xref: /freebsd/sys/dev/wpi/if_wpi.c (revision fcb560670601b2a4d87bb31d7531c8dcc37ee71b)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_intr) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
134 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
135 		    const uint8_t [IEEE80211_ADDR_LEN],
136 		    const uint8_t [IEEE80211_ADDR_LEN]);
137 static void	wpi_vap_delete(struct ieee80211vap *);
138 static int	wpi_detach(device_t);
139 static int	wpi_shutdown(device_t);
140 static int	wpi_suspend(device_t);
141 static int	wpi_resume(device_t);
142 static int	wpi_nic_lock(struct wpi_softc *);
143 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
144 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
146 		    void **, bus_size_t, bus_size_t);
147 static void	wpi_dma_contig_free(struct wpi_dma_info *);
148 static int	wpi_alloc_shared(struct wpi_softc *);
149 static void	wpi_free_shared(struct wpi_softc *);
150 static int	wpi_alloc_fwmem(struct wpi_softc *);
151 static void	wpi_free_fwmem(struct wpi_softc *);
152 static int	wpi_alloc_rx_ring(struct wpi_softc *);
153 static void	wpi_update_rx_ring(struct wpi_softc *);
154 static void	wpi_reset_rx_ring(struct wpi_softc *);
155 static void	wpi_free_rx_ring(struct wpi_softc *);
156 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157 		    int);
158 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
160 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static int	wpi_read_eeprom(struct wpi_softc *,
162 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
163 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
164 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
165 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
166 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
167 		    struct ieee80211_channel *);
168 static int	wpi_setregdomain(struct ieee80211com *,
169 		    struct ieee80211_regdomain *, int,
170 		    struct ieee80211_channel[]);
171 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
172 static void	wpi_node_free(struct ieee80211_node *);
173 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
174 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176 static void	wpi_calib_timeout(void *);
177 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
178 		    struct wpi_rx_data *);
179 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
180 		    struct wpi_rx_data *);
181 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
182 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
183 static void	wpi_notif_intr(struct wpi_softc *);
184 static void	wpi_wakeup_intr(struct wpi_softc *);
185 static void	wpi_fatal_intr(struct wpi_softc *);
186 static void	wpi_intr(void *);
187 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
188 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
189 		    struct ieee80211_node *);
190 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
191 		    struct ieee80211_node *,
192 		    const struct ieee80211_bpf_params *);
193 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
194 		    const struct ieee80211_bpf_params *);
195 static void	wpi_start(struct ifnet *);
196 static void	wpi_start_locked(struct ifnet *);
197 static void	wpi_watchdog_rfkill(void *);
198 static void	wpi_watchdog(void *);
199 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
200 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
201 static int	wpi_mrr_setup(struct wpi_softc *);
202 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
203 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
204 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
205 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
206 static int	wpi_updateedca(struct ieee80211com *);
207 static void	wpi_set_promisc(struct wpi_softc *);
208 static void	wpi_update_promisc(struct ifnet *);
209 static void	wpi_update_mcast(struct ifnet *);
210 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
211 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
212 static void	wpi_power_calibration(struct wpi_softc *);
213 static int	wpi_set_txpower(struct wpi_softc *, int);
214 static int	wpi_get_power_index(struct wpi_softc *,
215 		    struct wpi_power_group *, struct ieee80211_channel *, int);
216 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
217 static int	wpi_send_btcoex(struct wpi_softc *);
218 static int	wpi_send_rxon(struct wpi_softc *, int, int);
219 static int	wpi_config(struct wpi_softc *);
220 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
221 		    struct ieee80211_channel *, uint8_t);
222 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
223 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
224 		    struct ieee80211_channel *);
225 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
226 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
227 static void	wpi_update_beacon(struct ieee80211vap *, int);
228 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
229 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
230 static int	wpi_key_alloc(struct ieee80211vap *, struct ieee80211_key *,
231 		    ieee80211_keyix *, ieee80211_keyix *);
232 static int	wpi_key_set(struct ieee80211vap *,
233 		    const struct ieee80211_key *,
234 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
235 static int	wpi_key_delete(struct ieee80211vap *,
236 		    const struct ieee80211_key *);
237 static int	wpi_post_alive(struct wpi_softc *);
238 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
239 static int	wpi_load_firmware(struct wpi_softc *);
240 static int	wpi_read_firmware(struct wpi_softc *);
241 static void	wpi_unload_firmware(struct wpi_softc *);
242 static int	wpi_clock_wait(struct wpi_softc *);
243 static int	wpi_apm_init(struct wpi_softc *);
244 static void	wpi_apm_stop_master(struct wpi_softc *);
245 static void	wpi_apm_stop(struct wpi_softc *);
246 static void	wpi_nic_config(struct wpi_softc *);
247 static int	wpi_hw_init(struct wpi_softc *);
248 static void	wpi_hw_stop(struct wpi_softc *);
249 static void	wpi_radio_on(void *, int);
250 static void	wpi_radio_off(void *, int);
251 static void	wpi_init_locked(struct wpi_softc *);
252 static void	wpi_init(void *);
253 static void	wpi_stop_locked(struct wpi_softc *);
254 static void	wpi_stop(struct wpi_softc *);
255 static void	wpi_scan_start(struct ieee80211com *);
256 static void	wpi_scan_end(struct ieee80211com *);
257 static void	wpi_set_channel(struct ieee80211com *);
258 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
259 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
260 static void	wpi_hw_reset(void *, int);
261 
262 static device_method_t wpi_methods[] = {
263 	/* Device interface */
264 	DEVMETHOD(device_probe,		wpi_probe),
265 	DEVMETHOD(device_attach,	wpi_attach),
266 	DEVMETHOD(device_detach,	wpi_detach),
267 	DEVMETHOD(device_shutdown,	wpi_shutdown),
268 	DEVMETHOD(device_suspend,	wpi_suspend),
269 	DEVMETHOD(device_resume,	wpi_resume),
270 
271 	DEVMETHOD_END
272 };
273 
274 static driver_t wpi_driver = {
275 	"wpi",
276 	wpi_methods,
277 	sizeof (struct wpi_softc)
278 };
279 static devclass_t wpi_devclass;
280 
281 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
282 
283 MODULE_VERSION(wpi, 1);
284 
285 MODULE_DEPEND(wpi, pci,  1, 1, 1);
286 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
287 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
288 
289 static int
290 wpi_probe(device_t dev)
291 {
292 	const struct wpi_ident *ident;
293 
294 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
295 		if (pci_get_vendor(dev) == ident->vendor &&
296 		    pci_get_device(dev) == ident->device) {
297 			device_set_desc(dev, ident->name);
298 			return (BUS_PROBE_DEFAULT);
299 		}
300 	}
301 	return ENXIO;
302 }
303 
304 static int
305 wpi_attach(device_t dev)
306 {
307 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
308 	struct ieee80211com *ic;
309 	struct ifnet *ifp;
310 	int i, error, rid, supportsa = 1;
311 	const struct wpi_ident *ident;
312 	uint8_t macaddr[IEEE80211_ADDR_LEN];
313 
314 	sc->sc_dev = dev;
315 
316 #ifdef	WPI_DEBUG
317 	error = resource_int_value(device_get_name(sc->sc_dev),
318 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
319 	if (error != 0)
320 		sc->sc_debug = 0;
321 #else
322 	sc->sc_debug = 0;
323 #endif
324 
325 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
326 
327 	/*
328 	 * Get the offset of the PCI Express Capability Structure in PCI
329 	 * Configuration Space.
330 	 */
331 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
332 	if (error != 0) {
333 		device_printf(dev, "PCIe capability structure not found!\n");
334 		return error;
335 	}
336 
337 	/*
338 	 * Some card's only support 802.11b/g not a, check to see if
339 	 * this is one such card. A 0x0 in the subdevice table indicates
340 	 * the entire subdevice range is to be ignored.
341 	 */
342 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
343 		if (ident->subdevice &&
344 		    pci_get_subdevice(dev) == ident->subdevice) {
345 		    supportsa = 0;
346 		    break;
347 		}
348 	}
349 
350 	/* Clear device-specific "PCI retry timeout" register (41h). */
351 	pci_write_config(dev, 0x41, 0, 1);
352 
353 	/* Enable bus-mastering. */
354 	pci_enable_busmaster(dev);
355 
356 	rid = PCIR_BAR(0);
357 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
358 	    RF_ACTIVE);
359 	if (sc->mem == NULL) {
360 		device_printf(dev, "can't map mem space\n");
361 		error = ENOMEM;
362 		return error;
363 	}
364 	sc->sc_st = rman_get_bustag(sc->mem);
365 	sc->sc_sh = rman_get_bushandle(sc->mem);
366 
367 	i = 1;
368 	rid = 0;
369 	if (pci_alloc_msi(dev, &i) == 0)
370 		rid = 1;
371 	/* Install interrupt handler. */
372 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
373 	    (rid != 0 ? 0 : RF_SHAREABLE));
374 	if (sc->irq == NULL) {
375 		device_printf(dev, "can't map interrupt\n");
376 		error = ENOMEM;
377 		goto fail;
378 	}
379 
380 	WPI_LOCK_INIT(sc);
381 
382 	sc->sc_unr = new_unrhdr(WPI_ID_IBSS_MIN, WPI_ID_IBSS_MAX, &sc->sc_mtx);
383 
384 	/* Allocate DMA memory for firmware transfers. */
385 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
386 		device_printf(dev,
387 		    "could not allocate memory for firmware, error %d\n",
388 		    error);
389 		goto fail;
390 	}
391 
392 	/* Allocate shared page. */
393 	if ((error = wpi_alloc_shared(sc)) != 0) {
394 		device_printf(dev, "could not allocate shared page\n");
395 		goto fail;
396 	}
397 
398 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
399 	for (i = 0; i < WPI_NTXQUEUES; i++) {
400 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
401 			device_printf(dev,
402 			    "could not allocate TX ring %d, error %d\n", i,
403 			    error);
404 			goto fail;
405 		}
406 	}
407 
408 	/* Allocate RX ring. */
409 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
410 		device_printf(dev, "could not allocate RX ring, error %d\n",
411 		    error);
412 		goto fail;
413 	}
414 
415 	/* Clear pending interrupts. */
416 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
417 
418 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
419 	if (ifp == NULL) {
420 		device_printf(dev, "can not allocate ifnet structure\n");
421 		goto fail;
422 	}
423 
424 	ic = ifp->if_l2com;
425 	ic->ic_ifp = ifp;
426 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
427 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
428 
429 	/* Set device capabilities. */
430 	ic->ic_caps =
431 		  IEEE80211_C_STA		/* station mode supported */
432 		| IEEE80211_C_IBSS		/* IBSS mode supported */
433 		| IEEE80211_C_MONITOR		/* monitor mode supported */
434 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
435 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
436 		| IEEE80211_C_TXPMGT		/* tx power management */
437 		| IEEE80211_C_SHSLOT		/* short slot time supported */
438 		| IEEE80211_C_WPA		/* 802.11i */
439 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
440 #if 0
441 		| IEEE80211_C_HOSTAP		/* Host access point mode */
442 #endif
443 		| IEEE80211_C_WME		/* 802.11e */
444 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
445 		;
446 
447 	ic->ic_cryptocaps =
448 		  IEEE80211_CRYPTO_AES_CCM;
449 
450 	/*
451 	 * Read in the eeprom and also setup the channels for
452 	 * net80211. We don't set the rates as net80211 does this for us
453 	 */
454 	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
455 		device_printf(dev, "could not read EEPROM, error %d\n",
456 		    error);
457 		goto fail;
458         }
459 
460 #ifdef	WPI_DEBUG
461 	if (bootverbose) {
462 	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
463 	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
464 			  sc->type > 1 ? 'B': '?');
465 	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
466 			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
467 	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
468 			  supportsa ? "does" : "does not");
469 
470 	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
471 	       what sc->rev really represents - benjsc 20070615 */
472 	}
473 #endif
474 
475 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
476 	ifp->if_softc = sc;
477 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
478 	ifp->if_init = wpi_init;
479 	ifp->if_ioctl = wpi_ioctl;
480 	ifp->if_start = wpi_start;
481 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
482 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
483 	IFQ_SET_READY(&ifp->if_snd);
484 
485 	ieee80211_ifattach(ic, macaddr);
486 	ic->ic_vap_create = wpi_vap_create;
487 	ic->ic_vap_delete = wpi_vap_delete;
488 	ic->ic_raw_xmit = wpi_raw_xmit;
489 	ic->ic_node_alloc = wpi_node_alloc;
490 	sc->sc_node_free = ic->ic_node_free;
491 	ic->ic_node_free = wpi_node_free;
492 	ic->ic_wme.wme_update = wpi_updateedca;
493 	ic->ic_update_promisc = wpi_update_promisc;
494 	ic->ic_update_mcast = wpi_update_mcast;
495 	ic->ic_scan_start = wpi_scan_start;
496 	ic->ic_scan_end = wpi_scan_end;
497 	ic->ic_set_channel = wpi_set_channel;
498 	sc->sc_scan_curchan = ic->ic_scan_curchan;
499 	ic->ic_scan_curchan = wpi_scan_curchan;
500 	ic->ic_scan_mindwell = wpi_scan_mindwell;
501 	ic->ic_setregdomain = wpi_setregdomain;
502 
503 	wpi_radiotap_attach(sc);
504 
505 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
506 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
507 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
508 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
509 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
510 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
511 
512 	wpi_sysctlattach(sc);
513 
514 	/*
515 	 * Hook our interrupt after all initialization is complete.
516 	 */
517 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
518 	    NULL, wpi_intr, sc, &sc->sc_ih);
519 	if (error != 0) {
520 		device_printf(dev, "can't establish interrupt, error %d\n",
521 		    error);
522 		goto fail;
523 	}
524 
525 	if (bootverbose)
526 		ieee80211_announce(ic);
527 
528 #ifdef WPI_DEBUG
529 	if (sc->sc_debug & WPI_DEBUG_HW)
530 		ieee80211_announce_channels(ic);
531 #endif
532 
533 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
534 	return 0;
535 
536 fail:	wpi_detach(dev);
537 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
538 	return error;
539 }
540 
541 /*
542  * Attach the interface to 802.11 radiotap.
543  */
544 static void
545 wpi_radiotap_attach(struct wpi_softc *sc)
546 {
547 	struct ifnet *ifp = sc->sc_ifp;
548 	struct ieee80211com *ic = ifp->if_l2com;
549 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
550 	ieee80211_radiotap_attach(ic,
551 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
552 		WPI_TX_RADIOTAP_PRESENT,
553 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
554 		WPI_RX_RADIOTAP_PRESENT);
555 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
556 }
557 
558 static void
559 wpi_sysctlattach(struct wpi_softc *sc)
560 {
561 #ifdef  WPI_DEBUG
562 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
563 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
564 
565 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
566 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
567 		"control debugging printfs");
568 #endif
569 }
570 
571 static struct ieee80211vap *
572 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
573     enum ieee80211_opmode opmode, int flags,
574     const uint8_t bssid[IEEE80211_ADDR_LEN],
575     const uint8_t mac[IEEE80211_ADDR_LEN])
576 {
577 	struct wpi_vap *wvp;
578 	struct wpi_buf *bcn;
579 	struct ieee80211vap *vap;
580 
581 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
582 		return NULL;
583 
584 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
585 	    M_80211_VAP, M_NOWAIT | M_ZERO);
586 	if (wvp == NULL)
587 		return NULL;
588 	vap = &wvp->vap;
589 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
590 
591 	bcn = &wvp->wv_bcbuf;
592 	bcn->data = NULL;
593 
594 	/* Override with driver methods. */
595 	wvp->newstate = vap->iv_newstate;
596 	vap->iv_key_alloc = wpi_key_alloc;
597 	vap->iv_key_set = wpi_key_set;
598 	vap->iv_key_delete = wpi_key_delete;
599 	vap->iv_newstate = wpi_newstate;
600 	vap->iv_update_beacon = wpi_update_beacon;
601 
602 	ieee80211_ratectl_init(vap);
603 	/* Complete setup. */
604 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
605 	ic->ic_opmode = opmode;
606 	return vap;
607 }
608 
609 static void
610 wpi_vap_delete(struct ieee80211vap *vap)
611 {
612 	struct wpi_vap *wvp = WPI_VAP(vap);
613 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
614 
615 	ieee80211_ratectl_deinit(vap);
616 	ieee80211_vap_detach(vap);
617 
618 	if (bcn->data != NULL)
619 		free(bcn->data, M_DEVBUF);
620 	free(wvp, M_80211_VAP);
621 }
622 
623 static int
624 wpi_detach(device_t dev)
625 {
626 	struct wpi_softc *sc = device_get_softc(dev);
627 	struct ifnet *ifp = sc->sc_ifp;
628 	struct ieee80211com *ic;
629 	int qid;
630 
631 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
632 
633 	if (ifp != NULL) {
634 		ic = ifp->if_l2com;
635 
636 		ieee80211_draintask(ic, &sc->sc_reinittask);
637 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
638 
639 		wpi_stop(sc);
640 
641 		callout_drain(&sc->watchdog_to);
642 		callout_drain(&sc->watchdog_rfkill);
643 		callout_drain(&sc->calib_to);
644 		ieee80211_ifdetach(ic);
645 	}
646 
647 	/* Uninstall interrupt handler. */
648 	if (sc->irq != NULL) {
649 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
650 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
651 		    sc->irq);
652 		pci_release_msi(dev);
653 	}
654 
655 	if (sc->txq[0].data_dmat) {
656 		/* Free DMA resources. */
657 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
658 			wpi_free_tx_ring(sc, &sc->txq[qid]);
659 
660 		wpi_free_rx_ring(sc);
661 		wpi_free_shared(sc);
662 	}
663 
664 	if (sc->fw_dma.tag)
665 		wpi_free_fwmem(sc);
666 
667 	if (sc->mem != NULL)
668 		bus_release_resource(dev, SYS_RES_MEMORY,
669 		    rman_get_rid(sc->mem), sc->mem);
670 
671 	if (ifp != NULL)
672 		if_free(ifp);
673 
674 	delete_unrhdr(sc->sc_unr);
675 
676 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
677 	WPI_LOCK_DESTROY(sc);
678 	return 0;
679 }
680 
681 static int
682 wpi_shutdown(device_t dev)
683 {
684 	struct wpi_softc *sc = device_get_softc(dev);
685 
686 	wpi_stop(sc);
687 	return 0;
688 }
689 
690 static int
691 wpi_suspend(device_t dev)
692 {
693 	struct wpi_softc *sc = device_get_softc(dev);
694 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
695 
696 	ieee80211_suspend_all(ic);
697 	return 0;
698 }
699 
700 static int
701 wpi_resume(device_t dev)
702 {
703 	struct wpi_softc *sc = device_get_softc(dev);
704 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
705 
706 	/* Clear device-specific "PCI retry timeout" register (41h). */
707 	pci_write_config(dev, 0x41, 0, 1);
708 
709 	ieee80211_resume_all(ic);
710 	return 0;
711 }
712 
713 /*
714  * Grab exclusive access to NIC memory.
