbb->vn->v_iflag & VI_DOOMED) { 2623 error = EBADF; 2624 xenbus_dev_fatal(xbb->dev, error, 2625 "error locking file %s", 2626 xbb->dev_name); 2627 2628 return (error); 2629 } 2630 } 2631 2632 file_data->cred = crhold(curthread->td_ucred); 2633 xbb->media_size = vattr.va_size; 2634 2635 /* 2636 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here. 2637 * With ZFS, it is 131072 bytes. Block sizes that large don't work 2638 * with disklabel and UFS on FreeBSD at least. Large block sizes 2639 * may not work with other OSes as well. So just export a sector 2640 * size of 512 bytes, which should work with any OS or 2641 * application. Since our backing is a file, any block size will 2642 * work fine for the backing store. 2643 */ 2644 #if 0 2645 xbb->sector_size = vattr.va_blocksize; 2646 #endif 2647 xbb->sector_size = 512; 2648 2649 /* 2650 * Sanity check. The media size has to be at least one 2651 * sector long. 2652 */ 2653 if (xbb->media_size < xbb->sector_size) { 2654 error = EINVAL; 2655 xenbus_dev_fatal(xbb->dev, error, 2656 "file %s size %ju < block size %u", 2657 xbb->dev_name, 2658 (uintmax_t)xbb->media_size, 2659 xbb->sector_size); 2660 } 2661 return (error); 2662 } 2663 2664 /** 2665 * Open the backend provider for this connection. 2666 * 2667 * \param xbb Per-instance xbb configuration structure. 2668 * 2669 * \return 0 for success, errno codes for failure. 2670 */ 2671 static int 2672 xbb_open_backend(struct xbb_softc *xbb) 2673 { 2674 struct nameidata nd; 2675 int flags; 2676 int error; 2677 2678 flags = FREAD; 2679 error = 0; 2680 2681 DPRINTF("opening dev=%s\n", xbb->dev_name); 2682 2683 if (rootvnode == NULL) { 2684 xenbus_dev_fatal(xbb->dev, ENOENT, 2685 "Root file system not mounted"); 2686 return (ENOENT); 2687 } 2688 2689 if ((xbb->flags & XBBF_READ_ONLY) == 0) 2690 flags |= FWRITE; 2691 2692 if (!curthread->td_proc->p_fd->fd_cdir) { 2693 curthread->td_proc->p_fd->fd_cdir = rootvnode; 2694 VREF(rootvnode); 2695 } 2696 if (!curthread->td_proc->p_fd->fd_rdir) { 2697 curthread->td_proc->p_fd->fd_rdir = rootvnode; 2698 VREF(rootvnode); 2699 } 2700 if (!curthread->td_proc->p_fd->fd_jdir) { 2701 curthread->td_proc->p_fd->fd_jdir = rootvnode; 2702 VREF(rootvnode); 2703 } 2704 2705 again: 2706 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread); 2707 error = vn_open(&nd, &flags, 0, NULL); 2708 if (error) { 2709 /* 2710 * This is the only reasonable guess we can make as far as 2711 * path if the user doesn't give us a fully qualified path. 2712 * If they want to specify a file, they need to specify the 2713 * full path. 2714 */ 2715 if (xbb->dev_name[0] != '/') { 2716 char *dev_path = "/dev/"; 2717 char *dev_name; 2718 2719 /* Try adding device path at beginning of name */ 2720 dev_name = malloc(strlen(xbb->dev_name) 2721 + strlen(dev_path) + 1, 2722 M_XENBLOCKBACK, M_NOWAIT); 2723 if (dev_name) { 2724 sprintf(dev_name, "%s%s", dev_path, 2725 xbb->dev_name); 2726 free(xbb->dev_name, M_XENBLOCKBACK); 2727 xbb->dev_name = dev_name; 2728 goto again; 2729 } 2730 } 2731 xenbus_dev_fatal(xbb->dev, error, "error opening device %s", 2732 xbb->dev_name); 2733 return (error); 2734 } 2735 2736 NDFREE(&nd, NDF_ONLY_PNBUF); 2737 2738 xbb->vn = nd.ni_vp; 2739 2740 /* We only support disks and files. */ 2741 if (vn_isdisk(xbb->vn, &error)) { 2742 error = xbb_open_dev(xbb); 2743 } else if (xbb->vn->v_type == VREG) { 2744 error = xbb_open_file(xbb); 2745 } else { 2746 error = EINVAL; 2747 xenbus_dev_fatal(xbb->dev, error, "%s is not a disk " 2748 "or file", xbb->dev_name); 2749 } 2750 VOP_UNLOCK(xbb->vn, 0); 2751 2752 if (error != 0) { 2753 xbb_close_backend(xbb); 2754 return (error); 2755 } 2756 2757 xbb->sector_size_shift = fls(xbb->sector_size) - 1; 2758 xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift; 2759 2760 DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n", 2761 (xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file", 2762 xbb->dev_name, xbb->sector_size, xbb->media_size); 2763 2764 return (0); 2765 } 2766 2767 /*------------------------ Inter-Domain Communication ------------------------*/ 2768 /** 2769 * Free dynamically allocated KVA or pseudo-physical address allocations. 2770 * 2771 * \param xbb Per-instance xbb configuration structure. 2772 */ 2773 static void 2774 xbb_free_communication_mem(struct xbb_softc *xbb) 2775 { 2776 if (xbb->kva != 0) { 2777 #ifndef XENHVM 2778 kmem_free(kernel_map, xbb->kva, xbb->kva_size); 2779 #else 2780 if (xbb->pseudo_phys_res != NULL) { 2781 bus_release_resource(xbb->dev, SYS_RES_MEMORY, 2782 xbb->pseudo_phys_res_id, 2783 xbb->pseudo_phys_res); 2784 xbb->pseudo_phys_res = NULL; 2785 } 2786 #endif 2787 } 2788 xbb->kva = 0; 2789 xbb->gnt_base_addr = 0; 2790 if (xbb->kva_free != NULL) { 2791 free(xbb->kva_free, M_XENBLOCKBACK); 2792 xbb->kva_free = NULL; 2793 } 2794 } 2795 2796 /** 2797 * Cleanup all inter-domain communication mechanisms. 2798 * 2799 * \param xbb Per-instance xbb configuration structure. 