xref: /freebsd/sys/dev/xen/blkback/blkback.c (revision 4f52dfbb8d6c4d446500c5b097e3806ec219fbd4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009-2012 Spectra Logic Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    substantially similar to the "NO WARRANTY" disclaimer below
15  *    ("Disclaimer") and any redistribution must be conditioned upon
16  *    including a substantially similar Disclaimer requirement for further
17  *    binary redistribution.
18  *
19  * NO WARRANTY
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
28  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
29  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGES.
31  *
32  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
33  *          Ken Merry           (Spectra Logic Corporation)
34  */
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 /**
39  * \file blkback.c
40  *
41  * \brief Device driver supporting the vending of block storage from
42  *        a FreeBSD domain to other domains.
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 
50 #include <sys/bio.h>
51 #include <sys/bus.h>
52 #include <sys/conf.h>
53 #include <sys/devicestat.h>
54 #include <sys/disk.h>
55 #include <sys/fcntl.h>
56 #include <sys/filedesc.h>
57 #include <sys/kdb.h>
58 #include <sys/module.h>
59 #include <sys/namei.h>
60 #include <sys/proc.h>
61 #include <sys/rman.h>
62 #include <sys/taskqueue.h>
63 #include <sys/types.h>
64 #include <sys/vnode.h>
65 #include <sys/mount.h>
66 #include <sys/sysctl.h>
67 #include <sys/bitstring.h>
68 #include <sys/sdt.h>
69 
70 #include <geom/geom.h>
71 
72 #include <machine/_inttypes.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 
78 #include <xen/xen-os.h>
79 #include <xen/blkif.h>
80 #include <xen/gnttab.h>
81 #include <xen/xen_intr.h>
82 
83 #include <xen/interface/event_channel.h>
84 #include <xen/interface/grant_table.h>
85 
86 #include <xen/xenbus/xenbusvar.h>
87 
88 /*--------------------------- Compile-time Tunables --------------------------*/
89 /**
90  * The maximum number of shared memory ring pages we will allow in a
91  * negotiated block-front/back communication channel.  Allow enough
92  * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
93  */
94 #define	XBB_MAX_RING_PAGES		32
95 
96 /**
97  * The maximum number of outstanding request blocks (request headers plus
98  * additional segment blocks) we will allow in a negotiated block-front/back
99  * communication channel.
100  */
101 #define	XBB_MAX_REQUESTS 					\
102 	__CONST_RING_SIZE(blkif, PAGE_SIZE * XBB_MAX_RING_PAGES)
103 
104 /**
105  * \brief Define to force all I/O to be performed on memory owned by the
106  *        backend device, with a copy-in/out to the remote domain's memory.
107  *
108  * \note  This option is currently required when this driver's domain is
109  *        operating in HVM mode on a system using an IOMMU.
110  *
111  * This driver uses Xen's grant table API to gain access to the memory of
112  * the remote domains it serves.  When our domain is operating in PV mode,
113  * the grant table mechanism directly updates our domain's page table entries
114  * to point to the physical pages of the remote domain.  This scheme guarantees
115  * that blkback and the backing devices it uses can safely perform DMA
116  * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
117  * insure that our domain cannot DMA to pages owned by another domain.  As
118  * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
119  * table API.  For this reason, in HVM mode, we must bounce all requests into
120  * memory that is mapped into our domain at domain startup and thus has
121  * valid IOMMU mappings.
122  */
123 #define XBB_USE_BOUNCE_BUFFERS
124 
125 /**
126  * \brief Define to enable rudimentary request logging to the console.
127  */
128 #undef XBB_DEBUG
129 
130 /*---------------------------------- Macros ----------------------------------*/
131 /**
132  * Custom malloc type for all driver allocations.
133  */
134 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
135 
136 #ifdef XBB_DEBUG
137 #define DPRINTF(fmt, args...)					\
138     printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
139 #else
140 #define DPRINTF(fmt, args...) do {} while(0)
141 #endif
142 
143 /**
144  * The maximum mapped region size per request we will allow in a negotiated
145  * block-front/back communication channel.
146  */
147 #define	XBB_MAX_REQUEST_SIZE					\
148 	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
149 
150 /**
151  * The maximum number of segments (within a request header and accompanying
152  * segment blocks) per request we will allow in a negotiated block-front/back
153  * communication channel.
154  */
155 #define	XBB_MAX_SEGMENTS_PER_REQUEST				\
156 	(MIN(UIO_MAXIOV,					\
157 	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
158 		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
159 
160 /**
161  * The maximum number of ring pages that we can allow per request list.
162  * We limit this to the maximum number of segments per request, because
163  * that is already a reasonable number of segments to aggregate.  This
164  * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
165  * because that would leave situations where we can't dispatch even one
166  * large request.
167  */
168 #define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
169 
170 /*--------------------------- Forward Declarations ---------------------------*/
171 struct xbb_softc;
172 struct xbb_xen_req;
173 
174 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
175 			      ...) __attribute__((format(printf, 3, 4)));
176 static int  xbb_shutdown(struct xbb_softc *xbb);
177 
178 /*------------------------------ Data Structures -----------------------------*/
179 
180 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
181 
182 typedef enum {
183 	XBB_REQLIST_NONE	= 0x00,
184 	XBB_REQLIST_MAPPED	= 0x01
185 } xbb_reqlist_flags;
186 
187 struct xbb_xen_reqlist {
188 	/**
189 	 * Back reference to the parent block back instance for this
190 	 * request.  Used during bio_done handling.
191 	 */
192 	struct xbb_softc        *xbb;
193 
194 	/**
195 	 * BLKIF_OP code for this request.
196 	 */
197 	int			 operation;
198 
199 	/**
200 	 * Set to BLKIF_RSP_* to indicate request status.
201 	 *
202 	 * This field allows an error status to be recorded even if the
203 	 * delivery of this status must be deferred.  Deferred reporting
204 	 * is necessary, for example, when an error is detected during
205 	 * completion processing of one bio when other bios for this
206 	 * request are still outstanding.
207 	 */
208 	int			 status;
209 
210 	/**
211 	 * Number of 512 byte sectors not transferred.
212 	 */
213 	int			 residual_512b_sectors;
214 
215 	/**
216 	 * Starting sector number of the first request in the list.
217 	 */
218 	off_t			 starting_sector_number;
219 
220 	/**
221 	 * If we're going to coalesce, the next contiguous sector would be
222 	 * this one.
223 	 */
224 	off_t			 next_contig_sector;
225 
226 	/**
227 	 * Number of child requests in the list.
228 	 */
229 	int			 num_children;
230 
231 	/**
232 	 * Number of I/O requests still pending on the backend.
233 	 */
234 	int			 pendcnt;
235 
236 	/**
237 	 * Total number of segments for requests in the list.
238 	 */
239 	int			 nr_segments;
240 
241 	/**
242 	 * Flags for this particular request list.
243 	 */
244 	xbb_reqlist_flags	 flags;
245 
246 	/**
247 	 * Kernel virtual address space reserved for this request
248 	 * list structure and used to map the remote domain's pages for
249 	 * this I/O, into our domain's address space.
250 	 */
251 	uint8_t			*kva;
252 
253 	/**
254 	 * Base, pseudo-physical address, corresponding to the start
255 	 * of this request's kva region.
256 	 */
257 	uint64_t	 	 gnt_base;
258 
259 
260 #ifdef XBB_USE_BOUNCE_BUFFERS
261 	/**
262 	 * Pre-allocated domain local memory used to proxy remote
263 	 * domain memory during I/O operations.
264 	 */
265 	uint8_t			*bounce;
266 #endif
267 
268 	/**
269 	 * Array of grant handles (one per page) used to map this request.
270 	 */
271 	grant_handle_t		*gnt_handles;
272 
273 	/**
274 	 * Device statistics request ordering type (ordered or simple).
275 	 */
276 	devstat_tag_type	 ds_tag_type;
277 
278 	/**
279 	 * Device statistics request type (read, write, no_data).
280 	 */
281 	devstat_trans_flags	 ds_trans_type;
282 
283 	/**
284 	 * The start time for this request.
285 	 */
286 	struct bintime		 ds_t0;
287 
288 	/**
289 	 * Linked list of contiguous requests with the same operation type.
290 	 */
291 	struct xbb_xen_req_list	 contig_req_list;
292 
293 	/**
294 	 * Linked list links used to aggregate idle requests in the
295 	 * request list free pool (xbb->reqlist_free_stailq) and pending
296 	 * requests waiting for execution (xbb->reqlist_pending_stailq).
297 	 */
298 	STAILQ_ENTRY(xbb_xen_reqlist) links;
299 };
300 
301 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
302 
303 /**
304  * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
305  */
306 struct xbb_xen_req {
307 	/**
308 	 * Linked list links used to aggregate requests into a reqlist
309 	 * and to store them in the request free pool.
310 	 */
311 	STAILQ_ENTRY(xbb_xen_req) links;
312 
313 	/**
314 	 * The remote domain's identifier for this I/O request.
315 	 */
316 	uint64_t		  id;
317 
318 	/**
319 	 * The number of pages currently mapped for this request.
320 	 */
321 	int			  nr_pages;
322 
323 	/**
324 	 * The number of 512 byte sectors comprising this requests.
325 	 */
326 	int			  nr_512b_sectors;
327 
328 	/**
329 	 * BLKIF_OP code for this request.
330 	 */
331 	int			  operation;
332 
333 	/**
334 	 * Storage used for non-native ring requests.
335 	 */
336 	blkif_request_t		 ring_req_storage;
337 
338 	/**
339 	 * Pointer to the Xen request in the ring.
340 	 */
341 	blkif_request_t		*ring_req;
342 
343 	/**
344 	 * Consumer index for this request.
345 	 */
346 	RING_IDX		 req_ring_idx;
347 
348 	/**
349 	 * The start time for this request.
350 	 */
351 	struct bintime		 ds_t0;
352 
353 	/**
354 	 * Pointer back to our parent request list.
355 	 */
356 	struct xbb_xen_reqlist  *reqlist;
357 };
358 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
359 
360 /**
361  * \brief Configuration data for the shared memory request ring
362  *        used to communicate with the front-end client of this
363  *        this driver.
364  */
365 struct xbb_ring_config {
366 	/** KVA address where ring memory is mapped. */
367 	vm_offset_t	va;
368 
369 	/** The pseudo-physical address where ring memory is mapped.*/
370 	uint64_t	gnt_addr;
371 
372 	/**
373 	 * Grant table handles, one per-ring page, returned by the
374 	 * hyperpervisor upon mapping of the ring and required to
375 	 * unmap it when a connection is torn down.
376 	 */
377 	grant_handle_t	handle[XBB_MAX_RING_PAGES];
378 
379 	/**
380 	 * The device bus address returned by the hypervisor when
381 	 * mapping the ring and required to unmap it when a connection
382 	 * is torn down.
383 	 */
384 	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
385 
386 	/** The number of ring pages mapped for the current connection. */
387 	u_int		ring_pages;
388 
389 	/**
390 	 * The grant references, one per-ring page, supplied by the
391 	 * front-end, allowing us to reference the ring pages in the
392 	 * front-end's domain and to map these pages into our own domain.
393 	 */
394 	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
395 
396 	/** The interrupt driven even channel used to signal ring events. */
397 	evtchn_port_t   evtchn;
398 };
399 
400 /**
401  * Per-instance connection state flags.
402  */
403 typedef enum
404 {
405 	/**
406 	 * The front-end requested a read-only mount of the
407 	 * back-end device/file.
408 	 */
409 	XBBF_READ_ONLY         = 0x01,
410 
411 	/** Communication with the front-end has been established. */
412 	XBBF_RING_CONNECTED    = 0x02,
413 
414 	/**
415 	 * Front-end requests exist in the ring and are waiting for
416 	 * xbb_xen_req objects to free up.
417 	 */
418 	XBBF_RESOURCE_SHORTAGE = 0x04,
419 
420 	/** Connection teardown in progress. */
421 	XBBF_SHUTDOWN          = 0x08,
422 
423 	/** A thread is already performing shutdown processing. */
424 	XBBF_IN_SHUTDOWN       = 0x10
425 } xbb_flag_t;
426 
427 /** Backend device type.  */
428 typedef enum {
429 	/** Backend type unknown. */
430 	XBB_TYPE_NONE		= 0x00,
431 
432 	/**
433 	 * Backend type disk (access via cdev switch
434 	 * strategy routine).
435 	 */
436 	XBB_TYPE_DISK		= 0x01,
437 
438 	/** Backend type file (access vnode operations.). */
439 	XBB_TYPE_FILE		= 0x02
440 } xbb_type;
441 
442 /**
443  * \brief Structure used to memoize information about a per-request
444  *        scatter-gather list.
445  *
446  * The chief benefit of using this data structure is it avoids having
447  * to reparse the possibly discontiguous S/G list in the original
448  * request.  Due to the way that the mapping of the memory backing an
449  * I/O transaction is handled by Xen, a second pass is unavoidable.
450  * At least this way the second walk is a simple array traversal.
451  *
452  * \note A single Scatter/Gather element in the block interface covers
453  *       at most 1 machine page.  In this context a sector (blkif
454  *       nomenclature, not what I'd choose) is a 512b aligned unit
455  *       of mapping within the machine page referenced by an S/G
456  *       element.
457  */
458 struct xbb_sg {
459 	/** The number of 512b data chunks mapped in this S/G element. */
460 	int16_t nsect;
461 
462 	/**
463 	 * The index (0 based) of the first 512b data chunk mapped
464 	 * in this S/G element.
465 	 */
466 	uint8_t first_sect;
467 
468 	/**
469 	 * The index (0 based) of the last 512b data chunk mapped
470 	 * in this S/G element.
471 	 */
472 	uint8_t last_sect;
473 };
474 
475 /**
476  * Character device backend specific configuration data.
477  */
478 struct xbb_dev_data {
479 	/** Cdev used for device backend access.  */
480 	struct cdev   *cdev;
481 
482 	/** Cdev switch used for device backend access.  */
483 	struct cdevsw *csw;
484 
485 	/** Used to hold a reference on opened cdev backend devices. */
486 	int	       dev_ref;
487 };
488 
489 /**
490  * File backend specific configuration data.
491  */
492 struct xbb_file_data {
493 	/** Credentials to use for vnode backed (file based) I/O. */
494 	struct ucred   *cred;
495 
496 	/**
497 	 * \brief Array of io vectors used to process file based I/O.
498 	 *
499 	 * Only a single file based request is outstanding per-xbb instance,
500 	 * so we only need one of these.
501 	 */
502 	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
503 #ifdef XBB_USE_BOUNCE_BUFFERS
504 
505 	/**
506 	 * \brief Array of io vectors used to handle bouncing of file reads.
507 	 *
508 	 * Vnode operations are free to modify uio data during their
509 	 * exectuion.  In the case of a read with bounce buffering active,
510 	 * we need some of the data from the original uio in order to
511 	 * bounce-out the read data.  This array serves as the temporary
512 	 * storage for this saved data.
513 	 */
514 	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
515 
516 	/**
517 	 * \brief Array of memoized bounce buffer kva offsets used
518 	 *        in the file based backend.
519 	 *
520 	 * Due to the way that the mapping of the memory backing an
521 	 * I/O transaction is handled by Xen, a second pass through
522 	 * the request sg elements is unavoidable. We memoize the computed
523 	 * bounce address here to reduce the cost of the second walk.
524 	 */
525 	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
526 #endif /* XBB_USE_BOUNCE_BUFFERS */
527 };
528 
529 /**
530  * Collection of backend type specific data.
531  */
532 union xbb_backend_data {
533 	struct xbb_dev_data  dev;
534 	struct xbb_file_data file;
535 };
536 
537 /**
538  * Function signature of backend specific I/O handlers.
539  */
540 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
541 			      struct xbb_xen_reqlist *reqlist, int operation,
542 			      int flags);
543 
544 /**
545  * Per-instance configuration data.
