xref: /freebsd/sys/dev/xen/blkback/blkback.c (revision 6ef6ba9950260f42b47499d17874d00ca9290955)
1 /*-
2  * Copyright (c) 2009-2011 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Ken Merry           (Spectra Logic Corporation)
32  */
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /**
37  * \file blkback.c
38  *
39  * \brief Device driver supporting the vending of block storage from
40  *        a FreeBSD domain to other domains.
41  */
42 
43 #include "opt_kdtrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 
50 #include <sys/bio.h>
51 #include <sys/bus.h>
52 #include <sys/conf.h>
53 #include <sys/devicestat.h>
54 #include <sys/disk.h>
55 #include <sys/fcntl.h>
56 #include <sys/filedesc.h>
57 #include <sys/kdb.h>
58 #include <sys/module.h>
59 #include <sys/namei.h>
60 #include <sys/proc.h>
61 #include <sys/rman.h>
62 #include <sys/taskqueue.h>
63 #include <sys/types.h>
64 #include <sys/vnode.h>
65 #include <sys/mount.h>
66 #include <sys/sysctl.h>
67 #include <sys/bitstring.h>
68 #include <sys/sdt.h>
69 
70 #include <geom/geom.h>
71 
72 #include <machine/_inttypes.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 
78 #include <xen/xen-os.h>
79 #include <xen/blkif.h>
80 #include <xen/gnttab.h>
81 #include <xen/xen_intr.h>
82 
83 #include <xen/interface/event_channel.h>
84 #include <xen/interface/grant_table.h>
85 
86 #include <xen/xenbus/xenbusvar.h>
87 
88 /*--------------------------- Compile-time Tunables --------------------------*/
89 /**
90  * The maximum number of outstanding request blocks (request headers plus
91  * additional segment blocks) we will allow in a negotiated block-front/back
92  * communication channel.
93  */
94 #define	XBB_MAX_REQUESTS	256
95 
96 /**
97  * \brief Define to force all I/O to be performed on memory owned by the
98  *        backend device, with a copy-in/out to the remote domain's memory.
99  *
100  * \note  This option is currently required when this driver's domain is
101  *        operating in HVM mode on a system using an IOMMU.
102  *
103  * This driver uses Xen's grant table API to gain access to the memory of
104  * the remote domains it serves.  When our domain is operating in PV mode,
105  * the grant table mechanism directly updates our domain's page table entries
106  * to point to the physical pages of the remote domain.  This scheme guarantees
107  * that blkback and the backing devices it uses can safely perform DMA
108  * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
109  * insure that our domain cannot DMA to pages owned by another domain.  As
110  * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
111  * table API.  For this reason, in HVM mode, we must bounce all requests into
112  * memory that is mapped into our domain at domain startup and thus has
113  * valid IOMMU mappings.
114  */
115 #define XBB_USE_BOUNCE_BUFFERS
116 
117 /**
118  * \brief Define to enable rudimentary request logging to the console.
119  */
120 #undef XBB_DEBUG
121 
122 /*---------------------------------- Macros ----------------------------------*/
123 /**
124  * Custom malloc type for all driver allocations.
125  */
126 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
127 
128 #ifdef XBB_DEBUG
129 #define DPRINTF(fmt, args...)					\
130     printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
131 #else
132 #define DPRINTF(fmt, args...) do {} while(0)
133 #endif
134 
135 /**
136  * The maximum mapped region size per request we will allow in a negotiated
137  * block-front/back communication channel.
138  */
139 #define	XBB_MAX_REQUEST_SIZE					\
140 	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
141 
142 /**
143  * The maximum number of segments (within a request header and accompanying
144  * segment blocks) per request we will allow in a negotiated block-front/back
145  * communication channel.
146  */
147 #define	XBB_MAX_SEGMENTS_PER_REQUEST				\
148 	(MIN(UIO_MAXIOV,					\
149 	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
150 		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
151 
152 /**
153  * The maximum number of shared memory ring pages we will allow in a
154  * negotiated block-front/back communication channel.  Allow enough
155  * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
156  */
157 #define	XBB_MAX_RING_PAGES						    \
158 	BLKIF_RING_PAGES(BLKIF_SEGS_TO_BLOCKS(XBB_MAX_SEGMENTS_PER_REQUEST) \
159 		       * XBB_MAX_REQUESTS)
160 /**
161  * The maximum number of ring pages that we can allow per request list.
162  * We limit this to the maximum number of segments per request, because
163  * that is already a reasonable number of segments to aggregate.  This
164  * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
165  * because that would leave situations where we can't dispatch even one
166  * large request.
167  */
168 #define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
169 
170 /*--------------------------- Forward Declarations ---------------------------*/
171 struct xbb_softc;
172 struct xbb_xen_req;
173 
174 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
175 			      ...) __attribute__((format(printf, 3, 4)));
176 static int  xbb_shutdown(struct xbb_softc *xbb);
177 static int  xbb_detach(device_t dev);
178 
179 /*------------------------------ Data Structures -----------------------------*/
180 
181 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
182 
183 typedef enum {
184 	XBB_REQLIST_NONE	= 0x00,
185 	XBB_REQLIST_MAPPED	= 0x01
186 } xbb_reqlist_flags;
187 
188 struct xbb_xen_reqlist {
189 	/**
190 	 * Back reference to the parent block back instance for this
191 	 * request.  Used during bio_done handling.
192 	 */
193 	struct xbb_softc        *xbb;
194 
195 	/**
196 	 * BLKIF_OP code for this request.
197 	 */
198 	int			 operation;
199 
200 	/**
201 	 * Set to BLKIF_RSP_* to indicate request status.
202 	 *
203 	 * This field allows an error status to be recorded even if the
204 	 * delivery of this status must be deferred.  Deferred reporting
205 	 * is necessary, for example, when an error is detected during
206 	 * completion processing of one bio when other bios for this
207 	 * request are still outstanding.
208 	 */
209 	int			 status;
210 
211 	/**
212 	 * Number of 512 byte sectors not transferred.
213 	 */
214 	int			 residual_512b_sectors;
215 
216 	/**
217 	 * Starting sector number of the first request in the list.
218 	 */
219 	off_t			 starting_sector_number;
220 
221 	/**
222 	 * If we're going to coalesce, the next contiguous sector would be
223 	 * this one.
224 	 */
225 	off_t			 next_contig_sector;
226 
227 	/**
228 	 * Number of child requests in the list.
229 	 */
230 	int			 num_children;
231 
232 	/**
233 	 * Number of I/O requests still pending on the backend.
234 	 */
235 	int			 pendcnt;
236 
237 	/**
238 	 * Total number of segments for requests in the list.
239 	 */
240 	int			 nr_segments;
241 
242 	/**
243 	 * Flags for this particular request list.
244 	 */
245 	xbb_reqlist_flags	 flags;
246 
247 	/**
248 	 * Kernel virtual address space reserved for this request
249 	 * list structure and used to map the remote domain's pages for
250 	 * this I/O, into our domain's address space.
251 	 */
252 	uint8_t			*kva;
253 
254 	/**
255 	 * Base, psuedo-physical address, corresponding to the start
256 	 * of this request's kva region.
257 	 */
258 	uint64_t	 	 gnt_base;
259 
260 
261 #ifdef XBB_USE_BOUNCE_BUFFERS
262 	/**
263 	 * Pre-allocated domain local memory used to proxy remote
264 	 * domain memory during I/O operations.
265 	 */
266 	uint8_t			*bounce;
267 #endif
268 
269 	/**
270 	 * Array of grant handles (one per page) used to map this request.
271 	 */
272 	grant_handle_t		*gnt_handles;
273 
274 	/**
275 	 * Device statistics request ordering type (ordered or simple).
276 	 */
277 	devstat_tag_type	 ds_tag_type;
278 
279 	/**
280 	 * Device statistics request type (read, write, no_data).
281 	 */
282 	devstat_trans_flags	 ds_trans_type;
283 
284 	/**
285 	 * The start time for this request.
286 	 */
287 	struct bintime		 ds_t0;
288 
289 	/**
290 	 * Linked list of contiguous requests with the same operation type.
291 	 */
292 	struct xbb_xen_req_list	 contig_req_list;
293 
294 	/**
295 	 * Linked list links used to aggregate idle requests in the
296 	 * request list free pool (xbb->reqlist_free_stailq) and pending
297 	 * requests waiting for execution (xbb->reqlist_pending_stailq).
298 	 */
299 	STAILQ_ENTRY(xbb_xen_reqlist) links;
300 };
301 
302 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
303 
304 /**
305  * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
306  */
307 struct xbb_xen_req {
308 	/**
309 	 * Linked list links used to aggregate requests into a reqlist
310 	 * and to store them in the request free pool.
311 	 */
312 	STAILQ_ENTRY(xbb_xen_req) links;
313 
314 	/**
315 	 * The remote domain's identifier for this I/O request.
316 	 */
317 	uint64_t		  id;
318 
319 	/**
320 	 * The number of pages currently mapped for this request.
321 	 */
322 	int			  nr_pages;
323 
324 	/**
325 	 * The number of 512 byte sectors comprising this requests.
326 	 */
327 	int			  nr_512b_sectors;
328 
329 	/**
330 	 * BLKIF_OP code for this request.
331 	 */
332 	int			  operation;
333 
334 	/**
335 	 * Storage used for non-native ring requests.
336 	 */
337 	blkif_request_t		 ring_req_storage;
338 
339 	/**
340 	 * Pointer to the Xen request in the ring.
341 	 */
342 	blkif_request_t		*ring_req;
343 
344 	/**
345 	 * Consumer index for this request.
346 	 */
347 	RING_IDX		 req_ring_idx;
348 
349 	/**
350 	 * The start time for this request.
351 	 */
352 	struct bintime		 ds_t0;
353 
354 	/**
355 	 * Pointer back to our parent request list.
356 	 */
357 	struct xbb_xen_reqlist  *reqlist;
358 };
359 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
360 
361 /**
362  * \brief Configuration data for the shared memory request ring
363  *        used to communicate with the front-end client of this
364  *        this driver.
365  */
366 struct xbb_ring_config {
367 	/** KVA address where ring memory is mapped. */
368 	vm_offset_t	va;
369 
370 	/** The pseudo-physical address where ring memory is mapped.*/
371 	uint64_t	gnt_addr;
372 
373 	/**
374 	 * Grant table handles, one per-ring page, returned by the
375 	 * hyperpervisor upon mapping of the ring and required to
376 	 * unmap it when a connection is torn down.
377 	 */
378 	grant_handle_t	handle[XBB_MAX_RING_PAGES];
379 
380 	/**
381 	 * The device bus address returned by the hypervisor when
382 	 * mapping the ring and required to unmap it when a connection
383 	 * is torn down.
384 	 */
385 	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
386 
387 	/** The number of ring pages mapped for the current connection. */
388 	u_int		ring_pages;
389 
390 	/**
391 	 * The grant references, one per-ring page, supplied by the
392 	 * front-end, allowing us to reference the ring pages in the
393 	 * front-end's domain and to map these pages into our own domain.
394 	 */
395 	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
396 
397 	/** The interrupt driven even channel used to signal ring events. */
398 	evtchn_port_t   evtchn;
399 };
400 
401 /**
402  * Per-instance connection state flags.
403  */
404 typedef enum
405 {
406 	/**
407 	 * The front-end requested a read-only mount of the
408 	 * back-end device/file.
409 	 */
410 	XBBF_READ_ONLY         = 0x01,
411 
412 	/** Communication with the front-end has been established. */
413 	XBBF_RING_CONNECTED    = 0x02,
414 
415 	/**
416 	 * Front-end requests exist in the ring and are waiting for
417 	 * xbb_xen_req objects to free up.
418 	 */
419 	XBBF_RESOURCE_SHORTAGE = 0x04,
420 
421 	/** Connection teardown in progress. */
422 	XBBF_SHUTDOWN          = 0x08,
423 
424 	/** A thread is already performing shutdown processing. */
425 	XBBF_IN_SHUTDOWN       = 0x10
426 } xbb_flag_t;
427 
428 /** Backend device type.  */
429 typedef enum {
430 	/** Backend type unknown. */
431 	XBB_TYPE_NONE		= 0x00,
432 
433 	/**
434 	 * Backend type disk (access via cdev switch
435 	 * strategy routine).
436 	 */
437 	XBB_TYPE_DISK		= 0x01,
438 
439 	/** Backend type file (access vnode operations.). */
440 	XBB_TYPE_FILE		= 0x02
441 } xbb_type;
442 
443 /**
444  * \brief Structure used to memoize information about a per-request
445  *        scatter-gather list.
446  *
447  * The chief benefit of using this data structure is it avoids having
448  * to reparse the possibly discontiguous S/G list in the original
449  * request.  Due to the way that the mapping of the memory backing an
450  * I/O transaction is handled by Xen, a second pass is unavoidable.
451  * At least this way the second walk is a simple array traversal.
452  *
453  * \note A single Scatter/Gather element in the block interface covers
454  *       at most 1 machine page.  In this context a sector (blkif
455  *       nomenclature, not what I'd choose) is a 512b aligned unit
456  *       of mapping within the machine page referenced by an S/G
457  *       element.
458  */
459 struct xbb_sg {
460 	/** The number of 512b data chunks mapped in this S/G element. */
461 	int16_t nsect;
462 
463 	/**
464 	 * The index (0 based) of the first 512b data chunk mapped
465 	 * in this S/G element.
466 	 */
467 	uint8_t first_sect;
468 
469 	/**
470 	 * The index (0 based) of the last 512b data chunk mapped
471 	 * in this S/G element.
472 	 */
473 	uint8_t last_sect;
474 };
475 
476 /**
477  * Character device backend specific configuration data.
478  */
479 struct xbb_dev_data {
480 	/** Cdev used for device backend access.  */
481 	struct cdev   *cdev;
482 
483 	/** Cdev switch used for device backend access.  */
484 	struct cdevsw *csw;
485 
486 	/** Used to hold a reference on opened cdev backend devices. */
487 	int	       dev_ref;
488 };
489 
490 /**
491  * File backend specific configuration data.
492  */
493 struct xbb_file_data {
494 	/** Credentials to use for vnode backed (file based) I/O. */
495 	struct ucred   *cred;
496 
497 	/**
498 	 * \brief Array of io vectors used to process file based I/O.
499 	 *
500 	 * Only a single file based request is outstanding per-xbb instance,
501 	 * so we only need one of these.
502 	 */
503 	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
504 #ifdef XBB_USE_BOUNCE_BUFFERS
505 
506 	/**
507 	 * \brief Array of io vectors used to handle bouncing of file reads.
508 	 *
509 	 * Vnode operations are free to modify uio data during their
510 	 * exectuion.  In the case of a read with bounce buffering active,
511 	 * we need some of the data from the original uio in order to
512 	 * bounce-out the read data.  This array serves as the temporary
513 	 * storage for this saved data.
514 	 */
515 	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
516 
517 	/**
518 	 * \brief Array of memoized bounce buffer kva offsets used
519 	 *        in the file based backend.
520 	 *
521 	 * Due to the way that the mapping of the memory backing an
522 	 * I/O transaction is handled by Xen, a second pass through
523 	 * the request sg elements is unavoidable. We memoize the computed
524 	 * bounce address here to reduce the cost of the second walk.
525 	 */
526 	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
527 #endif /* XBB_USE_BOUNCE_BUFFERS */
528 };
529 
530 /**
531  * Collection of backend type specific data.
532  */
533 union xbb_backend_data {
534 	struct xbb_dev_data  dev;
535 	struct xbb_file_data file;
536 };
537 
538 /**
539  * Function signature of backend specific I/O handlers.
540  */
541 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
542 			      struct xbb_xen_reqlist *reqlist, int operation,
543 			      int flags);
544 
545 /**
546  * Per-instance configuration data.
547  */
548 struct xbb_softc {
549 
550 	/**
551 	 * Task-queue used to process I/O requests.
552 	 */
553 	struct taskqueue	 *io_taskqueue;
554 
555 	/**
556 	 * Single "run the request queue" task enqueued
557 	 * on io_taskqueue.
