xref: /freebsd/sys/dev/xen/blkback/blkback.c (revision 0e97acdf58fe27b09c4824a474b0344daf997c5f)
1 /*-
2  * Copyright (c) 2009-2012 Spectra Logic Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    substantially similar to the "NO WARRANTY" disclaimer below
13  *    ("Disclaimer") and any redistribution must be conditioned upon
14  *    including a substantially similar Disclaimer requirement for further
15  *    binary redistribution.
16  *
17  * NO WARRANTY
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGES.
29  *
30  * Authors: Justin T. Gibbs     (Spectra Logic Corporation)
31  *          Ken Merry           (Spectra Logic Corporation)
32  */
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /**
37  * \file blkback.c
38  *
39  * \brief Device driver supporting the vending of block storage from
40  *        a FreeBSD domain to other domains.
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 
48 #include <sys/bio.h>
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/devicestat.h>
52 #include <sys/disk.h>
53 #include <sys/fcntl.h>
54 #include <sys/filedesc.h>
55 #include <sys/kdb.h>
56 #include <sys/module.h>
57 #include <sys/namei.h>
58 #include <sys/proc.h>
59 #include <sys/rman.h>
60 #include <sys/taskqueue.h>
61 #include <sys/types.h>
62 #include <sys/vnode.h>
63 #include <sys/mount.h>
64 #include <sys/sysctl.h>
65 #include <sys/bitstring.h>
66 #include <sys/sdt.h>
67 
68 #include <geom/geom.h>
69 
70 #include <machine/_inttypes.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 #include <vm/vm_kern.h>
75 
76 #include <xen/xen-os.h>
77 #include <xen/blkif.h>
78 #include <xen/gnttab.h>
79 #include <xen/xen_intr.h>
80 
81 #include <xen/interface/event_channel.h>
82 #include <xen/interface/grant_table.h>
83 
84 #include <xen/xenbus/xenbusvar.h>
85 
86 /*--------------------------- Compile-time Tunables --------------------------*/
87 /**
88  * The maximum number of outstanding request blocks (request headers plus
89  * additional segment blocks) we will allow in a negotiated block-front/back
90  * communication channel.
91  */
92 #define	XBB_MAX_REQUESTS	256
93 
94 /**
95  * \brief Define to force all I/O to be performed on memory owned by the
96  *        backend device, with a copy-in/out to the remote domain's memory.
97  *
98  * \note  This option is currently required when this driver's domain is
99  *        operating in HVM mode on a system using an IOMMU.
100  *
101  * This driver uses Xen's grant table API to gain access to the memory of
102  * the remote domains it serves.  When our domain is operating in PV mode,
103  * the grant table mechanism directly updates our domain's page table entries
104  * to point to the physical pages of the remote domain.  This scheme guarantees
105  * that blkback and the backing devices it uses can safely perform DMA
106  * operations to satisfy requests.  In HVM mode, Xen may use a HW IOMMU to
107  * insure that our domain cannot DMA to pages owned by another domain.  As
108  * of Xen 4.0, IOMMU mappings for HVM guests are not updated via the grant
109  * table API.  For this reason, in HVM mode, we must bounce all requests into
110  * memory that is mapped into our domain at domain startup and thus has
111  * valid IOMMU mappings.
112  */
113 #define XBB_USE_BOUNCE_BUFFERS
114 
115 /**
116  * \brief Define to enable rudimentary request logging to the console.
117  */
118 #undef XBB_DEBUG
119 
120 /*---------------------------------- Macros ----------------------------------*/
121 /**
122  * Custom malloc type for all driver allocations.
123  */
124 static MALLOC_DEFINE(M_XENBLOCKBACK, "xbbd", "Xen Block Back Driver Data");
125 
126 #ifdef XBB_DEBUG
127 #define DPRINTF(fmt, args...)					\
128     printf("xbb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
129 #else
130 #define DPRINTF(fmt, args...) do {} while(0)
131 #endif
132 
133 /**
134  * The maximum mapped region size per request we will allow in a negotiated
135  * block-front/back communication channel.
136  */
137 #define	XBB_MAX_REQUEST_SIZE					\
138 	MIN(MAXPHYS, BLKIF_MAX_SEGMENTS_PER_REQUEST * PAGE_SIZE)
139 
140 /**
141  * The maximum number of segments (within a request header and accompanying
142  * segment blocks) per request we will allow in a negotiated block-front/back
143  * communication channel.
144  */
145 #define	XBB_MAX_SEGMENTS_PER_REQUEST				\
146 	(MIN(UIO_MAXIOV,					\
147 	     MIN(BLKIF_MAX_SEGMENTS_PER_REQUEST,		\
148 		 (XBB_MAX_REQUEST_SIZE / PAGE_SIZE) + 1)))
149 
150 /**
151  * The maximum number of shared memory ring pages we will allow in a
152  * negotiated block-front/back communication channel.  Allow enough
153  * ring space for all requests to be XBB_MAX_REQUEST_SIZE'd.
154  */
155 #define	XBB_MAX_RING_PAGES						    \
156 	BLKIF_RING_PAGES(BLKIF_SEGS_TO_BLOCKS(XBB_MAX_SEGMENTS_PER_REQUEST) \
157 		       * XBB_MAX_REQUESTS)
158 /**
159  * The maximum number of ring pages that we can allow per request list.
160  * We limit this to the maximum number of segments per request, because
161  * that is already a reasonable number of segments to aggregate.  This
162  * number should never be smaller than XBB_MAX_SEGMENTS_PER_REQUEST,
163  * because that would leave situations where we can't dispatch even one
164  * large request.
165  */
166 #define	XBB_MAX_SEGMENTS_PER_REQLIST XBB_MAX_SEGMENTS_PER_REQUEST
167 
168 /*--------------------------- Forward Declarations ---------------------------*/
169 struct xbb_softc;
170 struct xbb_xen_req;
171 
172 static void xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt,
173 			      ...) __attribute__((format(printf, 3, 4)));
174 static int  xbb_shutdown(struct xbb_softc *xbb);
175 static int  xbb_detach(device_t dev);
176 
177 /*------------------------------ Data Structures -----------------------------*/
178 
179 STAILQ_HEAD(xbb_xen_req_list, xbb_xen_req);
180 
181 typedef enum {
182 	XBB_REQLIST_NONE	= 0x00,
183 	XBB_REQLIST_MAPPED	= 0x01
184 } xbb_reqlist_flags;
185 
186 struct xbb_xen_reqlist {
187 	/**
188 	 * Back reference to the parent block back instance for this
189 	 * request.  Used during bio_done handling.
190 	 */
191 	struct xbb_softc        *xbb;
192 
193 	/**
194 	 * BLKIF_OP code for this request.
195 	 */
196 	int			 operation;
197 
198 	/**
199 	 * Set to BLKIF_RSP_* to indicate request status.
200 	 *
201 	 * This field allows an error status to be recorded even if the
202 	 * delivery of this status must be deferred.  Deferred reporting
203 	 * is necessary, for example, when an error is detected during
204 	 * completion processing of one bio when other bios for this
205 	 * request are still outstanding.
206 	 */
207 	int			 status;
208 
209 	/**
210 	 * Number of 512 byte sectors not transferred.
211 	 */
212 	int			 residual_512b_sectors;
213 
214 	/**
215 	 * Starting sector number of the first request in the list.
216 	 */
217 	off_t			 starting_sector_number;
218 
219 	/**
220 	 * If we're going to coalesce, the next contiguous sector would be
221 	 * this one.
222 	 */
223 	off_t			 next_contig_sector;
224 
225 	/**
226 	 * Number of child requests in the list.
227 	 */
228 	int			 num_children;
229 
230 	/**
231 	 * Number of I/O requests still pending on the backend.
232 	 */
233 	int			 pendcnt;
234 
235 	/**
236 	 * Total number of segments for requests in the list.
237 	 */
238 	int			 nr_segments;
239 
240 	/**
241 	 * Flags for this particular request list.
242 	 */
243 	xbb_reqlist_flags	 flags;
244 
245 	/**
246 	 * Kernel virtual address space reserved for this request
247 	 * list structure and used to map the remote domain's pages for
248 	 * this I/O, into our domain's address space.
249 	 */
250 	uint8_t			*kva;
251 
252 	/**
253 	 * Base, psuedo-physical address, corresponding to the start
254 	 * of this request's kva region.
255 	 */
256 	uint64_t	 	 gnt_base;
257 
258 
259 #ifdef XBB_USE_BOUNCE_BUFFERS
260 	/**
261 	 * Pre-allocated domain local memory used to proxy remote
262 	 * domain memory during I/O operations.
263 	 */
264 	uint8_t			*bounce;
265 #endif
266 
267 	/**
268 	 * Array of grant handles (one per page) used to map this request.
269 	 */
270 	grant_handle_t		*gnt_handles;
271 
272 	/**
273 	 * Device statistics request ordering type (ordered or simple).
274 	 */
275 	devstat_tag_type	 ds_tag_type;
276 
277 	/**
278 	 * Device statistics request type (read, write, no_data).
279 	 */
280 	devstat_trans_flags	 ds_trans_type;
281 
282 	/**
283 	 * The start time for this request.
284 	 */
285 	struct bintime		 ds_t0;
286 
287 	/**
288 	 * Linked list of contiguous requests with the same operation type.
289 	 */
290 	struct xbb_xen_req_list	 contig_req_list;
291 
292 	/**
293 	 * Linked list links used to aggregate idle requests in the
294 	 * request list free pool (xbb->reqlist_free_stailq) and pending
295 	 * requests waiting for execution (xbb->reqlist_pending_stailq).
296 	 */
297 	STAILQ_ENTRY(xbb_xen_reqlist) links;
298 };
299 
300 STAILQ_HEAD(xbb_xen_reqlist_list, xbb_xen_reqlist);
301 
302 /**
303  * \brief Object tracking an in-flight I/O from a Xen VBD consumer.
304  */
305 struct xbb_xen_req {
306 	/**
307 	 * Linked list links used to aggregate requests into a reqlist
308 	 * and to store them in the request free pool.
309 	 */
310 	STAILQ_ENTRY(xbb_xen_req) links;
311 
312 	/**
313 	 * The remote domain's identifier for this I/O request.
314 	 */
315 	uint64_t		  id;
316 
317 	/**
318 	 * The number of pages currently mapped for this request.
319 	 */
320 	int			  nr_pages;
321 
322 	/**
323 	 * The number of 512 byte sectors comprising this requests.
324 	 */
325 	int			  nr_512b_sectors;
326 
327 	/**
328 	 * BLKIF_OP code for this request.
329 	 */
330 	int			  operation;
331 
332 	/**
333 	 * Storage used for non-native ring requests.
334 	 */
335 	blkif_request_t		 ring_req_storage;
336 
337 	/**
338 	 * Pointer to the Xen request in the ring.
339 	 */
340 	blkif_request_t		*ring_req;
341 
342 	/**
343 	 * Consumer index for this request.
344 	 */
345 	RING_IDX		 req_ring_idx;
346 
347 	/**
348 	 * The start time for this request.
349 	 */
350 	struct bintime		 ds_t0;
351 
352 	/**
353 	 * Pointer back to our parent request list.
354 	 */
355 	struct xbb_xen_reqlist  *reqlist;
356 };
357 SLIST_HEAD(xbb_xen_req_slist, xbb_xen_req);
358 
359 /**
360  * \brief Configuration data for the shared memory request ring
361  *        used to communicate with the front-end client of this
362  *        this driver.
363  */
364 struct xbb_ring_config {
365 	/** KVA address where ring memory is mapped. */
366 	vm_offset_t	va;
367 
368 	/** The pseudo-physical address where ring memory is mapped.*/
369 	uint64_t	gnt_addr;
370 
371 	/**
372 	 * Grant table handles, one per-ring page, returned by the
373 	 * hyperpervisor upon mapping of the ring and required to
374 	 * unmap it when a connection is torn down.
375 	 */
376 	grant_handle_t	handle[XBB_MAX_RING_PAGES];
377 
378 	/**
379 	 * The device bus address returned by the hypervisor when
380 	 * mapping the ring and required to unmap it when a connection
381 	 * is torn down.
382 	 */
383 	uint64_t	bus_addr[XBB_MAX_RING_PAGES];
384 
385 	/** The number of ring pages mapped for the current connection. */
386 	u_int		ring_pages;
387 
388 	/**
389 	 * The grant references, one per-ring page, supplied by the
390 	 * front-end, allowing us to reference the ring pages in the
391 	 * front-end's domain and to map these pages into our own domain.
392 	 */
393 	grant_ref_t	ring_ref[XBB_MAX_RING_PAGES];
394 
395 	/** The interrupt driven even channel used to signal ring events. */
396 	evtchn_port_t   evtchn;
397 };
398 
399 /**
400  * Per-instance connection state flags.
401  */
402 typedef enum
403 {
404 	/**
405 	 * The front-end requested a read-only mount of the
406 	 * back-end device/file.
407 	 */
408 	XBBF_READ_ONLY         = 0x01,
409 
410 	/** Communication with the front-end has been established. */
411 	XBBF_RING_CONNECTED    = 0x02,
412 
413 	/**
414 	 * Front-end requests exist in the ring and are waiting for
415 	 * xbb_xen_req objects to free up.
416 	 */
417 	XBBF_RESOURCE_SHORTAGE = 0x04,
418 
419 	/** Connection teardown in progress. */
420 	XBBF_SHUTDOWN          = 0x08,
421 
422 	/** A thread is already performing shutdown processing. */
423 	XBBF_IN_SHUTDOWN       = 0x10
424 } xbb_flag_t;
425 
426 /** Backend device type.  */
427 typedef enum {
428 	/** Backend type unknown. */
429 	XBB_TYPE_NONE		= 0x00,
430 
431 	/**
432 	 * Backend type disk (access via cdev switch
433 	 * strategy routine).
434 	 */
435 	XBB_TYPE_DISK		= 0x01,
436 
437 	/** Backend type file (access vnode operations.). */
438 	XBB_TYPE_FILE		= 0x02
439 } xbb_type;
440 
441 /**
442  * \brief Structure used to memoize information about a per-request
443  *        scatter-gather list.
444  *
445  * The chief benefit of using this data structure is it avoids having
446  * to reparse the possibly discontiguous S/G list in the original
447  * request.  Due to the way that the mapping of the memory backing an
448  * I/O transaction is handled by Xen, a second pass is unavoidable.
449  * At least this way the second walk is a simple array traversal.
450  *
451  * \note A single Scatter/Gather element in the block interface covers
452  *       at most 1 machine page.  In this context a sector (blkif
453  *       nomenclature, not what I'd choose) is a 512b aligned unit
454  *       of mapping within the machine page referenced by an S/G
455  *       element.
456  */
457 struct xbb_sg {
458 	/** The number of 512b data chunks mapped in this S/G element. */
459 	int16_t nsect;
460 
461 	/**
462 	 * The index (0 based) of the first 512b data chunk mapped
463 	 * in this S/G element.
464 	 */
465 	uint8_t first_sect;
466 
467 	/**
468 	 * The index (0 based) of the last 512b data chunk mapped
469 	 * in this S/G element.
470 	 */
471 	uint8_t last_sect;
472 };
473 
474 /**
475  * Character device backend specific configuration data.
476  */
477 struct xbb_dev_data {
478 	/** Cdev used for device backend access.  */
479 	struct cdev   *cdev;
480 
481 	/** Cdev switch used for device backend access.  */
482 	struct cdevsw *csw;
483 
484 	/** Used to hold a reference on opened cdev backend devices. */
485 	int	       dev_ref;
486 };
487 
488 /**
489  * File backend specific configuration data.
490  */
491 struct xbb_file_data {
492 	/** Credentials to use for vnode backed (file based) I/O. */
493 	struct ucred   *cred;
494 
495 	/**
496 	 * \brief Array of io vectors used to process file based I/O.
497 	 *
498 	 * Only a single file based request is outstanding per-xbb instance,
499 	 * so we only need one of these.
500 	 */
501 	struct iovec	xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
502 #ifdef XBB_USE_BOUNCE_BUFFERS
503 
504 	/**
505 	 * \brief Array of io vectors used to handle bouncing of file reads.
506 	 *
507 	 * Vnode operations are free to modify uio data during their
508 	 * exectuion.  In the case of a read with bounce buffering active,
509 	 * we need some of the data from the original uio in order to
510 	 * bounce-out the read data.  This array serves as the temporary
511 	 * storage for this saved data.
512 	 */
513 	struct iovec	saved_xiovecs[XBB_MAX_SEGMENTS_PER_REQLIST];
514 
515 	/**
516 	 * \brief Array of memoized bounce buffer kva offsets used
517 	 *        in the file based backend.
518 	 *
519 	 * Due to the way that the mapping of the memory backing an
520 	 * I/O transaction is handled by Xen, a second pass through
521 	 * the request sg elements is unavoidable. We memoize the computed
522 	 * bounce address here to reduce the cost of the second walk.
523 	 */
524 	void		*xiovecs_vaddr[XBB_MAX_SEGMENTS_PER_REQLIST];
525 #endif /* XBB_USE_BOUNCE_BUFFERS */
526 };
527 
528 /**
529  * Collection of backend type specific data.
530  */
531 union xbb_backend_data {
532 	struct xbb_dev_data  dev;
533 	struct xbb_file_data file;
534 };
535 
536 /**
537  * Function signature of backend specific I/O handlers.
538  */
539 typedef int (*xbb_dispatch_t)(struct xbb_softc *xbb,
540 			      struct xbb_xen_reqlist *reqlist, int operation,
541 			      int flags);
542 
543 /**
544  * Per-instance configuration data.
545  */
546 struct xbb_softc {
547 
548 	/**
549 	 * Task-queue used to process I/O requests.
550 	 */
551 	struct taskqueue	 *io_taskqueue;
552 
553 	/**
554 	 * Single "run the request queue" task enqueued
555 	 * on io_taskqueue.
556 	 */
557 	struct task		  io_task;
558 
559 	/** Device type for this instance. */
560 	xbb_type		  device_type;
561 
562 	/** NewBus device corresponding to this instance. */
563 	device_t		  dev;
564 
565 	/** Backend specific dispatch routine for this instance. */
566 	xbb_dispatch_t		  dispatch_io;
567 
568 	/** The number of requests outstanding on the backend device/file. */
569 	int			  active_request_count;
570 
571 	/** Free pool of request tracking structures. */
572 	struct xbb_xen_req_list   request_free_stailq;
573 
574 	/** Array, sized at connection time, of request tracking structures. */
575 	struct xbb_xen_req	 *requests;
576 
577 	/** Free pool of request list structures. */
578 	struct xbb_xen_reqlist_list reqlist_free_stailq;
579 
580 	/** List of pending request lists awaiting execution. */
581 	struct xbb_xen_reqlist_list reqlist_pending_stailq;
582 
583 	/** Array, sized at connection time, of request list structures. */
584 	struct xbb_xen_reqlist	 *request_lists;
585 
586 	/**
587 	 * Global pool of kva used for mapping remote domain ring
588 	 * and I/O transaction data.