546  */
547 struct xbb_softc {
548 
549 	/**
550 	 * Task-queue used to process I/O requests.
551 	 */
552 	struct taskqueue	 *io_taskqueue;
553 
554 	/**
555 	 * Single "run the request queue" task enqueued
556 	 * on io_taskqueue.
557 	 */
558 	struct task		  io_task;
559 
560 	/** Device type for this instance. */
561 	xbb_type		  device_type;
562 
563 	/** NewBus device corresponding to this instance. */
564 	device_t		  dev;
565 
566 	/** Backend specific dispatch routine for this instance. */
567 	xbb_dispatch_t		  dispatch_io;
568 
569 	/** The number of requests outstanding on the backend device/file. */
570 	int			  active_request_count;
571 
572 	/** Free pool of request tracking structures. */
573 	struct xbb_xen_req_list   request_free_stailq;
574 
575 	/** Array, sized at connection time, of request tracking structures. */
576 	struct xbb_xen_req	 *requests;
577 
578 	/** Free pool of request list structures. */
579 	struct xbb_xen_reqlist_list reqlist_free_stailq;
580 
581 	/** List of pending request lists awaiting execution. */
582 	struct xbb_xen_reqlist_list reqlist_pending_stailq;
583 
584 	/** Array, sized at connection time, of request list structures. */
585 	struct xbb_xen_reqlist	 *request_lists;
586 
587 	/**
588 	 * Global pool of kva used for mapping remote domain ring
589 	 * and I/O transaction data.
590 	 */
591 	vm_offset_t		  kva;
592 
593 	/** Pseudo-physical address corresponding to kva. */
594 	uint64_t		  gnt_base_addr;
595 
596 	/** The size of the global kva pool. */
597 	int			  kva_size;
598 
599 	/** The size of the KVA area used for request lists. */
600 	int			  reqlist_kva_size;
601 
602 	/** The number of pages of KVA used for request lists */
603 	int			  reqlist_kva_pages;
604 
605 	/** Bitmap of free KVA pages */
606 	bitstr_t		 *kva_free;
607 
608 	/**
609 	 * \brief Cached value of the front-end's domain id.
610 	 *
611 	 * This value is used at once for each mapped page in
612 	 * a transaction.  We cache it to avoid incuring the
613 	 * cost of an ivar access every time this is needed.
614 	 */
615 	domid_t			  otherend_id;
616 
617 	/**
618 	 * \brief The blkif protocol abi in effect.
619 	 *
620 	 * There are situations where the back and front ends can
621 	 * have a different, native abi (e.g. intel x86_64 and
622 	 * 32bit x86 domains on the same machine).  The back-end
623 	 * always accommodates the front-end's native abi.  That
624 	 * value is pulled from the XenStore and recorded here.
625 	 */
626 	int			  abi;
627 
628 	/**
629 	 * \brief The maximum number of requests and request lists allowed
630 	 *        to be in flight at a time.
631 	 *
632 	 * This value is negotiated via the XenStore.
633 	 */
634 	u_int			  max_requests;
635 
636 	/**
637 	 * \brief The maximum number of segments (1 page per segment)
638 	 *	  that can be mapped by a request.
639 	 *
640 	 * This value is negotiated via the XenStore.
641 	 */
642 	u_int			  max_request_segments;
643 
644 	/**
645 	 * \brief Maximum number of segments per request list.
646 	 *
647 	 * This value is derived from and will generally be larger than
648 	 * max_request_segments.
649 	 */
650 	u_int			  max_reqlist_segments;
651 
652 	/**
653 	 * The maximum size of any request to this back-end
654 	 * device.
655 	 *
656 	 * This value is negotiated via the XenStore.
657 	 */
658 	u_int			  max_request_size;
659 
660 	/**
661 	 * The maximum size of any request list.  This is derived directly
662 	 * from max_reqlist_segments.
663 	 */
664 	u_int			  max_reqlist_size;
665 
666 	/** Various configuration and state bit flags. */
667 	xbb_flag_t		  flags;
668 
669 	/** Ring mapping and interrupt configuration data. */
670 	struct xbb_ring_config	  ring_config;
671 
672 	/** Runtime, cross-abi safe, structures for ring access. */
673 	blkif_back_rings_t	  rings;
674 
675 	/** IRQ mapping for the communication ring event channel. */
676 	xen_intr_handle_t	  xen_intr_handle;
677 
678 	/**
679 	 * \brief Backend access mode flags (e.g. write, or read-only).
680 	 *
681 	 * This value is passed to us by the front-end via the XenStore.
682 	 */
683 	char			 *dev_mode;
684 
685 	/**
686 	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
687 	 *
688 	 * This value is passed to us by the front-end via the XenStore.
689 	 * Currently unused.
690 	 */
691 	char			 *dev_type;
692 
693 	/**
694 	 * \brief Backend device/file identifier.
695 	 *
696 	 * This value is passed to us by the front-end via the XenStore.
697 	 * We expect this to be a POSIX path indicating the file or
698 	 * device to open.
699 	 */
700 	char			 *dev_name;
701 
702 	/**
703 	 * Vnode corresponding to the backend device node or file
704 	 * we are acessing.
705 	 */
706 	struct vnode		 *vn;
707 
708 	union xbb_backend_data	  backend;
709 
710 	/** The native sector size of the backend. */
711 	u_int			  sector_size;
712 
713 	/** log2 of sector_size.  */
714 	u_int			  sector_size_shift;
715 
716 	/** Size in bytes of the backend device or file.  */
717 	off_t			  media_size;
718 
719 	/**
720 	 * \brief media_size expressed in terms of the backend native
721 	 *	  sector size.
722 	 *
723 	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
724 	 */
725 	uint64_t		  media_num_sectors;
726 
727 	/**
728 	 * \brief Array of memoized scatter gather data computed during the
729 	 *	  conversion of blkif ring requests to internal xbb_xen_req
730 	 *	  structures.
731 	 *
732 	 * Ring processing is serialized so we only need one of these.
733 	 */
734 	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
735 
736 	/**
737 	 * Temporary grant table map used in xbb_dispatch_io().  When
738 	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
739 	 * stack could cause a stack overflow.
740 	 */
741 	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
742 
743 	/** Mutex protecting per-instance data. */
744 	struct mtx		  lock;
745 
746 	/**
747 	 * Resource representing allocated physical address space
748 	 * associated with our per-instance kva region.
749 	 */
750 	struct resource		 *pseudo_phys_res;
751 
752 	/** Resource id for allocated physical address space. */
753 	int			  pseudo_phys_res_id;
754 
755 	/**
756 	 * I/O statistics from BlockBack dispatch down.  These are
757 	 * coalesced requests, and we start them right before execution.
758 	 */
759 	struct devstat		 *xbb_stats;
760 
761 	/**
762 	 * I/O statistics coming into BlockBack.  These are the requests as
763 	 * we get them from BlockFront.  They are started as soon as we
764 	 * receive a request, and completed when the I/O is complete.
765 	 */
766 	struct devstat		 *xbb_stats_in;
767 
768 	/** Disable sending flush to the backend */
769 	int			  disable_flush;
770 
771 	/** Send a real flush for every N flush requests */
772 	int			  flush_interval;
773 
774 	/** Count of flush requests in the interval */
775 	int			  flush_count;
776 
777 	/** Don't coalesce requests if this is set */
778 	int			  no_coalesce_reqs;
779 
780 	/** Number of requests we have received */
781 	uint64_t		  reqs_received;
782 
783 	/** Number of requests we have completed*/
784 	uint64_t		  reqs_completed;
785 
786 	/** Number of requests we queued but not pushed*/
787 	uint64_t		  reqs_queued_for_completion;
788 
789 	/** Number of requests we completed with an error status*/
790 	uint64_t		  reqs_completed_with_error;
791 
792 	/** How many forced dispatches (i.e. without coalescing) have happened */
793 	uint64_t		  forced_dispatch;
794 
795 	/** How many normal dispatches have happened */
796 	uint64_t		  normal_dispatch;
797 
798 	/** How many total dispatches have happened */
799 	uint64_t		  total_dispatch;
800 
801 	/** How many times we have run out of KVA */
802 	uint64_t		  kva_shortages;
803 
804 	/** How many times we have run out of request structures */
805 	uint64_t		  request_shortages;
806 
807 	/** Watch to wait for hotplug script execution */
808 	struct xs_watch		  hotplug_watch;
809 };
810 
811 /*---------------------------- Request Processing ----------------------------*/
812 /**
813  * Allocate an internal transaction tracking structure from the free pool.
814  *
815  * \param xbb  Per-instance xbb configuration structure.
816  *
817  * \return  On success, a pointer to the allocated xbb_xen_req structure.
818  *          Otherwise NULL.
819  */
820 static inline struct xbb_xen_req *
821 xbb_get_req(struct xbb_softc *xbb)
822 {
823 	struct xbb_xen_req *req;
824 
825 	req = NULL;
826 
827 	mtx_assert(&xbb->lock, MA_OWNED);
828 
829 	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
830 		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
831 		xbb->active_request_count++;
832 	}
833 
834 	return (req);
835 }
836 
837 /**
838  * Return an allocated transaction tracking structure to the free pool.
839  *
840  * \param xbb  Per-instance xbb configuration structure.
841  * \param req  The request structure to free.
842  */
843 static inline void
844 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
845 {
846 	mtx_assert(&xbb->lock, MA_OWNED);
847 
848 	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
849 	xbb->active_request_count--;
850 
851 	KASSERT(xbb->active_request_count >= 0,
852 		("xbb_release_req: negative active count"));
853 }
854 
855 /**
856  * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
857  *
858  * \param xbb	    Per-instance xbb configuration structure.
859  * \param req_list  The list of requests to free.
860  * \param nreqs	    The number of items in the list.
861  */
862 static inline void
863 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
864 		 int nreqs)
865 {
866 	mtx_assert(&xbb->lock, MA_OWNED);
867 
868 	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
869 	xbb->active_request_count -= nreqs;
870 
871 	KASSERT(xbb->active_request_count >= 0,
872 		("xbb_release_reqs: negative active count"));
873 }
874 
875 /**
876  * Given a page index and 512b sector offset within that page,
877  * calculate an offset into a request's kva region.
878  *
879  * \param reqlist The request structure whose kva region will be accessed.
880  * \param pagenr  The page index used to compute the kva offset.
881  * \param sector  The 512b sector index used to compute the page relative
882  *                kva offset.
883  *
884  * \return  The computed global KVA offset.
885  */
886 static inline uint8_t *
887 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
888 {
889 	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
890 }
891 
892 #ifdef XBB_USE_BOUNCE_BUFFERS
893 /**
894  * Given a page index and 512b sector offset within that page,
895  * calculate an offset into a request's local bounce memory region.
896  *
897  * \param reqlist The request structure whose bounce region will be accessed.
898  * \param pagenr  The page index used to compute the bounce offset.
899  * \param sector  The 512b sector index used to compute the page relative
900  *                bounce offset.
901  *
902  * \return  The computed global bounce buffer address.
903  */
904 static inline uint8_t *
905 xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
906 {
907 	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
908 }
909 #endif
910 
911 /**
912  * Given a page number and 512b sector offset within that page,
913  * calculate an offset into the request's memory region that the
914  * underlying backend device/file should use for I/O.
915  *
916  * \param reqlist The request structure whose I/O region will be accessed.
917  * \param pagenr  The page index used to compute the I/O offset.
918  * \param sector  The 512b sector index used to compute the page relative
919  *                I/O offset.
920  *
921  * \return  The computed global I/O address.
922  *
923  * Depending on configuration, this will either be a local bounce buffer
924  * or a pointer to the memory mapped in from the front-end domain for
925  * this request.
926  */
927 static inline uint8_t *
928 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
929 {
930 #ifdef XBB_USE_BOUNCE_BUFFERS
931 	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
932 #else
933 	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
934 #endif
935 }
936 
937 /**
938  * Given a page index and 512b sector offset within that page, calculate
939  * an offset into the local pseudo-physical address space used to map a
940  * front-end's request data into a request.
941  *
942  * \param reqlist The request list structure whose pseudo-physical region
943  *                will be accessed.
944  * \param pagenr  The page index used to compute the pseudo-physical offset.
945  * \param sector  The 512b sector index used to compute the page relative
946  *                pseudo-physical offset.
947  *
948  * \return  The computed global pseudo-phsyical address.
949  *
950  * Depending on configuration, this will either be a local bounce buffer
951  * or a pointer to the memory mapped in from the front-end domain for
952  * this request.
953  */
954 static inline uintptr_t
955 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
956 {
957 	struct xbb_softc *xbb;
958 
959 	xbb = reqlist->xbb;
960 
961 	return ((uintptr_t)(xbb->gnt_base_addr +
962 		(uintptr_t)(reqlist->kva - xbb->kva) +
963 		(PAGE_SIZE * pagenr) + (sector << 9)));
964 }
965 
966 /**
967  * Get Kernel Virtual Address space for mapping requests.
968  *
969  * \param xbb         Per-instance xbb configuration structure.
970  * \param nr_pages    Number of pages needed.
971  * \param check_only  If set, check for free KVA but don't allocate it.
972  * \param have_lock   If set, xbb lock is already held.
973  *
974  * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
975  *
976  * Note:  This should be unnecessary once we have either chaining or
977  * scatter/gather support for struct bio.  At that point we'll be able to
978  * put multiple addresses and lengths in one bio/bio chain and won't need
979  * to map everything into one virtual segment.
980  */
981 static uint8_t *
982 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
983 {
984 	int first_clear;
985 	int num_clear;
986 	uint8_t *free_kva;
987 	int      i;
988 
989 	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
990 
991 	first_clear = 0;
992 	free_kva = NULL;
993 
994 	mtx_lock(&xbb->lock);
995 
996 	/*
997 	 * Look for the first available page.  If there are none, we're done.
998 	 */
999 	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
1000 
1001 	if (first_clear == -1)
1002 		goto bailout;
1003 
1004 	/*
1005 	 * Starting at the first available page, look for consecutive free
1006 	 * pages that will satisfy the user's request.
1007 	 */
1008 	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1009 		/*
1010 		 * If this is true, the page is used, so we have to reset
1011 		 * the number of clear pages and the first clear page
1012 		 * (since it pointed to a region with an insufficient number
1013 		 * of clear pages).
1014 		 */
1015 		if (bit_test(xbb->kva_free, i)) {
1016 			num_clear = 0;
1017 			first_clear = -1;
1018 			continue;
1019 		}
1020 
1021 		if (first_clear == -1)
1022 			first_clear = i;
1023 
1024 		/*
1025 		 * If this is true, we've found a large enough free region
1026 		 * to satisfy the request.
1027 		 */
1028 		if (++num_clear == nr_pages) {
1029 
1030 			bit_nset(xbb->kva_free, first_clear,
1031 				 first_clear + nr_pages - 1);
1032 
1033 			free_kva = xbb->kva +
1034 				(uint8_t *)((intptr_t)first_clear * PAGE_SIZE);
1035 
1036 			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1037 				free_kva + (nr_pages * PAGE_SIZE) <=
1038 				(uint8_t *)xbb->ring_config.va,
1039 				("Free KVA %p len %d out of range, "
1040 				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1041 				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1042 				 (uintmax_t)xbb->ring_config.va));
1043 			break;
1044 		}
1045 	}
1046 
1047 bailout:
1048 
1049 	if (free_kva == NULL) {
1050 		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1051 		xbb->kva_shortages++;
1052 	}
1053 
1054 	mtx_unlock(&xbb->lock);
1055 
1056 	return (free_kva);
1057 }
1058 
1059 /**
1060  * Free allocated KVA.
1061  *
1062  * \param xbb	    Per-instance xbb configuration structure.
1063  * \param kva_ptr   Pointer to allocated KVA region.
1064  * \param nr_pages  Number of pages in the KVA region.
1065  */
1066 static void
1067 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1068 {
1069 	intptr_t start_page;
1070 
1071 	mtx_assert(&xbb->lock, MA_OWNED);
1072 
1073 	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1074 	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1075 
1076 }
1077 
1078 /**
1079  * Unmap the front-end pages associated with this I/O request.
