xref: /freebsd/sys/dev/wpi/if_wpi.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/cdefs.h>
20 __FBSDID("$FreeBSD$");
21 
22 /*
23  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
24  *
25  * The 3945ABG network adapter doesn't use traditional hardware as
26  * many other adaptors do. Instead at run time the eeprom is set into a known
27  * state and told to load boot firmware. The boot firmware loads an init and a
28  * main  binary firmware image into SRAM on the card via DMA.
29  * Once the firmware is loaded, the driver/hw then
30  * communicate by way of circular dma rings via the SRAM to the firmware.
31  *
32  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
33  * The 4 tx data rings allow for prioritization QoS.
34  *
35  * The rx data ring consists of 32 dma buffers. Two registers are used to
36  * indicate where in the ring the driver and the firmware are up to. The
37  * driver sets the initial read index (reg1) and the initial write index (reg2),
38  * the firmware updates the read index (reg1) on rx of a packet and fires an
39  * interrupt. The driver then processes the buffers starting at reg1 indicating
40  * to the firmware which buffers have been accessed by updating reg2. At the
41  * same time allocating new memory for the processed buffer.
42  *
43  * A similar thing happens with the tx rings. The difference is the firmware
44  * stop processing buffers once the queue is full and until confirmation
45  * of a successful transmition (tx_done) has occurred.
46  *
47  * The command ring operates in the same manner as the tx queues.
48  *
49  * All communication direct to the card (ie eeprom) is classed as Stage1
50  * communication
51  *
52  * All communication via the firmware to the card is classed as State2.
53  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
54  * firmware. The bootstrap firmware and runtime firmware are loaded
55  * from host memory via dma to the card then told to execute. From this point
56  * on the majority of communications between the driver and the card goes
57  * via the firmware.
58  */
59 
60 #include "opt_wlan.h"
61 #include "opt_wpi.h"
62 
63 #include <sys/param.h>
64 #include <sys/sysctl.h>
65 #include <sys/sockio.h>
66 #include <sys/mbuf.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #include <sys/queue.h>
72 #include <sys/taskqueue.h>
73 #include <sys/module.h>
74 #include <sys/bus.h>
75 #include <sys/endian.h>
76 #include <sys/linker.h>
77 #include <sys/firmware.h>
78 
79 #include <machine/bus.h>
80 #include <machine/resource.h>
81 #include <sys/rman.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 
86 #include <net/bpf.h>
87 #include <net/if.h>
88 #include <net/if_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 #include <net/if_types.h>
94 
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/if_ether.h>
99 #include <netinet/ip.h>
100 
101 #include <net80211/ieee80211_var.h>
102 #include <net80211/ieee80211_radiotap.h>
103 #include <net80211/ieee80211_regdomain.h>
104 #include <net80211/ieee80211_ratectl.h>
105 
106 #include <dev/wpi/if_wpireg.h>
107 #include <dev/wpi/if_wpivar.h>
108 #include <dev/wpi/if_wpi_debug.h>
109 
110 struct wpi_ident {
111 	uint16_t	vendor;
112 	uint16_t	device;
113 	uint16_t	subdevice;
114 	const char	*name;
115 };
116 
117 static const struct wpi_ident wpi_ident_table[] = {
118 	/* The below entries support ABG regardless of the subid */
119 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
120 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	/* The below entries only support BG */
122 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
123 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0, 0, 0, NULL }
127 };
128 
129 static int	wpi_probe(device_t);
130 static int	wpi_attach(device_t);
131 static void	wpi_radiotap_attach(struct wpi_softc *);
132 static void	wpi_sysctlattach(struct wpi_softc *);
133 static void	wpi_init_beacon(struct wpi_vap *);
134 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
135 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
136 		    const uint8_t [IEEE80211_ADDR_LEN],
137 		    const uint8_t [IEEE80211_ADDR_LEN]);
138 static void	wpi_vap_delete(struct ieee80211vap *);
139 static int	wpi_detach(device_t);
140 static int	wpi_shutdown(device_t);
141 static int	wpi_suspend(device_t);
142 static int	wpi_resume(device_t);
143 static int	wpi_nic_lock(struct wpi_softc *);
144 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
145 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
146 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
147 		    void **, bus_size_t, bus_size_t);
148 static void	wpi_dma_contig_free(struct wpi_dma_info *);
149 static int	wpi_alloc_shared(struct wpi_softc *);
150 static void	wpi_free_shared(struct wpi_softc *);
151 static int	wpi_alloc_fwmem(struct wpi_softc *);
152 static void	wpi_free_fwmem(struct wpi_softc *);
153 static int	wpi_alloc_rx_ring(struct wpi_softc *);
154 static void	wpi_update_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
156 static void	wpi_reset_rx_ring(struct wpi_softc *);
157 static void	wpi_free_rx_ring(struct wpi_softc *);
158 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
159 		    int);
160 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
161 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
162 		    struct wpi_tx_ring *);
163 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
164 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static int	wpi_read_eeprom(struct wpi_softc *,
166 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
167 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
168 static void	wpi_read_eeprom_band(struct wpi_softc *, int);
169 static int	wpi_read_eeprom_channels(struct wpi_softc *, int);
170 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
171 		    struct ieee80211_channel *);
172 static int	wpi_setregdomain(struct ieee80211com *,
173 		    struct ieee80211_regdomain *, int,
174 		    struct ieee80211_channel[]);
175 static int	wpi_read_eeprom_group(struct wpi_softc *, int);
176 static int	wpi_add_node_entry_adhoc(struct wpi_softc *);
177 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179 static void	wpi_node_free(struct ieee80211_node *);
180 static void	wpi_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
181 		    const struct ieee80211_rx_stats *,
182 		    int, int);
183 static void	wpi_restore_node(void *, struct ieee80211_node *);
184 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
185 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186 static void	wpi_calib_timeout(void *);
187 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
188 		    struct wpi_rx_data *);
189 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
190 		    struct wpi_rx_data *);
191 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
192 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
193 static void	wpi_notif_intr(struct wpi_softc *);
194 static void	wpi_wakeup_intr(struct wpi_softc *);
195 #ifdef WPI_DEBUG
196 static void	wpi_debug_registers(struct wpi_softc *);
197 #endif
198 static void	wpi_fatal_intr(struct wpi_softc *);
199 static void	wpi_intr(void *);
200 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
201 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
202 		    struct ieee80211_node *);
203 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
204 		    struct ieee80211_node *,
205 		    const struct ieee80211_bpf_params *);
206 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
207 		    const struct ieee80211_bpf_params *);
208 static void	wpi_start(struct ifnet *);
209 static void	wpi_start_task(void *, int);
210 static void	wpi_watchdog_rfkill(void *);
211 static void	wpi_scan_timeout(void *);
212 static void	wpi_tx_timeout(void *);
213 static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
214 static int	wpi_cmd(struct wpi_softc *, int, const void *, size_t, int);
215 static int	wpi_mrr_setup(struct wpi_softc *);
216 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
217 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
218 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
219 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
220 static int	wpi_updateedca(struct ieee80211com *);
221 static void	wpi_set_promisc(struct wpi_softc *);
222 static void	wpi_update_promisc(struct ieee80211com *);
223 static void	wpi_update_mcast(struct ieee80211com *);
224 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
225 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
226 static void	wpi_power_calibration(struct wpi_softc *);
227 static int	wpi_set_txpower(struct wpi_softc *, int);
228 static int	wpi_get_power_index(struct wpi_softc *,
229 		    struct wpi_power_group *, uint8_t, int, int);
230 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
231 static int	wpi_send_btcoex(struct wpi_softc *);
232 static int	wpi_send_rxon(struct wpi_softc *, int, int);
233 static int	wpi_config(struct wpi_softc *);
234 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
235 		    struct ieee80211_channel *, uint8_t);
236 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
237 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
238 		    struct ieee80211_channel *);
239 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
240 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
241 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
242 static int	wpi_config_beacon(struct wpi_vap *);
243 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
244 static void	wpi_update_beacon(struct ieee80211vap *, int);
245 static void	wpi_newassoc(struct ieee80211_node *, int);
246 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
247 static int	wpi_load_key(struct ieee80211_node *,
248 		    const struct ieee80211_key *);
249 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
250 static int	wpi_set_global_keys(struct ieee80211_node *);
251 static int	wpi_del_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_process_key(struct ieee80211vap *,
255 		    const struct ieee80211_key *, int);
256 static int	wpi_key_set(struct ieee80211vap *,
257 		    const struct ieee80211_key *,
258 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
259 static int	wpi_key_delete(struct ieee80211vap *,
260 		    const struct ieee80211_key *);
261 static int	wpi_post_alive(struct wpi_softc *);
262 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *, int);
263 static int	wpi_load_firmware(struct wpi_softc *);
264 static int	wpi_read_firmware(struct wpi_softc *);
265 static void	wpi_unload_firmware(struct wpi_softc *);
266 static int	wpi_clock_wait(struct wpi_softc *);
267 static int	wpi_apm_init(struct wpi_softc *);
268 static void	wpi_apm_stop_master(struct wpi_softc *);
269 static void	wpi_apm_stop(struct wpi_softc *);
270 static void	wpi_nic_config(struct wpi_softc *);
271 static int	wpi_hw_init(struct wpi_softc *);
272 static void	wpi_hw_stop(struct wpi_softc *);
273 static void	wpi_radio_on(void *, int);
274 static void	wpi_radio_off(void *, int);
275 static void	wpi_init(void *);
276 static void	wpi_stop_locked(struct wpi_softc *);
277 static void	wpi_stop(struct wpi_softc *);
278 static void	wpi_scan_start(struct ieee80211com *);
279 static void	wpi_scan_end(struct ieee80211com *);
280 static void	wpi_set_channel(struct ieee80211com *);
281 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
282 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
283 static void	wpi_hw_reset(void *, int);
284 
285 static device_method_t wpi_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		wpi_probe),
288 	DEVMETHOD(device_attach,	wpi_attach),
289 	DEVMETHOD(device_detach,	wpi_detach),
290 	DEVMETHOD(device_shutdown,	wpi_shutdown),
291 	DEVMETHOD(device_suspend,	wpi_suspend),
292 	DEVMETHOD(device_resume,	wpi_resume),
293 
294 	DEVMETHOD_END
295 };
296 
297 static driver_t wpi_driver = {
298 	"wpi",
299 	wpi_methods,
300 	sizeof (struct wpi_softc)
301 };
302 static devclass_t wpi_devclass;
303 
304 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
305 
306 MODULE_VERSION(wpi, 1);
307 
308 MODULE_DEPEND(wpi, pci,  1, 1, 1);
309 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
310 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
311 
312 static int
313 wpi_probe(device_t dev)
314 {
315 	const struct wpi_ident *ident;
316 
317 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
318 		if (pci_get_vendor(dev) == ident->vendor &&
319 		    pci_get_device(dev) == ident->device) {
320 			device_set_desc(dev, ident->name);
321 			return (BUS_PROBE_DEFAULT);
322 		}
323 	}
324 	return ENXIO;
325 }
326 
327 static int
328 wpi_attach(device_t dev)
329 {
330 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
331 	struct ieee80211com *ic;
332 	struct ifnet *ifp;
333 	int i, error, rid;
334 #ifdef WPI_DEBUG
335 	int supportsa = 1;
336 	const struct wpi_ident *ident;
337 #endif
338 	uint8_t macaddr[IEEE80211_ADDR_LEN];
339 
340 	sc->sc_dev = dev;
341 
342 #ifdef WPI_DEBUG
343 	error = resource_int_value(device_get_name(sc->sc_dev),
344 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
345 	if (error != 0)
346 		sc->sc_debug = 0;
347 #else
348 	sc->sc_debug = 0;
349 #endif
350 
351 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
352 
353 	/*
354 	 * Get the offset of the PCI Express Capability Structure in PCI
355 	 * Configuration Space.