2800 */ 2801 static int 2802 xbb_disconnect(struct xbb_softc *xbb) 2803 { 2804 struct gnttab_unmap_grant_ref ops[XBB_MAX_RING_PAGES]; 2805 struct gnttab_unmap_grant_ref *op; 2806 u_int ring_idx; 2807 int error; 2808 2809 DPRINTF("\n"); 2810 2811 if ((xbb->flags & XBBF_RING_CONNECTED) == 0) 2812 return (0); 2813 2814 if (xbb->irq != 0) { 2815 unbind_from_irqhandler(xbb->irq); 2816 xbb->irq = 0; 2817 } 2818 2819 mtx_unlock(&xbb->lock); 2820 taskqueue_drain(xbb->io_taskqueue, &xbb->io_task); 2821 mtx_lock(&xbb->lock); 2822 2823 /* 2824 * No new interrupts can generate work, but we must wait 2825 * for all currently active requests to drain. 2826 */ 2827 if (xbb->active_request_count != 0) 2828 return (EAGAIN); 2829 2830 for (ring_idx = 0, op = ops; 2831 ring_idx < xbb->ring_config.ring_pages; 2832 ring_idx++, op++) { 2833 2834 op->host_addr = xbb->ring_config.gnt_addr 2835 + (ring_idx * PAGE_SIZE); 2836 op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx]; 2837 op->handle = xbb->ring_config.handle[ring_idx]; 2838 } 2839 2840 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops, 2841 xbb->ring_config.ring_pages); 2842 if (error != 0) 2843 panic("Grant table op failed (%d)", error); 2844 2845 xbb_free_communication_mem(xbb); 2846 2847 if (xbb->requests != NULL) { 2848 free(xbb->requests, M_XENBLOCKBACK); 2849 xbb->requests = NULL; 2850 } 2851 2852 if (xbb->request_lists != NULL) { 2853 struct xbb_xen_reqlist *reqlist; 2854 int i; 2855 2856 /* There is one request list for ever allocated request. */ 2857 for (i = 0, reqlist = xbb->request_lists; 2858 i < xbb->max_requests; i++, reqlist++){ 2859 #ifdef XBB_USE_BOUNCE_BUFFERS 2860 if (reqlist->bounce != NULL) { 2861 free(reqlist->bounce, M_XENBLOCKBACK); 2862 reqlist->bounce = NULL; 2863 } 2864 #endif 2865 if (reqlist->gnt_handles != NULL) { 2866 free(reqlist->gnt_handles, M_XENBLOCKBACK); 2867 reqlist->gnt_handles = NULL; 2868 } 2869 } 2870 free(xbb->request_lists, M_XENBLOCKBACK); 2871 xbb->request_lists = NULL; 2872 } 2873 2874 xbb->flags &= ~XBBF_RING_CONNECTED; 2875 return (0); 2876 } 2877 2878 /** 2879 * Map shared memory ring into domain local address space, initialize 2880 * ring control structures, and bind an interrupt to the event channel 2881 * used to notify us of ring changes. 2882 * 2883 * \param xbb Per-instance xbb configuration structure. 2884 */ 2885 static int 2886 xbb_connect_ring(struct xbb_softc *xbb) 2887 { 2888 struct gnttab_map_grant_ref gnts[XBB_MAX_RING_PAGES]; 2889 struct gnttab_map_grant_ref *gnt; 2890 u_int ring_idx; 2891 int error; 2892 2893 if ((xbb->flags & XBBF_RING_CONNECTED) != 0) 2894 return (0); 2895 2896 /* 2897 * Kva for our ring is at the tail of the region of kva allocated 2898 * by xbb_alloc_communication_mem(). 2899 */ 2900 xbb->ring_config.va = xbb->kva 2901 + (xbb->kva_size 2902 - (xbb->ring_config.ring_pages * PAGE_SIZE)); 2903 xbb->ring_config.gnt_addr = xbb->gnt_base_addr 2904 + (xbb->kva_size 2905 - (xbb->ring_config.ring_pages * PAGE_SIZE)); 2906 2907 for (ring_idx = 0, gnt = gnts; 2908 ring_idx < xbb->ring_config.ring_pages; 2909 ring_idx++, gnt++) { 2910 2911 gnt->host_addr = xbb->ring_config.gnt_addr 2912 + (ring_idx * PAGE_SIZE); 2913 gnt->flags = GNTMAP_host_map; 2914 gnt->ref = xbb->ring_config.ring_ref[ring_idx]; 2915 gnt->dom = xbb->otherend_id; 2916 } 2917 2918 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts, 2919 xbb->ring_config.ring_pages); 2920 if (error) 2921 panic("blkback: Ring page grant table op failed (%d)", error); 2922 2923 for (ring_idx = 0, gnt = gnts; 2924 ring_idx < xbb->ring_config.ring_pages; 2925 ring_idx++, gnt++) { 2926 if (gnt->status != 0) { 2927 xbb->ring_config.va = 0; 2928 xenbus_dev_fatal(xbb->dev, EACCES, 2929 "Ring shared page mapping failed. " 2930 "Status %d.", gnt->status); 2931 return (EACCES); 2932 } 2933 xbb->ring_config.handle[ring_idx] = gnt->handle; 2934 xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr; 2935 } 2936 2937 /* Initialize the ring based on ABI. */ 2938 switch (xbb->abi) { 2939 case BLKIF_PROTOCOL_NATIVE: 2940 { 2941 blkif_sring_t *sring; 2942 sring = (blkif_sring_t *)xbb->ring_config.va; 2943 BACK_RING_INIT(&xbb->rings.native, sring, 2944 xbb->ring_config.ring_pages * PAGE_SIZE); 2945 break; 2946 } 2947 case BLKIF_PROTOCOL_X86_32: 2948 { 2949 blkif_x86_32_sring_t *sring_x86_32; 2950 sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va; 2951 BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32, 2952 xbb->ring_config.ring_pages * PAGE_SIZE); 2953 break; 2954 } 2955 case BLKIF_PROTOCOL_X86_64: 2956 { 2957 blkif_x86_64_sring_t *sring_x86_64; 2958 sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va; 2959 BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64, 2960 xbb->ring_config.ring_pages * PAGE_SIZE); 2961 break; 2962 } 2963 default: 2964 panic("Unexpected blkif protocol ABI."); 2965 } 2966 2967 xbb->flags |= XBBF_RING_CONNECTED; 2968 2969 error = 2970 bind_interdomain_evtchn_to_irqhandler(xbb->otherend_id, 2971 xbb->ring_config.evtchn, 2972 device_get_nameunit(xbb->dev), 2973 xbb_intr, /*arg*/xbb, 2974 INTR_TYPE_BIO | INTR_MPSAFE, 2975 &xbb->irq); 2976 if (error) { 2977 (void)xbb_disconnect(xbb); 2978 xenbus_dev_fatal(xbb->dev, error, "binding event channel"); 2979 return (error); 2980 } 2981 2982 DPRINTF("rings connected!