715  */
716 static int
717 wpi_nic_lock(struct wpi_softc *sc)
718 {
719 	int ntries;
720 
721 	/* Request exclusive access to NIC. */
722 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
723 
724 	/* Spin until we actually get the lock. */
725 	for (ntries = 0; ntries < 1000; ntries++) {
726 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
727 		     (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
728 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
729 			return 0;
730 		DELAY(10);
731 	}
732 
733 	device_printf(sc->sc_dev, "could not lock memory\n");
734 
735 	return ETIMEDOUT;
736 }
737 
738 /*
739  * Release lock on NIC memory.
740  */
741 static __inline void
742 wpi_nic_unlock(struct wpi_softc *sc)
743 {
744 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
745 }
746 
747 static __inline uint32_t
748 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
749 {
750 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
751 	WPI_BARRIER_READ_WRITE(sc);
752 	return WPI_READ(sc, WPI_PRPH_RDATA);
753 }
754 
755 static __inline void
756 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
757 {
758 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
759 	WPI_BARRIER_WRITE(sc);
760 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
761 }
762 
763 static __inline void
764 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
765 {
766 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
767 }
768 
769 static __inline void
770 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
771 {
772 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
773 }
774 
775 static __inline void
776 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
777     const uint32_t *data, int count)
778 {
779 	for (; count > 0; count--, data++, addr += 4)
780 		wpi_prph_write(sc, addr, *data);
781 }
782 
783 static __inline uint32_t
784 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
785 {
786 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
787 	WPI_BARRIER_READ_WRITE(sc);
788 	return WPI_READ(sc, WPI_MEM_RDATA);
789 }
790 
791 static __inline void
792 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
793     int count)
794 {
795 	for (; count > 0; count--, addr += 4)
796 		*data++ = wpi_mem_read(sc, addr);
797 }
798 
799 static int
800 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
801 {
802 	uint8_t *out = data;
803 	uint32_t val;
804 	int error, ntries;
805 
806 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
807 
808 	if ((error = wpi_nic_lock(sc)) != 0)
809 		return error;
810 
811 	for (; count > 0; count -= 2, addr++) {
812 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
813 		for (ntries = 0; ntries < 10; ntries++) {
814 			val = WPI_READ(sc, WPI_EEPROM);
815 			if (val & WPI_EEPROM_READ_VALID)
816 				break;
817 			DELAY(5);
818 		}
819 		if (ntries == 10) {
820 			device_printf(sc->sc_dev,
821 			    "timeout reading ROM at 0x%x\n", addr);
822 			return ETIMEDOUT;
823 		}
824 		*out++= val >> 16;
825 		if (count > 1)
826 			*out ++= val >> 24;
827 	}
828 
829 	wpi_nic_unlock(sc);
830 
831 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
832 
833 	return 0;
834 }
835 
836 static void
837 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
838 {
839 	if (error != 0)
840 		return;
841 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
842 	*(bus_addr_t *)arg = segs[0].ds_addr;
843 }
844 
845 /*
846  * Allocates a contiguous block of dma memory of the requested size and
847  * alignment.
848  */
849 static int
850 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
851     void **kvap, bus_size_t size, bus_size_t alignment)
852 {
853 	int error;
854 
855 	dma->tag = NULL;
856 	dma->size = size;
857 
858 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
859 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
860 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
861 	if (error != 0)
862 		goto fail;
863 
864 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
865 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
866 	if (error != 0)
867 		goto fail;
868 
869 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
870 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
871 	if (error != 0)
872 		goto fail;
873 
874 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
875 
876 	if (kvap != NULL)
877 		*kvap = dma->vaddr;
878 
879 	return 0;
880 
881 fail:	wpi_dma_contig_free(dma);
882 	return error;
883 }
884 
885 static void
886 wpi_dma_contig_free(struct wpi_dma_info *dma)
887 {
888 	if (dma->vaddr != NULL) {
889 		bus_dmamap_sync(dma->tag, dma->map,
890 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
891 		bus_dmamap_unload(dma->tag, dma->map);
892 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
893 		dma->vaddr = NULL;
894 	}
895 	if (dma->tag != NULL) {
896 		bus_dma_tag_destroy(dma->tag);
897 		dma->tag = NULL;
898 	}
899 }
900 
901 /*
902  * Allocate a shared page between host and NIC.
903  */
904 static int
905 wpi_alloc_shared(struct wpi_softc *sc)
906 {
907 	/* Shared buffer must be aligned on a 4KB boundary. */
908 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
909 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
910 }
911 
912 static void
913 wpi_free_shared(struct wpi_softc *sc)
914 {
915 	wpi_dma_contig_free(&sc->shared_dma);
916 }
917 
918 /*
919  * Allocate DMA-safe memory for firmware transfer.
920  */
921 static int
922 wpi_alloc_fwmem(struct wpi_softc *sc)
923 {
924 	/* Must be aligned on a 16-byte boundary. */
925 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
926 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
927 }
928 
929 static void
930 wpi_free_fwmem(struct wpi_softc *sc)
931 {
932 	wpi_dma_contig_free(&sc->fw_dma);
933 }
934 
935 static int
936 wpi_alloc_rx_ring(struct wpi_softc *sc)
937 {
938 	struct wpi_rx_ring *ring = &sc->rxq;
939 	bus_size_t size;
940 	int i, error;
941 
942 	ring->cur = 0;
943 	ring->update = 0;
944 
945 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
946 
947 	/* Allocate RX descriptors (16KB aligned.) */
948 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
949 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
950 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
951 	if (error != 0) {
952 		device_printf(sc->sc_dev,
953 		    "%s: could not allocate RX ring DMA memory, error %d\n",
954 		    __func__, error);
955 		goto fail;
956 	}
957 
958 	/* Create RX buffer DMA tag. */
959         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
960 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
961 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
962 	    &ring->data_dmat);
963         if (error != 0) {
964                 device_printf(sc->sc_dev,
965 		    "%s: could not create RX buf DMA tag, error %d\n",
966 		    __func__, error);
967                 goto fail;
968         }
969 
970 	/*
971 	 * Allocate and map RX buffers.
972 	 */
973 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
974 		struct wpi_rx_data *data = &ring->data[i];
975 		bus_addr_t paddr;
976 
977 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
978 		if (error != 0) {
979 			device_printf(sc->sc_dev,
980 			    "%s: could not create RX buf DMA map, error %d\n",
981 			    __func__, error);
982 			goto fail;
983 		}
984 
985 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
986 		if (data->m == NULL) {
987 			device_printf(sc->sc_dev,
988 			    "%s: could not allocate RX mbuf\n", __func__);
989 			error = ENOBUFS;
990 			goto fail;
991 		}
992 
993 		error = bus_dmamap_load(ring->data_dmat, data->map,
994 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
995 		    &paddr, BUS_DMA_NOWAIT);
996 		if (error != 0 && error != EFBIG) {
997 			device_printf(sc->sc_dev,
998 			    "%s: can't map mbuf (error %d)\n", __func__,
999 			    error);
1000 			goto fail;
1001 		}
1002 
1003 		/* Set physical address of RX buffer. */
1004 		ring->desc[i] = htole32(paddr);
1005 	}
1006 
1007 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1008 	    BUS_DMASYNC_PREWRITE);
1009 
1010 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1011 
1012 	return 0;
1013 
1014 fail:	wpi_free_rx_ring(sc);
1015 
1016 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1017 
1018 	return error;
1019 }
1020 
1021 static void
1022 wpi_update_rx_ring(struct wpi_softc *sc)
1023 {
1024 	struct wpi_rx_ring *ring = &sc->rxq;
1025 
1026 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1027 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1028 		    __func__);
1029 
1030 		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1031 		ring->update = 1;
1032 	} else
1033 		WPI_WRITE(sc, WPI_FH_RX_WPTR, ring->cur & ~7);
1034 }
1035 
1036 static void
1037 wpi_reset_rx_ring(struct wpi_softc *sc)
1038 {
1039 	struct wpi_rx_ring *ring = &sc->rxq;
1040 	int ntries;
1041 
1042 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1043 
1044 	if (wpi_nic_lock(sc) == 0) {
1045 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1046 		for (ntries = 0; ntries < 1000; ntries++) {
1047 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1048 			    WPI_FH_RX_STATUS_IDLE)
1049 				break;
1050 			DELAY(10);
1051 		}
1052 #ifdef WPI_DEBUG
1053 		if (ntries == 1000) {
1054 			device_printf(sc->sc_dev,
1055 			    "timeout resetting Rx ring\n");
1056 		}
1057 #endif
1058 		wpi_nic_unlock(sc);
1059 	}
1060 
1061 	ring->cur = 0;
1062 	ring->update = 0;
1063 }
1064 
1065 static void
1066 wpi_free_rx_ring(struct wpi_softc *sc)
1067 {
1068 	struct wpi_rx_ring *ring = &sc->rxq;
1069 	int i;
1070 
1071 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1072 
1073 	wpi_dma_contig_free(&ring->desc_dma);
1074 
1075 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1076 		struct wpi_rx_data *data = &ring->data[i];
1077 
1078 		if (data->m != NULL) {
1079 			bus_dmamap_sync(ring->data_dmat, data->map,
1080 			    BUS_DMASYNC_POSTREAD);
1081 			bus_dmamap_unload(ring->data_dmat, data->map);
1082 			m_freem(data->m);
1083 			data->m = NULL;
1084 		}
1085 		if (data->map != NULL)
1086 			bus_dmamap_destroy(ring->data_dmat, data->map);
1087 	}
1088 	if (ring->data_dmat != NULL) {
1089 		bus_dma_tag_destroy(ring->data_dmat);
1090 		ring->data_dmat = NULL;
1091 	}
1092 }
1093 
1094 static int
1095 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1096 {
1097 	bus_addr_t paddr;
1098 	bus_size_t size;
1099 	int i, error;
1100 
1101 	ring->qid = qid;
1102 	ring->queued = 0;
1103 	ring->cur = 0;
1104 	ring->update = 0;
1105 
1106 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1107 
1108 	/* Allocate TX descriptors (16KB aligned.) */
1109 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1110 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1111 	    size, WPI_RING_DMA_ALIGN);
1112 	if (error != 0) {
1113 		device_printf(sc->sc_dev,
1114 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1115 		    __func__, error);
1116 		goto fail;
1117 	}
1118 
1119 	/* Update shared area with ring physical address. */
1120 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1121 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1122 	    BUS_DMASYNC_PREWRITE);
1123 
1124 	/*
1125 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1126 	 * to allocate commands space for other rings.
1127 	 * XXX Do we really need to allocate descriptors for other rings?
1128 	 */
1129 	if (qid > 4)
1130 		return 0;
1131 
1132 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1133 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1134 	    size, 4);
1135 	if (error != 0) {
1136 		device_printf(sc->sc_dev,
1137 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1138 		    __func__, error);
1139 		goto fail;
1140 	}
1141 
1142 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1143 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1144 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1145 	    &ring->data_dmat);
1146 	if (error != 0) {
1147 		device_printf(sc->sc_dev,
1148 		    "%s: could not create TX buf DMA tag, error %d\n",
1149 		    __func__, error);
1150 		goto fail;
1151 	}
1152 
1153 	paddr = ring->cmd_dma.paddr;
1154 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1155 		struct wpi_tx_data *data = &ring->data[i];
1156 
1157 		data->cmd_paddr = paddr;
1158 		paddr += sizeof (struct wpi_tx_cmd);
1159 
1160 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1161 		if (error != 0) {
1162 			device_printf(sc->sc_dev,
1163 			    "%s: could not create TX buf DMA map, error %d\n",
1164 			    __func__, error);
1165 			goto fail;
1166 		}
1167 	}
1168 
1169 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1170 
1171 	return 0;
1172 
1173 fail:	wpi_free_tx_ring(sc, ring);
1174 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1175 	return error;
1176 }
1177 
1178 static void
1179 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1180 {
1181 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) {
1182 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1183 		    __func__, ring->qid);
1184 
1185 		WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1186 		ring->update = 1;
1187 	} else
1188 		WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1189 }
1190 
1191 static void
1192 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1193 {
1194 	int i;
1195 
1196 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1197 
1198 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1199 		struct wpi_tx_data *data = &ring->data[i];
1200 
1201 		if (data->m != NULL) {
1202 			bus_dmamap_sync(ring->data_dmat, data->map,
1203 			    BUS_DMASYNC_POSTWRITE);
1204 			bus_dmamap_unload(ring->data_dmat, data->map);
1205 			m_freem(data->m);
1206 			data->m = NULL;
1207 		}
1208 	}
1209 	/* Clear TX descriptors. */
1210 	memset(ring->desc, 0, ring->desc_dma.size);
1211 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1212 	    BUS_DMASYNC_PREWRITE);
1213 	sc->qfullmsk &= ~(1 << ring->qid);
1214 	ring->queued = 0;
1215 	ring->cur = 0;
1216 	ring->update = 0;
1217 }
1218 
1219 static void
1220 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1221 {
1222 	int i;
1223 
1224 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1225 
1226 	wpi_dma_contig_free(&ring->desc_dma);
1227 	wpi_dma_contig_free(&ring->cmd_dma);
1228 
1229 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1230 		struct wpi_tx_data *data = &ring->data[i];
1231 
1232 		if (data->m != NULL) {
1233 			bus_dmamap_sync(ring->data_dmat, data->map,
1234 			    BUS_DMASYNC_POSTWRITE);
1235 			bus_dmamap_unload(ring->data_dmat, data->map);
1236 			m_freem(data->m);
1237 		}
1238 		if (data->map != NULL)
1239 			bus_dmamap_destroy(ring->data_dmat, data->map);
1240 	}
1241 	if (ring->data_dmat != NULL) {
1242 		bus_dma_tag_destroy(ring->data_dmat);
1243 		ring->data_dmat = NULL;
1244 	}
1245 }
1246 
1247 /*
1248  * Extract various information from EEPROM.
1249  */
1250 static int
1251 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1252 {
1253 #define WPI_CHK(res) do {		\
1254 	if ((error = res) != 0)		\
1255 		goto fail;		\
1256 } while (0)
1257 	int error, i;
1258 
1259 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1260 
1261 	/* Adapter has to be powered on for EEPROM access to work. */
1262 	if ((error = wpi_apm_init(sc)) != 0) {
1263 		device_printf(sc->sc_dev,
1264 		    "%s: could not power ON adapter, error %d\n", __func__,
1265 		    error);
1266 		return error;
1267 	}
1268 
1269 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1270 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1271 		error = EIO;
1272 		goto fail;
1273 	}
1274 	/* Clear HW ownership of EEPROM. */
1275 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1276 
1277 	/* Read the hardware capabilities, revision and SKU type. */
1278 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1279 	    sizeof(sc->cap)));
1280 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1281 	    sizeof(sc->rev)));
1282 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1283 	    sizeof(sc->type)));
1284 
1285 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
1286 	    sc->type);
1287 
1288 	/* Read the regulatory domain (4 ASCII characters.) */
1289 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1290 	    sizeof(sc->domain)));
1291 
1292 	/* Read MAC address. */
1293 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1294 	    IEEE80211_ADDR_LEN));
1295 
1296 	/* Read the list of authorized channels. */
1297 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1298 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1299 
1300 	/* Read the list of TX power groups. */
1301 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1302 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1303 
1304 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1305 
1306 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1307 	    __func__);
1308 
1309 	return error;
1310 #undef WPI_CHK
1311 }
1312 
1313 /*
1314  * Translate EEPROM flags to net80211.