356 	 */
357 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
358 	if (error != 0) {
359 		device_printf(dev, "PCIe capability structure not found!\n");
360 		return error;
361 	}
362 
363 	/*
364 	 * Some card's only support 802.11b/g not a, check to see if
365 	 * this is one such card. A 0x0 in the subdevice table indicates
366 	 * the entire subdevice range is to be ignored.
367 	 */
368 #ifdef WPI_DEBUG
369 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
370 		if (ident->subdevice &&
371 		    pci_get_subdevice(dev) == ident->subdevice) {
372 		    supportsa = 0;
373 		    break;
374 		}
375 	}
376 #endif
377 
378 	/* Clear device-specific "PCI retry timeout" register (41h). */
379 	pci_write_config(dev, 0x41, 0, 1);
380 
381 	/* Enable bus-mastering. */
382 	pci_enable_busmaster(dev);
383 
384 	rid = PCIR_BAR(0);
385 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
386 	    RF_ACTIVE);
387 	if (sc->mem == NULL) {
388 		device_printf(dev, "can't map mem space\n");
389 		return ENOMEM;
390 	}
391 	sc->sc_st = rman_get_bustag(sc->mem);
392 	sc->sc_sh = rman_get_bushandle(sc->mem);
393 
394 	i = 1;
395 	rid = 0;
396 	if (pci_alloc_msi(dev, &i) == 0)
397 		rid = 1;
398 	/* Install interrupt handler. */
399 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
400 	    (rid != 0 ? 0 : RF_SHAREABLE));
401 	if (sc->irq == NULL) {
402 		device_printf(dev, "can't map interrupt\n");
403 		error = ENOMEM;
404 		goto fail;
405 	}
406 
407 	WPI_LOCK_INIT(sc);
408 	WPI_TX_LOCK_INIT(sc);
409 	WPI_RXON_LOCK_INIT(sc);
410 	WPI_NT_LOCK_INIT(sc);
411 	WPI_TXQ_LOCK_INIT(sc);
412 	WPI_TXQ_STATE_LOCK_INIT(sc);
413 
414 	/* Allocate DMA memory for firmware transfers. */
415 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
416 		device_printf(dev,
417 		    "could not allocate memory for firmware, error %d\n",
418 		    error);
419 		goto fail;
420 	}
421 
422 	/* Allocate shared page. */
423 	if ((error = wpi_alloc_shared(sc)) != 0) {
424 		device_printf(dev, "could not allocate shared page\n");
425 		goto fail;
426 	}
427 
428 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
429 	for (i = 0; i < WPI_NTXQUEUES; i++) {
430 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
431 			device_printf(dev,
432 			    "could not allocate TX ring %d, error %d\n", i,
433 			    error);
434 			goto fail;
435 		}
436 	}
437 
438 	/* Allocate RX ring. */
439 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
440 		device_printf(dev, "could not allocate RX ring, error %d\n",
441 		    error);
442 		goto fail;
443 	}
444 
445 	/* Clear pending interrupts. */
446 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
447 
448 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
449 	if (ifp == NULL) {
450 		device_printf(dev, "can not allocate ifnet structure\n");
451 		goto fail;
452 	}
453 
454 	ic = ifp->if_l2com;
455 	ic->ic_ifp = ifp;
456 	ic->ic_softc = sc;
457 	ic->ic_name = device_get_nameunit(dev);
458 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
459 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
460 
461 	/* Set device capabilities. */
462 	ic->ic_caps =
463 		  IEEE80211_C_STA		/* station mode supported */
464 		| IEEE80211_C_IBSS		/* IBSS mode supported */
465 		| IEEE80211_C_HOSTAP		/* Host access point mode */
466 		| IEEE80211_C_MONITOR		/* monitor mode supported */
467 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
468 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
469 		| IEEE80211_C_TXPMGT		/* tx power management */
470 		| IEEE80211_C_SHSLOT		/* short slot time supported */
471 		| IEEE80211_C_WPA		/* 802.11i */
472 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
473 		| IEEE80211_C_WME		/* 802.11e */
474 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
475 		;
476 
477 	ic->ic_cryptocaps =
478 		  IEEE80211_CRYPTO_AES_CCM;
479 
480 	/*
481 	 * Read in the eeprom and also setup the channels for
482 	 * net80211. We don't set the rates as net80211 does this for us
483 	 */
484 	if ((error = wpi_read_eeprom(sc, macaddr)) != 0) {
485 		device_printf(dev, "could not read EEPROM, error %d\n",
486 		    error);
487 		goto fail;
488 	}
489 
490 #ifdef WPI_DEBUG
491 	if (bootverbose) {
492 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
493 		    sc->domain);
494 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
495 		    sc->type > 1 ? 'B': '?');
496 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
497 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
498 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
499 		    supportsa ? "does" : "does not");
500 
501 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
502 		   check what sc->rev really represents - benjsc 20070615 */
503 	}
504 #endif
505 
506 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
507 	ifp->if_softc = sc;
508 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
509 	ifp->if_init = wpi_init;
510 	ifp->if_ioctl = wpi_ioctl;
511 	ifp->if_start = wpi_start;
512 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
513 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
514 	IFQ_SET_READY(&ifp->if_snd);
515 
516 	ieee80211_ifattach(ic, macaddr);
517 	ic->ic_vap_create = wpi_vap_create;
518 	ic->ic_vap_delete = wpi_vap_delete;
519 	ic->ic_raw_xmit = wpi_raw_xmit;
520 	ic->ic_node_alloc = wpi_node_alloc;
521 	sc->sc_node_free = ic->ic_node_free;
522 	ic->ic_node_free = wpi_node_free;
523 	ic->ic_wme.wme_update = wpi_updateedca;
524 	ic->ic_update_promisc = wpi_update_promisc;
525 	ic->ic_update_mcast = wpi_update_mcast;
526 	ic->ic_newassoc = wpi_newassoc;
527 	ic->ic_scan_start = wpi_scan_start;
528 	ic->ic_scan_end = wpi_scan_end;
529 	ic->ic_set_channel = wpi_set_channel;
530 	ic->ic_scan_curchan = wpi_scan_curchan;
531 	ic->ic_scan_mindwell = wpi_scan_mindwell;
532 	ic->ic_setregdomain = wpi_setregdomain;
533 
534 	sc->sc_update_rx_ring = wpi_update_rx_ring;
535 	sc->sc_update_tx_ring = wpi_update_tx_ring;
536 
537 	wpi_radiotap_attach(sc);
538 
539 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
540 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
541 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
542 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
543 	TASK_INIT(&sc->sc_reinittask, 0, wpi_hw_reset, sc);
544 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
545 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
546 	TASK_INIT(&sc->sc_start_task, 0, wpi_start_task, sc);
547 
548 	sc->sc_tq = taskqueue_create("wpi_taskq", M_WAITOK,
549 	    taskqueue_thread_enqueue, &sc->sc_tq);
550 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "wpi_taskq");
551 	if (error != 0) {
552 		device_printf(dev, "can't start threads, error %d\n", error);
553 		goto fail;
554 	}
555 
556 	wpi_sysctlattach(sc);
557 
558 	/*
559 	 * Hook our interrupt after all initialization is complete.
560 	 */
561 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
562 	    NULL, wpi_intr, sc, &sc->sc_ih);
563 	if (error != 0) {
564 		device_printf(dev, "can't establish interrupt, error %d\n",
565 		    error);
566 		goto fail;
567 	}
568 
569 	if (bootverbose)
570 		ieee80211_announce(ic);
571 
572 #ifdef WPI_DEBUG
573 	if (sc->sc_debug & WPI_DEBUG_HW)
574 		ieee80211_announce_channels(ic);
575 #endif
576 
577 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
578 	return 0;
579 
580 fail:	wpi_detach(dev);
581 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
582 	return error;
583 }
584 
585 /*
586  * Attach the interface to 802.11 radiotap.