\n"); 2983 2984 return 0; 2985 } 2986 2987 /* Needed to make bit_alloc() macro work */ 2988 #define calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK, \ 2989 M_NOWAIT|M_ZERO); 2990 2991 /** 2992 * Size KVA and pseudo-physical address allocations based on negotiated 2993 * values for the size and number of I/O requests, and the size of our 2994 * communication ring. 2995 * 2996 * \param xbb Per-instance xbb configuration structure. 2997 * 2998 * These address spaces are used to dynamically map pages in the 2999 * front-end's domain into our own. 3000 */ 3001 static int 3002 xbb_alloc_communication_mem(struct xbb_softc *xbb) 3003 { 3004 xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments; 3005 xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE; 3006 xbb->kva_size = xbb->reqlist_kva_size + 3007 (xbb->ring_config.ring_pages * PAGE_SIZE); 3008 3009 xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages); 3010 if (xbb->kva_free == NULL) 3011 return (ENOMEM); 3012 3013 DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n", 3014 device_get_nameunit(xbb->dev), xbb->kva_size, 3015 xbb->reqlist_kva_size); 3016 #ifndef XENHVM 3017 xbb->kva = kmem_alloc_nofault(kernel_map, xbb->kva_size); 3018 if (xbb->kva == 0) 3019 return (ENOMEM); 3020 xbb->gnt_base_addr = xbb->kva; 3021 #else /* XENHVM */ 3022 /* 3023 * Reserve a range of pseudo physical memory that we can map 3024 * into kva. These pages will only be backed by machine 3025 * pages ("real memory") during the lifetime of front-end requests 3026 * via grant table operations. 3027 */ 3028 xbb->pseudo_phys_res_id = 0; 3029 xbb->pseudo_phys_res = bus_alloc_resource(xbb->dev, SYS_RES_MEMORY, 3030 &xbb->pseudo_phys_res_id, 3031 0, ~0, xbb->kva_size, 3032 RF_ACTIVE); 3033 if (xbb->pseudo_phys_res == NULL) { 3034 xbb->kva = 0; 3035 return (ENOMEM); 3036 } 3037 xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res); 3038 xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res); 3039 #endif /* XENHVM */ 3040 3041 DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n", 3042 device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva, 3043 (uintmax_t)xbb->gnt_base_addr); 3044 return (0); 3045 } 3046 3047 /** 3048 * Collect front-end information from the XenStore. 3049 * 3050 * \param xbb Per-instance xbb configuration structure. 3051 */ 3052 static int 3053 xbb_collect_frontend_info(struct xbb_softc *xbb) 3054 { 3055 char protocol_abi[64]; 3056 const char *otherend_path; 3057 int error; 3058 u_int ring_idx; 3059 u_int ring_page_order; 3060 size_t ring_size; 3061 3062 otherend_path = xenbus_get_otherend_path(xbb->dev); 3063 3064 /* 3065 * Protocol defaults valid even if all negotiation fails. 3066 */ 3067 xbb->ring_config.ring_pages = 1; 3068 xbb->max_request_segments = BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK; 3069 xbb->max_request_size = xbb->max_request_segments * PAGE_SIZE; 3070 3071 /* 3072 * Mandatory data (used in all versions of the protocol) first. 3073 */ 3074 error = xs_scanf(XST_NIL, otherend_path, 3075 "event-channel", NULL, "%" PRIu32, 3076 &xbb->ring_config.evtchn); 3077 if (error != 0) { 3078 xenbus_dev_fatal(xbb->dev, error, 3079 "Unable to retrieve event-channel information " 3080 "from frontend %s. Unable to connect.", 3081 xenbus_get_otherend_path(xbb->dev)); 3082 return (error); 3083 } 3084 3085 /* 3086 * These fields are initialized to legacy protocol defaults 3087 * so we only need to fail if reading the updated value succeeds 3088 * and the new value is outside of its allowed range. 3089 * 3090 * \note xs_gather() returns on the first encountered error, so 3091 * we must use independant calls in order to guarantee 3092 * we don't miss information in a sparsly populated front-end 3093 * tree. 3094 * 3095 * \note xs_scanf() does not update variables for unmatched 3096 * fields. 3097 */ 3098 ring_page_order = 0; 3099 (void)xs_scanf(XST_NIL, otherend_path, 3100 "ring-page-order", NULL, "%u", 3101 &ring_page_order); 3102 xbb->ring_config.ring_pages = 1 << ring_page_order; 3103 (void)xs_scanf(XST_NIL, otherend_path, 3104 "num-ring-pages", NULL, "%u", 3105 &xbb->ring_config.ring_pages); 3106 ring_size = PAGE_SIZE * xbb->ring_config.ring_pages; 3107 xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size); 3108 3109 (void)xs_scanf(XST_NIL, otherend_path, 3110 "max-requests", NULL, "%u", 3111 &xbb->max_requests); 3112 3113 (void)xs_scanf(XST_NIL, otherend_path, 3114 "max-request-segments", NULL, "%u", 3115 &xbb->max_request_segments); 3116 3117 (void)xs_scanf(XST_NIL, otherend_path, 3118 "max-request-size", NULL, "%u", 3119 &xbb->max_request_size); 3120 3121 if (xbb->ring_config.ring_pages > XBB_MAX_RING_PAGES) { 3122 xenbus_dev_fatal(xbb->dev, EINVAL, 3123 "Front-end specified ring-pages of %u " 3124 "exceeds backend limit of %zu. " 3125 "Unable to connect.", 3126 xbb->ring_config.ring_pages, 