1080  *
1081  * \param req  The request structure to unmap.
1082  */
1083 static void
1084 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1085 {
1086 	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1087 	u_int			      i;
1088 	u_int			      invcount;
1089 	int			      error;
1090 
1091 	invcount = 0;
1092 	for (i = 0; i < reqlist->nr_segments; i++) {
1093 
1094 		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1095 			continue;
1096 
1097 		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1098 		unmap[invcount].dev_bus_addr = 0;
1099 		unmap[invcount].handle       = reqlist->gnt_handles[i];
1100 		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1101 		invcount++;
1102 	}
1103 
1104 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1105 					  unmap, invcount);
1106 	KASSERT(error == 0, ("Grant table operation failed"));
1107 }
1108 
1109 /**
1110  * Allocate an internal transaction tracking structure from the free pool.
1111  *
1112  * \param xbb  Per-instance xbb configuration structure.
1113  *
1114  * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1115  *          Otherwise NULL.
1116  */
1117 static inline struct xbb_xen_reqlist *
1118 xbb_get_reqlist(struct xbb_softc *xbb)
1119 {
1120 	struct xbb_xen_reqlist *reqlist;
1121 
1122 	reqlist = NULL;
1123 
1124 	mtx_assert(&xbb->lock, MA_OWNED);
1125 
1126 	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1127 
1128 		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1129 		reqlist->flags = XBB_REQLIST_NONE;
1130 		reqlist->kva = NULL;
1131 		reqlist->status = BLKIF_RSP_OKAY;
1132 		reqlist->residual_512b_sectors = 0;
1133 		reqlist->num_children = 0;
1134 		reqlist->nr_segments = 0;
1135 		STAILQ_INIT(&reqlist->contig_req_list);
1136 	}
1137 
1138 	return (reqlist);
1139 }
1140 
1141 /**
1142  * Return an allocated transaction tracking structure to the free pool.
1143  *
1144  * \param xbb        Per-instance xbb configuration structure.
1145  * \param req        The request list structure to free.
1146  * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1147  *                   during a resource shortage condition.
1148  */
1149 static inline void
1150 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1151 		    int wakeup)
1152 {
1153 
1154 	mtx_assert(&xbb->lock, MA_OWNED);
1155 
1156 	if (wakeup) {
1157 		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1158 		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1159 	}
1160 
1161 	if (reqlist->kva != NULL)
1162 		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1163 
1164 	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1165 
1166 	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1167 
1168 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1169 		/*
1170 		 * Shutdown is in progress.  See if we can
1171 		 * progress further now that one more request
1172 		 * has completed and been returned to the
1173 		 * free pool.
1174 		 */
1175 		xbb_shutdown(xbb);
1176 	}
1177 
1178 	if (wakeup != 0)
1179 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1180 }
1181 
1182 /**
1183  * Request resources and do basic request setup.
1184  *
1185  * \param xbb          Per-instance xbb configuration structure.
1186  * \param reqlist      Pointer to reqlist pointer.
1187  * \param ring_req     Pointer to a block ring request.
1188  * \param ring_index   The ring index of this request.
1189  *
1190  * \return  0 for success, non-zero for failure.
1191  */
1192 static int
1193 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1194 		  blkif_request_t *ring_req, RING_IDX ring_idx)
1195 {
1196 	struct xbb_xen_reqlist *nreqlist;
1197 	struct xbb_xen_req     *nreq;
1198 
1199 	nreqlist = NULL;
1200 	nreq     = NULL;
1201 
1202 	mtx_lock(&xbb->lock);
1203 
1204 	/*
1205 	 * We don't allow new resources to be allocated if we're in the
1206 	 * process of shutting down.
1207 	 */
1208 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1209 		mtx_unlock(&xbb->lock);
1210 		return (1);
1211 	}
1212 
1213 	/*
1214 	 * Allocate a reqlist if the caller doesn't have one already.
1215 	 */
1216 	if (*reqlist == NULL) {
1217 		nreqlist = xbb_get_reqlist(xbb);
1218 		if (nreqlist == NULL)
1219 			goto bailout_error;
1220 	}
1221 
1222 	/* We always allocate a request. */
1223 	nreq = xbb_get_req(xbb);
1224 	if (nreq == NULL)
1225 		goto bailout_error;
1226 
1227 	mtx_unlock(&xbb->lock);
1228 
1229 	if (*reqlist == NULL) {
1230 		*reqlist = nreqlist;
1231 		nreqlist->operation = ring_req->operation;
1232 		nreqlist->starting_sector_number = ring_req->sector_number;
1233 		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1234 				   links);
1235 	}
1236 
1237 	nreq->reqlist = *reqlist;
1238 	nreq->req_ring_idx = ring_idx;
1239 	nreq->id = ring_req->id;
1240 	nreq->operation = ring_req->operation;
1241 
1242 	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1243 		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1244 		nreq->ring_req = &nreq->ring_req_storage;
1245 	} else {
1246 		nreq->ring_req = ring_req;
1247 	}
1248 
1249 	binuptime(&nreq->ds_t0);
1250 	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1251 	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1252 	(*reqlist)->num_children++;
1253 	(*reqlist)->nr_segments += ring_req->nr_segments;
1254 
1255 	return (0);
1256 
1257 bailout_error:
1258 
1259 	/*
1260 	 * We're out of resources, so set the shortage flag.  The next time
1261 	 * a request is released, we'll try waking up the work thread to
1262 	 * see if we can allocate more resources.
1263 	 */
1264 	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1265 	xbb->request_shortages++;
1266 
1267 	if (nreq != NULL)
1268 		xbb_release_req(xbb, nreq);
1269 
1270 	if (nreqlist != NULL)
1271 		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1272 
1273 	mtx_unlock(&xbb->lock);
1274 
1275 	return (1);
1276 }
1277 
1278 /**
1279  * Create and queue a response to a blkif request.
1280  *
1281  * \param xbb     Per-instance xbb configuration structure.
1282  * \param req     The request structure to which to respond.
1283  * \param status  The status code to report.  See BLKIF_RSP_*
1284  *                in sys/xen/interface/io/blkif.h.
1285  */
1286 static void
1287 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1288 {
1289 	blkif_response_t *resp;
1290 
1291 	/*
1292 	 * The mutex is required here, and should be held across this call
1293 	 * until after the subsequent call to xbb_push_responses().  This
1294 	 * is to guarantee that another context won't queue responses and
1295 	 * push them while we're active.
1296 	 *
1297 	 * That could lead to the other end being notified of responses
1298 	 * before the resources have been freed on this end.  The other end
1299 	 * would then be able to queue additional I/O, and we may run out
1300  	 * of resources because we haven't freed them all yet.
1301 	 */
1302 	mtx_assert(&xbb->lock, MA_OWNED);
1303 
1304 	/*
1305 	 * Place on the response ring for the relevant domain.
1306 	 * For now, only the spacing between entries is different
1307 	 * in the different ABIs, not the response entry layout.
1308 	 */
1309 	switch (xbb->abi) {
1310 	case BLKIF_PROTOCOL_NATIVE:
1311 		resp = RING_GET_RESPONSE(&xbb->rings.native,
1312 					 xbb->rings.native.rsp_prod_pvt);
1313 		break;
1314 	case BLKIF_PROTOCOL_X86_32:
1315 		resp = (blkif_response_t *)
1316 		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1317 				      xbb->rings.x86_32.rsp_prod_pvt);
1318 		break;
1319 	case BLKIF_PROTOCOL_X86_64:
1320 		resp = (blkif_response_t *)
1321 		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1322 				      xbb->rings.x86_64.rsp_prod_pvt);
1323 		break;
1324 	default:
1325 		panic("Unexpected blkif protocol ABI.");
1326 	}
1327 
1328 	resp->id        = req->id;
1329 	resp->operation = req->operation;
1330 	resp->status    = status;
1331 
1332 	if (status != BLKIF_RSP_OKAY)
1333 		xbb->reqs_completed_with_error++;
1334 
1335 	xbb->rings.common.rsp_prod_pvt++;
1336 
1337 	xbb->reqs_queued_for_completion++;
1338 
1339 }
1340 
1341 /**
1342  * Send queued responses to blkif requests.
1343  *
1344  * \param xbb            Per-instance xbb configuration structure.
1345  * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1346  *			 should be run, 0 if it does not need to be run.
1347  * \param notify	 Flag that is set to 1 if the other end should be
1348  * 			 notified via irq, 0 if the other end should not be
1349  *			 notified.
1350  */
1351 static void
1352 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1353 {
1354 	int more_to_do;
1355 
1356 	/*
1357 	 * The mutex is required here.
1358 	 */
1359 	mtx_assert(&xbb->lock, MA_OWNED);
1360 
1361 	more_to_do = 0;
1362 
1363 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1364 
1365 	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1366 
1367 		/*
1368 		 * Tail check for pending requests. Allows frontend to avoid
1369 		 * notifications if requests are already in flight (lower
1370 		 * overheads and promotes batching).
1371 		 */
1372 		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1373 	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1374 
1375 		more_to_do = 1;
1376 	}
1377 
1378 	xbb->reqs_completed += xbb->reqs_queued_for_completion;
1379 	xbb->reqs_queued_for_completion = 0;
1380 
1381 	*run_taskqueue = more_to_do;
1382 }
1383 
1384 /**
1385  * Complete a request list.
1386  *
1387  * \param xbb        Per-instance xbb configuration structure.
1388  * \param reqlist    Allocated internal request list structure.
1389  */
1390 static void
1391 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1392 {
1393 	struct xbb_xen_req *nreq;
1394 	off_t		    sectors_sent;
1395 	int		    notify, run_taskqueue;
1396 
1397 	sectors_sent = 0;
1398 
1399 	if (reqlist->flags & XBB_REQLIST_MAPPED)
1400 		xbb_unmap_reqlist(reqlist);
1401 
1402 	mtx_lock(&xbb->lock);
1403 
1404 	/*
1405 	 * All I/O is done, send the response. A lock is not necessary
1406 	 * to protect the request list, because all requests have
1407 	 * completed.  Therefore this is the only context accessing this
1408 	 * reqlist right now.  However, in order to make sure that no one
1409 	 * else queues responses onto the queue or pushes them to the other
1410 	 * side while we're active, we need to hold the lock across the
1411 	 * calls to xbb_queue_response() and xbb_push_responses().
1412 	 */
1413 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1414 		off_t cur_sectors_sent;
1415 
1416 		/* Put this response on the ring, but don't push yet */
1417 		xbb_queue_response(xbb, nreq, reqlist->status);
1418 
1419 		/* We don't report bytes sent if there is an error. */
1420 		if (reqlist->status == BLKIF_RSP_OKAY)
1421 			cur_sectors_sent = nreq->nr_512b_sectors;
1422 		else
1423 			cur_sectors_sent = 0;
1424 
1425 		sectors_sent += cur_sectors_sent;
1426 
1427 		devstat_end_transaction(xbb->xbb_stats_in,
1428 					/*bytes*/cur_sectors_sent << 9,
1429 					reqlist->ds_tag_type,
1430 					reqlist->ds_trans_type,
1431 					/*now*/NULL,
1432 					/*then*/&nreq->ds_t0);
1433 	}
1434 
1435 	/*
1436 	 * Take out any sectors not sent.  If we wind up negative (which
1437 	 * might happen if an error is reported as well as a residual), just
1438 	 * report 0 sectors sent.
1439 	 */
1440 	sectors_sent -= reqlist->residual_512b_sectors;
1441 	if (sectors_sent < 0)
1442 		sectors_sent = 0;
1443 
1444 	devstat_end_transaction(xbb->xbb_stats,
1445 				/*bytes*/ sectors_sent << 9,
1446 				reqlist->ds_tag_type,
1447 				reqlist->ds_trans_type,
1448 				/*now*/NULL,
1449 				/*then*/&reqlist->ds_t0);
1450 
1451 	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1452 
1453 	xbb_push_responses(xbb, &run_taskqueue, &notify);
1454 
1455 	mtx_unlock(&xbb->lock);
1456 
1457 	if (run_taskqueue)
1458 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1459 
1460 	if (notify)
1461 		xen_intr_signal(xbb->xen_intr_handle);
1462 }
1463 
1464 /**
1465  * Completion handler for buffer I/O requests issued by the device
1466  * backend driver.
1467  *
1468  * \param bio  The buffer I/O request on which to perform completion
1469  *             processing.
1470  */
1471 static void
1472 xbb_bio_done(struct bio *bio)
1473 {
1474 	struct xbb_softc       *xbb;
1475 	struct xbb_xen_reqlist *reqlist;
1476 
1477 	reqlist = bio->bio_caller1;
1478 	xbb     = reqlist->xbb;
1479 
1480 	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1481 
1482 	/*
1483 	 * This is a bit imprecise.  With aggregated I/O a single
1484 	 * request list can contain multiple front-end requests and
1485 	 * a multiple bios may point to a single request.  By carefully
1486 	 * walking the request list, we could map residuals and errors
1487 	 * back to the original front-end request, but the interface
1488 	 * isn't sufficiently rich for us to properly report the error.
1489 	 * So, we just treat the entire request list as having failed if an
1490 	 * error occurs on any part.  And, if an error occurs, we treat
1491 	 * the amount of data transferred as 0.
1492 	 *
1493 	 * For residuals, we report it on the overall aggregated device,
1494 	 * but not on the individual requests, since we don't currently
1495 	 * do the work to determine which front-end request to which the
1496 	 * residual applies.
1497 	 */
1498 	if (bio->bio_error) {
1499 		DPRINTF("BIO returned error %d for operation on device %s\n",
1500 			bio->bio_error, xbb->dev_name);
1501 		reqlist->status = BLKIF_RSP_ERROR;
1502 
1503 		if (bio->bio_error == ENXIO
1504 		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1505 
1506 			/*
1507 			 * Backend device has disappeared.  Signal the
1508 			 * front-end that we (the device proxy) want to
1509 			 * go away.
1510 			 */
1511 			xenbus_set_state(xbb->dev, XenbusStateClosing);
1512 		}
1513 	}
1514 
1515 #ifdef XBB_USE_BOUNCE_BUFFERS
1516 	if (bio->bio_cmd == BIO_READ) {
1517 		vm_offset_t kva_offset;
1518 
1519 		kva_offset = (vm_offset_t)bio->bio_data
1520 			   - (vm_offset_t)reqlist->bounce;
1521 		memcpy((uint8_t *)reqlist->kva + kva_offset,
1522 		       bio->bio_data, bio->bio_bcount);
1523 	}
1524 #endif /* XBB_USE_BOUNCE_BUFFERS */
1525 
1526 	/*
1527 	 * Decrement the pending count for the request list.  When we're
1528 	 * done with the requests, send status back for all of them.
1529 	 */
1530 	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1531 		xbb_complete_reqlist(xbb, reqlist);
1532 
1533 	g_destroy_bio(bio);
1534 }
1535 
1536 /**
1537  * Parse a blkif request into an internal request structure and send
1538  * it to the backend for processing.
1539  *
1540  * \param xbb       Per-instance xbb configuration structure.
1541  * \param reqlist   Allocated internal request list structure.
1542  *
1543  * \return          On success, 0.  For resource shortages, non-zero.
1544  *
1545  * This routine performs the backend common aspects of request parsing
1546  * including compiling an internal request structure, parsing the S/G
1547  * list and any secondary ring requests in which they may reside, and
1548  * the mapping of front-end I/O pages into our domain.