1315  */
1316 static uint32_t
1317 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1318 {
1319 	uint32_t nflags;
1320 
1321 	nflags = 0;
1322 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1323 		nflags |= IEEE80211_CHAN_PASSIVE;
1324 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1325 		nflags |= IEEE80211_CHAN_NOADHOC;
1326 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1327 		nflags |= IEEE80211_CHAN_DFS;
1328 		/* XXX apparently IBSS may still be marked */
1329 		nflags |= IEEE80211_CHAN_NOADHOC;
1330 	}
1331 
1332 	return nflags;
1333 }
1334 
1335 static void
1336 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1337 {
1338 	struct ifnet *ifp = sc->sc_ifp;
1339 	struct ieee80211com *ic = ifp->if_l2com;
1340 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1341 	const struct wpi_chan_band *band = &wpi_bands[n];
1342 	struct ieee80211_channel *c;
1343 	uint8_t chan;
1344 	int i, nflags;
1345 
1346 	for (i = 0; i < band->nchan; i++) {
1347 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1348 			DPRINTF(sc, WPI_DEBUG_HW,
1349 			    "Channel Not Valid: %d, band %d\n",
1350 			     band->chan[i],n);
1351 			continue;
1352 		}
1353 
1354 		chan = band->chan[i];
1355 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1356 
1357 		c = &ic->ic_channels[ic->ic_nchans++];
1358 		c->ic_ieee = chan;
1359 		c->ic_maxregpower = channels[i].maxpwr;
1360 		c->ic_maxpower = 2*c->ic_maxregpower;
1361 
1362 		if (n == 0) {	/* 2GHz band */
1363 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1364 			/* G =>'s B is supported */
1365 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1366 			c = &ic->ic_channels[ic->ic_nchans++];
1367 			c[0] = c[-1];
1368 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1369 		} else {	/* 5GHz band */
1370 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1371 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1372 		}
1373 
1374 		/* Save maximum allowed TX power for this channel. */
1375 		sc->maxpwr[chan] = channels[i].maxpwr;
1376 
1377 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1378 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1379 		    " offset %d\n", chan, c->ic_freq,
1380 		    channels[i].flags, sc->maxpwr[chan],
1381 		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
1382 		    ic->ic_nchans);
1383 	}
1384 }
1385 
1386 /**
1387  * Read the eeprom to find out what channels are valid for the given
1388  * band and update net80211 with what we find.
1389  */
1390 static int
1391 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1392 {
1393 	struct ifnet *ifp = sc->sc_ifp;
1394 	struct ieee80211com *ic = ifp->if_l2com;
1395 	const struct wpi_chan_band *band = &wpi_bands[n];
1396 	int error;
1397 
1398 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1399 
1400 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1401 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1402 	if (error != 0) {
1403 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1404 		return error;
1405 	}
1406 
1407 	wpi_read_eeprom_band(sc, n);
1408 
1409 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1410 
1411 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1412 
1413 	return 0;
1414 }
1415 
1416 static struct wpi_eeprom_chan *
1417 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1418 {
1419 	int i, j;
1420 
1421 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1422 		for (i = 0; i < wpi_bands[j].nchan; i++)
1423 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1424 				return &sc->eeprom_channels[j][i];
1425 
1426 	return NULL;
1427 }
1428 
1429 /*
1430  * Enforce flags read from EEPROM.
1431  */
1432 static int
1433 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1434     int nchan, struct ieee80211_channel chans[])
1435 {
1436 	struct ifnet *ifp = ic->ic_ifp;
1437 	struct wpi_softc *sc = ifp->if_softc;
1438 	int i;
1439 
1440 	for (i = 0; i < nchan; i++) {
1441 		struct ieee80211_channel *c = &chans[i];
1442 		struct wpi_eeprom_chan *channel;
1443 
1444 		channel = wpi_find_eeprom_channel(sc, c);
1445 		if (channel == NULL) {
1446 			if_printf(ic->ic_ifp,
1447 			    "%s: invalid channel %u freq %u/0x%x\n",
1448 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1449 			return EINVAL;
1450 		}
1451 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 static int
1458 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1459 {
1460 	struct wpi_power_group *group = &sc->groups[n];
1461 	struct wpi_eeprom_group rgroup;
1462 	int i, error;
1463 
1464 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1465 
1466 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1467 	    &rgroup, sizeof rgroup)) != 0) {
1468 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1469 		return error;
1470 	}
1471 
1472 	/* Save TX power group information. */
1473 	group->chan   = rgroup.chan;
1474 	group->maxpwr = rgroup.maxpwr;
1475 	/* Retrieve temperature at which the samples were taken. */
1476 	group->temp   = (int16_t)le16toh(rgroup.temp);
1477 
1478 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1479 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1480 	    group->maxpwr, group->temp);
1481 
1482 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1483 		group->samples[i].index = rgroup.samples[i].index;
1484 		group->samples[i].power = rgroup.samples[i].power;
1485 
1486 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1487 		    "\tsample %d: index=%d power=%d\n", i,
1488 		    group->samples[i].index, group->samples[i].power);
1489 	}
1490 
1491 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1492 
1493 	return 0;
1494 }
1495 
1496 static struct ieee80211_node *
1497 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1498 {
1499 	struct wpi_node *wn;
1500 
1501 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1502 	    M_NOWAIT | M_ZERO);
1503 
1504 	if (wn == NULL)
1505 		return NULL;
1506 
1507 	wn->id = WPI_ID_UNDEFINED;
1508 
1509 	return &wn->ni;
1510 }
1511 
1512 static void
1513 wpi_node_free(struct ieee80211_node *ni)
1514 {
1515 	struct ieee80211com *ic = ni->ni_ic;
1516 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1517 	struct wpi_node *wn = (struct wpi_node *)ni;
1518 
1519 	if (wn->id >= WPI_ID_IBSS_MIN && wn->id <= WPI_ID_IBSS_MAX) {
1520 		free_unr(sc->sc_unr, wn->id);
1521 
1522 		WPI_LOCK(sc);
1523 		if (sc->rxon.filter & htole32(WPI_FILTER_BSS))
1524 			wpi_del_node(sc, ni);
1525 		WPI_UNLOCK(sc);
1526 	}
1527 
1528 	sc->sc_node_free(ni);
1529 }
1530 
1531 /**
1532  * Called by net80211 when ever there is a change to 80211 state machine
1533  */
1534 static int
1535 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1536 {
1537 	struct wpi_vap *wvp = WPI_VAP(vap);
1538 	struct ieee80211com *ic = vap->iv_ic;
1539 	struct ifnet *ifp = ic->ic_ifp;
1540 	struct wpi_softc *sc = ifp->if_softc;
1541 	int error = 0;
1542 
1543 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1544 
1545 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1546 		ieee80211_state_name[vap->iv_state],
1547 		ieee80211_state_name[nstate]);
1548 
1549 	IEEE80211_UNLOCK(ic);
1550 	WPI_LOCK(sc);
1551 	switch (nstate) {
1552 	case IEEE80211_S_SCAN:
1553 		if ((vap->iv_opmode == IEEE80211_M_IBSS ||
1554 		    vap->iv_opmode == IEEE80211_M_AHDEMO) &&
1555 		    (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
1556 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1557 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1558 				device_printf(sc->sc_dev,
1559 				    "%s: could not send RXON\n", __func__);
1560 			}
1561 		}
1562 		break;
1563 
1564 	case IEEE80211_S_ASSOC:
1565 		if (vap->iv_state != IEEE80211_S_RUN)
1566 			break;
1567 		/* FALLTHROUGH */
1568 	case IEEE80211_S_AUTH:
1569 		/*
1570 		 * The node must be registered in the firmware before auth.
1571 		 * Also the associd must be cleared on RUN -> ASSOC
1572 		 * transitions.
1573 		 */
1574 		if ((error = wpi_auth(sc, vap)) != 0) {
1575 			device_printf(sc->sc_dev,
1576 			    "%s: could not move to AUTH state, error %d\n",
1577 			    __func__, error);
1578 		}
1579 		break;
1580 
1581 	case IEEE80211_S_RUN:
1582 		/*
1583 		 * RUN -> RUN transition; Just restart the timers.
1584 		 */
1585 		if (vap->iv_state == IEEE80211_S_RUN) {
1586 			wpi_calib_timeout(sc);
1587 			break;
1588 		}
1589 
1590 		/*
1591 		 * !RUN -> RUN requires setting the association id
1592 		 * which is done with a firmware cmd.  We also defer
1593 		 * starting the timers until that work is done.
1594 		 */
1595 		if ((error = wpi_run(sc, vap)) != 0) {
1596 			device_printf(sc->sc_dev,
1597 			    "%s: could not move to RUN state\n", __func__);
1598 		}
1599 		break;
1600 
1601 	default:
1602 		break;
1603 	}
1604 	WPI_UNLOCK(sc);
1605 	IEEE80211_LOCK(ic);
1606 	if (error != 0) {
1607 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1608 		return error;
1609 	}
1610 
1611 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1612 
1613 	return wvp->newstate(vap, nstate, arg);
1614 }
1615 
1616 static void
1617 wpi_calib_timeout(void *arg)
1618 {
1619 	struct wpi_softc *sc = arg;
1620 	struct ifnet *ifp = sc->sc_ifp;
1621 	struct ieee80211com *ic = ifp->if_l2com;
1622 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1623 
1624 	if (vap->iv_state != IEEE80211_S_RUN)
1625 		return;
1626 
1627 	wpi_power_calibration(sc);
1628 
1629 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1630 }
1631 
1632 static __inline uint8_t
1633 rate2plcp(const uint8_t rate)
1634 {
1635 	switch (rate) {
1636 	case 12:	return 0xd;
1637 	case 18:	return 0xf;
1638 	case 24:	return 0x5;
1639 	case 36:	return 0x7;
1640 	case 48:	return 0x9;
1641 	case 72:	return 0xb;
1642 	case 96:	return 0x1;
1643 	case 108:	return 0x3;
1644 	case 2:		return 10;
1645 	case 4:		return 20;
1646 	case 11:	return 55;
1647 	case 22:	return 110;
1648 	default:	return 0;
1649 	}
1650 }
1651 
1652 static __inline uint8_t
1653 plcp2rate(const uint8_t plcp)
1654 {
1655 	switch (plcp) {
1656 	case 0xd:	return 12;
1657 	case 0xf:	return 18;
1658 	case 0x5:	return 24;
1659 	case 0x7:	return 36;
1660 	case 0x9:	return 48;
1661 	case 0xb:	return 72;
1662 	case 0x1:	return 96;
1663 	case 0x3:	return 108;
1664 	case 10:	return 2;
1665 	case 20:	return 4;
1666 	case 55:	return 11;
1667 	case 110:	return 22;
1668 	default:	return 0;
1669 	}
1670 }
1671 
1672 /* Quickly determine if a given rate is CCK or OFDM. */
1673 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1674 
1675 static void
1676 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1677     struct wpi_rx_data *data)
1678 {
1679 	struct ifnet *ifp = sc->sc_ifp;
1680 	const struct ieee80211_cipher *cip = NULL;
1681 	struct ieee80211com *ic = ifp->if_l2com;
1682 	struct wpi_rx_ring *ring = &sc->rxq;
1683 	struct wpi_rx_stat *stat;
1684 	struct wpi_rx_head *head;
1685 	struct wpi_rx_tail *tail;
1686 	struct ieee80211_frame *wh;
1687 	struct ieee80211_node *ni;
1688 	struct mbuf *m, *m1;
1689 	bus_addr_t paddr;
1690 	uint32_t flags;
1691 	uint16_t len;
1692 	int error;
1693 
1694 	stat = (struct wpi_rx_stat *)(desc + 1);
1695 
1696 	if (stat->len > WPI_STAT_MAXLEN) {
1697 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1698 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1699 		return;
1700 	}
1701 
1702 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1703 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1704 	len = le16toh(head->len);
1705 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1706 	flags = le32toh(tail->flags);
1707 
1708 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1709 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1710 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1711 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1712 
1713 	/* Discard frames with a bad FCS early. */
1714 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1715 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1716 		    __func__, flags);
1717 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1718 		return;
1719 	}
1720 	/* Discard frames that are too short. */
1721 	if (len < sizeof (*wh)) {
1722 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1723 		    __func__, len);
1724 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1725 		return;
1726 	}
1727 
1728 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1729 	if (m1 == NULL) {
1730 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1731 		    __func__);
1732 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1733 		return;
1734 	}
1735 	bus_dmamap_unload(ring->data_dmat, data->map);
1736 
1737 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1738 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1739 	if (error != 0 && error != EFBIG) {
1740 		device_printf(sc->sc_dev,
1741 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1742 		m_freem(m1);
1743 
1744 		/* Try to reload the old mbuf. */
1745 		error = bus_dmamap_load(ring->data_dmat, data->map,
1746 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1747 		    &paddr, BUS_DMA_NOWAIT);
1748 		if (error != 0 && error != EFBIG) {
1749 			panic("%s: could not load old RX mbuf", __func__);
1750 		}
1751 		/* Physical address may have changed. */
1752 		ring->desc[ring->cur] = htole32(paddr);
1753 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1754 		    BUS_DMASYNC_PREWRITE);
1755 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1756 		return;
1757 	}
1758 
1759 	m = data->m;
1760 	data->m = m1;
1761 	/* Update RX descriptor. */
1762 	ring->desc[ring->cur] = htole32(paddr);
1763 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1764 	    BUS_DMASYNC_PREWRITE);
1765 
1766 	/* Finalize mbuf. */
1767 	m->m_pkthdr.rcvif = ifp;
1768 	m->m_data = (caddr_t)(head + 1);
1769 	m->m_pkthdr.len = m->m_len = len;
1770 
1771 	/* Grab a reference to the source node. */
1772 	wh = mtod(m, struct ieee80211_frame *);
1773 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1774 
1775 	if (ni != NULL)
1776 		cip = ni->ni_ucastkey.wk_cipher;
1777 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1778 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1779 	    cip != NULL && cip->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
1780 		if ((flags & WPI_RX_CIPHER_MASK) != WPI_RX_CIPHER_CCMP) {
1781 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1782 			m_freem(m);
1783 			return;
1784 		}
1785 		/* Check whether decryption was successful or not. */
1786 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1787 			DPRINTF(sc, WPI_DEBUG_RECV,
1788 			    "CCMP decryption failed 0x%x\n", flags);
1789 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1790 			m_freem(m);
1791 			return;
1792 		}
1793 		m->m_flags |= M_WEP;
1794 	}
1795 
1796 	if (ieee80211_radiotap_active(ic)) {
1797 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1798 
1799 		tap->wr_flags = 0;
1800 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
1801 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1802 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1803 		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1804 		tap->wr_tsft = tail->tstamp;
1805 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1806 		tap->wr_rate = plcp2rate(head->plcp);
1807 	}
1808 
1809 	WPI_UNLOCK(sc);
1810 
1811 	/* Send the frame to the 802.11 layer. */
1812 	if (ni != NULL) {
1813 		(void)ieee80211_input(ni, m, stat->rssi, -WPI_RSSI_OFFSET);
1814 		/* Node is no longer needed. */
1815 		ieee80211_free_node(ni);
1816 	} else
1817 		(void)ieee80211_input_all(ic, m, stat->rssi, -WPI_RSSI_OFFSET);
1818 
1819 	WPI_LOCK(sc);
1820 }
1821 
1822 static void
1823 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1824     struct wpi_rx_data *data)
1825 {
1826 	/* Ignore */
1827 }
1828 
1829 static void
1830 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1831 {
1832 	struct ifnet *ifp = sc->sc_ifp;
1833 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1834 	struct wpi_tx_data *data = &ring->data[desc->idx];
1835 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1836 	struct mbuf *m;
1837 	struct ieee80211_node *ni;
1838 	struct ieee80211vap *vap;
1839 	int status = le32toh(stat->status);
1840 
1841 	KASSERT(data->ni != NULL, ("no node"));
1842 
1843 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1844 
1845 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
1846 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
1847 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
1848 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
1849 
1850 	/* Unmap and free mbuf. */
1851 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1852 	bus_dmamap_unload(ring->data_dmat, data->map);
1853 	m = data->m, data->m = NULL;
1854 	ni = data->ni, data->ni = NULL;
1855 	vap = ni->ni_vap;
1856 
1857 	/*
1858 	 * Update rate control statistics for the node.
1859 	 */
1860 	WPI_UNLOCK(sc);
1861 	if ((status & 0xff) != 1) {
1862 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1863 		ieee80211_ratectl_tx_complete(vap, ni,
1864 		    IEEE80211_RATECTL_TX_FAILURE, &stat->ackfailcnt, NULL);
1865 	} else {
1866 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1867 		ieee80211_ratectl_tx_complete(vap, ni,
1868 		    IEEE80211_RATECTL_TX_SUCCESS, &stat->ackfailcnt, NULL);
1869 	}
1870 
1871 	ieee80211_tx_complete(ni, m, (status & 0xff) != 1);
1872 	WPI_LOCK(sc);
1873 
1874 	sc->sc_tx_timer = 0;
1875 	if (--ring->queued < WPI_TX_RING_LOMARK) {
1876 		sc->qfullmsk &= ~(1 << ring->qid);
1877 		if (sc->qfullmsk == 0 &&
1878 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
1879 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1880 			wpi_start_locked(ifp);
1881 		}
1882 	}
1883 
1884 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1885 }
1886 
1887 /*
1888  * Process a "command done" firmware notification.  This is where we wakeup
1889  * processes waiting for a synchronous command completion.