3127 XBB_MAX_RING_PAGES); 3128 return (EINVAL); 3129 } else if (xbb->max_requests > XBB_MAX_REQUESTS) { 3130 xenbus_dev_fatal(xbb->dev, EINVAL, 3131 "Front-end specified max_requests of %u " 3132 "exceeds backend limit of %u. " 3133 "Unable to connect.", 3134 xbb->max_requests, 3135 XBB_MAX_REQUESTS); 3136 return (EINVAL); 3137 } else if (xbb->max_request_segments > XBB_MAX_SEGMENTS_PER_REQUEST) { 3138 xenbus_dev_fatal(xbb->dev, EINVAL, 3139 "Front-end specified max_requests_segments " 3140 "of %u exceeds backend limit of %u. " 3141 "Unable to connect.", 3142 xbb->max_request_segments, 3143 XBB_MAX_SEGMENTS_PER_REQUEST); 3144 return (EINVAL); 3145 } else if (xbb->max_request_size > XBB_MAX_REQUEST_SIZE) { 3146 xenbus_dev_fatal(xbb->dev, EINVAL, 3147 "Front-end specified max_request_size " 3148 "of %u exceeds backend limit of %u. " 3149 "Unable to connect.", 3150 xbb->max_request_size, 3151 XBB_MAX_REQUEST_SIZE); 3152 return (EINVAL); 3153 } 3154 3155 if (xbb->ring_config.ring_pages == 1) { 3156 error = xs_gather(XST_NIL, otherend_path, 3157 "ring-ref", "%" PRIu32, 3158 &xbb->ring_config.ring_ref[0], 3159 NULL); 3160 if (error != 0) { 3161 xenbus_dev_fatal(xbb->dev, error, 3162 "Unable to retrieve ring information " 3163 "from frontend %s. Unable to " 3164 "connect.", 3165 xenbus_get_otherend_path(xbb->dev)); 3166 return (error); 3167 } 3168 } else { 3169 /* Multi-page ring format. */ 3170 for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages; 3171 ring_idx++) { 3172 char ring_ref_name[]= "ring_refXX"; 3173 3174 snprintf(ring_ref_name, sizeof(ring_ref_name), 3175 "ring-ref%u", ring_idx); 3176 error = xs_scanf(XST_NIL, otherend_path, 3177 ring_ref_name, NULL, "%" PRIu32, 3178 &xbb->ring_config.ring_ref[ring_idx]); 3179 if (error != 0) { 3180 xenbus_dev_fatal(xbb->dev, error, 3181 "Failed to retriev grant " 3182 "reference for page %u of " 3183 "shared ring. Unable " 3184 "to connect.", ring_idx); 3185 return (error); 3186 } 3187 } 3188 } 3189 3190 error = xs_gather(XST_NIL, otherend_path, 3191 "protocol", "%63s", protocol_abi, 3192 NULL); 3193 if (error != 0 3194 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) { 3195 /* 3196 * Assume native if the frontend has not 3197 * published ABI data or it has published and 3198 * matches our own ABI. 3199 */ 3200 xbb->abi = BLKIF_PROTOCOL_NATIVE; 3201 } else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) { 3202 3203 xbb->abi = BLKIF_PROTOCOL_X86_32; 3204 } else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) { 3205 3206 xbb->abi = BLKIF_PROTOCOL_X86_64; 3207 } else { 3208 3209 xenbus_dev_fatal(xbb->dev, EINVAL, 3210 "Unknown protocol ABI (%s) published by " 3211 "frontend. Unable to connect.", protocol_abi); 3212 return (EINVAL); 3213 } 3214 return (0); 3215 } 3216 3217 /** 3218 * Allocate per-request data structures given request size and number 3219 * information negotiated with the front-end. 3220 * 3221 * \param xbb Per-instance xbb configuration structure. 3222 */ 3223 static int 3224 xbb_alloc_requests(struct xbb_softc *xbb) 3225 { 3226 struct xbb_xen_req *req; 3227 struct xbb_xen_req *last_req; 3228 3229 /* 3230 * Allocate request book keeping datastructures. 3231 */ 3232 xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests), 3233 M_XENBLOCKBACK, M_NOWAIT|M_ZERO); 3234 if (xbb->requests == NULL) { 3235 xenbus_dev_fatal(xbb->dev, ENOMEM, 3236 "Unable to allocate request structures"); 3237 return (ENOMEM); 3238 } 3239 3240 req = xbb->requests; 3241 last_req = &xbb->requests[xbb->max_requests - 1]; 3242 STAILQ_INIT(&xbb->request_free_stailq); 3243 while (req <= last_req) { 3244 STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links); 3245 req++; 3246 } 3247 return (0); 3248 } 3249 3250 static int 3251 xbb_alloc_request_lists(struct xbb_softc *xbb) 3252 { 3253 struct xbb_xen_reqlist *reqlist; 3254 int i; 3255 3256 /* 3257 * If no requests can be merged, we need 1 request list per 3258 * in flight request. 3259 */ 3260 xbb->request_lists = malloc(xbb->max_requests * 3261 sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO); 3262 if (xbb->request_lists == NULL) { 3263 xenbus_dev_fatal(xbb->dev, ENOMEM, 3264 "Unable to allocate request list structures"); 3265 return (ENOMEM); 3266 } 3267 3268 STAILQ_INIT(&xbb->reqlist_free_stailq); 3269 STAILQ_INIT(&xbb->reqlist_pending_stailq); 3270 for (i = 0; i < xbb->max_requests; i++) { 3271 int seg; 3272 3273 reqlist = &xbb->request_lists[i]; 3274 3275 reqlist->xbb = xbb; 3276 3277 #ifdef XBB_USE_BOUNCE_BUFFERS 3278 reqlist->bounce = malloc(xbb->max_reqlist_size, 3279 M_XENBLOCKBACK, M_NOWAIT); 3280 if (reqlist->bounce == NULL) { 3281 xenbus_dev_fatal(xbb->dev, ENOMEM, 3282 "Unable to allocate request " 3283 "bounce buffers"); 3284 return (ENOMEM); 3285 } 3286 #endif /* XBB_USE_BOUNCE_BUFFERS */ 3287 3288 reqlist->gnt_handles = malloc(xbb->max_reqlist_segments * 3289 sizeof(*reqlist->gnt_handles), 3290 M_XENBLOCKBACK, M_NOWAIT|M_ZERO); 3291 if (reqlist->gnt_handles == NULL) { 3292 xenbus_dev_fatal(xbb->dev, ENOMEM, 3293 "Unable to allocate request " 3294 "grant references"); 3295 return (ENOMEM); 3296 } 3297 3298 for (seg = 0; seg < xbb->max_reqlist_segments; seg++) 3299 reqlist->gnt_handles[seg] = GRANT_REF_INVALID; 3300 3301 STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links); 3302 } 3303 return (0); 3304 } 3305 3306 /** 3307 * Supply information about the physical device to the frontend 3308 * via XenBus. 