xref: /freebsd/sys/dev/xen/blkback/blkback.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2012 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Ken Merry           (Spectra Logic Corporation)
34  */
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file blkback.c
40  *
41  * \brief Device driver supporting the vending of block storage from
42  *        a FreeBSD domain to other domains.
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 
50 #include <sys/bio.h>
51 #include <sys/bus.h>
52 #include <sys/conf.h>
53 #include <sys/devicestat.h>
54 #include <sys/disk.h>
55 #include <sys/fcntl.h>
56 #include <sys/filedesc.h>
57 #include <sys/kdb.h>
58 #include <sys/module.h>
59 #include <sys/namei.h>
60 #include <sys/proc.h>
61 #include <sys/rman.h>
62 #include <sys/taskqueue.h>
63 #include <sys/types.h>
64 #include <sys/vnode.h>
65 #include <sys/mount.h>
66 #include <sys/sysctl.h>
67 #include <sys/bitstring.h>
68 #include <sys/sdt.h>
69 
70 #include <geom/geom.h>
71 
72 #include <machine/_inttypes.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 
78 #include <xen/xen-os.h>
79 #include <xen/blkif.h>
80 #include <xen/gnttab.h>
81 #include <xen/xen_intr.h>
82 
83 #include <contrib/xen/event_channel.h>
84 #include <contrib/xen/grant_table.h>
85 
86 #include <xen/xenbus/xenbusvar.h>
87 
88 /*--------------------------- Compile-time Tunables --------------------------*/
89 /**
90  * The maximum number of shared memory ring pages we will allow in a
91  * negotiated block-front/back communication channel.  Allow enough
92  * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
93  */
94 #define	XBB_MAX_RING_PAGES		32
95 
96 /**
97  * The maximum number of outstanding request blocks (request headers plus
98  * additional segment blocks) we will allow in a negotiated block-front/back
99  * communication channel.
100  */
101 #define	XBB_MAX_REQUESTS 					\
102 	__CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
103 
104 /**
105  * \brief Define to enable rudimentary request logging to the console.
106  */
107 #undef XBB_DEBUG
108 
109 /*---------------------------------- Macros ----------------------------------*/
110 /**
111  * Custom malloc type for all driver allocations.
112  */
113 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
114 
115 #ifdef XBB_DEBUG
116 #define DPRINTF(fmt, args...)					\
117     printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
118 #else
119 #define DPRINTF(fmt, args...) do {} while(0)
120 #endif
121 
122 /**
123  * The maximum mapped region size per request we will allow in a negotiated
124  * block-front/back communication channel.
125  * Use old default of MAXPHYS == 128K.
126  */
127 #define	XBB_MAX_REQUEST_SIZE					\
128 	MIN(128 * 1024, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
129 
130 /**
131  * The maximum number of segments (within a request header and accompanying
132  * segment blocks) per request we will allow in a negotiated block-front/back
133  * communication channel.
134  */
135 #define	XBB_MAX_SEGMENTS_PER_REQUEST				\
136 	(MIN(UIO_MAXIOV,					\
137 	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
138 		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
139 
140 /**
141  * The maximum number of ring pages that we can allow per request list.
142  * We limit this to the maximum number of segments per request, because
143  * that is already a reasonable number of segments to aggregate.  This
144  * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
145  * because that would leave situations where we can't dispatch even one
146  * large request.
147  */
148 #define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
149 
150 /*--------------------------- Forward Declarations ---------------------------*/
151 struct xbb_softc;
152 struct xbb_xen_req;
153 
154 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
155 			      ...) __attribute__((format(printf, 3, 4)));
156 static int  xbb_shutdown(struct xbb_softc *xbb);
157 
158 /*------------------------------ Data Structures -----------------------------*/
159 
160 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
161 
162 typedef enum {
163 	XBB_REQLIST_NONE	= 0x00,
164 	XBB_REQLIST_MAPPED	= 0x01
165 } xbb_reqlist_flags;
166 
167 struct xbb_xen_reqlist {
168 	/**
169 	 * Back reference to the parent block back instance for this
170 	 * request.  Used during bio_done handling.
171 	 */
172 	struct xbb_softc        *xbb;
173 
174 	/**
175 	 * BLKIF_OP code for this request.
176 	 */
177 	int			 operation;
178 
179 	/**
180 	 * Set to BLKIF_RSP_* to indicate request status.
181 	 *
182 	 * This field allows an error status to be recorded even if the
183 	 * delivery of this status must be deferred.  Deferred reporting
184 	 * is necessary, for example, when an error is detected during
185 	 * completion processing of one bio when other bios for this
186 	 * request are still outstanding.
187 	 */
188 	int			 status;
189 
190 	/**
191 	 * Number of 512 byte sectors not transferred.
192 	 */
193 	int			 residual_512b_sectors;
194 
195 	/**
196 	 * Starting sector number of the first request in the list.
197 	 */
198 	off_t			 starting_sector_number;
199 
200 	/**
201 	 * If we're going to coalesce, the next contiguous sector would be
202 	 * this one.
203 	 */
204 	off_t			 next_contig_sector;
205 
206 	/**
207 	 * Number of child requests in the list.
208 	 */
209 	int			 num_children;
210 
211 	/**
212 	 * Number of I/O requests still pending on the backend.
213 	 */
214 	int			 pendcnt;
215 
216 	/**
217 	 * Total number of segments for requests in the list.
218 	 */
219 	int			 nr_segments;
220 
221 	/**
222 	 * Flags for this particular request list.
223 	 */
224 	xbb_reqlist_flags	 flags;
225 
226 	/**
227 	 * Kernel virtual address space reserved for this request
228 	 * list structure and used to map the remote domain's pages for
229 	 * this I/O, into our domain's address space.
230 	 */
231 	uint8_t			*kva;
232 
233 	/**
234 	 * Base, pseudo-physical address, corresponding to the start
235 	 * of this request's kva region.
236 	 */
237 	uint64_t	 	 gnt_base;
238 
239 	/**
240 	 * Array of grant handles (one per page) used to map this request.
241 	 */
242 	grant_handle_t		*gnt_handles;
243 
244 	/**
245 	 * Device statistics request ordering type (ordered or simple).
246 	 */
247 	devstat_tag_type	 ds_tag_type;
248 
249 	/**
250 	 * Device statistics request type (read, write, no_data).
251 	 */
252 	devstat_trans_flags	 ds_trans_type;
253 
254 	/**
255 	 * The start time for this request.
256 	 */
257 	struct bintime		 ds_t0;
258 
259 	/**
260 	 * Linked list of contiguous requests with the same operation type.
261 	 */
262 	struct xbb_xen_req_list	 contig_req_list;
263 
264 	/**
265 	 * Linked list links used to aggregate idle requests in the
266 	 * request list free pool (xbb->reqlist_free_stailq) and pending
267 	 * requests waiting for execution (xbb->reqlist_pending_stailq).
268 	 */
269 	STAILQ_ENTRY(xbb_xen_reqlist) links;
270 };
271 
272 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
273 
274 /**
275  * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
276  */
277 struct xbb_xen_req {
278 	/**
279 	 * Linked list links used to aggregate requests into a reqlist
280 	 * and to store them in the request free pool.
281 	 */
282 	STAILQ_ENTRY(xbb_xen_req) links;
283 
284 	/**
285 	 * The remote domain's identifier for this I/O request.
286 	 */
287 	uint64_t		  id;
288 
289 	/**
290 	 * The number of pages currently mapped for this request.
291 	 */
292 	int			  nr_pages;
293 
294 	/**
295 	 * The number of 512 byte sectors comprising this requests.
296 	 */
297 	int			  nr_512b_sectors;
298 
299 	/**
300 	 * BLKIF_OP code for this request.
301 	 */
302 	int			  operation;
303 
304 	/**
305 	 * Storage used for non-native ring requests.
306 	 */
307 	blkif_request_t		 ring_req_storage;
308 
309 	/**
310 	 * Pointer to the Xen request in the ring.
311 	 */
312 	blkif_request_t		*ring_req;
313 
314 	/**
315 	 * Consumer index for this request.
316 	 */
317 	RING_IDX		 req_ring_idx;
318 
319 	/**
320 	 * The start time for this request.
321 	 */
322 	struct bintime		 ds_t0;
323 
324 	/**
325 	 * Pointer back to our parent request list.
326 	 */
327 	struct xbb_xen_reqlist  *reqlist;
328 };
329 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
330 
331 /**
332  * \brief Configuration data for the shared memory request ring
333  *        used to communicate with the front-end client of this
334  *        this driver.
335  */
336 struct xbb_ring_config {
337 	/** KVA address where ring memory is mapped. */
338 	vm_offset_t	va;
339 
340 	/** The pseudo-physical address where ring memory is mapped.*/
341 	uint64_t	gnt_addr;
342 
343 	/**
344 	 * Grant table handles, one per-ring page, returned by the
345 	 * hyperpervisor upon mapping of the ring and required to
346 	 * unmap it when a connection is torn down.
347 	 */
348 	grant_handle_t	handle[XBB_MAX_RING_PAGES];
349 
350 	/**
351 	 * The device bus address returned by the hypervisor when
352 	 * mapping the ring and required to unmap it when a connection
353 	 * is torn down.
354 	 */
355 	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
356 
357 	/** The number of ring pages mapped for the current connection. */
358 	u_int		ring_pages;
359 
360 	/**
361 	 * The grant references, one per-ring page, supplied by the
362 	 * front-end, allowing us to reference the ring pages in the
363 	 * front-end's domain and to map these pages into our own domain.
364 	 */
365 	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
366 
367 	/** The interrupt driven even channel used to signal ring events. */
368 	evtchn_port_t   evtchn;
369 };
370 
371 /**
372  * Per-instance connection state flags.
373  */
374 typedef enum
375 {
376 	/**
377 	 * The front-end requested a read-only mount of the
378 	 * back-end device/file.
379 	 */
380 	XBBF_READ_ONLY         = 0x01,
381 
382 	/** Communication with the front-end has been established. */
383 	XBBF_RING_CONNECTED    = 0x02,
384 
385 	/**
386 	 * Front-end requests exist in the ring and are waiting for
387 	 * xbb_xen_req objects to free up.
388 	 */
389 	XBBF_RESOURCE_SHORTAGE = 0x04,
390 
391 	/** Connection teardown in progress. */
392 	XBBF_SHUTDOWN          = 0x08,
393 
394 	/** A thread is already performing shutdown processing. */
395 	XBBF_IN_SHUTDOWN       = 0x10
396 } xbb_flag_t;
397 
398 /** Backend device type.  */
399 typedef enum {
400 	/** Backend type unknown. */
401 	XBB_TYPE_NONE		= 0x00,
402 
403 	/**
404 	 * Backend type disk (access via cdev switch
405 	 * strategy routine).
406 	 */
407 	XBB_TYPE_DISK		= 0x01,
408 
409 	/** Backend type file (access vnode operations.). */
410 	XBB_TYPE_FILE		= 0x02
411 } xbb_type;
412 
413 /**
414  * \brief Structure used to memoize information about a per-request
415  *        scatter-gather list.
416  *
417  * The chief benefit of using this data structure is it avoids having
418  * to reparse the possibly discontiguous S/G list in the original
419  * request.  Due to the way that the mapping of the memory backing an
420  * I/O transaction is handled by Xen, a second pass is unavoidable.
421  * At least this way the second walk is a simple array traversal.
422  *
423  * \note A single Scatter/Gather element in the block interface covers
424  *       at most 1 machine page.  In this context a sector (blkif
425  *       nomenclature, not what I'd choose) is a 512b aligned unit
426  *       of mapping within the machine page referenced by an S/G
427  *       element.
428  */
429 struct xbb_sg {
430 	/** The number of 512b data chunks mapped in this S/G element. */
431 	int16_t nsect;
432 
433 	/**
434 	 * The index (0 based) of the first 512b data chunk mapped
435 	 * in this S/G element.
436 	 */
437 	uint8_t first_sect;
438 
439 	/**
440 	 * The index (0 based) of the last 512b data chunk mapped
441 	 * in this S/G element.
442 	 */
443 	uint8_t last_sect;
444 };
445 
446 /**
447  * Character device backend specific configuration data.
448  */
449 struct xbb_dev_data {
450 	/** Cdev used for device backend access.  */
451 	struct cdev   *cdev;
452 
453 	/** Cdev switch used for device backend access.  */
454 	struct cdevsw *csw;
455 
456 	/** Used to hold a reference on opened cdev backend devices. */
457 	int	       dev_ref;
458 };
459 
460 /**
461  * File backend specific configuration data.
462  */
463 struct xbb_file_data {
464 	/** Credentials to use for vnode backed (file based) I/O. */
465 	struct ucred   *cred;
466 
467 	/**
468 	 * \brief Array of io vectors used to process file based I/O.
469 	 *
470 	 * Only a single file based request is outstanding per-xbb instance,
471 	 * so we only need one of these.
472 	 */
473 	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
474 };
475 
476 /**
477  * Collection of backend type specific data.
478  */
479 union xbb_backend_data {
480 	struct xbb_dev_data  dev;
481 	struct xbb_file_data file;
482 };
483 
484 /**
485  * Function signature of backend specific I/O handlers.
486  */
487 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
488 			      struct xbb_xen_reqlist *reqlist, int operation,
489 			      int flags);
490 
491 /**
492  * Per-instance configuration data.
493  */
494 struct xbb_softc {
495 	/**
496 	 * Task-queue used to process I/O requests.
497 	 */
498 	struct taskqueue	 *io_taskqueue;
499 
500 	/**
501 	 * Single "run the request queue" task enqueued
502 	 * on io_taskqueue.
503 	 */
504 	struct task		  io_task;
505 
506 	/** Device type for this instance. */
507 	xbb_type		  device_type;
508 
509 	/** NewBus device corresponding to this instance. */
510 	device_t		  dev;
511 
512 	/** Backend specific dispatch routine for this instance. */
513 	xbb_dispatch_t		  dispatch_io;
514 
515 	/** The number of requests outstanding on the backend device/file. */
516 	int			  active_request_count;
517 
518 	/** Free pool of request tracking structures. */
519 	struct xbb_xen_req_list   request_free_stailq;
520 
521 	/** Array, sized at connection time, of request tracking structures. */
522 	struct xbb_xen_req	 *requests;
523 
524 	/** Free pool of request list structures. */
525 	struct xbb_xen_reqlist_list reqlist_free_stailq;
526 
527 	/** List of pending request lists awaiting execution. */
528 	struct xbb_xen_reqlist_list reqlist_pending_stailq;
529 
530 	/** Array, sized at connection time, of request list structures. */
531 	struct xbb_xen_reqlist	 *request_lists;
532 
533 	/**
534 	 * Global pool of kva used for mapping remote domain ring
535 	 * and I/O transaction data.
536 	 */
537 	vm_offset_t		  kva;
538 
539 	/** Pseudo-physical address corresponding to kva. */
540 	uint64_t		  gnt_base_addr;
541 
542 	/** The size of the global kva pool. */
543 	int			  kva_size;
544 
545 	/** The size of the KVA area used for request lists. */
546 	int			  reqlist_kva_size;
547 
548 	/** The number of pages of KVA used for request lists */
549 	int			  reqlist_kva_pages;
550 
551 	/** Bitmap of free KVA pages */
552 	bitstr_t		 *kva_free;
553 
554 	/**
555 	 * \brief Cached value of the front-end's domain id.