1890  */
1891 static void
1892 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1893 {
1894 	struct wpi_tx_ring *ring = &sc->txq[4];
1895 	struct wpi_tx_data *data;
1896 
1897 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid=%x idx=%d flags=%x "
1898 				   "type=%s len=%d\n", desc->qid, desc->idx,
1899 				   desc->flags, wpi_cmd_str(desc->type),
1900 				   le32toh(desc->len));
1901 
1902 	if ((desc->qid & 7) != 4)
1903 		return;	/* Not a command ack. */
1904 
1905 	data = &ring->data[desc->idx];
1906 
1907 	/* If the command was mapped in an mbuf, free it. */
1908 	if (data->m != NULL) {
1909 		bus_dmamap_sync(ring->data_dmat, data->map,
1910 		    BUS_DMASYNC_POSTWRITE);
1911 		bus_dmamap_unload(ring->data_dmat, data->map);
1912 		m_freem(data->m);
1913 		data->m = NULL;
1914 	}
1915 
1916 	sc->flags &= ~WPI_FLAG_BUSY;
1917 	wakeup(&ring->cmd[desc->idx]);
1918 }
1919 
1920 static void
1921 wpi_notif_intr(struct wpi_softc *sc)
1922 {
1923 	struct ifnet *ifp = sc->sc_ifp;
1924 	struct ieee80211com *ic = ifp->if_l2com;
1925 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1926 	int hw;
1927 
1928 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1929 	    BUS_DMASYNC_POSTREAD);
1930 
1931 	hw = le32toh(sc->shared->next);
1932 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1933 
1934 	if (sc->rxq.cur == hw)
1935 		return;
1936 
1937 	do {
1938 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1939 
1940 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1941 		struct wpi_rx_desc *desc;
1942 
1943 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1944 		    BUS_DMASYNC_POSTREAD);
1945 		desc = mtod(data->m, struct wpi_rx_desc *);
1946 
1947 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
1948 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
1949 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
1950 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
1951 
1952 		if (!(desc->qid & 0x80))	/* Reply to a command. */
1953 			wpi_cmd_done(sc, desc);
1954 
1955 		switch (desc->type) {
1956 		case WPI_RX_DONE:
1957 			/* An 802.11 frame has been received. */
1958 			wpi_rx_done(sc, desc, data);
1959 			break;
1960 
1961 		case WPI_TX_DONE:
1962 			/* An 802.11 frame has been transmitted. */
1963 			wpi_tx_done(sc, desc);
1964 			break;
1965 
1966 		case WPI_RX_STATISTICS:
1967 		case WPI_BEACON_STATISTICS:
1968 			wpi_rx_statistics(sc, desc, data);
1969 			break;
1970 
1971 		case WPI_BEACON_MISSED:
1972 		{
1973 			struct wpi_beacon_missed *miss =
1974 			    (struct wpi_beacon_missed *)(desc + 1);
1975 			int misses;
1976 
1977 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1978 			    BUS_DMASYNC_POSTREAD);
1979 			misses = le32toh(miss->consecutive);
1980 
1981 			DPRINTF(sc, WPI_DEBUG_STATE,
1982 			    "%s: beacons missed %d/%d\n", __func__, misses,
1983 			    le32toh(miss->total));
1984 
1985 			if (vap->iv_state == IEEE80211_S_RUN &&
1986 			    (ic->ic_flags & IEEE80211_S_SCAN) == 0) {
1987 				if (misses >=  vap->iv_bmissthreshold) {
1988 					WPI_UNLOCK(sc);
1989 					ieee80211_beacon_miss(ic);
1990 					WPI_LOCK(sc);
1991 				}
1992 			}
1993 			break;
1994 		}
1995 		case WPI_UC_READY:
1996 		{
1997 			struct wpi_ucode_info *uc =
1998 			    (struct wpi_ucode_info *)(desc + 1);
1999 
2000 			/* The microcontroller is ready. */
2001 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2002 			    BUS_DMASYNC_POSTREAD);
2003 			DPRINTF(sc, WPI_DEBUG_RESET,
2004 			    "microcode alive notification version=%d.%d "
2005 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2006 			    uc->subtype, le32toh(uc->valid));
2007 
2008 			if (le32toh(uc->valid) != 1) {
2009 				device_printf(sc->sc_dev,
2010 				    "microcontroller initialization failed\n");
2011 				wpi_stop_locked(sc);
2012 			}
2013 			/* Save the address of the error log in SRAM. */
2014 			sc->errptr = le32toh(uc->errptr);
2015 			break;
2016 		}
2017 		case WPI_STATE_CHANGED:
2018 		{
2019                         bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2020                             BUS_DMASYNC_POSTREAD);
2021 
2022 			uint32_t *status = (uint32_t *)(desc + 1);
2023 #ifdef WPI_DEBUG
2024 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2025 			    le32toh(*status));
2026 #endif
2027 			if (le32toh(*status) & 1) {
2028 				ieee80211_runtask(ic, &sc->sc_radiooff_task);
2029 				return;
2030 			}
2031 			break;
2032 		}
2033 		case WPI_START_SCAN:
2034 		{
2035 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2036 			    BUS_DMASYNC_POSTREAD);
2037 #ifdef WPI_DEBUG
2038 			struct wpi_start_scan *scan =
2039 			    (struct wpi_start_scan *)(desc + 1);
2040 			DPRINTF(sc, WPI_DEBUG_SCAN,
2041 			    "%s: scanning channel %d status %x\n",
2042 			    __func__, scan->chan, le32toh(scan->status));
2043 #endif
2044 			break;
2045 		}
2046 		case WPI_STOP_SCAN:
2047 		{
2048 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2049 			    BUS_DMASYNC_POSTREAD);
2050 #ifdef WPI_DEBUG
2051 			struct wpi_stop_scan *scan =
2052 			    (struct wpi_stop_scan *)(desc + 1);
2053 			DPRINTF(sc, WPI_DEBUG_SCAN,
2054 			    "scan finished nchan=%d status=%d chan=%d\n",
2055 			    scan->nchan, scan->status, scan->chan);
2056 #endif
2057 			sc->sc_scan_timer = 0;
2058 			WPI_UNLOCK(sc);
2059 			ieee80211_scan_next(vap);
2060 			WPI_LOCK(sc);
2061 			break;
2062 		}
2063 		}
2064 	} while (sc->rxq.cur != hw);
2065 
2066 	/* Tell the firmware what we have processed. */
2067 	wpi_update_rx_ring(sc);
2068 }
2069 
2070 /*
2071  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2072  * from power-down sleep mode.
2073  */
2074 static void
2075 wpi_wakeup_intr(struct wpi_softc *sc)
2076 {
2077 	int qid;
2078 
2079 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2080 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2081 
2082 	/* Wakeup RX and TX rings. */
2083 	if (sc->rxq.update) {
2084 		wpi_update_rx_ring(sc);
2085 		sc->rxq.update = 0;
2086 	}
2087 	for (qid = 0; qid < WPI_NTXQUEUES; qid++) {
2088 		struct wpi_tx_ring *ring = &sc->txq[qid];
2089 
2090 		if (ring->update) {
2091 			wpi_update_tx_ring(sc, ring);
2092 			ring->update = 0;
2093 		}
2094 	}
2095 
2096 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2097 }
2098 
2099 /*
2100  * Dump the error log of the firmware when a firmware panic occurs.  Although
2101  * we can't debug the firmware because it is neither open source nor free, it
2102  * can help us to identify certain classes of problems.
2103  */
2104 static void
2105 wpi_fatal_intr(struct wpi_softc *sc)
2106 {
2107 	struct wpi_fw_dump dump;
2108 	uint32_t i, offset, count;
2109 	const uint32_t size_errmsg =
2110 	    (sizeof (wpi_fw_errmsg) / sizeof ((wpi_fw_errmsg)[0]));
2111 
2112 	/* Check that the error log address is valid. */
2113 	if (sc->errptr < WPI_FW_DATA_BASE ||
2114 	    sc->errptr + sizeof (dump) >
2115 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2116 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2117 		    sc->errptr);
2118                 return;
2119         }
2120 	if (wpi_nic_lock(sc) != 0) {
2121 		printf("%s: could not read firmware error log\n", __func__);
2122                 return;
2123         }
2124 	/* Read number of entries in the log. */
2125 	count = wpi_mem_read(sc, sc->errptr);
2126 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2127 		printf("%s: invalid count field (count = %u)\n", __func__,
2128 		    count);
2129 		wpi_nic_unlock(sc);
2130 		return;
2131 	}
2132 	/* Skip "count" field. */
2133 	offset = sc->errptr + sizeof (uint32_t);
2134 	printf("firmware error log (count = %u):\n", count);
2135 	for (i = 0; i < count; i++) {
2136 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2137 		    sizeof (dump) / sizeof (uint32_t));
2138 
2139 		printf("  error type = \"%s\" (0x%08X)\n",
2140 		    (dump.desc < size_errmsg) ?
2141 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2142 		    dump.desc);
2143 		printf("  error data      = 0x%08X\n",
2144 		    dump.data);
2145 		printf("  branch link     = 0x%08X%08X\n",
2146 		    dump.blink[0], dump.blink[1]);
2147 		printf("  interrupt link  = 0x%08X%08X\n",
2148 		    dump.ilink[0], dump.ilink[1]);
2149 		printf("  time            = %u\n", dump.time);
2150 
2151 		offset += sizeof (dump);
2152 	}
2153 	wpi_nic_unlock(sc);
2154 	/* Dump driver status (TX and RX rings) while we're here. */
2155 	printf("driver status:\n");
2156 	for (i = 0; i < WPI_NTXQUEUES; i++) {
2157 		struct wpi_tx_ring *ring = &sc->txq[i];
2158 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2159 		    i, ring->qid, ring->cur, ring->queued);
2160 	}
2161 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2162 }
2163 
2164 static void
2165 wpi_intr(void *arg)
2166 {
2167 	struct wpi_softc *sc = arg;
2168 	struct ifnet *ifp = sc->sc_ifp;
2169 	uint32_t r1, r2;
2170 
2171 	WPI_LOCK(sc);
2172 
2173 	/* Disable interrupts. */
2174 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2175 
2176 	r1 = WPI_READ(sc, WPI_INT);
2177 
2178 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
2179 		WPI_UNLOCK(sc);
2180 		return;	/* Hardware gone! */
2181 	}
2182 
2183 	r2 = WPI_READ(sc, WPI_FH_INT);
2184 
2185 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2186 	    r1, r2);
2187 
2188 	if (r1 == 0 && r2 == 0)
2189 		goto done;	/* Interrupt not for us. */
2190 
2191 	/* Acknowledge interrupts. */
2192 	WPI_WRITE(sc, WPI_INT, r1);
2193 	WPI_WRITE(sc, WPI_FH_INT, r2);
2194 
2195 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2196 		struct ieee80211com *ic = ifp->if_l2com;
2197 
2198 		device_printf(sc->sc_dev, "fatal firmware error\n");
2199 		wpi_fatal_intr(sc);
2200 		DPRINTF(sc, WPI_DEBUG_HW,
2201 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2202 		    "(Hardware Error)");
2203 		ieee80211_runtask(ic, &sc->sc_reinittask);
2204 		sc->flags &= ~WPI_FLAG_BUSY;
2205 		WPI_UNLOCK(sc);
2206 		return;
2207 	}
2208 
2209 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2210 	    (r2 & WPI_FH_INT_RX))
2211 		wpi_notif_intr(sc);
2212 
2213 	if (r1 & WPI_INT_ALIVE)
2214 		wakeup(sc);	/* Firmware is alive. */
2215 
2216 	if (r1 & WPI_INT_WAKEUP)
2217 		wpi_wakeup_intr(sc);
2218 
2219 done:
2220 	/* Re-enable interrupts. */
2221 	if (ifp->if_flags & IFF_UP)
2222 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2223 
2224 	WPI_UNLOCK(sc);
2225 }
2226 
2227 static int
2228 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2229 {
2230 	struct ieee80211_frame *wh;
2231 	struct wpi_tx_cmd *cmd;
2232 	struct wpi_tx_data *data;
2233 	struct wpi_tx_desc *desc;
2234 	struct wpi_tx_ring *ring;
2235 	struct mbuf *m1;
2236 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2237 	u_int hdrlen;
2238 	int error, i, nsegs, pad, totlen;
2239 
2240 	WPI_LOCK_ASSERT(sc);
2241 
2242 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2243 
2244 	wh = mtod(buf->m, struct ieee80211_frame *);
2245 	hdrlen = ieee80211_anyhdrsize(wh);
2246 	totlen = buf->m->m_pkthdr.len;
2247 
2248 	if (hdrlen & 3) {
2249 		/* First segment length must be a multiple of 4. */
2250 		pad = 4 - (hdrlen & 3);
2251 	} else
2252 		pad = 0;
2253 
2254 	ring = &sc->txq[buf->ac];
2255 	desc = &ring->desc[ring->cur];
2256 	data = &ring->data[ring->cur];
2257 
2258 	/* Prepare TX firmware command. */
2259 	cmd = &ring->cmd[ring->cur];
2260 	cmd->code = buf->code;
2261 	cmd->flags = 0;
2262 	cmd->qid = ring->qid;
2263 	cmd->idx = ring->cur;
2264 
2265 	memcpy(cmd->data, buf->data, buf->size);
2266 
2267 	/* Save and trim IEEE802.11 header. */
2268 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2269 	m_adj(buf->m, hdrlen);
2270 
2271 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2272 	    segs, &nsegs, BUS_DMA_NOWAIT);
2273 	if (error != 0 && error != EFBIG) {
2274 		device_printf(sc->sc_dev,
2275 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2276 		m_freem(buf->m);
2277 		return error;
2278 	}
2279 	if (error != 0) {
2280 		/* Too many DMA segments, linearize mbuf. */
2281 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER);
2282 		if (m1 == NULL) {
2283 			device_printf(sc->sc_dev,
2284 			    "%s: could not defrag mbuf\n", __func__);
2285 			m_freem(buf->m);
2286 			return ENOBUFS;
2287 		}
2288 		buf->m = m1;
2289 
2290 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2291 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2292 		if (error != 0) {
2293 			device_printf(sc->sc_dev,
2294 			    "%s: can't map mbuf (error %d)\n", __func__, error);
2295 			m_freem(buf->m);
2296 			return error;
2297 		}
2298 	}
2299 
2300 	data->m = buf->m;
2301 	data->ni = buf->ni;
2302 
2303 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2304 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2305 
2306 	/* Fill TX descriptor. */
2307 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2308 	/* First DMA segment is used by the TX command. */
2309 	desc->segs[0].addr = htole32(data->cmd_paddr);
2310 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2311 	/* Other DMA segments are for data payload. */
2312 	seg = &segs[0];
2313 	for (i = 1; i <= nsegs; i++) {
2314 		desc->segs[i].addr = htole32(seg->ds_addr);
2315 		desc->segs[i].len  = htole32(seg->ds_len);
2316 		seg++;
2317 	}
2318 
2319 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2320 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2321 	    BUS_DMASYNC_PREWRITE);
2322 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2323 	    BUS_DMASYNC_PREWRITE);
2324 
2325 	/* Kick TX ring. */
2326 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2327 	wpi_update_tx_ring(sc, ring);
2328 
2329 	/* Mark TX ring as full if we reach a certain threshold. */
2330 	if (++ring->queued > WPI_TX_RING_HIMARK)
2331 		sc->qfullmsk |= 1 << ring->qid;
2332 
2333 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2334 
2335 	return 0;
2336 }
2337 
2338 /*
2339  * Construct the data packet for a transmit buffer.