3309 * 3310 * \param xbb Per-instance xbb configuration structure. 3311 */ 3312 static int 3313 xbb_publish_backend_info(struct xbb_softc *xbb) 3314 { 3315 struct xs_transaction xst; 3316 const char *our_path; 3317 const char *leaf; 3318 int error; 3319 3320 our_path = xenbus_get_node(xbb->dev); 3321 while (1) { 3322 error = xs_transaction_start(&xst); 3323 if (error != 0) { 3324 xenbus_dev_fatal(xbb->dev, error, 3325 "Error publishing backend info " 3326 "(start transaction)"); 3327 return (error); 3328 } 3329 3330 leaf = "sectors"; 3331 error = xs_printf(xst, our_path, leaf, 3332 "%"PRIu64, xbb->media_num_sectors); 3333 if (error != 0) 3334 break; 3335 3336 /* XXX Support all VBD attributes here. */ 3337 leaf = "info"; 3338 error = xs_printf(xst, our_path, leaf, "%u", 3339 xbb->flags & XBBF_READ_ONLY 3340 ? VDISK_READONLY : 0); 3341 if (error != 0) 3342 break; 3343 3344 leaf = "sector-size"; 3345 error = xs_printf(xst, our_path, leaf, "%u", 3346 xbb->sector_size); 3347 if (error != 0) 3348 break; 3349 3350 error = xs_transaction_end(xst, 0); 3351 if (error == 0) { 3352 return (0); 3353 } else if (error != EAGAIN) { 3354 xenbus_dev_fatal(xbb->dev, error, "ending transaction"); 3355 return (error); 3356 } 3357 } 3358 3359 xenbus_dev_fatal(xbb->dev, error, "writing %s/%s", 3360 our_path, leaf); 3361 xs_transaction_end(xst, 1); 3362 return (error); 3363 } 3364 3365 /** 3366 * Connect to our blkfront peer now that it has completed publishing 3367 * its configuration into the XenStore. 3368 * 3369 * \param xbb Per-instance xbb configuration structure. 3370 */ 3371 static void 3372 xbb_connect(struct xbb_softc *xbb) 3373 { 3374 int error; 3375 3376 if (xenbus_get_state(xbb->dev) == XenbusStateConnected) 3377 return; 3378 3379 if (xbb_collect_frontend_info(xbb) != 0) 3380 return; 3381 3382 xbb->flags &= ~XBBF_SHUTDOWN; 3383 3384 /* 3385 * We limit the maximum number of reqlist segments to the maximum 3386 * number of segments in the ring, or our absolute maximum, 3387 * whichever is smaller. 3388 */ 3389 xbb->max_reqlist_segments = MIN(xbb->max_request_segments * 3390 xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST); 3391 3392 /* 3393 * The maximum size is simply a function of the number of segments 3394 * we can handle. 3395 */ 3396 xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE; 3397 3398 /* Allocate resources whose size depends on front-end configuration. */ 3399 error = xbb_alloc_communication_mem(xbb); 3400 if (error != 0) { 3401 xenbus_dev_fatal(xbb->dev, error, 3402 "Unable to allocate communication memory"); 3403 return; 3404 } 3405 3406 error = xbb_alloc_requests(xbb); 3407 if (error != 0) { 3408 /* Specific errors are reported by xbb_alloc_requests(). */ 3409 return; 3410 } 3411 3412 error = xbb_alloc_request_lists(xbb); 3413 if (error != 0) { 3414 /* Specific errors are reported by xbb_alloc_request_lists(). */ 3415 return; 3416 } 3417 3418 /* 3419 * Connect communication channel. 3420 */ 3421 error = xbb_connect_ring(xbb); 3422 if (error != 0) { 3423 /* Specific errors are reported by xbb_connect_ring(). */ 3424 return; 3425 } 3426 3427 if (xbb_publish_backend_info(xbb) != 0) { 3428 /* 3429 * If we can't publish our data, we cannot participate 3430 * in this connection, and waiting for a front-end state 3431 * change will not help the situation. 3432 */ 3433 (void)xbb_disconnect(xbb); 3434 return; 3435 } 3436 3437 /* Ready for I/O. */ 3438 xenbus_set_state(xbb->dev, XenbusStateConnected); 3439 } 3440 3441 /*-------------------------- Device Teardown Support -------------------------*/ 3442 /** 3443 * Perform device shutdown functions. 3444 * 3445 * \param xbb Per-instance xbb configuration structure. 3446 * 3447 * Mark this instance as shutting down, wait for any active I/O on the 3448 * backend device/file to drain, disconnect from the front-end, and notify 3449 * any waiters (e.g. a thread invoking our detach method) that detach can 3450 * now proceed. 3451 */ 3452 static int 3453 xbb_shutdown(struct xbb_softc *xbb) 3454 { 3455 XenbusState frontState; 3456 int error; 3457 3458 DPRINTF("\n"); 3459 3460 /* 3461 * Due to the need to drop our mutex during some 3462 * xenbus operations, it is possible for two threads 3463 * to attempt to close out shutdown processing at 3464 * the same time. Tell the caller that hits this 3465 * race to try back later. 