587  */
588 static void
589 wpi_radiotap_attach(struct wpi_softc *sc)
590 {
591 	struct ifnet *ifp = sc->sc_ifp;
592 	struct ieee80211com *ic = ifp->if_l2com;
593 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
594 	ieee80211_radiotap_attach(ic,
595 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
596 		WPI_TX_RADIOTAP_PRESENT,
597 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
598 		WPI_RX_RADIOTAP_PRESENT);
599 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
600 }
601 
602 static void
603 wpi_sysctlattach(struct wpi_softc *sc)
604 {
605 #ifdef WPI_DEBUG
606 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
607 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
608 
609 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
610 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
611 		"control debugging printfs");
612 #endif
613 }
614 
615 static void
616 wpi_init_beacon(struct wpi_vap *wvp)
617 {
618 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
619 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
620 
621 	cmd->id = WPI_ID_BROADCAST;
622 	cmd->ofdm_mask = 0xff;
623 	cmd->cck_mask = 0x0f;
624 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
625 
626 	/*
627 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
628 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
629 	 */
630 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
631 
632 	bcn->code = WPI_CMD_SET_BEACON;
633 	bcn->ac = WPI_CMD_QUEUE_NUM;
634 	bcn->size = sizeof(struct wpi_cmd_beacon);
635 }
636 
637 static struct ieee80211vap *
638 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
639     enum ieee80211_opmode opmode, int flags,
640     const uint8_t bssid[IEEE80211_ADDR_LEN],
641     const uint8_t mac[IEEE80211_ADDR_LEN])
642 {
643 	struct wpi_vap *wvp;
644 	struct ieee80211vap *vap;
645 
646 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
647 		return NULL;
648 
649 	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
650 	    M_80211_VAP, M_NOWAIT | M_ZERO);
651 	if (wvp == NULL)
652 		return NULL;
653 	vap = &wvp->wv_vap;
654 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
655 
656 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
657 		WPI_VAP_LOCK_INIT(wvp);
658 		wpi_init_beacon(wvp);
659 	}
660 
661 	/* Override with driver methods. */
662 	vap->iv_key_set = wpi_key_set;
663 	vap->iv_key_delete = wpi_key_delete;
664 	wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
665 	vap->iv_recv_mgmt = wpi_recv_mgmt;
666 	wvp->wv_newstate = vap->iv_newstate;
667 	vap->iv_newstate = wpi_newstate;
668 	vap->iv_update_beacon = wpi_update_beacon;
669 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
670 
671 	ieee80211_ratectl_init(vap);
672 	/* Complete setup. */
673 	ieee80211_vap_attach(vap, ieee80211_media_change,
674 	    ieee80211_media_status);
675 	ic->ic_opmode = opmode;
676 	return vap;
677 }
678 
679 static void
680 wpi_vap_delete(struct ieee80211vap *vap)
681 {
682 	struct wpi_vap *wvp = WPI_VAP(vap);
683 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
684 	enum ieee80211_opmode opmode = vap->iv_opmode;
685 
686 	ieee80211_ratectl_deinit(vap);
687 	ieee80211_vap_detach(vap);
688 
689 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
690 		if (bcn->m != NULL)
691 			m_freem(bcn->m);
692 
693 		WPI_VAP_LOCK_DESTROY(wvp);
694 	}
695 
696 	free(wvp, M_80211_VAP);
697 }
698 
699 static int
700 wpi_detach(device_t dev)
701 {
702 	struct wpi_softc *sc = device_get_softc(dev);
703 	struct ifnet *ifp = sc->sc_ifp;
704 	struct ieee80211com *ic;
705 	int qid;
706 
707 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
708 
709 	if (ifp != NULL) {
710 		ic = ifp->if_l2com;
711 
712 		ieee80211_draintask(ic, &sc->sc_radioon_task);
713 		ieee80211_draintask(ic, &sc->sc_start_task);
714 
715 		wpi_stop(sc);
716 
717 		taskqueue_drain_all(sc->sc_tq);
718 		taskqueue_free(sc->sc_tq);
719 
720 		callout_drain(&sc->watchdog_rfkill);
721 		callout_drain(&sc->tx_timeout);
722 		callout_drain(&sc->scan_timeout);
723 		callout_drain(&sc->calib_to);
724 		ieee80211_ifdetach(ic);
725 	}
726 
727 	/* Uninstall interrupt handler. */
728 	if (sc->irq != NULL) {
729 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
730 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
731 		    sc->irq);
732 		pci_release_msi(dev);
733 	}
734 
735 	if (sc->txq[0].data_dmat) {
736 		/* Free DMA resources. */
737 		for (qid = 0; qid < WPI_NTXQUEUES; qid++)
738 			wpi_free_tx_ring(sc, &sc->txq[qid]);
739 
740 		wpi_free_rx_ring(sc);
741 		wpi_free_shared(sc);
742 	}
743 
744 	if (sc->fw_dma.tag)
745 		wpi_free_fwmem(sc);
746 
747 	if (sc->mem != NULL)
748 		bus_release_resource(dev, SYS_RES_MEMORY,
749 		    rman_get_rid(sc->mem), sc->mem);
750 
751 	if (ifp != NULL)
752 		if_free(ifp);
753 
754 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
755 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
756 	WPI_TXQ_LOCK_DESTROY(sc);
757 	WPI_NT_LOCK_DESTROY(sc);
758 	WPI_RXON_LOCK_DESTROY(sc);
759 	WPI_TX_LOCK_DESTROY(sc);
760 	WPI_LOCK_DESTROY(sc);
761 	return 0;
762 }
763 
764 static int
765 wpi_shutdown(device_t dev)
766 {
767 	struct wpi_softc *sc = device_get_softc(dev);
768 
769 	wpi_stop(sc);
770 	return 0;
771 }
772 
773 static int
774 wpi_suspend(device_t dev)
775 {
776 	struct wpi_softc *sc = device_get_softc(dev);
777 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
778 
779 	ieee80211_suspend_all(ic);
780 	return 0;
781 }
782 
783 static int
784 wpi_resume(device_t dev)
785 {
786 	struct wpi_softc *sc = device_get_softc(dev);
787 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
788 
789 	/* Clear device-specific "PCI retry timeout" register (41h). */
790 	pci_write_config(dev, 0x41, 0, 1);
791 
792 	ieee80211_resume_all(ic);
793 	return 0;
794 }
795 
796 /*
797  * Grab exclusive access to NIC memory.
798  */
799 static int
800 wpi_nic_lock(struct wpi_softc *sc)
801 {
802 	int ntries;
803 
804 	/* Request exclusive access to NIC. */
805 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
806 
807 	/* Spin until we actually get the lock. */
808 	for (ntries = 0; ntries < 1000; ntries++) {
809 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
810 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
811 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
812 			return 0;
813 		DELAY(10);
814 	}
815 
816 	device_printf(sc->sc_dev, "could not lock memory\n");
817 
818 	return ETIMEDOUT;
819 }
820 
821 /*
822  * Release lock on NIC memory.
823  */
824 static __inline void
825 wpi_nic_unlock(struct wpi_softc *sc)
826 {
827 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
828 }
829 
830 static __inline uint32_t
831 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
832 {
833 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
834 	WPI_BARRIER_READ_WRITE(sc);
835 	return WPI_READ(sc, WPI_PRPH_RDATA);
836 }
837 
838 static __inline void
839 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
840 {
841 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
842 	WPI_BARRIER_WRITE(sc);
843 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
844 }
845 
846 static __inline void
847 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
848 {
849 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
850 }
851 
852 static __inline void
853 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
854 {
855 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
856 }
857 
858 static __inline void
859 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
860     const uint32_t *data, int count)
861 {
862 	for (; count > 0; count--, data++, addr += 4)
863 		wpi_prph_write(sc, addr, *data);
864 }
865 
866 static __inline uint32_t
867 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
868 {
869 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
870 	WPI_BARRIER_READ_WRITE(sc);
871 	return WPI_READ(sc, WPI_MEM_RDATA);
872 }
873 
874 static __inline void
875 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
876     int count)
877 {
878 	for (; count > 0; count--, addr += 4)
879 		*data++ = wpi_mem_read(sc, addr);
880 }
881 
882 static int
883 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
884 {
885 	uint8_t *out = data;
886 	uint32_t val;
887 	int error, ntries;
888 
889 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
890 
891 	if ((error = wpi_nic_lock(sc)) != 0)
892 		return error;
893 
894 	for (; count > 0; count -= 2, addr++) {
895 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
896 		for (ntries = 0; ntries < 10; ntries++) {
897 			val = WPI_READ(sc, WPI_EEPROM);
898 			if (val & WPI_EEPROM_READ_VALID)
899 				break;
900 			DELAY(5);
901 		}
902 		if (ntries == 10) {
903 			device_printf(sc->sc_dev,
904 			    "timeout reading ROM at 0x%x\n", addr);
905 			return ETIMEDOUT;
906 		}
907 		*out++= val >> 16;
908 		if (count > 1)
909 			*out ++= val >> 24;
910 	}
911 
912 	wpi_nic_unlock(sc);
913 
914 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
915 
916 	return 0;
917 }
918 
919 static void
920 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
921 {
922 	if (error != 0)
923 		return;
924 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
925 	*(bus_addr_t *)arg = segs[0].ds_addr;
926 }
927 
928 /*
929  * Allocates a contiguous block of dma memory of the requested size and
930  * alignment.
931  */
932 static int
933 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
934     void **kvap, bus_size_t size, bus_size_t alignment)
935 {
936 	int error;
937 
938 	dma->tag = NULL;
939 	dma->size = size;
940 
941 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
942 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
943 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
944 	if (error != 0)
945 		goto fail;
946 
947 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
948 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
949 	if (error != 0)
950 		goto fail;
951 
952 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
953 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
954 	if (error != 0)
955 		goto fail;
956 
957 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
958 
959 	if (kvap != NULL)
960 		*kvap = dma->vaddr;
961 
962 	return 0;
963 
964 fail:	wpi_dma_contig_free(dma);
965 	return error;
966 }
967 
968 static void
969 wpi_dma_contig_free(struct wpi_dma_info *dma)
970 {
971 	if (dma->vaddr != NULL) {
972 		bus_dmamap_sync(dma->tag, dma->map,
973 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
974 		bus_dmamap_unload(dma->tag, dma->map);
975 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
976 		dma->vaddr = NULL;
977 	}
978 	if (dma->tag != NULL) {
979 		bus_dma_tag_destroy(dma->tag);
980 		dma->tag = NULL;
981 	}
982 }
983 
984 /*
985  * Allocate a shared page between host and NIC.
986  */
987 static int
988 wpi_alloc_shared(struct wpi_softc *sc)
989 {
990 	/* Shared buffer must be aligned on a 4KB boundary. */
991 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
992 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
993 }
994 
995 static void
996 wpi_free_shared(struct wpi_softc *sc)
997 {
998 	wpi_dma_contig_free(&sc->shared_dma);
999 }
1000 
1001 /*
1002  * Allocate DMA-safe memory for firmware transfer.
1003  */
1004 static int
1005 wpi_alloc_fwmem(struct wpi_softc *sc)
1006 {
1007 	/* Must be aligned on a 16-byte boundary. */
1008 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1009 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
1010 }
1011 
1012 static void
1013 wpi_free_fwmem(struct wpi_softc *sc)
1014 {
1015 	wpi_dma_contig_free(&sc->fw_dma);
1016 }
1017 
1018 static int
1019 wpi_alloc_rx_ring(struct wpi_softc *sc)
1020 {
1021 	struct wpi_rx_ring *ring = &sc->rxq;
1022 	bus_size_t size;
1023 	int i, error;
1024 
1025 	ring->cur = 0;
1026 	ring->update = 0;
1027 
1028 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1029 
1030 	/* Allocate RX descriptors (16KB aligned.) */
1031 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1032 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1033 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1034 	if (error != 0) {
1035 		device_printf(sc->sc_dev,
1036 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1037 		    __func__, error);
1038 		goto fail;
1039 	}
1040 
1041 	/* Create RX buffer DMA tag. */
1042 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1043 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1044 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL,
1045 	    &ring->data_dmat);
1046 	if (error != 0) {
1047 		device_printf(sc->sc_dev,
1048 		    "%s: could not create RX buf DMA tag, error %d\n",
1049 		    __func__, error);
1050 		goto fail;
1051 	}
1052 
1053 	/*
1054 	 * Allocate and map RX buffers.