558 	 */
559 	struct task		  io_task;
560 
561 	/** Device type for this instance. */
562 	xbb_type		  device_type;
563 
564 	/** NewBus device corresponding to this instance. */
565 	device_t		  dev;
566 
567 	/** Backend specific dispatch routine for this instance. */
568 	xbb_dispatch_t		  dispatch_io;
569 
570 	/** The number of requests outstanding on the backend device/file. */
571 	int			  active_request_count;
572 
573 	/** Free pool of request tracking structures. */
574 	struct xbb_xen_req_list   request_free_stailq;
575 
576 	/** Array, sized at connection time, of request tracking structures. */
577 	struct xbb_xen_req	 *requests;
578 
579 	/** Free pool of request list structures. */
580 	struct xbb_xen_reqlist_list reqlist_free_stailq;
581 
582 	/** List of pending request lists awaiting execution. */
583 	struct xbb_xen_reqlist_list reqlist_pending_stailq;
584 
585 	/** Array, sized at connection time, of request list structures. */
586 	struct xbb_xen_reqlist	 *request_lists;
587 
588 	/**
589 	 * Global pool of kva used for mapping remote domain ring
590 	 * and I/O transaction data.
591 	 */
592 	vm_offset_t		  kva;
593 
594 	/** Psuedo-physical address corresponding to kva. */
595 	uint64_t		  gnt_base_addr;
596 
597 	/** The size of the global kva pool. */
598 	int			  kva_size;
599 
600 	/** The size of the KVA area used for request lists. */
601 	int			  reqlist_kva_size;
602 
603 	/** The number of pages of KVA used for request lists */
604 	int			  reqlist_kva_pages;
605 
606 	/** Bitmap of free KVA pages */
607 	bitstr_t		 *kva_free;
608 
609 	/**
610 	 * \brief Cached value of the front-end's domain id.
611 	 *
612 	 * This value is used at once for each mapped page in
613 	 * a transaction.  We cache it to avoid incuring the
614 	 * cost of an ivar access every time this is needed.
615 	 */
616 	domid_t			  otherend_id;
617 
618 	/**
619 	 * \brief The blkif protocol abi in effect.
620 	 *
621 	 * There are situations where the back and front ends can
622 	 * have a different, native abi (e.g. intel x86_64 and
623 	 * 32bit x86 domains on the same machine).  The back-end
624 	 * always accomodates the front-end's native abi.  That
625 	 * value is pulled from the XenStore and recorded here.
626 	 */
627 	int			  abi;
628 
629 	/**
630 	 * \brief The maximum number of requests and request lists allowed
631 	 *        to be in flight at a time.
632 	 *
633 	 * This value is negotiated via the XenStore.
634 	 */
635 	u_int			  max_requests;
636 
637 	/**
638 	 * \brief The maximum number of segments (1 page per segment)
639 	 *	  that can be mapped by a request.
640 	 *
641 	 * This value is negotiated via the XenStore.
642 	 */
643 	u_int			  max_request_segments;
644 
645 	/**
646 	 * \brief Maximum number of segments per request list.
647 	 *
648 	 * This value is derived from and will generally be larger than
649 	 * max_request_segments.
650 	 */
651 	u_int			  max_reqlist_segments;
652 
653 	/**
654 	 * The maximum size of any request to this back-end
655 	 * device.
656 	 *
657 	 * This value is negotiated via the XenStore.
658 	 */
659 	u_int			  max_request_size;
660 
661 	/**
662 	 * The maximum size of any request list.  This is derived directly
663 	 * from max_reqlist_segments.
664 	 */
665 	u_int			  max_reqlist_size;
666 
667 	/** Various configuration and state bit flags. */
668 	xbb_flag_t		  flags;
669 
670 	/** Ring mapping and interrupt configuration data. */
671 	struct xbb_ring_config	  ring_config;
672 
673 	/** Runtime, cross-abi safe, structures for ring access. */
674 	blkif_back_rings_t	  rings;
675 
676 	/** IRQ mapping for the communication ring event channel. */
677 	xen_intr_handle_t	  xen_intr_handle;
678 
679 	/**
680 	 * \brief Backend access mode flags (e.g. write, or read-only).
681 	 *
682 	 * This value is passed to us by the front-end via the XenStore.
683 	 */
684 	char			 *dev_mode;
685 
686 	/**
687 	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
688 	 *
689 	 * This value is passed to us by the front-end via the XenStore.
690 	 * Currently unused.
691 	 */
692 	char			 *dev_type;
693 
694 	/**
695 	 * \brief Backend device/file identifier.
696 	 *
697 	 * This value is passed to us by the front-end via the XenStore.
698 	 * We expect this to be a POSIX path indicating the file or
699 	 * device to open.
700 	 */
701 	char			 *dev_name;
702 
703 	/**
704 	 * Vnode corresponding to the backend device node or file
705 	 * we are acessing.
706 	 */
707 	struct vnode		 *vn;
708 
709 	union xbb_backend_data	  backend;
710 
711 	/** The native sector size of the backend. */
712 	u_int			  sector_size;
713 
714 	/** log2 of sector_size.  */
715 	u_int			  sector_size_shift;
716 
717 	/** Size in bytes of the backend device or file.  */
718 	off_t			  media_size;
719 
720 	/**
721 	 * \brief media_size expressed in terms of the backend native
722 	 *	  sector size.
723 	 *
724 	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
725 	 */
726 	uint64_t		  media_num_sectors;
727 
728 	/**
729 	 * \brief Array of memoized scatter gather data computed during the
730 	 *	  conversion of blkif ring requests to internal xbb_xen_req
731 	 *	  structures.
732 	 *
733 	 * Ring processing is serialized so we only need one of these.
734 	 */
735 	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
736 
737 	/**
738 	 * Temporary grant table map used in xbb_dispatch_io().  When
739 	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
740 	 * stack could cause a stack overflow.
741 	 */
742 	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
743 
744 	/** Mutex protecting per-instance data. */
745 	struct mtx		  lock;
746 
747 #ifdef XENHVM
748 	/**
749 	 * Resource representing allocated physical address space
750 	 * associated with our per-instance kva region.
751 	 */
752 	struct resource		 *pseudo_phys_res;
753 
754 	/** Resource id for allocated physical address space. */
755 	int			  pseudo_phys_res_id;
756 #endif
757 
758 	/**
759 	 * I/O statistics from BlockBack dispatch down.  These are
760 	 * coalesced requests, and we start them right before execution.
761 	 */
762 	struct devstat		 *xbb_stats;
763 
764 	/**
765 	 * I/O statistics coming into BlockBack.  These are the requests as
766 	 * we get them from BlockFront.  They are started as soon as we
767 	 * receive a request, and completed when the I/O is complete.
768 	 */
769 	struct devstat		 *xbb_stats_in;
770 
771 	/** Disable sending flush to the backend */
772 	int			  disable_flush;
773 
774 	/** Send a real flush for every N flush requests */
775 	int			  flush_interval;
776 
777 	/** Count of flush requests in the interval */
778 	int			  flush_count;
779 
780 	/** Don't coalesce requests if this is set */
781 	int			  no_coalesce_reqs;
782 
783 	/** Number of requests we have received */
784 	uint64_t		  reqs_received;
785 
786 	/** Number of requests we have completed*/
787 	uint64_t		  reqs_completed;
788 
789 	/** How many forced dispatches (i.e. without coalescing) have happend */
790 	uint64_t		  forced_dispatch;
791 
792 	/** How many normal dispatches have happend */
793 	uint64_t		  normal_dispatch;
794 
795 	/** How many total dispatches have happend */
796 	uint64_t		  total_dispatch;
797 
798 	/** How many times we have run out of KVA */
799 	uint64_t		  kva_shortages;
800 
801 	/** How many times we have run out of request structures */
802 	uint64_t		  request_shortages;
803 };
804 
805 /*---------------------------- Request Processing ----------------------------*/
806 /**
807  * Allocate an internal transaction tracking structure from the free pool.
808  *
809  * \param xbb  Per-instance xbb configuration structure.
810  *
811  * \return  On success, a pointer to the allocated xbb_xen_req structure.
812  *          Otherwise NULL.
813  */
814 static inline struct xbb_xen_req *
815 xbb_get_req(struct xbb_softc *xbb)
816 {
817 	struct xbb_xen_req *req;
818 
819 	req = NULL;
820 
821 	mtx_assert(&xbb->lock, MA_OWNED);
822 
823 	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
824 		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
825 		xbb->active_request_count++;
826 	}
827 
828 	return (req);
829 }
830 
831 /**
832  * Return an allocated transaction tracking structure to the free pool.
833  *
834  * \param xbb  Per-instance xbb configuration structure.
835  * \param req  The request structure to free.
836  */
837 static inline void
838 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
839 {
840 	mtx_assert(&xbb->lock, MA_OWNED);
841 
842 	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
843 	xbb->active_request_count--;
844 
845 	KASSERT(xbb->active_request_count >= 0,
846 		("xbb_release_req: negative active count"));
847 }
848 
849 /**
850  * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
851  *
852  * \param xbb	    Per-instance xbb configuration structure.
853  * \param req_list  The list of requests to free.
854  * \param nreqs	    The number of items in the list.
855  */
856 static inline void
857 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
858 		 int nreqs)
859 {
860 	mtx_assert(&xbb->lock, MA_OWNED);
861 
862 	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
863 	xbb->active_request_count -= nreqs;
864 
865 	KASSERT(xbb->active_request_count >= 0,
866 		("xbb_release_reqs: negative active count"));
867 }
868 
869 /**
870  * Given a page index and 512b sector offset within that page,
871  * calculate an offset into a request's kva region.
872  *
873  * \param reqlist The request structure whose kva region will be accessed.
874  * \param pagenr  The page index used to compute the kva offset.
875  * \param sector  The 512b sector index used to compute the page relative
876  *                kva offset.
877  *
878  * \return  The computed global KVA offset.
879  */
880 static inline uint8_t *
881 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
882 {
883 	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
884 }
885 
886 #ifdef XBB_USE_BOUNCE_BUFFERS
887 /**
888  * Given a page index and 512b sector offset within that page,
889  * calculate an offset into a request's local bounce memory region.
890  *
891  * \param reqlist The request structure whose bounce region will be accessed.
892  * \param pagenr  The page index used to compute the bounce offset.
893  * \param sector  The 512b sector index used to compute the page relative
894  *                bounce offset.
895  *
896  * \return  The computed global bounce buffer address.
897  */
898 static inline uint8_t *
899 xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
900 {
901 	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
902 }
903 #endif
904 
905 /**
906  * Given a page number and 512b sector offset within that page,
907  * calculate an offset into the request's memory region that the
908  * underlying backend device/file should use for I/O.
909  *
910  * \param reqlist The request structure whose I/O region will be accessed.
911  * \param pagenr  The page index used to compute the I/O offset.
912  * \param sector  The 512b sector index used to compute the page relative
913  *                I/O offset.
914  *
915  * \return  The computed global I/O address.
916  *
917  * Depending on configuration, this will either be a local bounce buffer
918  * or a pointer to the memory mapped in from the front-end domain for
919  * this request.
920  */
921 static inline uint8_t *
922 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
923 {
924 #ifdef XBB_USE_BOUNCE_BUFFERS
925 	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
926 #else
927 	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
928 #endif
929 }
930 
931 /**
932  * Given a page index and 512b sector offset within that page, calculate
933  * an offset into the local psuedo-physical address space used to map a
934  * front-end's request data into a request.
935  *
936  * \param reqlist The request list structure whose pseudo-physical region
937  *                will be accessed.
938  * \param pagenr  The page index used to compute the pseudo-physical offset.
939  * \param sector  The 512b sector index used to compute the page relative
940  *                pseudo-physical offset.
941  *
942  * \return  The computed global pseudo-phsyical address.
943  *
944  * Depending on configuration, this will either be a local bounce buffer
945  * or a pointer to the memory mapped in from the front-end domain for
946  * this request.
947  */
948 static inline uintptr_t
949 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
950 {
951 	struct xbb_softc *xbb;
952 
953 	xbb = reqlist->xbb;
954 
955 	return ((uintptr_t)(xbb->gnt_base_addr +
956 		(uintptr_t)(reqlist->kva - xbb->kva) +
957 		(PAGE_SIZE * pagenr) + (sector << 9)));
958 }
959 
960 /**
961  * Get Kernel Virtual Address space for mapping requests.
962  *
963  * \param xbb         Per-instance xbb configuration structure.
964  * \param nr_pages    Number of pages needed.
965  * \param check_only  If set, check for free KVA but don't allocate it.
966  * \param have_lock   If set, xbb lock is already held.
967  *
968  * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
969  *
970  * Note:  This should be unnecessary once we have either chaining or
971  * scatter/gather support for struct bio.  At that point we'll be able to
972  * put multiple addresses and lengths in one bio/bio chain and won't need
973  * to map everything into one virtual segment.
974  */
975 static uint8_t *
976 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
977 {
978 	intptr_t first_clear;
979 	intptr_t num_clear;
980 	uint8_t *free_kva;
981 	int      i;
982 
983 	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
984 
985 	first_clear = 0;
986 	free_kva = NULL;
987 
988 	mtx_lock(&xbb->lock);
989 
990 	/*
991 	 * Look for the first available page.  If there are none, we're done.
992 	 */
993 	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
994 
995 	if (first_clear == -1)
996 		goto bailout;
997 
998 	/*
999 	 * Starting at the first available page, look for consecutive free
1000 	 * pages that will satisfy the user's request.
1001 	 */
1002 	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1003 		/*
1004 		 * If this is true, the page is used, so we have to reset
1005 		 * the number of clear pages and the first clear page
1006 		 * (since it pointed to a region with an insufficient number
1007 		 * of clear pages).
1008 		 */
1009 		if (bit_test(xbb->kva_free, i)) {
1010 			num_clear = 0;
1011 			first_clear = -1;
1012 			continue;
1013 		}
1014 
1015 		if (first_clear == -1)
1016 			first_clear = i;
1017 
1018 		/*
1019 		 * If this is true, we've found a large enough free region
1020 		 * to satisfy the request.
1021 		 */
1022 		if (++num_clear == nr_pages) {
1023 
1024 			bit_nset(xbb->kva_free, first_clear,
1025 				 first_clear + nr_pages - 1);
1026 
1027 			free_kva = xbb->kva +
1028 				(uint8_t *)(first_clear * PAGE_SIZE);
1029 
1030 			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1031 				free_kva + (nr_pages * PAGE_SIZE) <=
1032 				(uint8_t *)xbb->ring_config.va,
1033 				("Free KVA %p len %d out of range, "
1034 				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1035 				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1036 				 (uintmax_t)xbb->ring_config.va));
1037 			break;
1038 		}
1039 	}
1040 
1041 bailout:
1042 
1043 	if (free_kva == NULL) {
1044 		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1045 		xbb->kva_shortages++;
1046 	}
1047 
1048 	mtx_unlock(&xbb->lock);
1049 
1050 	return (free_kva);
1051 }
1052 
1053 /**
1054  * Free allocated KVA.
1055  *
1056  * \param xbb	    Per-instance xbb configuration structure.
1057  * \param kva_ptr   Pointer to allocated KVA region.
1058  * \param nr_pages  Number of pages in the KVA region.
1059  */
1060 static void
1061 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1062 {
1063 	intptr_t start_page;
1064 
1065 	mtx_assert(&xbb->lock, MA_OWNED);
1066 
1067 	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1068 	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1069 
1070 }
1071 
1072 /**
1073  * Unmap the front-end pages associated with this I/O request.
1074  *
1075  * \param req  The request structure to unmap.
1076  */
1077 static void
1078 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1079 {
1080 	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1081 	u_int			      i;
1082 	u_int			      invcount;
1083 	int			      error;
1084 
1085 	invcount = 0;
1086 	for (i = 0; i < reqlist->nr_segments; i++) {
1087 
1088 		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1089 			continue;
1090 
1091 		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1092 		unmap[invcount].dev_bus_addr = 0;
1093 		unmap[invcount].handle       = reqlist->gnt_handles[i];
1094 		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1095 		invcount++;
1096 	}
1097 
1098 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1099 					  unmap, invcount);
1100 	KASSERT(error == 0, ("Grant table operation failed"));
1101 }
1102 
1103 /**
1104  * Allocate an internal transaction tracking structure from the free pool.