556 	 *
557 	 * This value is used at once for each mapped page in
558 	 * a transaction.  We cache it to avoid incuring the
559 	 * cost of an ivar access every time this is needed.
560 	 */
561 	domid_t			  otherend_id;
562 
563 	/**
564 	 * \brief The blkif protocol abi in effect.
565 	 *
566 	 * There are situations where the back and front ends can
567 	 * have a different, native abi (e.g. intel x86_64 and
568 	 * 32bit x86 domains on the same machine).  The back-end
569 	 * always accommodates the front-end's native abi.  That
570 	 * value is pulled from the XenStore and recorded here.
571 	 */
572 	int			  abi;
573 
574 	/**
575 	 * \brief The maximum number of requests and request lists allowed
576 	 *        to be in flight at a time.
577 	 *
578 	 * This value is negotiated via the XenStore.
579 	 */
580 	u_int			  max_requests;
581 
582 	/**
583 	 * \brief The maximum number of segments (1 page per segment)
584 	 *	  that can be mapped by a request.
585 	 *
586 	 * This value is negotiated via the XenStore.
587 	 */
588 	u_int			  max_request_segments;
589 
590 	/**
591 	 * \brief Maximum number of segments per request list.
592 	 *
593 	 * This value is derived from and will generally be larger than
594 	 * max_request_segments.
595 	 */
596 	u_int			  max_reqlist_segments;
597 
598 	/**
599 	 * The maximum size of any request to this back-end
600 	 * device.
601 	 *
602 	 * This value is negotiated via the XenStore.
603 	 */
604 	u_int			  max_request_size;
605 
606 	/**
607 	 * The maximum size of any request list.  This is derived directly
608 	 * from max_reqlist_segments.
609 	 */
610 	u_int			  max_reqlist_size;
611 
612 	/** Various configuration and state bit flags. */
613 	xbb_flag_t		  flags;
614 
615 	/** Ring mapping and interrupt configuration data. */
616 	struct xbb_ring_config	  ring_config;
617 
618 	/** Runtime, cross-abi safe, structures for ring access. */
619 	blkif_back_rings_t	  rings;
620 
621 	/** IRQ mapping for the communication ring event channel. */
622 	xen_intr_handle_t	  xen_intr_handle;
623 
624 	/**
625 	 * \brief Backend access mode flags (e.g. write, or read-only).
626 	 *
627 	 * This value is passed to us by the front-end via the XenStore.
628 	 */
629 	char			 *dev_mode;
630 
631 	/**
632 	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
633 	 *
634 	 * This value is passed to us by the front-end via the XenStore.
635 	 * Currently unused.
636 	 */
637 	char			 *dev_type;
638 
639 	/**
640 	 * \brief Backend device/file identifier.
641 	 *
642 	 * This value is passed to us by the front-end via the XenStore.
643 	 * We expect this to be a POSIX path indicating the file or
644 	 * device to open.
645 	 */
646 	char			 *dev_name;
647 
648 	/**
649 	 * Vnode corresponding to the backend device node or file
650 	 * we are acessing.
651 	 */
652 	struct vnode		 *vn;
653 
654 	union xbb_backend_data	  backend;
655 
656 	/** The native sector size of the backend. */
657 	u_int			  sector_size;
658 
659 	/** log2 of sector_size.  */
660 	u_int			  sector_size_shift;
661 
662 	/** Size in bytes of the backend device or file.  */
663 	off_t			  media_size;
664 
665 	/**
666 	 * \brief media_size expressed in terms of the backend native
667 	 *	  sector size.
668 	 *
669 	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
670 	 */
671 	uint64_t		  media_num_sectors;
672 
673 	/**
674 	 * \brief Array of memoized scatter gather data computed during the
675 	 *	  conversion of blkif ring requests to internal xbb_xen_req
676 	 *	  structures.
677 	 *
678 	 * Ring processing is serialized so we only need one of these.
679 	 */
680 	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
681 
682 	/**
683 	 * Temporary grant table map used in xbb_dispatch_io().  When
684 	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
685 	 * stack could cause a stack overflow.
686 	 */
687 	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
688 
689 	/** Mutex protecting per-instance data. */
690 	struct mtx		  lock;
691 
692 	/**
693 	 * Resource representing allocated physical address space
694 	 * associated with our per-instance kva region.
695 	 */
696 	struct resource		 *pseudo_phys_res;
697 
698 	/** Resource id for allocated physical address space. */
699 	int			  pseudo_phys_res_id;
700 
701 	/**
702 	 * I/O statistics from BlockBack dispatch down.  These are
703 	 * coalesced requests, and we start them right before execution.
704 	 */
705 	struct devstat		 *xbb_stats;
706 
707 	/**
708 	 * I/O statistics coming into BlockBack.  These are the requests as
709 	 * we get them from BlockFront.  They are started as soon as we
710 	 * receive a request, and completed when the I/O is complete.
711 	 */
712 	struct devstat		 *xbb_stats_in;
713 
714 	/** Disable sending flush to the backend */
715 	int			  disable_flush;
716 
717 	/** Send a real flush for every N flush requests */
718 	int			  flush_interval;
719 
720 	/** Count of flush requests in the interval */
721 	int			  flush_count;
722 
723 	/** Don't coalesce requests if this is set */
724 	int			  no_coalesce_reqs;
725 
726 	/** Number of requests we have received */
727 	uint64_t		  reqs_received;
728 
729 	/** Number of requests we have completed*/
730 	uint64_t		  reqs_completed;
731 
732 	/** Number of requests we queued but not pushed*/
733 	uint64_t		  reqs_queued_for_completion;
734 
735 	/** Number of requests we completed with an error status*/
736 	uint64_t		  reqs_completed_with_error;
737 
738 	/** How many forced dispatches (i.e. without coalescing) have happened */
739 	uint64_t		  forced_dispatch;
740 
741 	/** How many normal dispatches have happened */
742 	uint64_t		  normal_dispatch;
743 
744 	/** How many total dispatches have happened */
745 	uint64_t		  total_dispatch;
746 
747 	/** How many times we have run out of KVA */
748 	uint64_t		  kva_shortages;
749 
750 	/** How many times we have run out of request structures */
751 	uint64_t		  request_shortages;
752 
753 	/** Watch to wait for hotplug script execution */
754 	struct xs_watch		  hotplug_watch;
755 
756 	/** Got the needed data from hotplug scripts? */
757 	bool			  hotplug_done;
758 };
759 
760 /*---------------------------- Request Processing ----------------------------*/
761 /**
762  * Allocate an internal transaction tracking structure from the free pool.
763  *
764  * \param xbb  Per-instance xbb configuration structure.
765  *
766  * \return  On success, a pointer to the allocated xbb_xen_req structure.
767  *          Otherwise NULL.
768  */
769 static inline struct xbb_xen_req *
770 xbb_get_req(struct xbb_softc *xbb)
771 {
772 	struct xbb_xen_req *req;
773 
774 	req = NULL;
775 
776 	mtx_assert(&xbb->lock, MA_OWNED);
777 
778 	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
779 		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
780 		xbb->active_request_count++;
781 	}
782 
783 	return (req);
784 }
785 
786 /**
787  * Return an allocated transaction tracking structure to the free pool.
788  *
789  * \param xbb  Per-instance xbb configuration structure.
790  * \param req  The request structure to free.
791  */
792 static inline void
793 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
794 {
795 	mtx_assert(&xbb->lock, MA_OWNED);
796 
797 	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
798 	xbb->active_request_count--;
799 
800 	KASSERT(xbb->active_request_count >= 0,
801 		("xbb_release_req: negative active count"));
802 }
803 
804 /**
805  * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
806  *
807  * \param xbb	    Per-instance xbb configuration structure.
808  * \param req_list  The list of requests to free.
809  * \param nreqs	    The number of items in the list.
810  */
811 static inline void
812 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
813 		 int nreqs)
814 {
815 	mtx_assert(&xbb->lock, MA_OWNED);
816 
817 	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
818 	xbb->active_request_count -= nreqs;
819 
820 	KASSERT(xbb->active_request_count >= 0,
821 		("xbb_release_reqs: negative active count"));
822 }
823 
824 /**
825  * Given a page index and 512b sector offset within that page,
826  * calculate an offset into a request's kva region.
827  *
828  * \param reqlist The request structure whose kva region will be accessed.
829  * \param pagenr  The page index used to compute the kva offset.
830  * \param sector  The 512b sector index used to compute the page relative
831  *                kva offset.
832  *
833  * \return  The computed global KVA offset.
834  */
835 static inline uint8_t *
836 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
837 {
838 	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
839 }
840 
841 /**
842  * Given a page number and 512b sector offset within that page,
843  * calculate an offset into the request's memory region that the
844  * underlying backend device/file should use for I/O.
845  *
846  * \param reqlist The request structure whose I/O region will be accessed.
847  * \param pagenr  The page index used to compute the I/O offset.
848  * \param sector  The 512b sector index used to compute the page relative
849  *                I/O offset.
850  *
851  * \return  The computed global I/O address.
852  *
853  * Depending on configuration, this will either be a local bounce buffer
854  * or a pointer to the memory mapped in from the front-end domain for
855  * this request.
856  */
857 static inline uint8_t *
858 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
859 {
860 	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
861 }
862 
863 /**
864  * Given a page index and 512b sector offset within that page, calculate
865  * an offset into the local pseudo-physical address space used to map a
866  * front-end's request data into a request.
867  *
868  * \param reqlist The request list structure whose pseudo-physical region
869  *                will be accessed.
870  * \param pagenr  The page index used to compute the pseudo-physical offset.
871  * \param sector  The 512b sector index used to compute the page relative
872  *                pseudo-physical offset.
873  *
874  * \return  The computed global pseudo-phsyical address.
875  *
876  * Depending on configuration, this will either be a local bounce buffer
877  * or a pointer to the memory mapped in from the front-end domain for
878  * this request.
879  */
880 static inline uintptr_t
881 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
882 {
883 	struct xbb_softc *xbb;
884 
885 	xbb = reqlist->xbb;
886 
887 	return ((uintptr_t)(xbb->gnt_base_addr +
888 		(uintptr_t)(reqlist->kva - xbb->kva) +
889 		(PAGE_SIZE * pagenr) + (sector << 9)));
890 }
891 
892 /**
893  * Get Kernel Virtual Address space for mapping requests.
894  *
895  * \param xbb         Per-instance xbb configuration structure.
896  * \param nr_pages    Number of pages needed.
897  * \param check_only  If set, check for free KVA but don't allocate it.
898  * \param have_lock   If set, xbb lock is already held.
899  *
900  * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
901  *
902  * Note:  This should be unnecessary once we have either chaining or
903  * scatter/gather support for struct bio.  At that point we'll be able to
904  * put multiple addresses and lengths in one bio/bio chain and won't need
905  * to map everything into one virtual segment.
906  */
907 static uint8_t *
908 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
909 {
910 	int first_clear;
911 	int num_clear;
912 	uint8_t *free_kva;
913 	int      i;
914 
915 	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
916 
917 	first_clear = 0;
918 	free_kva = NULL;
919 
920 	mtx_lock(&xbb->lock);
921 
922 	/*
923 	 * Look for the first available page.  If there are none, we're done.
924 	 */
925 	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
926 
927 	if (first_clear == -1)
928 		goto bailout;
929 
930 	/*
931 	 * Starting at the first available page, look for consecutive free
932 	 * pages that will satisfy the user's request.
933 	 */
934 	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
935 		/*
936 		 * If this is true, the page is used, so we have to reset
937 		 * the number of clear pages and the first clear page
938 		 * (since it pointed to a region with an insufficient number
939 		 * of clear pages).
940 		 */
941 		if (bit_test(xbb->kva_free, i)) {
942 			num_clear = 0;
943 			first_clear = -1;
944 			continue;
945 		}
946 
947 		if (first_clear == -1)
948 			first_clear = i;
949 
950 		/*
951 		 * If this is true, we've found a large enough free region
952 		 * to satisfy the request.
953 		 */
954 		if (++num_clear == nr_pages) {
955 			bit_nset(xbb->kva_free, first_clear,
956 				 first_clear + nr_pages - 1);
957 
958 			free_kva = xbb->kva +
959 				(uint8_t *)((intptr_t)first_clear * PAGE_SIZE);
960 
961 			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
962 				free_kva + (nr_pages * PAGE_SIZE) <=
963 				(uint8_t *)xbb->ring_config.va,
964 				("Free KVA %p len %d out of range, "
965 				 "kva = %#jx, ring VA = %#jx\n", free_kva,
966 				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
967 				 (uintmax_t)xbb->ring_config.va));
968 			break;
969 		}
970 	}
971 
972 bailout:
973 
974 	if (free_kva == NULL) {
975 		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
976 		xbb->kva_shortages++;
977 	}
978 
979 	mtx_unlock(&xbb->lock);
980 
981 	return (free_kva);
982 }
983 
984 /**
985  * Free allocated KVA.
986  *
987  * \param xbb	    Per-instance xbb configuration structure.
988  * \param kva_ptr   Pointer to allocated KVA region.
989  * \param nr_pages  Number of pages in the KVA region.
990  */
991 static void
992 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
993 {
994 	intptr_t start_page;
995 
996 	mtx_assert(&xbb->lock, MA_OWNED);
997 
998 	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
999 	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1000 
1001 }
1002 
1003 /**
1004  * Unmap the front-end pages associated with this I/O request.
1005  *
1006  * \param req  The request structure to unmap.
1007  */
1008 static void
1009 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1010 {
1011 	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1012 	u_int			      i;
1013 	u_int			      invcount;
1014 	int			      error __diagused;
1015 
1016 	invcount = 0;
1017 	for (i = 0; i < reqlist->nr_segments; i++) {
1018 		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1019 			continue;
1020 
1021 		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1022 		unmap[invcount].dev_bus_addr = 0;
1023 		unmap[invcount].handle       = reqlist->gnt_handles[i];
1024 		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1025 		invcount++;
1026 	}
1027 
1028 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1029 					  unmap, invcount);
1030 	KASSERT(error == 0, ("Grant table operation failed"));
1031 }
1032 
1033 /**
1034  * Allocate an internal transaction tracking structure from the free pool.
1035  *
1036  * \param xbb  Per-instance xbb configuration structure.
1037  *
1038  * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1039  *          Otherwise NULL.
1040  */
1041 static inline struct xbb_xen_reqlist *
1042 xbb_get_reqlist(struct xbb_softc *xbb)
1043 {
1044 	struct xbb_xen_reqlist *reqlist;
1045 
1046 	reqlist = NULL;
1047 
1048 	mtx_assert(&xbb->lock, MA_OWNED);
1049 
1050 	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1051 		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1052 		reqlist->flags = XBB_REQLIST_NONE;
1053 		reqlist->kva = NULL;
1054 		reqlist->status = BLKIF_RSP_OKAY;
1055 		reqlist->residual_512b_sectors = 0;
1056 		reqlist->num_children = 0;
1057 		reqlist->nr_segments = 0;
1058 		STAILQ_INIT(&reqlist->contig_req_list);
1059 	}
1060 
1061 	return (reqlist);
1062 }
1063 
1064 /**
1065  * Return an allocated transaction tracking structure to the free pool.