3466 */ 3467 if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0) 3468 return (EAGAIN); 3469 3470 xbb->flags |= XBBF_IN_SHUTDOWN; 3471 mtx_unlock(&xbb->lock); 3472 3473 if (xenbus_get_state(xbb->dev) < XenbusStateClosing) 3474 xenbus_set_state(xbb->dev, XenbusStateClosing); 3475 3476 frontState = xenbus_get_otherend_state(xbb->dev); 3477 mtx_lock(&xbb->lock); 3478 xbb->flags &= ~XBBF_IN_SHUTDOWN; 3479 3480 /* The front can submit I/O until entering the closed state. */ 3481 if (frontState < XenbusStateClosed) 3482 return (EAGAIN); 3483 3484 DPRINTF("\n"); 3485 3486 /* Indicate shutdown is in progress. */ 3487 xbb->flags |= XBBF_SHUTDOWN; 3488 3489 /* Disconnect from the front-end. */ 3490 error = xbb_disconnect(xbb); 3491 if (error != 0) { 3492 /* 3493 * Requests still outstanding. We'll be called again 3494 * once they complete. 3495 */ 3496 KASSERT(error == EAGAIN, 3497 ("%s: Unexpected xbb_disconnect() failure %d", 3498 __func__, error)); 3499 3500 return (error); 3501 } 3502 3503 DPRINTF("\n"); 3504 3505 /* Indicate to xbb_detach() that is it safe to proceed. */ 3506 wakeup(xbb); 3507 3508 return (0); 3509 } 3510 3511 /** 3512 * Report an attach time error to the console and Xen, and cleanup 3513 * this instance by forcing immediate detach processing. 3514 * 3515 * \param xbb Per-instance xbb configuration structure. 3516 * \param err Errno describing the error. 3517 * \param fmt Printf style format and arguments 3518 */ 3519 static void 3520 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...) 3521 { 3522 va_list ap; 3523 va_list ap_hotplug; 3524 3525 va_start(ap, fmt); 3526 va_copy(ap_hotplug, ap); 3527 xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev), 3528 "hotplug-error", fmt, ap_hotplug); 3529 va_end(ap_hotplug); 3530 xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3531 "hotplug-status", "error"); 3532 3533 xenbus_dev_vfatal(xbb->dev, err, fmt, ap); 3534 va_end(ap); 3535 3536 xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3537 "online", "0"); 3538 xbb_detach(xbb->dev); 3539 } 3540 3541 /*---------------------------- NewBus Entrypoints ----------------------------*/ 3542 /** 3543 * Inspect a XenBus device and claim it if is of the appropriate type. 3544 * 3545 * \param dev NewBus device object representing a candidate XenBus device. 3546 * 3547 * \return 0 for success, errno codes for failure. 3548 */ 3549 static int 3550 xbb_probe(device_t dev) 3551 { 3552 3553 if (!strcmp(xenbus_get_type(dev), "vbd")) { 3554 device_set_desc(dev, "Backend Virtual Block Device"); 3555 device_quiet(dev); 3556 return (0); 3557 } 3558 3559 return (ENXIO); 3560 } 3561 3562 /** 3563 * Setup sysctl variables to control various Block Back parameters. 3564 * 3565 * \param xbb Xen Block Back softc. 3566 * 3567 */ 3568 static void 3569 xbb_setup_sysctl(struct xbb_softc *xbb) 3570 { 3571 struct sysctl_ctx_list *sysctl_ctx = NULL; 3572 struct sysctl_oid *sysctl_tree = NULL; 3573 3574 sysctl_ctx = device_get_sysctl_ctx(xbb->dev); 3575 if (sysctl_ctx == NULL) 3576 return; 3577 3578 sysctl_tree = device_get_sysctl_tree(xbb->dev); 3579 if (sysctl_tree == NULL) 3580 return; 3581 3582 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3583 "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0, 3584 "fake the flush command"); 3585 3586 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3587 "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0, 3588 "send a real flush for N flush requests"); 3589 3590 SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3591 "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0, 3592 "Don't coalesce contiguous requests"); 3593 3594 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3595 "reqs_received", CTLFLAG_RW, &xbb->reqs_received, 3596 "how many I/O requests we have received"); 3597 3598 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3599 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed, 3600 "how many I/O requests have been completed"); 3601 3602 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3603 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch, 3604 "how many I/O dispatches were forced"); 3605 3606 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3607 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch, 3608 "how many I/O dispatches were normal"); 3609 3610 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3611 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch, 3612 "total number of I/O dispatches"); 3613 3614 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3615 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages, 3616 "how many times we have run out of KVA"); 3617 3618 SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3619 "request_shortages", CTLFLAG_RW, 3620 &xbb->request_shortages, 3621 "how many times we have run out of requests"); 3622 3623 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3624 "max_requests", CTLFLAG_RD, &xbb->max_requests, 0, 3625 "maximum outstanding requests (negotiated)"); 3626 3627 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3628 "max_request_segments", CTLFLAG_RD, 3629 &xbb->max_request_segments, 0, 3630 "maximum number of pages per requests (negotiated)"); 3631 3632 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3633 "max_request_size", CTLFLAG_RD, 3634 &xbb->max_request_size, 0, 3635 "maximum size in bytes of a request (negotiated)"); 3636 3637 SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, 3638 "ring_pages", CTLFLAG_RD, 3639 &xbb->ring_config.ring_pages, 0, 3640 "communication channel pages (negotiated)"); 3641 } 3642 3643 /** 3644 * Attach to a XenBus device that has been claimed by our probe routine. 