1105  *
1106  * \param xbb  Per-instance xbb configuration structure.
1107  *
1108  * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1109  *          Otherwise NULL.
1110  */
1111 static inline struct xbb_xen_reqlist *
1112 xbb_get_reqlist(struct xbb_softc *xbb)
1113 {
1114 	struct xbb_xen_reqlist *reqlist;
1115 
1116 	reqlist = NULL;
1117 
1118 	mtx_assert(&xbb->lock, MA_OWNED);
1119 
1120 	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1121 
1122 		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1123 		reqlist->flags = XBB_REQLIST_NONE;
1124 		reqlist->kva = NULL;
1125 		reqlist->status = BLKIF_RSP_OKAY;
1126 		reqlist->residual_512b_sectors = 0;
1127 		reqlist->num_children = 0;
1128 		reqlist->nr_segments = 0;
1129 		STAILQ_INIT(&reqlist->contig_req_list);
1130 	}
1131 
1132 	return (reqlist);
1133 }
1134 
1135 /**
1136  * Return an allocated transaction tracking structure to the free pool.
1137  *
1138  * \param xbb        Per-instance xbb configuration structure.
1139  * \param req        The request list structure to free.
1140  * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1141  *                   during a resource shortage condition.
1142  */
1143 static inline void
1144 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1145 		    int wakeup)
1146 {
1147 
1148 	mtx_lock(&xbb->lock);
1149 
1150 	if (wakeup) {
1151 		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1152 		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1153 	}
1154 
1155 	if (reqlist->kva != NULL)
1156 		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1157 
1158 	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1159 
1160 	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1161 
1162 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1163 		/*
1164 		 * Shutdown is in progress.  See if we can
1165 		 * progress further now that one more request
1166 		 * has completed and been returned to the
1167 		 * free pool.
1168 		 */
1169 		xbb_shutdown(xbb);
1170 	}
1171 
1172 	mtx_unlock(&xbb->lock);
1173 
1174 	if (wakeup != 0)
1175 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1176 }
1177 
1178 /**
1179  * Request resources and do basic request setup.
1180  *
1181  * \param xbb          Per-instance xbb configuration structure.
1182  * \param reqlist      Pointer to reqlist pointer.
1183  * \param ring_req     Pointer to a block ring request.
1184  * \param ring_index   The ring index of this request.
1185  *
1186  * \return  0 for success, non-zero for failure.
1187  */
1188 static int
1189 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1190 		  blkif_request_t *ring_req, RING_IDX ring_idx)
1191 {
1192 	struct xbb_xen_reqlist *nreqlist;
1193 	struct xbb_xen_req     *nreq;
1194 
1195 	nreqlist = NULL;
1196 	nreq     = NULL;
1197 
1198 	mtx_lock(&xbb->lock);
1199 
1200 	/*
1201 	 * We don't allow new resources to be allocated if we're in the
1202 	 * process of shutting down.
1203 	 */
1204 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1205 		mtx_unlock(&xbb->lock);
1206 		return (1);
1207 	}
1208 
1209 	/*
1210 	 * Allocate a reqlist if the caller doesn't have one already.
1211 	 */
1212 	if (*reqlist == NULL) {
1213 		nreqlist = xbb_get_reqlist(xbb);
1214 		if (nreqlist == NULL)
1215 			goto bailout_error;
1216 	}
1217 
1218 	/* We always allocate a request. */
1219 	nreq = xbb_get_req(xbb);
1220 	if (nreq == NULL)
1221 		goto bailout_error;
1222 
1223 	mtx_unlock(&xbb->lock);
1224 
1225 	if (*reqlist == NULL) {
1226 		*reqlist = nreqlist;
1227 		nreqlist->operation = ring_req->operation;
1228 		nreqlist->starting_sector_number = ring_req->sector_number;
1229 		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1230 				   links);
1231 	}
1232 
1233 	nreq->reqlist = *reqlist;
1234 	nreq->req_ring_idx = ring_idx;
1235 	nreq->id = ring_req->id;
1236 	nreq->operation = ring_req->operation;
1237 
1238 	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1239 		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1240 		nreq->ring_req = &nreq->ring_req_storage;
1241 	} else {
1242 		nreq->ring_req = ring_req;
1243 	}
1244 
1245 	binuptime(&nreq->ds_t0);
1246 	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1247 	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1248 	(*reqlist)->num_children++;
1249 	(*reqlist)->nr_segments += ring_req->nr_segments;
1250 
1251 	return (0);
1252 
1253 bailout_error:
1254 
1255 	/*
1256 	 * We're out of resources, so set the shortage flag.  The next time
1257 	 * a request is released, we'll try waking up the work thread to
1258 	 * see if we can allocate more resources.
1259 	 */
1260 	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1261 	xbb->request_shortages++;
1262 
1263 	if (nreq != NULL)
1264 		xbb_release_req(xbb, nreq);
1265 
1266 	mtx_unlock(&xbb->lock);
1267 
1268 	if (nreqlist != NULL)
1269 		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1270 
1271 	return (1);
1272 }
1273 
1274 /**
1275  * Create and transmit a response to a blkif request.
1276  *
1277  * \param xbb     Per-instance xbb configuration structure.
1278  * \param req     The request structure to which to respond.
1279  * \param status  The status code to report.  See BLKIF_RSP_*
1280  *                in sys/xen/interface/io/blkif.h.
1281  */
1282 static void
1283 xbb_send_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1284 {
1285 	blkif_response_t *resp;
1286 	int		  more_to_do;
1287 	int		  notify;
1288 
1289 	more_to_do = 0;
1290 
1291 	/*
1292 	 * Place on the response ring for the relevant domain.
1293 	 * For now, only the spacing between entries is different
1294 	 * in the different ABIs, not the response entry layout.
1295 	 */
1296 	mtx_lock(&xbb->lock);
1297 	switch (xbb->abi) {
1298 	case BLKIF_PROTOCOL_NATIVE:
1299 		resp = RING_GET_RESPONSE(&xbb->rings.native,
1300 					 xbb->rings.native.rsp_prod_pvt);
1301 		break;
1302 	case BLKIF_PROTOCOL_X86_32:
1303 		resp = (blkif_response_t *)
1304 		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1305 				      xbb->rings.x86_32.rsp_prod_pvt);
1306 		break;
1307 	case BLKIF_PROTOCOL_X86_64:
1308 		resp = (blkif_response_t *)
1309 		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1310 				      xbb->rings.x86_64.rsp_prod_pvt);
1311 		break;
1312 	default:
1313 		panic("Unexpected blkif protocol ABI.");
1314 	}
1315 
1316 	resp->id        = req->id;
1317 	resp->operation = req->operation;
1318 	resp->status    = status;
1319 
1320 	xbb->rings.common.rsp_prod_pvt += BLKIF_SEGS_TO_BLOCKS(req->nr_pages);
1321 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, notify);
1322 
1323 	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1324 
1325 		/*
1326 		 * Tail check for pending requests. Allows frontend to avoid
1327 		 * notifications if requests are already in flight (lower
1328 		 * overheads and promotes batching).
1329 		 */
1330 		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1331 	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1332 
1333 		more_to_do = 1;
1334 	}
1335 
1336 	xbb->reqs_completed++;
1337 
1338 	mtx_unlock(&xbb->lock);
1339 
1340 	if (more_to_do)
1341 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1342 
1343 	if (notify)
1344 		xen_intr_signal(xbb->xen_intr_handle);
1345 }
1346 
1347 /**
1348  * Complete a request list.
1349  *
1350  * \param xbb        Per-instance xbb configuration structure.
1351  * \param reqlist    Allocated internal request list structure.
1352  */
1353 static void
1354 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1355 {
1356 	struct xbb_xen_req *nreq;
1357 	off_t		    sectors_sent;
1358 
1359 	sectors_sent = 0;
1360 
1361 	if (reqlist->flags & XBB_REQLIST_MAPPED)
1362 		xbb_unmap_reqlist(reqlist);
1363 
1364 	/*
1365 	 * All I/O is done, send the response.  A lock should not be
1366 	 * necessary here because the request list is complete, and
1367 	 * therefore this is the only context accessing this request
1368 	 * right now.  The functions we call do their own locking if
1369 	 * necessary.
1370 	 */
1371 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1372 		off_t cur_sectors_sent;
1373 
1374 		xbb_send_response(xbb, nreq, reqlist->status);
1375 
1376 		/* We don't report bytes sent if there is an error. */
1377 		if (reqlist->status == BLKIF_RSP_OKAY)
1378 			cur_sectors_sent = nreq->nr_512b_sectors;
1379 		else
1380 			cur_sectors_sent = 0;
1381 
1382 		sectors_sent += cur_sectors_sent;
1383 
1384 		devstat_end_transaction(xbb->xbb_stats_in,
1385 					/*bytes*/cur_sectors_sent << 9,
1386 					reqlist->ds_tag_type,
1387 					reqlist->ds_trans_type,
1388 					/*now*/NULL,
1389 					/*then*/&nreq->ds_t0);
1390 	}
1391 
1392 	/*
1393 	 * Take out any sectors not sent.  If we wind up negative (which
1394 	 * might happen if an error is reported as well as a residual), just
1395 	 * report 0 sectors sent.
1396 	 */
1397 	sectors_sent -= reqlist->residual_512b_sectors;
1398 	if (sectors_sent < 0)
1399 		sectors_sent = 0;
1400 
1401 	devstat_end_transaction(xbb->xbb_stats,
1402 				/*bytes*/ sectors_sent << 9,
1403 				reqlist->ds_tag_type,
1404 				reqlist->ds_trans_type,
1405 				/*now*/NULL,
1406 				/*then*/&reqlist->ds_t0);
1407 
1408 	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1409 }
1410 
1411 /**
1412  * Completion handler for buffer I/O requests issued by the device
1413  * backend driver.
1414  *
1415  * \param bio  The buffer I/O request on which to perform completion
1416  *             processing.
1417  */
1418 static void
1419 xbb_bio_done(struct bio *bio)
1420 {
1421 	struct xbb_softc       *xbb;
1422 	struct xbb_xen_reqlist *reqlist;
1423 
1424 	reqlist = bio->bio_caller1;
1425 	xbb     = reqlist->xbb;
1426 
1427 	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1428 
1429 	/*
1430 	 * This is a bit imprecise.  With aggregated I/O a single
1431 	 * request list can contain multiple front-end requests and
1432 	 * a multiple bios may point to a single request.  By carefully
1433 	 * walking the request list, we could map residuals and errors
1434 	 * back to the original front-end request, but the interface
1435 	 * isn't sufficiently rich for us to properly report the error.
1436 	 * So, we just treat the entire request list as having failed if an
1437 	 * error occurs on any part.  And, if an error occurs, we treat
1438 	 * the amount of data transferred as 0.
1439 	 *
1440 	 * For residuals, we report it on the overall aggregated device,
1441 	 * but not on the individual requests, since we don't currently
1442 	 * do the work to determine which front-end request to which the
1443 	 * residual applies.
1444 	 */
1445 	if (bio->bio_error) {
1446 		DPRINTF("BIO returned error %d for operation on device %s\n",
1447 			bio->bio_error, xbb->dev_name);
1448 		reqlist->status = BLKIF_RSP_ERROR;
1449 
1450 		if (bio->bio_error == ENXIO
1451 		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1452 
1453 			/*
1454 			 * Backend device has disappeared.  Signal the
1455 			 * front-end that we (the device proxy) want to
1456 			 * go away.
1457 			 */
1458 			xenbus_set_state(xbb->dev, XenbusStateClosing);
1459 		}
1460 	}
1461 
1462 #ifdef XBB_USE_BOUNCE_BUFFERS
1463 	if (bio->bio_cmd == BIO_READ) {
1464 		vm_offset_t kva_offset;
1465 
1466 		kva_offset = (vm_offset_t)bio->bio_data
1467 			   - (vm_offset_t)reqlist->bounce;
1468 		memcpy((uint8_t *)reqlist->kva + kva_offset,
1469 		       bio->bio_data, bio->bio_bcount);
1470 	}
1471 #endif /* XBB_USE_BOUNCE_BUFFERS */
1472 
1473 	/*
1474 	 * Decrement the pending count for the request list.  When we're
1475 	 * done with the requests, send status back for all of them.
1476 	 */
1477 	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1478 		xbb_complete_reqlist(xbb, reqlist);
1479 
1480 	g_destroy_bio(bio);
1481 }
1482 
1483 /**
1484  * Parse a blkif request into an internal request structure and send
1485  * it to the backend for processing.
1486  *
1487  * \param xbb       Per-instance xbb configuration structure.
1488  * \param reqlist   Allocated internal request list structure.
1489  *
1490  * \return          On success, 0.  For resource shortages, non-zero.
1491  *
1492  * This routine performs the backend common aspects of request parsing
1493  * including compiling an internal request structure, parsing the S/G
1494  * list and any secondary ring requests in which they may reside, and
1495  * the mapping of front-end I/O pages into our domain.
1496  */
1497 static int
1498 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1499 {
1500 	struct xbb_sg                *xbb_sg;
1501 	struct gnttab_map_grant_ref  *map;
1502 	struct blkif_request_segment *sg;
1503 	struct blkif_request_segment *last_block_sg;
1504 	struct xbb_xen_req	     *nreq;
1505 	u_int			      nseg;
1506 	u_int			      seg_idx;
1507 	u_int			      block_segs;
1508 	int			      nr_sects;
1509 	int			      total_sects;
1510 	int			      operation;
1511 	uint8_t			      bio_flags;
1512 	int			      error;
1513 
1514 	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1515 	bio_flags            = 0;
1516 	total_sects	     = 0;
1517 	nr_sects	     = 0;
1518 
1519 	/*
1520 	 * First determine whether we have enough free KVA to satisfy this
1521 	 * request list.  If not, tell xbb_run_queue() so it can go to
1522 	 * sleep until we have more KVA.
1523 	 */
1524 	reqlist->kva = NULL;
1525 	if (reqlist->nr_segments != 0) {
1526 		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1527 		if (reqlist->kva == NULL) {
1528 			/*
1529 			 * If we're out of KVA, return ENOMEM.
1530 			 */
1531 			return (ENOMEM);
1532 		}
1533 	}
1534 
1535 	binuptime(&reqlist->ds_t0);
1536 	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1537 
1538 	switch (reqlist->operation) {
1539 	case BLKIF_OP_WRITE_BARRIER:
1540 		bio_flags       |= BIO_ORDERED;
1541 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1542 		/* FALLTHROUGH */
1543 	case BLKIF_OP_WRITE:
1544 		operation = BIO_WRITE;
1545 		reqlist->ds_trans_type = DEVSTAT_WRITE;
1546 		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1547 			DPRINTF("Attempt to write to read only device %s\n",
1548 				xbb->dev_name);
1549 			reqlist->status = BLKIF_RSP_ERROR;
1550 			goto send_response;
1551 		}
1552 		break;
1553 	case BLKIF_OP_READ:
1554 		operation = BIO_READ;
1555 		reqlist->ds_trans_type = DEVSTAT_READ;
1556 		break;
1557 	case BLKIF_OP_FLUSH_DISKCACHE:
1558 		/*
1559 		 * If this is true, the user has requested that we disable
1560 		 * flush support.  So we just complete the requests
1561 		 * successfully.
1562 		 */
1563 		if (xbb->disable_flush != 0) {
1564 			goto send_response;
1565 		}
1566 
1567 		/*
1568 		 * The user has requested that we only send a real flush
1569 		 * for every N flush requests.  So keep count, and either
1570 		 * complete the request immediately or queue it for the
1571 		 * backend.