1066  *
1067  * \param xbb        Per-instance xbb configuration structure.
1068  * \param req        The request list structure to free.
1069  * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1070  *                   during a resource shortage condition.
1071  */
1072 static inline void
1073 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1074 		    int wakeup)
1075 {
1076 
1077 	mtx_assert(&xbb->lock, MA_OWNED);
1078 
1079 	if (wakeup) {
1080 		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1081 		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1082 	}
1083 
1084 	if (reqlist->kva != NULL)
1085 		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1086 
1087 	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1088 
1089 	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1090 
1091 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1092 		/*
1093 		 * Shutdown is in progress.  See if we can
1094 		 * progress further now that one more request
1095 		 * has completed and been returned to the
1096 		 * free pool.
1097 		 */
1098 		xbb_shutdown(xbb);
1099 	}
1100 
1101 	if (wakeup != 0)
1102 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1103 }
1104 
1105 /**
1106  * Request resources and do basic request setup.
1107  *
1108  * \param xbb          Per-instance xbb configuration structure.
1109  * \param reqlist      Pointer to reqlist pointer.
1110  * \param ring_req     Pointer to a block ring request.
1111  * \param ring_index   The ring index of this request.
1112  *
1113  * \return  0 for success, non-zero for failure.
1114  */
1115 static int
1116 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1117 		  blkif_request_t *ring_req, RING_IDX ring_idx)
1118 {
1119 	struct xbb_xen_reqlist *nreqlist;
1120 	struct xbb_xen_req     *nreq;
1121 
1122 	nreqlist = NULL;
1123 	nreq     = NULL;
1124 
1125 	mtx_lock(&xbb->lock);
1126 
1127 	/*
1128 	 * We don't allow new resources to be allocated if we're in the
1129 	 * process of shutting down.
1130 	 */
1131 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1132 		mtx_unlock(&xbb->lock);
1133 		return (1);
1134 	}
1135 
1136 	/*
1137 	 * Allocate a reqlist if the caller doesn't have one already.
1138 	 */
1139 	if (*reqlist == NULL) {
1140 		nreqlist = xbb_get_reqlist(xbb);
1141 		if (nreqlist == NULL)
1142 			goto bailout_error;
1143 	}
1144 
1145 	/* We always allocate a request. */
1146 	nreq = xbb_get_req(xbb);
1147 	if (nreq == NULL)
1148 		goto bailout_error;
1149 
1150 	mtx_unlock(&xbb->lock);
1151 
1152 	if (*reqlist == NULL) {
1153 		*reqlist = nreqlist;
1154 		nreqlist->operation = ring_req->operation;
1155 		nreqlist->starting_sector_number = ring_req->sector_number;
1156 		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1157 				   links);
1158 	}
1159 
1160 	nreq->reqlist = *reqlist;
1161 	nreq->req_ring_idx = ring_idx;
1162 	nreq->id = ring_req->id;
1163 	nreq->operation = ring_req->operation;
1164 
1165 	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1166 		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1167 		nreq->ring_req = &nreq->ring_req_storage;
1168 	} else {
1169 		nreq->ring_req = ring_req;
1170 	}
1171 
1172 	binuptime(&nreq->ds_t0);
1173 	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1174 	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1175 	(*reqlist)->num_children++;
1176 	(*reqlist)->nr_segments += ring_req->nr_segments;
1177 
1178 	return (0);
1179 
1180 bailout_error:
1181 
1182 	/*
1183 	 * We're out of resources, so set the shortage flag.  The next time
1184 	 * a request is released, we'll try waking up the work thread to
1185 	 * see if we can allocate more resources.
1186 	 */
1187 	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1188 	xbb->request_shortages++;
1189 
1190 	if (nreq != NULL)
1191 		xbb_release_req(xbb, nreq);
1192 
1193 	if (nreqlist != NULL)
1194 		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1195 
1196 	mtx_unlock(&xbb->lock);
1197 
1198 	return (1);
1199 }
1200 
1201 /**
1202  * Create and queue a response to a blkif request.
1203  *
1204  * \param xbb     Per-instance xbb configuration structure.
1205  * \param req     The request structure to which to respond.
1206  * \param status  The status code to report.  See BLKIF_RSP_*
1207  *                in sys/contrib/xen/io/blkif.h.
1208  */
1209 static void
1210 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1211 {
1212 	blkif_response_t *resp;
1213 
1214 	/*
1215 	 * The mutex is required here, and should be held across this call
1216 	 * until after the subsequent call to xbb_push_responses().  This
1217 	 * is to guarantee that another context won't queue responses and
1218 	 * push them while we're active.
1219 	 *
1220 	 * That could lead to the other end being notified of responses
1221 	 * before the resources have been freed on this end.  The other end
1222 	 * would then be able to queue additional I/O, and we may run out
1223  	 * of resources because we haven't freed them all yet.
1224 	 */
1225 	mtx_assert(&xbb->lock, MA_OWNED);
1226 
1227 	/*
1228 	 * Place on the response ring for the relevant domain.
1229 	 * For now, only the spacing between entries is different
1230 	 * in the different ABIs, not the response entry layout.
1231 	 */
1232 	switch (xbb->abi) {
1233 	case BLKIF_PROTOCOL_NATIVE:
1234 		resp = RING_GET_RESPONSE(&xbb->rings.native,
1235 					 xbb->rings.native.rsp_prod_pvt);
1236 		break;
1237 	case BLKIF_PROTOCOL_X86_32:
1238 		resp = (blkif_response_t *)
1239 		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1240 				      xbb->rings.x86_32.rsp_prod_pvt);
1241 		break;
1242 	case BLKIF_PROTOCOL_X86_64:
1243 		resp = (blkif_response_t *)
1244 		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1245 				      xbb->rings.x86_64.rsp_prod_pvt);
1246 		break;
1247 	default:
1248 		panic("Unexpected blkif protocol ABI.");
1249 	}
1250 
1251 	resp->id        = req->id;
1252 	resp->operation = req->operation;
1253 	resp->status    = status;
1254 
1255 	if (status != BLKIF_RSP_OKAY)
1256 		xbb->reqs_completed_with_error++;
1257 
1258 	xbb->rings.common.rsp_prod_pvt++;
1259 
1260 	xbb->reqs_queued_for_completion++;
1261 
1262 }
1263 
1264 /**
1265  * Send queued responses to blkif requests.
1266  *
1267  * \param xbb            Per-instance xbb configuration structure.
1268  * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1269  *			 should be run, 0 if it does not need to be run.
1270  * \param notify	 Flag that is set to 1 if the other end should be
1271  * 			 notified via irq, 0 if the other end should not be
1272  *			 notified.
1273  */
1274 static void
1275 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1276 {
1277 	int more_to_do;
1278 
1279 	/*
1280 	 * The mutex is required here.
1281 	 */
1282 	mtx_assert(&xbb->lock, MA_OWNED);
1283 
1284 	more_to_do = 0;
1285 
1286 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1287 
1288 	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1289 		/*
1290 		 * Tail check for pending requests. Allows frontend to avoid
1291 		 * notifications if requests are already in flight (lower
1292 		 * overheads and promotes batching).
1293 		 */
1294 		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1295 	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1296 		more_to_do = 1;
1297 	}
1298 
1299 	xbb->reqs_completed += xbb->reqs_queued_for_completion;
1300 	xbb->reqs_queued_for_completion = 0;
1301 
1302 	*run_taskqueue = more_to_do;
1303 }
1304 
1305 /**
1306  * Complete a request list.
1307  *
1308  * \param xbb        Per-instance xbb configuration structure.
1309  * \param reqlist    Allocated internal request list structure.
1310  */
1311 static void
1312 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1313 {
1314 	struct xbb_xen_req *nreq;
1315 	off_t		    sectors_sent;
1316 	int		    notify, run_taskqueue;
1317 
1318 	sectors_sent = 0;
1319 
1320 	if (reqlist->flags & XBB_REQLIST_MAPPED)
1321 		xbb_unmap_reqlist(reqlist);
1322 
1323 	mtx_lock(&xbb->lock);
1324 
1325 	/*
1326 	 * All I/O is done, send the response. A lock is not necessary
1327 	 * to protect the request list, because all requests have
1328 	 * completed.  Therefore this is the only context accessing this
1329 	 * reqlist right now.  However, in order to make sure that no one
1330 	 * else queues responses onto the queue or pushes them to the other
1331 	 * side while we're active, we need to hold the lock across the
1332 	 * calls to xbb_queue_response() and xbb_push_responses().
1333 	 */
1334 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1335 		off_t cur_sectors_sent;
1336 
1337 		/* Put this response on the ring, but don't push yet */
1338 		xbb_queue_response(xbb, nreq, reqlist->status);
1339 
1340 		/* We don't report bytes sent if there is an error. */
1341 		if (reqlist->status == BLKIF_RSP_OKAY)
1342 			cur_sectors_sent = nreq->nr_512b_sectors;
1343 		else
1344 			cur_sectors_sent = 0;
1345 
1346 		sectors_sent += cur_sectors_sent;
1347 
1348 		devstat_end_transaction(xbb->xbb_stats_in,
1349 					/*bytes*/cur_sectors_sent << 9,
1350 					reqlist->ds_tag_type,
1351 					reqlist->ds_trans_type,
1352 					/*now*/NULL,
1353 					/*then*/&nreq->ds_t0);
1354 	}
1355 
1356 	/*
1357 	 * Take out any sectors not sent.  If we wind up negative (which
1358 	 * might happen if an error is reported as well as a residual), just
1359 	 * report 0 sectors sent.
1360 	 */
1361 	sectors_sent -= reqlist->residual_512b_sectors;
1362 	if (sectors_sent < 0)
1363 		sectors_sent = 0;
1364 
1365 	devstat_end_transaction(xbb->xbb_stats,
1366 				/*bytes*/ sectors_sent << 9,
1367 				reqlist->ds_tag_type,
1368 				reqlist->ds_trans_type,
1369 				/*now*/NULL,
1370 				/*then*/&reqlist->ds_t0);
1371 
1372 	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1373 
1374 	xbb_push_responses(xbb, &run_taskqueue, &notify);
1375 
1376 	mtx_unlock(&xbb->lock);
1377 
1378 	if (run_taskqueue)
1379 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1380 
1381 	if (notify)
1382 		xen_intr_signal(xbb->xen_intr_handle);
1383 }
1384 
1385 /**
1386  * Completion handler for buffer I/O requests issued by the device
1387  * backend driver.
1388  *
1389  * \param bio  The buffer I/O request on which to perform completion
1390  *             processing.
1391  */
1392 static void
1393 xbb_bio_done(struct bio *bio)
1394 {
1395 	struct xbb_softc       *xbb;
1396 	struct xbb_xen_reqlist *reqlist;
1397 
1398 	reqlist = bio->bio_caller1;
1399 	xbb     = reqlist->xbb;
1400 
1401 	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1402 
1403 	/*
1404 	 * This is a bit imprecise.  With aggregated I/O a single
1405 	 * request list can contain multiple front-end requests and
1406 	 * a multiple bios may point to a single request.  By carefully
1407 	 * walking the request list, we could map residuals and errors
1408 	 * back to the original front-end request, but the interface
1409 	 * isn't sufficiently rich for us to properly report the error.
1410 	 * So, we just treat the entire request list as having failed if an
1411 	 * error occurs on any part.  And, if an error occurs, we treat
1412 	 * the amount of data transferred as 0.
1413 	 *
1414 	 * For residuals, we report it on the overall aggregated device,
1415 	 * but not on the individual requests, since we don't currently
1416 	 * do the work to determine which front-end request to which the
1417 	 * residual applies.
1418 	 */
1419 	if (bio->bio_error) {
1420 		DPRINTF("BIO returned error %d for operation on device %s\n",
1421 			bio->bio_error, xbb->dev_name);
1422 		reqlist->status = BLKIF_RSP_ERROR;
1423 
1424 		if (bio->bio_error == ENXIO
1425 		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1426 			/*
1427 			 * Backend device has disappeared.  Signal the
1428 			 * front-end that we (the device proxy) want to
1429 			 * go away.
1430 			 */
1431 			xenbus_set_state(xbb->dev, XenbusStateClosing);
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * Decrement the pending count for the request list.  When we're
1437 	 * done with the requests, send status back for all of them.
1438 	 */
1439 	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1440 		xbb_complete_reqlist(xbb, reqlist);
1441 
1442 	g_destroy_bio(bio);
1443 }
1444 
1445 /**
1446  * Parse a blkif request into an internal request structure and send
1447  * it to the backend for processing.
1448  *
1449  * \param xbb       Per-instance xbb configuration structure.
1450  * \param reqlist   Allocated internal request list structure.
1451  *
1452  * \return          On success, 0.  For resource shortages, non-zero.
1453  *
1454  * This routine performs the backend common aspects of request parsing
1455  * including compiling an internal request structure, parsing the S/G
1456  * list and any secondary ring requests in which they may reside, and
1457  * the mapping of front-end I/O pages into our domain.
1458  */
1459 static int
1460 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1461 {
1462 	struct xbb_sg                *xbb_sg;
1463 	struct gnttab_map_grant_ref  *map;
1464 	struct blkif_request_segment *sg;
1465 	struct blkif_request_segment *last_block_sg;
1466 	struct xbb_xen_req	     *nreq;
1467 	u_int			      nseg;
1468 	u_int			      seg_idx;
1469 	u_int			      block_segs;
1470 	int			      nr_sects;
1471 	int			      total_sects;
1472 	int			      operation;
1473 	uint8_t			      bio_flags;
1474 	int			      error;
1475 
1476 	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1477 	bio_flags            = 0;
1478 	total_sects	     = 0;
1479 	nr_sects	     = 0;
1480 
1481 	/*
1482 	 * First determine whether we have enough free KVA to satisfy this
1483 	 * request list.  If not, tell xbb_run_queue() so it can go to
1484 	 * sleep until we have more KVA.
1485 	 */
1486 	reqlist->kva = NULL;
1487 	if (reqlist->nr_segments != 0) {
1488 		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1489 		if (reqlist->kva == NULL) {
1490 			/*
1491 			 * If we're out of KVA, return ENOMEM.
1492 			 */
1493 			return (ENOMEM);
1494 		}
1495 	}
1496 
1497 	binuptime(&reqlist->ds_t0);
1498 	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1499 
1500 	switch (reqlist->operation) {
1501 	case BLKIF_OP_WRITE_BARRIER:
1502 		bio_flags       |= BIO_ORDERED;
1503 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1504 		/* FALLTHROUGH */
1505 	case BLKIF_OP_WRITE:
1506 		operation = BIO_WRITE;
1507 		reqlist->ds_trans_type = DEVSTAT_WRITE;
1508 		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1509 			DPRINTF("Attempt to write to read only device %s\n",
1510 				xbb->dev_name);
1511 			reqlist->status = BLKIF_RSP_ERROR;
1512 			goto send_response;
1513 		}
1514 		break;
1515 	case BLKIF_OP_READ:
1516 		operation = BIO_READ;
1517 		reqlist->ds_trans_type = DEVSTAT_READ;
1518 		break;
1519 	case BLKIF_OP_FLUSH_DISKCACHE:
1520 		/*
1521 		 * If this is true, the user has requested that we disable
1522 		 * flush support.  So we just complete the requests
1523 		 * successfully.