2340  */
2341 static int
2342 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2343 {
2344 	const struct ieee80211_txparam *tp;
2345 	struct ieee80211vap *vap = ni->ni_vap;
2346 	struct ieee80211com *ic = ni->ni_ic;
2347 	struct wpi_node *wn = (void *)ni;
2348 	struct ieee80211_channel *chan;
2349 	struct ieee80211_frame *wh;
2350 	struct ieee80211_key *k = NULL;
2351 	struct wpi_cmd_data tx;
2352 	struct wpi_buf tx_data;
2353 	uint32_t flags;
2354 	uint16_t qos;
2355 	uint8_t tid, type;
2356 	int ac, error, rate, ismcast, totlen;
2357 
2358 	wh = mtod(m, struct ieee80211_frame *);
2359 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2360 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2361 
2362 	/* Select EDCA Access Category and TX ring for this frame. */
2363 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2364  		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2365 		tid = qos & IEEE80211_QOS_TID;
2366 	} else {
2367 		qos = 0;
2368 		tid = 0;
2369         }
2370 	ac = M_WME_GETAC(m);
2371 
2372 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2373 		ni->ni_chan : ic->ic_curchan;
2374 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2375 
2376 	/* Choose a TX rate index. */
2377 	if (type == IEEE80211_FC0_TYPE_MGT)
2378 		rate = tp->mgmtrate;
2379 	else if (ismcast)
2380 		rate = tp->mcastrate;
2381 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2382 		rate = tp->ucastrate;
2383 	else if (m->m_flags & M_EAPOL)
2384 		rate = tp->mgmtrate;
2385 	else {
2386 		/* XXX pass pktlen */
2387 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2388 		rate = ni->ni_txrate;
2389 	}
2390 
2391 	/* Encrypt the frame if need be. */
2392 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2393 		/* Retrieve key for TX. */
2394 		k = ieee80211_crypto_encap(ni, m);
2395 		if (k == NULL) {
2396 			error = ENOBUFS;
2397 			goto fail;
2398 		}
2399 		/* 802.11 header may have moved. */
2400 		wh = mtod(m, struct ieee80211_frame *);
2401 	}
2402 	totlen = m->m_pkthdr.len;
2403 
2404 	if (ieee80211_radiotap_active_vap(vap)) {
2405 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2406 
2407 		tap->wt_flags = 0;
2408 		tap->wt_rate = rate;
2409 		if (k != NULL)
2410 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2411 
2412 		ieee80211_radiotap_tx(vap, m);
2413 	}
2414 
2415 	flags = 0;
2416 	if (!ismcast) {
2417 		/* Unicast frame, check if an ACK is expected. */
2418 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2419 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2420 			flags |= WPI_TX_NEED_ACK;
2421 	}
2422 
2423 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2424 	if (!ismcast) {
2425 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2426 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2427 			flags |= WPI_TX_NEED_RTS;
2428 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2429 		    WPI_RATE_IS_OFDM(rate)) {
2430 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2431 				flags |= WPI_TX_NEED_CTS;
2432 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2433 				flags |= WPI_TX_NEED_RTS;
2434 		}
2435 
2436 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2437 			flags |= WPI_TX_FULL_TXOP;
2438 	}
2439 
2440 	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2441 	if (type == IEEE80211_FC0_TYPE_MGT) {
2442 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2443 
2444 		/* Tell HW to set timestamp in probe responses. */
2445 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2446 			flags |= WPI_TX_INSERT_TSTAMP;
2447 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2448 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2449 			tx.timeout = htole16(3);
2450 		else
2451 			tx.timeout = htole16(2);
2452 	}
2453 
2454 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2455 		tx.id = WPI_ID_BROADCAST;
2456 	else {
2457 		if (wn->id == WPI_ID_UNDEFINED &&
2458 		    (vap->iv_opmode == IEEE80211_M_IBSS ||
2459 		    vap->iv_opmode == IEEE80211_M_AHDEMO)) {
2460 			error = wpi_add_ibss_node(sc, ni);
2461 			if (error != 0) {
2462 				device_printf(sc->sc_dev,
2463 				    "%s: could not add IBSS node, error %d\n",
2464 				    __func__, error);
2465 				goto fail;
2466 			}
2467 		}
2468 
2469 		if (wn->id == WPI_ID_UNDEFINED) {
2470 			device_printf(sc->sc_dev,
2471 			    "%s: undefined node id\n", __func__);
2472 			error = EINVAL;
2473 			goto fail;
2474 		}
2475 
2476 		tx.id = wn->id;
2477 	}
2478 
2479 	if (type != IEEE80211_FC0_TYPE_MGT)
2480 		tx.data_ntries = tp->maxretry;
2481 
2482 	tx.len = htole16(totlen);
2483 	tx.flags = htole32(flags);
2484 	tx.plcp = rate2plcp(rate);
2485 	tx.tid = tid;
2486 	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2487 	tx.ofdm_mask = 0xff;
2488 	tx.cck_mask = 0x0f;
2489 	tx.rts_ntries = 7;
2490 
2491 	if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM) {
2492 		if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2493 			tx.security = WPI_CIPHER_CCMP;
2494 			memcpy(tx.key, k->wk_key, k->wk_keylen);
2495 		}
2496 	}
2497 
2498 	tx_data.data = &tx;
2499 	tx_data.ni = ni;
2500 	tx_data.m = m;
2501 	tx_data.size = sizeof(tx);
2502 	tx_data.code = WPI_CMD_TX_DATA;
2503 	tx_data.ac = ac;
2504 
2505 	return wpi_cmd2(sc, &tx_data);
2506 
2507 fail:	m_freem(m);
2508 	return error;
2509 }
2510 
2511 static int
2512 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2513     const struct ieee80211_bpf_params *params)
2514 {
2515 	struct ieee80211vap *vap = ni->ni_vap;
2516 	struct ieee80211_frame *wh;
2517 	struct wpi_cmd_data tx;
2518 	struct wpi_buf tx_data;
2519 	uint32_t flags;
2520 	uint8_t type;
2521 	int ac, rate, totlen;
2522 
2523 	wh = mtod(m, struct ieee80211_frame *);
2524 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2525 	totlen = m->m_pkthdr.len;
2526 
2527 	ac = params->ibp_pri & 3;
2528 
2529 	/* Choose a TX rate index. */
2530 	rate = params->ibp_rate0;
2531 
2532 	flags = 0;
2533 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2534 		flags |= WPI_TX_NEED_ACK;
2535 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2536 		flags |= WPI_TX_NEED_RTS;
2537 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2538 		flags |= WPI_TX_NEED_CTS;
2539 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2540 		flags |= WPI_TX_FULL_TXOP;
2541 
2542 	if (ieee80211_radiotap_active_vap(vap)) {
2543 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2544 
2545 		tap->wt_flags = 0;
2546 		tap->wt_rate = rate;
2547 
2548 		ieee80211_radiotap_tx(vap, m);
2549 	}
2550 
2551 	memset(&tx, 0, sizeof (struct wpi_cmd_data));
2552 	if (type == IEEE80211_FC0_TYPE_MGT) {
2553 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2554 
2555 		/* Tell HW to set timestamp in probe responses. */
2556 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2557 			flags |= WPI_TX_INSERT_TSTAMP;
2558 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2559 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2560 			tx.timeout = htole16(3);
2561 		else
2562 			tx.timeout = htole16(2);
2563 	}
2564 
2565 	tx.len = htole16(totlen);
2566 	tx.flags = htole32(flags);
2567 	tx.plcp = rate2plcp(rate);
2568 	tx.id = WPI_ID_BROADCAST;
2569 	tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2570 	tx.rts_ntries = params->ibp_try1;
2571 	tx.data_ntries = params->ibp_try0;
2572 
2573 	tx_data.data = &tx;
2574 	tx_data.ni = ni;
2575 	tx_data.m = m;
2576 	tx_data.size = sizeof(tx);
2577 	tx_data.code = WPI_CMD_TX_DATA;
2578 	tx_data.ac = ac;
2579 
2580 	return wpi_cmd2(sc, &tx_data);
2581 }
2582 
2583 static int
2584 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2585     const struct ieee80211_bpf_params *params)
2586 {
2587 	struct ieee80211com *ic = ni->ni_ic;
2588 	struct ifnet *ifp = ic->ic_ifp;
2589 	struct wpi_softc *sc = ifp->if_softc;
2590 	int error = 0;
2591 
2592 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2593 
2594 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2595 		ieee80211_free_node(ni);
2596 		m_freem(m);
2597 		return ENETDOWN;
2598 	}
2599 
2600 	WPI_LOCK(sc);
2601 	if (params == NULL) {
2602 		/*
2603 		 * Legacy path; interpret frame contents to decide
2604 		 * precisely how to send the frame.
2605 		 */
2606 		error = wpi_tx_data(sc, m, ni);
2607 	} else {
2608 		/*
2609 		 * Caller supplied explicit parameters to use in
2610 		 * sending the frame.
2611 		 */
2612 		error = wpi_tx_data_raw(sc, m, ni, params);
2613 	}
2614 	WPI_UNLOCK(sc);
2615 
2616 	if (error != 0) {
2617 		/* NB: m is reclaimed on tx failure */
2618 		ieee80211_free_node(ni);
2619 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2620 
2621 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2622 
2623 		return error;
2624 	}
2625 
2626 	sc->sc_tx_timer = 5;
2627 
2628 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2629 
2630 	return 0;
2631 }
2632 
2633 /**
2634  * Process data waiting to be sent on the IFNET output queue
2635  */
2636 static void
2637 wpi_start(struct ifnet *ifp)
2638 {
2639 	struct wpi_softc *sc = ifp->if_softc;
2640 
2641 	WPI_LOCK(sc);
2642 	wpi_start_locked(ifp);
2643 	WPI_UNLOCK(sc);
2644 }
2645 
2646 static void
2647 wpi_start_locked(struct ifnet *ifp)
2648 {
2649 	struct wpi_softc *sc = ifp->if_softc;
2650 	struct ieee80211_node *ni;
2651 	struct mbuf *m;
2652 
2653 	WPI_LOCK_ASSERT(sc);
2654 
2655 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
2656 
2657 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
2658 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
2659 		return;
2660 
2661 	for (;;) {
2662 		if (sc->qfullmsk != 0) {
2663 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2664 			break;
2665 		}
2666 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2667 		if (m == NULL)
2668 			break;
2669 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2670 		if (wpi_tx_data(sc, m, ni) != 0) {
2671 			WPI_UNLOCK(sc);
2672 			ieee80211_free_node(ni);
2673 			WPI_LOCK(sc);
2674 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2675 		} else
2676 			sc->sc_tx_timer = 5;
2677 	}
2678 
2679 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
2680 }
2681 
2682 static void
2683 wpi_watchdog_rfkill(void *arg)
2684 {
2685 	struct wpi_softc *sc = arg;
2686 	struct ifnet *ifp = sc->sc_ifp;
2687 	struct ieee80211com *ic = ifp->if_l2com;
2688 
2689 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
2690 
2691 	/* No need to lock firmware memory. */
2692 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
2693 		/* Radio kill switch is still off. */
2694 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
2695 		    sc);
2696 	} else
2697 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2698 }
2699 
2700 /**
2701  * Called every second, wpi_watchdog used by the watch dog timer
2702  * to check that the card is still alive
2703  */
2704 static void
2705 wpi_watchdog(void *arg)
2706 {
2707 	struct wpi_softc *sc = arg;
2708 	struct ifnet *ifp = sc->sc_ifp;
2709 	struct ieee80211com *ic = ifp->if_l2com;
2710 
2711 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "Watchdog: tick\n");
2712 
2713 	if (sc->sc_tx_timer > 0) {
2714 		if (--sc->sc_tx_timer == 0) {
2715 			if_printf(ifp, "device timeout\n");
2716 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2717 			ieee80211_runtask(ic, &sc->sc_reinittask);
2718 		}
2719 	}
2720 
2721 	if (sc->sc_scan_timer > 0) {
2722 		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2723 		if (--sc->sc_scan_timer == 0 && vap != NULL) {
2724 			if_printf(ifp, "scan timeout\n");
2725 			ieee80211_cancel_scan(vap);
2726 			ieee80211_runtask(ic, &sc->sc_reinittask);
2727 		}
2728 	}
2729 
2730 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2731 		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2732 }
2733 
2734 static int
2735 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2736 {
2737 	struct wpi_softc *sc = ifp->if_softc;
2738 	struct ieee80211com *ic = ifp->if_l2com;
2739 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2740 	struct ifreq *ifr = (struct ifreq *) data;
2741 	int error = 0, startall = 0, stop = 0;
2742 
2743 	switch (cmd) {
2744 	case SIOCGIFADDR:
2745 		error = ether_ioctl(ifp, cmd, data);
2746 		break;
2747 	case SIOCSIFFLAGS:
2748 		WPI_LOCK(sc);
2749 		if (ifp->if_flags & IFF_UP) {
2750 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2751 				wpi_init_locked(sc);
2752 				if (WPI_READ(sc, WPI_GP_CNTRL) &
2753 				    WPI_GP_CNTRL_RFKILL)
2754 					startall = 1;
2755 				else
2756 					stop = 1;
2757 			}
2758 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2759 			wpi_stop_locked(sc);
2760 		WPI_UNLOCK(sc);
2761 		if (startall)
2762 			ieee80211_start_all(ic);
2763 		else if (vap != NULL && stop)
2764 			ieee80211_stop(vap);
2765 		break;
2766 	case SIOCGIFMEDIA:
2767 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2768 		break;
2769 	default:
2770 		error = EINVAL;
2771 		break;
2772 	}
2773 	return error;
2774 }
2775 
2776 /*
2777  * Send a command to the firmware.
2778  */
2779 static int
2780 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
2781     int async)
2782 {
2783 	struct wpi_tx_ring *ring = &sc->txq[4];
2784 	struct wpi_tx_desc *desc;
2785 	struct wpi_tx_data *data;
2786 	struct wpi_tx_cmd *cmd;
2787 	struct mbuf *m;
2788 	bus_addr_t paddr;
2789 	int totlen, error;
2790 
2791 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2792 
2793 	if (async == 0)
2794 		WPI_LOCK_ASSERT(sc);
2795 
2796 	DPRINTF(sc, WPI_DEBUG_CMD, "wpi_cmd %s size %zu async %d\n",
2797 	    wpi_cmd_str(code), size, async);
2798 
2799 	if (sc->flags & WPI_FLAG_BUSY) {
2800 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2801 		    __func__, code);
2802 		return EAGAIN;
2803 	}
2804 	sc->flags |= WPI_FLAG_BUSY;
2805 
2806 	desc = &ring->desc[ring->cur];
2807 	data = &ring->data[ring->cur];
2808 	totlen = 4 + size;
2809 
2810 	if (size > sizeof cmd->data) {
2811 		/* Command is too large to fit in a descriptor. */
2812 		if (totlen > MCLBYTES)
2813 			return EINVAL;
2814 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2815 		if (m == NULL)
2816 			return ENOMEM;
2817 		cmd = mtod(m, struct wpi_tx_cmd *);
2818 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
2819 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2820 		if (error != 0) {
2821 			m_freem(m);
2822 			return error;
2823 		}
2824 		data->m = m;
2825 	} else {
2826 		cmd = &ring->cmd[ring->cur];
2827 		paddr = data->cmd_paddr;
2828 	}
2829 
2830 	cmd->code = code;
2831 	cmd->flags = 0;
2832 	cmd->qid = ring->qid;
2833 	cmd->idx = ring->cur;
2834 	memcpy(cmd->data, buf, size);
2835 
2836 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
2837 	desc->segs[0].addr = htole32(paddr);
2838 	desc->segs[0].len  = htole32(totlen);
2839 
2840 	if (size > sizeof cmd->data) {
2841 		bus_dmamap_sync(ring->data_dmat, data->map,
2842 		    BUS_DMASYNC_PREWRITE);
2843 	} else {
2844 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2845 		    BUS_DMASYNC_PREWRITE);
2846 	}
2847 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2848 	    BUS_DMASYNC_PREWRITE);
2849 
2850 	/* Kick command ring. */
2851 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2852 	wpi_update_tx_ring(sc, ring);
2853 
2854 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2855 
2856 	if (async) {
2857 		sc->flags &= ~WPI_FLAG_BUSY;
2858 		return 0;
2859 	}
2860 
2861 	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2862 }
2863 
2864 /*
2865  * Configure HW multi-rate retries.
2866  */
2867 static int
2868 wpi_mrr_setup(struct wpi_softc *sc)
2869 {
2870 	struct ifnet *ifp = sc->sc_ifp;
2871 	struct ieee80211com *ic = ifp->if_l2com;
2872 	struct wpi_mrr_setup mrr;
2873 	int i, error;
2874 
2875 	/* CCK rates (not used with 802.11a). */
2876 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
2877 		mrr.rates[i].flags = 0;
2878 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2879 		/* Fallback to the immediate lower CCK rate (if any.) */
2880 		mrr.rates[i].next =
2881 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
2882 		/* Try one time at this rate before falling back to "next". */
2883 		mrr.rates[i].ntries = 1;
2884 	}
2885 	/* OFDM rates (not used with 802.11b). */
2886 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
2887 		mrr.rates[i].flags = 0;
2888 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2889 		/* Fallback to the immediate lower rate (if any.) */
2890 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
2891 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
2892 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2893 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
2894 		    i - 1;
2895 		/* Try one time at this rate before falling back to "next". */
2896 		mrr.rates[i].ntries = 1;
2897 	}
2898 	/* Setup MRR for control frames. */
2899 	mrr.which = htole32(WPI_MRR_CTL);
2900 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2901 	if (error != 0) {
2902 		device_printf(sc->sc_dev,
2903 		    "could not setup MRR for control frames\n");
2904 		return error;
2905 	}
2906 	/* Setup MRR for data frames. */
2907 	mrr.which = htole32(WPI_MRR_DATA);
2908 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2909 	if (error != 0) {
2910 		device_printf(sc->sc_dev,
2911 		    "could not setup MRR for data frames\n");
2912 		return error;
2913 	}
2914 	return 0;
2915 }
2916 
2917 static int
2918 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2919 {
2920 	struct ieee80211com *ic = ni->ni_ic;
2921 	struct wpi_node *wn = (void *)ni;
2922 	struct wpi_node_info node;
2923 
2924 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2925 
2926 	if (wn->id == WPI_ID_UNDEFINED)
2927 		return EINVAL;
2928 
2929 	memset(&node, 0, sizeof node);
2930 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2931 	node.id = wn->id;
2932 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2933 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2934 	node.action = htole32(WPI_ACTION_SET_RATE);
2935 	node.antenna = WPI_ANTENNA_BOTH;
2936 
2937 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2938 }
2939 
2940 /*
2941  * Broadcast node is used to send group-addressed and management frames.
2942  */
2943 static int
2944 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
2945 {
2946 	struct ifnet *ifp = sc->sc_ifp;
2947 	struct ieee80211com *ic = ifp->if_l2com;
2948 	struct wpi_node_info node;
2949 
2950 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2951 
2952 	memset(&node, 0, sizeof node);
2953 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
2954 	node.id = WPI_ID_BROADCAST;
2955 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2956 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
2957 	node.action = htole32(WPI_ACTION_SET_RATE);
2958 	node.antenna = WPI_ANTENNA_BOTH;
2959 
2960 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
2961 }
2962 
2963 static int
2964 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2965 {
2966 	struct wpi_node *wn = (void *)ni;
2967 
2968 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2969 
2970 	if (wn->id != WPI_ID_UNDEFINED)
2971 		return EINVAL;
2972 
2973 	wn->id = alloc_unrl(sc->sc_unr);
2974 
2975 	if (wn->id == (uint8_t)-1)
2976 		return ENOBUFS;
2977 
2978 	return wpi_add_node(sc, ni);
2979 }
2980 
2981 static void
2982 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
2983 {
2984 	struct wpi_node *wn = (void *)ni;
2985 	struct wpi_cmd_del_node node;
2986 	int error;
2987 
2988 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
2989 
2990 	if (wn->id == WPI_ID_UNDEFINED) {
2991 		device_printf(sc->sc_dev, "%s: undefined node id passed\n",
2992 		    __func__);
2993 		return;
2994 	}
2995 
2996 	memset(&node, 0, sizeof node);
2997 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_bssid);
2998 	node.count = 1;
2999 
3000 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3001 	if (error != 0) {
3002 		device_printf(sc->sc_dev,
3003 		    "%s: could not delete node %u, error %d\n", __func__,
3004 		    wn->id, error);
3005 	}
3006 }
3007 
3008 static int
3009 wpi_updateedca(struct ieee80211com *ic)
3010 {
3011 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3012 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3013 	struct wpi_edca_params cmd;
3014 	int aci, error;
3015 
3016 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3017 
3018 	memset(&cmd, 0, sizeof cmd);
3019 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3020 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3021 		const struct wmeParams *ac =
3022 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3023 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3024 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3025 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3026 		cmd.ac[aci].txoplimit =
3027 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3028 
3029 		DPRINTF(sc, WPI_DEBUG_EDCA,
3030 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3031 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3032 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3033 		    cmd.ac[aci].txoplimit);
3034 	}
3035 	IEEE80211_UNLOCK(ic);
3036 	WPI_LOCK(sc);
3037 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3038 	WPI_UNLOCK(sc);
3039 	IEEE80211_LOCK(ic);
3040 
3041 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3042 
3043 	return error;
3044 #undef WPI_EXP2
3045 }
3046 
3047 static void
3048 wpi_set_promisc(struct wpi_softc *sc)
3049 {
3050 	struct ifnet *ifp = sc->sc_ifp;
3051 	uint32_t promisc_filter;
3052 
3053 	promisc_filter = WPI_FILTER_PROMISC | WPI_FILTER_CTL;
3054 
3055 	if (ifp->if_flags & IFF_PROMISC)
3056 		sc->rxon.filter |= htole32(promisc_filter);
3057 	else
3058 		sc->rxon.filter &= ~htole32(promisc_filter);
3059 }
3060 
3061 static void
3062 wpi_update_promisc(struct ifnet *ifp)
3063 {
3064 	struct wpi_softc *sc = ifp->if_softc;
3065 
3066 	wpi_set_promisc(sc);
3067 
3068 	WPI_LOCK(sc);
3069 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3070 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3071 		    __func__);
3072 	}
3073 	WPI_UNLOCK(sc);
3074 }
3075 
3076 static void
3077 wpi_update_mcast(struct ifnet *ifp)
3078 {
3079 	/* Ignore */
3080 }
3081 
3082 static void
3083 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3084 {
3085 	struct wpi_cmd_led led;
3086 
3087 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3088 
3089 	led.which = which;
3090 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3091 	led.off = off;
3092 	led.on = on;
3093 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3094 }
3095 
3096 static int
3097 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3098 {
3099 	struct wpi_cmd_timing cmd;
3100 	uint64_t val, mod;
3101 
3102 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3103 
3104 	memset(&cmd, 0, sizeof cmd);
3105 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3106 	cmd.bintval = htole16(ni->ni_intval);
3107 	cmd.lintval = htole16(10);
3108 
3109 	/* Compute remaining time until next beacon. */
3110 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3111 	mod = le64toh(cmd.tstamp) % val;
3112 	cmd.binitval = htole32((uint32_t)(val - mod));
3113 
3114 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3115 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3116 
3117 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3118 }
3119 
3120 /*
3121  * This function is called periodically (every 60 seconds) to adjust output
3122  * power to temperature changes.