1572 		 */
1573 		if (xbb->flush_interval != 0) {
1574 		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1575 				goto send_response;
1576 			} else
1577 				xbb->flush_count = 0;
1578 		}
1579 
1580 		operation = BIO_FLUSH;
1581 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1582 		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1583 		goto do_dispatch;
1584 		/*NOTREACHED*/
1585 	default:
1586 		DPRINTF("error: unknown block io operation [%d]\n",
1587 			reqlist->operation);
1588 		reqlist->status = BLKIF_RSP_ERROR;
1589 		goto send_response;
1590 	}
1591 
1592 	reqlist->xbb  = xbb;
1593 	xbb_sg        = xbb->xbb_sgs;
1594 	map	      = xbb->maps;
1595 	seg_idx	      = 0;
1596 
1597 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1598 		blkif_request_t		*ring_req;
1599 		RING_IDX		 req_ring_idx;
1600 		u_int			 req_seg_idx;
1601 
1602 		ring_req	      = nreq->ring_req;
1603 		req_ring_idx	      = nreq->req_ring_idx;
1604 		nr_sects              = 0;
1605 		nseg                  = ring_req->nr_segments;
1606 		nreq->nr_pages        = nseg;
1607 		nreq->nr_512b_sectors = 0;
1608 		req_seg_idx	      = 0;
1609 		sg	              = NULL;
1610 
1611 		/* Check that number of segments is sane. */
1612 		if (__predict_false(nseg == 0)
1613 		 || __predict_false(nseg > xbb->max_request_segments)) {
1614 			DPRINTF("Bad number of segments in request (%d)\n",
1615 				nseg);
1616 			reqlist->status = BLKIF_RSP_ERROR;
1617 			goto send_response;
1618 		}
1619 
1620 		block_segs    = MIN(nreq->nr_pages,
1621 				    BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK);
1622 		sg            = ring_req->seg;
1623 		last_block_sg = sg + block_segs;
1624 		while (1) {
1625 
1626 			while (sg < last_block_sg) {
1627 				KASSERT(seg_idx <
1628 					XBB_MAX_SEGMENTS_PER_REQLIST,
1629 					("seg_idx %d is too large, max "
1630 					"segs %d\n", seg_idx,
1631 					XBB_MAX_SEGMENTS_PER_REQLIST));
1632 
1633 				xbb_sg->first_sect = sg->first_sect;
1634 				xbb_sg->last_sect  = sg->last_sect;
1635 				xbb_sg->nsect =
1636 				    (int8_t)(sg->last_sect -
1637 				    sg->first_sect + 1);
1638 
1639 				if ((sg->last_sect >= (PAGE_SIZE >> 9))
1640 				 || (xbb_sg->nsect <= 0)) {
1641 					reqlist->status = BLKIF_RSP_ERROR;
1642 					goto send_response;
1643 				}
1644 
1645 				nr_sects += xbb_sg->nsect;
1646 				map->host_addr = xbb_get_gntaddr(reqlist,
1647 							seg_idx, /*sector*/0);
1648 				KASSERT(map->host_addr + PAGE_SIZE <=
1649 					xbb->ring_config.gnt_addr,
1650 					("Host address %#jx len %d overlaps "
1651 					 "ring address %#jx\n",
1652 					(uintmax_t)map->host_addr, PAGE_SIZE,
1653 					(uintmax_t)xbb->ring_config.gnt_addr));
1654 
1655 				map->flags     = GNTMAP_host_map;
1656 				map->ref       = sg->gref;
1657 				map->dom       = xbb->otherend_id;
1658 				if (operation == BIO_WRITE)
1659 					map->flags |= GNTMAP_readonly;
1660 				sg++;
1661 				map++;
1662 				xbb_sg++;
1663 				seg_idx++;
1664 				req_seg_idx++;
1665 			}
1666 
1667 			block_segs = MIN(nseg - req_seg_idx,
1668 					 BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK);
1669 			if (block_segs == 0)
1670 				break;
1671 
1672 			/*
1673 			 * Fetch the next request block full of SG elements.
1674 			 * For now, only the spacing between entries is
1675 			 * different in the different ABIs, not the sg entry
1676 			 * layout.
1677 			 */
1678 			req_ring_idx++;
1679 			switch (xbb->abi) {
1680 			case BLKIF_PROTOCOL_NATIVE:
1681 				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.native,
1682 							   req_ring_idx);
1683 				break;
1684 			case BLKIF_PROTOCOL_X86_32:
1685 			{
1686 				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_32,
1687 							   req_ring_idx);
1688 				break;
1689 			}
1690 			case BLKIF_PROTOCOL_X86_64:
1691 			{
1692 				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_64,
1693 							   req_ring_idx);
1694 				break;
1695 			}
1696 			default:
1697 				panic("Unexpected blkif protocol ABI.");
1698 				/* NOTREACHED */
1699 			}
1700 			last_block_sg = sg + block_segs;
1701 		}
1702 
1703 		/* Convert to the disk's sector size */
1704 		nreq->nr_512b_sectors = nr_sects;
1705 		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1706 		total_sects += nr_sects;
1707 
1708 		if ((nreq->nr_512b_sectors &
1709 		    ((xbb->sector_size >> 9) - 1)) != 0) {
1710 			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1711 				      "a multiple of the backing store sector "
1712 				      "size (%d)\n", __func__,
1713 				      nreq->nr_512b_sectors << 9,
1714 				      xbb->sector_size);
1715 			reqlist->status = BLKIF_RSP_ERROR;
1716 			goto send_response;
1717 		}
1718 	}
1719 
1720 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1721 					  xbb->maps, reqlist->nr_segments);
1722 	if (error != 0)
1723 		panic("Grant table operation failed (%d)", error);
1724 
1725 	reqlist->flags |= XBB_REQLIST_MAPPED;
1726 
1727 	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1728 	     seg_idx++, map++){
1729 
1730 		if (__predict_false(map->status != 0)) {
1731 			DPRINTF("invalid buffer -- could not remap "
1732 			        "it (%d)\n", map->status);
1733 			DPRINTF("Mapping(%d): Host Addr 0x%lx, flags "
1734 			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1735 				map->host_addr, map->flags, map->ref,
1736 				map->dom);
1737 			reqlist->status = BLKIF_RSP_ERROR;
1738 			goto send_response;
1739 		}
1740 
1741 		reqlist->gnt_handles[seg_idx] = map->handle;
1742 	}
1743 	if (reqlist->starting_sector_number + total_sects >
1744 	    xbb->media_num_sectors) {
1745 
1746 		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1747 			"extends past end of device %s\n",
1748 			operation == BIO_READ ? "read" : "write",
1749 			reqlist->starting_sector_number,
1750 			reqlist->starting_sector_number + total_sects,
1751 			xbb->dev_name);
1752 		reqlist->status = BLKIF_RSP_ERROR;
1753 		goto send_response;
1754 	}
1755 
1756 do_dispatch:
1757 
1758 	error = xbb->dispatch_io(xbb,
1759 				 reqlist,
1760 				 operation,
1761 				 bio_flags);
1762 
1763 	if (error != 0) {
1764 		reqlist->status = BLKIF_RSP_ERROR;
1765 		goto send_response;
1766 	}
1767 
1768 	return (0);
1769 
1770 send_response:
1771 
1772 	xbb_complete_reqlist(xbb, reqlist);
1773 
1774 	return (0);
1775 }
1776 
1777 static __inline int
1778 xbb_count_sects(blkif_request_t *ring_req)
1779 {
1780 	int i;
1781 	int cur_size = 0;
1782 
1783 	for (i = 0; i < ring_req->nr_segments; i++) {
1784 		int nsect;
1785 
1786 		nsect = (int8_t)(ring_req->seg[i].last_sect -
1787 			ring_req->seg[i].first_sect + 1);
1788 		if (nsect <= 0)
1789 			break;
1790 
1791 		cur_size += nsect;
1792 	}
1793 
1794 	return (cur_size);
1795 }
1796 
1797 /**
1798  * Process incoming requests from the shared communication ring in response
1799  * to a signal on the ring's event channel.
1800  *
1801  * \param context  Callback argument registerd during task initialization -
1802  *                 the xbb_softc for this instance.
1803  * \param pending  The number of taskqueue_enqueue events that have
1804  *                 occurred since this handler was last run.
1805  */
1806 static void
1807 xbb_run_queue(void *context, int pending)
1808 {
1809 	struct xbb_softc       *xbb;
1810 	blkif_back_rings_t     *rings;
1811 	RING_IDX		rp;
1812 	uint64_t		cur_sector;
1813 	int			cur_operation;
1814 	struct xbb_xen_reqlist *reqlist;
1815 
1816 
1817 	xbb   = (struct xbb_softc *)context;
1818 	rings = &xbb->rings;
1819 
1820 	/*
1821 	 * Work gather and dispatch loop.  Note that we have a bias here
1822 	 * towards gathering I/O sent by blockfront.  We first gather up
1823 	 * everything in the ring, as long as we have resources.  Then we
1824 	 * dispatch one request, and then attempt to gather up any
1825 	 * additional requests that have come in while we were dispatching
1826 	 * the request.
1827 	 *
1828 	 * This allows us to get a clearer picture (via devstat) of how
1829 	 * many requests blockfront is queueing to us at any given time.
1830 	 */
1831 	for (;;) {
1832 		int retval;
1833 
1834 		/*
1835 		 * Initialize reqlist to the last element in the pending
1836 		 * queue, if there is one.  This allows us to add more
1837 		 * requests to that request list, if we have room.
1838 		 */
1839 		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1840 				      xbb_xen_reqlist, links);
1841 		if (reqlist != NULL) {
1842 			cur_sector = reqlist->next_contig_sector;
1843 			cur_operation = reqlist->operation;
1844 		} else {
1845 			cur_operation = 0;
1846 			cur_sector    = 0;
1847 		}
1848 
1849 		/*
1850 		 * Cache req_prod to avoid accessing a cache line shared
1851 		 * with the frontend.
1852 		 */
1853 		rp = rings->common.sring->req_prod;
1854 
1855 		/* Ensure we see queued requests up to 'rp'. */
1856 		rmb();
1857 
1858 		/**
1859 		 * Run so long as there is work to consume and the generation
1860 		 * of a response will not overflow the ring.
1861 		 *
1862 		 * @note There's a 1 to 1 relationship between requests and
1863 		 *       responses, so an overflow should never occur.  This
1864 		 *       test is to protect our domain from digesting bogus
1865 		 *       data.  Shouldn't we log this?
1866 		 */
1867 		while (rings->common.req_cons != rp
1868 		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1869 						  rings->common.req_cons) == 0){
1870 			blkif_request_t	        ring_req_storage;
1871 			blkif_request_t	       *ring_req;
1872 			int			cur_size;
1873 
1874 			switch (xbb->abi) {
1875 			case BLKIF_PROTOCOL_NATIVE:
1876 				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1877 				    rings->common.req_cons);
1878 				break;
1879 			case BLKIF_PROTOCOL_X86_32:
1880 			{
1881 				struct blkif_x86_32_request *ring_req32;
1882 
1883 				ring_req32 = RING_GET_REQUEST(
1884 				    &xbb->rings.x86_32, rings->common.req_cons);
1885 				blkif_get_x86_32_req(&ring_req_storage,
1886 						     ring_req32);
1887 				ring_req = &ring_req_storage;
1888 				break;
1889 			}
1890 			case BLKIF_PROTOCOL_X86_64:
1891 			{
1892 				struct blkif_x86_64_request *ring_req64;
1893 
1894 				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1895 				    rings->common.req_cons);
1896 				blkif_get_x86_64_req(&ring_req_storage,
1897 						     ring_req64);
1898 				ring_req = &ring_req_storage;
1899 				break;
1900 			}
1901 			default:
1902 				panic("Unexpected blkif protocol ABI.");
1903 				/* NOTREACHED */
1904 			}
1905 
1906 			/*
1907 			 * Check for situations that would require closing
1908 			 * off this I/O for further coalescing:
1909 			 *  - Coalescing is turned off.
1910 			 *  - Current I/O is out of sequence with the previous
1911 			 *    I/O.
1912 			 *  - Coalesced I/O would be too large.
1913 			 */
1914 			if ((reqlist != NULL)
1915 			 && ((xbb->no_coalesce_reqs != 0)
1916 			  || ((xbb->no_coalesce_reqs == 0)
1917 			   && ((ring_req->sector_number != cur_sector)
1918 			    || (ring_req->operation != cur_operation)
1919 			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1920 			         xbb->max_reqlist_segments))))) {
1921 				reqlist = NULL;
1922 			}
1923 
1924 			/*
1925 			 * Grab and check for all resources in one shot.
1926 			 * If we can't get all of the resources we need,
1927 			 * the shortage is noted and the thread will get
1928 			 * woken up when more resources are available.
1929 			 */
1930 			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1931 						   xbb->rings.common.req_cons);
1932 
1933 			if (retval != 0) {
1934 				/*
1935 				 * Resource shortage has been recorded.
1936 				 * We'll be scheduled to run once a request
1937 				 * object frees up due to a completion.
1938 				 */
1939 				break;
1940 			}
1941 
1942 			/*
1943 			 * Signify that	we can overwrite this request with
1944 			 * a response by incrementing our consumer index.
1945 			 * The response won't be generated until after
1946 			 * we've already consumed all necessary data out
1947 			 * of the version of the request in the ring buffer
1948 			 * (for native mode).  We must update the consumer
1949 			 * index  before issueing back-end I/O so there is
1950 			 * no possibility that it will complete and a
1951 			 * response be generated before we make room in
1952 			 * the queue for that response.
1953 			 */
1954 			xbb->rings.common.req_cons +=
1955 			    BLKIF_SEGS_TO_BLOCKS(ring_req->nr_segments);
1956 			xbb->reqs_received++;
1957 
1958 			cur_size = xbb_count_sects(ring_req);
1959 			cur_sector = ring_req->sector_number + cur_size;
1960 			reqlist->next_contig_sector = cur_sector;
1961 			cur_operation = ring_req->operation;
1962 		}
1963 
1964 		/* Check for I/O to dispatch */
1965 		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1966 		if (reqlist == NULL) {
1967 			/*
1968 			 * We're out of work to do, put the task queue to
1969 			 * sleep.
1970 			 */
1971 			break;
1972 		}
1973 
1974 		/*
1975 		 * Grab the first request off the queue and attempt
1976 		 * to dispatch it.
1977 		 */
1978 		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1979 
1980 		retval = xbb_dispatch_io(xbb, reqlist);
1981 		if (retval != 0) {
1982 			/*
1983 			 * xbb_dispatch_io() returns non-zero only when
1984 			 * there is a resource shortage.  If that's the
1985 			 * case, re-queue this request on the head of the
1986 			 * queue, and go to sleep until we have more
1987 			 * resources.
1988 			 */
1989 			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
1990 					   reqlist, links);
1991 			break;
1992 		} else {
1993 			/*
1994 			 * If we still have anything on the queue after
1995 			 * removing the head entry, that is because we
1996 			 * met one of the criteria to create a new
1997 			 * request list (outlined above), and we'll call
1998 			 * that a forced dispatch for statistical purposes.
1999 			 *
2000 			 * Otherwise, if there is only one element on the
2001 			 * queue, we coalesced everything available on
2002 			 * the ring and we'll call that a normal dispatch.
2003 			 */
2004 			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2005 
2006 			if (reqlist != NULL)
2007 				xbb->forced_dispatch++;
2008 			else
2009 				xbb->normal_dispatch++;
2010 
2011 			xbb->total_dispatch++;
2012 		}
2013 	}
2014 }
2015 
2016 /**
2017  * Interrupt handler bound to the shared ring's event channel.
2018  *
2019  * \param arg  Callback argument registerd during event channel
2020  *             binding - the xbb_softc for this instance.
2021  */
2022 static int
2023 xbb_filter(void *arg)
2024 {
2025 	struct xbb_softc *xbb;
2026 
2027 	/* Defer to taskqueue thread. */
2028 	xbb = (struct xbb_softc *)arg;
2029 	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2030 
2031 	return (FILTER_HANDLED);
2032 }
2033 
2034 SDT_PROVIDER_DEFINE(xbb);
2035 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, flush, "int");
2036 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, read, "int", "uint64_t",
2037 		  "uint64_t");
2038 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, write, "int",
2039 		  "uint64_t", "uint64_t");
2040 
2041 /*----------------------------- Backend Handlers -----------------------------*/
2042 /**
2043  * Backend handler for character device access.
2044  *
2045  * \param xbb        Per-instance xbb configuration structure.
2046  * \param reqlist    Allocated internal request list structure.