589 	 */
590 	vm_offset_t		  kva;
591 
592 	/** Psuedo-physical address corresponding to kva. */
593 	uint64_t		  gnt_base_addr;
594 
595 	/** The size of the global kva pool. */
596 	int			  kva_size;
597 
598 	/** The size of the KVA area used for request lists. */
599 	int			  reqlist_kva_size;
600 
601 	/** The number of pages of KVA used for request lists */
602 	int			  reqlist_kva_pages;
603 
604 	/** Bitmap of free KVA pages */
605 	bitstr_t		 *kva_free;
606 
607 	/**
608 	 * \brief Cached value of the front-end's domain id.
609 	 *
610 	 * This value is used at once for each mapped page in
611 	 * a transaction.  We cache it to avoid incuring the
612 	 * cost of an ivar access every time this is needed.
613 	 */
614 	domid_t			  otherend_id;
615 
616 	/**
617 	 * \brief The blkif protocol abi in effect.
618 	 *
619 	 * There are situations where the back and front ends can
620 	 * have a different, native abi (e.g. intel x86_64 and
621 	 * 32bit x86 domains on the same machine).  The back-end
622 	 * always accomodates the front-end's native abi.  That
623 	 * value is pulled from the XenStore and recorded here.
624 	 */
625 	int			  abi;
626 
627 	/**
628 	 * \brief The maximum number of requests and request lists allowed
629 	 *        to be in flight at a time.
630 	 *
631 	 * This value is negotiated via the XenStore.
632 	 */
633 	u_int			  max_requests;
634 
635 	/**
636 	 * \brief The maximum number of segments (1 page per segment)
637 	 *	  that can be mapped by a request.
638 	 *
639 	 * This value is negotiated via the XenStore.
640 	 */
641 	u_int			  max_request_segments;
642 
643 	/**
644 	 * \brief Maximum number of segments per request list.
645 	 *
646 	 * This value is derived from and will generally be larger than
647 	 * max_request_segments.
648 	 */
649 	u_int			  max_reqlist_segments;
650 
651 	/**
652 	 * The maximum size of any request to this back-end
653 	 * device.
654 	 *
655 	 * This value is negotiated via the XenStore.
656 	 */
657 	u_int			  max_request_size;
658 
659 	/**
660 	 * The maximum size of any request list.  This is derived directly
661 	 * from max_reqlist_segments.
662 	 */
663 	u_int			  max_reqlist_size;
664 
665 	/** Various configuration and state bit flags. */
666 	xbb_flag_t		  flags;
667 
668 	/** Ring mapping and interrupt configuration data. */
669 	struct xbb_ring_config	  ring_config;
670 
671 	/** Runtime, cross-abi safe, structures for ring access. */
672 	blkif_back_rings_t	  rings;
673 
674 	/** IRQ mapping for the communication ring event channel. */
675 	xen_intr_handle_t	  xen_intr_handle;
676 
677 	/**
678 	 * \brief Backend access mode flags (e.g. write, or read-only).
679 	 *
680 	 * This value is passed to us by the front-end via the XenStore.
681 	 */
682 	char			 *dev_mode;
683 
684 	/**
685 	 * \brief Backend device type (e.g. "disk", "cdrom", "floppy").
686 	 *
687 	 * This value is passed to us by the front-end via the XenStore.
688 	 * Currently unused.
689 	 */
690 	char			 *dev_type;
691 
692 	/**
693 	 * \brief Backend device/file identifier.
694 	 *
695 	 * This value is passed to us by the front-end via the XenStore.
696 	 * We expect this to be a POSIX path indicating the file or
697 	 * device to open.
698 	 */
699 	char			 *dev_name;
700 
701 	/**
702 	 * Vnode corresponding to the backend device node or file
703 	 * we are acessing.
704 	 */
705 	struct vnode		 *vn;
706 
707 	union xbb_backend_data	  backend;
708 
709 	/** The native sector size of the backend. */
710 	u_int			  sector_size;
711 
712 	/** log2 of sector_size.  */
713 	u_int			  sector_size_shift;
714 
715 	/** Size in bytes of the backend device or file.  */
716 	off_t			  media_size;
717 
718 	/**
719 	 * \brief media_size expressed in terms of the backend native
720 	 *	  sector size.
721 	 *
722 	 * (e.g. xbb->media_size >> xbb->sector_size_shift).
723 	 */
724 	uint64_t		  media_num_sectors;
725 
726 	/**
727 	 * \brief Array of memoized scatter gather data computed during the
728 	 *	  conversion of blkif ring requests to internal xbb_xen_req
729 	 *	  structures.
730 	 *
731 	 * Ring processing is serialized so we only need one of these.
732 	 */
733 	struct xbb_sg		  xbb_sgs[XBB_MAX_SEGMENTS_PER_REQLIST];
734 
735 	/**
736 	 * Temporary grant table map used in xbb_dispatch_io().  When
737 	 * XBB_MAX_SEGMENTS_PER_REQLIST gets large, keeping this on the
738 	 * stack could cause a stack overflow.
739 	 */
740 	struct gnttab_map_grant_ref   maps[XBB_MAX_SEGMENTS_PER_REQLIST];
741 
742 	/** Mutex protecting per-instance data. */
743 	struct mtx		  lock;
744 
745 #ifdef XENHVM
746 	/**
747 	 * Resource representing allocated physical address space
748 	 * associated with our per-instance kva region.
749 	 */
750 	struct resource		 *pseudo_phys_res;
751 
752 	/** Resource id for allocated physical address space. */
753 	int			  pseudo_phys_res_id;
754 #endif
755 
756 	/**
757 	 * I/O statistics from BlockBack dispatch down.  These are
758 	 * coalesced requests, and we start them right before execution.
759 	 */
760 	struct devstat		 *xbb_stats;
761 
762 	/**
763 	 * I/O statistics coming into BlockBack.  These are the requests as
764 	 * we get them from BlockFront.  They are started as soon as we
765 	 * receive a request, and completed when the I/O is complete.
766 	 */
767 	struct devstat		 *xbb_stats_in;
768 
769 	/** Disable sending flush to the backend */
770 	int			  disable_flush;
771 
772 	/** Send a real flush for every N flush requests */
773 	int			  flush_interval;
774 
775 	/** Count of flush requests in the interval */
776 	int			  flush_count;
777 
778 	/** Don't coalesce requests if this is set */
779 	int			  no_coalesce_reqs;
780 
781 	/** Number of requests we have received */
782 	uint64_t		  reqs_received;
783 
784 	/** Number of requests we have completed*/
785 	uint64_t		  reqs_completed;
786 
787 	/** Number of requests we queued but not pushed*/
788 	uint64_t		  reqs_queued_for_completion;
789 
790 	/** Number of requests we completed with an error status*/
791 	uint64_t		  reqs_completed_with_error;
792 
793 	/** How many forced dispatches (i.e. without coalescing) have happend */
794 	uint64_t		  forced_dispatch;
795 
796 	/** How many normal dispatches have happend */
797 	uint64_t		  normal_dispatch;
798 
799 	/** How many total dispatches have happend */
800 	uint64_t		  total_dispatch;
801 
802 	/** How many times we have run out of KVA */
803 	uint64_t		  kva_shortages;
804 
805 	/** How many times we have run out of request structures */
806 	uint64_t		  request_shortages;
807 };
808 
809 /*---------------------------- Request Processing ----------------------------*/
810 /**
811  * Allocate an internal transaction tracking structure from the free pool.
812  *
813  * \param xbb  Per-instance xbb configuration structure.
814  *
815  * \return  On success, a pointer to the allocated xbb_xen_req structure.
816  *          Otherwise NULL.
817  */
818 static inline struct xbb_xen_req *
819 xbb_get_req(struct xbb_softc *xbb)
820 {
821 	struct xbb_xen_req *req;
822 
823 	req = NULL;
824 
825 	mtx_assert(&xbb->lock, MA_OWNED);
826 
827 	if ((req = STAILQ_FIRST(&xbb->request_free_stailq)) != NULL) {
828 		STAILQ_REMOVE_HEAD(&xbb->request_free_stailq, links);
829 		xbb->active_request_count++;
830 	}
831 
832 	return (req);
833 }
834 
835 /**
836  * Return an allocated transaction tracking structure to the free pool.
837  *
838  * \param xbb  Per-instance xbb configuration structure.
839  * \param req  The request structure to free.
840  */
841 static inline void
842 xbb_release_req(struct xbb_softc *xbb, struct xbb_xen_req *req)
843 {
844 	mtx_assert(&xbb->lock, MA_OWNED);
845 
846 	STAILQ_INSERT_HEAD(&xbb->request_free_stailq, req, links);
847 	xbb->active_request_count--;
848 
849 	KASSERT(xbb->active_request_count >= 0,
850 		("xbb_release_req: negative active count"));
851 }
852 
853 /**
854  * Return an xbb_xen_req_list of allocated xbb_xen_reqs to the free pool.
855  *
856  * \param xbb	    Per-instance xbb configuration structure.
857  * \param req_list  The list of requests to free.
858  * \param nreqs	    The number of items in the list.
859  */
860 static inline void
861 xbb_release_reqs(struct xbb_softc *xbb, struct xbb_xen_req_list *req_list,
862 		 int nreqs)
863 {
864 	mtx_assert(&xbb->lock, MA_OWNED);
865 
866 	STAILQ_CONCAT(&xbb->request_free_stailq, req_list);
867 	xbb->active_request_count -= nreqs;
868 
869 	KASSERT(xbb->active_request_count >= 0,
870 		("xbb_release_reqs: negative active count"));
871 }
872 
873 /**
874  * Given a page index and 512b sector offset within that page,
875  * calculate an offset into a request's kva region.
876  *
877  * \param reqlist The request structure whose kva region will be accessed.
878  * \param pagenr  The page index used to compute the kva offset.
879  * \param sector  The 512b sector index used to compute the page relative
880  *                kva offset.
881  *
882  * \return  The computed global KVA offset.
883  */
884 static inline uint8_t *
885 xbb_reqlist_vaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
886 {
887 	return (reqlist->kva + (PAGE_SIZE * pagenr) + (sector << 9));
888 }
889 
890 #ifdef XBB_USE_BOUNCE_BUFFERS
891 /**
892  * Given a page index and 512b sector offset within that page,
893  * calculate an offset into a request's local bounce memory region.
894  *
895  * \param reqlist The request structure whose bounce region will be accessed.
896  * \param pagenr  The page index used to compute the bounce offset.
897  * \param sector  The 512b sector index used to compute the page relative
898  *                bounce offset.
899  *
900  * \return  The computed global bounce buffer address.
901  */
902 static inline uint8_t *
903 xbb_reqlist_bounce_addr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
904 {
905 	return (reqlist->bounce + (PAGE_SIZE * pagenr) + (sector << 9));
906 }
907 #endif
908 
909 /**
910  * Given a page number and 512b sector offset within that page,
911  * calculate an offset into the request's memory region that the
912  * underlying backend device/file should use for I/O.
913  *
914  * \param reqlist The request structure whose I/O region will be accessed.
915  * \param pagenr  The page index used to compute the I/O offset.
916  * \param sector  The 512b sector index used to compute the page relative
917  *                I/O offset.
918  *
919  * \return  The computed global I/O address.
920  *
921  * Depending on configuration, this will either be a local bounce buffer
922  * or a pointer to the memory mapped in from the front-end domain for
923  * this request.
924  */
925 static inline uint8_t *
926 xbb_reqlist_ioaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
927 {
928 #ifdef XBB_USE_BOUNCE_BUFFERS
929 	return (xbb_reqlist_bounce_addr(reqlist, pagenr, sector));
930 #else
931 	return (xbb_reqlist_vaddr(reqlist, pagenr, sector));
932 #endif
933 }
934 
935 /**
936  * Given a page index and 512b sector offset within that page, calculate
937  * an offset into the local psuedo-physical address space used to map a
938  * front-end's request data into a request.
939  *
940  * \param reqlist The request list structure whose pseudo-physical region
941  *                will be accessed.
942  * \param pagenr  The page index used to compute the pseudo-physical offset.
943  * \param sector  The 512b sector index used to compute the page relative
944  *                pseudo-physical offset.
945  *
946  * \return  The computed global pseudo-phsyical address.
947  *
948  * Depending on configuration, this will either be a local bounce buffer
949  * or a pointer to the memory mapped in from the front-end domain for
950  * this request.
951  */
952 static inline uintptr_t
953 xbb_get_gntaddr(struct xbb_xen_reqlist *reqlist, int pagenr, int sector)
954 {
955 	struct xbb_softc *xbb;
956 
957 	xbb = reqlist->xbb;
958 
959 	return ((uintptr_t)(xbb->gnt_base_addr +
960 		(uintptr_t)(reqlist->kva - xbb->kva) +
961 		(PAGE_SIZE * pagenr) + (sector << 9)));
962 }
963 
964 /**
965  * Get Kernel Virtual Address space for mapping requests.
966  *
967  * \param xbb         Per-instance xbb configuration structure.
968  * \param nr_pages    Number of pages needed.
969  * \param check_only  If set, check for free KVA but don't allocate it.
970  * \param have_lock   If set, xbb lock is already held.
971  *
972  * \return  On success, a pointer to the allocated KVA region.  Otherwise NULL.
973  *
974  * Note:  This should be unnecessary once we have either chaining or
975  * scatter/gather support for struct bio.  At that point we'll be able to
976  * put multiple addresses and lengths in one bio/bio chain and won't need
977  * to map everything into one virtual segment.
978  */
979 static uint8_t *
980 xbb_get_kva(struct xbb_softc *xbb, int nr_pages)
981 {
982 	intptr_t first_clear;
983 	intptr_t num_clear;
984 	uint8_t *free_kva;
985 	int      i;
986 
987 	KASSERT(nr_pages != 0, ("xbb_get_kva of zero length"));
988 
989 	first_clear = 0;
990 	free_kva = NULL;
991 
992 	mtx_lock(&xbb->lock);
993 
994 	/*
995 	 * Look for the first available page.  If there are none, we're done.
996 	 */
997 	bit_ffc(xbb->kva_free, xbb->reqlist_kva_pages, &first_clear);
998 
999 	if (first_clear == -1)
1000 		goto bailout;
1001 
1002 	/*
1003 	 * Starting at the first available page, look for consecutive free
1004 	 * pages that will satisfy the user's request.
1005 	 */
1006 	for (i = first_clear, num_clear = 0; i < xbb->reqlist_kva_pages; i++) {
1007 		/*
1008 		 * If this is true, the page is used, so we have to reset
1009 		 * the number of clear pages and the first clear page
1010 		 * (since it pointed to a region with an insufficient number
1011 		 * of clear pages).
1012 		 */
1013 		if (bit_test(xbb->kva_free, i)) {
1014 			num_clear = 0;
1015 			first_clear = -1;
1016 			continue;
1017 		}
1018 
1019 		if (first_clear == -1)
1020 			first_clear = i;
1021 
1022 		/*
1023 		 * If this is true, we've found a large enough free region
1024 		 * to satisfy the request.
1025 		 */
1026 		if (++num_clear == nr_pages) {
1027 
1028 			bit_nset(xbb->kva_free, first_clear,
1029 				 first_clear + nr_pages - 1);
1030 
1031 			free_kva = xbb->kva +
1032 				(uint8_t *)(first_clear * PAGE_SIZE);
1033 
1034 			KASSERT(free_kva >= (uint8_t *)xbb->kva &&
1035 				free_kva + (nr_pages * PAGE_SIZE) <=
1036 				(uint8_t *)xbb->ring_config.va,
1037 				("Free KVA %p len %d out of range, "
1038 				 "kva = %#jx, ring VA = %#jx\n", free_kva,
1039 				 nr_pages * PAGE_SIZE, (uintmax_t)xbb->kva,
1040 				 (uintmax_t)xbb->ring_config.va));
1041 			break;
1042 		}
1043 	}
1044 
1045 bailout:
1046 
1047 	if (free_kva == NULL) {
1048 		xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1049 		xbb->kva_shortages++;
1050 	}
1051 
1052 	mtx_unlock(&xbb->lock);
1053 
1054 	return (free_kva);
1055 }
1056 
1057 /**
1058  * Free allocated KVA.
1059  *
1060  * \param xbb	    Per-instance xbb configuration structure.
1061  * \param kva_ptr   Pointer to allocated KVA region.
1062  * \param nr_pages  Number of pages in the KVA region.
1063  */
1064 static void
1065 xbb_free_kva(struct xbb_softc *xbb, uint8_t *kva_ptr, int nr_pages)
1066 {
1067 	intptr_t start_page;
1068 
1069 	mtx_assert(&xbb->lock, MA_OWNED);
1070 
1071 	start_page = (intptr_t)(kva_ptr - xbb->kva) >> PAGE_SHIFT;
1072 	bit_nclear(xbb->kva_free, start_page, start_page + nr_pages - 1);
1073 
1074 }
1075 
1076 /**
1077  * Unmap the front-end pages associated with this I/O request.
1078  *
1079  * \param req  The request structure to unmap.
1080  */
1081 static void
1082 xbb_unmap_reqlist(struct xbb_xen_reqlist *reqlist)
1083 {
1084 	struct gnttab_unmap_grant_ref unmap[XBB_MAX_SEGMENTS_PER_REQLIST];
1085 	u_int			      i;
1086 	u_int			      invcount;
1087 	int			      error;
1088 
1089 	invcount = 0;
1090 	for (i = 0; i < reqlist->nr_segments; i++) {
1091 
1092 		if (reqlist->gnt_handles[i] == GRANT_REF_INVALID)
1093 			continue;
1094 
1095 		unmap[invcount].host_addr    = xbb_get_gntaddr(reqlist, i, 0);
1096 		unmap[invcount].dev_bus_addr = 0;
1097 		unmap[invcount].handle       = reqlist->gnt_handles[i];
1098 		reqlist->gnt_handles[i]	     = GRANT_REF_INVALID;
1099 		invcount++;
1100 	}
1101 
1102 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref,
1103 					  unmap, invcount);
1104 	KASSERT(error == 0, ("Grant table operation failed"));
1105 }
1106 
1107 /**
1108  * Allocate an internal transaction tracking structure from the free pool.
1109  *
1110  * \param xbb  Per-instance xbb configuration structure.
1111  *
1112  * \return  On success, a pointer to the allocated xbb_xen_reqlist structure.
1113  *          Otherwise NULL.
1114  */
1115 static inline struct xbb_xen_reqlist *
1116 xbb_get_reqlist(struct xbb_softc *xbb)
1117 {
1118 	struct xbb_xen_reqlist *reqlist;
1119 
1120 	reqlist = NULL;
1121 
1122 	mtx_assert(&xbb->lock, MA_OWNED);
1123 
1124 	if ((reqlist = STAILQ_FIRST(&xbb->reqlist_free_stailq)) != NULL) {
1125 
1126 		STAILQ_REMOVE_HEAD(&xbb->reqlist_free_stailq, links);
1127 		reqlist->flags = XBB_REQLIST_NONE;
1128 		reqlist->kva = NULL;
1129 		reqlist->status = BLKIF_RSP_OKAY;
1130 		reqlist->residual_512b_sectors = 0;
1131 		reqlist->num_children = 0;
1132 		reqlist->nr_segments = 0;
1133 		STAILQ_INIT(&reqlist->contig_req_list);
1134 	}
1135 
1136 	return (reqlist);
1137 }
1138 
1139 /**
1140  * Return an allocated transaction tracking structure to the free pool.