1549  */
1550 static int
1551 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1552 {
1553 	struct xbb_sg                *xbb_sg;
1554 	struct gnttab_map_grant_ref  *map;
1555 	struct blkif_request_segment *sg;
1556 	struct blkif_request_segment *last_block_sg;
1557 	struct xbb_xen_req	     *nreq;
1558 	u_int			      nseg;
1559 	u_int			      seg_idx;
1560 	u_int			      block_segs;
1561 	int			      nr_sects;
1562 	int			      total_sects;
1563 	int			      operation;
1564 	uint8_t			      bio_flags;
1565 	int			      error;
1566 
1567 	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1568 	bio_flags            = 0;
1569 	total_sects	     = 0;
1570 	nr_sects	     = 0;
1571 
1572 	/*
1573 	 * First determine whether we have enough free KVA to satisfy this
1574 	 * request list.  If not, tell xbb_run_queue() so it can go to
1575 	 * sleep until we have more KVA.
1576 	 */
1577 	reqlist->kva = NULL;
1578 	if (reqlist->nr_segments != 0) {
1579 		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1580 		if (reqlist->kva == NULL) {
1581 			/*
1582 			 * If we're out of KVA, return ENOMEM.
1583 			 */
1584 			return (ENOMEM);
1585 		}
1586 	}
1587 
1588 	binuptime(&reqlist->ds_t0);
1589 	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1590 
1591 	switch (reqlist->operation) {
1592 	case BLKIF_OP_WRITE_BARRIER:
1593 		bio_flags       |= BIO_ORDERED;
1594 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1595 		/* FALLTHROUGH */
1596 	case BLKIF_OP_WRITE:
1597 		operation = BIO_WRITE;
1598 		reqlist->ds_trans_type = DEVSTAT_WRITE;
1599 		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1600 			DPRINTF("Attempt to write to read only device %s\n",
1601 				xbb->dev_name);
1602 			reqlist->status = BLKIF_RSP_ERROR;
1603 			goto send_response;
1604 		}
1605 		break;
1606 	case BLKIF_OP_READ:
1607 		operation = BIO_READ;
1608 		reqlist->ds_trans_type = DEVSTAT_READ;
1609 		break;
1610 	case BLKIF_OP_FLUSH_DISKCACHE:
1611 		/*
1612 		 * If this is true, the user has requested that we disable
1613 		 * flush support.  So we just complete the requests
1614 		 * successfully.
1615 		 */
1616 		if (xbb->disable_flush != 0) {
1617 			goto send_response;
1618 		}
1619 
1620 		/*
1621 		 * The user has requested that we only send a real flush
1622 		 * for every N flush requests.  So keep count, and either
1623 		 * complete the request immediately or queue it for the
1624 		 * backend.
1625 		 */
1626 		if (xbb->flush_interval != 0) {
1627 		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1628 				goto send_response;
1629 			} else
1630 				xbb->flush_count = 0;
1631 		}
1632 
1633 		operation = BIO_FLUSH;
1634 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1635 		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1636 		goto do_dispatch;
1637 		/*NOTREACHED*/
1638 	default:
1639 		DPRINTF("error: unknown block io operation [%d]\n",
1640 			reqlist->operation);
1641 		reqlist->status = BLKIF_RSP_ERROR;
1642 		goto send_response;
1643 	}
1644 
1645 	reqlist->xbb  = xbb;
1646 	xbb_sg        = xbb->xbb_sgs;
1647 	map	      = xbb->maps;
1648 	seg_idx	      = 0;
1649 
1650 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1651 		blkif_request_t		*ring_req;
1652 		RING_IDX		 req_ring_idx;
1653 		u_int			 req_seg_idx;
1654 
1655 		ring_req	      = nreq->ring_req;
1656 		req_ring_idx	      = nreq->req_ring_idx;
1657 		nr_sects              = 0;
1658 		nseg                  = ring_req->nr_segments;
1659 		nreq->nr_pages        = nseg;
1660 		nreq->nr_512b_sectors = 0;
1661 		req_seg_idx	      = 0;
1662 		sg	              = NULL;
1663 
1664 		/* Check that number of segments is sane. */
1665 		if (__predict_false(nseg == 0)
1666 		 || __predict_false(nseg > xbb->max_request_segments)) {
1667 			DPRINTF("Bad number of segments in request (%d)\n",
1668 				nseg);
1669 			reqlist->status = BLKIF_RSP_ERROR;
1670 			goto send_response;
1671 		}
1672 
1673 		block_segs    = nseg;
1674 		sg            = ring_req->seg;
1675 		last_block_sg = sg + block_segs;
1676 
1677 		while (sg < last_block_sg) {
1678 			KASSERT(seg_idx <
1679 				XBB_MAX_SEGMENTS_PER_REQLIST,
1680 				("seg_idx %d is too large, max "
1681 				"segs %d\n", seg_idx,
1682 				XBB_MAX_SEGMENTS_PER_REQLIST));
1683 
1684 			xbb_sg->first_sect = sg->first_sect;
1685 			xbb_sg->last_sect  = sg->last_sect;
1686 			xbb_sg->nsect =
1687 			    (int8_t)(sg->last_sect -
1688 			    sg->first_sect + 1);
1689 
1690 			if ((sg->last_sect >= (PAGE_SIZE >> 9))
1691 			 || (xbb_sg->nsect <= 0)) {
1692 				reqlist->status = BLKIF_RSP_ERROR;
1693 				goto send_response;
1694 			}
1695 
1696 			nr_sects += xbb_sg->nsect;
1697 			map->host_addr = xbb_get_gntaddr(reqlist,
1698 						seg_idx, /*sector*/0);
1699 			KASSERT(map->host_addr + PAGE_SIZE <=
1700 				xbb->ring_config.gnt_addr,
1701 				("Host address %#jx len %d overlaps "
1702 				 "ring address %#jx\n",
1703 				(uintmax_t)map->host_addr, PAGE_SIZE,
1704 				(uintmax_t)xbb->ring_config.gnt_addr));
1705 
1706 			map->flags     = GNTMAP_host_map;
1707 			map->ref       = sg->gref;
1708 			map->dom       = xbb->otherend_id;
1709 			if (operation == BIO_WRITE)
1710 				map->flags |= GNTMAP_readonly;
1711 			sg++;
1712 			map++;
1713 			xbb_sg++;
1714 			seg_idx++;
1715 			req_seg_idx++;
1716 		}
1717 
1718 		/* Convert to the disk's sector size */
1719 		nreq->nr_512b_sectors = nr_sects;
1720 		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1721 		total_sects += nr_sects;
1722 
1723 		if ((nreq->nr_512b_sectors &
1724 		    ((xbb->sector_size >> 9) - 1)) != 0) {
1725 			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1726 				      "a multiple of the backing store sector "
1727 				      "size (%d)\n", __func__,
1728 				      nreq->nr_512b_sectors << 9,
1729 				      xbb->sector_size);
1730 			reqlist->status = BLKIF_RSP_ERROR;
1731 			goto send_response;
1732 		}
1733 	}
1734 
1735 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1736 					  xbb->maps, reqlist->nr_segments);
1737 	if (error != 0)
1738 		panic("Grant table operation failed (%d)", error);
1739 
1740 	reqlist->flags |= XBB_REQLIST_MAPPED;
1741 
1742 	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1743 	     seg_idx++, map++){
1744 
1745 		if (__predict_false(map->status != 0)) {
1746 			DPRINTF("invalid buffer -- could not remap "
1747 			        "it (%d)\n", map->status);
1748 			DPRINTF("Mapping(%d): Host Addr 0x%"PRIx64", flags "
1749 			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1750 				map->host_addr, map->flags, map->ref,
1751 				map->dom);
1752 			reqlist->status = BLKIF_RSP_ERROR;
1753 			goto send_response;
1754 		}
1755 
1756 		reqlist->gnt_handles[seg_idx] = map->handle;
1757 	}
1758 	if (reqlist->starting_sector_number + total_sects >
1759 	    xbb->media_num_sectors) {
1760 
1761 		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1762 			"extends past end of device %s\n",
1763 			operation == BIO_READ ? "read" : "write",
1764 			reqlist->starting_sector_number,
1765 			reqlist->starting_sector_number + total_sects,
1766 			xbb->dev_name);
1767 		reqlist->status = BLKIF_RSP_ERROR;
1768 		goto send_response;
1769 	}
1770 
1771 do_dispatch:
1772 
1773 	error = xbb->dispatch_io(xbb,
1774 				 reqlist,
1775 				 operation,
1776 				 bio_flags);
1777 
1778 	if (error != 0) {
1779 		reqlist->status = BLKIF_RSP_ERROR;
1780 		goto send_response;
1781 	}
1782 
1783 	return (0);
1784 
1785 send_response:
1786 
1787 	xbb_complete_reqlist(xbb, reqlist);
1788 
1789 	return (0);
1790 }
1791 
1792 static __inline int
1793 xbb_count_sects(blkif_request_t *ring_req)
1794 {
1795 	int i;
1796 	int cur_size = 0;
1797 
1798 	for (i = 0; i < ring_req->nr_segments; i++) {
1799 		int nsect;
1800 
1801 		nsect = (int8_t)(ring_req->seg[i].last_sect -
1802 			ring_req->seg[i].first_sect + 1);
1803 		if (nsect <= 0)
1804 			break;
1805 
1806 		cur_size += nsect;
1807 	}
1808 
1809 	return (cur_size);
1810 }
1811 
1812 /**
1813  * Process incoming requests from the shared communication ring in response
1814  * to a signal on the ring's event channel.
1815  *
1816  * \param context  Callback argument registerd during task initialization -
1817  *                 the xbb_softc for this instance.
1818  * \param pending  The number of taskqueue_enqueue events that have
1819  *                 occurred since this handler was last run.
1820  */
1821 static void
1822 xbb_run_queue(void *context, int pending)
1823 {
1824 	struct xbb_softc       *xbb;
1825 	blkif_back_rings_t     *rings;
1826 	RING_IDX		rp;
1827 	uint64_t		cur_sector;
1828 	int			cur_operation;
1829 	struct xbb_xen_reqlist *reqlist;
1830 
1831 
1832 	xbb   = (struct xbb_softc *)context;
1833 	rings = &xbb->rings;
1834 
1835 	/*
1836 	 * Work gather and dispatch loop.  Note that we have a bias here
1837 	 * towards gathering I/O sent by blockfront.  We first gather up
1838 	 * everything in the ring, as long as we have resources.  Then we
1839 	 * dispatch one request, and then attempt to gather up any
1840 	 * additional requests that have come in while we were dispatching
1841 	 * the request.
1842 	 *
1843 	 * This allows us to get a clearer picture (via devstat) of how
1844 	 * many requests blockfront is queueing to us at any given time.
1845 	 */
1846 	for (;;) {
1847 		int retval;
1848 
1849 		/*
1850 		 * Initialize reqlist to the last element in the pending
1851 		 * queue, if there is one.  This allows us to add more
1852 		 * requests to that request list, if we have room.
1853 		 */
1854 		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1855 				      xbb_xen_reqlist, links);
1856 		if (reqlist != NULL) {
1857 			cur_sector = reqlist->next_contig_sector;
1858 			cur_operation = reqlist->operation;
1859 		} else {
1860 			cur_operation = 0;
1861 			cur_sector    = 0;
1862 		}
1863 
1864 		/*
1865 		 * Cache req_prod to avoid accessing a cache line shared
1866 		 * with the frontend.
1867 		 */
1868 		rp = rings->common.sring->req_prod;
1869 
1870 		/* Ensure we see queued requests up to 'rp'. */
1871 		rmb();
1872 
1873 		/**
1874 		 * Run so long as there is work to consume and the generation
1875 		 * of a response will not overflow the ring.
1876 		 *
1877 		 * @note There's a 1 to 1 relationship between requests and
1878 		 *       responses, so an overflow should never occur.  This
1879 		 *       test is to protect our domain from digesting bogus
1880 		 *       data.  Shouldn't we log this?
1881 		 */
1882 		while (rings->common.req_cons != rp
1883 		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1884 						  rings->common.req_cons) == 0){
1885 			blkif_request_t	        ring_req_storage;
1886 			blkif_request_t	       *ring_req;
1887 			int			cur_size;
1888 
1889 			switch (xbb->abi) {
1890 			case BLKIF_PROTOCOL_NATIVE:
1891 				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1892 				    rings->common.req_cons);
1893 				break;
1894 			case BLKIF_PROTOCOL_X86_32:
1895 			{
1896 				struct blkif_x86_32_request *ring_req32;
1897 
1898 				ring_req32 = RING_GET_REQUEST(
1899 				    &xbb->rings.x86_32, rings->common.req_cons);
1900 				blkif_get_x86_32_req(&ring_req_storage,
1901 						     ring_req32);
1902 				ring_req = &ring_req_storage;
1903 				break;
1904 			}
1905 			case BLKIF_PROTOCOL_X86_64:
1906 			{
1907 				struct blkif_x86_64_request *ring_req64;
1908 
1909 				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1910 				    rings->common.req_cons);
1911 				blkif_get_x86_64_req(&ring_req_storage,
1912 						     ring_req64);
1913 				ring_req = &ring_req_storage;
1914 				break;
1915 			}
1916 			default:
1917 				panic("Unexpected blkif protocol ABI.");
1918 				/* NOTREACHED */
1919 			}
1920 
1921 			/*
1922 			 * Check for situations that would require closing
1923 			 * off this I/O for further coalescing:
1924 			 *  - Coalescing is turned off.
1925 			 *  - Current I/O is out of sequence with the previous
1926 			 *    I/O.
1927 			 *  - Coalesced I/O would be too large.
1928 			 */
1929 			if ((reqlist != NULL)
1930 			 && ((xbb->no_coalesce_reqs != 0)
1931 			  || ((xbb->no_coalesce_reqs == 0)
1932 			   && ((ring_req->sector_number != cur_sector)
1933 			    || (ring_req->operation != cur_operation)
1934 			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1935 			         xbb->max_reqlist_segments))))) {
1936 				reqlist = NULL;
1937 			}
1938 
1939 			/*
1940 			 * Grab and check for all resources in one shot.
1941 			 * If we can't get all of the resources we need,
1942 			 * the shortage is noted and the thread will get
1943 			 * woken up when more resources are available.
1944 			 */
1945 			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1946 						   xbb->rings.common.req_cons);
1947 
1948 			if (retval != 0) {
1949 				/*
1950 				 * Resource shortage has been recorded.
1951 				 * We'll be scheduled to run once a request
1952 				 * object frees up due to a completion.
1953 				 */
1954 				break;
1955 			}
1956 
1957 			/*
1958 			 * Signify that	we can overwrite this request with
1959 			 * a response by incrementing our consumer index.
1960 			 * The response won't be generated until after
1961 			 * we've already consumed all necessary data out
1962 			 * of the version of the request in the ring buffer
1963 			 * (for native mode).  We must update the consumer
1964 			 * index  before issuing back-end I/O so there is
1965 			 * no possibility that it will complete and a
1966 			 * response be generated before we make room in
1967 			 * the queue for that response.
1968 			 */
1969 			xbb->rings.common.req_cons++;
1970 			xbb->reqs_received++;
1971 
1972 			cur_size = xbb_count_sects(ring_req);
1973 			cur_sector = ring_req->sector_number + cur_size;
1974 			reqlist->next_contig_sector = cur_sector;
1975 			cur_operation = ring_req->operation;
1976 		}
1977 
1978 		/* Check for I/O to dispatch */
1979 		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
1980 		if (reqlist == NULL) {
1981 			/*
1982 			 * We're out of work to do, put the task queue to
1983 			 * sleep.
1984 			 */
1985 			break;
1986 		}
1987 
1988 		/*
1989 		 * Grab the first request off the queue and attempt
1990 		 * to dispatch it.
1991 		 */
1992 		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
1993 
1994 		retval = xbb_dispatch_io(xbb, reqlist);
1995 		if (retval != 0) {
1996 			/*
1997 			 * xbb_dispatch_io() returns non-zero only when
1998 			 * there is a resource shortage.  If that's the
1999 			 * case, re-queue this request on the head of the
2000 			 * queue, and go to sleep until we have more
2001 			 * resources.
2002 			 */
2003 			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
2004 					   reqlist, links);
2005 			break;
2006 		} else {
2007 			/*
2008 			 * If we still have anything on the queue after
2009 			 * removing the head entry, that is because we
2010 			 * met one of the criteria to create a new
2011 			 * request list (outlined above), and we'll call
2012 			 * that a forced dispatch for statistical purposes.