2047  * \param operation  BIO_* I/O operation code.
2048  * \param bio_flags  Additional bio_flag data to pass to any generated
2049  *                   bios (e.g. BIO_ORDERED)..
2050  *
2051  * \return  0 for success, errno codes for failure.
2052  */
2053 static int
2054 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2055 		 int operation, int bio_flags)
2056 {
2057 	struct xbb_dev_data *dev_data;
2058 	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2059 	off_t                bio_offset;
2060 	struct bio          *bio;
2061 	struct xbb_sg       *xbb_sg;
2062 	u_int	             nbio;
2063 	u_int                bio_idx;
2064 	u_int		     nseg;
2065 	u_int                seg_idx;
2066 	int                  error;
2067 
2068 	dev_data   = &xbb->backend.dev;
2069 	bio_offset = (off_t)reqlist->starting_sector_number
2070 		   << xbb->sector_size_shift;
2071 	error      = 0;
2072 	nbio       = 0;
2073 	bio_idx    = 0;
2074 
2075 	if (operation == BIO_FLUSH) {
2076 		bio = g_new_bio();
2077 		if (__predict_false(bio == NULL)) {
2078 			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2079 			error = ENOMEM;
2080 			return (error);
2081 		}
2082 
2083 		bio->bio_cmd	 = BIO_FLUSH;
2084 		bio->bio_flags	|= BIO_ORDERED;
2085 		bio->bio_dev	 = dev_data->cdev;
2086 		bio->bio_offset	 = 0;
2087 		bio->bio_data	 = 0;
2088 		bio->bio_done	 = xbb_bio_done;
2089 		bio->bio_caller1 = reqlist;
2090 		bio->bio_pblkno	 = 0;
2091 
2092 		reqlist->pendcnt = 1;
2093 
2094 		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2095 			   device_get_unit(xbb->dev));
2096 
2097 		(*dev_data->csw->d_strategy)(bio);
2098 
2099 		return (0);
2100 	}
2101 
2102 	xbb_sg = xbb->xbb_sgs;
2103 	bio    = NULL;
2104 	nseg = reqlist->nr_segments;
2105 
2106 	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2107 
2108 		/*
2109 		 * KVA will not be contiguous, so any additional
2110 		 * I/O will need to be represented in a new bio.
2111 		 */
2112 		if ((bio != NULL)
2113 		 && (xbb_sg->first_sect != 0)) {
2114 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2115 				printf("%s: Discontiguous I/O request "
2116 				       "from domain %d ends on "
2117 				       "non-sector boundary\n",
2118 				       __func__, xbb->otherend_id);
2119 				error = EINVAL;
2120 				goto fail_free_bios;
2121 			}
2122 			bio = NULL;
2123 		}
2124 
2125 		if (bio == NULL) {
2126 			/*
2127 			 * Make sure that the start of this bio is
2128 			 * aligned to a device sector.
2129 			 */
2130 			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2131 				printf("%s: Misaligned I/O request "
2132 				       "from domain %d\n", __func__,
2133 				       xbb->otherend_id);
2134 				error = EINVAL;
2135 				goto fail_free_bios;
2136 			}
2137 
2138 			bio = bios[nbio++] = g_new_bio();
2139 			if (__predict_false(bio == NULL)) {
2140 				error = ENOMEM;
2141 				goto fail_free_bios;
2142 			}
2143 			bio->bio_cmd     = operation;
2144 			bio->bio_flags  |= bio_flags;
2145 			bio->bio_dev     = dev_data->cdev;
2146 			bio->bio_offset  = bio_offset;
2147 			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2148 						xbb_sg->first_sect);
2149 			bio->bio_done    = xbb_bio_done;
2150 			bio->bio_caller1 = reqlist;
2151 			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2152 		}
2153 
2154 		bio->bio_length += xbb_sg->nsect << 9;
2155 		bio->bio_bcount  = bio->bio_length;
2156 		bio_offset      += xbb_sg->nsect << 9;
2157 
2158 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2159 
2160 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2161 				printf("%s: Discontiguous I/O request "
2162 				       "from domain %d ends on "
2163 				       "non-sector boundary\n",
2164 				       __func__, xbb->otherend_id);
2165 				error = EINVAL;
2166 				goto fail_free_bios;
2167 			}
2168 			/*
2169 			 * KVA will not be contiguous, so any additional
2170 			 * I/O will need to be represented in a new bio.
2171 			 */
2172 			bio = NULL;
2173 		}
2174 	}
2175 
2176 	reqlist->pendcnt = nbio;
2177 
2178 	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2179 	{
2180 #ifdef XBB_USE_BOUNCE_BUFFERS
2181 		vm_offset_t kva_offset;
2182 
2183 		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2184 			   - (vm_offset_t)reqlist->bounce;
2185 		if (operation == BIO_WRITE) {
2186 			memcpy(bios[bio_idx]->bio_data,
2187 			       (uint8_t *)reqlist->kva + kva_offset,
2188 			       bios[bio_idx]->bio_bcount);
2189 		}
2190 #endif
2191 		if (operation == BIO_READ) {
2192 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2193 				   device_get_unit(xbb->dev),
2194 				   bios[bio_idx]->bio_offset,
2195 				   bios[bio_idx]->bio_length);
2196 		} else if (operation == BIO_WRITE) {
2197 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2198 				   device_get_unit(xbb->dev),
2199 				   bios[bio_idx]->bio_offset,
2200 				   bios[bio_idx]->bio_length);
2201 		}
2202 		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2203 	}
2204 
2205 	return (error);
2206 
2207 fail_free_bios:
2208 	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2209 		g_destroy_bio(bios[bio_idx]);
2210 
2211 	return (error);
2212 }
2213 
2214 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, flush, "int");
2215 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, read, "int", "uint64_t",
2216 		  "uint64_t");
2217 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, write, "int",
2218 		  "uint64_t", "uint64_t");
2219 
2220 /**
2221  * Backend handler for file access.
2222  *
2223  * \param xbb        Per-instance xbb configuration structure.
2224  * \param reqlist    Allocated internal request list.
2225  * \param operation  BIO_* I/O operation code.
2226  * \param flags      Additional bio_flag data to pass to any generated bios
2227  *                   (e.g. BIO_ORDERED)..
2228  *
2229  * \return  0 for success, errno codes for failure.
2230  */
2231 static int
2232 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2233 		  int operation, int flags)
2234 {
2235 	struct xbb_file_data *file_data;
2236 	u_int                 seg_idx;
2237 	u_int		      nseg;
2238 	off_t		      sectors_sent;
2239 	struct uio            xuio;
2240 	struct xbb_sg        *xbb_sg;
2241 	struct iovec         *xiovec;
2242 #ifdef XBB_USE_BOUNCE_BUFFERS
2243 	void                **p_vaddr;
2244 	int                   saved_uio_iovcnt;
2245 #endif /* XBB_USE_BOUNCE_BUFFERS */
2246 	int                   error;
2247 
2248 	file_data = &xbb->backend.file;
2249 	sectors_sent = 0;
2250 	error = 0;
2251 	bzero(&xuio, sizeof(xuio));
2252 
2253 	switch (operation) {
2254 	case BIO_READ:
2255 		xuio.uio_rw = UIO_READ;
2256 		break;
2257 	case BIO_WRITE:
2258 		xuio.uio_rw = UIO_WRITE;
2259 		break;
2260 	case BIO_FLUSH: {
2261 		struct mount *mountpoint;
2262 
2263 		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2264 			   device_get_unit(xbb->dev));
2265 
2266 		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2267 
2268 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2269 		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2270 		VOP_UNLOCK(xbb->vn, 0);
2271 
2272 		vn_finished_write(mountpoint);
2273 
2274 		goto bailout_send_response;
2275 		/* NOTREACHED */
2276 	}
2277 	default:
2278 		panic("invalid operation %d", operation);
2279 		/* NOTREACHED */
2280 	}
2281 	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2282 			<< xbb->sector_size_shift;
2283 	xuio.uio_segflg = UIO_SYSSPACE;
2284 	xuio.uio_iov = file_data->xiovecs;
2285 	xuio.uio_iovcnt = 0;
2286 	xbb_sg = xbb->xbb_sgs;
2287 	nseg = reqlist->nr_segments;
2288 
2289 	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2290 
2291 		/*
2292 		 * If the first sector is not 0, the KVA will
2293 		 * not be contiguous and we'll need to go on
2294 		 * to another segment.
2295 		 */
2296 		if (xbb_sg->first_sect != 0)
2297 			xiovec = NULL;
2298 
2299 		if (xiovec == NULL) {
2300 			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2301 			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2302 			    seg_idx, xbb_sg->first_sect);
2303 #ifdef XBB_USE_BOUNCE_BUFFERS
2304 			/*
2305 			 * Store the address of the incoming
2306 			 * buffer at this particular offset
2307 			 * as well, so we can do the copy
2308 			 * later without having to do more
2309 			 * work to recalculate this address.
2310 		 	 */
2311 			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2312 			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2313 			    xbb_sg->first_sect);
2314 #endif /* XBB_USE_BOUNCE_BUFFERS */
2315 			xiovec->iov_len = 0;
2316 			xuio.uio_iovcnt++;
2317 		}
2318 
2319 		xiovec->iov_len += xbb_sg->nsect << 9;
2320 
2321 		xuio.uio_resid += xbb_sg->nsect << 9;
2322 
2323 		/*
2324 		 * If the last sector is not the full page
2325 		 * size count, the next segment will not be
2326 		 * contiguous in KVA and we need a new iovec.
2327 		 */
2328 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2329 			xiovec = NULL;
2330 	}
2331 
2332 	xuio.uio_td = curthread;
2333 
2334 #ifdef XBB_USE_BOUNCE_BUFFERS
2335 	saved_uio_iovcnt = xuio.uio_iovcnt;
2336 
2337 	if (operation == BIO_WRITE) {
2338 		/* Copy the write data to the local buffer. */
2339 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2340 		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2341 		     seg_idx++, xiovec++, p_vaddr++) {
2342 
2343 			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2344 		}
2345 	} else {
2346 		/*
2347 		 * We only need to save off the iovecs in the case of a
2348 		 * read, because the copy for the read happens after the
2349 		 * VOP_READ().  (The uio will get modified in that call
2350 		 * sequence.)
2351 		 */
2352 		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2353 		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2354 	}
2355 #endif /* XBB_USE_BOUNCE_BUFFERS */
2356 
2357 	switch (operation) {
2358 	case BIO_READ:
2359 
2360 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2361 			   device_get_unit(xbb->dev), xuio.uio_offset,
2362 			   xuio.uio_resid);
2363 
2364 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2365 
2366 		/*
2367 		 * UFS pays attention to IO_DIRECT for reads.  If the
2368 		 * DIRECTIO option is configured into the kernel, it calls
2369 		 * ffs_rawread().  But that only works for single-segment
2370 		 * uios with user space addresses.  In our case, with a
2371 		 * kernel uio, it still reads into the buffer cache, but it
2372 		 * will just try to release the buffer from the cache later
2373 		 * on in ffs_read().
2374 		 *
2375 		 * ZFS does not pay attention to IO_DIRECT for reads.
2376 		 *
2377 		 * UFS does not pay attention to IO_SYNC for reads.
2378 		 *
2379 		 * ZFS pays attention to IO_SYNC (which translates into the
2380 		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2381 		 * attempts to sync the file before reading.
2382 		 *
2383 		 * So, to attempt to provide some barrier semantics in the
2384 		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2385 		 */
2386 		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2387 				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2388 
2389 		VOP_UNLOCK(xbb->vn, 0);
2390 		break;
2391 	case BIO_WRITE: {
2392 		struct mount *mountpoint;
2393 
2394 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2395 			   device_get_unit(xbb->dev), xuio.uio_offset,
2396 			   xuio.uio_resid);
2397 
2398 		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2399 
2400 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2401 
2402 		/*
2403 		 * UFS pays attention to IO_DIRECT for writes.  The write
2404 		 * is done asynchronously.  (Normally the write would just
2405 		 * get put into cache.
2406 		 *
2407 		 * UFS pays attention to IO_SYNC for writes.  It will
2408 		 * attempt to write the buffer out synchronously if that
2409 		 * flag is set.
2410 		 *
2411 		 * ZFS does not pay attention to IO_DIRECT for writes.
2412 		 *
2413 		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2414 		 * for writes.  It will flush the transaction from the
2415 		 * cache before returning.
2416 		 *
2417 		 * So if we've got the BIO_ORDERED flag set, we want
2418 		 * IO_SYNC in either the UFS or ZFS case.
2419 		 */
2420 		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2421 				  IO_SYNC : 0, file_data->cred);
2422 		VOP_UNLOCK(xbb->vn, 0);
2423 
2424 		vn_finished_write(mountpoint);
2425 
2426 		break;
2427 	}
2428 	default:
2429 		panic("invalid operation %d", operation);
2430 		/* NOTREACHED */
2431 	}
2432 
2433 #ifdef XBB_USE_BOUNCE_BUFFERS
2434 	/* We only need to copy here for read operations */
2435 	if (operation == BIO_READ) {
2436 
2437 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2438 		     xiovec = file_data->saved_xiovecs;
2439 		     seg_idx < saved_uio_iovcnt; seg_idx++,
2440 		     xiovec++, p_vaddr++) {
2441 
2442 			/*
2443 			 * Note that we have to use the copy of the
2444 			 * io vector we made above.  uiomove() modifies
2445 			 * the uio and its referenced vector as uiomove
2446 			 * performs the copy, so we can't rely on any
2447 			 * state from the original uio.
2448 			 */
2449 			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2450 		}
2451 	}
2452 #endif /* XBB_USE_BOUNCE_BUFFERS */
2453 
2454 bailout_send_response:
2455 
2456 	if (error != 0)
2457 		reqlist->status = BLKIF_RSP_ERROR;
2458 
2459 	xbb_complete_reqlist(xbb, reqlist);
2460 
2461 	return (0);
2462 }
2463 
2464 /*--------------------------- Backend Configuration --------------------------*/
2465 /**
2466  * Close and cleanup any backend device/file specific state for this
2467  * block back instance.
2468  *
2469  * \param xbb  Per-instance xbb configuration structure.
2470  */
2471 static void
2472 xbb_close_backend(struct xbb_softc *xbb)
2473 {
2474 	DROP_GIANT();
2475 	DPRINTF("closing dev=%s\n", xbb->dev_name);
2476 	if (xbb->vn) {
2477 		int flags = FREAD;
2478 
2479 		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2480 			flags |= FWRITE;
2481 
2482 		switch (xbb->device_type) {
2483 		case XBB_TYPE_DISK:
2484 			if (xbb->backend.dev.csw) {
2485 				dev_relthread(xbb->backend.dev.cdev,
2486 					      xbb->backend.dev.dev_ref);
2487 				xbb->backend.dev.csw  = NULL;
2488 				xbb->backend.dev.cdev = NULL;
2489 			}
2490 			break;
2491 		case XBB_TYPE_FILE:
2492 			break;
2493 		case XBB_TYPE_NONE:
2494 		default:
2495 			panic("Unexpected backend type.");
2496 			break;
2497 		}
2498 
2499 		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2500 		xbb->vn = NULL;
2501 
2502 		switch (xbb->device_type) {
2503 		case XBB_TYPE_DISK:
2504 			break;
2505 		case XBB_TYPE_FILE:
2506 			if (xbb->backend.file.cred != NULL) {
2507 				crfree(xbb->backend.file.cred);
2508 				xbb->backend.file.cred = NULL;
2509 			}
2510 			break;
2511 		case XBB_TYPE_NONE:
2512 		default:
2513 			panic("Unexpected backend type.");
2514 			break;
2515 		}
2516 	}
2517 	PICKUP_GIANT();
2518 }
2519 
2520 /**
2521  * Open a character device to be used for backend I/O.
2522  *
2523  * \param xbb  Per-instance xbb configuration structure.
2524  *
2525  * \return  0 for success, errno codes for failure.