1055 	 */
1056 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1057 		struct wpi_rx_data *data = &ring->data[i];
1058 		bus_addr_t paddr;
1059 
1060 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1061 		if (error != 0) {
1062 			device_printf(sc->sc_dev,
1063 			    "%s: could not create RX buf DMA map, error %d\n",
1064 			    __func__, error);
1065 			goto fail;
1066 		}
1067 
1068 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1069 		if (data->m == NULL) {
1070 			device_printf(sc->sc_dev,
1071 			    "%s: could not allocate RX mbuf\n", __func__);
1072 			error = ENOBUFS;
1073 			goto fail;
1074 		}
1075 
1076 		error = bus_dmamap_load(ring->data_dmat, data->map,
1077 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1078 		    &paddr, BUS_DMA_NOWAIT);
1079 		if (error != 0 && error != EFBIG) {
1080 			device_printf(sc->sc_dev,
1081 			    "%s: can't map mbuf (error %d)\n", __func__,
1082 			    error);
1083 			goto fail;
1084 		}
1085 
1086 		/* Set physical address of RX buffer. */
1087 		ring->desc[i] = htole32(paddr);
1088 	}
1089 
1090 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1091 	    BUS_DMASYNC_PREWRITE);
1092 
1093 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1094 
1095 	return 0;
1096 
1097 fail:	wpi_free_rx_ring(sc);
1098 
1099 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1100 
1101 	return error;
1102 }
1103 
1104 static void
1105 wpi_update_rx_ring(struct wpi_softc *sc)
1106 {
1107 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1108 }
1109 
1110 static void
1111 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1112 {
1113 	struct wpi_rx_ring *ring = &sc->rxq;
1114 
1115 	if (ring->update != 0) {
1116 		/* Wait for INT_WAKEUP event. */
1117 		return;
1118 	}
1119 
1120 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1121 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1122 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1123 		    __func__);
1124 		ring->update = 1;
1125 	} else {
1126 		wpi_update_rx_ring(sc);
1127 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1128 	}
1129 }
1130 
1131 static void
1132 wpi_reset_rx_ring(struct wpi_softc *sc)
1133 {
1134 	struct wpi_rx_ring *ring = &sc->rxq;
1135 	int ntries;
1136 
1137 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1138 
1139 	if (wpi_nic_lock(sc) == 0) {
1140 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1141 		for (ntries = 0; ntries < 1000; ntries++) {
1142 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1143 			    WPI_FH_RX_STATUS_IDLE)
1144 				break;
1145 			DELAY(10);
1146 		}
1147 		wpi_nic_unlock(sc);
1148 	}
1149 
1150 	ring->cur = 0;
1151 	ring->update = 0;
1152 }
1153 
1154 static void
1155 wpi_free_rx_ring(struct wpi_softc *sc)
1156 {
1157 	struct wpi_rx_ring *ring = &sc->rxq;
1158 	int i;
1159 
1160 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1161 
1162 	wpi_dma_contig_free(&ring->desc_dma);
1163 
1164 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1165 		struct wpi_rx_data *data = &ring->data[i];
1166 
1167 		if (data->m != NULL) {
1168 			bus_dmamap_sync(ring->data_dmat, data->map,
1169 			    BUS_DMASYNC_POSTREAD);
1170 			bus_dmamap_unload(ring->data_dmat, data->map);
1171 			m_freem(data->m);
1172 			data->m = NULL;
1173 		}
1174 		if (data->map != NULL)
1175 			bus_dmamap_destroy(ring->data_dmat, data->map);
1176 	}
1177 	if (ring->data_dmat != NULL) {
1178 		bus_dma_tag_destroy(ring->data_dmat);
1179 		ring->data_dmat = NULL;
1180 	}
1181 }
1182 
1183 static int
1184 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int qid)
1185 {
1186 	bus_addr_t paddr;
1187 	bus_size_t size;
1188 	int i, error;
1189 
1190 	ring->qid = qid;
1191 	ring->queued = 0;
1192 	ring->cur = 0;
1193 	ring->update = 0;
1194 
1195 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1196 
1197 	/* Allocate TX descriptors (16KB aligned.) */
1198 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1199 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1200 	    size, WPI_RING_DMA_ALIGN);
1201 	if (error != 0) {
1202 		device_printf(sc->sc_dev,
1203 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1204 		    __func__, error);
1205 		goto fail;
1206 	}
1207 
1208 	/* Update shared area with ring physical address. */
1209 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1210 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1211 	    BUS_DMASYNC_PREWRITE);
1212 
1213 	/*
1214 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1215 	 * to allocate commands space for other rings.
1216 	 * XXX Do we really need to allocate descriptors for other rings?
1217 	 */
1218 	if (qid > WPI_CMD_QUEUE_NUM) {
1219 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1220 		return 0;
1221 	}
1222 
1223 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1224 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1225 	    size, 4);
1226 	if (error != 0) {
1227 		device_printf(sc->sc_dev,
1228 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1229 		    __func__, error);
1230 		goto fail;
1231 	}
1232 
1233 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1234 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1235 	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1236 	    &ring->data_dmat);
1237 	if (error != 0) {
1238 		device_printf(sc->sc_dev,
1239 		    "%s: could not create TX buf DMA tag, error %d\n",
1240 		    __func__, error);
1241 		goto fail;
1242 	}
1243 
1244 	paddr = ring->cmd_dma.paddr;
1245 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1246 		struct wpi_tx_data *data = &ring->data[i];
1247 
1248 		data->cmd_paddr = paddr;
1249 		paddr += sizeof (struct wpi_tx_cmd);
1250 
1251 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1252 		if (error != 0) {
1253 			device_printf(sc->sc_dev,
1254 			    "%s: could not create TX buf DMA map, error %d\n",
1255 			    __func__, error);
1256 			goto fail;
1257 		}
1258 	}
1259 
1260 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1261 
1262 	return 0;
1263 
1264 fail:	wpi_free_tx_ring(sc, ring);
1265 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1266 	return error;
1267 }
1268 
1269 static void
1270 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1271 {
1272 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1273 }
1274 
1275 static void
1276 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1277 {
1278 
1279 	if (ring->update != 0) {
1280 		/* Wait for INT_WAKEUP event. */
1281 		return;
1282 	}
1283 
1284 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1285 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1286 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1287 		    __func__, ring->qid);
1288 		ring->update = 1;
1289 	} else {
1290 		wpi_update_tx_ring(sc, ring);
1291 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1292 	}
1293 }
1294 
1295 static void
1296 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1297 {
1298 	int i;
1299 
1300 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1301 
1302 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1303 		struct wpi_tx_data *data = &ring->data[i];
1304 
1305 		if (data->m != NULL) {
1306 			bus_dmamap_sync(ring->data_dmat, data->map,
1307 			    BUS_DMASYNC_POSTWRITE);
1308 			bus_dmamap_unload(ring->data_dmat, data->map);
1309 			m_freem(data->m);
1310 			data->m = NULL;
1311 		}
1312 		if (data->ni != NULL) {
1313 			ieee80211_free_node(data->ni);
1314 			data->ni = NULL;
1315 		}
1316 	}
1317 	/* Clear TX descriptors. */
1318 	memset(ring->desc, 0, ring->desc_dma.size);
1319 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1320 	    BUS_DMASYNC_PREWRITE);
1321 	sc->qfullmsk &= ~(1 << ring->qid);
1322 	ring->queued = 0;
1323 	ring->cur = 0;
1324 	ring->update = 0;
1325 }
1326 
1327 static void
1328 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1329 {
1330 	int i;
1331 
1332 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1333 
1334 	wpi_dma_contig_free(&ring->desc_dma);
1335 	wpi_dma_contig_free(&ring->cmd_dma);
1336 
1337 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1338 		struct wpi_tx_data *data = &ring->data[i];
1339 
1340 		if (data->m != NULL) {
1341 			bus_dmamap_sync(ring->data_dmat, data->map,
1342 			    BUS_DMASYNC_POSTWRITE);
1343 			bus_dmamap_unload(ring->data_dmat, data->map);
1344 			m_freem(data->m);
1345 		}
1346 		if (data->map != NULL)
1347 			bus_dmamap_destroy(ring->data_dmat, data->map);
1348 	}
1349 	if (ring->data_dmat != NULL) {
1350 		bus_dma_tag_destroy(ring->data_dmat);
1351 		ring->data_dmat = NULL;
1352 	}
1353 }
1354 
1355 /*
1356  * Extract various information from EEPROM.
1357  */
1358 static int
1359 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1360 {
1361 #define WPI_CHK(res) do {		\
1362 	if ((error = res) != 0)		\
1363 		goto fail;		\
1364 } while (0)
1365 	int error, i;
1366 
1367 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1368 
1369 	/* Adapter has to be powered on for EEPROM access to work. */
1370 	if ((error = wpi_apm_init(sc)) != 0) {
1371 		device_printf(sc->sc_dev,
1372 		    "%s: could not power ON adapter, error %d\n", __func__,
1373 		    error);
1374 		return error;
1375 	}
1376 
1377 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1378 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1379 		error = EIO;
1380 		goto fail;
1381 	}
1382 	/* Clear HW ownership of EEPROM. */
1383 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1384 
1385 	/* Read the hardware capabilities, revision and SKU type. */
1386 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1387 	    sizeof(sc->cap)));
1388 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1389 	    sizeof(sc->rev)));
1390 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1391 	    sizeof(sc->type)));
1392 
1393 	sc->rev = le16toh(sc->rev);
1394 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1395 	    sc->rev, sc->type);
1396 
1397 	/* Read the regulatory domain (4 ASCII characters.) */
1398 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1399 	    sizeof(sc->domain)));
1400 
1401 	/* Read MAC address. */
1402 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1403 	    IEEE80211_ADDR_LEN));
1404 
1405 	/* Read the list of authorized channels. */
1406 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1407 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1408 
1409 	/* Read the list of TX power groups. */
1410 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1411 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1412 
1413 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1414 
1415 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1416 	    __func__);
1417 
1418 	return error;
1419 #undef WPI_CHK
1420 }
1421 
1422 /*
1423  * Translate EEPROM flags to net80211.