3123  */
3124 static void
3125 wpi_power_calibration(struct wpi_softc *sc)
3126 {
3127 	int temp;
3128 
3129 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3130 
3131 	/* Update sensor data. */
3132 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3133 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3134 
3135 	/* Sanity-check read value. */
3136 	if (temp < -260 || temp > 25) {
3137 		/* This can't be correct, ignore. */
3138 		DPRINTF(sc, WPI_DEBUG_TEMP,
3139 		    "out-of-range temperature reported: %d\n", temp);
3140 		return;
3141 	}
3142 
3143 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3144 
3145 	/* Adjust Tx power if need be. */
3146 	if (abs(temp - sc->temp) <= 6)
3147 		return;
3148 
3149 	sc->temp = temp;
3150 
3151 	if (wpi_set_txpower(sc, 1) != 0) {
3152 		/* just warn, too bad for the automatic calibration... */
3153 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3154 	}
3155 }
3156 
3157 /*
3158  * Set TX power for current channel.
3159  */
3160 static int
3161 wpi_set_txpower(struct wpi_softc *sc, int async)
3162 {
3163 	struct ifnet *ifp = sc->sc_ifp;
3164 	struct ieee80211com *ic = ifp->if_l2com;
3165 	struct ieee80211_channel *ch;
3166 	struct wpi_power_group *group;
3167 	struct wpi_cmd_txpower cmd;
3168 	uint8_t chan;
3169 	int idx, i;
3170 
3171 	/* Retrieve current channel from last RXON. */
3172 	chan = sc->rxon.chan;
3173 	ch = &ic->ic_channels[chan];
3174 
3175 	/* Find the TX power group to which this channel belongs. */
3176 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3177 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3178 			if (chan <= group->chan)
3179 				break;
3180 	} else
3181 		group = &sc->groups[0];
3182 
3183 	memset(&cmd, 0, sizeof cmd);
3184 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3185 	cmd.chan = htole16(chan);
3186 
3187 	/* Set TX power for all OFDM and CCK rates. */
3188 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3189 		/* Retrieve TX power for this channel/rate. */
3190 		idx = wpi_get_power_index(sc, group, ch, i);
3191 
3192 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3193 
3194 		if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3195 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3196 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3197 		} else {
3198 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3199 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3200 		}
3201 		DPRINTF(sc, WPI_DEBUG_TEMP,
3202 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3203 	}
3204 
3205 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3206 }
3207 
3208 /*
3209  * Determine Tx power index for a given channel/rate combination.
3210  * This takes into account the regulatory information from EEPROM and the
3211  * current temperature.
3212  */
3213 static int
3214 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3215     struct ieee80211_channel *c, int ridx)
3216 {
3217 /* Fixed-point arithmetic division using a n-bit fractional part. */
3218 #define fdivround(a, b, n)      \
3219 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3220 
3221 /* Linear interpolation. */
3222 #define interpolate(x, x1, y1, x2, y2, n)       \
3223 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3224 
3225 	struct ifnet *ifp = sc->sc_ifp;
3226 	struct ieee80211com *ic = ifp->if_l2com;
3227 	struct wpi_power_sample *sample;
3228 	int pwr, idx;
3229 	u_int chan;
3230 
3231 	/* Get channel number. */
3232 	chan = ieee80211_chan2ieee(ic, c);
3233 
3234 	/* Default TX power is group maximum TX power minus 3dB. */
3235 	pwr = group->maxpwr / 2;
3236 
3237 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3238 	switch (ridx) {
3239 	case WPI_RIDX_OFDM36:
3240 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3241 		break;
3242 	case WPI_RIDX_OFDM48:
3243 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3244 		break;
3245 	case WPI_RIDX_OFDM54:
3246 		pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3247 		break;
3248 	}
3249 
3250 	/* Never exceed the channel maximum allowed TX power. */
3251 	pwr = min(pwr, sc->maxpwr[chan]);
3252 
3253 	/* Retrieve TX power index into gain tables from samples. */
3254 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3255 		if (pwr > sample[1].power)
3256 			break;
3257 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3258 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3259 	    sample[1].power, sample[1].index, 19);
3260 
3261 	/*-
3262 	 * Adjust power index based on current temperature:
3263 	 * - if cooler than factory-calibrated: decrease output power
3264 	 * - if warmer than factory-calibrated: increase output power
3265 	 */
3266 	idx -= (sc->temp - group->temp) * 11 / 100;
3267 
3268 	/* Decrease TX power for CCK rates (-5dB). */
3269 	if (ridx >= WPI_RIDX_CCK1)
3270 		idx += 10;
3271 
3272 	/* Make sure idx stays in a valid range. */
3273 	if (idx < 0)
3274 		return 0;
3275 	if (idx > WPI_MAX_PWR_INDEX)
3276 		return WPI_MAX_PWR_INDEX;
3277 	return idx;
3278 
3279 #undef interpolate
3280 #undef fdivround
3281 }
3282 
3283 /*
3284  * Set STA mode power saving level (between 0 and 5).
3285  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3286  */
3287 static int
3288 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3289 {
3290 	struct wpi_pmgt_cmd cmd;
3291 	const struct wpi_pmgt *pmgt;
3292 	uint32_t max, skip_dtim;
3293 	uint32_t reg;
3294 	int i;
3295 
3296 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3297 	    "%s: dtim=%d, level=%d, async=%d\n",
3298 	    __func__, dtim, level, async);
3299 
3300 	/* Select which PS parameters to use. */
3301 	if (dtim <= 10)
3302 		pmgt = &wpi_pmgt[0][level];
3303 	else
3304 		pmgt = &wpi_pmgt[1][level];
3305 
3306 	memset(&cmd, 0, sizeof cmd);
3307 	if (level != 0)	/* not CAM */
3308 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3309 	/* Retrieve PCIe Active State Power Management (ASPM). */
3310 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3311 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3312 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3313 
3314 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3315 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3316 
3317 	if (dtim == 0) {
3318 		dtim = 1;
3319 		skip_dtim = 0;
3320 	} else
3321 		skip_dtim = pmgt->skip_dtim;
3322 
3323 	if (skip_dtim != 0) {
3324 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3325 		max = pmgt->intval[4];
3326 		if (max == (uint32_t)-1)
3327 			max = dtim * (skip_dtim + 1);
3328 		else if (max > dtim)
3329 			max = (max / dtim) * dtim;
3330 	} else
3331 		max = dtim;
3332 
3333 	for (i = 0; i < 5; i++)
3334 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3335 
3336 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3337 }
3338 
3339 static int
3340 wpi_send_btcoex(struct wpi_softc *sc)
3341 {
3342 	struct wpi_bluetooth cmd;
3343 
3344         memset(&cmd, 0, sizeof cmd);
3345         cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3346         cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3347         cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3348 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3349 	    __func__);
3350         return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3351 }
3352 
3353 static int
3354 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3355 {
3356 	int error;
3357 
3358 	if (assoc && (sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3359 		struct wpi_assoc rxon_assoc;
3360 
3361 		rxon_assoc.flags = sc->rxon.flags;
3362 		rxon_assoc.filter = sc->rxon.filter;
3363 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3364 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3365 		rxon_assoc.reserved = 0;
3366 
3367 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3368 		    sizeof (struct wpi_assoc), async);
3369 	} else {
3370 		error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3371 		    sizeof (struct wpi_rxon), async);
3372 	}
3373 	if (error != 0) {
3374 		device_printf(sc->sc_dev, "RXON command failed, error %d\n",
3375 		    error);
3376 		return error;
3377 	}
3378 
3379 	/* Configuration has changed, set Tx power accordingly. */
3380 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3381 		device_printf(sc->sc_dev,
3382 		    "%s: could not set TX power, error %d\n", __func__, error);
3383 		return error;
3384 	}
3385 
3386 	if (!(sc->rxon.filter & htole32(WPI_FILTER_BSS))) {
3387 		/* Add broadcast node. */
3388 		error = wpi_add_broadcast_node(sc, async);
3389 		if (error != 0) {
3390 			device_printf(sc->sc_dev,
3391 			    "could not add broadcast node, error %d\n", error);
3392 			return error;
3393 		}
3394 	}
3395 
3396 	return 0;
3397 }
3398 
3399 /**
3400  * Configure the card to listen to a particular channel, this transisions the
3401  * card in to being able to receive frames from remote devices.
3402  */
3403 static int
3404 wpi_config(struct wpi_softc *sc)
3405 {
3406 	struct ifnet *ifp = sc->sc_ifp;
3407 	struct ieee80211com *ic = ifp->if_l2com;
3408 	uint32_t flags;
3409 	int error;
3410 
3411 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3412 
3413 	/* Set power saving level to CAM during initialization. */
3414 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3415 		device_printf(sc->sc_dev,
3416 		    "%s: could not set power saving level\n", __func__);
3417 		return error;
3418 	}
3419 
3420 	/* Configure bluetooth coexistence. */
3421 	if ((error = wpi_send_btcoex(sc)) != 0) {
3422 		device_printf(sc->sc_dev,
3423 		    "could not configure bluetooth coexistence\n");
3424 		return error;
3425 	}
3426 
3427 	/* Configure adapter. */
3428 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3429 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
3430 
3431 	/* Set default channel. */
3432 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3433 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3434 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3435 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3436 
3437 	switch (ic->ic_opmode) {
3438 	case IEEE80211_M_STA:
3439 		sc->rxon.mode = WPI_MODE_STA;
3440 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
3441 		break;
3442 	case IEEE80211_M_IBSS:
3443 		sc->rxon.mode = WPI_MODE_IBSS;
3444 		sc->rxon.filter = htole32(WPI_FILTER_BEACON |
3445 		    WPI_FILTER_MULTICAST);
3446 		break;
3447 	/* XXX workaround for passive channels selection */
3448 	case IEEE80211_M_AHDEMO:
3449 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
3450 		/* FALLTHROUGH */
3451 	case IEEE80211_M_HOSTAP:
3452 		sc->rxon.mode = WPI_MODE_HOSTAP;
3453 		break;
3454 	case IEEE80211_M_MONITOR:
3455 		sc->rxon.mode = WPI_MODE_MONITOR;
3456 		sc->rxon.filter = htole32(WPI_FILTER_MULTICAST);
3457 		break;
3458 	default:
3459 		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
3460 		return EINVAL;
3461 	}
3462 	wpi_set_promisc(sc);
3463 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3464 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3465 
3466 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3467 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3468 		    __func__);
3469 		return error;
3470 	}
3471 
3472 	/* Setup rate scalling. */
3473 	if ((error = wpi_mrr_setup(sc)) != 0) {
3474 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3475 		    error);
3476 		return error;
3477 	}
3478 
3479 	/* Disable beacon notifications (unused). */
3480 	flags = WPI_STATISTICS_BEACON_DISABLE;
3481 	error = wpi_cmd(sc, WPI_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3482 	if (error != 0) {
3483 		device_printf(sc->sc_dev,
3484 		    "could not disable beacon statistics, error %d\n", error);
3485 		return error;
3486 	}
3487 
3488 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3489 
3490 	return 0;
3491 }
3492 
3493 static uint16_t
3494 wpi_get_active_dwell_time(struct wpi_softc *sc,
3495     struct ieee80211_channel *c, uint8_t n_probes)
3496 {
3497 	/* No channel? Default to 2GHz settings. */
3498 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3499 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3500 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3501 	}
3502 
3503 	/* 5GHz dwell time. */
3504 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
3505 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
3506 }
3507 
3508 /*
3509  * Limit the total dwell time to 85% of the beacon interval.
3510  *
3511  * Returns the dwell time in milliseconds.
3512  */
3513 static uint16_t
3514 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
3515 {
3516 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3517 	struct ieee80211vap *vap = NULL;
3518 	int bintval = 0;
3519 
3520 	/* bintval is in TU (1.024mS) */
3521 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
3522 		vap = TAILQ_FIRST(&ic->ic_vaps);
3523 		bintval = vap->iv_bss->ni_intval;
3524 	}
3525 
3526 	/*
3527 	 * If it's non-zero, we should calculate the minimum of
3528 	 * it and the DWELL_BASE.
3529 	 *
3530 	 * XXX Yes, the math should take into account that bintval
3531 	 * is 1.024mS, not 1mS..
3532 	 */
3533 	if (bintval > 0) {
3534 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
3535 		    bintval);
3536 		return (MIN(WPI_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
3537 	}
3538 
3539 	/* No association context? Default. */
3540 	return (WPI_PASSIVE_DWELL_BASE);
3541 }
3542 
3543 static uint16_t
3544 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
3545 {
3546 	uint16_t passive;
3547 
3548 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
3549 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
3550 	else
3551 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
3552 
3553 	/* Clamp to the beacon interval if we're associated. */
3554 	return (wpi_limit_dwell(sc, passive));
3555 }
3556 
3557 /*
3558  * Send a scan request to the firmware.
3559  */
3560 static int
3561 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
3562 {
3563 	struct ifnet *ifp = sc->sc_ifp;
3564 	struct ieee80211com *ic = ifp->if_l2com;
3565 	struct ieee80211_scan_state *ss = ic->ic_scan;
3566 	struct wpi_scan_hdr *hdr;
3567 	struct wpi_cmd_data *tx;
3568 	struct wpi_scan_essid *essids;
3569 	struct wpi_scan_chan *chan;
3570 	struct ieee80211_frame *wh;
3571 	struct ieee80211_rateset *rs;
3572 	uint16_t dwell_active, dwell_passive;
3573 	uint8_t *buf, *frm;
3574 	int buflen, error, i, nssid;
3575 
3576 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3577 
3578 	/*
3579 	 * We are absolutely not allowed to send a scan command when another
3580 	 * scan command is pending.
3581 	 */
3582 	if (sc->sc_scan_timer) {
3583 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
3584 		    __func__);
3585 		return (EAGAIN);
3586 	}
3587 
3588 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
3589 	if (buf == NULL) {
3590 		device_printf(sc->sc_dev,
3591 		    "%s: could not allocate buffer for scan command\n",
3592 		    __func__);
3593 		return ENOMEM;
3594 	}
3595 	hdr = (struct wpi_scan_hdr *)buf;
3596 
3597 	/*
3598 	 * Move to the next channel if no packets are received within 10 msecs
3599 	 * after sending the probe request.
3600 	 */
3601 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
3602 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
3603 	/*
3604 	 * Max needs to be greater than active and passive and quiet!
3605 	 * It's also in microseconds!
3606 	 */
3607 	hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
3608 	hdr->pause_svc = htole32((4 << 24) |
3609 	    (100 * IEEE80211_DUR_TU));	/* Hardcode for now */
3610 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
3611 
3612 	tx = (struct wpi_cmd_data *)(hdr + 1);
3613 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
3614 	tx->id = WPI_ID_BROADCAST;
3615 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3616 
3617 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3618 		/* Send probe requests at 6Mbps. */
3619 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
3620 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
3621 	} else {
3622 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
3623 		/* Send probe requests at 1Mbps. */
3624 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3625 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
3626 	}
3627 
3628 	essids = (struct wpi_scan_essid *)(tx + 1);
3629 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
3630 	for (i = 0; i < nssid; i++) {
3631 		essids[i].id = IEEE80211_ELEMID_SSID;
3632 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
3633 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
3634 #ifdef WPI_DEBUG
3635 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
3636 			printf("Scanning Essid: ");
3637 			ieee80211_print_essid(essids[i].data, essids[i].len);
3638 			printf("\n");
3639 		}
3640 #endif
3641 	}
3642 
3643 	/*
3644 	 * Build a probe request frame.  Most of the following code is a
3645 	 * copy & paste of what is done in net80211.