2526  */
2527 static int
2528 xbb_open_dev(struct xbb_softc *xbb)
2529 {
2530 	struct vattr   vattr;
2531 	struct cdev   *dev;
2532 	struct cdevsw *devsw;
2533 	int	       error;
2534 
2535 	xbb->device_type = XBB_TYPE_DISK;
2536 	xbb->dispatch_io = xbb_dispatch_dev;
2537 	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2538 	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2539 					     &xbb->backend.dev.dev_ref);
2540 	if (xbb->backend.dev.csw == NULL)
2541 		panic("Unable to retrieve device switch");
2542 
2543 	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2544 	if (error) {
2545 		xenbus_dev_fatal(xbb->dev, error, "error getting "
2546 				 "vnode attributes for device %s",
2547 				 xbb->dev_name);
2548 		return (error);
2549 	}
2550 
2551 
2552 	dev = xbb->vn->v_rdev;
2553 	devsw = dev->si_devsw;
2554 	if (!devsw->d_ioctl) {
2555 		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2556 				 "device %s!", xbb->dev_name);
2557 		return (ENODEV);
2558 	}
2559 
2560 	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2561 			       (caddr_t)&xbb->sector_size, FREAD,
2562 			       curthread);
2563 	if (error) {
2564 		xenbus_dev_fatal(xbb->dev, error,
2565 				 "error calling ioctl DIOCGSECTORSIZE "
2566 				 "for device %s", xbb->dev_name);
2567 		return (error);
2568 	}
2569 
2570 	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2571 			       (caddr_t)&xbb->media_size, FREAD,
2572 			       curthread);
2573 	if (error) {
2574 		xenbus_dev_fatal(xbb->dev, error,
2575 				 "error calling ioctl DIOCGMEDIASIZE "
2576 				 "for device %s", xbb->dev_name);
2577 		return (error);
2578 	}
2579 
2580 	return (0);
2581 }
2582 
2583 /**
2584  * Open a file to be used for backend I/O.
2585  *
2586  * \param xbb  Per-instance xbb configuration structure.
2587  *
2588  * \return  0 for success, errno codes for failure.
2589  */
2590 static int
2591 xbb_open_file(struct xbb_softc *xbb)
2592 {
2593 	struct xbb_file_data *file_data;
2594 	struct vattr          vattr;
2595 	int                   error;
2596 
2597 	file_data = &xbb->backend.file;
2598 	xbb->device_type = XBB_TYPE_FILE;
2599 	xbb->dispatch_io = xbb_dispatch_file;
2600 	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2601 	if (error != 0) {
2602 		xenbus_dev_fatal(xbb->dev, error,
2603 				 "error calling VOP_GETATTR()"
2604 				 "for file %s", xbb->dev_name);
2605 		return (error);
2606 	}
2607 
2608 	/*
2609 	 * Verify that we have the ability to upgrade to exclusive
2610 	 * access on this file so we can trap errors at open instead
2611 	 * of reporting them during first access.
2612 	 */
2613 	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2614 		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2615 		if (xbb->vn->v_iflag & VI_DOOMED) {
2616 			error = EBADF;
2617 			xenbus_dev_fatal(xbb->dev, error,
2618 					 "error locking file %s",
2619 					 xbb->dev_name);
2620 
2621 			return (error);
2622 		}
2623 	}
2624 
2625 	file_data->cred = crhold(curthread->td_ucred);
2626 	xbb->media_size = vattr.va_size;
2627 
2628 	/*
2629 	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2630 	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2631 	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2632 	 * may not work with other OSes as well.  So just export a sector
2633 	 * size of 512 bytes, which should work with any OS or
2634 	 * application.  Since our backing is a file, any block size will
2635 	 * work fine for the backing store.
2636 	 */
2637 #if 0
2638 	xbb->sector_size = vattr.va_blocksize;
2639 #endif
2640 	xbb->sector_size = 512;
2641 
2642 	/*
2643 	 * Sanity check.  The media size has to be at least one
2644 	 * sector long.
2645 	 */
2646 	if (xbb->media_size < xbb->sector_size) {
2647 		error = EINVAL;
2648 		xenbus_dev_fatal(xbb->dev, error,
2649 				 "file %s size %ju < block size %u",
2650 				 xbb->dev_name,
2651 				 (uintmax_t)xbb->media_size,
2652 				 xbb->sector_size);
2653 	}
2654 	return (error);
2655 }
2656 
2657 /**
2658  * Open the backend provider for this connection.
2659  *
2660  * \param xbb  Per-instance xbb configuration structure.
2661  *
2662  * \return  0 for success, errno codes for failure.
2663  */
2664 static int
2665 xbb_open_backend(struct xbb_softc *xbb)
2666 {
2667 	struct nameidata nd;
2668 	int		 flags;
2669 	int		 error;
2670 
2671 	flags = FREAD;
2672 	error = 0;
2673 
2674 	DPRINTF("opening dev=%s\n", xbb->dev_name);
2675 
2676 	if (rootvnode == NULL) {
2677 		xenbus_dev_fatal(xbb->dev, ENOENT,
2678 				 "Root file system not mounted");
2679 		return (ENOENT);
2680 	}
2681 
2682 	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2683 		flags |= FWRITE;
2684 
2685 	if (!curthread->td_proc->p_fd->fd_cdir) {
2686 		curthread->td_proc->p_fd->fd_cdir = rootvnode;
2687 		VREF(rootvnode);
2688 	}
2689 	if (!curthread->td_proc->p_fd->fd_rdir) {
2690 		curthread->td_proc->p_fd->fd_rdir = rootvnode;
2691 		VREF(rootvnode);
2692 	}
2693 	if (!curthread->td_proc->p_fd->fd_jdir) {
2694 		curthread->td_proc->p_fd->fd_jdir = rootvnode;
2695 		VREF(rootvnode);
2696 	}
2697 
2698  again:
2699 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2700 	error = vn_open(&nd, &flags, 0, NULL);
2701 	if (error) {
2702 		/*
2703 		 * This is the only reasonable guess we can make as far as
2704 		 * path if the user doesn't give us a fully qualified path.
2705 		 * If they want to specify a file, they need to specify the
2706 		 * full path.
2707 		 */
2708 		if (xbb->dev_name[0] != '/') {
2709 			char *dev_path = "/dev/";
2710 			char *dev_name;
2711 
2712 			/* Try adding device path at beginning of name */
2713 			dev_name = malloc(strlen(xbb->dev_name)
2714 					+ strlen(dev_path) + 1,
2715 					  M_XENBLOCKBACK, M_NOWAIT);
2716 			if (dev_name) {
2717 				sprintf(dev_name, "%s%s", dev_path,
2718 					xbb->dev_name);
2719 				free(xbb->dev_name, M_XENBLOCKBACK);
2720 				xbb->dev_name = dev_name;
2721 				goto again;
2722 			}
2723 		}
2724 		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2725 				 xbb->dev_name);
2726 		return (error);
2727 	}
2728 
2729 	NDFREE(&nd, NDF_ONLY_PNBUF);
2730 
2731 	xbb->vn = nd.ni_vp;
2732 
2733 	/* We only support disks and files. */
2734 	if (vn_isdisk(xbb->vn, &error)) {
2735 		error = xbb_open_dev(xbb);
2736 	} else if (xbb->vn->v_type == VREG) {
2737 		error = xbb_open_file(xbb);
2738 	} else {
2739 		error = EINVAL;
2740 		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2741 				 "or file", xbb->dev_name);
2742 	}
2743 	VOP_UNLOCK(xbb->vn, 0);
2744 
2745 	if (error != 0) {
2746 		xbb_close_backend(xbb);
2747 		return (error);
2748 	}
2749 
2750 	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2751 	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2752 
2753 	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2754 		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2755 		xbb->dev_name, xbb->sector_size, xbb->media_size);
2756 
2757 	return (0);
2758 }
2759 
2760 /*------------------------ Inter-Domain Communication ------------------------*/
2761 /**
2762  * Free dynamically allocated KVA or pseudo-physical address allocations.
2763  *
2764  * \param xbb  Per-instance xbb configuration structure.
2765  */
2766 static void
2767 xbb_free_communication_mem(struct xbb_softc *xbb)
2768 {
2769 	if (xbb->kva != 0) {
2770 #ifndef XENHVM
2771 		kva_free(xbb->kva, xbb->kva_size);
2772 #else
2773 		if (xbb->pseudo_phys_res != NULL) {
2774 			bus_release_resource(xbb->dev, SYS_RES_MEMORY,
2775 					     xbb->pseudo_phys_res_id,
2776 					     xbb->pseudo_phys_res);
2777 			xbb->pseudo_phys_res = NULL;
2778 		}
2779 #endif
2780 	}
2781 	xbb->kva = 0;
2782 	xbb->gnt_base_addr = 0;
2783 	if (xbb->kva_free != NULL) {
2784 		free(xbb->kva_free, M_XENBLOCKBACK);
2785 		xbb->kva_free = NULL;
2786 	}
2787 }
2788 
2789 /**
2790  * Cleanup all inter-domain communication mechanisms.
2791  *
2792  * \param xbb  Per-instance xbb configuration structure.
2793  */
2794 static int
2795 xbb_disconnect(struct xbb_softc *xbb)
2796 {
2797 	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2798 	struct gnttab_unmap_grant_ref *op;
2799 	u_int			       ring_idx;
2800 	int			       error;
2801 
2802 	DPRINTF("\n");
2803 
2804 	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2805 		return (0);
2806 
2807 	xen_intr_unbind(&xbb->xen_intr_handle);
2808 
2809 	mtx_unlock(&xbb->lock);
2810 	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2811 	mtx_lock(&xbb->lock);
2812 
2813 	/*
2814 	 * No new interrupts can generate work, but we must wait
2815 	 * for all currently active requests to drain.
2816 	 */
2817 	if (xbb->active_request_count != 0)
2818 		return (EAGAIN);
2819 
2820 	for (ring_idx = 0, op = ops;
2821 	     ring_idx < xbb->ring_config.ring_pages;
2822 	     ring_idx++, op++) {
2823 
2824 		op->host_addr    = xbb->ring_config.gnt_addr
2825 			         + (ring_idx * PAGE_SIZE);
2826 		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2827 		op->handle	 = xbb->ring_config.handle[ring_idx];
2828 	}
2829 
2830 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2831 					  xbb->ring_config.ring_pages);
2832 	if (error != 0)
2833 		panic("Grant table op failed (%d)", error);
2834 
2835 	xbb_free_communication_mem(xbb);
2836 
2837 	if (xbb->requests != NULL) {
2838 		free(xbb->requests, M_XENBLOCKBACK);
2839 		xbb->requests = NULL;
2840 	}
2841 
2842 	if (xbb->request_lists != NULL) {
2843 		struct xbb_xen_reqlist *reqlist;
2844 		int i;
2845 
2846 		/* There is one request list for ever allocated request. */
2847 		for (i = 0, reqlist = xbb->request_lists;
2848 		     i < xbb->max_requests; i++, reqlist++){
2849 #ifdef XBB_USE_BOUNCE_BUFFERS
2850 			if (reqlist->bounce != NULL) {
2851 				free(reqlist->bounce, M_XENBLOCKBACK);
2852 				reqlist->bounce = NULL;
2853 			}
2854 #endif
2855 			if (reqlist->gnt_handles != NULL) {
2856 				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2857 				reqlist->gnt_handles = NULL;
2858 			}
2859 		}
2860 		free(xbb->request_lists, M_XENBLOCKBACK);
2861 		xbb->request_lists = NULL;
2862 	}
2863 
2864 	xbb->flags &= ~XBBF_RING_CONNECTED;
2865 	return (0);
2866 }
2867 
2868 /**
2869  * Map shared memory ring into domain local address space, initialize
2870  * ring control structures, and bind an interrupt to the event channel
2871  * used to notify us of ring changes.
2872  *
2873  * \param xbb  Per-instance xbb configuration structure.
2874  */
2875 static int
2876 xbb_connect_ring(struct xbb_softc *xbb)
2877 {
2878 	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2879 	struct gnttab_map_grant_ref *gnt;
2880 	u_int			     ring_idx;
2881 	int			     error;
2882 
2883 	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2884 		return (0);
2885 
2886 	/*
2887 	 * Kva for our ring is at the tail of the region of kva allocated
2888 	 * by xbb_alloc_communication_mem().
2889 	 */
2890 	xbb->ring_config.va = xbb->kva
2891 			    + (xbb->kva_size
2892 			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2893 	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2894 				  + (xbb->kva_size
2895 				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2896 
2897 	for (ring_idx = 0, gnt = gnts;
2898 	     ring_idx < xbb->ring_config.ring_pages;
2899 	     ring_idx++, gnt++) {
2900 
2901 		gnt->host_addr = xbb->ring_config.gnt_addr
2902 			       + (ring_idx * PAGE_SIZE);
2903 		gnt->flags     = GNTMAP_host_map;
2904 		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2905 		gnt->dom       = xbb->otherend_id;
2906 	}
2907 
2908 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2909 					  xbb->ring_config.ring_pages);
2910 	if (error)
2911 		panic("blkback: Ring page grant table op failed (%d)", error);
2912 
2913 	for (ring_idx = 0, gnt = gnts;
2914 	     ring_idx < xbb->ring_config.ring_pages;
2915 	     ring_idx++, gnt++) {
2916 		if (gnt->status != 0) {
2917 			xbb->ring_config.va = 0;
2918 			xenbus_dev_fatal(xbb->dev, EACCES,
2919 					 "Ring shared page mapping failed. "
2920 					 "Status %d.", gnt->status);
2921 			return (EACCES);
2922 		}
2923 		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2924 		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2925 	}
2926 
2927 	/* Initialize the ring based on ABI. */
2928 	switch (xbb->abi) {
2929 	case BLKIF_PROTOCOL_NATIVE:
2930 	{
2931 		blkif_sring_t *sring;
2932 		sring = (blkif_sring_t *)xbb->ring_config.va;
2933 		BACK_RING_INIT(&xbb->rings.native, sring,
2934 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2935 		break;
2936 	}
2937 	case BLKIF_PROTOCOL_X86_32:
2938 	{
2939 		blkif_x86_32_sring_t *sring_x86_32;
2940 		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2941 		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2942 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2943 		break;
2944 	}
2945 	case BLKIF_PROTOCOL_X86_64:
2946 	{
2947 		blkif_x86_64_sring_t *sring_x86_64;
2948 		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2949 		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2950 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2951 		break;
2952 	}
2953 	default:
2954 		panic("Unexpected blkif protocol ABI.");
2955 	}
2956 
2957 	xbb->flags |= XBBF_RING_CONNECTED;
2958 
2959 	error = xen_intr_bind_remote_port(xbb->dev,
2960 					  xbb->otherend_id,
2961 					  xbb->ring_config.evtchn,
2962 					  xbb_filter,
2963 					  /*ithread_handler*/NULL,
2964 					  /*arg*/xbb,
2965 					  INTR_TYPE_BIO | INTR_MPSAFE,
2966 					  &xbb->xen_intr_handle);
2967 	if (error) {
2968 		(void)xbb_disconnect(xbb);
2969 		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2970 		return (error);
2971 	}
2972 
2973 	DPRINTF("rings connected!\n");
2974 
2975 	return 0;
2976 }
2977 
2978 /* Needed to make bit_alloc() macro work */
2979 #define	calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK,	\
2980 				   M_NOWAIT|M_ZERO);
2981 
2982 /**
2983  * Size KVA and pseudo-physical address allocations based on negotiated
2984  * values for the size and number of I/O requests, and the size of our
2985  * communication ring.
2986  *
2987  * \param xbb  Per-instance xbb configuration structure.
2988  *
2989  * These address spaces are used to dynamically map pages in the
2990  * front-end's domain into our own.
2991  */
2992 static int
2993 xbb_alloc_communication_mem(struct xbb_softc *xbb)
2994 {
2995 	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2996 	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2997 	xbb->kva_size = xbb->reqlist_kva_size +
2998 			(xbb->ring_config.ring_pages * PAGE_SIZE);
2999 
3000 	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages);
3001 	if (xbb->kva_free == NULL)
3002 		return (ENOMEM);
3003 
3004 	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
3005 		device_get_nameunit(xbb->dev), xbb->kva_size,
3006 		xbb->reqlist_kva_size);
3007 #ifndef XENHVM
3008 	xbb->kva = kva_alloc(xbb->kva_size);
3009 	if (xbb->kva == 0)
3010 		return (ENOMEM);
3011 	xbb->gnt_base_addr = xbb->kva;
3012 #else /* XENHVM */
3013 	/*
3014 	 * Reserve a range of pseudo physical memory that we can map
3015 	 * into kva.  These pages will only be backed by machine
3016 	 * pages ("real memory") during the lifetime of front-end requests
3017 	 * via grant table operations.