1141  *
1142  * \param xbb        Per-instance xbb configuration structure.
1143  * \param req        The request list structure to free.
1144  * \param wakeup     If set, wakeup the work thread if freeing this reqlist
1145  *                   during a resource shortage condition.
1146  */
1147 static inline void
1148 xbb_release_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
1149 		    int wakeup)
1150 {
1151 
1152 	mtx_assert(&xbb->lock, MA_OWNED);
1153 
1154 	if (wakeup) {
1155 		wakeup = xbb->flags & XBBF_RESOURCE_SHORTAGE;
1156 		xbb->flags &= ~XBBF_RESOURCE_SHORTAGE;
1157 	}
1158 
1159 	if (reqlist->kva != NULL)
1160 		xbb_free_kva(xbb, reqlist->kva, reqlist->nr_segments);
1161 
1162 	xbb_release_reqs(xbb, &reqlist->contig_req_list, reqlist->num_children);
1163 
1164 	STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
1165 
1166 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1167 		/*
1168 		 * Shutdown is in progress.  See if we can
1169 		 * progress further now that one more request
1170 		 * has completed and been returned to the
1171 		 * free pool.
1172 		 */
1173 		xbb_shutdown(xbb);
1174 	}
1175 
1176 	if (wakeup != 0)
1177 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1178 }
1179 
1180 /**
1181  * Request resources and do basic request setup.
1182  *
1183  * \param xbb          Per-instance xbb configuration structure.
1184  * \param reqlist      Pointer to reqlist pointer.
1185  * \param ring_req     Pointer to a block ring request.
1186  * \param ring_index   The ring index of this request.
1187  *
1188  * \return  0 for success, non-zero for failure.
1189  */
1190 static int
1191 xbb_get_resources(struct xbb_softc *xbb, struct xbb_xen_reqlist **reqlist,
1192 		  blkif_request_t *ring_req, RING_IDX ring_idx)
1193 {
1194 	struct xbb_xen_reqlist *nreqlist;
1195 	struct xbb_xen_req     *nreq;
1196 
1197 	nreqlist = NULL;
1198 	nreq     = NULL;
1199 
1200 	mtx_lock(&xbb->lock);
1201 
1202 	/*
1203 	 * We don't allow new resources to be allocated if we're in the
1204 	 * process of shutting down.
1205 	 */
1206 	if ((xbb->flags & XBBF_SHUTDOWN) != 0) {
1207 		mtx_unlock(&xbb->lock);
1208 		return (1);
1209 	}
1210 
1211 	/*
1212 	 * Allocate a reqlist if the caller doesn't have one already.
1213 	 */
1214 	if (*reqlist == NULL) {
1215 		nreqlist = xbb_get_reqlist(xbb);
1216 		if (nreqlist == NULL)
1217 			goto bailout_error;
1218 	}
1219 
1220 	/* We always allocate a request. */
1221 	nreq = xbb_get_req(xbb);
1222 	if (nreq == NULL)
1223 		goto bailout_error;
1224 
1225 	mtx_unlock(&xbb->lock);
1226 
1227 	if (*reqlist == NULL) {
1228 		*reqlist = nreqlist;
1229 		nreqlist->operation = ring_req->operation;
1230 		nreqlist->starting_sector_number = ring_req->sector_number;
1231 		STAILQ_INSERT_TAIL(&xbb->reqlist_pending_stailq, nreqlist,
1232 				   links);
1233 	}
1234 
1235 	nreq->reqlist = *reqlist;
1236 	nreq->req_ring_idx = ring_idx;
1237 	nreq->id = ring_req->id;
1238 	nreq->operation = ring_req->operation;
1239 
1240 	if (xbb->abi != BLKIF_PROTOCOL_NATIVE) {
1241 		bcopy(ring_req, &nreq->ring_req_storage, sizeof(*ring_req));
1242 		nreq->ring_req = &nreq->ring_req_storage;
1243 	} else {
1244 		nreq->ring_req = ring_req;
1245 	}
1246 
1247 	binuptime(&nreq->ds_t0);
1248 	devstat_start_transaction(xbb->xbb_stats_in, &nreq->ds_t0);
1249 	STAILQ_INSERT_TAIL(&(*reqlist)->contig_req_list, nreq, links);
1250 	(*reqlist)->num_children++;
1251 	(*reqlist)->nr_segments += ring_req->nr_segments;
1252 
1253 	return (0);
1254 
1255 bailout_error:
1256 
1257 	/*
1258 	 * We're out of resources, so set the shortage flag.  The next time
1259 	 * a request is released, we'll try waking up the work thread to
1260 	 * see if we can allocate more resources.
1261 	 */
1262 	xbb->flags |= XBBF_RESOURCE_SHORTAGE;
1263 	xbb->request_shortages++;
1264 
1265 	if (nreq != NULL)
1266 		xbb_release_req(xbb, nreq);
1267 
1268 	if (nreqlist != NULL)
1269 		xbb_release_reqlist(xbb, nreqlist, /*wakeup*/ 0);
1270 
1271 	mtx_unlock(&xbb->lock);
1272 
1273 	return (1);
1274 }
1275 
1276 /**
1277  * Create and queue a response to a blkif request.
1278  *
1279  * \param xbb     Per-instance xbb configuration structure.
1280  * \param req     The request structure to which to respond.
1281  * \param status  The status code to report.  See BLKIF_RSP_*
1282  *                in sys/xen/interface/io/blkif.h.
1283  */
1284 static void
1285 xbb_queue_response(struct xbb_softc *xbb, struct xbb_xen_req *req, int status)
1286 {
1287 	blkif_response_t *resp;
1288 
1289 	/*
1290 	 * The mutex is required here, and should be held across this call
1291 	 * until after the subsequent call to xbb_push_responses().  This
1292 	 * is to guarantee that another context won't queue responses and
1293 	 * push them while we're active.
1294 	 *
1295 	 * That could lead to the other end being notified of responses
1296 	 * before the resources have been freed on this end.  The other end
1297 	 * would then be able to queue additional I/O, and we may run out
1298  	 * of resources because we haven't freed them all yet.
1299 	 */
1300 	mtx_assert(&xbb->lock, MA_OWNED);
1301 
1302 	/*
1303 	 * Place on the response ring for the relevant domain.
1304 	 * For now, only the spacing between entries is different
1305 	 * in the different ABIs, not the response entry layout.
1306 	 */
1307 	switch (xbb->abi) {
1308 	case BLKIF_PROTOCOL_NATIVE:
1309 		resp = RING_GET_RESPONSE(&xbb->rings.native,
1310 					 xbb->rings.native.rsp_prod_pvt);
1311 		break;
1312 	case BLKIF_PROTOCOL_X86_32:
1313 		resp = (blkif_response_t *)
1314 		    RING_GET_RESPONSE(&xbb->rings.x86_32,
1315 				      xbb->rings.x86_32.rsp_prod_pvt);
1316 		break;
1317 	case BLKIF_PROTOCOL_X86_64:
1318 		resp = (blkif_response_t *)
1319 		    RING_GET_RESPONSE(&xbb->rings.x86_64,
1320 				      xbb->rings.x86_64.rsp_prod_pvt);
1321 		break;
1322 	default:
1323 		panic("Unexpected blkif protocol ABI.");
1324 	}
1325 
1326 	resp->id        = req->id;
1327 	resp->operation = req->operation;
1328 	resp->status    = status;
1329 
1330 	if (status != BLKIF_RSP_OKAY)
1331 		xbb->reqs_completed_with_error++;
1332 
1333 	xbb->rings.common.rsp_prod_pvt += BLKIF_SEGS_TO_BLOCKS(req->nr_pages);
1334 
1335 	xbb->reqs_queued_for_completion++;
1336 
1337 }
1338 
1339 /**
1340  * Send queued responses to blkif requests.
1341  *
1342  * \param xbb            Per-instance xbb configuration structure.
1343  * \param run_taskqueue  Flag that is set to 1 if the taskqueue
1344  *			 should be run, 0 if it does not need to be run.
1345  * \param notify	 Flag that is set to 1 if the other end should be
1346  * 			 notified via irq, 0 if the other end should not be
1347  *			 notified.
1348  */
1349 static void
1350 xbb_push_responses(struct xbb_softc *xbb, int *run_taskqueue, int *notify)
1351 {
1352 	int more_to_do;
1353 
1354 	/*
1355 	 * The mutex is required here.
1356 	 */
1357 	mtx_assert(&xbb->lock, MA_OWNED);
1358 
1359 	more_to_do = 0;
1360 
1361 	RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&xbb->rings.common, *notify);
1362 
1363 	if (xbb->rings.common.rsp_prod_pvt == xbb->rings.common.req_cons) {
1364 
1365 		/*
1366 		 * Tail check for pending requests. Allows frontend to avoid
1367 		 * notifications if requests are already in flight (lower
1368 		 * overheads and promotes batching).
1369 		 */
1370 		RING_FINAL_CHECK_FOR_REQUESTS(&xbb->rings.common, more_to_do);
1371 	} else if (RING_HAS_UNCONSUMED_REQUESTS(&xbb->rings.common)) {
1372 
1373 		more_to_do = 1;
1374 	}
1375 
1376 	xbb->reqs_completed += xbb->reqs_queued_for_completion;
1377 	xbb->reqs_queued_for_completion = 0;
1378 
1379 	*run_taskqueue = more_to_do;
1380 }
1381 
1382 /**
1383  * Complete a request list.
1384  *
1385  * \param xbb        Per-instance xbb configuration structure.
1386  * \param reqlist    Allocated internal request list structure.
1387  */
1388 static void
1389 xbb_complete_reqlist(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1390 {
1391 	struct xbb_xen_req *nreq;
1392 	off_t		    sectors_sent;
1393 	int		    notify, run_taskqueue;
1394 
1395 	sectors_sent = 0;
1396 
1397 	if (reqlist->flags & XBB_REQLIST_MAPPED)
1398 		xbb_unmap_reqlist(reqlist);
1399 
1400 	mtx_lock(&xbb->lock);
1401 
1402 	/*
1403 	 * All I/O is done, send the response. A lock is not necessary
1404 	 * to protect the request list, because all requests have
1405 	 * completed.  Therefore this is the only context accessing this
1406 	 * reqlist right now.  However, in order to make sure that no one
1407 	 * else queues responses onto the queue or pushes them to the other
1408 	 * side while we're active, we need to hold the lock across the
1409 	 * calls to xbb_queue_response() and xbb_push_responses().
1410 	 */
1411 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1412 		off_t cur_sectors_sent;
1413 
1414 		/* Put this response on the ring, but don't push yet */
1415 		xbb_queue_response(xbb, nreq, reqlist->status);
1416 
1417 		/* We don't report bytes sent if there is an error. */
1418 		if (reqlist->status == BLKIF_RSP_OKAY)
1419 			cur_sectors_sent = nreq->nr_512b_sectors;
1420 		else
1421 			cur_sectors_sent = 0;
1422 
1423 		sectors_sent += cur_sectors_sent;
1424 
1425 		devstat_end_transaction(xbb->xbb_stats_in,
1426 					/*bytes*/cur_sectors_sent << 9,
1427 					reqlist->ds_tag_type,
1428 					reqlist->ds_trans_type,
1429 					/*now*/NULL,
1430 					/*then*/&nreq->ds_t0);
1431 	}
1432 
1433 	/*
1434 	 * Take out any sectors not sent.  If we wind up negative (which
1435 	 * might happen if an error is reported as well as a residual), just
1436 	 * report 0 sectors sent.
1437 	 */
1438 	sectors_sent -= reqlist->residual_512b_sectors;
1439 	if (sectors_sent < 0)
1440 		sectors_sent = 0;
1441 
1442 	devstat_end_transaction(xbb->xbb_stats,
1443 				/*bytes*/ sectors_sent << 9,
1444 				reqlist->ds_tag_type,
1445 				reqlist->ds_trans_type,
1446 				/*now*/NULL,
1447 				/*then*/&reqlist->ds_t0);
1448 
1449 	xbb_release_reqlist(xbb, reqlist, /*wakeup*/ 1);
1450 
1451 	xbb_push_responses(xbb, &run_taskqueue, &notify);
1452 
1453 	mtx_unlock(&xbb->lock);
1454 
1455 	if (run_taskqueue)
1456 		taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
1457 
1458 	if (notify)
1459 		xen_intr_signal(xbb->xen_intr_handle);
1460 }
1461 
1462 /**
1463  * Completion handler for buffer I/O requests issued by the device
1464  * backend driver.
1465  *
1466  * \param bio  The buffer I/O request on which to perform completion
1467  *             processing.
1468  */
1469 static void
1470 xbb_bio_done(struct bio *bio)
1471 {
1472 	struct xbb_softc       *xbb;
1473 	struct xbb_xen_reqlist *reqlist;
1474 
1475 	reqlist = bio->bio_caller1;
1476 	xbb     = reqlist->xbb;
1477 
1478 	reqlist->residual_512b_sectors += bio->bio_resid >> 9;
1479 
1480 	/*
1481 	 * This is a bit imprecise.  With aggregated I/O a single
1482 	 * request list can contain multiple front-end requests and
1483 	 * a multiple bios may point to a single request.  By carefully
1484 	 * walking the request list, we could map residuals and errors
1485 	 * back to the original front-end request, but the interface
1486 	 * isn't sufficiently rich for us to properly report the error.
1487 	 * So, we just treat the entire request list as having failed if an
1488 	 * error occurs on any part.  And, if an error occurs, we treat
1489 	 * the amount of data transferred as 0.
1490 	 *
1491 	 * For residuals, we report it on the overall aggregated device,
1492 	 * but not on the individual requests, since we don't currently
1493 	 * do the work to determine which front-end request to which the
1494 	 * residual applies.
1495 	 */
1496 	if (bio->bio_error) {
1497 		DPRINTF("BIO returned error %d for operation on device %s\n",
1498 			bio->bio_error, xbb->dev_name);
1499 		reqlist->status = BLKIF_RSP_ERROR;
1500 
1501 		if (bio->bio_error == ENXIO
1502 		 && xenbus_get_state(xbb->dev) == XenbusStateConnected) {
1503 
1504 			/*
1505 			 * Backend device has disappeared.  Signal the
1506 			 * front-end that we (the device proxy) want to
1507 			 * go away.
1508 			 */
1509 			xenbus_set_state(xbb->dev, XenbusStateClosing);
1510 		}
1511 	}
1512 
1513 #ifdef XBB_USE_BOUNCE_BUFFERS
1514 	if (bio->bio_cmd == BIO_READ) {
1515 		vm_offset_t kva_offset;
1516 
1517 		kva_offset = (vm_offset_t)bio->bio_data
1518 			   - (vm_offset_t)reqlist->bounce;
1519 		memcpy((uint8_t *)reqlist->kva + kva_offset,
1520 		       bio->bio_data, bio->bio_bcount);
1521 	}
1522 #endif /* XBB_USE_BOUNCE_BUFFERS */
1523 
1524 	/*
1525 	 * Decrement the pending count for the request list.  When we're
1526 	 * done with the requests, send status back for all of them.
1527 	 */
1528 	if (atomic_fetchadd_int(&reqlist->pendcnt, -1) == 1)
1529 		xbb_complete_reqlist(xbb, reqlist);
1530 
1531 	g_destroy_bio(bio);
1532 }
1533 
1534 /**
1535  * Parse a blkif request into an internal request structure and send
1536  * it to the backend for processing.
1537  *
1538  * \param xbb       Per-instance xbb configuration structure.
1539  * \param reqlist   Allocated internal request list structure.
1540  *
1541  * \return          On success, 0.  For resource shortages, non-zero.
1542  *
1543  * This routine performs the backend common aspects of request parsing
1544  * including compiling an internal request structure, parsing the S/G
1545  * list and any secondary ring requests in which they may reside, and
1546  * the mapping of front-end I/O pages into our domain.
1547  */
1548 static int
1549 xbb_dispatch_io(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist)
1550 {
1551 	struct xbb_sg                *xbb_sg;
1552 	struct gnttab_map_grant_ref  *map;
1553 	struct blkif_request_segment *sg;
1554 	struct blkif_request_segment *last_block_sg;
1555 	struct xbb_xen_req	     *nreq;
1556 	u_int			      nseg;
1557 	u_int			      seg_idx;
1558 	u_int			      block_segs;
1559 	int			      nr_sects;
1560 	int			      total_sects;
1561 	int			      operation;
1562 	uint8_t			      bio_flags;
1563 	int			      error;
1564 
1565 	reqlist->ds_tag_type = DEVSTAT_TAG_SIMPLE;
1566 	bio_flags            = 0;
1567 	total_sects	     = 0;
1568 	nr_sects	     = 0;
1569 
1570 	/*
1571 	 * First determine whether we have enough free KVA to satisfy this
1572 	 * request list.  If not, tell xbb_run_queue() so it can go to
1573 	 * sleep until we have more KVA.
1574 	 */
1575 	reqlist->kva = NULL;
1576 	if (reqlist->nr_segments != 0) {
1577 		reqlist->kva = xbb_get_kva(xbb, reqlist->nr_segments);
1578 		if (reqlist->kva == NULL) {
1579 			/*
1580 			 * If we're out of KVA, return ENOMEM.
1581 			 */
1582 			return (ENOMEM);
1583 		}
1584 	}
1585 
1586 	binuptime(&reqlist->ds_t0);
1587 	devstat_start_transaction(xbb->xbb_stats, &reqlist->ds_t0);
1588 
1589 	switch (reqlist->operation) {
1590 	case BLKIF_OP_WRITE_BARRIER:
1591 		bio_flags       |= BIO_ORDERED;
1592 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1593 		/* FALLTHROUGH */
1594 	case BLKIF_OP_WRITE:
1595 		operation = BIO_WRITE;
1596 		reqlist->ds_trans_type = DEVSTAT_WRITE;
1597 		if ((xbb->flags & XBBF_READ_ONLY) != 0) {
1598 			DPRINTF("Attempt to write to read only device %s\n",
1599 				xbb->dev_name);
1600 			reqlist->status = BLKIF_RSP_ERROR;
1601 			goto send_response;
1602 		}
1603 		break;
1604 	case BLKIF_OP_READ:
1605 		operation = BIO_READ;
1606 		reqlist->ds_trans_type = DEVSTAT_READ;
1607 		break;
1608 	case BLKIF_OP_FLUSH_DISKCACHE:
1609 		/*
1610 		 * If this is true, the user has requested that we disable
1611 		 * flush support.  So we just complete the requests
1612 		 * successfully.