3646 	 */
3647 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
3648 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3649 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3650 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3651 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3652 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
3653 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3654 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3655 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3656 
3657 	frm = (uint8_t *)(wh + 1);
3658 	frm = ieee80211_add_ssid(frm, NULL, 0);
3659 	frm = ieee80211_add_rates(frm, rs);
3660 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
3661 		frm = ieee80211_add_xrates(frm, rs);
3662 
3663 	/* Set length of probe request. */
3664 	tx->len = htole16(frm - (uint8_t *)wh);
3665 
3666 	/*
3667 	 * Construct information about the channel that we
3668 	 * want to scan. The firmware expects this to be directly
3669 	 * after the scan probe request
3670 	 */
3671 	chan = (struct wpi_scan_chan *)frm;
3672 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
3673 	chan->flags = 0;
3674 	if (nssid) {
3675 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
3676 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
3677 	} else
3678 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
3679 
3680 	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
3681 		chan->flags |= WPI_CHAN_ACTIVE;
3682 
3683 	/*
3684 	 * Calculate the active/passive dwell times.
3685 	 */
3686 
3687 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
3688 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
3689 
3690 	/* Make sure they're valid. */
3691 	if (dwell_passive <= dwell_active)
3692 		dwell_passive = dwell_active + 1;
3693 
3694 	chan->active = htole16(dwell_active);
3695 	chan->passive = htole16(dwell_passive);
3696 
3697 	chan->dsp_gain = 0x6e;  /* Default level */
3698 
3699 	if (IEEE80211_IS_CHAN_5GHZ(c))
3700 		chan->rf_gain = 0x3b;
3701 	else
3702 		chan->rf_gain = 0x28;
3703 
3704 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
3705 	     chan->chan, (c->ic_flags & IEEE80211_CHAN_PASSIVE) ? 1 : 0);
3706 
3707 	hdr->nchan++;
3708 	chan++;
3709 
3710 	buflen = (uint8_t *)chan - buf;
3711 	hdr->len = htole16(buflen);
3712 
3713 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
3714 	    hdr->nchan);
3715 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
3716 	free(buf, M_DEVBUF);
3717 
3718 	sc->sc_scan_timer = 5;
3719 
3720 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3721 
3722 	return error;
3723 }
3724 
3725 static int
3726 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
3727 {
3728 	struct ieee80211com *ic = vap->iv_ic;
3729 	struct ieee80211_node *ni = vap->iv_bss;
3730 	int error;
3731 
3732 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3733 
3734 	/* Update adapter configuration. */
3735 	sc->rxon.associd = 0;
3736 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
3737 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3738 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3739 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3740 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3741 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3742 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3743 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3744 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3745 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3746 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3747 		sc->rxon.cck_mask  = 0;
3748 		sc->rxon.ofdm_mask = 0x15;
3749 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3750 		sc->rxon.cck_mask  = 0x03;
3751 		sc->rxon.ofdm_mask = 0;
3752 	} else {
3753 		/* Assume 802.11b/g. */
3754 		sc->rxon.cck_mask  = 0x0f;
3755 		sc->rxon.ofdm_mask = 0x15;
3756 	}
3757 
3758 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
3759 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
3760 	    sc->rxon.ofdm_mask);
3761 
3762 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3763 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3764 		    __func__);
3765 	}
3766 
3767 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3768 
3769 	return error;
3770 }
3771 
3772 static int
3773 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
3774 {
3775 	struct ifnet *ifp = sc->sc_ifp;
3776 	struct ieee80211com *ic = ifp->if_l2com;
3777 	struct ieee80211vap *vap = ni->ni_vap;
3778 	struct wpi_vap *wvp = WPI_VAP(vap);
3779 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
3780 	struct ieee80211_beacon_offsets bo;
3781 	struct wpi_cmd_beacon *cmd;
3782 	struct mbuf *m;
3783 	int totlen;
3784 
3785 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3786 
3787 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
3788 		return EINVAL;
3789 
3790 	m = ieee80211_beacon_alloc(ni, &bo);
3791 	if (m == NULL) {
3792 		device_printf(sc->sc_dev,
3793 		    "%s: could not allocate beacon frame\n", __func__);
3794 		return ENOMEM;
3795 	}
3796 	totlen = m->m_pkthdr.len;
3797 
3798 	if (bcn->data == NULL) {
3799 		cmd = malloc(sizeof(struct wpi_cmd_beacon), M_DEVBUF,
3800 		    M_NOWAIT | M_ZERO);
3801 
3802 		if (cmd == NULL) {
3803 			device_printf(sc->sc_dev,
3804 			    "could not allocate buffer for beacon command\n");
3805 			m_freem(m);
3806 			return ENOMEM;
3807 		}
3808 
3809 		cmd->id = WPI_ID_BROADCAST;
3810 		cmd->ofdm_mask = 0xff;
3811 		cmd->cck_mask = 0x0f;
3812 		cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
3813 		cmd->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
3814 
3815 		bcn->data = cmd;
3816 		bcn->ni = NULL;
3817 		bcn->code = WPI_CMD_SET_BEACON;
3818 		bcn->ac = 4;
3819 		bcn->size = sizeof(struct wpi_cmd_beacon);
3820 	} else
3821 		cmd = bcn->data;
3822 
3823 	cmd->len = htole16(totlen);
3824 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3825 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3826 
3827 	/* NB: m will be freed in wpi_cmd_done() */
3828 	bcn->m = m;
3829 
3830 	return wpi_cmd2(sc, bcn);
3831 }
3832 
3833 static void
3834 wpi_update_beacon(struct ieee80211vap *vap, int item)
3835 {
3836 	struct ieee80211_node *ni = vap->iv_bss;
3837 	struct ifnet *ifp = vap->iv_ifp;
3838 	struct wpi_softc *sc = ifp->if_softc;
3839 	int error;
3840 
3841 	if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3842 		device_printf(sc->sc_dev,
3843 		    "%s: could not update beacon frame, error %d", __func__,
3844 		    error);
3845 	}
3846 }
3847 
3848 static int
3849 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
3850 {
3851 	struct ieee80211com *ic = vap->iv_ic;
3852 	struct ieee80211_node *ni = vap->iv_bss;
3853 	int error;
3854 
3855 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3856 
3857 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
3858 		/* Link LED blinks while monitoring. */
3859 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3860 		return 0;
3861 	}
3862 
3863 	/* XXX kernel panic workaround */
3864 	if (ni->ni_chan == IEEE80211_CHAN_ANYC) {
3865 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
3866 		    __func__);
3867 		return EINVAL;
3868 	}
3869 
3870 	if ((error = wpi_set_timing(sc, ni)) != 0) {
3871 		device_printf(sc->sc_dev,
3872 		    "%s: could not set timing, error %d\n", __func__, error);
3873 		return error;
3874 	}
3875 
3876 	/* Update adapter configuration. */
3877 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
3878 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
3879 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
3880 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3881 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3882 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3883 	/* Short preamble and slot time are negotiated when associating. */
3884 	sc->rxon.flags &= ~htole32(WPI_RXON_SHPREAMBLE | WPI_RXON_SHSLOT);
3885 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3886 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
3887 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3888 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
3889 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3890 		sc->rxon.cck_mask  = 0;
3891 		sc->rxon.ofdm_mask = 0x15;
3892 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3893 		sc->rxon.cck_mask  = 0x03;
3894 		sc->rxon.ofdm_mask = 0;
3895 	} else {
3896 		/* Assume 802.11b/g. */
3897 		sc->rxon.cck_mask  = 0x0f;
3898 		sc->rxon.ofdm_mask = 0x15;
3899 	}
3900 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
3901 
3902 	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
3903 
3904 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
3905 	    sc->rxon.chan, sc->rxon.flags);
3906 
3907 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
3908 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3909 		    __func__);
3910 		return error;
3911 	}
3912 
3913 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3914 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
3915 			device_printf(sc->sc_dev,
3916 			    "%s: could not setup beacon, error %d\n", __func__,
3917 			    error);
3918 			return error;
3919 		}
3920 	}
3921 
3922 	if (vap->iv_opmode == IEEE80211_M_STA) {
3923 		/* Add BSS node. */
3924 		((struct wpi_node *)ni)->id = WPI_ID_BSS;
3925 		if ((error = wpi_add_node(sc, ni)) != 0) {
3926 			device_printf(sc->sc_dev,
3927 			    "%s: could not add BSS node, error %d\n", __func__,
3928 			    error);
3929 			return error;
3930 		}
3931 	}
3932 
3933 	/* Link LED always on while associated. */
3934 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3935 
3936 	/* Start periodic calibration timer. */
3937 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3938 
3939 	/* Enable power-saving mode if requested by user. */
3940 	if (vap->iv_flags & IEEE80211_F_PMGTON)
3941 		(void)wpi_set_pslevel(sc, 0, 3, 1);
3942 
3943 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3944 
3945 	return 0;
3946 }
3947 
3948 static int
3949 wpi_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
3950     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3951 {
3952 	struct ifnet *ifp = vap->iv_ifp;
3953 	struct wpi_softc *sc = ifp->if_softc;
3954 
3955 	if (!(&vap->iv_nw_keys[0] <= k &&
3956 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
3957 		if (k->wk_flags & IEEE80211_KEY_GROUP) {
3958 			/* should not happen */
3959 			DPRINTF(sc, WPI_DEBUG_KEY, "%s: bogus group key\n",
3960 			    __func__);
3961 			return 0;
3962 		}
3963 		*keyix = 0;	/* NB: use key index 0 for ucast key */
3964 	} else {
3965 		*keyix = *rxkeyix = k - vap->iv_nw_keys;
3966 
3967 		if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_AES_CCM)
3968 			k->wk_flags |= IEEE80211_KEY_SWCRYPT;
3969 	}
3970 	return 1;
3971 }
3972 
3973 static int
3974 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
3975     const uint8_t mac[IEEE80211_ADDR_LEN])
3976 {
3977 	const struct ieee80211_cipher *cip = k->wk_cipher;
3978 	struct ieee80211com *ic = vap->iv_ic;
3979 	struct ieee80211_node *ni = vap->iv_bss;
3980 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3981 	struct wpi_node *wn = (void *)ni;
3982 	struct wpi_node_info node;
3983 	uint16_t kflags;
3984 	int error;
3985 
3986 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3987 
3988 	switch (cip->ic_cipher) {
3989 	case IEEE80211_CIPHER_AES_CCM:
3990 		if (k->wk_flags & IEEE80211_KEY_GROUP)
3991 			return 1;
3992 
3993 		kflags = WPI_KFLAG_CCMP;
3994 		break;
3995 	default:
3996 		/* null_key_set() */
3997 		return 1;
3998 	}
3999 
4000 	if (wn->id == WPI_ID_UNDEFINED)
4001 		return 0;
4002 
4003 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4004 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4005 		kflags |= WPI_KFLAG_MULTICAST;
4006 
4007 	memset(&node, 0, sizeof node);
4008 	node.id = wn->id;
4009 	node.control = WPI_NODE_UPDATE;
4010 	node.flags = WPI_FLAG_KEY_SET;
4011 	node.kflags = htole16(kflags);
4012 	memcpy(node.key, k->wk_key, k->wk_keylen);
4013 
4014 	DPRINTF(sc, WPI_DEBUG_KEY, "set key id=%d for node %d\n", k->wk_keyix,
4015 	    node.id);
4016 
4017 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4018 	if (error != 0) {
4019 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4020 		    error);
4021 		return 0;
4022 	}
4023 
4024 	return 1;
4025 }
4026 
4027 static int
4028 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4029 {
4030 	const struct ieee80211_cipher *cip = k->wk_cipher;
4031 	struct ieee80211com *ic = vap->iv_ic;
4032 	struct ieee80211_node *ni = vap->iv_bss;
4033 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4034 	struct wpi_node *wn = (void *)ni;
4035 	struct wpi_node_info node;
4036 
4037 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4038 
4039 	switch (cip->ic_cipher) {
4040 	case IEEE80211_CIPHER_AES_CCM:
4041 		break;
4042 	default:
4043 		/* null_key_delete() */
4044 		return 1;
4045 	}
4046 
4047 	if (vap->iv_state != IEEE80211_S_RUN ||
4048 	    (k->wk_flags & IEEE80211_KEY_GROUP))
4049 		return 1; /* Nothing to do. */
4050 
4051 	memset(&node, 0, sizeof node);
4052 	node.id = wn->id;
4053 	node.control = WPI_NODE_UPDATE;
4054 	node.flags = WPI_FLAG_KEY_SET;
4055 
4056 	DPRINTF(sc, WPI_DEBUG_KEY, "delete keys for node %d\n", node.id);
4057 	(void)wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4058 
4059 	return 1;
4060 }
4061 
4062 /*
4063  * This function is called after the runtime firmware notifies us of its
4064  * readiness (called in a process context).
4065  */
4066 static int
4067 wpi_post_alive(struct wpi_softc *sc)
4068 {
4069 	int ntries, error;
4070 
4071 	/* Check (again) that the radio is not disabled. */
4072 	if ((error = wpi_nic_lock(sc)) != 0)
4073 		return error;
4074 
4075 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4076 
4077 	/* NB: Runtime firmware must be up and running. */
4078 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4079  		device_printf(sc->sc_dev,
4080 		    "RF switch: radio disabled (%s)\n", __func__);
4081 		wpi_nic_unlock(sc);
4082 		return EPERM;   /* :-) */
4083 	}
4084 	wpi_nic_unlock(sc);
4085 
4086 	/* Wait for thermal sensor to calibrate. */
4087 	for (ntries = 0; ntries < 1000; ntries++) {
4088 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4089 			break;
4090 		DELAY(10);
4091 	}
4092 
4093 	if (ntries == 1000) {
4094 		device_printf(sc->sc_dev,
4095 		    "timeout waiting for thermal sensor calibration\n");
4096                 return ETIMEDOUT;
4097         }
4098 
4099         DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4100         return 0;
4101 }
4102 
4103 /*
4104  * The firmware boot code is small and is intended to be copied directly into
4105  * the NIC internal memory (no DMA transfer).