3645 * 3646 * \param dev NewBus device object representing this Xen Block Back instance. 3647 * 3648 * \return 0 for success, errno codes for failure. 3649 */ 3650 static int 3651 xbb_attach(device_t dev) 3652 { 3653 struct xbb_softc *xbb; 3654 int error; 3655 u_int max_ring_page_order; 3656 3657 DPRINTF("Attaching to %s\n", xenbus_get_node(dev)); 3658 3659 /* 3660 * Basic initialization. 3661 * After this block it is safe to call xbb_detach() 3662 * to clean up any allocated data for this instance. 3663 */ 3664 xbb = device_get_softc(dev); 3665 xbb->dev = dev; 3666 xbb->otherend_id = xenbus_get_otherend_id(dev); 3667 TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb); 3668 mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF); 3669 3670 /* 3671 * Publish protocol capabilities for consumption by the 3672 * front-end. 3673 */ 3674 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3675 "feature-barrier", "1"); 3676 if (error) { 3677 xbb_attach_failed(xbb, error, "writing %s/feature-barrier", 3678 xenbus_get_node(xbb->dev)); 3679 return (error); 3680 } 3681 3682 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3683 "feature-flush-cache", "1"); 3684 if (error) { 3685 xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache", 3686 xenbus_get_node(xbb->dev)); 3687 return (error); 3688 } 3689 3690 /* 3691 * Amazon EC2 client compatility. They refer to max-ring-pages 3692 * instead of to max-ring-page-order. 3693 */ 3694 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3695 "max-ring-pages", "%zu", XBB_MAX_RING_PAGES); 3696 if (error) { 3697 xbb_attach_failed(xbb, error, "writing %s/max-ring-pages", 3698 xenbus_get_node(xbb->dev)); 3699 return (error); 3700 } 3701 3702 max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1; 3703 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3704 "max-ring-page-order", "%u", max_ring_page_order); 3705 if (error) { 3706 xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order", 3707 xenbus_get_node(xbb->dev)); 3708 return (error); 3709 } 3710 3711 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3712 "max-requests", "%u", XBB_MAX_REQUESTS); 3713 if (error) { 3714 xbb_attach_failed(xbb, error, "writing %s/max-requests", 3715 xenbus_get_node(xbb->dev)); 3716 return (error); 3717 } 3718 3719 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3720 "max-request-segments", "%u", 3721 XBB_MAX_SEGMENTS_PER_REQUEST); 3722 if (error) { 3723 xbb_attach_failed(xbb, error, "writing %s/max-request-segments", 3724 xenbus_get_node(xbb->dev)); 3725 return (error); 3726 } 3727 3728 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3729 "max-request-size", "%u", 3730 XBB_MAX_REQUEST_SIZE); 3731 if (error) { 3732 xbb_attach_failed(xbb, error, "writing %s/max-request-size", 3733 xenbus_get_node(xbb->dev)); 3734 return (error); 3735 } 3736 3737 /* Collect physical device information. */ 3738 error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev), 3739 "device-type", NULL, &xbb->dev_type, 3740 NULL); 3741 if (error != 0) 3742 xbb->dev_type = NULL; 3743 3744 error = xs_gather(XST_NIL, xenbus_get_node(dev), 3745 "mode", NULL, &xbb->dev_mode, 3746 "params", NULL, &xbb->dev_name, 3747 NULL); 3748 if (error != 0) { 3749 xbb_attach_failed(xbb, error, "reading backend fields at %s", 3750 xenbus_get_node(dev)); 3751 return (ENXIO); 3752 } 3753 3754 /* Parse fopen style mode flags. */ 3755 if (strchr(xbb->dev_mode, 'w') == NULL) 3756 xbb->flags |= XBBF_READ_ONLY; 3757 3758 /* 3759 * Verify the physical device is present and can support 3760 * the desired I/O mode. 3761 */ 3762 DROP_GIANT(); 3763 error = xbb_open_backend(xbb); 3764 PICKUP_GIANT(); 3765 if (error != 0) { 3766 xbb_attach_failed(xbb, error, "Unable to open %s", 3767 xbb->dev_name); 3768 return (ENXIO); 3769 } 3770 3771 /* Use devstat(9) for recording statistics. */ 3772 xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev), 3773 xbb->sector_size, 3774 DEVSTAT_ALL_SUPPORTED, 3775 DEVSTAT_TYPE_DIRECT 3776 | DEVSTAT_TYPE_IF_OTHER, 3777 DEVSTAT_PRIORITY_OTHER); 3778 3779 xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev), 3780 xbb->sector_size, 3781 DEVSTAT_ALL_SUPPORTED, 3782 DEVSTAT_TYPE_DIRECT 3783 | DEVSTAT_TYPE_IF_OTHER, 3784 DEVSTAT_PRIORITY_OTHER); 3785 /* 3786 * Setup sysctl variables. 3787 */ 3788 xbb_setup_sysctl(xbb); 3789 3790 /* 3791 * Create a taskqueue for doing work that must occur from a 3792 * thread context. 