1424  */
1425 static uint32_t
1426 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1427 {
1428 	uint32_t nflags;
1429 
1430 	nflags = 0;
1431 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1432 		nflags |= IEEE80211_CHAN_PASSIVE;
1433 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1434 		nflags |= IEEE80211_CHAN_NOADHOC;
1435 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1436 		nflags |= IEEE80211_CHAN_DFS;
1437 		/* XXX apparently IBSS may still be marked */
1438 		nflags |= IEEE80211_CHAN_NOADHOC;
1439 	}
1440 
1441 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1442 	if (nflags & IEEE80211_CHAN_NOADHOC)
1443 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1444 
1445 	return nflags;
1446 }
1447 
1448 static void
1449 wpi_read_eeprom_band(struct wpi_softc *sc, int n)
1450 {
1451 	struct ifnet *ifp = sc->sc_ifp;
1452 	struct ieee80211com *ic = ifp->if_l2com;
1453 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1454 	const struct wpi_chan_band *band = &wpi_bands[n];
1455 	struct ieee80211_channel *c;
1456 	uint8_t chan;
1457 	int i, nflags;
1458 
1459 	for (i = 0; i < band->nchan; i++) {
1460 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1461 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1462 			    "Channel Not Valid: %d, band %d\n",
1463 			     band->chan[i],n);
1464 			continue;
1465 		}
1466 
1467 		chan = band->chan[i];
1468 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1469 
1470 		c = &ic->ic_channels[ic->ic_nchans++];
1471 		c->ic_ieee = chan;
1472 		c->ic_maxregpower = channels[i].maxpwr;
1473 		c->ic_maxpower = 2*c->ic_maxregpower;
1474 
1475 		if (n == 0) {	/* 2GHz band */
1476 			c->ic_freq = ieee80211_ieee2mhz(chan,
1477 			    IEEE80211_CHAN_G);
1478 
1479 			/* G =>'s B is supported */
1480 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1481 			c = &ic->ic_channels[ic->ic_nchans++];
1482 			c[0] = c[-1];
1483 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1484 		} else {	/* 5GHz band */
1485 			c->ic_freq = ieee80211_ieee2mhz(chan,
1486 			    IEEE80211_CHAN_A);
1487 
1488 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1489 		}
1490 
1491 		/* Save maximum allowed TX power for this channel. */
1492 		sc->maxpwr[chan] = channels[i].maxpwr;
1493 
1494 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1495 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1496 		    " offset %d\n", chan, c->ic_freq,
1497 		    channels[i].flags, sc->maxpwr[chan],
1498 		    IEEE80211_IS_CHAN_PASSIVE(c), ic->ic_nchans);
1499 	}
1500 }
1501 
1502 /**
1503  * Read the eeprom to find out what channels are valid for the given
1504  * band and update net80211 with what we find.
1505  */
1506 static int
1507 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
1508 {
1509 	struct ifnet *ifp = sc->sc_ifp;
1510 	struct ieee80211com *ic = ifp->if_l2com;
1511 	const struct wpi_chan_band *band = &wpi_bands[n];
1512 	int error;
1513 
1514 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1515 
1516 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1517 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1518 	if (error != 0) {
1519 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1520 		return error;
1521 	}
1522 
1523 	wpi_read_eeprom_band(sc, n);
1524 
1525 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1526 
1527 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1528 
1529 	return 0;
1530 }
1531 
1532 static struct wpi_eeprom_chan *
1533 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1534 {
1535 	int i, j;
1536 
1537 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1538 		for (i = 0; i < wpi_bands[j].nchan; i++)
1539 			if (wpi_bands[j].chan[i] == c->ic_ieee)
1540 				return &sc->eeprom_channels[j][i];
1541 
1542 	return NULL;
1543 }
1544 
1545 /*
1546  * Enforce flags read from EEPROM.
1547  */
1548 static int
1549 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1550     int nchan, struct ieee80211_channel chans[])
1551 {
1552 	struct ifnet *ifp = ic->ic_ifp;
1553 	struct wpi_softc *sc = ifp->if_softc;
1554 	int i;
1555 
1556 	for (i = 0; i < nchan; i++) {
1557 		struct ieee80211_channel *c = &chans[i];
1558 		struct wpi_eeprom_chan *channel;
1559 
1560 		channel = wpi_find_eeprom_channel(sc, c);
1561 		if (channel == NULL) {
1562 			if_printf(ic->ic_ifp,
1563 			    "%s: invalid channel %u freq %u/0x%x\n",
1564 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1565 			return EINVAL;
1566 		}
1567 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static int
1574 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
1575 {
1576 	struct wpi_power_group *group = &sc->groups[n];
1577 	struct wpi_eeprom_group rgroup;
1578 	int i, error;
1579 
1580 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1581 
1582 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1583 	    &rgroup, sizeof rgroup)) != 0) {
1584 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1585 		return error;
1586 	}
1587 
1588 	/* Save TX power group information. */
1589 	group->chan   = rgroup.chan;
1590 	group->maxpwr = rgroup.maxpwr;
1591 	/* Retrieve temperature at which the samples were taken. */
1592 	group->temp   = (int16_t)le16toh(rgroup.temp);
1593 
1594 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1595 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1596 	    group->maxpwr, group->temp);
1597 
1598 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1599 		group->samples[i].index = rgroup.samples[i].index;
1600 		group->samples[i].power = rgroup.samples[i].power;
1601 
1602 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1603 		    "\tsample %d: index=%d power=%d\n", i,
1604 		    group->samples[i].index, group->samples[i].power);
1605 	}
1606 
1607 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1608 
1609 	return 0;
1610 }
1611 
1612 static int
1613 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1614 {
1615 	int newid = WPI_ID_IBSS_MIN;
1616 
1617 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1618 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1619 			sc->nodesmsk |= 1 << newid;
1620 			return newid;
1621 		}
1622 	}
1623 
1624 	return WPI_ID_UNDEFINED;
1625 }
1626 
1627 static __inline int
1628 wpi_add_node_entry_sta(struct wpi_softc *sc)
1629 {
1630 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1631 
1632 	return WPI_ID_BSS;
1633 }
1634 
1635 static __inline int
1636 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1637 {
1638 	if (id == WPI_ID_UNDEFINED)
1639 		return 0;
1640 
1641 	return (sc->nodesmsk >> id) & 1;
1642 }
1643 
1644 static __inline void
1645 wpi_clear_node_table(struct wpi_softc *sc)
1646 {
1647 	sc->nodesmsk = 0;
1648 }
1649 
1650 static __inline void
1651 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1652 {
1653 	sc->nodesmsk &= ~(1 << id);
1654 }
1655 
1656 static struct ieee80211_node *
1657 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1658 {
1659 	struct wpi_node *wn;
1660 
1661 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1662 	    M_NOWAIT | M_ZERO);
1663 
1664 	if (wn == NULL)
1665 		return NULL;
1666 
1667 	wn->id = WPI_ID_UNDEFINED;
1668 
1669 	return &wn->ni;
1670 }
1671 
1672 static void
1673 wpi_node_free(struct ieee80211_node *ni)
1674 {
1675 	struct ieee80211com *ic = ni->ni_ic;
1676 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
1677 	struct wpi_node *wn = WPI_NODE(ni);
1678 
1679 	if (wn->id != WPI_ID_UNDEFINED) {
1680 		WPI_NT_LOCK(sc);
1681 		if (wpi_check_node_entry(sc, wn->id)) {
1682 			wpi_del_node_entry(sc, wn->id);
1683 			wpi_del_node(sc, ni);
1684 		}
1685 		WPI_NT_UNLOCK(sc);
1686 	}
1687 
1688 	sc->sc_node_free(ni);
1689 }
1690 
1691 static __inline int
1692 wpi_check_bss_filter(struct wpi_softc *sc)
1693 {
1694 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1695 }
1696 
1697 static void
1698 wpi_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1699     const struct ieee80211_rx_stats *rxs,
1700     int rssi, int nf)
1701 {
1702 	struct ieee80211vap *vap = ni->ni_vap;
1703 	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1704 	struct wpi_vap *wvp = WPI_VAP(vap);
1705 	uint64_t ni_tstamp, rx_tstamp;
1706 
1707 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1708 
1709 	if (vap->iv_opmode == IEEE80211_M_IBSS &&
1710 	    vap->iv_state == IEEE80211_S_RUN &&
1711 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1712 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1713 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1714 		rx_tstamp = le64toh(sc->rx_tstamp);
1715 
1716 		if (ni_tstamp >= rx_tstamp) {
1717 			DPRINTF(sc, WPI_DEBUG_STATE,
1718 			    "ibss merge, tsf %ju tstamp %ju\n",
1719 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1720 			(void) ieee80211_ibss_merge(ni);
1721 		}
1722 	}
1723 }
1724 
1725 static void
1726 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1727 {
1728 	struct wpi_softc *sc = arg;
1729 	struct wpi_node *wn = WPI_NODE(ni);
1730 	int error;
1731 
1732 	WPI_NT_LOCK(sc);
1733 	if (wn->id != WPI_ID_UNDEFINED) {
1734 		wn->id = WPI_ID_UNDEFINED;
1735 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1736 			device_printf(sc->sc_dev,
1737 			    "%s: could not add IBSS node, error %d\n",
1738 			    __func__, error);
1739 		}
1740 	}
1741 	WPI_NT_UNLOCK(sc);
1742 }
1743 
1744 static void
1745 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1746 {
1747 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1748 
1749 	/* Set group keys once. */
1750 	WPI_NT_LOCK(sc);
1751 	wvp->wv_gtk = 0;
1752 	WPI_NT_UNLOCK(sc);
1753 
1754 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1755 	ieee80211_crypto_reload_keys(ic);
1756 }
1757 
1758 /**
1759  * Called by net80211 when ever there is a change to 80211 state machine
1760  */
1761 static int
1762 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1763 {
1764 	struct wpi_vap *wvp = WPI_VAP(vap);
1765 	struct ieee80211com *ic = vap->iv_ic;
1766 	struct ifnet *ifp = ic->ic_ifp;
1767 	struct wpi_softc *sc = ifp->if_softc;
1768 	int error = 0;
1769 
1770 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1771 
1772 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1773 		ieee80211_state_name[vap->iv_state],
1774 		ieee80211_state_name[nstate]);
1775 
1776 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1777 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1778 			device_printf(sc->sc_dev,
1779 			    "%s: could not set power saving level\n",
1780 			    __func__);
1781 			return error;
1782 		}
1783 
1784 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1785 	}
1786 
1787 	switch (nstate) {
1788 	case IEEE80211_S_SCAN:
1789 		WPI_RXON_LOCK(sc);
1790 		if (wpi_check_bss_filter(sc) != 0) {
1791 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1792 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1793 				device_printf(sc->sc_dev,
1794 				    "%s: could not send RXON\n", __func__);
1795 			}
1796 		}
1797 		WPI_RXON_UNLOCK(sc);
1798 		break;
1799 
1800 	case IEEE80211_S_ASSOC:
1801 		if (vap->iv_state != IEEE80211_S_RUN)
1802 			break;
1803 		/* FALLTHROUGH */
1804 	case IEEE80211_S_AUTH:
1805 		/*
1806 		 * NB: do not optimize AUTH -> AUTH state transmission -
1807 		 * this will break powersave with non-QoS AP!
1808 		 */
1809 
1810 		/*
1811 		 * The node must be registered in the firmware before auth.
1812 		 * Also the associd must be cleared on RUN -> ASSOC
1813 		 * transitions.