2013 			 *
2014 			 * Otherwise, if there is only one element on the
2015 			 * queue, we coalesced everything available on
2016 			 * the ring and we'll call that a normal dispatch.
2017 			 */
2018 			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2019 
2020 			if (reqlist != NULL)
2021 				xbb->forced_dispatch++;
2022 			else
2023 				xbb->normal_dispatch++;
2024 
2025 			xbb->total_dispatch++;
2026 		}
2027 	}
2028 }
2029 
2030 /**
2031  * Interrupt handler bound to the shared ring's event channel.
2032  *
2033  * \param arg  Callback argument registerd during event channel
2034  *             binding - the xbb_softc for this instance.
2035  */
2036 static int
2037 xbb_filter(void *arg)
2038 {
2039 	struct xbb_softc *xbb;
2040 
2041 	/* Defer to taskqueue thread. */
2042 	xbb = (struct xbb_softc *)arg;
2043 	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2044 
2045 	return (FILTER_HANDLED);
2046 }
2047 
2048 SDT_PROVIDER_DEFINE(xbb);
2049 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
2050 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
2051 		  "uint64_t");
2052 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
2053 		  "uint64_t", "uint64_t");
2054 
2055 /*----------------------------- Backend Handlers -----------------------------*/
2056 /**
2057  * Backend handler for character device access.
2058  *
2059  * \param xbb        Per-instance xbb configuration structure.
2060  * \param reqlist    Allocated internal request list structure.
2061  * \param operation  BIO_* I/O operation code.
2062  * \param bio_flags  Additional bio_flag data to pass to any generated
2063  *                   bios (e.g. BIO_ORDERED)..
2064  *
2065  * \return  0 for success, errno codes for failure.
2066  */
2067 static int
2068 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2069 		 int operation, int bio_flags)
2070 {
2071 	struct xbb_dev_data *dev_data;
2072 	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2073 	off_t                bio_offset;
2074 	struct bio          *bio;
2075 	struct xbb_sg       *xbb_sg;
2076 	u_int	             nbio;
2077 	u_int                bio_idx;
2078 	u_int		     nseg;
2079 	u_int                seg_idx;
2080 	int                  error;
2081 
2082 	dev_data   = &xbb->backend.dev;
2083 	bio_offset = (off_t)reqlist->starting_sector_number
2084 		   << xbb->sector_size_shift;
2085 	error      = 0;
2086 	nbio       = 0;
2087 	bio_idx    = 0;
2088 
2089 	if (operation == BIO_FLUSH) {
2090 		bio = g_new_bio();
2091 		if (__predict_false(bio == NULL)) {
2092 			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2093 			error = ENOMEM;
2094 			return (error);
2095 		}
2096 
2097 		bio->bio_cmd	 = BIO_FLUSH;
2098 		bio->bio_flags	|= BIO_ORDERED;
2099 		bio->bio_dev	 = dev_data->cdev;
2100 		bio->bio_offset	 = 0;
2101 		bio->bio_data	 = 0;
2102 		bio->bio_done	 = xbb_bio_done;
2103 		bio->bio_caller1 = reqlist;
2104 		bio->bio_pblkno	 = 0;
2105 
2106 		reqlist->pendcnt = 1;
2107 
2108 		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2109 			   device_get_unit(xbb->dev));
2110 
2111 		(*dev_data->csw->d_strategy)(bio);
2112 
2113 		return (0);
2114 	}
2115 
2116 	xbb_sg = xbb->xbb_sgs;
2117 	bio    = NULL;
2118 	nseg = reqlist->nr_segments;
2119 
2120 	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2121 
2122 		/*
2123 		 * KVA will not be contiguous, so any additional
2124 		 * I/O will need to be represented in a new bio.
2125 		 */
2126 		if ((bio != NULL)
2127 		 && (xbb_sg->first_sect != 0)) {
2128 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2129 				printf("%s: Discontiguous I/O request "
2130 				       "from domain %d ends on "
2131 				       "non-sector boundary\n",
2132 				       __func__, xbb->otherend_id);
2133 				error = EINVAL;
2134 				goto fail_free_bios;
2135 			}
2136 			bio = NULL;
2137 		}
2138 
2139 		if (bio == NULL) {
2140 			/*
2141 			 * Make sure that the start of this bio is
2142 			 * aligned to a device sector.
2143 			 */
2144 			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2145 				printf("%s: Misaligned I/O request "
2146 				       "from domain %d\n", __func__,
2147 				       xbb->otherend_id);
2148 				error = EINVAL;
2149 				goto fail_free_bios;
2150 			}
2151 
2152 			bio = bios[nbio++] = g_new_bio();
2153 			if (__predict_false(bio == NULL)) {
2154 				error = ENOMEM;
2155 				goto fail_free_bios;
2156 			}
2157 			bio->bio_cmd     = operation;
2158 			bio->bio_flags  |= bio_flags;
2159 			bio->bio_dev     = dev_data->cdev;
2160 			bio->bio_offset  = bio_offset;
2161 			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2162 						xbb_sg->first_sect);
2163 			bio->bio_done    = xbb_bio_done;
2164 			bio->bio_caller1 = reqlist;
2165 			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2166 		}
2167 
2168 		bio->bio_length += xbb_sg->nsect << 9;
2169 		bio->bio_bcount  = bio->bio_length;
2170 		bio_offset      += xbb_sg->nsect << 9;
2171 
2172 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2173 
2174 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2175 				printf("%s: Discontiguous I/O request "
2176 				       "from domain %d ends on "
2177 				       "non-sector boundary\n",
2178 				       __func__, xbb->otherend_id);
2179 				error = EINVAL;
2180 				goto fail_free_bios;
2181 			}
2182 			/*
2183 			 * KVA will not be contiguous, so any additional
2184 			 * I/O will need to be represented in a new bio.
2185 			 */
2186 			bio = NULL;
2187 		}
2188 	}
2189 
2190 	reqlist->pendcnt = nbio;
2191 
2192 	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2193 	{
2194 #ifdef XBB_USE_BOUNCE_BUFFERS
2195 		vm_offset_t kva_offset;
2196 
2197 		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2198 			   - (vm_offset_t)reqlist->bounce;
2199 		if (operation == BIO_WRITE) {
2200 			memcpy(bios[bio_idx]->bio_data,
2201 			       (uint8_t *)reqlist->kva + kva_offset,
2202 			       bios[bio_idx]->bio_bcount);
2203 		}
2204 #endif
2205 		if (operation == BIO_READ) {
2206 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2207 				   device_get_unit(xbb->dev),
2208 				   bios[bio_idx]->bio_offset,
2209 				   bios[bio_idx]->bio_length);
2210 		} else if (operation == BIO_WRITE) {
2211 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2212 				   device_get_unit(xbb->dev),
2213 				   bios[bio_idx]->bio_offset,
2214 				   bios[bio_idx]->bio_length);
2215 		}
2216 		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2217 	}
2218 
2219 	return (error);
2220 
2221 fail_free_bios:
2222 	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2223 		g_destroy_bio(bios[bio_idx]);
2224 
2225 	return (error);
2226 }
2227 
2228 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2229 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2230 		  "uint64_t");
2231 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2232 		  "uint64_t", "uint64_t");
2233 
2234 /**
2235  * Backend handler for file access.
2236  *
2237  * \param xbb        Per-instance xbb configuration structure.
2238  * \param reqlist    Allocated internal request list.
2239  * \param operation  BIO_* I/O operation code.
2240  * \param flags      Additional bio_flag data to pass to any generated bios
2241  *                   (e.g. BIO_ORDERED)..
2242  *
2243  * \return  0 for success, errno codes for failure.
2244  */
2245 static int
2246 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2247 		  int operation, int flags)
2248 {
2249 	struct xbb_file_data *file_data;
2250 	u_int                 seg_idx;
2251 	u_int		      nseg;
2252 	struct uio            xuio;
2253 	struct xbb_sg        *xbb_sg;
2254 	struct iovec         *xiovec;
2255 #ifdef XBB_USE_BOUNCE_BUFFERS
2256 	void                **p_vaddr;
2257 	int                   saved_uio_iovcnt;
2258 #endif /* XBB_USE_BOUNCE_BUFFERS */
2259 	int                   error;
2260 
2261 	file_data = &xbb->backend.file;
2262 	error = 0;
2263 	bzero(&xuio, sizeof(xuio));
2264 
2265 	switch (operation) {
2266 	case BIO_READ:
2267 		xuio.uio_rw = UIO_READ;
2268 		break;
2269 	case BIO_WRITE:
2270 		xuio.uio_rw = UIO_WRITE;
2271 		break;
2272 	case BIO_FLUSH: {
2273 		struct mount *mountpoint;
2274 
2275 		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2276 			   device_get_unit(xbb->dev));
2277 
2278 		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2279 
2280 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2281 		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2282 		VOP_UNLOCK(xbb->vn, 0);
2283 
2284 		vn_finished_write(mountpoint);
2285 
2286 		goto bailout_send_response;
2287 		/* NOTREACHED */
2288 	}
2289 	default:
2290 		panic("invalid operation %d", operation);
2291 		/* NOTREACHED */
2292 	}
2293 	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2294 			<< xbb->sector_size_shift;
2295 	xuio.uio_segflg = UIO_SYSSPACE;
2296 	xuio.uio_iov = file_data->xiovecs;
2297 	xuio.uio_iovcnt = 0;
2298 	xbb_sg = xbb->xbb_sgs;
2299 	nseg = reqlist->nr_segments;
2300 
2301 	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2302 
2303 		/*
2304 		 * If the first sector is not 0, the KVA will
2305 		 * not be contiguous and we'll need to go on
2306 		 * to another segment.
2307 		 */
2308 		if (xbb_sg->first_sect != 0)
2309 			xiovec = NULL;
2310 
2311 		if (xiovec == NULL) {
2312 			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2313 			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2314 			    seg_idx, xbb_sg->first_sect);
2315 #ifdef XBB_USE_BOUNCE_BUFFERS
2316 			/*
2317 			 * Store the address of the incoming
2318 			 * buffer at this particular offset
2319 			 * as well, so we can do the copy
2320 			 * later without having to do more
2321 			 * work to recalculate this address.
2322 		 	 */
2323 			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2324 			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2325 			    xbb_sg->first_sect);
2326 #endif /* XBB_USE_BOUNCE_BUFFERS */
2327 			xiovec->iov_len = 0;
2328 			xuio.uio_iovcnt++;
2329 		}
2330 
2331 		xiovec->iov_len += xbb_sg->nsect << 9;
2332 
2333 		xuio.uio_resid += xbb_sg->nsect << 9;
2334 
2335 		/*
2336 		 * If the last sector is not the full page
2337 		 * size count, the next segment will not be
2338 		 * contiguous in KVA and we need a new iovec.
2339 		 */
2340 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2341 			xiovec = NULL;
2342 	}
2343 
2344 	xuio.uio_td = curthread;
2345 
2346 #ifdef XBB_USE_BOUNCE_BUFFERS
2347 	saved_uio_iovcnt = xuio.uio_iovcnt;
2348 
2349 	if (operation == BIO_WRITE) {
2350 		/* Copy the write data to the local buffer. */
2351 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2352 		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2353 		     seg_idx++, xiovec++, p_vaddr++) {
2354 
2355 			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2356 		}
2357 	} else {
2358 		/*
2359 		 * We only need to save off the iovecs in the case of a
2360 		 * read, because the copy for the read happens after the
2361 		 * VOP_READ().  (The uio will get modified in that call
2362 		 * sequence.)
2363 		 */
2364 		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2365 		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2366 	}
2367 #endif /* XBB_USE_BOUNCE_BUFFERS */
2368 
2369 	switch (operation) {
2370 	case BIO_READ:
2371 
2372 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2373 			   device_get_unit(xbb->dev), xuio.uio_offset,
2374 			   xuio.uio_resid);
2375 
2376 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2377 
2378 		/*
2379 		 * UFS pays attention to IO_DIRECT for reads.  If the
2380 		 * DIRECTIO option is configured into the kernel, it calls
2381 		 * ffs_rawread().  But that only works for single-segment
2382 		 * uios with user space addresses.  In our case, with a
2383 		 * kernel uio, it still reads into the buffer cache, but it
2384 		 * will just try to release the buffer from the cache later
2385 		 * on in ffs_read().
2386 		 *
2387 		 * ZFS does not pay attention to IO_DIRECT for reads.
2388 		 *
2389 		 * UFS does not pay attention to IO_SYNC for reads.
2390 		 *
2391 		 * ZFS pays attention to IO_SYNC (which translates into the
2392 		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2393 		 * attempts to sync the file before reading.
2394 		 *
2395 		 * So, to attempt to provide some barrier semantics in the
2396 		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2397 		 */
2398 		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2399 				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2400 
2401 		VOP_UNLOCK(xbb->vn, 0);
2402 		break;
2403 	case BIO_WRITE: {
2404 		struct mount *mountpoint;
2405 
2406 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2407 			   device_get_unit(xbb->dev), xuio.uio_offset,
2408 			   xuio.uio_resid);
2409 
2410 		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2411 
2412 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2413 
2414 		/*
2415 		 * UFS pays attention to IO_DIRECT for writes.  The write
2416 		 * is done asynchronously.  (Normally the write would just
2417 		 * get put into cache.
2418 		 *
2419 		 * UFS pays attention to IO_SYNC for writes.  It will
2420 		 * attempt to write the buffer out synchronously if that
2421 		 * flag is set.
2422 		 *
2423 		 * ZFS does not pay attention to IO_DIRECT for writes.
2424 		 *
2425 		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2426 		 * for writes.  It will flush the transaction from the
2427 		 * cache before returning.
2428 		 *
2429 		 * So if we've got the BIO_ORDERED flag set, we want
2430 		 * IO_SYNC in either the UFS or ZFS case.
2431 		 */
2432 		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2433 				  IO_SYNC : 0, file_data->cred);
2434 		VOP_UNLOCK(xbb->vn, 0);
2435 
2436 		vn_finished_write(mountpoint);
2437 
2438 		break;
2439 	}
2440 	default:
2441 		panic("invalid operation %d", operation);
2442 		/* NOTREACHED */
2443 	}
2444 
2445 #ifdef XBB_USE_BOUNCE_BUFFERS
2446 	/* We only need to copy here for read operations */
2447 	if (operation == BIO_READ) {
2448 
2449 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2450 		     xiovec = file_data->saved_xiovecs;
2451 		     seg_idx < saved_uio_iovcnt; seg_idx++,
2452 		     xiovec++, p_vaddr++) {
2453 
2454 			/*
2455 			 * Note that we have to use the copy of the
2456 			 * io vector we made above.  uiomove() modifies
2457 			 * the uio and its referenced vector as uiomove
2458 			 * performs the copy, so we can't rely on any
2459 			 * state from the original uio.
2460 			 */
2461 			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2462 		}
2463 	}
2464 #endif /* XBB_USE_BOUNCE_BUFFERS */
2465 
2466 bailout_send_response:
2467 
2468 	if (error != 0)
2469 		reqlist->status = BLKIF_RSP_ERROR;
2470 
2471 	xbb_complete_reqlist(xbb, reqlist);
2472 
2473 	return (0);
2474 }
2475 
2476 /*--------------------------- Backend Configuration --------------------------*/
2477 /**
2478  * Close and cleanup any backend device/file specific state for this
2479  * block back instance.
2480  *
2481  * \param xbb  Per-instance xbb configuration structure.