1613 		 */
1614 		if (xbb->disable_flush != 0) {
1615 			goto send_response;
1616 		}
1617 
1618 		/*
1619 		 * The user has requested that we only send a real flush
1620 		 * for every N flush requests.  So keep count, and either
1621 		 * complete the request immediately or queue it for the
1622 		 * backend.
1623 		 */
1624 		if (xbb->flush_interval != 0) {
1625 		 	if (++(xbb->flush_count) < xbb->flush_interval) {
1626 				goto send_response;
1627 			} else
1628 				xbb->flush_count = 0;
1629 		}
1630 
1631 		operation = BIO_FLUSH;
1632 		reqlist->ds_tag_type = DEVSTAT_TAG_ORDERED;
1633 		reqlist->ds_trans_type = DEVSTAT_NO_DATA;
1634 		goto do_dispatch;
1635 		/*NOTREACHED*/
1636 	default:
1637 		DPRINTF("error: unknown block io operation [%d]\n",
1638 			reqlist->operation);
1639 		reqlist->status = BLKIF_RSP_ERROR;
1640 		goto send_response;
1641 	}
1642 
1643 	reqlist->xbb  = xbb;
1644 	xbb_sg        = xbb->xbb_sgs;
1645 	map	      = xbb->maps;
1646 	seg_idx	      = 0;
1647 
1648 	STAILQ_FOREACH(nreq, &reqlist->contig_req_list, links) {
1649 		blkif_request_t		*ring_req;
1650 		RING_IDX		 req_ring_idx;
1651 		u_int			 req_seg_idx;
1652 
1653 		ring_req	      = nreq->ring_req;
1654 		req_ring_idx	      = nreq->req_ring_idx;
1655 		nr_sects              = 0;
1656 		nseg                  = ring_req->nr_segments;
1657 		nreq->nr_pages        = nseg;
1658 		nreq->nr_512b_sectors = 0;
1659 		req_seg_idx	      = 0;
1660 		sg	              = NULL;
1661 
1662 		/* Check that number of segments is sane. */
1663 		if (__predict_false(nseg == 0)
1664 		 || __predict_false(nseg > xbb->max_request_segments)) {
1665 			DPRINTF("Bad number of segments in request (%d)\n",
1666 				nseg);
1667 			reqlist->status = BLKIF_RSP_ERROR;
1668 			goto send_response;
1669 		}
1670 
1671 		block_segs    = MIN(nreq->nr_pages,
1672 				    BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK);
1673 		sg            = ring_req->seg;
1674 		last_block_sg = sg + block_segs;
1675 		while (1) {
1676 
1677 			while (sg < last_block_sg) {
1678 				KASSERT(seg_idx <
1679 					XBB_MAX_SEGMENTS_PER_REQLIST,
1680 					("seg_idx %d is too large, max "
1681 					"segs %d\n", seg_idx,
1682 					XBB_MAX_SEGMENTS_PER_REQLIST));
1683 
1684 				xbb_sg->first_sect = sg->first_sect;
1685 				xbb_sg->last_sect  = sg->last_sect;
1686 				xbb_sg->nsect =
1687 				    (int8_t)(sg->last_sect -
1688 				    sg->first_sect + 1);
1689 
1690 				if ((sg->last_sect >= (PAGE_SIZE >> 9))
1691 				 || (xbb_sg->nsect <= 0)) {
1692 					reqlist->status = BLKIF_RSP_ERROR;
1693 					goto send_response;
1694 				}
1695 
1696 				nr_sects += xbb_sg->nsect;
1697 				map->host_addr = xbb_get_gntaddr(reqlist,
1698 							seg_idx, /*sector*/0);
1699 				KASSERT(map->host_addr + PAGE_SIZE <=
1700 					xbb->ring_config.gnt_addr,
1701 					("Host address %#jx len %d overlaps "
1702 					 "ring address %#jx\n",
1703 					(uintmax_t)map->host_addr, PAGE_SIZE,
1704 					(uintmax_t)xbb->ring_config.gnt_addr));
1705 
1706 				map->flags     = GNTMAP_host_map;
1707 				map->ref       = sg->gref;
1708 				map->dom       = xbb->otherend_id;
1709 				if (operation == BIO_WRITE)
1710 					map->flags |= GNTMAP_readonly;
1711 				sg++;
1712 				map++;
1713 				xbb_sg++;
1714 				seg_idx++;
1715 				req_seg_idx++;
1716 			}
1717 
1718 			block_segs = MIN(nseg - req_seg_idx,
1719 					 BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK);
1720 			if (block_segs == 0)
1721 				break;
1722 
1723 			/*
1724 			 * Fetch the next request block full of SG elements.
1725 			 * For now, only the spacing between entries is
1726 			 * different in the different ABIs, not the sg entry
1727 			 * layout.
1728 			 */
1729 			req_ring_idx++;
1730 			switch (xbb->abi) {
1731 			case BLKIF_PROTOCOL_NATIVE:
1732 				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.native,
1733 							   req_ring_idx);
1734 				break;
1735 			case BLKIF_PROTOCOL_X86_32:
1736 			{
1737 				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_32,
1738 							   req_ring_idx);
1739 				break;
1740 			}
1741 			case BLKIF_PROTOCOL_X86_64:
1742 			{
1743 				sg = BLKRING_GET_SEG_BLOCK(&xbb->rings.x86_64,
1744 							   req_ring_idx);
1745 				break;
1746 			}
1747 			default:
1748 				panic("Unexpected blkif protocol ABI.");
1749 				/* NOTREACHED */
1750 			}
1751 			last_block_sg = sg + block_segs;
1752 		}
1753 
1754 		/* Convert to the disk's sector size */
1755 		nreq->nr_512b_sectors = nr_sects;
1756 		nr_sects = (nr_sects << 9) >> xbb->sector_size_shift;
1757 		total_sects += nr_sects;
1758 
1759 		if ((nreq->nr_512b_sectors &
1760 		    ((xbb->sector_size >> 9) - 1)) != 0) {
1761 			device_printf(xbb->dev, "%s: I/O size (%d) is not "
1762 				      "a multiple of the backing store sector "
1763 				      "size (%d)\n", __func__,
1764 				      nreq->nr_512b_sectors << 9,
1765 				      xbb->sector_size);
1766 			reqlist->status = BLKIF_RSP_ERROR;
1767 			goto send_response;
1768 		}
1769 	}
1770 
1771 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref,
1772 					  xbb->maps, reqlist->nr_segments);
1773 	if (error != 0)
1774 		panic("Grant table operation failed (%d)", error);
1775 
1776 	reqlist->flags |= XBB_REQLIST_MAPPED;
1777 
1778 	for (seg_idx = 0, map = xbb->maps; seg_idx < reqlist->nr_segments;
1779 	     seg_idx++, map++){
1780 
1781 		if (__predict_false(map->status != 0)) {
1782 			DPRINTF("invalid buffer -- could not remap "
1783 			        "it (%d)\n", map->status);
1784 			DPRINTF("Mapping(%d): Host Addr 0x%lx, flags "
1785 			        "0x%x ref 0x%x, dom %d\n", seg_idx,
1786 				map->host_addr, map->flags, map->ref,
1787 				map->dom);
1788 			reqlist->status = BLKIF_RSP_ERROR;
1789 			goto send_response;
1790 		}
1791 
1792 		reqlist->gnt_handles[seg_idx] = map->handle;
1793 	}
1794 	if (reqlist->starting_sector_number + total_sects >
1795 	    xbb->media_num_sectors) {
1796 
1797 		DPRINTF("%s of [%" PRIu64 ",%" PRIu64 "] "
1798 			"extends past end of device %s\n",
1799 			operation == BIO_READ ? "read" : "write",
1800 			reqlist->starting_sector_number,
1801 			reqlist->starting_sector_number + total_sects,
1802 			xbb->dev_name);
1803 		reqlist->status = BLKIF_RSP_ERROR;
1804 		goto send_response;
1805 	}
1806 
1807 do_dispatch:
1808 
1809 	error = xbb->dispatch_io(xbb,
1810 				 reqlist,
1811 				 operation,
1812 				 bio_flags);
1813 
1814 	if (error != 0) {
1815 		reqlist->status = BLKIF_RSP_ERROR;
1816 		goto send_response;
1817 	}
1818 
1819 	return (0);
1820 
1821 send_response:
1822 
1823 	xbb_complete_reqlist(xbb, reqlist);
1824 
1825 	return (0);
1826 }
1827 
1828 static __inline int
1829 xbb_count_sects(blkif_request_t *ring_req)
1830 {
1831 	int i;
1832 	int cur_size = 0;
1833 
1834 	for (i = 0; i < ring_req->nr_segments; i++) {
1835 		int nsect;
1836 
1837 		nsect = (int8_t)(ring_req->seg[i].last_sect -
1838 			ring_req->seg[i].first_sect + 1);
1839 		if (nsect <= 0)
1840 			break;
1841 
1842 		cur_size += nsect;
1843 	}
1844 
1845 	return (cur_size);
1846 }
1847 
1848 /**
1849  * Process incoming requests from the shared communication ring in response
1850  * to a signal on the ring's event channel.
1851  *
1852  * \param context  Callback argument registerd during task initialization -
1853  *                 the xbb_softc for this instance.
1854  * \param pending  The number of taskqueue_enqueue events that have
1855  *                 occurred since this handler was last run.
1856  */
1857 static void
1858 xbb_run_queue(void *context, int pending)
1859 {
1860 	struct xbb_softc       *xbb;
1861 	blkif_back_rings_t     *rings;
1862 	RING_IDX		rp;
1863 	uint64_t		cur_sector;
1864 	int			cur_operation;
1865 	struct xbb_xen_reqlist *reqlist;
1866 
1867 
1868 	xbb   = (struct xbb_softc *)context;
1869 	rings = &xbb->rings;
1870 
1871 	/*
1872 	 * Work gather and dispatch loop.  Note that we have a bias here
1873 	 * towards gathering I/O sent by blockfront.  We first gather up
1874 	 * everything in the ring, as long as we have resources.  Then we
1875 	 * dispatch one request, and then attempt to gather up any
1876 	 * additional requests that have come in while we were dispatching
1877 	 * the request.
1878 	 *
1879 	 * This allows us to get a clearer picture (via devstat) of how
1880 	 * many requests blockfront is queueing to us at any given time.
1881 	 */
1882 	for (;;) {
1883 		int retval;
1884 
1885 		/*
1886 		 * Initialize reqlist to the last element in the pending
1887 		 * queue, if there is one.  This allows us to add more
1888 		 * requests to that request list, if we have room.
1889 		 */
1890 		reqlist = STAILQ_LAST(&xbb->reqlist_pending_stailq,
1891 				      xbb_xen_reqlist, links);
1892 		if (reqlist != NULL) {
1893 			cur_sector = reqlist->next_contig_sector;
1894 			cur_operation = reqlist->operation;
1895 		} else {
1896 			cur_operation = 0;
1897 			cur_sector    = 0;
1898 		}
1899 
1900 		/*
1901 		 * Cache req_prod to avoid accessing a cache line shared
1902 		 * with the frontend.
1903 		 */
1904 		rp = rings->common.sring->req_prod;
1905 
1906 		/* Ensure we see queued requests up to 'rp'. */
1907 		rmb();
1908 
1909 		/**
1910 		 * Run so long as there is work to consume and the generation
1911 		 * of a response will not overflow the ring.
1912 		 *
1913 		 * @note There's a 1 to 1 relationship between requests and
1914 		 *       responses, so an overflow should never occur.  This
1915 		 *       test is to protect our domain from digesting bogus
1916 		 *       data.  Shouldn't we log this?
1917 		 */
1918 		while (rings->common.req_cons != rp
1919 		    && RING_REQUEST_CONS_OVERFLOW(&rings->common,
1920 						  rings->common.req_cons) == 0){
1921 			blkif_request_t	        ring_req_storage;
1922 			blkif_request_t	       *ring_req;
1923 			int			cur_size;
1924 
1925 			switch (xbb->abi) {
1926 			case BLKIF_PROTOCOL_NATIVE:
1927 				ring_req = RING_GET_REQUEST(&xbb->rings.native,
1928 				    rings->common.req_cons);
1929 				break;
1930 			case BLKIF_PROTOCOL_X86_32:
1931 			{
1932 				struct blkif_x86_32_request *ring_req32;
1933 
1934 				ring_req32 = RING_GET_REQUEST(
1935 				    &xbb->rings.x86_32, rings->common.req_cons);
1936 				blkif_get_x86_32_req(&ring_req_storage,
1937 						     ring_req32);
1938 				ring_req = &ring_req_storage;
1939 				break;
1940 			}
1941 			case BLKIF_PROTOCOL_X86_64:
1942 			{
1943 				struct blkif_x86_64_request *ring_req64;
1944 
1945 				ring_req64 =RING_GET_REQUEST(&xbb->rings.x86_64,
1946 				    rings->common.req_cons);
1947 				blkif_get_x86_64_req(&ring_req_storage,
1948 						     ring_req64);
1949 				ring_req = &ring_req_storage;
1950 				break;
1951 			}
1952 			default:
1953 				panic("Unexpected blkif protocol ABI.");
1954 				/* NOTREACHED */
1955 			}
1956 
1957 			/*
1958 			 * Check for situations that would require closing
1959 			 * off this I/O for further coalescing:
1960 			 *  - Coalescing is turned off.
1961 			 *  - Current I/O is out of sequence with the previous
1962 			 *    I/O.
1963 			 *  - Coalesced I/O would be too large.
1964 			 */
1965 			if ((reqlist != NULL)
1966 			 && ((xbb->no_coalesce_reqs != 0)
1967 			  || ((xbb->no_coalesce_reqs == 0)
1968 			   && ((ring_req->sector_number != cur_sector)
1969 			    || (ring_req->operation != cur_operation)
1970 			    || ((ring_req->nr_segments + reqlist->nr_segments) >
1971 			         xbb->max_reqlist_segments))))) {
1972 				reqlist = NULL;
1973 			}
1974 
1975 			/*
1976 			 * Grab and check for all resources in one shot.
1977 			 * If we can't get all of the resources we need,
1978 			 * the shortage is noted and the thread will get
1979 			 * woken up when more resources are available.
1980 			 */
1981 			retval = xbb_get_resources(xbb, &reqlist, ring_req,
1982 						   xbb->rings.common.req_cons);
1983 
1984 			if (retval != 0) {
1985 				/*
1986 				 * Resource shortage has been recorded.
1987 				 * We'll be scheduled to run once a request
1988 				 * object frees up due to a completion.
1989 				 */
1990 				break;
1991 			}
1992 
1993 			/*
1994 			 * Signify that	we can overwrite this request with
1995 			 * a response by incrementing our consumer index.
1996 			 * The response won't be generated until after
1997 			 * we've already consumed all necessary data out
1998 			 * of the version of the request in the ring buffer
1999 			 * (for native mode).  We must update the consumer
2000 			 * index  before issueing back-end I/O so there is
2001 			 * no possibility that it will complete and a
2002 			 * response be generated before we make room in
2003 			 * the queue for that response.
2004 			 */
2005 			xbb->rings.common.req_cons +=
2006 			    BLKIF_SEGS_TO_BLOCKS(ring_req->nr_segments);
2007 			xbb->reqs_received++;
2008 
2009 			cur_size = xbb_count_sects(ring_req);
2010 			cur_sector = ring_req->sector_number + cur_size;
2011 			reqlist->next_contig_sector = cur_sector;
2012 			cur_operation = ring_req->operation;
2013 		}
2014 
2015 		/* Check for I/O to dispatch */
2016 		reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2017 		if (reqlist == NULL) {
2018 			/*
2019 			 * We're out of work to do, put the task queue to
2020 			 * sleep.
2021 			 */
2022 			break;
2023 		}
2024 
2025 		/*
2026 		 * Grab the first request off the queue and attempt
2027 		 * to dispatch it.
2028 		 */
2029 		STAILQ_REMOVE_HEAD(&xbb->reqlist_pending_stailq, links);
2030 
2031 		retval = xbb_dispatch_io(xbb, reqlist);
2032 		if (retval != 0) {
2033 			/*
2034 			 * xbb_dispatch_io() returns non-zero only when
2035 			 * there is a resource shortage.  If that's the
2036 			 * case, re-queue this request on the head of the
2037 			 * queue, and go to sleep until we have more
2038 			 * resources.
2039 			 */
2040 			STAILQ_INSERT_HEAD(&xbb->reqlist_pending_stailq,
2041 					   reqlist, links);
2042 			break;
2043 		} else {
2044 			/*
2045 			 * If we still have anything on the queue after
2046 			 * removing the head entry, that is because we
2047 			 * met one of the criteria to create a new
2048 			 * request list (outlined above), and we'll call
2049 			 * that a forced dispatch for statistical purposes.
2050 			 *
2051 			 * Otherwise, if there is only one element on the
2052 			 * queue, we coalesced everything available on
2053 			 * the ring and we'll call that a normal dispatch.
2054 			 */
2055 			reqlist = STAILQ_FIRST(&xbb->reqlist_pending_stailq);
2056 
2057 			if (reqlist != NULL)
2058 				xbb->forced_dispatch++;
2059 			else
2060 				xbb->normal_dispatch++;
2061 
2062 			xbb->total_dispatch++;
2063 		}
2064 	}
2065 }
2066 
2067 /**
2068  * Interrupt handler bound to the shared ring's event channel.
2069  *
2070  * \param arg  Callback argument registerd during event channel
2071  *             binding - the xbb_softc for this instance.
2072  */
2073 static int
2074 xbb_filter(void *arg)
2075 {
2076 	struct xbb_softc *xbb;
2077 
2078 	/* Defer to taskqueue thread. */
2079 	xbb = (struct xbb_softc *)arg;
2080 	taskqueue_enqueue(xbb->io_taskqueue, &xbb->io_task);
2081 
2082 	return (FILTER_HANDLED);
2083 }
2084 
2085 SDT_PROVIDER_DEFINE(xbb);
2086 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_dev, flush, "int");
2087 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, read, "int", "uint64_t",
2088 		  "uint64_t");
2089 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_dev, write, "int",
2090 		  "uint64_t", "uint64_t");
2091 
2092 /*----------------------------- Backend Handlers -----------------------------*/
2093 /**
2094  * Backend handler for character device access.
2095  *
2096  * \param xbb        Per-instance xbb configuration structure.
2097  * \param reqlist    Allocated internal request list structure.
2098  * \param operation  BIO_* I/O operation code.
2099  * \param bio_flags  Additional bio_flag data to pass to any generated
2100  *                   bios (e.g. BIO_ORDERED)..
2101  *
2102  * \return  0 for success, errno codes for failure.