1814 		 */
1815 		if ((error = wpi_auth(sc, vap)) != 0) {
1816 			device_printf(sc->sc_dev,
1817 			    "%s: could not move to AUTH state, error %d\n",
1818 			    __func__, error);
1819 		}
1820 		break;
1821 
1822 	case IEEE80211_S_RUN:
1823 		/*
1824 		 * RUN -> RUN transition:
1825 		 * STA mode: Just restart the timers.
1826 		 * IBSS mode: Process IBSS merge.
1827 		 */
1828 		if (vap->iv_state == IEEE80211_S_RUN) {
1829 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1830 				WPI_RXON_LOCK(sc);
1831 				wpi_calib_timeout(sc);
1832 				WPI_RXON_UNLOCK(sc);
1833 				break;
1834 			} else {
1835 				/*
1836 				 * Drop the BSS_FILTER bit
1837 				 * (there is no another way to change bssid).
1838 				 */
1839 				WPI_RXON_LOCK(sc);
1840 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1841 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1842 					device_printf(sc->sc_dev,
1843 					    "%s: could not send RXON\n",
1844 					    __func__);
1845 				}
1846 				WPI_RXON_UNLOCK(sc);
1847 
1848 				/* Restore all what was lost. */
1849 				wpi_restore_node_table(sc, wvp);
1850 
1851 				/* XXX set conditionally? */
1852 				wpi_updateedca(ic);
1853 			}
1854 		}
1855 
1856 		/*
1857 		 * !RUN -> RUN requires setting the association id
1858 		 * which is done with a firmware cmd.  We also defer
1859 		 * starting the timers until that work is done.
1860 		 */
1861 		if ((error = wpi_run(sc, vap)) != 0) {
1862 			device_printf(sc->sc_dev,
1863 			    "%s: could not move to RUN state\n", __func__);
1864 		}
1865 		break;
1866 
1867 	default:
1868 		break;
1869 	}
1870 	if (error != 0) {
1871 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1872 		return error;
1873 	}
1874 
1875 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1876 
1877 	return wvp->wv_newstate(vap, nstate, arg);
1878 }
1879 
1880 static void
1881 wpi_calib_timeout(void *arg)
1882 {
1883 	struct wpi_softc *sc = arg;
1884 
1885 	if (wpi_check_bss_filter(sc) == 0)
1886 		return;
1887 
1888 	wpi_power_calibration(sc);
1889 
1890 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1891 }
1892 
1893 static __inline uint8_t
1894 rate2plcp(const uint8_t rate)
1895 {
1896 	switch (rate) {
1897 	case 12:	return 0xd;
1898 	case 18:	return 0xf;
1899 	case 24:	return 0x5;
1900 	case 36:	return 0x7;
1901 	case 48:	return 0x9;
1902 	case 72:	return 0xb;
1903 	case 96:	return 0x1;
1904 	case 108:	return 0x3;
1905 	case 2:		return 10;
1906 	case 4:		return 20;
1907 	case 11:	return 55;
1908 	case 22:	return 110;
1909 	default:	return 0;
1910 	}
1911 }
1912 
1913 static __inline uint8_t
1914 plcp2rate(const uint8_t plcp)
1915 {
1916 	switch (plcp) {
1917 	case 0xd:	return 12;
1918 	case 0xf:	return 18;
1919 	case 0x5:	return 24;
1920 	case 0x7:	return 36;
1921 	case 0x9:	return 48;
1922 	case 0xb:	return 72;
1923 	case 0x1:	return 96;
1924 	case 0x3:	return 108;
1925 	case 10:	return 2;
1926 	case 20:	return 4;
1927 	case 55:	return 11;
1928 	case 110:	return 22;
1929 	default:	return 0;
1930 	}
1931 }
1932 
1933 /* Quickly determine if a given rate is CCK or OFDM. */
1934 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1935 
1936 static void
1937 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1938     struct wpi_rx_data *data)
1939 {
1940 	struct ifnet *ifp = sc->sc_ifp;
1941 	struct ieee80211com *ic = ifp->if_l2com;
1942 	struct wpi_rx_ring *ring = &sc->rxq;
1943 	struct wpi_rx_stat *stat;
1944 	struct wpi_rx_head *head;
1945 	struct wpi_rx_tail *tail;
1946 	struct ieee80211_frame *wh;
1947 	struct ieee80211_node *ni;
1948 	struct mbuf *m, *m1;
1949 	bus_addr_t paddr;
1950 	uint32_t flags;
1951 	uint16_t len;
1952 	int error;
1953 
1954 	stat = (struct wpi_rx_stat *)(desc + 1);
1955 
1956 	if (stat->len > WPI_STAT_MAXLEN) {
1957 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1958 		goto fail1;
1959 	}
1960 
1961 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1962 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1963 	len = le16toh(head->len);
1964 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1965 	flags = le32toh(tail->flags);
1966 
1967 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1968 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1969 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1970 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1971 
1972 	/* Discard frames with a bad FCS early. */
1973 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1974 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1975 		    __func__, flags);
1976 		goto fail1;
1977 	}
1978 	/* Discard frames that are too short. */
1979 	if (len < sizeof (struct ieee80211_frame_ack)) {
1980 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1981 		    __func__, len);
1982 		goto fail1;
1983 	}
1984 
1985 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1986 	if (m1 == NULL) {
1987 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1988 		    __func__);
1989 		goto fail1;
1990 	}
1991 	bus_dmamap_unload(ring->data_dmat, data->map);
1992 
1993 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1994 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1995 	if (error != 0 && error != EFBIG) {
1996 		device_printf(sc->sc_dev,
1997 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1998 		m_freem(m1);
1999 
2000 		/* Try to reload the old mbuf. */
2001 		error = bus_dmamap_load(ring->data_dmat, data->map,
2002 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
2003 		    &paddr, BUS_DMA_NOWAIT);
2004 		if (error != 0 && error != EFBIG) {
2005 			panic("%s: could not load old RX mbuf", __func__);
2006 		}
2007 		/* Physical address may have changed. */
2008 		ring->desc[ring->cur] = htole32(paddr);
2009 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2010 		    BUS_DMASYNC_PREWRITE);
2011 		goto fail1;
2012 	}
2013 
2014 	m = data->m;
2015 	data->m = m1;
2016 	/* Update RX descriptor. */
2017 	ring->desc[ring->cur] = htole32(paddr);
2018 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2019 	    BUS_DMASYNC_PREWRITE);
2020 
2021 	/* Finalize mbuf. */
2022 	m->m_pkthdr.rcvif = ifp;
2023 	m->m_data = (caddr_t)(head + 1);
2024 	m->m_pkthdr.len = m->m_len = len;
2025 
2026 	/* Grab a reference to the source node. */
2027 	wh = mtod(m, struct ieee80211_frame *);
2028 
2029 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2030 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2031 		/* Check whether decryption was successful or not. */
2032 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2033 			DPRINTF(sc, WPI_DEBUG_RECV,
2034 			    "CCMP decryption failed 0x%x\n", flags);
2035 			goto fail2;
2036 		}
2037 		m->m_flags |= M_WEP;
2038 	}
2039 
2040 	if (len >= sizeof(struct ieee80211_frame_min))
2041 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2042 	else
2043 		ni = NULL;
2044 
2045 	sc->rx_tstamp = tail->tstamp;
2046 
2047 	if (ieee80211_radiotap_active(ic)) {
2048 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2049 
2050 		tap->wr_flags = 0;
2051 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2052 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2053 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2054 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2055 		tap->wr_tsft = tail->tstamp;
2056 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2057 		tap->wr_rate = plcp2rate(head->plcp);
2058 	}
2059 
2060 	WPI_UNLOCK(sc);
2061 
2062 	/* Send the frame to the 802.11 layer. */
2063 	if (ni != NULL) {
2064 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2065 		/* Node is no longer needed. */
2066 		ieee80211_free_node(ni);
2067 	} else
2068 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2069 
2070 	WPI_LOCK(sc);
2071 
2072 	return;
2073 
2074 fail2:	m_freem(m);
2075 
2076 fail1:	if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2077 }
2078 
2079 static void
2080 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2081     struct wpi_rx_data *data)
2082 {
2083 	/* Ignore */
2084 }
2085 
2086 static void
2087 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2088 {
2089 	struct ifnet *ifp = sc->sc_ifp;
2090 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2091 	struct wpi_tx_data *data = &ring->data[desc->idx];
2092 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2093 	struct mbuf *m;
2094 	struct ieee80211_node *ni;
2095 	struct ieee80211vap *vap;
2096 	struct ieee80211com *ic;
2097 	uint32_t status = le32toh(stat->status);
2098 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2099 
2100 	KASSERT(data->ni != NULL, ("no node"));
2101 	KASSERT(data->m != NULL, ("no mbuf"));
2102 
2103 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2104 
2105 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2106 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2107 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2108 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2109 
2110 	/* Unmap and free mbuf. */
2111 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2112 	bus_dmamap_unload(ring->data_dmat, data->map);
2113 	m = data->m, data->m = NULL;
2114 	ni = data->ni, data->ni = NULL;
2115 	vap = ni->ni_vap;
2116 	ic = vap->iv_ic;
2117 
2118 	/*
2119 	 * Update rate control statistics for the node.
2120 	 */
2121 	if (status & WPI_TX_STATUS_FAIL) {
2122 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2123 		ieee80211_ratectl_tx_complete(vap, ni,
2124 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2125 	} else {
2126 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2127 		ieee80211_ratectl_tx_complete(vap, ni,
2128 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2129 	}
2130 
2131 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2132 
2133 	WPI_TXQ_STATE_LOCK(sc);
2134 	ring->queued -= 1;
2135 	if (ring->queued > 0) {
2136 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2137 
2138 		if (sc->qfullmsk != 0 &&
2139 		    ring->queued < WPI_TX_RING_LOMARK) {
2140 			sc->qfullmsk &= ~(1 << ring->qid);
2141 			IF_LOCK(&ifp->if_snd);
2142 			if (sc->qfullmsk == 0 &&
2143 			    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2144 				ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2145 				IF_UNLOCK(&ifp->if_snd);
2146 				ieee80211_runtask(ic, &sc->sc_start_task);
2147 			} else
2148 				IF_UNLOCK(&ifp->if_snd);
2149 		}
2150 	} else
2151 		callout_stop(&sc->tx_timeout);
2152 	WPI_TXQ_STATE_UNLOCK(sc);
2153 
2154 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2155 }
2156 
2157 /*
2158  * Process a "command done" firmware notification.  This is where we wakeup
2159  * processes waiting for a synchronous command completion.