1524 		 */
1525 		if (xbb->disable_flush != 0) {
1526 			goto send_response;
1527 		}
1528 
1529 		/*
1530 		 * The user has requested that we only send a real flush
1531 		 * for every N flush requests.  So keep count, and either
1532 		 * complete the request immediately or queue it for the
1533 		 * backend.
1534 		 */
1535 		if (xbb->flush_interval != 0) {
1536 		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1537 				goto send_response;
1538 			} else
1539 				xbb->flush_count = 0;
1540 		}
1541 
1542 		operation = BIO_FLUSH;
1543 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1544 		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1545 		goto do_dispatch;
1546 		/*NOTREACHED*/
1547 	default:
1548 		DPRINTF("error: unknown block io operation [%d]\n",
1549 			reqlist->operation);
1550 		reqlist->status = BLKIF_RSP_ERROR;
1551 		goto send_response;
1552 	}
1553 
1554 	reqlist->xbb  = xbb;
1555 	xbb_sg        = xbb->xbb_sgs;
1556 	map	      = xbb->maps;
1557 	seg_idx	      = 0;
1558 
1559 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1560 		blkif_request_t		*ring_req;
1561 
1562 		ring_req	      = nreq->ring_req;
1563 		nr_sects              = 0;
1564 		nseg                  = ring_req->nr_segments;
1565 		nreq->nr_pages        = nseg;
1566 		nreq->nr_512b_sectors = 0;
1567 		sg	              = NULL;
1568 
1569 		/* Check that number of segments is sane. */
1570 		if (__predict_false(nseg == 0)
1571 		 || __predict_false(nseg > xbb->max_request_segments)) {
1572 			DPRINTF("Bad number of segments in request (%d)\n",
1573 				nseg);
1574 			reqlist->status = BLKIF_RSP_ERROR;
1575 			goto send_response;
1576 		}
1577 
1578 		block_segs    = nseg;
1579 		sg            = ring_req->seg;
1580 		last_block_sg = sg + block_segs;
1581 
1582 		while (sg < last_block_sg) {
1583 			KASSERT(seg_idx <
1584 				XBB_MAX_SEGMENTS_PER_REQLIST,
1585 				("seg_idx %d is too large, max "
1586 				"segs %d\n", seg_idx,
1587 				XBB_MAX_SEGMENTS_PER_REQLIST));
1588 
1589 			xbb_sg->first_sect = sg->first_sect;
1590 			xbb_sg->last_sect  = sg->last_sect;
1591 			xbb_sg->nsect =
1592 			    (int8_t)(sg->last_sect -
1593 			    sg->first_sect + 1);
1594 
1595 			if ((sg->last_sect >= (PAGE_SIZE >> 9))
1596 			 || (xbb_sg->nsect <= 0)) {
1597 				reqlist->status = BLKIF_RSP_ERROR;
1598 				goto send_response;
1599 			}
1600 
1601 			nr_sects += xbb_sg->nsect;
1602 			map->host_addr = xbb_get_gntaddr(reqlist,
1603 						seg_idx, /*sector*/0);
1604 			KASSERT(map->host_addr + PAGE_SIZE <=
1605 				xbb->ring_config.gnt_addr,
1606 				("Host address %#jx len %d overlaps "
1607 				 "ring address %#jx\n",
1608 				(uintmax_t)map->host_addr, PAGE_SIZE,
1609 				(uintmax_t)xbb->ring_config.gnt_addr));
1610 
1611 			map->flags     = GNTMAP_host_map;
1612 			map->ref       = sg->gref;
1613 			map->dom       = xbb->otherend_id;
1614 			if (operation == BIO_WRITE)
1615 				map->flags |= GNTMAP_readonly;
1616 			sg++;
1617 			map++;
1618 			xbb_sg++;
1619 			seg_idx++;
1620 		}
1621 
1622 		/* Convert to the disk's sector size */
1623 		nreq->nr_512b_sectors = nr_sects;
1624 		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1625 		total_sects += nr_sects;
1626 
1627 		if ((nreq->nr_512b_sectors &
1628 		    ((xbb->sector_size >> 9) - 1)) != 0) {
1629 			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1630 				      "a multiple of the backing store sector "
1631 				      "size (%d)\n", __func__,
1632 				      nreq->nr_512b_sectors << 9,
1633 				      xbb->sector_size);
1634 			reqlist->status = BLKIF_RSP_ERROR;
1635 			goto send_response;
1636 		}
1637 	}
1638 
1639 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1640 					  xbb->maps, reqlist->nr_segments);
1641 	if (error != 0)
1642 		panic("Grant table operation failed (%d)", error);
1643 
1644 	reqlist->flags |= XBB_REQLIST_MAPPED;
1645 
1646 	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1647 	     seg_idx++, map++){
1648 		if (__predict_false(map->status != 0)) {
1649 			DPRINTF("invalid buffer -- could not remap "
1650 			        "it (%d)\n", map->status);
1651 			DPRINTF("Mapping(%d): Host Addr 0x%"PRIx64", flags "
1652 			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1653 				map->host_addr, map->flags, map->ref,
1654 				map->dom);
1655 			reqlist->status = BLKIF_RSP_ERROR;
1656 			goto send_response;
1657 		}
1658 
1659 		reqlist->gnt_handles[seg_idx] = map->handle;
1660 	}
1661 	if (reqlist->starting_sector_number + total_sects >
1662 	    xbb->media_num_sectors) {
1663 		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1664 			"extends past end of device %s\n",
1665 			operation == BIO_READ ? "read" : "write",
1666 			reqlist->starting_sector_number,
1667 			reqlist->starting_sector_number + total_sects,
1668 			xbb->dev_name);
1669 		reqlist->status = BLKIF_RSP_ERROR;
1670 		goto send_response;
1671 	}
1672 
1673 do_dispatch:
1674 
1675 	error = xbb->dispatch_io(xbb,
1676 				 reqlist,
1677 				 operation,
1678 				 bio_flags);
1679 
1680 	if (error != 0) {
1681 		reqlist->status = BLKIF_RSP_ERROR;
1682 		goto send_response;
1683 	}
1684 
1685 	return (0);
1686 
1687 send_response:
1688 
1689 	xbb_complete_reqlist(xbb, reqlist);
1690 
1691 	return (0);
1692 }
1693 
1694 static __inline int
1695 xbb_count_sects(blkif_request_t *ring_req)
1696 {
1697 	int i;
1698 	int cur_size = 0;
1699 
1700 	for (i = 0; i < ring_req->nr_segments; i++) {
1701 		int nsect;
1702 
1703 		nsect = (int8_t)(ring_req->seg[i].last_sect -
1704 			ring_req->seg[i].first_sect + 1);
1705 		if (nsect <= 0)
1706 			break;
1707 
1708 		cur_size += nsect;
1709 	}
1710 
1711 	return (cur_size);
1712 }
1713 
1714 /**
1715  * Process incoming requests from the shared communication ring in response
1716  * to a signal on the ring's event channel.
1717  *
1718  * \param context  Callback argument registerd during task initialization -
1719  *                 the xbb_softc for this instance.
1720  * \param pending  The number of taskqueue_enqueue events that have
1721  *                 occurred since this handler was last run.
1722  */
1723 static void
1724 xbb_run_queue(void *context, int pending)
1725 {
1726 	struct xbb_softc       *xbb;
1727 	blkif_back_rings_t     *rings;
1728 	RING_IDX		rp;
1729 	uint64_t		cur_sector;
1730 	int			cur_operation;
1731 	struct xbb_xen_reqlist *reqlist;
1732 
1733 	xbb   = (struct xbb_softc *)context;
1734 	rings = &xbb->rings;
1735 
1736 	/*
1737 	 * Work gather and dispatch loop.  Note that we have a bias here
1738 	 * towards gathering I/O sent by blockfront.  We first gather up
1739 	 * everything in the ring, as long as we have resources.  Then we
1740 	 * dispatch one request, and then attempt to gather up any
1741 	 * additional requests that have come in while we were dispatching
1742 	 * the request.
1743 	 *
1744 	 * This allows us to get a clearer picture (via devstat) of how
1745 	 * many requests blockfront is queueing to us at any given time.
1746 	 */
1747 	for (;;) {
1748 		int retval;
1749 
1750 		/*
1751 		 * Initialize reqlist to the last element in the pending
1752 		 * queue, if there is one.  This allows us to add more
1753 		 * requests to that request list, if we have room.
1754 		 */
1755 		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1756 				      xbb_xen_reqlist, links);
1757 		if (reqlist != NULL) {
1758 			cur_sector = reqlist->next_contig_sector;
1759 			cur_operation = reqlist->operation;
1760 		} else {
1761 			cur_operation = 0;
1762 			cur_sector    = 0;
1763 		}
1764 
1765 		/*
1766 		 * Cache req_prod to avoid accessing a cache line shared
1767 		 * with the frontend.
1768 		 */
1769 		rp = rings->common.sring->req_prod;
1770 
1771 		/* Ensure we see queued requests up to 'rp'. */
1772 		rmb();
1773 
1774 		/**
1775 		 * Run so long as there is work to consume and the generation
1776 		 * of a response will not overflow the ring.
1777 		 *
1778 		 * @note There's a 1 to 1 relationship between requests and
1779 		 *       responses, so an overflow should never occur.  This
1780 		 *       test is to protect our domain from digesting bogus
1781 		 *       data.  Shouldn't we log this?
1782 		 */
1783 		while (rings->common.req_cons != rp
1784 		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1785 						  rings->common.req_cons) == 0){
1786 			blkif_request_t	        ring_req_storage;
1787 			blkif_request_t	       *ring_req;
1788 			int			cur_size;
1789 
1790 			switch (xbb->abi) {
1791 			case BLKIF_PROTOCOL_NATIVE:
1792 				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1793 				    rings->common.req_cons);
1794 				break;
1795 			case BLKIF_PROTOCOL_X86_32:
1796 			{
1797 				struct blkif_x86_32_request *ring_req32;
1798 
1799 				ring_req32 = RING_GET_REQUEST(
1800 				    &xbb->rings.x86_32, rings->common.req_cons);
1801 				blkif_get_x86_32_req(&ring_req_storage,
1802 						     ring_req32);
1803 				ring_req = &ring_req_storage;
1804 				break;
1805 			}
1806 			case BLKIF_PROTOCOL_X86_64:
1807 			{
1808 				struct blkif_x86_64_request *ring_req64;
1809 
1810 				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1811 				    rings->common.req_cons);
1812 				blkif_get_x86_64_req(&ring_req_storage,
1813 						     ring_req64);
1814 				ring_req = &ring_req_storage;
1815 				break;
1816 			}
1817 			default:
1818 				panic("Unexpected blkif protocol ABI.");
1819 				/* NOTREACHED */
1820 			}
1821 
1822 			/*
1823 			 * Check for situations that would require closing
1824 			 * off this I/O for further coalescing:
1825 			 *  - Coalescing is turned off.
1826 			 *  - Current I/O is out of sequence with the previous
1827 			 *    I/O.
1828 			 *  - Coalesced I/O would be too large.
1829 			 */
1830 			if ((reqlist != NULL)
1831 			 && ((xbb->no_coalesce_reqs != 0)
1832 			  || ((xbb->no_coalesce_reqs == 0)
1833 			   && ((ring_req->sector_number != cur_sector)
1834 			    || (ring_req->operation != cur_operation)
1835 			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1836 			         xbb->max_reqlist_segments))))) {
1837 				reqlist = NULL;
1838 			}
1839 
1840 			/*
1841 			 * Grab and check for all resources in one shot.
1842 			 * If we can't get all of the resources we need,
1843 			 * the shortage is noted and the thread will get
1844 			 * woken up when more resources are available.
1845 			 */
1846 			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1847 						   xbb->rings.common.req_cons);
1848 
1849 			if (retval != 0) {
1850 				/*
1851 				 * Resource shortage has been recorded.
1852 				 * We'll be scheduled to run once a request
1853 				 * object frees up due to a completion.
1854 				 */
1855 				break;
1856 			}
1857 
1858 			/*
1859 			 * Signify that	we can overwrite this request with
1860 			 * a response by incrementing our consumer index.
1861 			 * The response won't be generated until after
1862 			 * we've already consumed all necessary data out
1863 			 * of the version of the request in the ring buffer
1864 			 * (for native mode).  We must update the consumer
1865 			 * index  before issuing back-end I/O so there is
1866 			 * no possibility that it will complete and a
1867 			 * response be generated before we make room in
1868 			 * the queue for that response.
1869 			 */
1870 			xbb->rings.common.req_cons++;
1871 			xbb->reqs_received++;
1872 
1873 			cur_size = xbb_count_sects(ring_req);
1874 			cur_sector = ring_req->sector_number + cur_size;
1875 			reqlist->next_contig_sector = cur_sector;
1876 			cur_operation = ring_req->operation;
1877 		}
1878 
1879 		/* Check for I/O to dispatch */
1880 		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1881 		if (reqlist == NULL) {
1882 			/*
1883 			 * We're out of work to do, put the task queue to
1884 			 * sleep.
1885 			 */
1886 			break;
1887 		}
1888 
1889 		/*
1890 		 * Grab the first request off the queue and attempt
1891 		 * to dispatch it.
1892 		 */
1893 		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1894 
1895 		retval = xbb_dispatch_io(xbb, reqlist);
1896 		if (retval != 0) {
1897 			/*
1898 			 * xbb_dispatch_io() returns non-zero only when
1899 			 * there is a resource shortage.  If that's the
1900 			 * case, re-queue this request on the head of the
1901 			 * queue, and go to sleep until we have more
1902 			 * resources.
1903 			 */
1904 			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
1905 					   reqlist, links);
1906 			break;
1907 		} else {
1908 			/*
1909 			 * If we still have anything on the queue after
1910 			 * removing the head entry, that is because we
1911 			 * met one of the criteria to create a new
1912 			 * request list (outlined above), and we'll call
1913 			 * that a forced dispatch for statistical purposes.
1914 			 *
1915 			 * Otherwise, if there is only one element on the
1916 			 * queue, we coalesced everything available on
1917 			 * the ring and we'll call that a normal dispatch.
1918 			 */
1919 			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1920 
1921 			if (reqlist != NULL)
1922 				xbb->forced_dispatch++;
1923 			else
1924 				xbb->normal_dispatch++;
1925 
1926 			xbb->total_dispatch++;
1927 		}
1928 	}
1929 }
1930 
1931 /**
1932  * Interrupt handler bound to the shared ring's event channel.
1933  *
1934  * \param arg  Callback argument registerd during event channel
1935  *             binding - the xbb_softc for this instance.
1936  */
1937 static int
1938 xbb_filter(void *arg)
1939 {
1940 	struct xbb_softc *xbb;
1941 
1942 	/* Defer to taskqueue thread. */
1943 	xbb = (struct xbb_softc *)arg;
1944 	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1945 
1946 	return (FILTER_HANDLED);
1947 }
1948 
1949 SDT_PROVIDER_DEFINE(xbb);
1950 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
1951 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
1952 		  "uint64_t");
1953 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
1954 		  "uint64_t", "uint64_t");
1955 
1956 /*----------------------------- Backend Handlers -----------------------------*/
1957 /**
1958  * Backend handler for character device access.