2103  */
2104 static int
2105 xbb_dispatch_dev(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2106 		 int operation, int bio_flags)
2107 {
2108 	struct xbb_dev_data *dev_data;
2109 	struct bio          *bios[XBB_MAX_SEGMENTS_PER_REQLIST];
2110 	off_t                bio_offset;
2111 	struct bio          *bio;
2112 	struct xbb_sg       *xbb_sg;
2113 	u_int	             nbio;
2114 	u_int                bio_idx;
2115 	u_int		     nseg;
2116 	u_int                seg_idx;
2117 	int                  error;
2118 
2119 	dev_data   = &xbb->backend.dev;
2120 	bio_offset = (off_t)reqlist->starting_sector_number
2121 		   << xbb->sector_size_shift;
2122 	error      = 0;
2123 	nbio       = 0;
2124 	bio_idx    = 0;
2125 
2126 	if (operation == BIO_FLUSH) {
2127 		bio = g_new_bio();
2128 		if (__predict_false(bio == NULL)) {
2129 			DPRINTF("Unable to allocate bio for BIO_FLUSH\n");
2130 			error = ENOMEM;
2131 			return (error);
2132 		}
2133 
2134 		bio->bio_cmd	 = BIO_FLUSH;
2135 		bio->bio_flags	|= BIO_ORDERED;
2136 		bio->bio_dev	 = dev_data->cdev;
2137 		bio->bio_offset	 = 0;
2138 		bio->bio_data	 = 0;
2139 		bio->bio_done	 = xbb_bio_done;
2140 		bio->bio_caller1 = reqlist;
2141 		bio->bio_pblkno	 = 0;
2142 
2143 		reqlist->pendcnt = 1;
2144 
2145 		SDT_PROBE1(xbb, kernel, xbb_dispatch_dev, flush,
2146 			   device_get_unit(xbb->dev));
2147 
2148 		(*dev_data->csw->d_strategy)(bio);
2149 
2150 		return (0);
2151 	}
2152 
2153 	xbb_sg = xbb->xbb_sgs;
2154 	bio    = NULL;
2155 	nseg = reqlist->nr_segments;
2156 
2157 	for (seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2158 
2159 		/*
2160 		 * KVA will not be contiguous, so any additional
2161 		 * I/O will need to be represented in a new bio.
2162 		 */
2163 		if ((bio != NULL)
2164 		 && (xbb_sg->first_sect != 0)) {
2165 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2166 				printf("%s: Discontiguous I/O request "
2167 				       "from domain %d ends on "
2168 				       "non-sector boundary\n",
2169 				       __func__, xbb->otherend_id);
2170 				error = EINVAL;
2171 				goto fail_free_bios;
2172 			}
2173 			bio = NULL;
2174 		}
2175 
2176 		if (bio == NULL) {
2177 			/*
2178 			 * Make sure that the start of this bio is
2179 			 * aligned to a device sector.
2180 			 */
2181 			if ((bio_offset & (xbb->sector_size - 1)) != 0){
2182 				printf("%s: Misaligned I/O request "
2183 				       "from domain %d\n", __func__,
2184 				       xbb->otherend_id);
2185 				error = EINVAL;
2186 				goto fail_free_bios;
2187 			}
2188 
2189 			bio = bios[nbio++] = g_new_bio();
2190 			if (__predict_false(bio == NULL)) {
2191 				error = ENOMEM;
2192 				goto fail_free_bios;
2193 			}
2194 			bio->bio_cmd     = operation;
2195 			bio->bio_flags  |= bio_flags;
2196 			bio->bio_dev     = dev_data->cdev;
2197 			bio->bio_offset  = bio_offset;
2198 			bio->bio_data    = xbb_reqlist_ioaddr(reqlist, seg_idx,
2199 						xbb_sg->first_sect);
2200 			bio->bio_done    = xbb_bio_done;
2201 			bio->bio_caller1 = reqlist;
2202 			bio->bio_pblkno  = bio_offset >> xbb->sector_size_shift;
2203 		}
2204 
2205 		bio->bio_length += xbb_sg->nsect << 9;
2206 		bio->bio_bcount  = bio->bio_length;
2207 		bio_offset      += xbb_sg->nsect << 9;
2208 
2209 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9) {
2210 
2211 			if ((bio->bio_length & (xbb->sector_size - 1)) != 0) {
2212 				printf("%s: Discontiguous I/O request "
2213 				       "from domain %d ends on "
2214 				       "non-sector boundary\n",
2215 				       __func__, xbb->otherend_id);
2216 				error = EINVAL;
2217 				goto fail_free_bios;
2218 			}
2219 			/*
2220 			 * KVA will not be contiguous, so any additional
2221 			 * I/O will need to be represented in a new bio.
2222 			 */
2223 			bio = NULL;
2224 		}
2225 	}
2226 
2227 	reqlist->pendcnt = nbio;
2228 
2229 	for (bio_idx = 0; bio_idx < nbio; bio_idx++)
2230 	{
2231 #ifdef XBB_USE_BOUNCE_BUFFERS
2232 		vm_offset_t kva_offset;
2233 
2234 		kva_offset = (vm_offset_t)bios[bio_idx]->bio_data
2235 			   - (vm_offset_t)reqlist->bounce;
2236 		if (operation == BIO_WRITE) {
2237 			memcpy(bios[bio_idx]->bio_data,
2238 			       (uint8_t *)reqlist->kva + kva_offset,
2239 			       bios[bio_idx]->bio_bcount);
2240 		}
2241 #endif
2242 		if (operation == BIO_READ) {
2243 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, read,
2244 				   device_get_unit(xbb->dev),
2245 				   bios[bio_idx]->bio_offset,
2246 				   bios[bio_idx]->bio_length);
2247 		} else if (operation == BIO_WRITE) {
2248 			SDT_PROBE3(xbb, kernel, xbb_dispatch_dev, write,
2249 				   device_get_unit(xbb->dev),
2250 				   bios[bio_idx]->bio_offset,
2251 				   bios[bio_idx]->bio_length);
2252 		}
2253 		(*dev_data->csw->d_strategy)(bios[bio_idx]);
2254 	}
2255 
2256 	return (error);
2257 
2258 fail_free_bios:
2259 	for (bio_idx = 0; bio_idx < (nbio-1); bio_idx++)
2260 		g_destroy_bio(bios[bio_idx]);
2261 
2262 	return (error);
2263 }
2264 
2265 SDT_PROBE_DEFINE1(xbb, kernel, xbb_dispatch_file, flush, "int");
2266 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, read, "int", "uint64_t",
2267 		  "uint64_t");
2268 SDT_PROBE_DEFINE3(xbb, kernel, xbb_dispatch_file, write, "int",
2269 		  "uint64_t", "uint64_t");
2270 
2271 /**
2272  * Backend handler for file access.
2273  *
2274  * \param xbb        Per-instance xbb configuration structure.
2275  * \param reqlist    Allocated internal request list.
2276  * \param operation  BIO_* I/O operation code.
2277  * \param flags      Additional bio_flag data to pass to any generated bios
2278  *                   (e.g. BIO_ORDERED)..
2279  *
2280  * \return  0 for success, errno codes for failure.
2281  */
2282 static int
2283 xbb_dispatch_file(struct xbb_softc *xbb, struct xbb_xen_reqlist *reqlist,
2284 		  int operation, int flags)
2285 {
2286 	struct xbb_file_data *file_data;
2287 	u_int                 seg_idx;
2288 	u_int		      nseg;
2289 	off_t		      sectors_sent;
2290 	struct uio            xuio;
2291 	struct xbb_sg        *xbb_sg;
2292 	struct iovec         *xiovec;
2293 #ifdef XBB_USE_BOUNCE_BUFFERS
2294 	void                **p_vaddr;
2295 	int                   saved_uio_iovcnt;
2296 #endif /* XBB_USE_BOUNCE_BUFFERS */
2297 	int                   error;
2298 
2299 	file_data = &xbb->backend.file;
2300 	sectors_sent = 0;
2301 	error = 0;
2302 	bzero(&xuio, sizeof(xuio));
2303 
2304 	switch (operation) {
2305 	case BIO_READ:
2306 		xuio.uio_rw = UIO_READ;
2307 		break;
2308 	case BIO_WRITE:
2309 		xuio.uio_rw = UIO_WRITE;
2310 		break;
2311 	case BIO_FLUSH: {
2312 		struct mount *mountpoint;
2313 
2314 		SDT_PROBE1(xbb, kernel, xbb_dispatch_file, flush,
2315 			   device_get_unit(xbb->dev));
2316 
2317 		(void) vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2318 
2319 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2320 		error = VOP_FSYNC(xbb->vn, MNT_WAIT, curthread);
2321 		VOP_UNLOCK(xbb->vn, 0);
2322 
2323 		vn_finished_write(mountpoint);
2324 
2325 		goto bailout_send_response;
2326 		/* NOTREACHED */
2327 	}
2328 	default:
2329 		panic("invalid operation %d", operation);
2330 		/* NOTREACHED */
2331 	}
2332 	xuio.uio_offset = (vm_offset_t)reqlist->starting_sector_number
2333 			<< xbb->sector_size_shift;
2334 	xuio.uio_segflg = UIO_SYSSPACE;
2335 	xuio.uio_iov = file_data->xiovecs;
2336 	xuio.uio_iovcnt = 0;
2337 	xbb_sg = xbb->xbb_sgs;
2338 	nseg = reqlist->nr_segments;
2339 
2340 	for (xiovec = NULL, seg_idx = 0; seg_idx < nseg; seg_idx++, xbb_sg++) {
2341 
2342 		/*
2343 		 * If the first sector is not 0, the KVA will
2344 		 * not be contiguous and we'll need to go on
2345 		 * to another segment.
2346 		 */
2347 		if (xbb_sg->first_sect != 0)
2348 			xiovec = NULL;
2349 
2350 		if (xiovec == NULL) {
2351 			xiovec = &file_data->xiovecs[xuio.uio_iovcnt];
2352 			xiovec->iov_base = xbb_reqlist_ioaddr(reqlist,
2353 			    seg_idx, xbb_sg->first_sect);
2354 #ifdef XBB_USE_BOUNCE_BUFFERS
2355 			/*
2356 			 * Store the address of the incoming
2357 			 * buffer at this particular offset
2358 			 * as well, so we can do the copy
2359 			 * later without having to do more
2360 			 * work to recalculate this address.
2361 		 	 */
2362 			p_vaddr = &file_data->xiovecs_vaddr[xuio.uio_iovcnt];
2363 			*p_vaddr = xbb_reqlist_vaddr(reqlist, seg_idx,
2364 			    xbb_sg->first_sect);
2365 #endif /* XBB_USE_BOUNCE_BUFFERS */
2366 			xiovec->iov_len = 0;
2367 			xuio.uio_iovcnt++;
2368 		}
2369 
2370 		xiovec->iov_len += xbb_sg->nsect << 9;
2371 
2372 		xuio.uio_resid += xbb_sg->nsect << 9;
2373 
2374 		/*
2375 		 * If the last sector is not the full page
2376 		 * size count, the next segment will not be
2377 		 * contiguous in KVA and we need a new iovec.
2378 		 */
2379 		if (xbb_sg->last_sect != (PAGE_SIZE - 512) >> 9)
2380 			xiovec = NULL;
2381 	}
2382 
2383 	xuio.uio_td = curthread;
2384 
2385 #ifdef XBB_USE_BOUNCE_BUFFERS
2386 	saved_uio_iovcnt = xuio.uio_iovcnt;
2387 
2388 	if (operation == BIO_WRITE) {
2389 		/* Copy the write data to the local buffer. */
2390 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2391 		     xiovec = xuio.uio_iov; seg_idx < xuio.uio_iovcnt;
2392 		     seg_idx++, xiovec++, p_vaddr++) {
2393 
2394 			memcpy(xiovec->iov_base, *p_vaddr, xiovec->iov_len);
2395 		}
2396 	} else {
2397 		/*
2398 		 * We only need to save off the iovecs in the case of a
2399 		 * read, because the copy for the read happens after the
2400 		 * VOP_READ().  (The uio will get modified in that call
2401 		 * sequence.)
2402 		 */
2403 		memcpy(file_data->saved_xiovecs, xuio.uio_iov,
2404 		       xuio.uio_iovcnt * sizeof(xuio.uio_iov[0]));
2405 	}
2406 #endif /* XBB_USE_BOUNCE_BUFFERS */
2407 
2408 	switch (operation) {
2409 	case BIO_READ:
2410 
2411 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, read,
2412 			   device_get_unit(xbb->dev), xuio.uio_offset,
2413 			   xuio.uio_resid);
2414 
2415 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2416 
2417 		/*
2418 		 * UFS pays attention to IO_DIRECT for reads.  If the
2419 		 * DIRECTIO option is configured into the kernel, it calls
2420 		 * ffs_rawread().  But that only works for single-segment
2421 		 * uios with user space addresses.  In our case, with a
2422 		 * kernel uio, it still reads into the buffer cache, but it
2423 		 * will just try to release the buffer from the cache later
2424 		 * on in ffs_read().
2425 		 *
2426 		 * ZFS does not pay attention to IO_DIRECT for reads.
2427 		 *
2428 		 * UFS does not pay attention to IO_SYNC for reads.
2429 		 *
2430 		 * ZFS pays attention to IO_SYNC (which translates into the
2431 		 * Solaris define FRSYNC for zfs_read()) for reads.  It
2432 		 * attempts to sync the file before reading.
2433 		 *
2434 		 * So, to attempt to provide some barrier semantics in the
2435 		 * BIO_ORDERED case, set both IO_DIRECT and IO_SYNC.
2436 		 */
2437 		error = VOP_READ(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2438 				 (IO_DIRECT|IO_SYNC) : 0, file_data->cred);
2439 
2440 		VOP_UNLOCK(xbb->vn, 0);
2441 		break;
2442 	case BIO_WRITE: {
2443 		struct mount *mountpoint;
2444 
2445 		SDT_PROBE3(xbb, kernel, xbb_dispatch_file, write,
2446 			   device_get_unit(xbb->dev), xuio.uio_offset,
2447 			   xuio.uio_resid);
2448 
2449 		(void)vn_start_write(xbb->vn, &mountpoint, V_WAIT);
2450 
2451 		vn_lock(xbb->vn, LK_EXCLUSIVE | LK_RETRY);
2452 
2453 		/*
2454 		 * UFS pays attention to IO_DIRECT for writes.  The write
2455 		 * is done asynchronously.  (Normally the write would just
2456 		 * get put into cache.
2457 		 *
2458 		 * UFS pays attention to IO_SYNC for writes.  It will
2459 		 * attempt to write the buffer out synchronously if that
2460 		 * flag is set.
2461 		 *
2462 		 * ZFS does not pay attention to IO_DIRECT for writes.
2463 		 *
2464 		 * ZFS pays attention to IO_SYNC (a.k.a. FSYNC or FRSYNC)
2465 		 * for writes.  It will flush the transaction from the
2466 		 * cache before returning.
2467 		 *
2468 		 * So if we've got the BIO_ORDERED flag set, we want
2469 		 * IO_SYNC in either the UFS or ZFS case.
2470 		 */
2471 		error = VOP_WRITE(xbb->vn, &xuio, (flags & BIO_ORDERED) ?
2472 				  IO_SYNC : 0, file_data->cred);
2473 		VOP_UNLOCK(xbb->vn, 0);
2474 
2475 		vn_finished_write(mountpoint);
2476 
2477 		break;
2478 	}
2479 	default:
2480 		panic("invalid operation %d", operation);
2481 		/* NOTREACHED */
2482 	}
2483 
2484 #ifdef XBB_USE_BOUNCE_BUFFERS
2485 	/* We only need to copy here for read operations */
2486 	if (operation == BIO_READ) {
2487 
2488 		for (seg_idx = 0, p_vaddr = file_data->xiovecs_vaddr,
2489 		     xiovec = file_data->saved_xiovecs;
2490 		     seg_idx < saved_uio_iovcnt; seg_idx++,
2491 		     xiovec++, p_vaddr++) {
2492 
2493 			/*
2494 			 * Note that we have to use the copy of the
2495 			 * io vector we made above.  uiomove() modifies
2496 			 * the uio and its referenced vector as uiomove
2497 			 * performs the copy, so we can't rely on any
2498 			 * state from the original uio.
2499 			 */
2500 			memcpy(*p_vaddr, xiovec->iov_base, xiovec->iov_len);
2501 		}
2502 	}
2503 #endif /* XBB_USE_BOUNCE_BUFFERS */
2504 
2505 bailout_send_response:
2506 
2507 	if (error != 0)
2508 		reqlist->status = BLKIF_RSP_ERROR;
2509 
2510 	xbb_complete_reqlist(xbb, reqlist);
2511 
2512 	return (0);
2513 }
2514 
2515 /*--------------------------- Backend Configuration --------------------------*/
2516 /**
2517  * Close and cleanup any backend device/file specific state for this
2518  * block back instance.
2519  *
2520  * \param xbb  Per-instance xbb configuration structure.
2521  */
2522 static void
2523 xbb_close_backend(struct xbb_softc *xbb)
2524 {
2525 	DROP_GIANT();
2526 	DPRINTF("closing dev=%s\n", xbb->dev_name);
2527 	if (xbb->vn) {
2528 		int flags = FREAD;
2529 
2530 		if ((xbb->flags & XBBF_READ_ONLY) == 0)
2531 			flags |= FWRITE;
2532 
2533 		switch (xbb->device_type) {
2534 		case XBB_TYPE_DISK:
2535 			if (xbb->backend.dev.csw) {
2536 				dev_relthread(xbb->backend.dev.cdev,
2537 					      xbb->backend.dev.dev_ref);
2538 				xbb->backend.dev.csw  = NULL;
2539 				xbb->backend.dev.cdev = NULL;
2540 			}
2541 			break;
2542 		case XBB_TYPE_FILE:
2543 			break;
2544 		case XBB_TYPE_NONE:
2545 		default:
2546 			panic("Unexpected backend type.");
2547 			break;
2548 		}
2549 
2550 		(void)vn_close(xbb->vn, flags, NOCRED, curthread);
2551 		xbb->vn = NULL;
2552 
2553 		switch (xbb->device_type) {
2554 		case XBB_TYPE_DISK:
2555 			break;
2556 		case XBB_TYPE_FILE:
2557 			if (xbb->backend.file.cred != NULL) {
2558 				crfree(xbb->backend.file.cred);
2559 				xbb->backend.file.cred = NULL;
2560 			}
2561 			break;
2562 		case XBB_TYPE_NONE:
2563 		default:
2564 			panic("Unexpected backend type.");
2565 			break;
2566 		}
2567 	}
2568 	PICKUP_GIANT();
2569 }
2570 
2571 /**
2572  * Open a character device to be used for backend I/O.
2573  *
2574  * \param xbb  Per-instance xbb configuration structure.
2575  *
2576  * \return  0 for success, errno codes for failure.