2160  */
2161 static void
2162 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2163 {
2164 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2165 	struct wpi_tx_data *data;
2166 
2167 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2168 				   "type %s len %d\n", desc->qid, desc->idx,
2169 				   desc->flags, wpi_cmd_str(desc->type),
2170 				   le32toh(desc->len));
2171 
2172 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2173 		return;	/* Not a command ack. */
2174 
2175 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2176 
2177 	data = &ring->data[desc->idx];
2178 
2179 	/* If the command was mapped in an mbuf, free it. */
2180 	if (data->m != NULL) {
2181 		bus_dmamap_sync(ring->data_dmat, data->map,
2182 		    BUS_DMASYNC_POSTWRITE);
2183 		bus_dmamap_unload(ring->data_dmat, data->map);
2184 		m_freem(data->m);
2185 		data->m = NULL;
2186 	}
2187 
2188 	wakeup(&ring->cmd[desc->idx]);
2189 
2190 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2191 		WPI_TXQ_LOCK(sc);
2192 		if (sc->sc_flags & WPI_PS_PATH) {
2193 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2194 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2195 		} else {
2196 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2197 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2198 		}
2199 		WPI_TXQ_UNLOCK(sc);
2200 	}
2201 }
2202 
2203 static void
2204 wpi_notif_intr(struct wpi_softc *sc)
2205 {
2206 	struct ifnet *ifp = sc->sc_ifp;
2207 	struct ieee80211com *ic = ifp->if_l2com;
2208 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2209 	uint32_t hw;
2210 
2211 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2212 	    BUS_DMASYNC_POSTREAD);
2213 
2214 	hw = le32toh(sc->shared->next) & 0xfff;
2215 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2216 
2217 	while (sc->rxq.cur != hw) {
2218 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2219 
2220 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2221 		struct wpi_rx_desc *desc;
2222 
2223 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2224 		    BUS_DMASYNC_POSTREAD);
2225 		desc = mtod(data->m, struct wpi_rx_desc *);
2226 
2227 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2228 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2229 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2230 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2231 
2232 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2233 			/* Reply to a command. */
2234 			wpi_cmd_done(sc, desc);
2235 		}
2236 
2237 		switch (desc->type) {
2238 		case WPI_RX_DONE:
2239 			/* An 802.11 frame has been received. */
2240 			wpi_rx_done(sc, desc, data);
2241 
2242 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2243 				/* wpi_stop() was called. */
2244 				return;
2245 			}
2246 
2247 			break;
2248 
2249 		case WPI_TX_DONE:
2250 			/* An 802.11 frame has been transmitted. */
2251 			wpi_tx_done(sc, desc);
2252 			break;
2253 
2254 		case WPI_RX_STATISTICS:
2255 		case WPI_BEACON_STATISTICS:
2256 			wpi_rx_statistics(sc, desc, data);
2257 			break;
2258 
2259 		case WPI_BEACON_MISSED:
2260 		{
2261 			struct wpi_beacon_missed *miss =
2262 			    (struct wpi_beacon_missed *)(desc + 1);
2263 			uint32_t expected, misses, received, threshold;
2264 
2265 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2266 			    BUS_DMASYNC_POSTREAD);
2267 
2268 			misses = le32toh(miss->consecutive);
2269 			expected = le32toh(miss->expected);
2270 			received = le32toh(miss->received);
2271 			threshold = MAX(2, vap->iv_bmissthreshold);
2272 
2273 			DPRINTF(sc, WPI_DEBUG_BMISS,
2274 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2275 			    __func__, misses, le32toh(miss->total), received,
2276 			    expected);
2277 
2278 			if (misses >= threshold ||
2279 			    (received == 0 && expected >= threshold)) {
2280 				WPI_RXON_LOCK(sc);
2281 				if (callout_pending(&sc->scan_timeout)) {
2282 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2283 					    0, 1);
2284 				}
2285 				WPI_RXON_UNLOCK(sc);
2286 				if (vap->iv_state == IEEE80211_S_RUN &&
2287 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2288 					ieee80211_beacon_miss(ic);
2289 			}
2290 
2291 			break;
2292 		}
2293 #ifdef WPI_DEBUG
2294 		case WPI_BEACON_SENT:
2295 		{
2296 			struct wpi_tx_stat *stat =
2297 			    (struct wpi_tx_stat *)(desc + 1);
2298 			uint64_t *tsf = (uint64_t *)(stat + 1);
2299 			uint32_t *mode = (uint32_t *)(tsf + 1);
2300 
2301 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2302 			    BUS_DMASYNC_POSTREAD);
2303 
2304 			DPRINTF(sc, WPI_DEBUG_BEACON,
2305 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2306 			    "duration %u, status %x, tsf %ju, mode %x\n",
2307 			    stat->rtsfailcnt, stat->ackfailcnt,
2308 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2309 			    le32toh(stat->status), *tsf, *mode);
2310 
2311 			break;
2312 		}
2313 #endif
2314 		case WPI_UC_READY:
2315 		{
2316 			struct wpi_ucode_info *uc =
2317 			    (struct wpi_ucode_info *)(desc + 1);
2318 
2319 			/* The microcontroller is ready. */
2320 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2321 			    BUS_DMASYNC_POSTREAD);
2322 			DPRINTF(sc, WPI_DEBUG_RESET,
2323 			    "microcode alive notification version=%d.%d "
2324 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2325 			    uc->subtype, le32toh(uc->valid));
2326 
2327 			if (le32toh(uc->valid) != 1) {
2328 				device_printf(sc->sc_dev,
2329 				    "microcontroller initialization failed\n");
2330 				wpi_stop_locked(sc);
2331 			}
2332 			/* Save the address of the error log in SRAM. */
2333 			sc->errptr = le32toh(uc->errptr);
2334 			break;
2335 		}
2336 		case WPI_STATE_CHANGED:
2337 		{
2338 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2339 			    BUS_DMASYNC_POSTREAD);
2340 
2341 			uint32_t *status = (uint32_t *)(desc + 1);
2342 
2343 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2344 			    le32toh(*status));
2345 
2346 			if (le32toh(*status) & 1) {
2347 				WPI_NT_LOCK(sc);
2348 				wpi_clear_node_table(sc);
2349 				WPI_NT_UNLOCK(sc);
2350 				taskqueue_enqueue(sc->sc_tq,
2351 				    &sc->sc_radiooff_task);
2352 				return;
2353 			}
2354 			break;
2355 		}
2356 #ifdef WPI_DEBUG
2357 		case WPI_START_SCAN:
2358 		{
2359 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2360 			    BUS_DMASYNC_POSTREAD);
2361 
2362 			struct wpi_start_scan *scan =
2363 			    (struct wpi_start_scan *)(desc + 1);
2364 			DPRINTF(sc, WPI_DEBUG_SCAN,
2365 			    "%s: scanning channel %d status %x\n",
2366 			    __func__, scan->chan, le32toh(scan->status));
2367 
2368 			break;
2369 		}
2370 #endif
2371 		case WPI_STOP_SCAN:
2372 		{
2373 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2374 			    BUS_DMASYNC_POSTREAD);
2375 
2376 			struct wpi_stop_scan *scan =
2377 			    (struct wpi_stop_scan *)(desc + 1);
2378 
2379 			DPRINTF(sc, WPI_DEBUG_SCAN,
2380 			    "scan finished nchan=%d status=%d chan=%d\n",
2381 			    scan->nchan, scan->status, scan->chan);
2382 
2383 			WPI_RXON_LOCK(sc);
2384 			callout_stop(&sc->scan_timeout);
2385 			WPI_RXON_UNLOCK(sc);
2386 			if (scan->status == WPI_SCAN_ABORTED)
2387 				ieee80211_cancel_scan(vap);
2388 			else
2389 				ieee80211_scan_next(vap);
2390 			break;
2391 		}
2392 		}
2393 
2394 		if (sc->rxq.cur % 8 == 0) {
2395 			/* Tell the firmware what we have processed. */
2396 			sc->sc_update_rx_ring(sc);
2397 		}
2398 	}
2399 }
2400 
2401 /*
2402  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2403  * from power-down sleep mode.
2404  */
2405 static void
2406 wpi_wakeup_intr(struct wpi_softc *sc)
2407 {
2408 	int qid;
2409 
2410 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2411 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2412 
2413 	/* Wakeup RX and TX rings. */
2414 	if (sc->rxq.update) {
2415 		sc->rxq.update = 0;
2416 		wpi_update_rx_ring(sc);
2417 	}
2418 	WPI_TXQ_LOCK(sc);
2419 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2420 		struct wpi_tx_ring *ring = &sc->txq[qid];
2421 
2422 		if (ring->update) {
2423 			ring->update = 0;
2424 			wpi_update_tx_ring(sc, ring);
2425 		}
2426 	}
2427 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2428 	WPI_TXQ_UNLOCK(sc);
2429 }
2430 
2431 /*
2432  * This function prints firmware registers
2433  */
2434 #ifdef WPI_DEBUG
2435 static void
2436 wpi_debug_registers(struct wpi_softc *sc)
2437 {
2438 	size_t i;
2439 	static const uint32_t csr_tbl[] = {
2440 		WPI_HW_IF_CONFIG,
2441 		WPI_INT,
2442 		WPI_INT_MASK,
2443 		WPI_FH_INT,
2444 		WPI_GPIO_IN,
2445 		WPI_RESET,
2446 		WPI_GP_CNTRL,
2447 		WPI_EEPROM,
2448 		WPI_EEPROM_GP,
2449 		WPI_GIO,
2450 		WPI_UCODE_GP1,
2451 		WPI_UCODE_GP2,
2452 		WPI_GIO_CHICKEN,
2453 		WPI_ANA_PLL,
2454 		WPI_DBG_HPET_MEM,
2455 	};
2456 	static const uint32_t prph_tbl[] = {
2457 		WPI_APMG_CLK_CTRL,
2458 		WPI_APMG_PS,
2459 		WPI_APMG_PCI_STT,
2460 		WPI_APMG_RFKILL,
2461 	};
2462 
2463 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2464 
2465 	for (i = 0; i < nitems(csr_tbl); i++) {
2466 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2467 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2468 
2469 		if ((i + 1) % 2 == 0)
2470 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2471 	}
2472 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2473 
2474 	if (wpi_nic_lock(sc) == 0) {
2475 		for (i = 0; i < nitems(prph_tbl); i++) {
2476 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2477 			    wpi_get_prph_string(prph_tbl[i]),
2478 			    wpi_prph_read(sc, prph_tbl[i]));
2479 
2480 			if ((i + 1) % 2 == 0)
2481 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2482 		}
2483 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2484 		wpi_nic_unlock(sc);
2485 	} else {
2486 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2487 		    "Cannot access internal registers.\n");
2488 	}
2489 }
2490 #endif
2491 
2492 /*
2493  * Dump the error log of the firmware when a firmware panic occurs.  Although
2494  * we can't debug the firmware because it is neither open source nor free, it
2495  * can help us to identify certain classes of problems.