1959  *
1960  * \param xbb        Per-instance xbb configuration structure.
1961  * \param reqlist    Allocated internal request list structure.
1962  * \param operation  BIO_* I/O operation code.
1963  * \param bio_flags  Additional bio_flag data to pass to any generated
1964  *                   bios (e.g. BIO_ORDERED)..
1965  *
1966  * \return  0 for success, errno codes for failure.
1967  */
1968 static int
1969 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1970 		 int operation, int bio_flags)
1971 {
1972 	struct xbb_dev_data *dev_data;
1973 	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
1974 	off_t                bio_offset;
1975 	struct bio          *bio;
1976 	struct xbb_sg       *xbb_sg;
1977 	u_int	             nbio;
1978 	u_int                bio_idx;
1979 	u_int		     nseg;
1980 	u_int                seg_idx;
1981 	int                  error;
1982 
1983 	dev_data   = &xbb->backend.dev;
1984 	bio_offset = (off_t)reqlist->starting_sector_number
1985 		   << xbb->sector_size_shift;
1986 	error      = 0;
1987 	nbio       = 0;
1988 	bio_idx    = 0;
1989 
1990 	if (operation == BIO_FLUSH) {
1991 		bio = g_new_bio();
1992 		if (__predict_false(bio == NULL)) {
1993 			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
1994 			error = ENOMEM;
1995 			return (error);
1996 		}
1997 
1998 		bio->bio_cmd	 = BIO_FLUSH;
1999 		bio->bio_flags	|= BIO_ORDERED;
2000 		bio->bio_dev	 = dev_data->cdev;
2001 		bio->bio_offset	 = 0;
2002 		bio->bio_data	 = 0;
2003 		bio->bio_done	 = xbb_bio_done;
2004 		bio->bio_caller1 = reqlist;
2005 		bio->bio_pblkno	 = 0;
2006 
2007 		reqlist->pendcnt = 1;
2008 
2009 		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2010 			   device_get_unit(xbb->dev));
2011 
2012 		(*dev_data->csw->d_strategy)(bio);
2013 
2014 		return (0);
2015 	}
2016 
2017 	xbb_sg = xbb->xbb_sgs;
2018 	bio    = NULL;
2019 	nseg = reqlist->nr_segments;
2020 
2021 	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2022 		/*
2023 		 * KVA will not be contiguous, so any additional
2024 		 * I/O will need to be represented in a new bio.
2025 		 */
2026 		if ((bio != NULL)
2027 		 && (xbb_sg->first_sect != 0)) {
2028 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2029 				printf("%s: Discontiguous I/O request "
2030 				       "from domain %d ends on "
2031 				       "non-sector boundary\n",
2032 				       __func__, xbb->otherend_id);
2033 				error = EINVAL;
2034 				goto fail_free_bios;
2035 			}
2036 			bio = NULL;
2037 		}
2038 
2039 		if (bio == NULL) {
2040 			/*
2041 			 * Make sure that the start of this bio is
2042 			 * aligned to a device sector.
2043 			 */
2044 			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2045 				printf("%s: Misaligned I/O request "
2046 				       "from domain %d\n", __func__,
2047 				       xbb->otherend_id);
2048 				error = EINVAL;
2049 				goto fail_free_bios;
2050 			}
2051 
2052 			bio = bios[nbio++] = g_new_bio();
2053 			if (__predict_false(bio == NULL)) {
2054 				error = ENOMEM;
2055 				goto fail_free_bios;
2056 			}
2057 			bio->bio_cmd     = operation;
2058 			bio->bio_flags  |= bio_flags;
2059 			bio->bio_dev     = dev_data->cdev;
2060 			bio->bio_offset  = bio_offset;
2061 			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2062 						xbb_sg->first_sect);
2063 			bio->bio_done    = xbb_bio_done;
2064 			bio->bio_caller1 = reqlist;
2065 			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2066 		}
2067 
2068 		bio->bio_length += xbb_sg->nsect << 9;
2069 		bio->bio_bcount  = bio->bio_length;
2070 		bio_offset      += xbb_sg->nsect << 9;
2071 
2072 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2073 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2074 				printf("%s: Discontiguous I/O request "
2075 				       "from domain %d ends on "
2076 				       "non-sector boundary\n",
2077 				       __func__, xbb->otherend_id);
2078 				error = EINVAL;
2079 				goto fail_free_bios;
2080 			}
2081 			/*
2082 			 * KVA will not be contiguous, so any additional
2083 			 * I/O will need to be represented in a new bio.
2084 			 */
2085 			bio = NULL;
2086 		}
2087 	}
2088 
2089 	reqlist->pendcnt = nbio;
2090 
2091 	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2092 	{
2093 		if (operation == BIO_READ) {
2094 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2095 				   device_get_unit(xbb->dev),
2096 				   bios[bio_idx]->bio_offset,
2097 				   bios[bio_idx]->bio_length);
2098 		} else if (operation == BIO_WRITE) {
2099 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2100 				   device_get_unit(xbb->dev),
2101 				   bios[bio_idx]->bio_offset,
2102 				   bios[bio_idx]->bio_length);
2103 		}
2104 		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2105 	}
2106 
2107 	return (error);
2108 
2109 fail_free_bios:
2110 	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2111 		g_destroy_bio(bios[bio_idx]);
2112 
2113 	return (error);
2114 }
2115 
2116 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2117 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2118 		  "uint64_t");
2119 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2120 		  "uint64_t", "uint64_t");
2121 
2122 /**
2123  * Backend handler for file access.
2124  *
2125  * \param xbb        Per-instance xbb configuration structure.
2126  * \param reqlist    Allocated internal request list.
2127  * \param operation  BIO_* I/O operation code.
2128  * \param flags      Additional bio_flag data to pass to any generated bios
2129  *                   (e.g. BIO_ORDERED)..
2130  *
2131  * \return  0 for success, errno codes for failure.
2132  */
2133 static int
2134 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2135 		  int operation, int flags)
2136 {
2137 	struct xbb_file_data *file_data;
2138 	u_int                 seg_idx;
2139 	u_int		      nseg;
2140 	struct uio            xuio;
2141 	struct xbb_sg        *xbb_sg;
2142 	struct iovec         *xiovec;
2143 	int                   error;
2144 
2145 	file_data = &xbb->backend.file;
2146 	error = 0;
2147 	bzero(&xuio, sizeof(xuio));
2148 
2149 	switch (operation) {
2150 	case BIO_READ:
2151 		xuio.uio_rw = UIO_READ;
2152 		break;
2153 	case BIO_WRITE:
2154 		xuio.uio_rw = UIO_WRITE;
2155 		break;
2156 	case BIO_FLUSH: {
2157 		struct mount *mountpoint;
2158 
2159 		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2160 			   device_get_unit(xbb->dev));
2161 
2162 		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2163 
2164 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2165 		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2166 		VOP_UNLOCK(xbb->vn);
2167 
2168 		vn_finished_write(mountpoint);
2169 
2170 		goto bailout_send_response;
2171 		/* NOTREACHED */
2172 	}
2173 	default:
2174 		panic("invalid operation %d", operation);
2175 		/* NOTREACHED */
2176 	}
2177 	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2178 			<< xbb->sector_size_shift;
2179 	xuio.uio_segflg = UIO_SYSSPACE;
2180 	xuio.uio_iov = file_data->xiovecs;
2181 	xuio.uio_iovcnt = 0;
2182 	xbb_sg = xbb->xbb_sgs;
2183 	nseg = reqlist->nr_segments;
2184 
2185 	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2186 		/*
2187 		 * If the first sector is not 0, the KVA will
2188 		 * not be contiguous and we'll need to go on
2189 		 * to another segment.
2190 		 */
2191 		if (xbb_sg->first_sect != 0)
2192 			xiovec = NULL;
2193 
2194 		if (xiovec == NULL) {
2195 			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2196 			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2197 			    seg_idx, xbb_sg->first_sect);
2198 			xiovec->iov_len = 0;
2199 			xuio.uio_iovcnt++;
2200 		}
2201 
2202 		xiovec->iov_len += xbb_sg->nsect << 9;
2203 
2204 		xuio.uio_resid += xbb_sg->nsect << 9;
2205 
2206 		/*
2207 		 * If the last sector is not the full page
2208 		 * size count, the next segment will not be
2209 		 * contiguous in KVA and we need a new iovec.
2210 		 */
2211 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2212 			xiovec = NULL;
2213 	}
2214 
2215 	xuio.uio_td = curthread;
2216 
2217 	switch (operation) {
2218 	case BIO_READ:
2219 
2220 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2221 			   device_get_unit(xbb->dev), xuio.uio_offset,
2222 			   xuio.uio_resid);
2223 
2224 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2225 
2226 		/*
2227 		 * UFS pays attention to IO_DIRECT for reads.  If the
2228 		 * DIRECTIO option is configured into the kernel, it calls
2229 		 * ffs_rawread().  But that only works for single-segment
2230 		 * uios with user space addresses.  In our case, with a
2231 		 * kernel uio, it still reads into the buffer cache, but it
2232 		 * will just try to release the buffer from the cache later
2233 		 * on in ffs_read().
2234 		 *
2235 		 * ZFS does not pay attention to IO_DIRECT for reads.
2236 		 *
2237 		 * UFS does not pay attention to IO_SYNC for reads.
2238 		 *
2239 		 * ZFS pays attention to IO_SYNC (which translates into the
2240 		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2241 		 * attempts to sync the file before reading.
2242 		 *
2243 		 * So, to attempt to provide some barrier semantics in the
2244 		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2245 		 */
2246 		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2247 				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2248 
2249 		VOP_UNLOCK(xbb->vn);
2250 		break;
2251 	case BIO_WRITE: {
2252 		struct mount *mountpoint;
2253 
2254 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2255 			   device_get_unit(xbb->dev), xuio.uio_offset,
2256 			   xuio.uio_resid);
2257 
2258 		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2259 
2260 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2261 
2262 		/*
2263 		 * UFS pays attention to IO_DIRECT for writes.  The write
2264 		 * is done asynchronously.  (Normally the write would just
2265 		 * get put into cache.
2266 		 *
2267 		 * UFS pays attention to IO_SYNC for writes.  It will
2268 		 * attempt to write the buffer out synchronously if that
2269 		 * flag is set.
2270 		 *
2271 		 * ZFS does not pay attention to IO_DIRECT for writes.
2272 		 *
2273 		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2274 		 * for writes.  It will flush the transaction from the
2275 		 * cache before returning.
2276 		 *
2277 		 * So if we've got the BIO_ORDERED flag set, we want
2278 		 * IO_SYNC in either the UFS or ZFS case.
2279 		 */
2280 		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2281 				  IO_SYNC : 0, file_data->cred);
2282 		VOP_UNLOCK(xbb->vn);
2283 
2284 		vn_finished_write(mountpoint);
2285 
2286 		break;
2287 	}
2288 	default:
2289 		panic("invalid operation %d", operation);
2290 		/* NOTREACHED */
2291 	}
2292 
2293 bailout_send_response:
2294 
2295 	if (error != 0)
2296 		reqlist->status = BLKIF_RSP_ERROR;
2297 
2298 	xbb_complete_reqlist(xbb, reqlist);
2299 
2300 	return (0);
2301 }
2302 
2303 /*--------------------------- Backend Configuration --------------------------*/
2304 /**
2305  * Close and cleanup any backend device/file specific state for this
2306  * block back instance.
2307  *
2308  * \param xbb  Per-instance xbb configuration structure.
2309  */
2310 static void
2311 xbb_close_backend(struct xbb_softc *xbb)
2312 {
2313 	DROP_GIANT();
2314 	DPRINTF("closing dev=%s\n", xbb->dev_name);
2315 	if (xbb->vn) {
2316 		int flags = FREAD;
2317 
2318 		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2319 			flags |= FWRITE;
2320 
2321 		switch (xbb->device_type) {
2322 		case XBB_TYPE_DISK:
2323 			if (xbb->backend.dev.csw) {
2324 				dev_relthread(xbb->backend.dev.cdev,
2325 					      xbb->backend.dev.dev_ref);
2326 				xbb->backend.dev.csw  = NULL;
2327 				xbb->backend.dev.cdev = NULL;
2328 			}
2329 			break;
2330 		case XBB_TYPE_FILE:
2331 			break;
2332 		case XBB_TYPE_NONE:
2333 		default:
2334 			panic("Unexpected backend type.");
2335 			break;
2336 		}
2337 
2338 		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2339 		xbb->vn = NULL;
2340 
2341 		switch (xbb->device_type) {
2342 		case XBB_TYPE_DISK:
2343 			break;
2344 		case XBB_TYPE_FILE:
2345 			if (xbb->backend.file.cred != NULL) {
2346 				crfree(xbb->backend.file.cred);
2347 				xbb->backend.file.cred = NULL;
2348 			}
2349 			break;
2350 		case XBB_TYPE_NONE:
2351 		default:
2352 			panic("Unexpected backend type.");
2353 			break;
2354 		}
2355 	}
2356 	PICKUP_GIANT();
2357 }
2358 
2359 /**
2360  * Open a character device to be used for backend I/O.
2361  *
2362  * \param xbb  Per-instance xbb configuration structure.
2363  *
2364  * \return  0 for success, errno codes for failure.
2365  */
2366 static int
2367 xbb_open_dev(struct xbb_softc *xbb)
2368 {
2369 	struct vattr   vattr;
2370 	struct cdev   *dev;
2371 	struct cdevsw *devsw;
2372 	int	       error;
2373 
2374 	xbb->device_type = XBB_TYPE_DISK;
2375 	xbb->dispatch_io = xbb_dispatch_dev;
2376 	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2377 	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2378 					     &xbb->backend.dev.dev_ref);
2379 	if (xbb->backend.dev.csw == NULL)
2380 		panic("Unable to retrieve device switch");
2381 
2382 	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2383 	if (error) {
2384 		xenbus_dev_fatal(xbb->dev, error, "error getting "
2385 				 "vnode attributes for device %s",
2386 				 xbb->dev_name);
2387 		return (error);
2388 	}
2389 
2390 	dev = xbb->vn->v_rdev;
2391 	devsw = dev->si_devsw;
2392 	if (!devsw->d_ioctl) {
2393 		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2394 				 "device %s!", xbb->dev_name);
2395 		return (ENODEV);
2396 	}
2397 
2398 	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2399 			       (caddr_t)&xbb->sector_size, FREAD,
2400 			       curthread);
2401 	if (error) {
2402 		xenbus_dev_fatal(xbb->dev, error,
2403 				 "error calling ioctl DIOCGSECTORSIZE "
2404 				 "for device %s", xbb->dev_name);
2405 		return (error);
2406 	}
2407 
2408 	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2409 			       (caddr_t)&xbb->media_size, FREAD,
2410 			       curthread);
2411 	if (error) {
2412 		xenbus_dev_fatal(xbb->dev, error,
2413 				 "error calling ioctl DIOCGMEDIASIZE "
2414 				 "for device %s", xbb->dev_name);
2415 		return (error);
2416 	}
2417 
2418 	return (0);
2419 }
2420 
2421 /**
2422  * Open a file to be used for backend I/O.