2482  */
2483 static void
2484 xbb_close_backend(struct xbb_softc *xbb)
2485 {
2486 	DROP_GIANT();
2487 	DPRINTF("closing dev=%s\n", xbb->dev_name);
2488 	if (xbb->vn) {
2489 		int flags = FREAD;
2490 
2491 		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2492 			flags |= FWRITE;
2493 
2494 		switch (xbb->device_type) {
2495 		case XBB_TYPE_DISK:
2496 			if (xbb->backend.dev.csw) {
2497 				dev_relthread(xbb->backend.dev.cdev,
2498 					      xbb->backend.dev.dev_ref);
2499 				xbb->backend.dev.csw  = NULL;
2500 				xbb->backend.dev.cdev = NULL;
2501 			}
2502 			break;
2503 		case XBB_TYPE_FILE:
2504 			break;
2505 		case XBB_TYPE_NONE:
2506 		default:
2507 			panic("Unexpected backend type.");
2508 			break;
2509 		}
2510 
2511 		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2512 		xbb->vn = NULL;
2513 
2514 		switch (xbb->device_type) {
2515 		case XBB_TYPE_DISK:
2516 			break;
2517 		case XBB_TYPE_FILE:
2518 			if (xbb->backend.file.cred != NULL) {
2519 				crfree(xbb->backend.file.cred);
2520 				xbb->backend.file.cred = NULL;
2521 			}
2522 			break;
2523 		case XBB_TYPE_NONE:
2524 		default:
2525 			panic("Unexpected backend type.");
2526 			break;
2527 		}
2528 	}
2529 	PICKUP_GIANT();
2530 }
2531 
2532 /**
2533  * Open a character device to be used for backend I/O.
2534  *
2535  * \param xbb  Per-instance xbb configuration structure.
2536  *
2537  * \return  0 for success, errno codes for failure.
2538  */
2539 static int
2540 xbb_open_dev(struct xbb_softc *xbb)
2541 {
2542 	struct vattr   vattr;
2543 	struct cdev   *dev;
2544 	struct cdevsw *devsw;
2545 	int	       error;
2546 
2547 	xbb->device_type = XBB_TYPE_DISK;
2548 	xbb->dispatch_io = xbb_dispatch_dev;
2549 	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2550 	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2551 					     &xbb->backend.dev.dev_ref);
2552 	if (xbb->backend.dev.csw == NULL)
2553 		panic("Unable to retrieve device switch");
2554 
2555 	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2556 	if (error) {
2557 		xenbus_dev_fatal(xbb->dev, error, "error getting "
2558 				 "vnode attributes for device %s",
2559 				 xbb->dev_name);
2560 		return (error);
2561 	}
2562 
2563 
2564 	dev = xbb->vn->v_rdev;
2565 	devsw = dev->si_devsw;
2566 	if (!devsw->d_ioctl) {
2567 		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2568 				 "device %s!", xbb->dev_name);
2569 		return (ENODEV);
2570 	}
2571 
2572 	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2573 			       (caddr_t)&xbb->sector_size, FREAD,
2574 			       curthread);
2575 	if (error) {
2576 		xenbus_dev_fatal(xbb->dev, error,
2577 				 "error calling ioctl DIOCGSECTORSIZE "
2578 				 "for device %s", xbb->dev_name);
2579 		return (error);
2580 	}
2581 
2582 	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2583 			       (caddr_t)&xbb->media_size, FREAD,
2584 			       curthread);
2585 	if (error) {
2586 		xenbus_dev_fatal(xbb->dev, error,
2587 				 "error calling ioctl DIOCGMEDIASIZE "
2588 				 "for device %s", xbb->dev_name);
2589 		return (error);
2590 	}
2591 
2592 	return (0);
2593 }
2594 
2595 /**
2596  * Open a file to be used for backend I/O.
2597  *
2598  * \param xbb  Per-instance xbb configuration structure.
2599  *
2600  * \return  0 for success, errno codes for failure.
2601  */
2602 static int
2603 xbb_open_file(struct xbb_softc *xbb)
2604 {
2605 	struct xbb_file_data *file_data;
2606 	struct vattr          vattr;
2607 	int                   error;
2608 
2609 	file_data = &xbb->backend.file;
2610 	xbb->device_type = XBB_TYPE_FILE;
2611 	xbb->dispatch_io = xbb_dispatch_file;
2612 	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2613 	if (error != 0) {
2614 		xenbus_dev_fatal(xbb->dev, error,
2615 				 "error calling VOP_GETATTR()"
2616 				 "for file %s", xbb->dev_name);
2617 		return (error);
2618 	}
2619 
2620 	/*
2621 	 * Verify that we have the ability to upgrade to exclusive
2622 	 * access on this file so we can trap errors at open instead
2623 	 * of reporting them during first access.
2624 	 */
2625 	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2626 		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2627 		if (xbb->vn->v_iflag & VI_DOOMED) {
2628 			error = EBADF;
2629 			xenbus_dev_fatal(xbb->dev, error,
2630 					 "error locking file %s",
2631 					 xbb->dev_name);
2632 
2633 			return (error);
2634 		}
2635 	}
2636 
2637 	file_data->cred = crhold(curthread->td_ucred);
2638 	xbb->media_size = vattr.va_size;
2639 
2640 	/*
2641 	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2642 	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2643 	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2644 	 * may not work with other OSes as well.  So just export a sector
2645 	 * size of 512 bytes, which should work with any OS or
2646 	 * application.  Since our backing is a file, any block size will
2647 	 * work fine for the backing store.
2648 	 */
2649 #if 0
2650 	xbb->sector_size = vattr.va_blocksize;
2651 #endif
2652 	xbb->sector_size = 512;
2653 
2654 	/*
2655 	 * Sanity check.  The media size has to be at least one
2656 	 * sector long.
2657 	 */
2658 	if (xbb->media_size < xbb->sector_size) {
2659 		error = EINVAL;
2660 		xenbus_dev_fatal(xbb->dev, error,
2661 				 "file %s size %ju < block size %u",
2662 				 xbb->dev_name,
2663 				 (uintmax_t)xbb->media_size,
2664 				 xbb->sector_size);
2665 	}
2666 	return (error);
2667 }
2668 
2669 /**
2670  * Open the backend provider for this connection.
2671  *
2672  * \param xbb  Per-instance xbb configuration structure.
2673  *
2674  * \return  0 for success, errno codes for failure.
2675  */
2676 static int
2677 xbb_open_backend(struct xbb_softc *xbb)
2678 {
2679 	struct nameidata nd;
2680 	int		 flags;
2681 	int		 error;
2682 
2683 	flags = FREAD;
2684 	error = 0;
2685 
2686 	DPRINTF("opening dev=%s\n", xbb->dev_name);
2687 
2688 	if (rootvnode == NULL) {
2689 		xenbus_dev_fatal(xbb->dev, ENOENT,
2690 				 "Root file system not mounted");
2691 		return (ENOENT);
2692 	}
2693 
2694 	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2695 		flags |= FWRITE;
2696 
2697 	pwd_ensure_dirs();
2698 
2699  again:
2700 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2701 	error = vn_open(&nd, &flags, 0, NULL);
2702 	if (error) {
2703 		/*
2704 		 * This is the only reasonable guess we can make as far as
2705 		 * path if the user doesn't give us a fully qualified path.
2706 		 * If they want to specify a file, they need to specify the
2707 		 * full path.
2708 		 */
2709 		if (xbb->dev_name[0] != '/') {
2710 			char *dev_path = "/dev/";
2711 			char *dev_name;
2712 
2713 			/* Try adding device path at beginning of name */
2714 			dev_name = malloc(strlen(xbb->dev_name)
2715 					+ strlen(dev_path) + 1,
2716 					  M_XENBLOCKBACK, M_NOWAIT);
2717 			if (dev_name) {
2718 				sprintf(dev_name, "%s%s", dev_path,
2719 					xbb->dev_name);
2720 				free(xbb->dev_name, M_XENBLOCKBACK);
2721 				xbb->dev_name = dev_name;
2722 				goto again;
2723 			}
2724 		}
2725 		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2726 				 xbb->dev_name);
2727 		return (error);
2728 	}
2729 
2730 	NDFREE(&nd, NDF_ONLY_PNBUF);
2731 
2732 	xbb->vn = nd.ni_vp;
2733 
2734 	/* We only support disks and files. */
2735 	if (vn_isdisk(xbb->vn, &error)) {
2736 		error = xbb_open_dev(xbb);
2737 	} else if (xbb->vn->v_type == VREG) {
2738 		error = xbb_open_file(xbb);
2739 	} else {
2740 		error = EINVAL;
2741 		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2742 				 "or file", xbb->dev_name);
2743 	}
2744 	VOP_UNLOCK(xbb->vn, 0);
2745 
2746 	if (error != 0) {
2747 		xbb_close_backend(xbb);
2748 		return (error);
2749 	}
2750 
2751 	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2752 	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2753 
2754 	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2755 		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2756 		xbb->dev_name, xbb->sector_size, xbb->media_size);
2757 
2758 	return (0);
2759 }
2760 
2761 /*------------------------ Inter-Domain Communication ------------------------*/
2762 /**
2763  * Free dynamically allocated KVA or pseudo-physical address allocations.
2764  *
2765  * \param xbb  Per-instance xbb configuration structure.
2766  */
2767 static void
2768 xbb_free_communication_mem(struct xbb_softc *xbb)
2769 {
2770 	if (xbb->kva != 0) {
2771 		if (xbb->pseudo_phys_res != NULL) {
2772 			xenmem_free(xbb->dev, xbb->pseudo_phys_res_id,
2773 			    xbb->pseudo_phys_res);
2774 			xbb->pseudo_phys_res = NULL;
2775 		}
2776 	}
2777 	xbb->kva = 0;
2778 	xbb->gnt_base_addr = 0;
2779 	if (xbb->kva_free != NULL) {
2780 		free(xbb->kva_free, M_XENBLOCKBACK);
2781 		xbb->kva_free = NULL;
2782 	}
2783 }
2784 
2785 /**
2786  * Cleanup all inter-domain communication mechanisms.
2787  *
2788  * \param xbb  Per-instance xbb configuration structure.
2789  */
2790 static int
2791 xbb_disconnect(struct xbb_softc *xbb)
2792 {
2793 	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2794 	struct gnttab_unmap_grant_ref *op;
2795 	u_int			       ring_idx;
2796 	int			       error;
2797 
2798 	DPRINTF("\n");
2799 
2800 	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2801 		return (0);
2802 
2803 	xen_intr_unbind(&xbb->xen_intr_handle);
2804 
2805 	mtx_unlock(&xbb->lock);
2806 	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2807 	mtx_lock(&xbb->lock);
2808 
2809 	/*
2810 	 * No new interrupts can generate work, but we must wait
2811 	 * for all currently active requests to drain.
2812 	 */
2813 	if (xbb->active_request_count != 0)
2814 		return (EAGAIN);
2815 
2816 	for (ring_idx = 0, op = ops;
2817 	     ring_idx < xbb->ring_config.ring_pages;
2818 	     ring_idx++, op++) {
2819 
2820 		op->host_addr    = xbb->ring_config.gnt_addr
2821 			         + (ring_idx * PAGE_SIZE);
2822 		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2823 		op->handle	 = xbb->ring_config.handle[ring_idx];
2824 	}
2825 
2826 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2827 					  xbb->ring_config.ring_pages);
2828 	if (error != 0)
2829 		panic("Grant table op failed (%d)", error);
2830 
2831 	xbb_free_communication_mem(xbb);
2832 
2833 	if (xbb->requests != NULL) {
2834 		free(xbb->requests, M_XENBLOCKBACK);
2835 		xbb->requests = NULL;
2836 	}
2837 
2838 	if (xbb->request_lists != NULL) {
2839 		struct xbb_xen_reqlist *reqlist;
2840 		int i;
2841 
2842 		/* There is one request list for ever allocated request. */
2843 		for (i = 0, reqlist = xbb->request_lists;
2844 		     i < xbb->max_requests; i++, reqlist++){
2845 #ifdef XBB_USE_BOUNCE_BUFFERS
2846 			if (reqlist->bounce != NULL) {
2847 				free(reqlist->bounce, M_XENBLOCKBACK);
2848 				reqlist->bounce = NULL;
2849 			}
2850 #endif
2851 			if (reqlist->gnt_handles != NULL) {
2852 				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2853 				reqlist->gnt_handles = NULL;
2854 			}
2855 		}
2856 		free(xbb->request_lists, M_XENBLOCKBACK);
2857 		xbb->request_lists = NULL;
2858 	}
2859 
2860 	xbb->flags &= ~XBBF_RING_CONNECTED;
2861 	return (0);
2862 }
2863 
2864 /**
2865  * Map shared memory ring into domain local address space, initialize
2866  * ring control structures, and bind an interrupt to the event channel
2867  * used to notify us of ring changes.
2868  *
2869  * \param xbb  Per-instance xbb configuration structure.
2870  */
2871 static int
2872 xbb_connect_ring(struct xbb_softc *xbb)
2873 {
2874 	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2875 	struct gnttab_map_grant_ref *gnt;
2876 	u_int			     ring_idx;
2877 	int			     error;
2878 
2879 	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2880 		return (0);
2881 
2882 	/*
2883 	 * Kva for our ring is at the tail of the region of kva allocated
2884 	 * by xbb_alloc_communication_mem().
2885 	 */
2886 	xbb->ring_config.va = xbb->kva
2887 			    + (xbb->kva_size
2888 			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2889 	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2890 				  + (xbb->kva_size
2891 				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2892 
2893 	for (ring_idx = 0, gnt = gnts;
2894 	     ring_idx < xbb->ring_config.ring_pages;
2895 	     ring_idx++, gnt++) {
2896 
2897 		gnt->host_addr = xbb->ring_config.gnt_addr
2898 			       + (ring_idx * PAGE_SIZE);
2899 		gnt->flags     = GNTMAP_host_map;
2900 		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2901 		gnt->dom       = xbb->otherend_id;
2902 	}
2903 
2904 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2905 					  xbb->ring_config.ring_pages);
2906 	if (error)
2907 		panic("blkback: Ring page grant table op failed (%d)", error);
2908 
2909 	for (ring_idx = 0, gnt = gnts;
2910 	     ring_idx < xbb->ring_config.ring_pages;
2911 	     ring_idx++, gnt++) {
2912 		if (gnt->status != 0) {
2913 			xbb->ring_config.va = 0;
2914 			xenbus_dev_fatal(xbb->dev, EACCES,
2915 					 "Ring shared page mapping failed. "
2916 					 "Status %d.", gnt->status);
2917 			return (EACCES);
2918 		}
2919 		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2920 		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2921 	}
2922 
2923 	/* Initialize the ring based on ABI. */
2924 	switch (xbb->abi) {
2925 	case BLKIF_PROTOCOL_NATIVE:
2926 	{
2927 		blkif_sring_t *sring;
2928 		sring = (blkif_sring_t *)xbb->ring_config.va;
2929 		BACK_RING_INIT(&xbb->rings.native, sring,
2930 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2931 		break;
2932 	}
2933 	case BLKIF_PROTOCOL_X86_32:
2934 	{
2935 		blkif_x86_32_sring_t *sring_x86_32;
2936 		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2937 		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2938 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2939 		break;
2940 	}
2941 	case BLKIF_PROTOCOL_X86_64:
2942 	{
2943 		blkif_x86_64_sring_t *sring_x86_64;
2944 		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
2945 		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
2946 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2947 		break;
2948 	}
2949 	default:
2950 		panic("Unexpected blkif protocol ABI.");
2951 	}
2952 
2953 	xbb->flags |= XBBF_RING_CONNECTED;
2954 
2955 	error = xen_intr_bind_remote_port(xbb->dev,
2956 					  xbb->otherend_id,
2957 					  xbb->ring_config.evtchn,
2958 					  xbb_filter,
2959 					  /*ithread_handler*/NULL,
2960 					  /*arg*/xbb,
2961 					  INTR_TYPE_BIO | INTR_MPSAFE,
2962 					  &xbb->xen_intr_handle);
2963 	if (error) {
2964 		(void)xbb_disconnect(xbb);
2965 		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
2966 		return (error);
2967 	}
2968 
2969 	DPRINTF("rings connected!\n");
2970 
2971 	return 0;
2972 }
2973 
2974 /**
2975  * Size KVA and pseudo-physical address allocations based on negotiated
2976  * values for the size and number of I/O requests, and the size of our
2977  * communication ring.