2577  */
2578 static int
2579 xbb_open_dev(struct xbb_softc *xbb)
2580 {
2581 	struct vattr   vattr;
2582 	struct cdev   *dev;
2583 	struct cdevsw *devsw;
2584 	int	       error;
2585 
2586 	xbb->device_type = XBB_TYPE_DISK;
2587 	xbb->dispatch_io = xbb_dispatch_dev;
2588 	xbb->backend.dev.cdev = xbb->vn->v_rdev;
2589 	xbb->backend.dev.csw = dev_refthread(xbb->backend.dev.cdev,
2590 					     &xbb->backend.dev.dev_ref);
2591 	if (xbb->backend.dev.csw == NULL)
2592 		panic("Unable to retrieve device switch");
2593 
2594 	error = VOP_GETATTR(xbb->vn, &vattr, NOCRED);
2595 	if (error) {
2596 		xenbus_dev_fatal(xbb->dev, error, "error getting "
2597 				 "vnode attributes for device %s",
2598 				 xbb->dev_name);
2599 		return (error);
2600 	}
2601 
2602 
2603 	dev = xbb->vn->v_rdev;
2604 	devsw = dev->si_devsw;
2605 	if (!devsw->d_ioctl) {
2606 		xenbus_dev_fatal(xbb->dev, ENODEV, "no d_ioctl for "
2607 				 "device %s!", xbb->dev_name);
2608 		return (ENODEV);
2609 	}
2610 
2611 	error = devsw->d_ioctl(dev, DIOCGSECTORSIZE,
2612 			       (caddr_t)&xbb->sector_size, FREAD,
2613 			       curthread);
2614 	if (error) {
2615 		xenbus_dev_fatal(xbb->dev, error,
2616 				 "error calling ioctl DIOCGSECTORSIZE "
2617 				 "for device %s", xbb->dev_name);
2618 		return (error);
2619 	}
2620 
2621 	error = devsw->d_ioctl(dev, DIOCGMEDIASIZE,
2622 			       (caddr_t)&xbb->media_size, FREAD,
2623 			       curthread);
2624 	if (error) {
2625 		xenbus_dev_fatal(xbb->dev, error,
2626 				 "error calling ioctl DIOCGMEDIASIZE "
2627 				 "for device %s", xbb->dev_name);
2628 		return (error);
2629 	}
2630 
2631 	return (0);
2632 }
2633 
2634 /**
2635  * Open a file to be used for backend I/O.
2636  *
2637  * \param xbb  Per-instance xbb configuration structure.
2638  *
2639  * \return  0 for success, errno codes for failure.
2640  */
2641 static int
2642 xbb_open_file(struct xbb_softc *xbb)
2643 {
2644 	struct xbb_file_data *file_data;
2645 	struct vattr          vattr;
2646 	int                   error;
2647 
2648 	file_data = &xbb->backend.file;
2649 	xbb->device_type = XBB_TYPE_FILE;
2650 	xbb->dispatch_io = xbb_dispatch_file;
2651 	error = VOP_GETATTR(xbb->vn, &vattr, curthread->td_ucred);
2652 	if (error != 0) {
2653 		xenbus_dev_fatal(xbb->dev, error,
2654 				 "error calling VOP_GETATTR()"
2655 				 "for file %s", xbb->dev_name);
2656 		return (error);
2657 	}
2658 
2659 	/*
2660 	 * Verify that we have the ability to upgrade to exclusive
2661 	 * access on this file so we can trap errors at open instead
2662 	 * of reporting them during first access.
2663 	 */
2664 	if (VOP_ISLOCKED(xbb->vn) != LK_EXCLUSIVE) {
2665 		vn_lock(xbb->vn, LK_UPGRADE | LK_RETRY);
2666 		if (xbb->vn->v_iflag & VI_DOOMED) {
2667 			error = EBADF;
2668 			xenbus_dev_fatal(xbb->dev, error,
2669 					 "error locking file %s",
2670 					 xbb->dev_name);
2671 
2672 			return (error);
2673 		}
2674 	}
2675 
2676 	file_data->cred = crhold(curthread->td_ucred);
2677 	xbb->media_size = vattr.va_size;
2678 
2679 	/*
2680 	 * XXX KDM vattr.va_blocksize may be larger than 512 bytes here.
2681 	 * With ZFS, it is 131072 bytes.  Block sizes that large don't work
2682 	 * with disklabel and UFS on FreeBSD at least.  Large block sizes
2683 	 * may not work with other OSes as well.  So just export a sector
2684 	 * size of 512 bytes, which should work with any OS or
2685 	 * application.  Since our backing is a file, any block size will
2686 	 * work fine for the backing store.
2687 	 */
2688 #if 0
2689 	xbb->sector_size = vattr.va_blocksize;
2690 #endif
2691 	xbb->sector_size = 512;
2692 
2693 	/*
2694 	 * Sanity check.  The media size has to be at least one
2695 	 * sector long.
2696 	 */
2697 	if (xbb->media_size < xbb->sector_size) {
2698 		error = EINVAL;
2699 		xenbus_dev_fatal(xbb->dev, error,
2700 				 "file %s size %ju < block size %u",
2701 				 xbb->dev_name,
2702 				 (uintmax_t)xbb->media_size,
2703 				 xbb->sector_size);
2704 	}
2705 	return (error);
2706 }
2707 
2708 /**
2709  * Open the backend provider for this connection.
2710  *
2711  * \param xbb  Per-instance xbb configuration structure.
2712  *
2713  * \return  0 for success, errno codes for failure.
2714  */
2715 static int
2716 xbb_open_backend(struct xbb_softc *xbb)
2717 {
2718 	struct nameidata nd;
2719 	int		 flags;
2720 	int		 error;
2721 
2722 	flags = FREAD;
2723 	error = 0;
2724 
2725 	DPRINTF("opening dev=%s\n", xbb->dev_name);
2726 
2727 	if (rootvnode == NULL) {
2728 		xenbus_dev_fatal(xbb->dev, ENOENT,
2729 				 "Root file system not mounted");
2730 		return (ENOENT);
2731 	}
2732 
2733 	if ((xbb->flags & XBBF_READ_ONLY) == 0)
2734 		flags |= FWRITE;
2735 
2736 	if (!curthread->td_proc->p_fd->fd_cdir) {
2737 		curthread->td_proc->p_fd->fd_cdir = rootvnode;
2738 		VREF(rootvnode);
2739 	}
2740 	if (!curthread->td_proc->p_fd->fd_rdir) {
2741 		curthread->td_proc->p_fd->fd_rdir = rootvnode;
2742 		VREF(rootvnode);
2743 	}
2744 	if (!curthread->td_proc->p_fd->fd_jdir) {
2745 		curthread->td_proc->p_fd->fd_jdir = rootvnode;
2746 		VREF(rootvnode);
2747 	}
2748 
2749  again:
2750 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, xbb->dev_name, curthread);
2751 	error = vn_open(&nd, &flags, 0, NULL);
2752 	if (error) {
2753 		/*
2754 		 * This is the only reasonable guess we can make as far as
2755 		 * path if the user doesn't give us a fully qualified path.
2756 		 * If they want to specify a file, they need to specify the
2757 		 * full path.
2758 		 */
2759 		if (xbb->dev_name[0] != '/') {
2760 			char *dev_path = "/dev/";
2761 			char *dev_name;
2762 
2763 			/* Try adding device path at beginning of name */
2764 			dev_name = malloc(strlen(xbb->dev_name)
2765 					+ strlen(dev_path) + 1,
2766 					  M_XENBLOCKBACK, M_NOWAIT);
2767 			if (dev_name) {
2768 				sprintf(dev_name, "%s%s", dev_path,
2769 					xbb->dev_name);
2770 				free(xbb->dev_name, M_XENBLOCKBACK);
2771 				xbb->dev_name = dev_name;
2772 				goto again;
2773 			}
2774 		}
2775 		xenbus_dev_fatal(xbb->dev, error, "error opening device %s",
2776 				 xbb->dev_name);
2777 		return (error);
2778 	}
2779 
2780 	NDFREE(&nd, NDF_ONLY_PNBUF);
2781 
2782 	xbb->vn = nd.ni_vp;
2783 
2784 	/* We only support disks and files. */
2785 	if (vn_isdisk(xbb->vn, &error)) {
2786 		error = xbb_open_dev(xbb);
2787 	} else if (xbb->vn->v_type == VREG) {
2788 		error = xbb_open_file(xbb);
2789 	} else {
2790 		error = EINVAL;
2791 		xenbus_dev_fatal(xbb->dev, error, "%s is not a disk "
2792 				 "or file", xbb->dev_name);
2793 	}
2794 	VOP_UNLOCK(xbb->vn, 0);
2795 
2796 	if (error != 0) {
2797 		xbb_close_backend(xbb);
2798 		return (error);
2799 	}
2800 
2801 	xbb->sector_size_shift = fls(xbb->sector_size) - 1;
2802 	xbb->media_num_sectors = xbb->media_size >> xbb->sector_size_shift;
2803 
2804 	DPRINTF("opened %s=%s sector_size=%u media_size=%" PRId64 "\n",
2805 		(xbb->device_type == XBB_TYPE_DISK) ? "dev" : "file",
2806 		xbb->dev_name, xbb->sector_size, xbb->media_size);
2807 
2808 	return (0);
2809 }
2810 
2811 /*------------------------ Inter-Domain Communication ------------------------*/
2812 /**
2813  * Free dynamically allocated KVA or pseudo-physical address allocations.
2814  *
2815  * \param xbb  Per-instance xbb configuration structure.
2816  */
2817 static void
2818 xbb_free_communication_mem(struct xbb_softc *xbb)
2819 {
2820 	if (xbb->kva != 0) {
2821 #ifndef XENHVM
2822 		kva_free(xbb->kva, xbb->kva_size);
2823 #else
2824 		if (xbb->pseudo_phys_res != NULL) {
2825 			bus_release_resource(xbb->dev, SYS_RES_MEMORY,
2826 					     xbb->pseudo_phys_res_id,
2827 					     xbb->pseudo_phys_res);
2828 			xbb->pseudo_phys_res = NULL;
2829 		}
2830 #endif
2831 	}
2832 	xbb->kva = 0;
2833 	xbb->gnt_base_addr = 0;
2834 	if (xbb->kva_free != NULL) {
2835 		free(xbb->kva_free, M_XENBLOCKBACK);
2836 		xbb->kva_free = NULL;
2837 	}
2838 }
2839 
2840 /**
2841  * Cleanup all inter-domain communication mechanisms.
2842  *
2843  * \param xbb  Per-instance xbb configuration structure.
2844  */
2845 static int
2846 xbb_disconnect(struct xbb_softc *xbb)
2847 {
2848 	struct gnttab_unmap_grant_ref  ops[XBB_MAX_RING_PAGES];
2849 	struct gnttab_unmap_grant_ref *op;
2850 	u_int			       ring_idx;
2851 	int			       error;
2852 
2853 	DPRINTF("\n");
2854 
2855 	if ((xbb->flags & XBBF_RING_CONNECTED) == 0)
2856 		return (0);
2857 
2858 	xen_intr_unbind(&xbb->xen_intr_handle);
2859 
2860 	mtx_unlock(&xbb->lock);
2861 	taskqueue_drain(xbb->io_taskqueue, &xbb->io_task);
2862 	mtx_lock(&xbb->lock);
2863 
2864 	/*
2865 	 * No new interrupts can generate work, but we must wait
2866 	 * for all currently active requests to drain.
2867 	 */
2868 	if (xbb->active_request_count != 0)
2869 		return (EAGAIN);
2870 
2871 	for (ring_idx = 0, op = ops;
2872 	     ring_idx < xbb->ring_config.ring_pages;
2873 	     ring_idx++, op++) {
2874 
2875 		op->host_addr    = xbb->ring_config.gnt_addr
2876 			         + (ring_idx * PAGE_SIZE);
2877 		op->dev_bus_addr = xbb->ring_config.bus_addr[ring_idx];
2878 		op->handle	 = xbb->ring_config.handle[ring_idx];
2879 	}
2880 
2881 	error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, ops,
2882 					  xbb->ring_config.ring_pages);
2883 	if (error != 0)
2884 		panic("Grant table op failed (%d)", error);
2885 
2886 	xbb_free_communication_mem(xbb);
2887 
2888 	if (xbb->requests != NULL) {
2889 		free(xbb->requests, M_XENBLOCKBACK);
2890 		xbb->requests = NULL;
2891 	}
2892 
2893 	if (xbb->request_lists != NULL) {
2894 		struct xbb_xen_reqlist *reqlist;
2895 		int i;
2896 
2897 		/* There is one request list for ever allocated request. */
2898 		for (i = 0, reqlist = xbb->request_lists;
2899 		     i < xbb->max_requests; i++, reqlist++){
2900 #ifdef XBB_USE_BOUNCE_BUFFERS
2901 			if (reqlist->bounce != NULL) {
2902 				free(reqlist->bounce, M_XENBLOCKBACK);
2903 				reqlist->bounce = NULL;
2904 			}
2905 #endif
2906 			if (reqlist->gnt_handles != NULL) {
2907 				free(reqlist->gnt_handles, M_XENBLOCKBACK);
2908 				reqlist->gnt_handles = NULL;
2909 			}
2910 		}
2911 		free(xbb->request_lists, M_XENBLOCKBACK);
2912 		xbb->request_lists = NULL;
2913 	}
2914 
2915 	xbb->flags &= ~XBBF_RING_CONNECTED;
2916 	return (0);
2917 }
2918 
2919 /**
2920  * Map shared memory ring into domain local address space, initialize
2921  * ring control structures, and bind an interrupt to the event channel
2922  * used to notify us of ring changes.
2923  *
2924  * \param xbb  Per-instance xbb configuration structure.
2925  */
2926 static int
2927 xbb_connect_ring(struct xbb_softc *xbb)
2928 {
2929 	struct gnttab_map_grant_ref  gnts[XBB_MAX_RING_PAGES];
2930 	struct gnttab_map_grant_ref *gnt;
2931 	u_int			     ring_idx;
2932 	int			     error;
2933 
2934 	if ((xbb->flags & XBBF_RING_CONNECTED) != 0)
2935 		return (0);
2936 
2937 	/*
2938 	 * Kva for our ring is at the tail of the region of kva allocated
2939 	 * by xbb_alloc_communication_mem().
2940 	 */
2941 	xbb->ring_config.va = xbb->kva
2942 			    + (xbb->kva_size
2943 			     - (xbb->ring_config.ring_pages * PAGE_SIZE));
2944 	xbb->ring_config.gnt_addr = xbb->gnt_base_addr
2945 				  + (xbb->kva_size
2946 				   - (xbb->ring_config.ring_pages * PAGE_SIZE));
2947 
2948 	for (ring_idx = 0, gnt = gnts;
2949 	     ring_idx < xbb->ring_config.ring_pages;
2950 	     ring_idx++, gnt++) {
2951 
2952 		gnt->host_addr = xbb->ring_config.gnt_addr
2953 			       + (ring_idx * PAGE_SIZE);
2954 		gnt->flags     = GNTMAP_host_map;
2955 		gnt->ref       = xbb->ring_config.ring_ref[ring_idx];
2956 		gnt->dom       = xbb->otherend_id;
2957 	}
2958 
2959 	error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, gnts,
2960 					  xbb->ring_config.ring_pages);
2961 	if (error)
2962 		panic("blkback: Ring page grant table op failed (%d)", error);
2963 
2964 	for (ring_idx = 0, gnt = gnts;
2965 	     ring_idx < xbb->ring_config.ring_pages;
2966 	     ring_idx++, gnt++) {
2967 		if (gnt->status != 0) {
2968 			xbb->ring_config.va = 0;
2969 			xenbus_dev_fatal(xbb->dev, EACCES,
2970 					 "Ring shared page mapping failed. "
2971 					 "Status %d.", gnt->status);
2972 			return (EACCES);
2973 		}
2974 		xbb->ring_config.handle[ring_idx]   = gnt->handle;
2975 		xbb->ring_config.bus_addr[ring_idx] = gnt->dev_bus_addr;
2976 	}
2977 
2978 	/* Initialize the ring based on ABI. */
2979 	switch (xbb->abi) {
2980 	case BLKIF_PROTOCOL_NATIVE:
2981 	{
2982 		blkif_sring_t *sring;
2983 		sring = (blkif_sring_t *)xbb->ring_config.va;
2984 		BACK_RING_INIT(&xbb->rings.native, sring,
2985 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2986 		break;
2987 	}
2988 	case BLKIF_PROTOCOL_X86_32:
2989 	{
2990 		blkif_x86_32_sring_t *sring_x86_32;
2991 		sring_x86_32 = (blkif_x86_32_sring_t *)xbb->ring_config.va;
2992 		BACK_RING_INIT(&xbb->rings.x86_32, sring_x86_32,
2993 			       xbb->ring_config.ring_pages * PAGE_SIZE);
2994 		break;
2995 	}
2996 	case BLKIF_PROTOCOL_X86_64:
2997 	{
2998 		blkif_x86_64_sring_t *sring_x86_64;
2999 		sring_x86_64 = (blkif_x86_64_sring_t *)xbb->ring_config.va;
3000 		BACK_RING_INIT(&xbb->rings.x86_64, sring_x86_64,
3001 			       xbb->ring_config.ring_pages * PAGE_SIZE);
3002 		break;
3003 	}
3004 	default:
3005 		panic("Unexpected blkif protocol ABI.");
3006 	}
3007 
3008 	xbb->flags |= XBBF_RING_CONNECTED;
3009 
3010 	error = xen_intr_bind_remote_port(xbb->dev,
3011 					  xbb->otherend_id,
3012 					  xbb->ring_config.evtchn,
3013 					  xbb_filter,
3014 					  /*ithread_handler*/NULL,
3015 					  /*arg*/xbb,
3016 					  INTR_TYPE_BIO | INTR_MPSAFE,
3017 					  &xbb->xen_intr_handle);
3018 	if (error) {
3019 		(void)xbb_disconnect(xbb);
3020 		xenbus_dev_fatal(xbb->dev, error, "binding event channel");
3021 		return (error);
3022 	}
3023 
3024 	DPRINTF("rings connected!\n");
3025 
3026 	return 0;
3027 }
3028 
3029 /* Needed to make bit_alloc() macro work */
3030 #define	calloc(count, size) malloc((count)*(size), M_XENBLOCKBACK,	\
3031 				   M_NOWAIT|M_ZERO);
3032 
3033 /**
3034  * Size KVA and pseudo-physical address allocations based on negotiated
3035  * values for the size and number of I/O requests, and the size of our
3036  * communication ring.
3037  *
3038  * \param xbb  Per-instance xbb configuration structure.
3039  *
3040  * These address spaces are used to dynamically map pages in the
3041  * front-end's domain into our own.
3042  */
3043 static int
3044 xbb_alloc_communication_mem(struct xbb_softc *xbb)
3045 {
3046 	xbb->reqlist_kva_pages = xbb->max_requests * xbb->max_request_segments;
3047 	xbb->reqlist_kva_size = xbb->reqlist_kva_pages * PAGE_SIZE;
3048 	xbb->kva_size = xbb->reqlist_kva_size +
3049 			(xbb->ring_config.ring_pages * PAGE_SIZE);
3050 
3051 	xbb->kva_free = bit_alloc(xbb->reqlist_kva_pages);
3052 	if (xbb->kva_free == NULL)
3053 		return (ENOMEM);
3054 
3055 	DPRINTF("%s: kva_size = %d, reqlist_kva_size = %d\n",
3056 		device_get_nameunit(xbb->dev), xbb->kva_size,
3057 		xbb->reqlist_kva_size);
3058 #ifndef XENHVM
3059 	xbb->kva = kva_alloc(xbb->kva_size);
3060 	if (xbb->kva == 0)
3061 		return (ENOMEM);
3062 	xbb->gnt_base_addr = xbb->kva;
3063 #else /* XENHVM */
3064 	/*
3065 	 * Reserve a range of pseudo physical memory that we can map
3066 	 * into kva.  These pages will only be backed by machine
3067 	 * pages ("real memory") during the lifetime of front-end requests
3068 	 * via grant table operations.