2423  *
2424  * \param xbb  Per-instance xbb configuration structure.
2425  *
2426  * \return  0 for success, errno codes for failure.
2427  */
2428 static int
2429 xbb_open_file(struct xbb_softc *xbb)
2430 {
2431 	struct xbb_file_data *file_data;
2432 	struct vattr          vattr;
2433 	int                   error;
2434 
2435 	file_data = &xbb->backend.file;
2436 	xbb->device_type = XBB_TYPE_FILE;
2437 	xbb->dispatch_io = xbb_dispatch_file;
2438 	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2439 	if (error != 0) {
2440 		xenbus_dev_fatal(xbb->dev, error,
2441 				 "error calling VOP_GETATTR()"
2442 				 "for file %s", xbb->dev_name);
2443 		return (error);
2444 	}
2445 
2446 	/*
2447 	 * Verify that we have the ability to upgrade to exclusive
2448 	 * access on this file so we can trap errors at open instead
2449 	 * of reporting them during first access.
2450 	 */
2451 	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2452 		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2453 		if (VN_IS_DOOMED(xbb->vn)) {
2454 			error = EBADF;
2455 			xenbus_dev_fatal(xbb->dev, error,
2456 					 "error locking file %s",
2457 					 xbb->dev_name);
2458 
2459 			return (error);
2460 		}
2461 	}
2462 
2463 	file_data->cred = crhold(curthread->td_ucred);
2464 	xbb->media_size = vattr.va_size;
2465 
2466 	/*
2467 	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2468 	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2469 	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2470 	 * may not work with other OSes as well.  So just export a sector
2471 	 * size of 512 bytes, which should work with any OS or
2472 	 * application.  Since our backing is a file, any block size will
2473 	 * work fine for the backing store.
2474 	 */
2475 #if 0
2476 	xbb->sector_size = vattr.va_blocksize;
2477 #endif
2478 	xbb->sector_size = 512;
2479 
2480 	/*
2481 	 * Sanity check.  The media size has to be at least one
2482 	 * sector long.
2483 	 */
2484 	if (xbb->media_size < xbb->sector_size) {
2485 		error = EINVAL;
2486 		xenbus_dev_fatal(xbb->dev, error,
2487 				 "file %s size %ju < block size %u",
2488 				 xbb->dev_name,
2489 				 (uintmax_t)xbb->media_size,
2490 				 xbb->sector_size);
2491 	}
2492 	return (error);
2493 }
2494 
2495 /**
2496  * Open the backend provider for this connection.
2497  *
2498  * \param xbb  Per-instance xbb configuration structure.
2499  *
2500  * \return  0 for success, errno codes for failure.
2501  */
2502 static int
2503 xbb_open_backend(struct xbb_softc *xbb)
2504 {
2505 	struct nameidata nd;
2506 	int		 flags;
2507 	int		 error;
2508 
2509 	flags = FREAD;
2510 	error = 0;
2511 
2512 	DPRINTF("opening dev=%s\n", xbb->dev_name);
2513 
2514 	if (rootvnode == NULL) {
2515 		xenbus_dev_fatal(xbb->dev, ENOENT,
2516 				 "Root file system not mounted");
2517 		return (ENOENT);
2518 	}
2519 
2520 	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2521 		flags |= FWRITE;
2522 
2523 	pwd_ensure_dirs();
2524 
2525  again:
2526 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name);
2527 	error = vn_open(&nd, &flags, 0, NULL);
2528 	if (error) {
2529 		/*
2530 		 * This is the only reasonable guess we can make as far as
2531 		 * path if the user doesn't give us a fully qualified path.
2532 		 * If they want to specify a file, they need to specify the
2533 		 * full path.
2534 		 */
2535 		if (xbb->dev_name[0] != '/') {
2536 			char *dev_path = "/dev/";
2537 			char *dev_name;
2538 
2539 			/* Try adding device path at beginning of name */
2540 			dev_name = malloc(strlen(xbb->dev_name)
2541 					+ strlen(dev_path) + 1,
2542 					  M_XENBLOCKBACK, M_NOWAIT);
2543 			if (dev_name) {
2544 				sprintf(dev_name, "%s%s", dev_path,
2545 					xbb->dev_name);
2546 				free(xbb->dev_name, M_XENBLOCKBACK);
2547 				xbb->dev_name = dev_name;
2548 				goto again;
2549 			}
2550 		}
2551 		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2552 				 xbb->dev_name);
2553 		return (error);
2554 	}
2555 
2556 	NDFREE_PNBUF(&nd);
2557 
2558 	xbb->vn = nd.ni_vp;
2559 
2560 	/* We only support disks and files. */
2561 	if (vn_isdisk_error(xbb->vn, &error)) {
2562 		error = xbb_open_dev(xbb);
2563 	} else if (xbb->vn->v_type == VREG) {
2564 		error = xbb_open_file(xbb);
2565 	} else {
2566 		error = EINVAL;
2567 		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2568 				 "or file", xbb->dev_name);
2569 	}
2570 	VOP_UNLOCK(xbb->vn);
2571 
2572 	if (error != 0) {
2573 		xbb_close_backend(xbb);
2574 		return (error);
2575 	}
2576 
2577 	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2578 	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2579 
2580 	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2581 		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2582 		xbb->dev_name, xbb->sector_size, xbb->media_size);
2583 
2584 	return (0);
2585 }
2586 
2587 /*------------------------ Inter-Domain Communication ------------------------*/
2588 /**
2589  * Free dynamically allocated KVA or pseudo-physical address allocations.
2590  *
2591  * \param xbb  Per-instance xbb configuration structure.
2592  */
2593 static void
2594 xbb_free_communication_mem(struct xbb_softc *xbb)
2595 {
2596 	if (xbb->kva != 0) {
2597 		if (xbb->pseudo_phys_res != NULL) {
2598 			xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2599 			    xbb->pseudo_phys_res);
2600 			xbb->pseudo_phys_res = NULL;
2601 		}
2602 	}
2603 	xbb->kva = 0;
2604 	xbb->gnt_base_addr = 0;
2605 	if (xbb->kva_free != NULL) {
2606 		free(xbb->kva_free, M_XENBLOCKBACK);
2607 		xbb->kva_free = NULL;
2608 	}
2609 }
2610 
2611 /**
2612  * Cleanup all inter-domain communication mechanisms.
2613  *
2614  * \param xbb  Per-instance xbb configuration structure.
2615  */
2616 static int
2617 xbb_disconnect(struct xbb_softc *xbb)
2618 {
2619 	DPRINTF("\n");
2620 
2621 	mtx_unlock(&xbb->lock);
2622 	xen_intr_unbind(&xbb->xen_intr_handle);
2623 	if (xbb->io_taskqueue != NULL)
2624 		taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2625 	mtx_lock(&xbb->lock);
2626 
2627 	/*
2628 	 * No new interrupts can generate work, but we must wait
2629 	 * for all currently active requests to drain.
2630 	 */
2631 	if (xbb->active_request_count != 0)
2632 		return (EAGAIN);
2633 
2634 	if (xbb->flags & XBBF_RING_CONNECTED) {
2635 		struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2636 		struct gnttab_unmap_grant_ref *op;
2637 		unsigned int ring_idx;
2638 		int error;
2639 
2640 		for (ring_idx = 0, op = ops;
2641 		     ring_idx < xbb->ring_config.ring_pages;
2642 		     ring_idx++, op++) {
2643 			op->host_addr    = xbb->ring_config.gnt_addr
2644 				         + (ring_idx * PAGE_SIZE);
2645 			op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2646 			op->handle	 = xbb->ring_config.handle[ring_idx];
2647 		}
2648 
2649 		error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2650 						  xbb->ring_config.ring_pages);
2651 		if (error != 0)
2652 			panic("Grant table op failed (%d)", error);
2653 
2654 		xbb->flags &= ~XBBF_RING_CONNECTED;
2655 	}
2656 
2657 	xbb_free_communication_mem(xbb);
2658 
2659 	if (xbb->requests != NULL) {
2660 		free(xbb->requests, M_XENBLOCKBACK);
2661 		xbb->requests = NULL;
2662 	}
2663 
2664 	if (xbb->request_lists != NULL) {
2665 		struct xbb_xen_reqlist *reqlist;
2666 		int i;
2667 
2668 		/* There is one request list for ever allocated request. */
2669 		for (i = 0, reqlist = xbb->request_lists;
2670 		     i < xbb->max_requests; i++, reqlist++){
2671 			if (reqlist->gnt_handles != NULL) {
2672 				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2673 				reqlist->gnt_handles = NULL;
2674 			}
2675 		}
2676 		free(xbb->request_lists, M_XENBLOCKBACK);
2677 		xbb->request_lists = NULL;
2678 	}
2679 
2680 	return (0);
2681 }
2682 
2683 /**
2684  * Map shared memory ring into domain local address space, initialize
2685  * ring control structures, and bind an interrupt to the event channel
2686  * used to notify us of ring changes.
2687  *
2688  * \param xbb  Per-instance xbb configuration structure.
2689  */
2690 static int
2691 xbb_connect_ring(struct xbb_softc *xbb)
2692 {
2693 	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2694 	struct gnttab_map_grant_ref *gnt;
2695 	u_int			     ring_idx;
2696 	int			     error;
2697 
2698 	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2699 		return (0);
2700 
2701 	/*
2702 	 * Kva for our ring is at the tail of the region of kva allocated
2703 	 * by xbb_alloc_communication_mem().
2704 	 */
2705 	xbb->ring_config.va = xbb->kva
2706 			    + (xbb->kva_size
2707 			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2708 	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2709 				  + (xbb->kva_size
2710 				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2711 
2712 	for (ring_idx = 0, gnt = gnts;
2713 	     ring_idx < xbb->ring_config.ring_pages;
2714 	     ring_idx++, gnt++) {
2715 		gnt->host_addr = xbb->ring_config.gnt_addr
2716 			       + (ring_idx * PAGE_SIZE);
2717 		gnt->flags     = GNTMAP_host_map;
2718 		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2719 		gnt->dom       = xbb->otherend_id;
2720 	}
2721 
2722 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2723 					  xbb->ring_config.ring_pages);
2724 	if (error)
2725 		panic("blkback: Ring page grant table op failed (%d)", error);
2726 
2727 	for (ring_idx = 0, gnt = gnts;
2728 	     ring_idx < xbb->ring_config.ring_pages;
2729 	     ring_idx++, gnt++) {
2730 		if (gnt->status != 0) {
2731 			struct gnttab_unmap_grant_ref unmap[XBB_MAX_RING_PAGES];
2732 			unsigned int i, j;
2733 
2734 			xbb->ring_config.va = 0;
2735 			xenbus_dev_fatal(xbb->dev, EACCES,
2736 					 "Ring shared page mapping failed. "
2737 					 "Status %d.", gnt->status);
2738 
2739 			/* Unmap everything to avoid leaking grant table maps */
2740 			for (i = 0, j = 0; i < xbb->ring_config.ring_pages;
2741 			    i++) {
2742 				if (gnts[i].status != GNTST_okay)
2743 					continue;
2744 
2745 				unmap[j].host_addr = gnts[i].host_addr;
2746 				unmap[j].dev_bus_addr = gnts[i].dev_bus_addr;
2747 				unmap[j++].handle = gnts[i].handle;
2748 			}
2749 			if (j != 0) {
2750 				error = HYPERVISOR_grant_table_op(
2751 				    GNTTABOP_unmap_grant_ref, unmap, j);
2752 				if (error != 0)
2753 					panic("Unable to unmap grants (%d)",
2754 					    error);
2755 			}
2756 			return (EACCES);
2757 		}
2758 		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2759 		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2760 	}
2761 
2762 	/* Initialize the ring based on ABI. */
2763 	switch (xbb->abi) {
2764 	case BLKIF_PROTOCOL_NATIVE:
2765 	{
2766 		blkif_sring_t *sring;
2767 		sring = (blkif_sring_t *)xbb->ring_config.va;
2768 		BACK_RING_INIT(&xbb->rings.native, sring,
2769 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2770 		break;
2771 	}
2772 	case BLKIF_PROTOCOL_X86_32:
2773 	{
2774 		blkif_x86_32_sring_t *sring_x86_32;
2775 		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2776 		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2777 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2778 		break;
2779 	}
2780 	case BLKIF_PROTOCOL_X86_64:
2781 	{
2782 		blkif_x86_64_sring_t *sring_x86_64;
2783 		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2784 		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2785 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2786 		break;
2787 	}
2788 	default:
2789 		panic("Unexpected blkif protocol ABI.");
2790 	}
2791 
2792 	xbb->flags |= XBBF_RING_CONNECTED;
2793 
2794 	error = xen_intr_bind_remote_port(xbb->dev,
2795 					  xbb->otherend_id,
2796 					  xbb->ring_config.evtchn,
2797 					  xbb_filter,
2798 					  /*ithread_handler*/NULL,
2799 					  /*arg*/xbb,
2800 					  INTR_TYPE_BIO | INTR_MPSAFE,
2801 					  &xbb->xen_intr_handle);
2802 	if (error) {
2803 		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2804 		return (error);
2805 	}
2806 
2807 	DPRINTF("rings connected!\n");
2808 
2809 	return 0;
2810 }
2811 
2812 /**
2813  * Size KVA and pseudo-physical address allocations based on negotiated
2814  * values for the size and number of I/O requests, and the size of our
2815  * communication ring.
2816  *
2817  * \param xbb  Per-instance xbb configuration structure.
2818  *
2819  * These address spaces are used to dynamically map pages in the
2820  * front-end's domain into our own.
2821  */
2822 static int
2823 xbb_alloc_communication_mem(struct xbb_softc *xbb)
2824 {
2825 	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2826 	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2827 	xbb->kva_size = xbb->reqlist_kva_size +
2828 			(xbb->ring_config.ring_pages * PAGE_SIZE);
2829 
2830 	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages, M_XENBLOCKBACK, M_NOWAIT);
2831 	if (xbb->kva_free == NULL)
2832 		return (ENOMEM);
2833 
2834 	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2835 		device_get_nameunit(xbb->dev), xbb->kva_size,
2836 		xbb->reqlist_kva_size);
2837 	/*
2838 	 * Reserve a range of pseudo physical memory that we can map
2839 	 * into kva.  These pages will only be backed by machine
2840 	 * pages ("real memory") during the lifetime of front-end requests
2841 	 * via grant table operations.
2842 	 */
2843 	xbb->pseudo_phys_res_id = 0;
2844 	xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
2845 	    xbb->kva_size);
2846 	if (xbb->pseudo_phys_res == NULL) {
2847 		xbb->kva = 0;
2848 		return (ENOMEM);
2849 	}
2850 	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
2851 	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
2852 
2853 	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
2854 		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
2855 		(uintmax_t)xbb->gnt_base_addr);
2856 	return (0);
2857 }
2858 
2859 /**
2860  * Collect front-end information from the XenStore.
2861  *
2862  * \param xbb  Per-instance xbb configuration structure.
2863  */
2864 static int
2865 xbb_collect_frontend_info(struct xbb_softc *xbb)
2866 {
2867 	char	    protocol_abi[64];
2868 	const char *otherend_path;
2869 	int	    error;
2870 	u_int	    ring_idx;
2871 	u_int	    ring_page_order;
2872 	size_t	    ring_size;
2873 
2874 	otherend_path = xenbus_get_otherend_path(xbb->dev);
2875 
2876 	/*
2877 	 * Protocol defaults valid even if all negotiation fails.