2978  *
2979  * \param xbb  Per-instance xbb configuration structure.
2980  *
2981  * These address spaces are used to dynamically map pages in the
2982  * front-end's domain into our own.
2983  */
2984 static int
2985 xbb_alloc_communication_mem(struct xbb_softc *xbb)
2986 {
2987 	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
2988 	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
2989 	xbb->kva_size = xbb->reqlist_kva_size +
2990 			(xbb->ring_config.ring_pages * PAGE_SIZE);
2991 
2992 	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages, M_XENBLOCKBACK, M_NOWAIT);
2993 	if (xbb->kva_free == NULL)
2994 		return (ENOMEM);
2995 
2996 	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
2997 		device_get_nameunit(xbb->dev), xbb->kva_size,
2998 		xbb->reqlist_kva_size);
2999 	/*
3000 	 * Reserve a range of pseudo physical memory that we can map
3001 	 * into kva.  These pages will only be backed by machine
3002 	 * pages ("real memory") during the lifetime of front-end requests
3003 	 * via grant table operations.
3004 	 */
3005 	xbb->pseudo_phys_res_id = 0;
3006 	xbb->pseudo_phys_res = xenmem_alloc(xbb->dev, &xbb->pseudo_phys_res_id,
3007 	    xbb->kva_size);
3008 	if (xbb->pseudo_phys_res == NULL) {
3009 		xbb->kva = 0;
3010 		return (ENOMEM);
3011 	}
3012 	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3013 	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3014 
3015 	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3016 		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3017 		(uintmax_t)xbb->gnt_base_addr);
3018 	return (0);
3019 }
3020 
3021 /**
3022  * Collect front-end information from the XenStore.
3023  *
3024  * \param xbb  Per-instance xbb configuration structure.
3025  */
3026 static int
3027 xbb_collect_frontend_info(struct xbb_softc *xbb)
3028 {
3029 	char	    protocol_abi[64];
3030 	const char *otherend_path;
3031 	int	    error;
3032 	u_int	    ring_idx;
3033 	u_int	    ring_page_order;
3034 	size_t	    ring_size;
3035 
3036 	otherend_path = xenbus_get_otherend_path(xbb->dev);
3037 
3038 	/*
3039 	 * Protocol defaults valid even if all negotiation fails.
3040 	 */
3041 	xbb->ring_config.ring_pages = 1;
3042 	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_REQUEST;
3043 	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3044 
3045 	/*
3046 	 * Mandatory data (used in all versions of the protocol) first.
3047 	 */
3048 	error = xs_scanf(XST_NIL, otherend_path,
3049 			 "event-channel", NULL, "%" PRIu32,
3050 			 &xbb->ring_config.evtchn);
3051 	if (error != 0) {
3052 		xenbus_dev_fatal(xbb->dev, error,
3053 				 "Unable to retrieve event-channel information "
3054 				 "from frontend %s.  Unable to connect.",
3055 				 xenbus_get_otherend_path(xbb->dev));
3056 		return (error);
3057 	}
3058 
3059 	/*
3060 	 * These fields are initialized to legacy protocol defaults
3061 	 * so we only need to fail if reading the updated value succeeds
3062 	 * and the new value is outside of its allowed range.
3063 	 *
3064 	 * \note xs_gather() returns on the first encountered error, so
3065 	 *       we must use independent calls in order to guarantee
3066 	 *       we don't miss information in a sparsly populated front-end
3067 	 *       tree.
3068 	 *
3069 	 * \note xs_scanf() does not update variables for unmatched
3070 	 *       fields.
3071 	 */
3072 	ring_page_order = 0;
3073 	xbb->max_requests = 32;
3074 
3075 	(void)xs_scanf(XST_NIL, otherend_path,
3076 		       "ring-page-order", NULL, "%u",
3077 		       &ring_page_order);
3078 	xbb->ring_config.ring_pages = 1 << ring_page_order;
3079 	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3080 	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3081 
3082 	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3083 		xenbus_dev_fatal(xbb->dev, EINVAL,
3084 				 "Front-end specified ring-pages of %u "
3085 				 "exceeds backend limit of %u.  "
3086 				 "Unable to connect.",
3087 				 xbb->ring_config.ring_pages,
3088 				 XBB_MAX_RING_PAGES);
3089 		return (EINVAL);
3090 	}
3091 
3092 	if (xbb->ring_config.ring_pages	== 1) {
3093 		error = xs_gather(XST_NIL, otherend_path,
3094 				  "ring-ref", "%" PRIu32,
3095 				  &xbb->ring_config.ring_ref[0],
3096 				  NULL);
3097 		if (error != 0) {
3098 			xenbus_dev_fatal(xbb->dev, error,
3099 					 "Unable to retrieve ring information "
3100 					 "from frontend %s.  Unable to "
3101 					 "connect.",
3102 					 xenbus_get_otherend_path(xbb->dev));
3103 			return (error);
3104 		}
3105 	} else {
3106 		/* Multi-page ring format. */
3107 		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3108 		     ring_idx++) {
3109 			char ring_ref_name[]= "ring_refXX";
3110 
3111 			snprintf(ring_ref_name, sizeof(ring_ref_name),
3112 				 "ring-ref%u", ring_idx);
3113 			error = xs_scanf(XST_NIL, otherend_path,
3114 					 ring_ref_name, NULL, "%" PRIu32,
3115 					 &xbb->ring_config.ring_ref[ring_idx]);
3116 			if (error != 0) {
3117 				xenbus_dev_fatal(xbb->dev, error,
3118 						 "Failed to retriev grant "
3119 						 "reference for page %u of "
3120 						 "shared ring.  Unable "
3121 						 "to connect.", ring_idx);
3122 				return (error);
3123 			}
3124 		}
3125 	}
3126 
3127 	error = xs_gather(XST_NIL, otherend_path,
3128 			  "protocol", "%63s", protocol_abi,
3129 			  NULL);
3130 	if (error != 0
3131 	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3132 		/*
3133 		 * Assume native if the frontend has not
3134 		 * published ABI data or it has published and
3135 		 * matches our own ABI.
3136 		 */
3137 		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3138 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3139 
3140 		xbb->abi = BLKIF_PROTOCOL_X86_32;
3141 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3142 
3143 		xbb->abi = BLKIF_PROTOCOL_X86_64;
3144 	} else {
3145 
3146 		xenbus_dev_fatal(xbb->dev, EINVAL,
3147 				 "Unknown protocol ABI (%s) published by "
3148 				 "frontend.  Unable to connect.", protocol_abi);
3149 		return (EINVAL);
3150 	}
3151 	return (0);
3152 }
3153 
3154 /**
3155  * Allocate per-request data structures given request size and number
3156  * information negotiated with the front-end.
3157  *
3158  * \param xbb  Per-instance xbb configuration structure.
3159  */
3160 static int
3161 xbb_alloc_requests(struct xbb_softc *xbb)
3162 {
3163 	struct xbb_xen_req *req;
3164 	struct xbb_xen_req *last_req;
3165 
3166 	/*
3167 	 * Allocate request book keeping datastructures.
3168 	 */
3169 	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3170 			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3171 	if (xbb->requests == NULL) {
3172 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3173 				  "Unable to allocate request structures");
3174 		return (ENOMEM);
3175 	}
3176 
3177 	req      = xbb->requests;
3178 	last_req = &xbb->requests[xbb->max_requests - 1];
3179 	STAILQ_INIT(&xbb->request_free_stailq);
3180 	while (req <= last_req) {
3181 		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3182 		req++;
3183 	}
3184 	return (0);
3185 }
3186 
3187 static int
3188 xbb_alloc_request_lists(struct xbb_softc *xbb)
3189 {
3190 	struct xbb_xen_reqlist *reqlist;
3191 	int			i;
3192 
3193 	/*
3194 	 * If no requests can be merged, we need 1 request list per
3195 	 * in flight request.
3196 	 */
3197 	xbb->request_lists = malloc(xbb->max_requests *
3198 		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3199 	if (xbb->request_lists == NULL) {
3200 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3201 				  "Unable to allocate request list structures");
3202 		return (ENOMEM);
3203 	}
3204 
3205 	STAILQ_INIT(&xbb->reqlist_free_stailq);
3206 	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3207 	for (i = 0; i < xbb->max_requests; i++) {
3208 		int seg;
3209 
3210 		reqlist      = &xbb->request_lists[i];
3211 
3212 		reqlist->xbb = xbb;
3213 
3214 #ifdef XBB_USE_BOUNCE_BUFFERS
3215 		reqlist->bounce = malloc(xbb->max_reqlist_size,
3216 					 M_XENBLOCKBACK, M_NOWAIT);
3217 		if (reqlist->bounce == NULL) {
3218 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3219 					 "Unable to allocate request "
3220 					 "bounce buffers");
3221 			return (ENOMEM);
3222 		}
3223 #endif /* XBB_USE_BOUNCE_BUFFERS */
3224 
3225 		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3226 					      sizeof(*reqlist->gnt_handles),
3227 					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3228 		if (reqlist->gnt_handles == NULL) {
3229 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3230 					  "Unable to allocate request "
3231 					  "grant references");
3232 			return (ENOMEM);
3233 		}
3234 
3235 		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3236 			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3237 
3238 		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3239 	}
3240 	return (0);
3241 }
3242 
3243 /**
3244  * Supply information about the physical device to the frontend
3245  * via XenBus.
3246  *
3247  * \param xbb  Per-instance xbb configuration structure.
3248  */
3249 static int
3250 xbb_publish_backend_info(struct xbb_softc *xbb)
3251 {
3252 	struct xs_transaction xst;
3253 	const char	     *our_path;
3254 	const char	     *leaf;
3255 	int		      error;
3256 
3257 	our_path = xenbus_get_node(xbb->dev);
3258 	while (1) {
3259 		error = xs_transaction_start(&xst);
3260 		if (error != 0) {
3261 			xenbus_dev_fatal(xbb->dev, error,
3262 					 "Error publishing backend info "
3263 					 "(start transaction)");
3264 			return (error);
3265 		}
3266 
3267 		leaf = "sectors";
3268 		error = xs_printf(xst, our_path, leaf,
3269 				  "%"PRIu64, xbb->media_num_sectors);
3270 		if (error != 0)
3271 			break;
3272 
3273 		/* XXX Support all VBD attributes here. */
3274 		leaf = "info";
3275 		error = xs_printf(xst, our_path, leaf, "%u",
3276 				  xbb->flags & XBBF_READ_ONLY
3277 				? VDISK_READONLY : 0);
3278 		if (error != 0)
3279 			break;
3280 
3281 		leaf = "sector-size";
3282 		error = xs_printf(xst, our_path, leaf, "%u",
3283 				  xbb->sector_size);
3284 		if (error != 0)
3285 			break;
3286 
3287 		error = xs_transaction_end(xst, 0);
3288 		if (error == 0) {
3289 			return (0);
3290 		} else if (error != EAGAIN) {
3291 			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3292 			return (error);
3293 		}
3294 	}
3295 
3296 	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3297 			our_path, leaf);
3298 	xs_transaction_end(xst, 1);
3299 	return (error);
3300 }
3301 
3302 /**
3303  * Connect to our blkfront peer now that it has completed publishing
3304  * its configuration into the XenStore.
3305  *
3306  * \param xbb  Per-instance xbb configuration structure.
3307  */
3308 static void
3309 xbb_connect(struct xbb_softc *xbb)
3310 {
3311 	int error;
3312 
3313 	if (xenbus_get_state(xbb->dev) != XenbusStateInitialised)
3314 		return;
3315 
3316 	if (xbb_collect_frontend_info(xbb) != 0)
3317 		return;
3318 
3319 	xbb->flags &= ~XBBF_SHUTDOWN;
3320 
3321 	/*
3322 	 * We limit the maximum number of reqlist segments to the maximum
3323 	 * number of segments in the ring, or our absolute maximum,
3324 	 * whichever is smaller.
3325 	 */
3326 	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3327 		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3328 
3329 	/*
3330 	 * The maximum size is simply a function of the number of segments
3331 	 * we can handle.
3332 	 */
3333 	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3334 
3335 	/* Allocate resources whose size depends on front-end configuration. */
3336 	error = xbb_alloc_communication_mem(xbb);
3337 	if (error != 0) {
3338 		xenbus_dev_fatal(xbb->dev, error,
3339 				 "Unable to allocate communication memory");
3340 		return;
3341 	}
3342 
3343 	error = xbb_alloc_requests(xbb);
3344 	if (error != 0) {
3345 		/* Specific errors are reported by xbb_alloc_requests(). */
3346 		return;
3347 	}
3348 
3349 	error = xbb_alloc_request_lists(xbb);
3350 	if (error != 0) {
3351 		/* Specific errors are reported by xbb_alloc_request_lists(). */
3352 		return;
3353 	}
3354 
3355 	/*
3356 	 * Connect communication channel.
3357 	 */
3358 	error = xbb_connect_ring(xbb);
3359 	if (error != 0) {
3360 		/* Specific errors are reported by xbb_connect_ring(). */
3361 		return;
3362 	}
3363 
3364 	if (xbb_publish_backend_info(xbb) != 0) {
3365 		/*
3366 		 * If we can't publish our data, we cannot participate
3367 		 * in this connection, and waiting for a front-end state
3368 		 * change will not help the situation.
3369 		 */
3370 		(void)xbb_disconnect(xbb);
3371 		return;
3372 	}
3373 
3374 	/* Ready for I/O. */
3375 	xenbus_set_state(xbb->dev, XenbusStateConnected);
3376 }
3377 
3378 /*-------------------------- Device Teardown Support -------------------------*/
3379 /**
3380  * Perform device shutdown functions.
3381  *
3382  * \param xbb  Per-instance xbb configuration structure.
3383  *
3384  * Mark this instance as shutting down, wait for any active I/O on the
3385  * backend device/file to drain, disconnect from the front-end, and notify
3386  * any waiters (e.g. a thread invoking our detach method) that detach can
3387  * now proceed.
3388  */
3389 static int
3390 xbb_shutdown(struct xbb_softc *xbb)
3391 {
3392 	XenbusState frontState;
3393 	int	    error;
3394 
3395 	DPRINTF("\n");
3396 
3397 	/*
3398 	 * Due to the need to drop our mutex during some
3399 	 * xenbus operations, it is possible for two threads
3400 	 * to attempt to close out shutdown processing at
3401 	 * the same time.  Tell the caller that hits this
3402 	 * race to try back later.
3403 	 */
3404 	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3405 		return (EAGAIN);
3406 
3407 	xbb->flags |= XBBF_IN_SHUTDOWN;
3408 	mtx_unlock(&xbb->lock);
3409 
3410 	if (xbb->hotplug_watch.node != NULL) {
3411 		xs_unregister_watch(&xbb->hotplug_watch);
3412 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3413 		xbb->hotplug_watch.node = NULL;
3414 	}
3415 
3416 	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3417 		xenbus_set_state(xbb->dev, XenbusStateClosing);
3418 
3419 	frontState = xenbus_get_otherend_state(xbb->dev);
3420 	mtx_lock(&xbb->lock);
3421 	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3422 
3423 	/* Wait for the frontend to disconnect (if it's connected). */
3424 	if (frontState == XenbusStateConnected)
3425 		return (EAGAIN);
3426 
3427 	DPRINTF("\n");
3428 
3429 	/* Indicate shutdown is in progress. */
3430 	xbb->flags |= XBBF_SHUTDOWN;
3431 
3432 	/* Disconnect from the front-end. */
3433 	error = xbb_disconnect(xbb);
3434 	if (error != 0) {
3435 		/*
3436 		 * Requests still outstanding.  We'll be called again
3437 		 * once they complete.