4106  */
4107 static int
4108 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4109 {
4110 	int error, ntries;
4111 
4112 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4113 
4114 	size /= sizeof (uint32_t);
4115 
4116 	if ((error = wpi_nic_lock(sc)) != 0)
4117 		return error;
4118 
4119 	/* Copy microcode image into NIC memory. */
4120 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4121 	    (const uint32_t *)ucode, size);
4122 
4123 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4124 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4125 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4126 
4127 	/* Start boot load now. */
4128 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4129 
4130 	/* Wait for transfer to complete. */
4131 	for (ntries = 0; ntries < 1000; ntries++) {
4132 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4133 		DPRINTF(sc, WPI_DEBUG_HW,
4134 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4135 		    WPI_FH_TX_STATUS_IDLE(6),
4136 		    status & WPI_FH_TX_STATUS_IDLE(6));
4137 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4138 			DPRINTF(sc, WPI_DEBUG_HW,
4139 			    "Status Match! - ntries = %d\n", ntries);
4140 			break;
4141 		}
4142 		DELAY(10);
4143 	}
4144 	if (ntries == 1000) {
4145 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4146 		    __func__);
4147 		wpi_nic_unlock(sc);
4148 		return ETIMEDOUT;
4149 	}
4150 
4151 	/* Enable boot after power up. */
4152 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4153 
4154 	wpi_nic_unlock(sc);
4155 	return 0;
4156 }
4157 
4158 static int
4159 wpi_load_firmware(struct wpi_softc *sc)
4160 {
4161 	struct wpi_fw_info *fw = &sc->fw;
4162 	struct wpi_dma_info *dma = &sc->fw_dma;
4163 	int error;
4164 
4165 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4166 
4167 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4168 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4169 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4170 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4171 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4172 
4173 	/* Tell adapter where to find initialization sections. */
4174 	if ((error = wpi_nic_lock(sc)) != 0)
4175 		return error;
4176 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4177 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4178 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4179 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4180 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4181 	wpi_nic_unlock(sc);
4182 
4183 	/* Load firmware boot code. */
4184 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4185 	if (error != 0) {
4186 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4187 		    __func__);
4188 		return error;
4189 	}
4190 
4191 	/* Now press "execute". */
4192 	WPI_WRITE(sc, WPI_RESET, 0);
4193 
4194 	/* Wait at most one second for first alive notification. */
4195 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4196 		device_printf(sc->sc_dev,
4197 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4198 		    __func__, error);
4199 		return error;
4200 	}
4201 
4202 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4203 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4204 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4205 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4206 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4207 
4208 	/* Tell adapter where to find runtime sections. */
4209 	if ((error = wpi_nic_lock(sc)) != 0)
4210 		return error;
4211 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4212 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4213 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4214 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4215 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4216 	    WPI_FW_UPDATED | fw->main.textsz);
4217 	wpi_nic_unlock(sc);
4218 
4219 	return 0;
4220 }
4221 
4222 static int
4223 wpi_read_firmware(struct wpi_softc *sc)
4224 {
4225 	const struct firmware *fp;
4226 	struct wpi_fw_info *fw = &sc->fw;
4227 	const struct wpi_firmware_hdr *hdr;
4228 	int error;
4229 
4230 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4231 
4232 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4233 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
4234 
4235 	WPI_UNLOCK(sc);
4236 	fp = firmware_get(WPI_FW_NAME);
4237 	WPI_LOCK(sc);
4238 
4239 	if (fp == NULL) {
4240 		device_printf(sc->sc_dev,
4241 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
4242 		return EINVAL;
4243 	}
4244 
4245 	sc->fw_fp = fp;
4246 
4247 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
4248 		device_printf(sc->sc_dev,
4249 		    "firmware file too short: %zu bytes\n", fp->datasize);
4250 		error = EINVAL;
4251 		goto fail;
4252 	}
4253 
4254 	fw->size = fp->datasize;
4255 	fw->data = (const uint8_t *)fp->data;
4256 
4257 	/* Extract firmware header information. */
4258 	hdr = (const struct wpi_firmware_hdr *)fw->data;
4259 
4260 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
4261 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
4262 
4263 	fw->main.textsz = le32toh(hdr->rtextsz);
4264 	fw->main.datasz = le32toh(hdr->rdatasz);
4265 	fw->init.textsz = le32toh(hdr->itextsz);
4266 	fw->init.datasz = le32toh(hdr->idatasz);
4267 	fw->boot.textsz = le32toh(hdr->btextsz);
4268 	fw->boot.datasz = 0;
4269 
4270 	/* Sanity-check firmware header. */
4271 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
4272 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
4273 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
4274 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
4275 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
4276 	    (fw->boot.textsz & 3) != 0) {
4277 		device_printf(sc->sc_dev, "invalid firmware header\n");
4278 		error = EINVAL;
4279 		goto fail;
4280 	}
4281 
4282 	/* Check that all firmware sections fit. */
4283 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
4284 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
4285 		device_printf(sc->sc_dev,
4286 		    "firmware file too short: %zu bytes\n", fw->size);
4287 		error = EINVAL;
4288 		goto fail;
4289 	}
4290 
4291 	/* Get pointers to firmware sections. */
4292 	fw->main.text = (const uint8_t *)(hdr + 1);
4293 	fw->main.data = fw->main.text + fw->main.textsz;
4294 	fw->init.text = fw->main.data + fw->main.datasz;
4295 	fw->init.data = fw->init.text + fw->init.textsz;
4296 	fw->boot.text = fw->init.data + fw->init.datasz;
4297 
4298 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
4299 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
4300 	    "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
4301 	    hdr->major, hdr->minor, le32toh(hdr->driver),
4302 	    fw->main.textsz, fw->main.datasz,
4303 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
4304 
4305 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
4306 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
4307 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
4308 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
4309 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
4310 
4311 	return 0;
4312 
4313 fail:	wpi_unload_firmware(sc);
4314 	return error;
4315 }
4316 
4317 /**
4318  * Free the referenced firmware image
4319  */
4320 static void
4321 wpi_unload_firmware(struct wpi_softc *sc)
4322 {
4323 	if (sc->fw_fp != NULL) {
4324 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
4325 		sc->fw_fp = NULL;
4326 	}
4327 }
4328 
4329 static int
4330 wpi_clock_wait(struct wpi_softc *sc)
4331 {
4332 	int ntries;
4333 
4334 	/* Set "initialization complete" bit. */
4335 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4336 
4337 	/* Wait for clock stabilization. */
4338 	for (ntries = 0; ntries < 2500; ntries++) {
4339 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
4340 			return 0;
4341 		DELAY(100);
4342 	}
4343 	device_printf(sc->sc_dev,
4344 	    "%s: timeout waiting for clock stabilization\n", __func__);
4345 
4346 	return ETIMEDOUT;
4347 }
4348 
4349 static int
4350 wpi_apm_init(struct wpi_softc *sc)
4351 {
4352 	uint32_t reg;
4353 	int error;
4354 
4355 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4356 
4357 	/* Disable L0s exit timer (NMI bug workaround). */
4358 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
4359 	/* Don't wait for ICH L0s (ICH bug workaround). */
4360 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
4361 
4362 	/* Set FH wait threshold to max (HW bug under stress workaround). */
4363 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
4364 
4365 	/* Retrieve PCIe Active State Power Management (ASPM). */
4366 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4367 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
4368 	if (reg & 0x02)	/* L1 Entry enabled. */
4369 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4370 	else
4371 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
4372 
4373 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
4374 
4375 	/* Wait for clock stabilization before accessing prph. */
4376 	if ((error = wpi_clock_wait(sc)) != 0)
4377 		return error;
4378 
4379 	if ((error = wpi_nic_lock(sc)) != 0)
4380 		return error;
4381 	/* Enable DMA and BSM (Bootstrap State Machine). */
4382 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
4383 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
4384 	DELAY(20);
4385 	/* Disable L1-Active. */
4386 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
4387 	wpi_nic_unlock(sc);
4388 
4389 	return 0;
4390 }
4391 
4392 static void
4393 wpi_apm_stop_master(struct wpi_softc *sc)
4394 {
4395 	int ntries;
4396 
4397 	/* Stop busmaster DMA activity. */
4398 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
4399 
4400 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
4401 	    WPI_GP_CNTRL_MAC_PS)
4402 		return; /* Already asleep. */
4403 
4404 	for (ntries = 0; ntries < 100; ntries++) {
4405 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
4406 			return;
4407 		DELAY(10);
4408 	}
4409 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
4410 }
4411 
4412 static void
4413 wpi_apm_stop(struct wpi_softc *sc)
4414 {
4415 	wpi_apm_stop_master(sc);
4416 
4417 	/* Reset the entire device. */
4418 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
4419 	DELAY(10);
4420 	/* Clear "initialization complete" bit. */
4421 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
4422 }
4423 
4424 static void
4425 wpi_nic_config(struct wpi_softc *sc)
4426 {
4427 	uint32_t rev;
4428 
4429 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4430 
4431 	/* voodoo from the Linux "driver".. */
4432 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
4433 	if ((rev & 0xc0) == 0x40)
4434 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
4435 	else if (!(rev & 0x80))
4436 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
4437 
4438 	if (sc->cap == 0x80)
4439 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
4440 
4441 	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
4442 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4443 	else
4444 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
4445 
4446 	if (sc->type > 1)
4447 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
4448 }
4449 
4450 static int
4451 wpi_hw_init(struct wpi_softc *sc)
4452 {
4453 	int chnl, ntries, error;
4454 
4455 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4456 
4457 	/* Clear pending interrupts. */
4458 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4459 
4460 	if ((error = wpi_apm_init(sc)) != 0) {
4461 		device_printf(sc->sc_dev,
4462 		    "%s: could not power ON adapter, error %d\n", __func__,
4463 		    error);
4464 		return error;
4465 	}
4466 
4467 	/* Select VMAIN power source. */
4468 	if ((error = wpi_nic_lock(sc)) != 0)
4469 		return error;
4470 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
4471 	wpi_nic_unlock(sc);
4472 	/* Spin until VMAIN gets selected. */
4473 	for (ntries = 0; ntries < 5000; ntries++) {
4474 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
4475 			break;
4476 		DELAY(10);
4477 	}
4478 	if (ntries == 5000) {
4479 		device_printf(sc->sc_dev, "timeout selecting power source\n");
4480 		return ETIMEDOUT;
4481 	}
4482 
4483 	/* Perform adapter initialization. */
4484 	wpi_nic_config(sc);
4485 
4486 	/* Initialize RX ring. */
4487 	if ((error = wpi_nic_lock(sc)) != 0)
4488 		return error;
4489 	/* Set physical address of RX ring. */
4490 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
4491 	/* Set physical address of RX read pointer. */
4492 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
4493 	    offsetof(struct wpi_shared, next));
4494 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
4495 	/* Enable RX. */
4496 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
4497 	    WPI_FH_RX_CONFIG_DMA_ENA |
4498 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
4499 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
4500 	    WPI_FH_RX_CONFIG_MAXFRAG |
4501 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
4502 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
4503 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
4504 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
4505 	wpi_nic_unlock(sc);
4506 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
4507 
4508 	/* Initialize TX rings. */
4509 	if ((error = wpi_nic_lock(sc)) != 0)
4510 		return error;
4511 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
4512 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
4513 	/* Enable all 6 TX rings. */
4514 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
4515 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
4516 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
4517 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
4518 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
4519 	/* Set physical address of TX rings. */
4520 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
4521 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
4522 
4523 	/* Enable all DMA channels. */
4524 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4525 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
4526 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
4527 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
4528 	}
4529 	wpi_nic_unlock(sc);
4530 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
4531 
4532 	/* Clear "radio off" and "commands blocked" bits. */
4533 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4534 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
4535 
4536 	/* Clear pending interrupts. */
4537 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4538 	/* Enable interrupts. */
4539 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
4540 
4541 	/* _Really_ make sure "radio off" bit is cleared! */
4542 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4543 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
4544 
4545 	if ((error = wpi_load_firmware(sc)) != 0) {
4546 		device_printf(sc->sc_dev,
4547 		    "%s: could not load firmware, error %d\n", __func__,
4548 		    error);
4549 		return error;
4550 	}
4551 	/* Wait at most one second for firmware alive notification. */
4552 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4553 		device_printf(sc->sc_dev,
4554 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4555 		    __func__, error);
4556 		return error;
4557 	}
4558 
4559 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4560 
4561 	/* Do post-firmware initialization. */
4562 	return wpi_post_alive(sc);
4563 }
4564 
4565 static void
4566 wpi_hw_stop(struct wpi_softc *sc)
4567 {
4568 	int chnl, qid, ntries;
4569 
4570 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4571 
4572 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
4573 		wpi_nic_lock(sc);
4574 
4575 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
4576 
4577 	/* Disable interrupts. */
4578 	WPI_WRITE(sc, WPI_INT_MASK, 0);
4579 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
4580 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
4581 
4582 	/* Make sure we no longer hold the NIC lock. */
4583 	wpi_nic_unlock(sc);
4584 
4585 	if (wpi_nic_lock(sc) == 0) {
4586 		/* Stop TX scheduler. */
4587 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
4588 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
4589 
4590 		/* Stop all DMA channels. */
4591 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
4592 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
4593 			for (ntries = 0; ntries < 200; ntries++) {
4594 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
4595 				    WPI_FH_TX_STATUS_IDLE(chnl))
4596 					break;
4597 				DELAY(10);
4598 			}
4599 		}
4600 		wpi_nic_unlock(sc);
4601 	}
4602 
4603 	/* Stop RX ring. */
4604 	wpi_reset_rx_ring(sc);
4605 
4606 	/* Reset all TX rings. */
4607 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
4608 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
4609 
4610 	if (wpi_nic_lock(sc) == 0) {
4611 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
4612 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
4613 		wpi_nic_unlock(sc);
4614 	}
4615 	DELAY(5);
4616 	/* Power OFF adapter. */
4617 	wpi_apm_stop(sc);
4618 }
4619 
4620 static void
4621 wpi_radio_on(void *arg0, int pending)
4622 {
4623 	struct wpi_softc *sc = arg0;
4624 	struct ifnet *ifp = sc->sc_ifp;
4625 	struct ieee80211com *ic = ifp->if_l2com;
4626 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4627 
4628 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
4629 
4630 	if (vap != NULL) {
4631 		wpi_init(sc);
4632 		ieee80211_init(vap);
4633 	}
4634 
4635 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
4636 		WPI_LOCK(sc);
4637 		callout_stop(&sc->watchdog_rfkill);
4638 		WPI_UNLOCK(sc);
4639 	}
4640 }
4641 
4642 static void
4643 wpi_radio_off(void *arg0, int pending)
4644 {
4645 	struct wpi_softc *sc = arg0;
4646 	struct ifnet *ifp = sc->sc_ifp;
4647 	struct ieee80211com *ic = ifp->if_l2com;
4648 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4649 
4650 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
4651 
4652 	wpi_stop(sc);
4653 	if (vap != NULL)
4654 		ieee80211_stop(vap);
4655 
4656 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
4657 }
4658 
4659 static void
4660 wpi_init_locked(struct wpi_softc *sc)
4661 {
4662 	struct ifnet *ifp = sc->sc_ifp;
4663 	int error;
4664 
4665 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4666 
4667 	WPI_LOCK_ASSERT(sc);
4668 
4669 	/* Check that the radio is not disabled by hardware switch. */
4670 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
4671 		device_printf(sc->sc_dev,
4672 		    "RF switch: radio disabled (%s)\n", __func__);
4673 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
4674 		    sc);
4675 		return;
4676 	}
4677 
4678 	/* Read firmware images from the filesystem. */
4679 	if ((error = wpi_read_firmware(sc)) != 0) {
4680 		device_printf(sc->sc_dev,
4681 		    "%s: could not read firmware, error %d\n", __func__,
4682 		    error);
4683 		goto fail;
4684 	}
4685 
4686 	/* Initialize hardware and upload firmware. */
4687 	error = wpi_hw_init(sc);
4688 	wpi_unload_firmware(sc);
4689 	if (error != 0) {
4690 		device_printf(sc->sc_dev,
4691 		    "%s: could not initialize hardware, error %d\n", __func__,
4692 		    error);
4693 		goto fail;
4694 	}
4695 
4696 	/* Configure adapter now that it is ready. */
4697 	if ((error = wpi_config(sc)) != 0) {
4698 		device_printf(sc->sc_dev,
4699 		    "%s: could not configure device, error %d\n", __func__,
4700 		    error);
4701 		goto fail;
4702 	}
4703 
4704 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4705 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4706 
4707 	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
4708 
4709 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4710 
4711 	return;
4712 
4713 fail:	wpi_stop_locked(sc);
4714 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4715 }
4716 
4717 static void
4718 wpi_init(void *arg)
4719 {
4720 	struct wpi_softc *sc = arg;
4721 	struct ifnet *ifp = sc->sc_ifp;
4722 	struct ieee80211com *ic = ifp->if_l2com;
4723 
4724 	WPI_LOCK(sc);
4725 	wpi_init_locked(sc);
4726 	WPI_UNLOCK(sc);
4727 
4728 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4729 		ieee80211_start_all(ic);
4730 }
4731 
4732 static void
4733 wpi_stop_locked(struct wpi_softc *sc)
4734 {
4735 	struct ifnet *ifp = sc->sc_ifp;
4736 
4737 	WPI_LOCK_ASSERT(sc);
4738 
4739 	sc->sc_scan_timer = 0;
4740 	sc->sc_tx_timer = 0;
4741 	callout_stop(&sc->watchdog_to);
4742 	callout_stop(&sc->calib_to);
4743 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4744 
4745 	/* Power OFF hardware. */
4746 	wpi_hw_stop(sc);
4747 }
4748 
4749 static void
4750 wpi_stop(struct wpi_softc *sc)
4751 {
4752 	WPI_LOCK(sc);
4753 	wpi_stop_locked(sc);
4754 	WPI_UNLOCK(sc);
4755 }
4756 
4757 /*
4758  * Callback from net80211 to start a scan.
4759  */
4760 static void
4761 wpi_scan_start(struct ieee80211com *ic)
4762 {
4763 	struct ifnet *ifp = ic->ic_ifp;
4764 	struct wpi_softc *sc = ifp->if_softc;
4765 
4766 	WPI_LOCK(sc);
4767 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
4768 	WPI_UNLOCK(sc);
4769 }
4770 
4771 /*
4772  * Callback from net80211 to terminate a scan.
4773  */
4774 static void
4775 wpi_scan_end(struct ieee80211com *ic)
4776 {
4777 	struct ifnet *ifp = ic->ic_ifp;
4778 	struct wpi_softc *sc = ifp->if_softc;
4779 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4780 
4781 	if (vap->iv_state == IEEE80211_S_RUN) {
4782 		WPI_LOCK(sc);
4783 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4784 		WPI_UNLOCK(sc);
4785 	}
4786 }
4787 
4788 /**
4789  * Called by the net80211 framework to indicate to the driver
4790  * that the channel should be changed
4791  */
4792 static void
4793 wpi_set_channel(struct ieee80211com *ic)
4794 {
4795 	const struct ieee80211_channel *c = ic->ic_curchan;
4796 	struct ifnet *ifp = ic->ic_ifp;
4797 	struct wpi_softc *sc = ifp->if_softc;
4798 	int error;
4799 
4800 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4801 
4802 	WPI_LOCK(sc);
4803 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4804 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4805 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4806 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4807 
4808 	/*
4809 	 * Only need to set the channel in Monitor mode. AP scanning and auth
4810 	 * are already taken care of by their respective firmware commands.
4811 	 */
4812 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4813 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4814 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
4815 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
4816 			    WPI_RXON_24GHZ);
4817 		} else {
4818 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
4819 			    WPI_RXON_24GHZ);
4820 		}
4821 		if ((error = wpi_send_rxon(sc, 0, 0)) != 0)
4822 			device_printf(sc->sc_dev,
4823 			    "%s: error %d settting channel\n", __func__,
4824 			    error);
4825 	}
4826 	WPI_UNLOCK(sc);
4827 }
4828 
4829 /**
4830  * Called by net80211 to indicate that we need to scan the current
4831  * channel. The channel is previously be set via the wpi_set_channel
4832  * callback.
4833  */
4834 static void
4835 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4836 {
4837 	struct ieee80211vap *vap = ss->ss_vap;
4838 	struct ieee80211com *ic = vap->iv_ic;
4839 	struct ifnet *ifp = ic->ic_ifp;
4840 	struct wpi_softc *sc = ifp->if_softc;
4841 	int error;
4842 
4843 	if (sc->rxon.chan != ieee80211_chan2ieee(ic, ic->ic_curchan)) {
4844 		WPI_LOCK(sc);
4845 		error = wpi_scan(sc, ic->ic_curchan);
4846 		WPI_UNLOCK(sc);
4847 		if (error != 0)
4848 			ieee80211_cancel_scan(vap);
4849 	} else {
4850 		/* Send probe request when associated. */
4851 		sc->sc_scan_curchan(ss, maxdwell);
4852 	}
4853 }
4854 
4855 /**
4856  * Called by the net80211 framework to indicate
4857  * the minimum dwell time has been met, terminate the scan.
4858  * We don't actually terminate the scan as the firmware will notify
4859  * us when it's finished and we have no way to interrupt it.
4860  */
4861 static void
4862 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
4863 {
4864 	/* NB: don't try to abort scan; wait for firmware to finish */
4865 }
4866 
4867 static void
4868 wpi_hw_reset(void *arg, int pending)
4869 {
4870 	struct wpi_softc *sc = arg;
4871 	struct ifnet *ifp = sc->sc_ifp;
4872 	struct ieee80211com *ic = ifp->if_l2com;
4873 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4874 
4875 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4876 
4877 	wpi_stop(sc);
4878 	if (vap != NULL)
4879 		ieee80211_stop(vap);
4880 	wpi_init(sc);
4881 	if (vap != NULL)
4882 		ieee80211_init(vap);
4883 }
4884