2878 	 */
2879 	xbb->ring_config.ring_pages = 1;
2880 	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2881 	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
2882 
2883 	/*
2884 	 * Mandatory data (used in all versions of the protocol) first.
2885 	 */
2886 	error = xs_scanf(XST_NIL, otherend_path,
2887 			 "event-channel", NULL, "%" PRIu32,
2888 			 &xbb->ring_config.evtchn);
2889 	if (error != 0) {
2890 		xenbus_dev_fatal(xbb->dev, error,
2891 				 "Unable to retrieve event-channel information "
2892 				 "from frontend %s.  Unable to connect.",
2893 				 xenbus_get_otherend_path(xbb->dev));
2894 		return (error);
2895 	}
2896 
2897 	/*
2898 	 * These fields are initialized to legacy protocol defaults
2899 	 * so we only need to fail if reading the updated value succeeds
2900 	 * and the new value is outside of its allowed range.
2901 	 *
2902 	 * \note xs_gather() returns on the first encountered error, so
2903 	 *       we must use independent calls in order to guarantee
2904 	 *       we don't miss information in a sparsly populated front-end
2905 	 *       tree.
2906 	 *
2907 	 * \note xs_scanf() does not update variables for unmatched
2908 	 *       fields.
2909 	 */
2910 	ring_page_order = 0;
2911 	xbb->max_requests = 32;
2912 
2913 	(void)xs_scanf(XST_NIL, otherend_path,
2914 		       "ring-page-order", NULL, "%u",
2915 		       &ring_page_order);
2916 	xbb->ring_config.ring_pages = 1 << ring_page_order;
2917 	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
2918 	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
2919 
2920 	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
2921 		xenbus_dev_fatal(xbb->dev, EINVAL,
2922 				 "Front-end specified ring-pages of %u "
2923 				 "exceeds backend limit of %u.  "
2924 				 "Unable to connect.",
2925 				 xbb->ring_config.ring_pages,
2926 				 XBB_MAX_RING_PAGES);
2927 		return (EINVAL);
2928 	}
2929 
2930 	if (xbb->ring_config.ring_pages	== 1) {
2931 		error = xs_gather(XST_NIL, otherend_path,
2932 				  "ring-ref", "%" PRIu32,
2933 				  &xbb->ring_config.ring_ref[0],
2934 				  NULL);
2935 		if (error != 0) {
2936 			xenbus_dev_fatal(xbb->dev, error,
2937 					 "Unable to retrieve ring information "
2938 					 "from frontend %s.  Unable to "
2939 					 "connect.",
2940 					 xenbus_get_otherend_path(xbb->dev));
2941 			return (error);
2942 		}
2943 	} else {
2944 		/* Multi-page ring format. */
2945 		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
2946 		     ring_idx++) {
2947 			char ring_ref_name[]= "ring_refXX";
2948 
2949 			snprintf(ring_ref_name, sizeof(ring_ref_name),
2950 				 "ring-ref%u", ring_idx);
2951 			error = xs_scanf(XST_NIL, otherend_path,
2952 					 ring_ref_name, NULL, "%" PRIu32,
2953 					 &xbb->ring_config.ring_ref[ring_idx]);
2954 			if (error != 0) {
2955 				xenbus_dev_fatal(xbb->dev, error,
2956 						 "Failed to retriev grant "
2957 						 "reference for page %u of "
2958 						 "shared ring.  Unable "
2959 						 "to connect.", ring_idx);
2960 				return (error);
2961 			}
2962 		}
2963 	}
2964 
2965 	error = xs_gather(XST_NIL, otherend_path,
2966 			  "protocol", "%63s", protocol_abi,
2967 			  NULL);
2968 	if (error != 0
2969 	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
2970 		/*
2971 		 * Assume native if the frontend has not
2972 		 * published ABI data or it has published and
2973 		 * matches our own ABI.
2974 		 */
2975 		xbb->abi = BLKIF_PROTOCOL_NATIVE;
2976 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
2977 		xbb->abi = BLKIF_PROTOCOL_X86_32;
2978 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
2979 		xbb->abi = BLKIF_PROTOCOL_X86_64;
2980 	} else {
2981 		xenbus_dev_fatal(xbb->dev, EINVAL,
2982 				 "Unknown protocol ABI (%s) published by "
2983 				 "frontend.  Unable to connect.", protocol_abi);
2984 		return (EINVAL);
2985 	}
2986 	return (0);
2987 }
2988 
2989 /**
2990  * Allocate per-request data structures given request size and number
2991  * information negotiated with the front-end.
2992  *
2993  * \param xbb  Per-instance xbb configuration structure.
2994  */
2995 static int
2996 xbb_alloc_requests(struct xbb_softc *xbb)
2997 {
2998 	struct xbb_xen_req *req;
2999 	struct xbb_xen_req *last_req;
3000 
3001 	/*
3002 	 * Allocate request book keeping datastructures.
3003 	 */
3004 	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3005 			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3006 	if (xbb->requests == NULL) {
3007 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3008 				  "Unable to allocate request structures");
3009 		return (ENOMEM);
3010 	}
3011 
3012 	req      = xbb->requests;
3013 	last_req = &xbb->requests[xbb->max_requests - 1];
3014 	STAILQ_INIT(&xbb->request_free_stailq);
3015 	while (req <= last_req) {
3016 		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3017 		req++;
3018 	}
3019 	return (0);
3020 }
3021 
3022 static int
3023 xbb_alloc_request_lists(struct xbb_softc *xbb)
3024 {
3025 	struct xbb_xen_reqlist *reqlist;
3026 	int			i;
3027 
3028 	/*
3029 	 * If no requests can be merged, we need 1 request list per
3030 	 * in flight request.
3031 	 */
3032 	xbb->request_lists = malloc(xbb->max_requests *
3033 		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3034 	if (xbb->request_lists == NULL) {
3035 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3036 				  "Unable to allocate request list structures");
3037 		return (ENOMEM);
3038 	}
3039 
3040 	STAILQ_INIT(&xbb->reqlist_free_stailq);
3041 	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3042 	for (i = 0; i < xbb->max_requests; i++) {
3043 		int seg;
3044 
3045 		reqlist      = &xbb->request_lists[i];
3046 
3047 		reqlist->xbb = xbb;
3048 
3049 		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3050 					      sizeof(*reqlist->gnt_handles),
3051 					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3052 		if (reqlist->gnt_handles == NULL) {
3053 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3054 					  "Unable to allocate request "
3055 					  "grant references");
3056 			return (ENOMEM);
3057 		}
3058 
3059 		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3060 			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3061 
3062 		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3063 	}
3064 	return (0);
3065 }
3066 
3067 /**
3068  * Supply information about the physical device to the frontend
3069  * via XenBus.
3070  *
3071  * \param xbb  Per-instance xbb configuration structure.
3072  */
3073 static int
3074 xbb_publish_backend_info(struct xbb_softc *xbb)
3075 {
3076 	struct xs_transaction xst;
3077 	const char	     *our_path;
3078 	const char	     *leaf;
3079 	int		      error;
3080 
3081 	our_path = xenbus_get_node(xbb->dev);
3082 	while (1) {
3083 		error = xs_transaction_start(&xst);
3084 		if (error != 0) {
3085 			xenbus_dev_fatal(xbb->dev, error,
3086 					 "Error publishing backend info "
3087 					 "(start transaction)");
3088 			return (error);
3089 		}
3090 
3091 		leaf = "sectors";
3092 		error = xs_printf(xst, our_path, leaf,
3093 				  "%"PRIu64, xbb->media_num_sectors);
3094 		if (error != 0)
3095 			break;
3096 
3097 		/* XXX Support all VBD attributes here. */
3098 		leaf = "info";
3099 		error = xs_printf(xst, our_path, leaf, "%u",
3100 				  xbb->flags & XBBF_READ_ONLY
3101 				? VDISK_READONLY : 0);
3102 		if (error != 0)
3103 			break;
3104 
3105 		leaf = "sector-size";
3106 		error = xs_printf(xst, our_path, leaf, "%u",
3107 				  xbb->sector_size);
3108 		if (error != 0)
3109 			break;
3110 
3111 		error = xs_transaction_end(xst, 0);
3112 		if (error == 0) {
3113 			return (0);
3114 		} else if (error != EAGAIN) {
3115 			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3116 			return (error);
3117 		}
3118 	}
3119 
3120 	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3121 			our_path, leaf);
3122 	xs_transaction_end(xst, 1);
3123 	return (error);
3124 }
3125 
3126 /**
3127  * Connect to our blkfront peer now that it has completed publishing
3128  * its configuration into the XenStore.
3129  *
3130  * \param xbb  Per-instance xbb configuration structure.
3131  */
3132 static void
3133 xbb_connect(struct xbb_softc *xbb)
3134 {
3135 	int error;
3136 
3137 	if (!xbb->hotplug_done ||
3138 	    (xenbus_get_state(xbb->dev) != XenbusStateInitWait) ||
3139 	    (xbb_collect_frontend_info(xbb) != 0))
3140 		return;
3141 
3142 	xbb->flags &= ~XBBF_SHUTDOWN;
3143 
3144 	/*
3145 	 * We limit the maximum number of reqlist segments to the maximum
3146 	 * number of segments in the ring, or our absolute maximum,
3147 	 * whichever is smaller.
3148 	 */
3149 	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3150 		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3151 
3152 	/*
3153 	 * The maximum size is simply a function of the number of segments
3154 	 * we can handle.
3155 	 */
3156 	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3157 
3158 	/* Allocate resources whose size depends on front-end configuration. */
3159 	error = xbb_alloc_communication_mem(xbb);
3160 	if (error != 0) {
3161 		xenbus_dev_fatal(xbb->dev, error,
3162 				 "Unable to allocate communication memory");
3163 		return;
3164 	}
3165 
3166 	error = xbb_publish_backend_info(xbb);
3167 	if (error != 0) {
3168 		xenbus_dev_fatal(xbb->dev, error,
3169 		    "Unable to publish device information");
3170 		return;
3171 	}
3172 
3173 	error = xbb_alloc_requests(xbb);
3174 	if (error != 0) {
3175 		/* Specific errors are reported by xbb_alloc_requests(). */
3176 		return;
3177 	}
3178 
3179 	error = xbb_alloc_request_lists(xbb);
3180 	if (error != 0) {
3181 		/* Specific errors are reported by xbb_alloc_request_lists(). */
3182 		return;
3183 	}
3184 
3185 	/*
3186 	 * Connect communication channel.
3187 	 */
3188 	error = xbb_connect_ring(xbb);
3189 	if (error != 0) {
3190 		/* Specific errors are reported by xbb_connect_ring(). */
3191 		return;
3192 	}
3193 
3194 	/* Ready for I/O. */
3195 	xenbus_set_state(xbb->dev, XenbusStateConnected);
3196 }
3197 
3198 /*-------------------------- Device Teardown Support -------------------------*/
3199 /**
3200  * Perform device shutdown functions.
3201  *
3202  * \param xbb  Per-instance xbb configuration structure.
3203  *
3204  * Mark this instance as shutting down, wait for any active I/O on the
3205  * backend device/file to drain, disconnect from the front-end, and notify
3206  * any waiters (e.g. a thread invoking our detach method) that detach can
3207  * now proceed.
3208  */
3209 static int
3210 xbb_shutdown(struct xbb_softc *xbb)
3211 {
3212 	XenbusState frontState;
3213 	int	    error;
3214 
3215 	DPRINTF("\n");
3216 
3217 	/*
3218 	 * Due to the need to drop our mutex during some
3219 	 * xenbus operations, it is possible for two threads
3220 	 * to attempt to close out shutdown processing at
3221 	 * the same time.  Tell the caller that hits this
3222 	 * race to try back later.
3223 	 */
3224 	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3225 		return (EAGAIN);
3226 
3227 	xbb->flags |= XBBF_IN_SHUTDOWN;
3228 	mtx_unlock(&xbb->lock);
3229 
3230 	if (xbb->hotplug_watch.node != NULL) {
3231 		xs_unregister_watch(&xbb->hotplug_watch);
3232 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3233 		xbb->hotplug_watch.node = NULL;
3234 	}
3235 
3236 	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3237 		xenbus_set_state(xbb->dev, XenbusStateClosing);
3238 
3239 	frontState = xenbus_get_otherend_state(xbb->dev);
3240 	mtx_lock(&xbb->lock);
3241 	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3242 
3243 	/* Wait for the frontend to disconnect (if it's connected). */
3244 	if (frontState == XenbusStateConnected)
3245 		return (EAGAIN);
3246 
3247 	DPRINTF("\n");
3248 
3249 	/* Indicate shutdown is in progress. */
3250 	xbb->flags |= XBBF_SHUTDOWN;
3251 
3252 	/* Disconnect from the front-end. */
3253 	error = xbb_disconnect(xbb);
3254 	if (error != 0) {
3255 		/*
3256 		 * Requests still outstanding.  We'll be called again
3257 		 * once they complete.
3258 		 */
3259 		KASSERT(error == EAGAIN,
3260 			("%s: Unexpected xbb_disconnect() failure %d",
3261 			 __func__, error));
3262 
3263 		return (error);
3264 	}
3265 
3266 	DPRINTF("\n");
3267 
3268 	/* Indicate to xbb_detach() that is it safe to proceed. */
3269 	wakeup(xbb);
3270 
3271 	return (0);
3272 }
3273 
3274 /**
3275  * Report an attach time error to the console and Xen, and cleanup
3276  * this instance by forcing immediate detach processing.
3277  *
3278  * \param xbb  Per-instance xbb configuration structure.
3279  * \param err  Errno describing the error.
3280  * \param fmt  Printf style format and arguments
3281  */
3282 static void
3283 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3284 {
3285 	va_list ap;
3286 	va_list ap_hotplug;
3287 
3288 	va_start(ap, fmt);
3289 	va_copy(ap_hotplug, ap);
3290 	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3291 		  "hotplug-error", fmt, ap_hotplug);
3292 	va_end(ap_hotplug);
3293 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3294 		  "hotplug-status", "error");
3295 
3296 	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3297 	va_end(ap);
3298 
3299 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3300 		  "online", "0");
3301 	mtx_lock(&xbb->lock);
3302 	xbb_shutdown(xbb);
3303 	mtx_unlock(&xbb->lock);
3304 }
3305 
3306 /*---------------------------- NewBus Entrypoints ----------------------------*/
3307 /**
3308  * Inspect a XenBus device and claim it if is of the appropriate type.
3309  *
3310  * \param dev  NewBus device object representing a candidate XenBus device.
3311  *
3312  * \return  0 for success, errno codes for failure.
3313  */
3314 static int
3315 xbb_probe(device_t dev)
3316 {
3317 
3318 	if (strcmp(xenbus_get_type(dev), "vbd"))
3319 		return (ENXIO);
3320 
3321 	/* Only attach if Xen creates IOMMU entries for grant mapped pages. */
3322 	if (!xen_has_iommu_maps()) {
3323 		static bool warned;
3324 
3325 		if (!warned) {
3326 			warned = true;
3327 			printf(
3328 	"xen-blkback disabled due to grant maps lacking IOMMU entries\n");
3329 		}
3330 		return (ENXIO);
3331 	}
3332 
3333 	device_set_desc(dev, "Backend Virtual Block Device");
3334 	device_quiet(dev);
3335 	return (0);
3336 }
3337 
3338 /**
3339  * Setup sysctl variables to control various Block Back parameters.