3793 */ 3794 xbb->io_taskqueue = taskqueue_create(device_get_nameunit(dev), M_NOWAIT, 3795 taskqueue_thread_enqueue, 3796 /*context*/&xbb->io_taskqueue); 3797 if (xbb->io_taskqueue == NULL) { 3798 xbb_attach_failed(xbb, error, "Unable to create taskqueue"); 3799 return (ENOMEM); 3800 } 3801 3802 taskqueue_start_threads(&xbb->io_taskqueue, 3803 /*num threads*/1, 3804 /*priority*/PWAIT, 3805 /*thread name*/ 3806 "%s taskq", device_get_nameunit(dev)); 3807 3808 /* Update hot-plug status to satisfy xend. */ 3809 error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev), 3810 "hotplug-status", "connected"); 3811 if (error) { 3812 xbb_attach_failed(xbb, error, "writing %s/hotplug-status", 3813 xenbus_get_node(xbb->dev)); 3814 return (error); 3815 } 3816 3817 /* Tell the front end that we are ready to connect. */ 3818 xenbus_set_state(dev, XenbusStateInitWait); 3819 3820 return (0); 3821 } 3822 3823 /** 3824 * Detach from a block back device instance. 3825 * 3826 * \param dev NewBus device object representing this Xen Block Back instance. 3827 * 3828 * \return 0 for success, errno codes for failure. 3829 * 3830 * \note A block back device may be detached at any time in its life-cycle, 3831 * including part way through the attach process. For this reason, 3832 * initialization order and the intialization state checks in this 3833 * routine must be carefully coupled so that attach time failures 3834 * are gracefully handled. 3835 */ 3836 static int 3837 xbb_detach(device_t dev) 3838 { 3839 struct xbb_softc *xbb; 3840 3841 DPRINTF("\n"); 3842 3843 xbb = device_get_softc(dev); 3844 mtx_lock(&xbb->lock); 3845 while (xbb_shutdown(xbb) == EAGAIN) { 3846 msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0, 3847 "xbb_shutdown", 0); 3848 } 3849 mtx_unlock(&xbb->lock); 3850 3851 DPRINTF("\n"); 3852 3853 if (xbb->io_taskqueue != NULL) 3854 taskqueue_free(xbb->io_taskqueue); 3855 3856 if (xbb->xbb_stats != NULL) 3857 devstat_remove_entry(xbb->xbb_stats); 3858 3859 if (xbb->xbb_stats_in != NULL) 3860 devstat_remove_entry(xbb->xbb_stats_in); 3861 3862 xbb_close_backend(xbb); 3863 3864 if (xbb->dev_mode != NULL) { 3865 free(xbb->dev_mode, M_XENBUS); 3866 xbb->dev_mode = NULL; 3867 } 3868 3869 if (xbb->dev_type != NULL) { 3870 free(xbb->dev_type, M_XENBUS); 3871 xbb->dev_type = NULL; 3872 } 3873 3874 if (xbb->dev_name != NULL) { 3875 free(xbb->dev_name, M_XENBUS); 3876 xbb->dev_name = NULL; 3877 } 3878 3879 mtx_destroy(&xbb->lock); 3880 return (0); 3881 } 3882 3883 /** 3884 * Prepare this block back device for suspension of this VM. 3885 * 3886 * \param dev NewBus device object representing this Xen Block Back instance. 3887 * 3888 * \return 0 for success, errno codes for failure. 3889 */ 3890 static int 3891 xbb_suspend(device_t dev) 3892 { 3893 #ifdef NOT_YET 3894 struct xbb_softc *sc = device_get_softc(dev); 3895 3896 /* Prevent new requests being issued until we fix things up. */ 3897 mtx_lock(&sc->xb_io_lock); 3898 sc->connected = BLKIF_STATE_SUSPENDED; 3899 mtx_unlock(&sc->xb_io_lock); 3900 #endif 3901 3902 return (0); 3903 } 3904 3905 /** 3906 * Perform any processing required to recover from a suspended state. 3907 * 3908 * \param dev NewBus device object representing this Xen Block Back instance. 3909 * 3910 * \return 0 for success, errno codes for failure. 3911 */ 3912 static int 3913 xbb_resume(device_t dev) 3914 { 3915 return (0); 3916 } 3917 3918 /** 3919 * Handle state changes expressed via the XenStore by our front-end peer. 3920 * 3921 * \param dev NewBus device object representing this Xen 3922 * Block Back instance. 3923 * \param frontend_state The new state of the front-end. 3924 * 3925 * \return 0 for success, errno codes for failure. 3926 */ 3927 static void 3928 xbb_frontend_changed(device_t dev, XenbusState frontend_state) 3929 { 3930 struct xbb_softc *xbb = device_get_softc(dev); 3931 3932 DPRINTF("frontend_state=%s, xbb_state=%s\n", 3933 xenbus_strstate(frontend_state), 3934 xenbus_strstate(xenbus_get_state(xbb->dev))); 3935 3936 switch (frontend_state) { 3937 case XenbusStateInitialising: 3938 break; 3939 case XenbusStateInitialised: 3940 case XenbusStateConnected: 3941 xbb_connect(xbb); 3942 break; 3943 case XenbusStateClosing: 3944 case XenbusStateClosed: 3945 mtx_lock(&xbb->lock); 3946 xbb_shutdown(xbb); 3947 mtx_unlock(&xbb->lock); 3948 if (frontend_state == XenbusStateClosed) 3949 xenbus_set_state(xbb->dev, XenbusStateClosed); 3950 break; 3951 default: 3952 xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend", 3953 frontend_state); 3954 break; 3955 } 3956 } 3957 3958 /*---------------------------- NewBus Registration ---------------------------*/ 3959 static device_method_t xbb_methods[] = { 3960 /* Device interface */ 3961 DEVMETHOD(device_probe, xbb_probe), 3962 DEVMETHOD(device_attach, xbb_attach), 3963 DEVMETHOD(device_detach, xbb_detach), 3964 DEVMETHOD(device_shutdown, bus_generic_shutdown), 3965 DEVMETHOD(device_suspend, xbb_suspend), 3966 DEVMETHOD(device_resume, xbb_resume), 3967 3968 /* Xenbus interface */ 3969 DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed), 3970 3971 { 0, 0 } 3972 }; 3973 3974 static driver_t xbb_driver = { 3975 "xbbd", 3976 xbb_methods, 3977 sizeof(struct xbb_softc), 3978 }; 3979 devclass_t xbb_devclass; 3980 3981 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0); 3982