3438 		 */
3439 		KASSERT(error == EAGAIN,
3440 			("%s: Unexpected xbb_disconnect() failure %d",
3441 			 __func__, error));
3442 
3443 		return (error);
3444 	}
3445 
3446 	DPRINTF("\n");
3447 
3448 	/* Indicate to xbb_detach() that is it safe to proceed. */
3449 	wakeup(xbb);
3450 
3451 	return (0);
3452 }
3453 
3454 /**
3455  * Report an attach time error to the console and Xen, and cleanup
3456  * this instance by forcing immediate detach processing.
3457  *
3458  * \param xbb  Per-instance xbb configuration structure.
3459  * \param err  Errno describing the error.
3460  * \param fmt  Printf style format and arguments
3461  */
3462 static void
3463 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3464 {
3465 	va_list ap;
3466 	va_list ap_hotplug;
3467 
3468 	va_start(ap, fmt);
3469 	va_copy(ap_hotplug, ap);
3470 	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3471 		  "hotplug-error", fmt, ap_hotplug);
3472 	va_end(ap_hotplug);
3473 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3474 		  "hotplug-status", "error");
3475 
3476 	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3477 	va_end(ap);
3478 
3479 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3480 		  "online", "0");
3481 	mtx_lock(&xbb->lock);
3482 	xbb_shutdown(xbb);
3483 	mtx_unlock(&xbb->lock);
3484 }
3485 
3486 /*---------------------------- NewBus Entrypoints ----------------------------*/
3487 /**
3488  * Inspect a XenBus device and claim it if is of the appropriate type.
3489  *
3490  * \param dev  NewBus device object representing a candidate XenBus device.
3491  *
3492  * \return  0 for success, errno codes for failure.
3493  */
3494 static int
3495 xbb_probe(device_t dev)
3496 {
3497 
3498         if (!strcmp(xenbus_get_type(dev), "vbd")) {
3499                 device_set_desc(dev, "Backend Virtual Block Device");
3500                 device_quiet(dev);
3501                 return (0);
3502         }
3503 
3504         return (ENXIO);
3505 }
3506 
3507 /**
3508  * Setup sysctl variables to control various Block Back parameters.
3509  *
3510  * \param xbb  Xen Block Back softc.
3511  *
3512  */
3513 static void
3514 xbb_setup_sysctl(struct xbb_softc *xbb)
3515 {
3516 	struct sysctl_ctx_list *sysctl_ctx = NULL;
3517 	struct sysctl_oid      *sysctl_tree = NULL;
3518 
3519 	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3520 	if (sysctl_ctx == NULL)
3521 		return;
3522 
3523 	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3524 	if (sysctl_tree == NULL)
3525 		return;
3526 
3527 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3528 		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3529 		       "fake the flush command");
3530 
3531 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3532 		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3533 		       "send a real flush for N flush requests");
3534 
3535 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3536 		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3537 		       "Don't coalesce contiguous requests");
3538 
3539 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3540 			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3541 			 "how many I/O requests we have received");
3542 
3543 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3544 			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3545 			 "how many I/O requests have been completed");
3546 
3547 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3548 			 "reqs_queued_for_completion", CTLFLAG_RW,
3549 			 &xbb->reqs_queued_for_completion,
3550 			 "how many I/O requests queued but not yet pushed");
3551 
3552 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3553 			 "reqs_completed_with_error", CTLFLAG_RW,
3554 			 &xbb->reqs_completed_with_error,
3555 			 "how many I/O requests completed with error status");
3556 
3557 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3558 			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3559 			 "how many I/O dispatches were forced");
3560 
3561 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3562 			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3563 			 "how many I/O dispatches were normal");
3564 
3565 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3566 			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3567 			 "total number of I/O dispatches");
3568 
3569 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3570 			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3571 			 "how many times we have run out of KVA");
3572 
3573 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3574 			 "request_shortages", CTLFLAG_RW,
3575 			 &xbb->request_shortages,
3576 			 "how many times we have run out of requests");
3577 
3578 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3579 		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3580 		        "maximum outstanding requests (negotiated)");
3581 
3582 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3583 		        "max_request_segments", CTLFLAG_RD,
3584 		        &xbb->max_request_segments, 0,
3585 		        "maximum number of pages per requests (negotiated)");
3586 
3587 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3588 		        "max_request_size", CTLFLAG_RD,
3589 		        &xbb->max_request_size, 0,
3590 		        "maximum size in bytes of a request (negotiated)");
3591 
3592 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3593 		        "ring_pages", CTLFLAG_RD,
3594 		        &xbb->ring_config.ring_pages, 0,
3595 		        "communication channel pages (negotiated)");
3596 }
3597 
3598 static void
3599 xbb_attach_disk(struct xs_watch *watch, const char **vec, unsigned int len)
3600 {
3601 	device_t		 dev;
3602 	struct xbb_softc	*xbb;
3603 	int			 error;
3604 
3605 	dev = (device_t) watch->callback_data;
3606 	xbb = device_get_softc(dev);
3607 
3608 	error = xs_gather(XST_NIL, xenbus_get_node(dev), "physical-device-path",
3609 	    NULL, &xbb->dev_name, NULL);
3610 	if (error != 0)
3611 		return;
3612 
3613 	xs_unregister_watch(watch);
3614 	free(watch->node, M_XENBLOCKBACK);
3615 	watch->node = NULL;
3616 
3617 	/* Collect physical device information. */
3618 	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3619 			  "device-type", NULL, &xbb->dev_type,
3620 			  NULL);
3621 	if (error != 0)
3622 		xbb->dev_type = NULL;
3623 
3624 	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3625                           "mode", NULL, &xbb->dev_mode,
3626                           NULL);
3627 	if (error != 0) {
3628 		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3629 				  xenbus_get_node(dev));
3630                 return;
3631         }
3632 
3633 	/* Parse fopen style mode flags. */
3634 	if (strchr(xbb->dev_mode, 'w') == NULL)
3635 		xbb->flags |= XBBF_READ_ONLY;
3636 
3637 	/*
3638 	 * Verify the physical device is present and can support
3639 	 * the desired I/O mode.
3640 	 */
3641 	error = xbb_open_backend(xbb);
3642 	if (error != 0) {
3643 		xbb_attach_failed(xbb, error, "Unable to open %s",
3644 				  xbb->dev_name);
3645 		return;
3646 	}
3647 
3648 	/* Use devstat(9) for recording statistics. */
3649 	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3650 					   xbb->sector_size,
3651 					   DEVSTAT_ALL_SUPPORTED,
3652 					   DEVSTAT_TYPE_DIRECT
3653 					 | DEVSTAT_TYPE_IF_OTHER,
3654 					   DEVSTAT_PRIORITY_OTHER);
3655 
3656 	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3657 					      xbb->sector_size,
3658 					      DEVSTAT_ALL_SUPPORTED,
3659 					      DEVSTAT_TYPE_DIRECT
3660 					    | DEVSTAT_TYPE_IF_OTHER,
3661 					      DEVSTAT_PRIORITY_OTHER);
3662 	/*
3663 	 * Setup sysctl variables.
3664 	 */
3665 	xbb_setup_sysctl(xbb);
3666 
3667 	/*
3668 	 * Create a taskqueue for doing work that must occur from a
3669 	 * thread context.
3670 	 */
3671 	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3672 						  M_NOWAIT,
3673 						  taskqueue_thread_enqueue,
3674 						  /*contxt*/&xbb->io_taskqueue);
3675 	if (xbb->io_taskqueue == NULL) {
3676 		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3677 		return;
3678 	}
3679 
3680 	taskqueue_start_threads(&xbb->io_taskqueue,
3681 				/*num threads*/1,
3682 				/*priority*/PWAIT,
3683 				/*thread name*/
3684 				"%s taskq", device_get_nameunit(dev));
3685 
3686 	/* Update hot-plug status to satisfy xend. */
3687 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3688 			  "hotplug-status", "connected");
3689 	if (error) {
3690 		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3691 				  xenbus_get_node(xbb->dev));
3692 		return;
3693 	}
3694 
3695 	/* Tell the front end that we are ready to connect. */
3696 	xenbus_set_state(dev, XenbusStateInitialised);
3697 }
3698 
3699 /**
3700  * Attach to a XenBus device that has been claimed by our probe routine.
3701  *
3702  * \param dev  NewBus device object representing this Xen Block Back instance.
3703  *
3704  * \return  0 for success, errno codes for failure.
3705  */
3706 static int
3707 xbb_attach(device_t dev)
3708 {
3709 	struct xbb_softc	*xbb;
3710 	int			 error;
3711 	u_int			 max_ring_page_order;
3712 	struct sbuf		*watch_path;
3713 
3714 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3715 
3716 	/*
3717 	 * Basic initialization.
3718 	 * After this block it is safe to call xbb_detach()
3719 	 * to clean up any allocated data for this instance.
3720 	 */
3721 	xbb = device_get_softc(dev);
3722 	xbb->dev = dev;
3723 	xbb->otherend_id = xenbus_get_otherend_id(dev);
3724 	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3725 	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3726 
3727 	/*
3728 	 * Publish protocol capabilities for consumption by the
3729 	 * front-end.
3730 	 */
3731 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3732 			  "feature-barrier", "1");
3733 	if (error) {
3734 		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3735 				  xenbus_get_node(xbb->dev));
3736 		return (error);
3737 	}
3738 
3739 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3740 			  "feature-flush-cache", "1");
3741 	if (error) {
3742 		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3743 				  xenbus_get_node(xbb->dev));
3744 		return (error);
3745 	}
3746 
3747 	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3748 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3749 			  "max-ring-page-order", "%u", max_ring_page_order);
3750 	if (error) {
3751 		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3752 				  xenbus_get_node(xbb->dev));
3753 		return (error);
3754 	}
3755 
3756 	/*
3757 	 * We need to wait for hotplug script execution before
3758 	 * moving forward.
3759 	 */
3760 	watch_path = xs_join(xenbus_get_node(xbb->dev), "physical-device-path");
3761 	xbb->hotplug_watch.callback_data = (uintptr_t)dev;
3762 	xbb->hotplug_watch.callback = xbb_attach_disk;
3763 	KASSERT(xbb->hotplug_watch.node == NULL, ("watch node already setup"));
3764 	xbb->hotplug_watch.node = strdup(sbuf_data(watch_path), M_XENBLOCKBACK);
3765 	sbuf_delete(watch_path);
3766 	error = xs_register_watch(&xbb->hotplug_watch);
3767 	if (error != 0) {
3768 		xbb_attach_failed(xbb, error, "failed to create watch on %s",
3769 		    xbb->hotplug_watch.node);
3770 		free(xbb->hotplug_watch.node, M_XENBLOCKBACK);
3771 		return (error);
3772 	}
3773 
3774 	/* Tell the toolstack blkback has attached. */
3775 	xenbus_set_state(dev, XenbusStateInitWait);
3776 
3777 	return (0);
3778 }
3779 
3780 /**
3781  * Detach from a block back device instance.
3782  *
3783  * \param dev  NewBus device object representing this Xen Block Back instance.
3784  *
3785  * \return  0 for success, errno codes for failure.
3786  *
3787  * \note A block back device may be detached at any time in its life-cycle,
3788  *       including part way through the attach process.  For this reason,
3789  *       initialization order and the initialization state checks in this
3790  *       routine must be carefully coupled so that attach time failures
3791  *       are gracefully handled.
3792  */
3793 static int
3794 xbb_detach(device_t dev)
3795 {
3796         struct xbb_softc *xbb;
3797 
3798 	DPRINTF("\n");
3799 
3800         xbb = device_get_softc(dev);
3801 	mtx_lock(&xbb->lock);
3802 	while (xbb_shutdown(xbb) == EAGAIN) {
3803 		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3804 		       "xbb_shutdown", 0);
3805 	}
3806 	mtx_unlock(&xbb->lock);
3807 
3808 	DPRINTF("\n");
3809 
3810 	if (xbb->io_taskqueue != NULL)
3811 		taskqueue_free(xbb->io_taskqueue);
3812 
3813 	if (xbb->xbb_stats != NULL)
3814 		devstat_remove_entry(xbb->xbb_stats);
3815 
3816 	if (xbb->xbb_stats_in != NULL)
3817 		devstat_remove_entry(xbb->xbb_stats_in);
3818 
3819 	xbb_close_backend(xbb);
3820 
3821 	if (xbb->dev_mode != NULL) {
3822 		free(xbb->dev_mode, M_XENSTORE);
3823 		xbb->dev_mode = NULL;
3824 	}
3825 
3826 	if (xbb->dev_type != NULL) {
3827 		free(xbb->dev_type, M_XENSTORE);
3828 		xbb->dev_type = NULL;
3829 	}
3830 
3831 	if (xbb->dev_name != NULL) {
3832 		free(xbb->dev_name, M_XENSTORE);
3833 		xbb->dev_name = NULL;
3834 	}
3835 
3836 	mtx_destroy(&xbb->lock);
3837         return (0);
3838 }
3839 
3840 /**
3841  * Prepare this block back device for suspension of this VM.
3842  *
3843  * \param dev  NewBus device object representing this Xen Block Back instance.
3844  *
3845  * \return  0 for success, errno codes for failure.
3846  */
3847 static int
3848 xbb_suspend(device_t dev)
3849 {
3850 #ifdef NOT_YET
3851         struct xbb_softc *sc = device_get_softc(dev);
3852 
3853         /* Prevent new requests being issued until we fix things up. */
3854         mtx_lock(&sc->xb_io_lock);
3855         sc->connected = BLKIF_STATE_SUSPENDED;
3856         mtx_unlock(&sc->xb_io_lock);
3857 #endif
3858 
3859         return (0);
3860 }
3861 
3862 /**
3863  * Perform any processing required to recover from a suspended state.
3864  *
3865  * \param dev  NewBus device object representing this Xen Block Back instance.
3866  *
3867  * \return  0 for success, errno codes for failure.
3868  */
3869 static int
3870 xbb_resume(device_t dev)
3871 {
3872 	return (0);
3873 }
3874 
3875 /**
3876  * Handle state changes expressed via the XenStore by our front-end peer.
3877  *
3878  * \param dev             NewBus device object representing this Xen
3879  *                        Block Back instance.
3880  * \param frontend_state  The new state of the front-end.
3881  *
3882  * \return  0 for success, errno codes for failure.
3883  */
3884 static void
3885 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3886 {
3887 	struct xbb_softc *xbb = device_get_softc(dev);
3888 
3889 	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3890 	        xenbus_strstate(frontend_state),
3891 		xenbus_strstate(xenbus_get_state(xbb->dev)));
3892 
3893 	switch (frontend_state) {
3894 	case XenbusStateInitialising:
3895 		break;
3896 	case XenbusStateInitialised:
3897 	case XenbusStateConnected:
3898 		xbb_connect(xbb);
3899 		break;
3900 	case XenbusStateClosing:
3901 	case XenbusStateClosed:
3902 		mtx_lock(&xbb->lock);
3903 		xbb_shutdown(xbb);
3904 		mtx_unlock(&xbb->lock);
3905 		if (frontend_state == XenbusStateClosed)
3906 			xenbus_set_state(xbb->dev, XenbusStateClosed);
3907 		break;
3908 	default:
3909 		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
3910 				 frontend_state);
3911 		break;
3912 	}
3913 }
3914 
3915 /*---------------------------- NewBus Registration ---------------------------*/
3916 static device_method_t xbb_methods[] = {
3917 	/* Device interface */
3918 	DEVMETHOD(device_probe,		xbb_probe),
3919 	DEVMETHOD(device_attach,	xbb_attach),
3920 	DEVMETHOD(device_detach,	xbb_detach),
3921 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
3922 	DEVMETHOD(device_suspend,	xbb_suspend),
3923 	DEVMETHOD(device_resume,	xbb_resume),
3924 
3925 	/* Xenbus interface */
3926 	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
3927 
3928 	{ 0, 0 }
3929 };
3930 
3931 static driver_t xbb_driver = {
3932         "xbbd",
3933         xbb_methods,
3934         sizeof(struct xbb_softc),
3935 };
3936 devclass_t xbb_devclass;
3937 
3938 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
3939