3340  *
3341  * \param xbb  Xen Block Back softc.
3342  *
3343  */
3344 static void
3345 xbb_setup_sysctl(struct xbb_softc *xbb)
3346 {
3347 	struct sysctl_ctx_list *sysctl_ctx = NULL;
3348 	struct sysctl_oid      *sysctl_tree = NULL;
3349 
3350 	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3351 	if (sysctl_ctx == NULL)
3352 		return;
3353 
3354 	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3355 	if (sysctl_tree == NULL)
3356 		return;
3357 
3358 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3359 		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3360 		       "fake the flush command");
3361 
3362 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3363 		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3364 		       "send a real flush for N flush requests");
3365 
3366 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3367 		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3368 		       "Don't coalesce contiguous requests");
3369 
3370 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3371 			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3372 			 "how many I/O requests we have received");
3373 
3374 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3375 			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3376 			 "how many I/O requests have been completed");
3377 
3378 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3379 			 "reqs_queued_for_completion", CTLFLAG_RW,
3380 			 &xbb->reqs_queued_for_completion,
3381 			 "how many I/O requests queued but not yet pushed");
3382 
3383 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3384 			 "reqs_completed_with_error", CTLFLAG_RW,
3385 			 &xbb->reqs_completed_with_error,
3386 			 "how many I/O requests completed with error status");
3387 
3388 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3389 			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3390 			 "how many I/O dispatches were forced");
3391 
3392 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3393 			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3394 			 "how many I/O dispatches were normal");
3395 
3396 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3397 			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3398 			 "total number of I/O dispatches");
3399 
3400 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3401 			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3402 			 "how many times we have run out of KVA");
3403 
3404 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3405 			 "request_shortages", CTLFLAG_RW,
3406 			 &xbb->request_shortages,
3407 			 "how many times we have run out of requests");
3408 
3409 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3410 		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3411 		        "maximum outstanding requests (negotiated)");
3412 
3413 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3414 		        "max_request_segments", CTLFLAG_RD,
3415 		        &xbb->max_request_segments, 0,
3416 		        "maximum number of pages per requests (negotiated)");
3417 
3418 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3419 		        "max_request_size", CTLFLAG_RD,
3420 		        &xbb->max_request_size, 0,
3421 		        "maximum size in bytes of a request (negotiated)");
3422 
3423 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3424 		        "ring_pages", CTLFLAG_RD,
3425 		        &xbb->ring_config.ring_pages, 0,
3426 		        "communication channel pages (negotiated)");
3427 }
3428 
3429 static void
3430 xbb_attach_disk(device_t dev)
3431 {
3432 	struct xbb_softc	*xbb;
3433 	int			 error;
3434 
3435 	xbb = device_get_softc(dev);
3436 
3437 	KASSERT(xbb->hotplug_done, ("Missing hotplug execution"));
3438 
3439 	/* Parse fopen style mode flags. */
3440 	if (strchr(xbb->dev_mode, 'w') == NULL)
3441 		xbb->flags |= XBBF_READ_ONLY;
3442 
3443 	/*
3444 	 * Verify the physical device is present and can support
3445 	 * the desired I/O mode.
3446 	 */
3447 	error = xbb_open_backend(xbb);
3448 	if (error != 0) {
3449 		xbb_attach_failed(xbb, error, "Unable to open %s",
3450 				  xbb->dev_name);
3451 		return;
3452 	}
3453 
3454 	/* Use devstat(9) for recording statistics. */
3455 	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3456 					   xbb->sector_size,
3457 					   DEVSTAT_ALL_SUPPORTED,
3458 					   DEVSTAT_TYPE_DIRECT
3459 					 | DEVSTAT_TYPE_IF_OTHER,
3460 					   DEVSTAT_PRIORITY_OTHER);
3461 
3462 	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3463 					      xbb->sector_size,
3464 					      DEVSTAT_ALL_SUPPORTED,
3465 					      DEVSTAT_TYPE_DIRECT
3466 					    | DEVSTAT_TYPE_IF_OTHER,
3467 					      DEVSTAT_PRIORITY_OTHER);
3468 	/*
3469 	 * Setup sysctl variables.
3470 	 */
3471 	xbb_setup_sysctl(xbb);
3472 
3473 	/*
3474 	 * Create a taskqueue for doing work that must occur from a
3475 	 * thread context.
3476 	 */
3477 	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3478 						  M_NOWAIT,
3479 						  taskqueue_thread_enqueue,
3480 						  /*contxt*/&xbb->io_taskqueue);
3481 	if (xbb->io_taskqueue == NULL) {
3482 		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3483 		return;
3484 	}
3485 
3486 	taskqueue_start_threads(&xbb->io_taskqueue,
3487 				/*num threads*/1,
3488 				/*priority*/PWAIT,
3489 				/*thread name*/
3490 				"%s taskq", device_get_nameunit(dev));
3491 
3492 	/* Update hot-plug status to satisfy xend. */
3493 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3494 			  "hotplug-status", "connected");
3495 	if (error) {
3496 		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3497 				  xenbus_get_node(xbb->dev));
3498 		return;
3499 	}
3500 
3501 	/* The front end might be waiting for the backend, attach if so. */
3502 	if (xenbus_get_otherend_state(xbb->dev) == XenbusStateInitialised)
3503 		xbb_connect(xbb);
3504 }
3505 
3506 static void
3507 xbb_attach_cb(struct xs_watch *watch, const char **vec, unsigned int len)
3508 {
3509 	device_t dev;
3510 	struct xbb_softc *xbb;
3511 	int error;
3512 
3513 	dev = (device_t)watch->callback_data;
3514 	xbb = device_get_softc(dev);
3515 
3516 	error = xs_gather(XST_NIL, xenbus_get_node(dev), "physical-device-path",
3517 	    NULL, &xbb->dev_name, NULL);
3518 	if (error != 0)
3519 		return;
3520 
3521 	xs_unregister_watch(watch);
3522 	free(watch->node, M_XENBLOCKBACK);
3523 	watch->node = NULL;
3524 	xbb->hotplug_done = true;
3525 
3526 	/* Collect physical device information. */
3527 	error = xs_gather(XST_NIL, xenbus_get_otherend_path(dev), "device-type",
3528 	    NULL, &xbb->dev_type, NULL);
3529 	if (error != 0)
3530 		xbb->dev_type = NULL;
3531 
3532 	error = xs_gather(XST_NIL, xenbus_get_node(dev), "mode", NULL,
3533 	   &xbb->dev_mode, NULL);
3534 	if (error != 0) {
3535 		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3536 		    xenbus_get_node(dev));
3537 		return;
3538 	}
3539 
3540 	xbb_attach_disk(dev);
3541 }
3542 
3543 /**
3544  * Attach to a XenBus device that has been claimed by our probe routine.
3545  *
3546  * \param dev  NewBus device object representing this Xen Block Back instance.
3547  *
3548  * \return  0 for success, errno codes for failure.
3549  */
3550 static int
3551 xbb_attach(device_t dev)
3552 {
3553 	struct xbb_softc	*xbb;
3554 	int			 error;
3555 	u_int			 max_ring_page_order;
3556 	struct sbuf		*watch_path;
3557 
3558 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3559 
3560 	/*
3561 	 * Basic initialization.
3562 	 * After this block it is safe to call xbb_detach()
3563 	 * to clean up any allocated data for this instance.
3564 	 */
3565 	xbb = device_get_softc(dev);
3566 	xbb->dev = dev;
3567 	xbb->otherend_id = xenbus_get_otherend_id(dev);
3568 	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3569 	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3570 
3571 	/*
3572 	 * Publish protocol capabilities for consumption by the
3573 	 * front-end.
3574 	 */
3575 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3576 			  "feature-barrier", "1");
3577 	if (error) {
3578 		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3579 				  xenbus_get_node(xbb->dev));
3580 		return (error);
3581 	}
3582 
3583 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3584 			  "feature-flush-cache", "1");
3585 	if (error) {
3586 		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3587 				  xenbus_get_node(xbb->dev));
3588 		return (error);
3589 	}
3590 
3591 	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3592 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3593 			  "max-ring-page-order", "%u", max_ring_page_order);
3594 	if (error) {
3595 		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3596 				  xenbus_get_node(xbb->dev));
3597 		return (error);
3598 	}
3599 
3600 	/* Tell the toolstack blkback has attached. */
3601 	xenbus_set_state(dev, XenbusStateInitWait);
3602 
3603 	if (xbb->hotplug_done) {
3604 		xbb_attach_disk(dev);
3605 		return (0);
3606 	}
3607 
3608 	/*
3609 	 * We need to wait for hotplug script execution before
3610 	 * moving forward.
3611 	 */
3612 	watch_path = xs_join(xenbus_get_node(xbb->dev), "physical-device-path");
3613 	xbb->hotplug_watch.callback_data = (uintptr_t)dev;
3614 	xbb->hotplug_watch.callback = xbb_attach_cb;
3615 	KASSERT(xbb->hotplug_watch.node == NULL, ("watch node already setup"));
3616 	xbb->hotplug_watch.node = strdup(sbuf_data(watch_path), M_XENBLOCKBACK);
3617 	/*
3618 	 * We don't care about the path updated, just about the value changes
3619 	 * on that single node, hence there's no need to queue more that one
3620 	 * event.
3621 	 */
3622 	xbb->hotplug_watch.max_pending = 1;
3623 	sbuf_delete(watch_path);
3624 	error = xs_register_watch(&xbb->hotplug_watch);
3625 	if (error != 0) {
3626 		xbb_attach_failed(xbb, error, "failed to create watch on %s",
3627 		    xbb->hotplug_watch.node);
3628 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3629 		return (error);
3630 	}
3631 
3632 	return (0);
3633 }
3634 
3635 /**
3636  * Detach from a block back device instance.
3637  *
3638  * \param dev  NewBus device object representing this Xen Block Back instance.
3639  *
3640  * \return  0 for success, errno codes for failure.
3641  *
3642  * \note A block back device may be detached at any time in its life-cycle,
3643  *       including part way through the attach process.  For this reason,
3644  *       initialization order and the initialization state checks in this
3645  *       routine must be carefully coupled so that attach time failures
3646  *       are gracefully handled.
3647  */
3648 static int
3649 xbb_detach(device_t dev)
3650 {
3651         struct xbb_softc *xbb;
3652 
3653 	DPRINTF("\n");
3654 
3655         xbb = device_get_softc(dev);
3656 	mtx_lock(&xbb->lock);
3657 	while (xbb_shutdown(xbb) == EAGAIN) {
3658 		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3659 		       "xbb_shutdown", 0);
3660 	}
3661 	mtx_unlock(&xbb->lock);
3662 
3663 	DPRINTF("\n");
3664 
3665 	if (xbb->io_taskqueue != NULL)
3666 		taskqueue_free(xbb->io_taskqueue);
3667 
3668 	if (xbb->xbb_stats != NULL)
3669 		devstat_remove_entry(xbb->xbb_stats);
3670 
3671 	if (xbb->xbb_stats_in != NULL)
3672 		devstat_remove_entry(xbb->xbb_stats_in);
3673 
3674 	xbb_close_backend(xbb);
3675 
3676 	if (xbb->dev_mode != NULL) {
3677 		free(xbb->dev_mode, M_XENSTORE);
3678 		xbb->dev_mode = NULL;
3679 	}
3680 
3681 	if (xbb->dev_type != NULL) {
3682 		free(xbb->dev_type, M_XENSTORE);
3683 		xbb->dev_type = NULL;
3684 	}
3685 
3686 	if (xbb->dev_name != NULL) {
3687 		free(xbb->dev_name, M_XENSTORE);
3688 		xbb->dev_name = NULL;
3689 	}
3690 
3691 	mtx_destroy(&xbb->lock);
3692         return (0);
3693 }
3694 
3695 /**
3696  * Prepare this block back device for suspension of this VM.
3697  *
3698  * \param dev  NewBus device object representing this Xen Block Back instance.
3699  *
3700  * \return  0 for success, errno codes for failure.
3701  */
3702 static int
3703 xbb_suspend(device_t dev)
3704 {
3705 #ifdef NOT_YET
3706         struct xbb_softc *sc = device_get_softc(dev);
3707 
3708         /* Prevent new requests being issued until we fix things up. */
3709         mtx_lock(&sc->xb_io_lock);
3710         sc->connected = BLKIF_STATE_SUSPENDED;
3711         mtx_unlock(&sc->xb_io_lock);
3712 #endif
3713 
3714         return (0);
3715 }
3716 
3717 /**
3718  * Perform any processing required to recover from a suspended state.
3719  *
3720  * \param dev  NewBus device object representing this Xen Block Back instance.
3721  *
3722  * \return  0 for success, errno codes for failure.
3723  */
3724 static int
3725 xbb_resume(device_t dev)
3726 {
3727 	return (0);
3728 }
3729 
3730 /**
3731  * Handle state changes expressed via the XenStore by our front-end peer.
3732  *
3733  * \param dev             NewBus device object representing this Xen
3734  *                        Block Back instance.
3735  * \param frontend_state  The new state of the front-end.
3736  *
3737  * \return  0 for success, errno codes for failure.
3738  */
3739 static void
3740 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3741 {
3742 	struct xbb_softc *xbb = device_get_softc(dev);
3743 
3744 	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3745 	        xenbus_strstate(frontend_state),
3746 		xenbus_strstate(xenbus_get_state(xbb->dev)));
3747 
3748 	switch (frontend_state) {
3749 	case XenbusStateInitialising:
3750 		break;
3751 	case XenbusStateInitialised:
3752 	case XenbusStateConnected:
3753 		xbb_connect(xbb);
3754 		break;
3755 	case XenbusStateClosing:
3756 	case XenbusStateClosed:
3757 		mtx_lock(&xbb->lock);
3758 		xbb_shutdown(xbb);
3759 		mtx_unlock(&xbb->lock);
3760 		if (frontend_state == XenbusStateClosed)
3761 			xenbus_set_state(xbb->dev, XenbusStateClosed);
3762 		break;
3763 	default:
3764 		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3765 				 frontend_state);
3766 		break;
3767 	}
3768 }
3769 
3770 /*---------------------------- NewBus Registration ---------------------------*/
3771 static device_method_t xbb_methods[] = {
3772 	/* Device interface */
3773 	DEVMETHOD(device_probe,		xbb_probe),
3774 	DEVMETHOD(device_attach,	xbb_attach),
3775 	DEVMETHOD(device_detach,	xbb_detach),
3776 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3777 	DEVMETHOD(device_suspend,	xbb_suspend),
3778 	DEVMETHOD(device_resume,	xbb_resume),
3779 
3780 	/* Xenbus interface */
3781 	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3782 	{ 0, 0 }
3783 };
3784 
3785 static driver_t xbb_driver = {
3786         "xbbd",
3787         xbb_methods,
3788         sizeof(struct xbb_softc),
3789 };
3790 
3791 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, 0, 0);
3792