3069 	 */
3070 	xbb->pseudo_phys_res_id = 0;
3071 	xbb->pseudo_phys_res = bus_alloc_resource(xbb->dev, SYS_RES_MEMORY,
3072 						  &xbb->pseudo_phys_res_id,
3073 						  0, ~0, xbb->kva_size,
3074 						  RF_ACTIVE);
3075 	if (xbb->pseudo_phys_res == NULL) {
3076 		xbb->kva = 0;
3077 		return (ENOMEM);
3078 	}
3079 	xbb->kva = (vm_offset_t)rman_get_virtual(xbb->pseudo_phys_res);
3080 	xbb->gnt_base_addr = rman_get_start(xbb->pseudo_phys_res);
3081 #endif /* XENHVM */
3082 
3083 	DPRINTF("%s: kva: %#jx, gnt_base_addr: %#jx\n",
3084 		device_get_nameunit(xbb->dev), (uintmax_t)xbb->kva,
3085 		(uintmax_t)xbb->gnt_base_addr);
3086 	return (0);
3087 }
3088 
3089 /**
3090  * Collect front-end information from the XenStore.
3091  *
3092  * \param xbb  Per-instance xbb configuration structure.
3093  */
3094 static int
3095 xbb_collect_frontend_info(struct xbb_softc *xbb)
3096 {
3097 	char	    protocol_abi[64];
3098 	const char *otherend_path;
3099 	int	    error;
3100 	u_int	    ring_idx;
3101 	u_int	    ring_page_order;
3102 	size_t	    ring_size;
3103 
3104 	otherend_path = xenbus_get_otherend_path(xbb->dev);
3105 
3106 	/*
3107 	 * Protocol defaults valid even if all negotiation fails.
3108 	 */
3109 	xbb->ring_config.ring_pages = 1;
3110 	xbb->max_request_segments   = BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK;
3111 	xbb->max_request_size	    = xbb->max_request_segments * PAGE_SIZE;
3112 
3113 	/*
3114 	 * Mandatory data (used in all versions of the protocol) first.
3115 	 */
3116 	error = xs_scanf(XST_NIL, otherend_path,
3117 			 "event-channel", NULL, "%" PRIu32,
3118 			 &xbb->ring_config.evtchn);
3119 	if (error != 0) {
3120 		xenbus_dev_fatal(xbb->dev, error,
3121 				 "Unable to retrieve event-channel information "
3122 				 "from frontend %s.  Unable to connect.",
3123 				 xenbus_get_otherend_path(xbb->dev));
3124 		return (error);
3125 	}
3126 
3127 	/*
3128 	 * These fields are initialized to legacy protocol defaults
3129 	 * so we only need to fail if reading the updated value succeeds
3130 	 * and the new value is outside of its allowed range.
3131 	 *
3132 	 * \note xs_gather() returns on the first encountered error, so
3133 	 *       we must use independant calls in order to guarantee
3134 	 *       we don't miss information in a sparsly populated front-end
3135 	 *       tree.
3136 	 *
3137 	 * \note xs_scanf() does not update variables for unmatched
3138 	 *       fields.
3139 	 */
3140 	ring_page_order = 0;
3141 	(void)xs_scanf(XST_NIL, otherend_path,
3142 		       "ring-page-order", NULL, "%u",
3143 		       &ring_page_order);
3144 	xbb->ring_config.ring_pages = 1 << ring_page_order;
3145 	(void)xs_scanf(XST_NIL, otherend_path,
3146 		       "num-ring-pages", NULL, "%u",
3147 		       &xbb->ring_config.ring_pages);
3148 	ring_size = PAGE_SIZE * xbb->ring_config.ring_pages;
3149 	xbb->max_requests = BLKIF_MAX_RING_REQUESTS(ring_size);
3150 
3151 	(void)xs_scanf(XST_NIL, otherend_path,
3152 		       "max-requests", NULL, "%u",
3153 		       &xbb->max_requests);
3154 
3155 	(void)xs_scanf(XST_NIL, otherend_path,
3156 		       "max-request-segments", NULL, "%u",
3157 		       &xbb->max_request_segments);
3158 
3159 	(void)xs_scanf(XST_NIL, otherend_path,
3160 		       "max-request-size", NULL, "%u",
3161 		       &xbb->max_request_size);
3162 
3163 	if (xbb->ring_config.ring_pages	> XBB_MAX_RING_PAGES) {
3164 		xenbus_dev_fatal(xbb->dev, EINVAL,
3165 				 "Front-end specified ring-pages of %u "
3166 				 "exceeds backend limit of %zu.  "
3167 				 "Unable to connect.",
3168 				 xbb->ring_config.ring_pages,
3169 				 XBB_MAX_RING_PAGES);
3170 		return (EINVAL);
3171 	} else if (xbb->max_requests > XBB_MAX_REQUESTS) {
3172 		xenbus_dev_fatal(xbb->dev, EINVAL,
3173 				 "Front-end specified max_requests of %u "
3174 				 "exceeds backend limit of %u.  "
3175 				 "Unable to connect.",
3176 				 xbb->max_requests,
3177 				 XBB_MAX_REQUESTS);
3178 		return (EINVAL);
3179 	} else if (xbb->max_request_segments > XBB_MAX_SEGMENTS_PER_REQUEST) {
3180 		xenbus_dev_fatal(xbb->dev, EINVAL,
3181 				 "Front-end specified max_requests_segments "
3182 				 "of %u exceeds backend limit of %u.  "
3183 				 "Unable to connect.",
3184 				 xbb->max_request_segments,
3185 				 XBB_MAX_SEGMENTS_PER_REQUEST);
3186 		return (EINVAL);
3187 	} else if (xbb->max_request_size > XBB_MAX_REQUEST_SIZE) {
3188 		xenbus_dev_fatal(xbb->dev, EINVAL,
3189 				 "Front-end specified max_request_size "
3190 				 "of %u exceeds backend limit of %u.  "
3191 				 "Unable to connect.",
3192 				 xbb->max_request_size,
3193 				 XBB_MAX_REQUEST_SIZE);
3194 		return (EINVAL);
3195 	}
3196 
3197 	if (xbb->ring_config.ring_pages	== 1) {
3198 		error = xs_gather(XST_NIL, otherend_path,
3199 				  "ring-ref", "%" PRIu32,
3200 				  &xbb->ring_config.ring_ref[0],
3201 				  NULL);
3202 		if (error != 0) {
3203 			xenbus_dev_fatal(xbb->dev, error,
3204 					 "Unable to retrieve ring information "
3205 					 "from frontend %s.  Unable to "
3206 					 "connect.",
3207 					 xenbus_get_otherend_path(xbb->dev));
3208 			return (error);
3209 		}
3210 	} else {
3211 		/* Multi-page ring format. */
3212 		for (ring_idx = 0; ring_idx < xbb->ring_config.ring_pages;
3213 		     ring_idx++) {
3214 			char ring_ref_name[]= "ring_refXX";
3215 
3216 			snprintf(ring_ref_name, sizeof(ring_ref_name),
3217 				 "ring-ref%u", ring_idx);
3218 			error = xs_scanf(XST_NIL, otherend_path,
3219 					 ring_ref_name, NULL, "%" PRIu32,
3220 					 &xbb->ring_config.ring_ref[ring_idx]);
3221 			if (error != 0) {
3222 				xenbus_dev_fatal(xbb->dev, error,
3223 						 "Failed to retriev grant "
3224 						 "reference for page %u of "
3225 						 "shared ring.  Unable "
3226 						 "to connect.", ring_idx);
3227 				return (error);
3228 			}
3229 		}
3230 	}
3231 
3232 	error = xs_gather(XST_NIL, otherend_path,
3233 			  "protocol", "%63s", protocol_abi,
3234 			  NULL);
3235 	if (error != 0
3236 	 || !strcmp(protocol_abi, XEN_IO_PROTO_ABI_NATIVE)) {
3237 		/*
3238 		 * Assume native if the frontend has not
3239 		 * published ABI data or it has published and
3240 		 * matches our own ABI.
3241 		 */
3242 		xbb->abi = BLKIF_PROTOCOL_NATIVE;
3243 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_32)) {
3244 
3245 		xbb->abi = BLKIF_PROTOCOL_X86_32;
3246 	} else if (!strcmp(protocol_abi, XEN_IO_PROTO_ABI_X86_64)) {
3247 
3248 		xbb->abi = BLKIF_PROTOCOL_X86_64;
3249 	} else {
3250 
3251 		xenbus_dev_fatal(xbb->dev, EINVAL,
3252 				 "Unknown protocol ABI (%s) published by "
3253 				 "frontend.  Unable to connect.", protocol_abi);
3254 		return (EINVAL);
3255 	}
3256 	return (0);
3257 }
3258 
3259 /**
3260  * Allocate per-request data structures given request size and number
3261  * information negotiated with the front-end.
3262  *
3263  * \param xbb  Per-instance xbb configuration structure.
3264  */
3265 static int
3266 xbb_alloc_requests(struct xbb_softc *xbb)
3267 {
3268 	struct xbb_xen_req *req;
3269 	struct xbb_xen_req *last_req;
3270 
3271 	/*
3272 	 * Allocate request book keeping datastructures.
3273 	 */
3274 	xbb->requests = malloc(xbb->max_requests * sizeof(*xbb->requests),
3275 			       M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3276 	if (xbb->requests == NULL) {
3277 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3278 				  "Unable to allocate request structures");
3279 		return (ENOMEM);
3280 	}
3281 
3282 	req      = xbb->requests;
3283 	last_req = &xbb->requests[xbb->max_requests - 1];
3284 	STAILQ_INIT(&xbb->request_free_stailq);
3285 	while (req <= last_req) {
3286 		STAILQ_INSERT_TAIL(&xbb->request_free_stailq, req, links);
3287 		req++;
3288 	}
3289 	return (0);
3290 }
3291 
3292 static int
3293 xbb_alloc_request_lists(struct xbb_softc *xbb)
3294 {
3295 	struct xbb_xen_reqlist *reqlist;
3296 	int			i;
3297 
3298 	/*
3299 	 * If no requests can be merged, we need 1 request list per
3300 	 * in flight request.
3301 	 */
3302 	xbb->request_lists = malloc(xbb->max_requests *
3303 		sizeof(*xbb->request_lists), M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3304 	if (xbb->request_lists == NULL) {
3305 		xenbus_dev_fatal(xbb->dev, ENOMEM,
3306 				  "Unable to allocate request list structures");
3307 		return (ENOMEM);
3308 	}
3309 
3310 	STAILQ_INIT(&xbb->reqlist_free_stailq);
3311 	STAILQ_INIT(&xbb->reqlist_pending_stailq);
3312 	for (i = 0; i < xbb->max_requests; i++) {
3313 		int seg;
3314 
3315 		reqlist      = &xbb->request_lists[i];
3316 
3317 		reqlist->xbb = xbb;
3318 
3319 #ifdef XBB_USE_BOUNCE_BUFFERS
3320 		reqlist->bounce = malloc(xbb->max_reqlist_size,
3321 					 M_XENBLOCKBACK, M_NOWAIT);
3322 		if (reqlist->bounce == NULL) {
3323 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3324 					 "Unable to allocate request "
3325 					 "bounce buffers");
3326 			return (ENOMEM);
3327 		}
3328 #endif /* XBB_USE_BOUNCE_BUFFERS */
3329 
3330 		reqlist->gnt_handles = malloc(xbb->max_reqlist_segments *
3331 					      sizeof(*reqlist->gnt_handles),
3332 					      M_XENBLOCKBACK, M_NOWAIT|M_ZERO);
3333 		if (reqlist->gnt_handles == NULL) {
3334 			xenbus_dev_fatal(xbb->dev, ENOMEM,
3335 					  "Unable to allocate request "
3336 					  "grant references");
3337 			return (ENOMEM);
3338 		}
3339 
3340 		for (seg = 0; seg < xbb->max_reqlist_segments; seg++)
3341 			reqlist->gnt_handles[seg] = GRANT_REF_INVALID;
3342 
3343 		STAILQ_INSERT_TAIL(&xbb->reqlist_free_stailq, reqlist, links);
3344 	}
3345 	return (0);
3346 }
3347 
3348 /**
3349  * Supply information about the physical device to the frontend
3350  * via XenBus.
3351  *
3352  * \param xbb  Per-instance xbb configuration structure.
3353  */
3354 static int
3355 xbb_publish_backend_info(struct xbb_softc *xbb)
3356 {
3357 	struct xs_transaction xst;
3358 	const char	     *our_path;
3359 	const char	     *leaf;
3360 	int		      error;
3361 
3362 	our_path = xenbus_get_node(xbb->dev);
3363 	while (1) {
3364 		error = xs_transaction_start(&xst);
3365 		if (error != 0) {
3366 			xenbus_dev_fatal(xbb->dev, error,
3367 					 "Error publishing backend info "
3368 					 "(start transaction)");
3369 			return (error);
3370 		}
3371 
3372 		leaf = "sectors";
3373 		error = xs_printf(xst, our_path, leaf,
3374 				  "%"PRIu64, xbb->media_num_sectors);
3375 		if (error != 0)
3376 			break;
3377 
3378 		/* XXX Support all VBD attributes here. */
3379 		leaf = "info";
3380 		error = xs_printf(xst, our_path, leaf, "%u",
3381 				  xbb->flags & XBBF_READ_ONLY
3382 				? VDISK_READONLY : 0);
3383 		if (error != 0)
3384 			break;
3385 
3386 		leaf = "sector-size";
3387 		error = xs_printf(xst, our_path, leaf, "%u",
3388 				  xbb->sector_size);
3389 		if (error != 0)
3390 			break;
3391 
3392 		error = xs_transaction_end(xst, 0);
3393 		if (error == 0) {
3394 			return (0);
3395 		} else if (error != EAGAIN) {
3396 			xenbus_dev_fatal(xbb->dev, error, "ending transaction");
3397 			return (error);
3398 		}
3399 	}
3400 
3401 	xenbus_dev_fatal(xbb->dev, error, "writing %s/%s",
3402 			our_path, leaf);
3403 	xs_transaction_end(xst, 1);
3404 	return (error);
3405 }
3406 
3407 /**
3408  * Connect to our blkfront peer now that it has completed publishing
3409  * its configuration into the XenStore.
3410  *
3411  * \param xbb  Per-instance xbb configuration structure.
3412  */
3413 static void
3414 xbb_connect(struct xbb_softc *xbb)
3415 {
3416 	int error;
3417 
3418 	if (xenbus_get_state(xbb->dev) == XenbusStateConnected)
3419 		return;
3420 
3421 	if (xbb_collect_frontend_info(xbb) != 0)
3422 		return;
3423 
3424 	xbb->flags &= ~XBBF_SHUTDOWN;
3425 
3426 	/*
3427 	 * We limit the maximum number of reqlist segments to the maximum
3428 	 * number of segments in the ring, or our absolute maximum,
3429 	 * whichever is smaller.
3430 	 */
3431 	xbb->max_reqlist_segments = MIN(xbb->max_request_segments *
3432 		xbb->max_requests, XBB_MAX_SEGMENTS_PER_REQLIST);
3433 
3434 	/*
3435 	 * The maximum size is simply a function of the number of segments
3436 	 * we can handle.
3437 	 */
3438 	xbb->max_reqlist_size = xbb->max_reqlist_segments * PAGE_SIZE;
3439 
3440 	/* Allocate resources whose size depends on front-end configuration. */
3441 	error = xbb_alloc_communication_mem(xbb);
3442 	if (error != 0) {
3443 		xenbus_dev_fatal(xbb->dev, error,
3444 				 "Unable to allocate communication memory");
3445 		return;
3446 	}
3447 
3448 	error = xbb_alloc_requests(xbb);
3449 	if (error != 0) {
3450 		/* Specific errors are reported by xbb_alloc_requests(). */
3451 		return;
3452 	}
3453 
3454 	error = xbb_alloc_request_lists(xbb);
3455 	if (error != 0) {
3456 		/* Specific errors are reported by xbb_alloc_request_lists(). */
3457 		return;
3458 	}
3459 
3460 	/*
3461 	 * Connect communication channel.
3462 	 */
3463 	error = xbb_connect_ring(xbb);
3464 	if (error != 0) {
3465 		/* Specific errors are reported by xbb_connect_ring(). */
3466 		return;
3467 	}
3468 
3469 	if (xbb_publish_backend_info(xbb) != 0) {
3470 		/*
3471 		 * If we can't publish our data, we cannot participate
3472 		 * in this connection, and waiting for a front-end state
3473 		 * change will not help the situation.
3474 		 */
3475 		(void)xbb_disconnect(xbb);
3476 		return;
3477 	}
3478 
3479 	/* Ready for I/O. */
3480 	xenbus_set_state(xbb->dev, XenbusStateConnected);
3481 }
3482 
3483 /*-------------------------- Device Teardown Support -------------------------*/
3484 /**
3485  * Perform device shutdown functions.
3486  *
3487  * \param xbb  Per-instance xbb configuration structure.
3488  *
3489  * Mark this instance as shutting down, wait for any active I/O on the
3490  * backend device/file to drain, disconnect from the front-end, and notify
3491  * any waiters (e.g. a thread invoking our detach method) that detach can
3492  * now proceed.
3493  */
3494 static int
3495 xbb_shutdown(struct xbb_softc *xbb)
3496 {
3497 	XenbusState frontState;
3498 	int	    error;
3499 
3500 	DPRINTF("\n");
3501 
3502 	/*
3503 	 * Due to the need to drop our mutex during some
3504 	 * xenbus operations, it is possible for two threads
3505 	 * to attempt to close out shutdown processing at
3506 	 * the same time.  Tell the caller that hits this
3507 	 * race to try back later.
3508 	 */
3509 	if ((xbb->flags & XBBF_IN_SHUTDOWN) != 0)
3510 		return (EAGAIN);
3511 
3512 	xbb->flags |= XBBF_IN_SHUTDOWN;
3513 	mtx_unlock(&xbb->lock);
3514 
3515 	if (xenbus_get_state(xbb->dev) < XenbusStateClosing)
3516 		xenbus_set_state(xbb->dev, XenbusStateClosing);
3517 
3518 	frontState = xenbus_get_otherend_state(xbb->dev);
3519 	mtx_lock(&xbb->lock);
3520 	xbb->flags &= ~XBBF_IN_SHUTDOWN;
3521 
3522 	/* The front can submit I/O until entering the closed state. */
3523 	if (frontState < XenbusStateClosed)
3524 		return (EAGAIN);
3525 
3526 	DPRINTF("\n");
3527 
3528 	/* Indicate shutdown is in progress. */
3529 	xbb->flags |= XBBF_SHUTDOWN;
3530 
3531 	/* Disconnect from the front-end. */
3532 	error = xbb_disconnect(xbb);
3533 	if (error != 0) {
3534 		/*
3535 		 * Requests still outstanding.  We'll be called again
3536 		 * once they complete.