3018 	 */
3019 	xbb->pseudo_phys_res_id = 0;
3020 	xbb->pseudo_phys_res = bus_alloc_resource(xbb->dev, SYS_RES_MEMORY,
3021 						  &xbb->pseudo_phys_res_id,
3022 						  0, ~0, xbb->kva_size,
3023 						  RF_ACTIVE);
3024 	if (xbb->pseudo_phys_res == NULL) {
3025 		xbb->kva = 0;
3026 		return (ENOMEM);
3027 	}
3028 	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3029 	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3030 #endif /* XENHVM */
3031 
3032 	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3033 		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3034 		(uintmax_t)xbb->gnt_base_addr);
3035 	return (0);
3036 }
3037 
3038 /**
3039  * Collect front-end information from the XenStore.
3040  *
3041  * \param xbb  Per-instance xbb configuration structure.
3042  */
3043 static int
3044 xbb_collect_frontend_info(struct xbb_softc *xbb)
3045 {
3046 	char	    protocol_abi[64];
3047 	const char *otherend_path;
3048 	int	    error;
3049 	u_int	    ring_idx;
3050 	u_int	    ring_page_order;
3051 	size_t	    ring_size;
3052 
3053 	otherend_path = xenbus_get_otherend_path(xbb->dev);
3054 
3055 	/*
3056 	 * Protocol defaults valid even if all negotiation fails.
3057 	 */
3058 	xbb->ring_config.ring_pages = 1;
3059 	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK;
3060 	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3061 
3062 	/*
3063 	 * Mandatory data (used in all versions of the protocol) first.
3064 	 */
3065 	error = xs_scanf(XST_NIL, otherend_path,
3066 			 "event-channel", NULL, "%" PRIu32,
3067 			 &xbb->ring_config.evtchn);
3068 	if (error != 0) {
3069 		xenbus_dev_fatal(xbb->dev, error,
3070 				 "Unable to retrieve event-channel information "
3071 				 "from frontend %s.  Unable to connect.",
3072 				 xenbus_get_otherend_path(xbb->dev));
3073 		return (error);
3074 	}
3075 
3076 	/*
3077 	 * These fields are initialized to legacy protocol defaults
3078 	 * so we only need to fail if reading the updated value succeeds
3079 	 * and the new value is outside of its allowed range.
3080 	 *
3081 	 * \note xs_gather() returns on the first encountered error, so
3082 	 *       we must use independant calls in order to guarantee
3083 	 *       we don't miss information in a sparsly populated front-end
3084 	 *       tree.
3085 	 *
3086 	 * \note xs_scanf() does not update variables for unmatched
3087 	 *       fields.
3088 	 */
3089 	ring_page_order = 0;
3090 	(void)xs_scanf(XST_NIL, otherend_path,
3091 		       "ring-page-order", NULL, "%u",
3092 		       &ring_page_order);
3093 	xbb->ring_config.ring_pages = 1 << ring_page_order;
3094 	(void)xs_scanf(XST_NIL, otherend_path,
3095 		       "num-ring-pages", NULL, "%u",
3096 		       &xbb->ring_config.ring_pages);
3097 	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3098 	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3099 
3100 	(void)xs_scanf(XST_NIL, otherend_path,
3101 		       "max-requests", NULL, "%u",
3102 		       &xbb->max_requests);
3103 
3104 	(void)xs_scanf(XST_NIL, otherend_path,
3105 		       "max-request-segments", NULL, "%u",
3106 		       &xbb->max_request_segments);
3107 
3108 	(void)xs_scanf(XST_NIL, otherend_path,
3109 		       "max-request-size", NULL, "%u",
3110 		       &xbb->max_request_size);
3111 
3112 	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3113 		xenbus_dev_fatal(xbb->dev, EINVAL,
3114 				 "Front-end specified ring-pages of %u "
3115 				 "exceeds backend limit of %zu.  "
3116 				 "Unable to connect.",
3117 				 xbb->ring_config.ring_pages,
3118 				 XBB_MAX_RING_PAGES);
3119 		return (EINVAL);
3120 	} else if (xbb->max_requests > XBB_MAX_REQUESTS) {
3121 		xenbus_dev_fatal(xbb->dev, EINVAL,
3122 				 "Front-end specified max_requests of %u "
3123 				 "exceeds backend limit of %u.  "
3124 				 "Unable to connect.",
3125 				 xbb->max_requests,
3126 				 XBB_MAX_REQUESTS);
3127 		return (EINVAL);
3128 	} else if (xbb->max_request_segments > XBB_MAX_SEGMENTS_PER_REQUEST) {
3129 		xenbus_dev_fatal(xbb->dev, EINVAL,
3130 				 "Front-end specified max_requests_segments "
3131 				 "of %u exceeds backend limit of %u.  "
3132 				 "Unable to connect.",
3133 				 xbb->max_request_segments,
3134 				 XBB_MAX_SEGMENTS_PER_REQUEST);
3135 		return (EINVAL);
3136 	} else if (xbb->max_request_size > XBB_MAX_REQUEST_SIZE) {
3137 		xenbus_dev_fatal(xbb->dev, EINVAL,
3138 				 "Front-end specified max_request_size "
3139 				 "of %u exceeds backend limit of %u.  "
3140 				 "Unable to connect.",
3141 				 xbb->max_request_size,
3142 				 XBB_MAX_REQUEST_SIZE);
3143 		return (EINVAL);
3144 	}
3145 
3146 	if (xbb->ring_config.ring_pages	== 1) {
3147 		error = xs_gather(XST_NIL, otherend_path,
3148 				  "ring-ref", "%" PRIu32,
3149 				  &xbb->ring_config.ring_ref[0],
3150 				  NULL);
3151 		if (error != 0) {
3152 			xenbus_dev_fatal(xbb->dev, error,
3153 					 "Unable to retrieve ring information "
3154 					 "from frontend %s.  Unable to "
3155 					 "connect.",
3156 					 xenbus_get_otherend_path(xbb->dev));
3157 			return (error);
3158 		}
3159 	} else {
3160 		/* Multi-page ring format. */
3161 		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3162 		     ring_idx++) {
3163 			char ring_ref_name[]= "ring_refXX";
3164 
3165 			snprintf(ring_ref_name, sizeof(ring_ref_name),
3166 				 "ring-ref%u", ring_idx);
3167 			error = xs_scanf(XST_NIL, otherend_path,
3168 					 ring_ref_name, NULL, "%" PRIu32,
3169 					 &xbb->ring_config.ring_ref[ring_idx]);
3170 			if (error != 0) {
3171 				xenbus_dev_fatal(xbb->dev, error,
3172 						 "Failed to retriev grant "
3173 						 "reference for page %u of "
3174 						 "shared ring.  Unable "
3175 						 "to connect.", ring_idx);
3176 				return (error);
3177 			}
3178 		}
3179 	}
3180 
3181 	error = xs_gather(XST_NIL, otherend_path,
3182 			  "protocol", "%63s", protocol_abi,
3183 			  NULL);
3184 	if (error != 0
3185 	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3186 		/*
3187 		 * Assume native if the frontend has not
3188 		 * published ABI data or it has published and
3189 		 * matches our own ABI.
3190 		 */
3191 		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3192 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3193 
3194 		xbb->abi = BLKIF_PROTOCOL_X86_32;
3195 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3196 
3197 		xbb->abi = BLKIF_PROTOCOL_X86_64;
3198 	} else {
3199 
3200 		xenbus_dev_fatal(xbb->dev, EINVAL,
3201 				 "Unknown protocol ABI (%s) published by "
3202 				 "frontend.  Unable to connect.", protocol_abi);
3203 		return (EINVAL);
3204 	}
3205 	return (0);
3206 }
3207 
3208 /**
3209  * Allocate per-request data structures given request size and number
3210  * information negotiated with the front-end.
3211  *
3212  * \param xbb  Per-instance xbb configuration structure.
3213  */
3214 static int
3215 xbb_alloc_requests(struct xbb_softc *xbb)
3216 {
3217 	struct xbb_xen_req *req;
3218 	struct xbb_xen_req *last_req;
3219 
3220 	/*
3221 	 * Allocate request book keeping datastructures.
3222 	 */
3223 	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3224 			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3225 	if (xbb->requests == NULL) {
3226 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3227 				  "Unable to allocate request structures");
3228 		return (ENOMEM);
3229 	}
3230 
3231 	req      = xbb->requests;
3232 	last_req = &xbb->requests[xbb->max_requests - 1];
3233 	STAILQ_INIT(&xbb->request_free_stailq);
3234 	while (req <= last_req) {
3235 		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3236 		req++;
3237 	}
3238 	return (0);
3239 }
3240 
3241 static int
3242 xbb_alloc_request_lists(struct xbb_softc *xbb)
3243 {
3244 	struct xbb_xen_reqlist *reqlist;
3245 	int			i;
3246 
3247 	/*
3248 	 * If no requests can be merged, we need 1 request list per
3249 	 * in flight request.
3250 	 */
3251 	xbb->request_lists = malloc(xbb->max_requests *
3252 		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3253 	if (xbb->request_lists == NULL) {
3254 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3255 				  "Unable to allocate request list structures");
3256 		return (ENOMEM);
3257 	}
3258 
3259 	STAILQ_INIT(&xbb->reqlist_free_stailq);
3260 	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3261 	for (i = 0; i < xbb->max_requests; i++) {
3262 		int seg;
3263 
3264 		reqlist      = &xbb->request_lists[i];
3265 
3266 		reqlist->xbb = xbb;
3267 
3268 #ifdef XBB_USE_BOUNCE_BUFFERS
3269 		reqlist->bounce = malloc(xbb->max_reqlist_size,
3270 					 M_XENBLOCKBACK, M_NOWAIT);
3271 		if (reqlist->bounce == NULL) {
3272 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3273 					 "Unable to allocate request "
3274 					 "bounce buffers");
3275 			return (ENOMEM);
3276 		}
3277 #endif /* XBB_USE_BOUNCE_BUFFERS */
3278 
3279 		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3280 					      sizeof(*reqlist->gnt_handles),
3281 					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3282 		if (reqlist->gnt_handles == NULL) {
3283 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3284 					  "Unable to allocate request "
3285 					  "grant references");
3286 			return (ENOMEM);
3287 		}
3288 
3289 		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3290 			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3291 
3292 		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3293 	}
3294 	return (0);
3295 }
3296 
3297 /**
3298  * Supply information about the physical device to the frontend
3299  * via XenBus.
3300  *
3301  * \param xbb  Per-instance xbb configuration structure.
3302  */
3303 static int
3304 xbb_publish_backend_info(struct xbb_softc *xbb)
3305 {
3306 	struct xs_transaction xst;
3307 	const char	     *our_path;
3308 	const char	     *leaf;
3309 	int		      error;
3310 
3311 	our_path = xenbus_get_node(xbb->dev);
3312 	while (1) {
3313 		error = xs_transaction_start(&xst);
3314 		if (error != 0) {
3315 			xenbus_dev_fatal(xbb->dev, error,
3316 					 "Error publishing backend info "
3317 					 "(start transaction)");
3318 			return (error);
3319 		}
3320 
3321 		leaf = "sectors";
3322 		error = xs_printf(xst, our_path, leaf,
3323 				  "%"PRIu64, xbb->media_num_sectors);
3324 		if (error != 0)
3325 			break;
3326 
3327 		/* XXX Support all VBD attributes here. */
3328 		leaf = "info";
3329 		error = xs_printf(xst, our_path, leaf, "%u",
3330 				  xbb->flags & XBBF_READ_ONLY
3331 				? VDISK_READONLY : 0);
3332 		if (error != 0)
3333 			break;
3334 
3335 		leaf = "sector-size";
3336 		error = xs_printf(xst, our_path, leaf, "%u",
3337 				  xbb->sector_size);
3338 		if (error != 0)
3339 			break;
3340 
3341 		error = xs_transaction_end(xst, 0);
3342 		if (error == 0) {
3343 			return (0);
3344 		} else if (error != EAGAIN) {
3345 			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3346 			return (error);
3347 		}
3348 	}
3349 
3350 	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3351 			our_path, leaf);
3352 	xs_transaction_end(xst, 1);
3353 	return (error);
3354 }
3355 
3356 /**
3357  * Connect to our blkfront peer now that it has completed publishing
3358  * its configuration into the XenStore.
3359  *
3360  * \param xbb  Per-instance xbb configuration structure.
3361  */
3362 static void
3363 xbb_connect(struct xbb_softc *xbb)
3364 {
3365 	int error;
3366 
3367 	if (xenbus_get_state(xbb->dev) == XenbusStateConnected)
3368 		return;
3369 
3370 	if (xbb_collect_frontend_info(xbb) != 0)
3371 		return;
3372 
3373 	xbb->flags &= ~XBBF_SHUTDOWN;
3374 
3375 	/*
3376 	 * We limit the maximum number of reqlist segments to the maximum
3377 	 * number of segments in the ring, or our absolute maximum,
3378 	 * whichever is smaller.
3379 	 */
3380 	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3381 		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3382 
3383 	/*
3384 	 * The maximum size is simply a function of the number of segments
3385 	 * we can handle.
3386 	 */
3387 	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3388 
3389 	/* Allocate resources whose size depends on front-end configuration. */
3390 	error = xbb_alloc_communication_mem(xbb);
3391 	if (error != 0) {
3392 		xenbus_dev_fatal(xbb->dev, error,
3393 				 "Unable to allocate communication memory");
3394 		return;
3395 	}
3396 
3397 	error = xbb_alloc_requests(xbb);
3398 	if (error != 0) {
3399 		/* Specific errors are reported by xbb_alloc_requests(). */
3400 		return;
3401 	}
3402 
3403 	error = xbb_alloc_request_lists(xbb);
3404 	if (error != 0) {
3405 		/* Specific errors are reported by xbb_alloc_request_lists(). */
3406 		return;
3407 	}
3408 
3409 	/*
3410 	 * Connect communication channel.
3411 	 */
3412 	error = xbb_connect_ring(xbb);
3413 	if (error != 0) {
3414 		/* Specific errors are reported by xbb_connect_ring(). */
3415 		return;
3416 	}
3417 
3418 	if (xbb_publish_backend_info(xbb) != 0) {
3419 		/*
3420 		 * If we can't publish our data, we cannot participate
3421 		 * in this connection, and waiting for a front-end state
3422 		 * change will not help the situation.
3423 		 */
3424 		(void)xbb_disconnect(xbb);
3425 		return;
3426 	}
3427 
3428 	/* Ready for I/O. */
3429 	xenbus_set_state(xbb->dev, XenbusStateConnected);
3430 }
3431 
3432 /*-------------------------- Device Teardown Support -------------------------*/
3433 /**
3434  * Perform device shutdown functions.
3435  *
3436  * \param xbb  Per-instance xbb configuration structure.
3437  *
3438  * Mark this instance as shutting down, wait for any active I/O on the
3439  * backend device/file to drain, disconnect from the front-end, and notify
3440  * any waiters (e.g. a thread invoking our detach method) that detach can
3441  * now proceed.
3442  */
3443 static int
3444 xbb_shutdown(struct xbb_softc *xbb)
3445 {
3446 	XenbusState frontState;
3447 	int	    error;
3448 
3449 	DPRINTF("\n");
3450 
3451 	/*
3452 	 * Due to the need to drop our mutex during some
3453 	 * xenbus operations, it is possible for two threads
3454 	 * to attempt to close out shutdown processing at
3455 	 * the same time.  Tell the caller that hits this
3456 	 * race to try back later.
3457 	 */
3458 	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3459 		return (EAGAIN);
3460 
3461 	xbb->flags |= XBBF_IN_SHUTDOWN;
3462 	mtx_unlock(&xbb->lock);
3463 
3464 	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3465 		xenbus_set_state(xbb->dev, XenbusStateClosing);
3466 
3467 	frontState = xenbus_get_otherend_state(xbb->dev);
3468 	mtx_lock(&xbb->lock);
3469 	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3470 
3471 	/* The front can submit I/O until entering the closed state. */
3472 	if (frontState < XenbusStateClosed)
3473 		return (EAGAIN);
3474 
3475 	DPRINTF("\n");
3476 
3477 	/* Indicate shutdown is in progress. */
3478 	xbb->flags |= XBBF_SHUTDOWN;
3479 
3480 	/* Disconnect from the front-end. */
3481 	error = xbb_disconnect(xbb);
3482 	if (error != 0) {
3483 		/*
3484 		 * Requests still outstanding.  We'll be called again
3485 		 * once they complete.
3486 		 */
3487 		KASSERT(error == EAGAIN,
3488 			("%s: Unexpected xbb_disconnect() failure %d",
3489 			 __func__, error));
3490 
3491 		return (error);
3492 	}
3493 
3494 	DPRINTF("\n");
3495 
3496 	/* Indicate to xbb_detach() that is it safe to proceed. */
3497 	wakeup(xbb);
3498 
3499 	return (0);
3500 }
3501 
3502 /**
3503  * Report an attach time error to the console and Xen, and cleanup
3504  * this instance by forcing immediate detach processing.
3505  *
3506  * \param xbb  Per-instance xbb configuration structure.
3507  * \param err  Errno describing the error.
3508  * \param fmt  Printf style format and arguments
3509  */
3510 static void
3511 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3512 {
3513 	va_list ap;
3514 	va_list ap_hotplug;
3515 
3516 	va_start(ap, fmt);
3517 	va_copy(ap_hotplug, ap);
3518 	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3519 		  "hotplug-error", fmt, ap_hotplug);
3520 	va_end(ap_hotplug);
3521 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3522 		  "hotplug-status", "error");
3523 
3524 	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3525 	va_end(ap);
3526 
3527 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3528 		  "online", "0");
3529 	xbb_detach(xbb->dev);
3530 }
3531 
3532 /*---------------------------- NewBus Entrypoints ----------------------------*/
3533 /**
3534  * Inspect a XenBus device and claim it if is of the appropriate type.
3535  *
3536  * \param dev  NewBus device object representing a candidate XenBus device.
3537  *
3538  * \return  0 for success, errno codes for failure.
3539  */
3540 static int
3541 xbb_probe(device_t dev)
3542 {
3543 
3544         if (!strcmp(xenbus_get_type(dev), "vbd")) {
3545                 device_set_desc(dev, "Backend Virtual Block Device");
3546                 device_quiet(dev);
3547                 return (0);
3548         }
3549 
3550         return (ENXIO);
3551 }
3552 
3553 /**
3554  * Setup sysctl variables to control various Block Back parameters.
3555  *
3556  * \param xbb  Xen Block Back softc.
3557  *
3558  */
3559 static void
3560 xbb_setup_sysctl(struct xbb_softc *xbb)
3561 {
3562 	struct sysctl_ctx_list *sysctl_ctx = NULL;
3563 	struct sysctl_oid      *sysctl_tree = NULL;
3564 
3565 	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3566 	if (sysctl_ctx == NULL)
3567 		return;
3568 
3569 	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3570 	if (sysctl_tree == NULL)
3571 		return;
3572 
3573 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3574 		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3575 		       "fake the flush command");
3576 
3577 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3578 		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3579 		       "send a real flush for N flush requests");
3580 
3581 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3582 		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3583 		       "Don't coalesce contiguous requests");
3584 
3585 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3586 			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3587 			 "how many I/O requests we have received");
3588 
3589 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3590 			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3591 			 "how many I/O requests have been completed");
3592 
3593 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3594 			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3595 			 "how many I/O dispatches were forced");
3596 
3597 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3598 			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3599 			 "how many I/O dispatches were normal");
3600 
3601 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3602 			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3603 			 "total number of I/O dispatches");
3604 
3605 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3606 			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3607 			 "how many times we have run out of KVA");
3608 
3609 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3610 			 "request_shortages", CTLFLAG_RW,
3611 			 &xbb->request_shortages,
3612 			 "how many times we have run out of requests");
3613 
3614 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3615 		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3616 		        "maximum outstanding requests (negotiated)");
3617 
3618 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3619 		        "max_request_segments", CTLFLAG_RD,
3620 		        &xbb->max_request_segments, 0,
3621 		        "maximum number of pages per requests (negotiated)");
3622 
3623 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3624 		        "max_request_size", CTLFLAG_RD,
3625 		        &xbb->max_request_size, 0,
3626 		        "maximum size in bytes of a request (negotiated)");
3627 
3628 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3629 		        "ring_pages", CTLFLAG_RD,
3630 		        &xbb->ring_config.ring_pages, 0,
3631 		        "communication channel pages (negotiated)");
3632 }
3633 
3634 /**
3635  * Attach to a XenBus device that has been claimed by our probe routine.
3636  *
3637  * \param dev  NewBus device object representing this Xen Block Back instance.
3638  *
3639  * \return  0 for success, errno codes for failure.
3640  */
3641 static int
3642 xbb_attach(device_t dev)
3643 {
3644 	struct xbb_softc	*xbb;
3645 	int			 error;
3646 	u_int			 max_ring_page_order;
3647 
3648 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3649 
3650 	/*
3651 	 * Basic initialization.
3652 	 * After this block it is safe to call xbb_detach()
3653 	 * to clean up any allocated data for this instance.
3654 	 */
3655 	xbb = device_get_softc(dev);
3656 	xbb->dev = dev;
3657 	xbb->otherend_id = xenbus_get_otherend_id(dev);
3658 	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3659 	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3660 
3661 	/*
3662 	 * Publish protocol capabilities for consumption by the
3663 	 * front-end.
3664 	 */
3665 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3666 			  "feature-barrier", "1");
3667 	if (error) {
3668 		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3669 				  xenbus_get_node(xbb->dev));
3670 		return (error);
3671 	}
3672 
3673 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3674 			  "feature-flush-cache", "1");
3675 	if (error) {
3676 		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3677 				  xenbus_get_node(xbb->dev));
3678 		return (error);
3679 	}
3680 
3681 	/*
3682 	 * Amazon EC2 client compatility.  They refer to max-ring-pages
3683 	 * instead of to max-ring-page-order.
3684 	 */
3685 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3686 			  "max-ring-pages", "%zu", XBB_MAX_RING_PAGES);
3687 	if (error) {
3688 		xbb_attach_failed(xbb, error, "writing %s/max-ring-pages",
3689 				  xenbus_get_node(xbb->dev));
3690 		return (error);
3691 	}
3692 
3693 	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3694 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3695 			  "max-ring-page-order", "%u", max_ring_page_order);
3696 	if (error) {
3697 		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3698 				  xenbus_get_node(xbb->dev));
3699 		return (error);
3700 	}
3701 
3702 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3703 			  "max-requests", "%u", XBB_MAX_REQUESTS);
3704 	if (error) {
3705 		xbb_attach_failed(xbb, error, "writing %s/max-requests",
3706 				  xenbus_get_node(xbb->dev));
3707 		return (error);
3708 	}
3709 
3710 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3711 			  "max-request-segments", "%u",
3712 			  XBB_MAX_SEGMENTS_PER_REQUEST);
3713 	if (error) {
3714 		xbb_attach_failed(xbb, error, "writing %s/max-request-segments",
3715 				  xenbus_get_node(xbb->dev));
3716 		return (error);
3717 	}
3718 
3719 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3720 			  "max-request-size", "%u",
3721 			  XBB_MAX_REQUEST_SIZE);
3722 	if (error) {
3723 		xbb_attach_failed(xbb, error, "writing %s/max-request-size",
3724 				  xenbus_get_node(xbb->dev));
3725 		return (error);
3726 	}
3727 
3728 	/* Collect physical device information. */
3729 	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3730 			  "device-type", NULL, &xbb->dev_type,
3731 			  NULL);
3732 	if (error != 0)
3733 		xbb->dev_type = NULL;
3734 
3735 	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3736                           "mode", NULL, &xbb->dev_mode,
3737 			  "params", NULL, &xbb->dev_name,
3738                           NULL);
3739 	if (error != 0) {
3740 		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3741 				  xenbus_get_node(dev));
3742                 return (ENXIO);
3743         }
3744 
3745 	/* Parse fopen style mode flags. */
3746 	if (strchr(xbb->dev_mode, 'w') == NULL)
3747 		xbb->flags |= XBBF_READ_ONLY;
3748 
3749 	/*
3750 	 * Verify the physical device is present and can support
3751 	 * the desired I/O mode.
3752 	 */
3753 	DROP_GIANT();
3754 	error = xbb_open_backend(xbb);
3755 	PICKUP_GIANT();
3756 	if (error != 0) {
3757 		xbb_attach_failed(xbb, error, "Unable to open %s",
3758 				  xbb->dev_name);
3759 		return (ENXIO);
3760 	}
3761 
3762 	/* Use devstat(9) for recording statistics. */
3763 	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3764 					   xbb->sector_size,
3765 					   DEVSTAT_ALL_SUPPORTED,
3766 					   DEVSTAT_TYPE_DIRECT
3767 					 | DEVSTAT_TYPE_IF_OTHER,
3768 					   DEVSTAT_PRIORITY_OTHER);
3769 
3770 	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3771 					      xbb->sector_size,
3772 					      DEVSTAT_ALL_SUPPORTED,
3773 					      DEVSTAT_TYPE_DIRECT
3774 					    | DEVSTAT_TYPE_IF_OTHER,
3775 					      DEVSTAT_PRIORITY_OTHER);
3776 	/*
3777 	 * Setup sysctl variables.
3778 	 */
3779 	xbb_setup_sysctl(xbb);
3780 
3781 	/*
3782 	 * Create a taskqueue for doing work that must occur from a
3783 	 * thread context.
3784 	 */
3785 	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3786 						  M_NOWAIT,
3787 						  taskqueue_thread_enqueue,
3788 						  /*contxt*/&xbb->io_taskqueue);
3789 	if (xbb->io_taskqueue == NULL) {
3790 		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3791 		return (ENOMEM);
3792 	}
3793 
3794 	taskqueue_start_threads(&xbb->io_taskqueue,
3795 				/*num threads*/1,
3796 				/*priority*/PWAIT,
3797 				/*thread name*/
3798 				"%s taskq", device_get_nameunit(dev));
3799 
3800 	/* Update hot-plug status to satisfy xend. */
3801 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3802 			  "hotplug-status", "connected");
3803 	if (error) {
3804 		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3805 				  xenbus_get_node(xbb->dev));
3806 		return (error);
3807 	}
3808 
3809 	/* Tell the front end that we are ready to connect. */
3810 	xenbus_set_state(dev, XenbusStateInitWait);
3811 
3812 	return (0);
3813 }
3814 
3815 /**
3816  * Detach from a block back device instance.
3817  *
3818  * \param dev  NewBus device object representing this Xen Block Back instance.
3819  *
3820  * \return  0 for success, errno codes for failure.
3821  *
3822  * \note A block back device may be detached at any time in its life-cycle,
3823  *       including part way through the attach process.  For this reason,
3824  *       initialization order and the intialization state checks in this
3825  *       routine must be carefully coupled so that attach time failures
3826  *       are gracefully handled.
3827  */
3828 static int
3829 xbb_detach(device_t dev)
3830 {
3831         struct xbb_softc *xbb;
3832 
3833 	DPRINTF("\n");
3834 
3835         xbb = device_get_softc(dev);
3836 	mtx_lock(&xbb->lock);
3837 	while (xbb_shutdown(xbb) == EAGAIN) {
3838 		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3839 		       "xbb_shutdown", 0);
3840 	}
3841 	mtx_unlock(&xbb->lock);
3842 
3843 	DPRINTF("\n");
3844 
3845 	if (xbb->io_taskqueue != NULL)
3846 		taskqueue_free(xbb->io_taskqueue);
3847 
3848 	if (xbb->xbb_stats != NULL)
3849 		devstat_remove_entry(xbb->xbb_stats);
3850 
3851 	if (xbb->xbb_stats_in != NULL)
3852 		devstat_remove_entry(xbb->xbb_stats_in);
3853 
3854 	xbb_close_backend(xbb);
3855 
3856 	if (xbb->dev_mode != NULL) {
3857 		free(xbb->dev_mode, M_XENBUS);
3858 		xbb->dev_mode = NULL;
3859 	}
3860 
3861 	if (xbb->dev_type != NULL) {
3862 		free(xbb->dev_type, M_XENBUS);
3863 		xbb->dev_type = NULL;
3864 	}
3865 
3866 	if (xbb->dev_name != NULL) {
3867 		free(xbb->dev_name, M_XENBUS);
3868 		xbb->dev_name = NULL;
3869 	}
3870 
3871 	mtx_destroy(&xbb->lock);
3872         return (0);
3873 }
3874 
3875 /**
3876  * Prepare this block back device for suspension of this VM.
3877  *
3878  * \param dev  NewBus device object representing this Xen Block Back instance.
3879  *
3880  * \return  0 for success, errno codes for failure.
3881  */
3882 static int
3883 xbb_suspend(device_t dev)
3884 {
3885 #ifdef NOT_YET
3886         struct xbb_softc *sc = device_get_softc(dev);
3887 
3888         /* Prevent new requests being issued until we fix things up. */
3889         mtx_lock(&sc->xb_io_lock);
3890         sc->connected = BLKIF_STATE_SUSPENDED;
3891         mtx_unlock(&sc->xb_io_lock);
3892 #endif
3893 
3894         return (0);
3895 }
3896 
3897 /**
3898  * Perform any processing required to recover from a suspended state.
3899  *
3900  * \param dev  NewBus device object representing this Xen Block Back instance.
3901  *
3902  * \return  0 for success, errno codes for failure.
3903  */
3904 static int
3905 xbb_resume(device_t dev)
3906 {
3907 	return (0);
3908 }
3909 
3910 /**
3911  * Handle state changes expressed via the XenStore by our front-end peer.
3912  *
3913  * \param dev             NewBus device object representing this Xen
3914  *                        Block Back instance.
3915  * \param frontend_state  The new state of the front-end.
3916  *
3917  * \return  0 for success, errno codes for failure.
3918  */
3919 static void
3920 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3921 {
3922 	struct xbb_softc *xbb = device_get_softc(dev);
3923 
3924 	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3925 	        xenbus_strstate(frontend_state),
3926 		xenbus_strstate(xenbus_get_state(xbb->dev)));
3927 
3928 	switch (frontend_state) {
3929 	case XenbusStateInitialising:
3930 		break;
3931 	case XenbusStateInitialised:
3932 	case XenbusStateConnected:
3933 		xbb_connect(xbb);
3934 		break;
3935 	case XenbusStateClosing:
3936 	case XenbusStateClosed:
3937 		mtx_lock(&xbb->lock);
3938 		xbb_shutdown(xbb);
3939 		mtx_unlock(&xbb->lock);
3940 		if (frontend_state == XenbusStateClosed)
3941 			xenbus_set_state(xbb->dev, XenbusStateClosed);
3942 		break;
3943 	default:
3944 		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3945 				 frontend_state);
3946 		break;
3947 	}
3948 }
3949 
3950 /*---------------------------- NewBus Registration ---------------------------*/
3951 static device_method_t xbb_methods[] = {
3952 	/* Device interface */
3953 	DEVMETHOD(device_probe,		xbb_probe),
3954 	DEVMETHOD(device_attach,	xbb_attach),
3955 	DEVMETHOD(device_detach,	xbb_detach),
3956 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3957 	DEVMETHOD(device_suspend,	xbb_suspend),
3958 	DEVMETHOD(device_resume,	xbb_resume),
3959 
3960 	/* Xenbus interface */
3961 	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3962 
3963 	{ 0, 0 }
3964 };
3965 
3966 static driver_t xbb_driver = {
3967         "xbbd",
3968         xbb_methods,
3969         sizeof(struct xbb_softc),
3970 };
3971 devclass_t xbb_devclass;
3972 
3973 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
3974