3537 		 */
3538 		KASSERT(error == EAGAIN,
3539 			("%s: Unexpected xbb_disconnect() failure %d",
3540 			 __func__, error));
3541 
3542 		return (error);
3543 	}
3544 
3545 	DPRINTF("\n");
3546 
3547 	/* Indicate to xbb_detach() that is it safe to proceed. */
3548 	wakeup(xbb);
3549 
3550 	return (0);
3551 }
3552 
3553 /**
3554  * Report an attach time error to the console and Xen, and cleanup
3555  * this instance by forcing immediate detach processing.
3556  *
3557  * \param xbb  Per-instance xbb configuration structure.
3558  * \param err  Errno describing the error.
3559  * \param fmt  Printf style format and arguments
3560  */
3561 static void
3562 xbb_attach_failed(struct xbb_softc *xbb, int err, const char *fmt, ...)
3563 {
3564 	va_list ap;
3565 	va_list ap_hotplug;
3566 
3567 	va_start(ap, fmt);
3568 	va_copy(ap_hotplug, ap);
3569 	xs_vprintf(XST_NIL, xenbus_get_node(xbb->dev),
3570 		  "hotplug-error", fmt, ap_hotplug);
3571 	va_end(ap_hotplug);
3572 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3573 		  "hotplug-status", "error");
3574 
3575 	xenbus_dev_vfatal(xbb->dev, err, fmt, ap);
3576 	va_end(ap);
3577 
3578 	xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3579 		  "online", "0");
3580 	xbb_detach(xbb->dev);
3581 }
3582 
3583 /*---------------------------- NewBus Entrypoints ----------------------------*/
3584 /**
3585  * Inspect a XenBus device and claim it if is of the appropriate type.
3586  *
3587  * \param dev  NewBus device object representing a candidate XenBus device.
3588  *
3589  * \return  0 for success, errno codes for failure.
3590  */
3591 static int
3592 xbb_probe(device_t dev)
3593 {
3594 
3595         if (!strcmp(xenbus_get_type(dev), "vbd")) {
3596                 device_set_desc(dev, "Backend Virtual Block Device");
3597                 device_quiet(dev);
3598                 return (0);
3599         }
3600 
3601         return (ENXIO);
3602 }
3603 
3604 /**
3605  * Setup sysctl variables to control various Block Back parameters.
3606  *
3607  * \param xbb  Xen Block Back softc.
3608  *
3609  */
3610 static void
3611 xbb_setup_sysctl(struct xbb_softc *xbb)
3612 {
3613 	struct sysctl_ctx_list *sysctl_ctx = NULL;
3614 	struct sysctl_oid      *sysctl_tree = NULL;
3615 
3616 	sysctl_ctx = device_get_sysctl_ctx(xbb->dev);
3617 	if (sysctl_ctx == NULL)
3618 		return;
3619 
3620 	sysctl_tree = device_get_sysctl_tree(xbb->dev);
3621 	if (sysctl_tree == NULL)
3622 		return;
3623 
3624 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3625 		       "disable_flush", CTLFLAG_RW, &xbb->disable_flush, 0,
3626 		       "fake the flush command");
3627 
3628 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3629 		       "flush_interval", CTLFLAG_RW, &xbb->flush_interval, 0,
3630 		       "send a real flush for N flush requests");
3631 
3632 	SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3633 		       "no_coalesce_reqs", CTLFLAG_RW, &xbb->no_coalesce_reqs,0,
3634 		       "Don't coalesce contiguous requests");
3635 
3636 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3637 			 "reqs_received", CTLFLAG_RW, &xbb->reqs_received,
3638 			 "how many I/O requests we have received");
3639 
3640 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3641 			 "reqs_completed", CTLFLAG_RW, &xbb->reqs_completed,
3642 			 "how many I/O requests have been completed");
3643 
3644 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3645 			 "reqs_queued_for_completion", CTLFLAG_RW,
3646 			 &xbb->reqs_queued_for_completion,
3647 			 "how many I/O requests queued but not yet pushed");
3648 
3649 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3650 			 "reqs_completed_with_error", CTLFLAG_RW,
3651 			 &xbb->reqs_completed_with_error,
3652 			 "how many I/O requests completed with error status");
3653 
3654 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3655 			 "forced_dispatch", CTLFLAG_RW, &xbb->forced_dispatch,
3656 			 "how many I/O dispatches were forced");
3657 
3658 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3659 			 "normal_dispatch", CTLFLAG_RW, &xbb->normal_dispatch,
3660 			 "how many I/O dispatches were normal");
3661 
3662 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3663 			 "total_dispatch", CTLFLAG_RW, &xbb->total_dispatch,
3664 			 "total number of I/O dispatches");
3665 
3666 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3667 			 "kva_shortages", CTLFLAG_RW, &xbb->kva_shortages,
3668 			 "how many times we have run out of KVA");
3669 
3670 	SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3671 			 "request_shortages", CTLFLAG_RW,
3672 			 &xbb->request_shortages,
3673 			 "how many times we have run out of requests");
3674 
3675 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3676 		        "max_requests", CTLFLAG_RD, &xbb->max_requests, 0,
3677 		        "maximum outstanding requests (negotiated)");
3678 
3679 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3680 		        "max_request_segments", CTLFLAG_RD,
3681 		        &xbb->max_request_segments, 0,
3682 		        "maximum number of pages per requests (negotiated)");
3683 
3684 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3685 		        "max_request_size", CTLFLAG_RD,
3686 		        &xbb->max_request_size, 0,
3687 		        "maximum size in bytes of a request (negotiated)");
3688 
3689 	SYSCTL_ADD_UINT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO,
3690 		        "ring_pages", CTLFLAG_RD,
3691 		        &xbb->ring_config.ring_pages, 0,
3692 		        "communication channel pages (negotiated)");
3693 }
3694 
3695 /**
3696  * Attach to a XenBus device that has been claimed by our probe routine.
3697  *
3698  * \param dev  NewBus device object representing this Xen Block Back instance.
3699  *
3700  * \return  0 for success, errno codes for failure.
3701  */
3702 static int
3703 xbb_attach(device_t dev)
3704 {
3705 	struct xbb_softc	*xbb;
3706 	int			 error;
3707 	u_int			 max_ring_page_order;
3708 
3709 	DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
3710 
3711 	/*
3712 	 * Basic initialization.
3713 	 * After this block it is safe to call xbb_detach()
3714 	 * to clean up any allocated data for this instance.
3715 	 */
3716 	xbb = device_get_softc(dev);
3717 	xbb->dev = dev;
3718 	xbb->otherend_id = xenbus_get_otherend_id(dev);
3719 	TASK_INIT(&xbb->io_task, /*priority*/0, xbb_run_queue, xbb);
3720 	mtx_init(&xbb->lock, device_get_nameunit(dev), NULL, MTX_DEF);
3721 
3722 	/*
3723 	 * Publish protocol capabilities for consumption by the
3724 	 * front-end.
3725 	 */
3726 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3727 			  "feature-barrier", "1");
3728 	if (error) {
3729 		xbb_attach_failed(xbb, error, "writing %s/feature-barrier",
3730 				  xenbus_get_node(xbb->dev));
3731 		return (error);
3732 	}
3733 
3734 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3735 			  "feature-flush-cache", "1");
3736 	if (error) {
3737 		xbb_attach_failed(xbb, error, "writing %s/feature-flush-cache",
3738 				  xenbus_get_node(xbb->dev));
3739 		return (error);
3740 	}
3741 
3742 	/*
3743 	 * Amazon EC2 client compatility.  They refer to max-ring-pages
3744 	 * instead of to max-ring-page-order.
3745 	 */
3746 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3747 			  "max-ring-pages", "%zu", XBB_MAX_RING_PAGES);
3748 	if (error) {
3749 		xbb_attach_failed(xbb, error, "writing %s/max-ring-pages",
3750 				  xenbus_get_node(xbb->dev));
3751 		return (error);
3752 	}
3753 
3754 	max_ring_page_order = flsl(XBB_MAX_RING_PAGES) - 1;
3755 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3756 			  "max-ring-page-order", "%u", max_ring_page_order);
3757 	if (error) {
3758 		xbb_attach_failed(xbb, error, "writing %s/max-ring-page-order",
3759 				  xenbus_get_node(xbb->dev));
3760 		return (error);
3761 	}
3762 
3763 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3764 			  "max-requests", "%u", XBB_MAX_REQUESTS);
3765 	if (error) {
3766 		xbb_attach_failed(xbb, error, "writing %s/max-requests",
3767 				  xenbus_get_node(xbb->dev));
3768 		return (error);
3769 	}
3770 
3771 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3772 			  "max-request-segments", "%u",
3773 			  XBB_MAX_SEGMENTS_PER_REQUEST);
3774 	if (error) {
3775 		xbb_attach_failed(xbb, error, "writing %s/max-request-segments",
3776 				  xenbus_get_node(xbb->dev));
3777 		return (error);
3778 	}
3779 
3780 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3781 			  "max-request-size", "%u",
3782 			  XBB_MAX_REQUEST_SIZE);
3783 	if (error) {
3784 		xbb_attach_failed(xbb, error, "writing %s/max-request-size",
3785 				  xenbus_get_node(xbb->dev));
3786 		return (error);
3787 	}
3788 
3789 	/* Collect physical device information. */
3790 	error = xs_gather(XST_NIL, xenbus_get_otherend_path(xbb->dev),
3791 			  "device-type", NULL, &xbb->dev_type,
3792 			  NULL);
3793 	if (error != 0)
3794 		xbb->dev_type = NULL;
3795 
3796 	error = xs_gather(XST_NIL, xenbus_get_node(dev),
3797                           "mode", NULL, &xbb->dev_mode,
3798 			  "params", NULL, &xbb->dev_name,
3799                           NULL);
3800 	if (error != 0) {
3801 		xbb_attach_failed(xbb, error, "reading backend fields at %s",
3802 				  xenbus_get_node(dev));
3803                 return (ENXIO);
3804         }
3805 
3806 	/* Parse fopen style mode flags. */
3807 	if (strchr(xbb->dev_mode, 'w') == NULL)
3808 		xbb->flags |= XBBF_READ_ONLY;
3809 
3810 	/*
3811 	 * Verify the physical device is present and can support
3812 	 * the desired I/O mode.
3813 	 */
3814 	DROP_GIANT();
3815 	error = xbb_open_backend(xbb);
3816 	PICKUP_GIANT();
3817 	if (error != 0) {
3818 		xbb_attach_failed(xbb, error, "Unable to open %s",
3819 				  xbb->dev_name);
3820 		return (ENXIO);
3821 	}
3822 
3823 	/* Use devstat(9) for recording statistics. */
3824 	xbb->xbb_stats = devstat_new_entry("xbb", device_get_unit(xbb->dev),
3825 					   xbb->sector_size,
3826 					   DEVSTAT_ALL_SUPPORTED,
3827 					   DEVSTAT_TYPE_DIRECT
3828 					 | DEVSTAT_TYPE_IF_OTHER,
3829 					   DEVSTAT_PRIORITY_OTHER);
3830 
3831 	xbb->xbb_stats_in = devstat_new_entry("xbbi", device_get_unit(xbb->dev),
3832 					      xbb->sector_size,
3833 					      DEVSTAT_ALL_SUPPORTED,
3834 					      DEVSTAT_TYPE_DIRECT
3835 					    | DEVSTAT_TYPE_IF_OTHER,
3836 					      DEVSTAT_PRIORITY_OTHER);
3837 	/*
3838 	 * Setup sysctl variables.
3839 	 */
3840 	xbb_setup_sysctl(xbb);
3841 
3842 	/*
3843 	 * Create a taskqueue for doing work that must occur from a
3844 	 * thread context.
3845 	 */
3846 	xbb->io_taskqueue = taskqueue_create_fast(device_get_nameunit(dev),
3847 						  M_NOWAIT,
3848 						  taskqueue_thread_enqueue,
3849 						  /*contxt*/&xbb->io_taskqueue);
3850 	if (xbb->io_taskqueue == NULL) {
3851 		xbb_attach_failed(xbb, error, "Unable to create taskqueue");
3852 		return (ENOMEM);
3853 	}
3854 
3855 	taskqueue_start_threads(&xbb->io_taskqueue,
3856 				/*num threads*/1,
3857 				/*priority*/PWAIT,
3858 				/*thread name*/
3859 				"%s taskq", device_get_nameunit(dev));
3860 
3861 	/* Update hot-plug status to satisfy xend. */
3862 	error = xs_printf(XST_NIL, xenbus_get_node(xbb->dev),
3863 			  "hotplug-status", "connected");
3864 	if (error) {
3865 		xbb_attach_failed(xbb, error, "writing %s/hotplug-status",
3866 				  xenbus_get_node(xbb->dev));
3867 		return (error);
3868 	}
3869 
3870 	/* Tell the front end that we are ready to connect. */
3871 	xenbus_set_state(dev, XenbusStateInitWait);
3872 
3873 	return (0);
3874 }
3875 
3876 /**
3877  * Detach from a block back device instance.
3878  *
3879  * \param dev  NewBus device object representing this Xen Block Back instance.
3880  *
3881  * \return  0 for success, errno codes for failure.
3882  *
3883  * \note A block back device may be detached at any time in its life-cycle,
3884  *       including part way through the attach process.  For this reason,
3885  *       initialization order and the intialization state checks in this
3886  *       routine must be carefully coupled so that attach time failures
3887  *       are gracefully handled.
3888  */
3889 static int
3890 xbb_detach(device_t dev)
3891 {
3892         struct xbb_softc *xbb;
3893 
3894 	DPRINTF("\n");
3895 
3896         xbb = device_get_softc(dev);
3897 	mtx_lock(&xbb->lock);
3898 	while (xbb_shutdown(xbb) == EAGAIN) {
3899 		msleep(xbb, &xbb->lock, /*wakeup prio unchanged*/0,
3900 		       "xbb_shutdown", 0);
3901 	}
3902 	mtx_unlock(&xbb->lock);
3903 
3904 	DPRINTF("\n");
3905 
3906 	if (xbb->io_taskqueue != NULL)
3907 		taskqueue_free(xbb->io_taskqueue);
3908 
3909 	if (xbb->xbb_stats != NULL)
3910 		devstat_remove_entry(xbb->xbb_stats);
3911 
3912 	if (xbb->xbb_stats_in != NULL)
3913 		devstat_remove_entry(xbb->xbb_stats_in);
3914 
3915 	xbb_close_backend(xbb);
3916 
3917 	if (xbb->dev_mode != NULL) {
3918 		free(xbb->dev_mode, M_XENSTORE);
3919 		xbb->dev_mode = NULL;
3920 	}
3921 
3922 	if (xbb->dev_type != NULL) {
3923 		free(xbb->dev_type, M_XENSTORE);
3924 		xbb->dev_type = NULL;
3925 	}
3926 
3927 	if (xbb->dev_name != NULL) {
3928 		free(xbb->dev_name, M_XENSTORE);
3929 		xbb->dev_name = NULL;
3930 	}
3931 
3932 	mtx_destroy(&xbb->lock);
3933         return (0);
3934 }
3935 
3936 /**
3937  * Prepare this block back device for suspension of this VM.
3938  *
3939  * \param dev  NewBus device object representing this Xen Block Back instance.
3940  *
3941  * \return  0 for success, errno codes for failure.
3942  */
3943 static int
3944 xbb_suspend(device_t dev)
3945 {
3946 #ifdef NOT_YET
3947         struct xbb_softc *sc = device_get_softc(dev);
3948 
3949         /* Prevent new requests being issued until we fix things up. */
3950         mtx_lock(&sc->xb_io_lock);
3951         sc->connected = BLKIF_STATE_SUSPENDED;
3952         mtx_unlock(&sc->xb_io_lock);
3953 #endif
3954 
3955         return (0);
3956 }
3957 
3958 /**
3959  * Perform any processing required to recover from a suspended state.
3960  *
3961  * \param dev  NewBus device object representing this Xen Block Back instance.
3962  *
3963  * \return  0 for success, errno codes for failure.
3964  */
3965 static int
3966 xbb_resume(device_t dev)
3967 {
3968 	return (0);
3969 }
3970 
3971 /**
3972  * Handle state changes expressed via the XenStore by our front-end peer.
3973  *
3974  * \param dev             NewBus device object representing this Xen
3975  *                        Block Back instance.
3976  * \param frontend_state  The new state of the front-end.
3977  *
3978  * \return  0 for success, errno codes for failure.
3979  */
3980 static void
3981 xbb_frontend_changed(device_t dev, XenbusState frontend_state)
3982 {
3983 	struct xbb_softc *xbb = device_get_softc(dev);
3984 
3985 	DPRINTF("frontend_state=%s, xbb_state=%s\n",
3986 	        xenbus_strstate(frontend_state),
3987 		xenbus_strstate(xenbus_get_state(xbb->dev)));
3988 
3989 	switch (frontend_state) {
3990 	case XenbusStateInitialising:
3991 		break;
3992 	case XenbusStateInitialised:
3993 	case XenbusStateConnected:
3994 		xbb_connect(xbb);
3995 		break;
3996 	case XenbusStateClosing:
3997 	case XenbusStateClosed:
3998 		mtx_lock(&xbb->lock);
3999 		xbb_shutdown(xbb);
4000 		mtx_unlock(&xbb->lock);
4001 		if (frontend_state == XenbusStateClosed)
4002 			xenbus_set_state(xbb->dev, XenbusStateClosed);
4003 		break;
4004 	default:
4005 		xenbus_dev_fatal(xbb->dev, EINVAL, "saw state %d at frontend",
4006 				 frontend_state);
4007 		break;
4008 	}
4009 }
4010 
4011 /*---------------------------- NewBus Registration ---------------------------*/
4012 static device_method_t xbb_methods[] = {
4013 	/* Device interface */
4014 	DEVMETHOD(device_probe,		xbb_probe),
4015 	DEVMETHOD(device_attach,	xbb_attach),
4016 	DEVMETHOD(device_detach,	xbb_detach),
4017 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
4018 	DEVMETHOD(device_suspend,	xbb_suspend),
4019 	DEVMETHOD(device_resume,	xbb_resume),
4020 
4021 	/* Xenbus interface */
4022 	DEVMETHOD(xenbus_otherend_changed, xbb_frontend_changed),
4023 
4024 	{ 0, 0 }
4025 };
4026 
4027 static driver_t xbb_driver = {
4028         "xbbd",
4029         xbb_methods,
4030         sizeof(struct xbb_softc),
4031 };
4032 devclass_t xbb_devclass;
4033 
4034 DRIVER_MODULE(xbbd, xenbusb_back, xbb_driver, xbb_devclass, 0, 0);
4035