2496  */
2497 static void
2498 wpi_fatal_intr(struct wpi_softc *sc)
2499 {
2500 	struct wpi_fw_dump dump;
2501 	uint32_t i, offset, count;
2502 
2503 	/* Check that the error log address is valid. */
2504 	if (sc->errptr < WPI_FW_DATA_BASE ||
2505 	    sc->errptr + sizeof (dump) >
2506 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2507 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2508 		    sc->errptr);
2509 		return;
2510 	}
2511 	if (wpi_nic_lock(sc) != 0) {
2512 		printf("%s: could not read firmware error log\n", __func__);
2513 		return;
2514 	}
2515 	/* Read number of entries in the log. */
2516 	count = wpi_mem_read(sc, sc->errptr);
2517 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2518 		printf("%s: invalid count field (count = %u)\n", __func__,
2519 		    count);
2520 		wpi_nic_unlock(sc);
2521 		return;
2522 	}
2523 	/* Skip "count" field. */
2524 	offset = sc->errptr + sizeof (uint32_t);
2525 	printf("firmware error log (count = %u):\n", count);
2526 	for (i = 0; i < count; i++) {
2527 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2528 		    sizeof (dump) / sizeof (uint32_t));
2529 
2530 		printf("  error type = \"%s\" (0x%08X)\n",
2531 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2532 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2533 		    dump.desc);
2534 		printf("  error data      = 0x%08X\n",
2535 		    dump.data);
2536 		printf("  branch link     = 0x%08X%08X\n",
2537 		    dump.blink[0], dump.blink[1]);
2538 		printf("  interrupt link  = 0x%08X%08X\n",
2539 		    dump.ilink[0], dump.ilink[1]);
2540 		printf("  time            = %u\n", dump.time);
2541 
2542 		offset += sizeof (dump);
2543 	}
2544 	wpi_nic_unlock(sc);
2545 	/* Dump driver status (TX and RX rings) while we're here. */
2546 	printf("driver status:\n");
2547 	WPI_TXQ_LOCK(sc);
2548 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2549 		struct wpi_tx_ring *ring = &sc->txq[i];
2550 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2551 		    i, ring->qid, ring->cur, ring->queued);
2552 	}
2553 	WPI_TXQ_UNLOCK(sc);
2554 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2555 }
2556 
2557 static void
2558 wpi_intr(void *arg)
2559 {
2560 	struct wpi_softc *sc = arg;
2561 	struct ifnet *ifp = sc->sc_ifp;
2562 	uint32_t r1, r2;
2563 
2564 	WPI_LOCK(sc);
2565 
2566 	/* Disable interrupts. */
2567 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2568 
2569 	r1 = WPI_READ(sc, WPI_INT);
2570 
2571 	if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2572 		goto end;	/* Hardware gone! */
2573 
2574 	r2 = WPI_READ(sc, WPI_FH_INT);
2575 
2576 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2577 	    r1, r2);
2578 
2579 	if (r1 == 0 && r2 == 0)
2580 		goto done;	/* Interrupt not for us. */
2581 
2582 	/* Acknowledge interrupts. */
2583 	WPI_WRITE(sc, WPI_INT, r1);
2584 	WPI_WRITE(sc, WPI_FH_INT, r2);
2585 
2586 	if (r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR)) {
2587 		device_printf(sc->sc_dev, "fatal firmware error\n");
2588 #ifdef WPI_DEBUG
2589 		wpi_debug_registers(sc);
2590 #endif
2591 		wpi_fatal_intr(sc);
2592 		DPRINTF(sc, WPI_DEBUG_HW,
2593 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2594 		    "(Hardware Error)");
2595 		taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
2596 		goto end;
2597 	}
2598 
2599 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2600 	    (r2 & WPI_FH_INT_RX))
2601 		wpi_notif_intr(sc);
2602 
2603 	if (r1 & WPI_INT_ALIVE)
2604 		wakeup(sc);	/* Firmware is alive. */
2605 
2606 	if (r1 & WPI_INT_WAKEUP)
2607 		wpi_wakeup_intr(sc);
2608 
2609 done:
2610 	/* Re-enable interrupts. */
2611 	if (ifp->if_flags & IFF_UP)
2612 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2613 
2614 end:	WPI_UNLOCK(sc);
2615 }
2616 
2617 static int
2618 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2619 {
2620 	struct ifnet *ifp = sc->sc_ifp;
2621 	struct ieee80211_frame *wh;
2622 	struct wpi_tx_cmd *cmd;
2623 	struct wpi_tx_data *data;
2624 	struct wpi_tx_desc *desc;
2625 	struct wpi_tx_ring *ring;
2626 	struct mbuf *m1;
2627 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2628 	int error, i, hdrlen, nsegs, totlen, pad;
2629 
2630 	WPI_TXQ_LOCK(sc);
2631 
2632 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2633 
2634 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2635 
2636 	if (sc->txq_active == 0) {
2637 		/* wpi_stop() was called */
2638 		error = ENETDOWN;
2639 		goto fail;
2640 	}
2641 
2642 	wh = mtod(buf->m, struct ieee80211_frame *);
2643 	hdrlen = ieee80211_anyhdrsize(wh);
2644 	totlen = buf->m->m_pkthdr.len;
2645 
2646 	if (hdrlen & 3) {
2647 		/* First segment length must be a multiple of 4. */
2648 		pad = 4 - (hdrlen & 3);
2649 	} else
2650 		pad = 0;
2651 
2652 	ring = &sc->txq[buf->ac];
2653 	desc = &ring->desc[ring->cur];
2654 	data = &ring->data[ring->cur];
2655 
2656 	/* Prepare TX firmware command. */
2657 	cmd = &ring->cmd[ring->cur];
2658 	cmd->code = buf->code;
2659 	cmd->flags = 0;
2660 	cmd->qid = ring->qid;
2661 	cmd->idx = ring->cur;
2662 
2663 	memcpy(cmd->data, buf->data, buf->size);
2664 
2665 	/* Save and trim IEEE802.11 header. */
2666 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2667 	m_adj(buf->m, hdrlen);
2668 
2669 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2670 	    segs, &nsegs, BUS_DMA_NOWAIT);
2671 	if (error != 0 && error != EFBIG) {
2672 		device_printf(sc->sc_dev,
2673 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2674 		goto fail;
2675 	}
2676 	if (error != 0) {
2677 		/* Too many DMA segments, linearize mbuf. */
2678 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2679 		if (m1 == NULL) {
2680 			device_printf(sc->sc_dev,
2681 			    "%s: could not defrag mbuf\n", __func__);
2682 			error = ENOBUFS;
2683 			goto fail;
2684 		}
2685 		buf->m = m1;
2686 
2687 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2688 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2689 		if (error != 0) {
2690 			device_printf(sc->sc_dev,
2691 			    "%s: can't map mbuf (error %d)\n", __func__,
2692 			    error);
2693 			goto fail;
2694 		}
2695 	}
2696 
2697 	KASSERT(nsegs < WPI_MAX_SCATTER,
2698 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2699 	     nsegs, WPI_MAX_SCATTER));
2700 
2701 	data->m = buf->m;
2702 	data->ni = buf->ni;
2703 
2704 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2705 	    __func__, ring->qid, ring->cur, totlen, nsegs);
2706 
2707 	/* Fill TX descriptor. */
2708 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2709 	/* First DMA segment is used by the TX command. */
2710 	desc->segs[0].addr = htole32(data->cmd_paddr);
2711 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2712 	/* Other DMA segments are for data payload. */
2713 	seg = &segs[0];
2714 	for (i = 1; i <= nsegs; i++) {
2715 		desc->segs[i].addr = htole32(seg->ds_addr);
2716 		desc->segs[i].len  = htole32(seg->ds_len);
2717 		seg++;
2718 	}
2719 
2720 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2721 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2722 	    BUS_DMASYNC_PREWRITE);
2723 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2724 	    BUS_DMASYNC_PREWRITE);
2725 
2726 	/* Kick TX ring. */
2727 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2728 	sc->sc_update_tx_ring(sc, ring);
2729 
2730 	if (ring->qid < WPI_CMD_QUEUE_NUM) {
2731 		/* Mark TX ring as full if we reach a certain threshold. */
2732 		WPI_TXQ_STATE_LOCK(sc);
2733 		if (++ring->queued > WPI_TX_RING_HIMARK) {
2734 			sc->qfullmsk |= 1 << ring->qid;
2735 
2736 			IF_LOCK(&ifp->if_snd);
2737 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2738 			IF_UNLOCK(&ifp->if_snd);
2739 		}
2740 
2741 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2742 		WPI_TXQ_STATE_UNLOCK(sc);
2743 	}
2744 
2745 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2746 
2747 	WPI_TXQ_UNLOCK(sc);
2748 
2749 	return 0;
2750 
2751 fail:	m_freem(buf->m);
2752 
2753 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
2754 
2755 	WPI_TXQ_UNLOCK(sc);
2756 
2757 	return error;
2758 }
2759 
2760 /*
2761  * Construct the data packet for a transmit buffer.
2762  */
2763 static int
2764 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2765 {
2766 	const struct ieee80211_txparam *tp;
2767 	struct ieee80211vap *vap = ni->ni_vap;
2768 	struct ieee80211com *ic = ni->ni_ic;
2769 	struct wpi_node *wn = WPI_NODE(ni);
2770 	struct ieee80211_channel *chan;
2771 	struct ieee80211_frame *wh;
2772 	struct ieee80211_key *k = NULL;
2773 	struct wpi_buf tx_data;
2774 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2775 	uint32_t flags;
2776 	uint16_t qos;
2777 	uint8_t tid, type;
2778 	int ac, error, swcrypt, rate, ismcast, totlen;
2779 
2780 	wh = mtod(m, struct ieee80211_frame *);
2781 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2782 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2783 
2784 	/* Select EDCA Access Category and TX ring for this frame. */
2785 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2786 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2787 		tid = qos & IEEE80211_QOS_TID;
2788 	} else {
2789 		qos = 0;
2790 		tid = 0;
2791 	}
2792 	ac = M_WME_GETAC(m);
2793 
2794 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2795 		ni->ni_chan : ic->ic_curchan;
2796 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2797 
2798 	/* Choose a TX rate index. */
2799 	if (type == IEEE80211_FC0_TYPE_MGT)
2800 		rate = tp->mgmtrate;
2801 	else if (ismcast)
2802 		rate = tp->mcastrate;
2803 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2804 		rate = tp->ucastrate;
2805 	else if (m->m_flags & M_EAPOL)
2806 		rate = tp->mgmtrate;
2807 	else {
2808 		/* XXX pass pktlen */
2809 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2810 		rate = ni->ni_txrate;
2811 	}
2812 
2813 	/* Encrypt the frame if need be. */
2814 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2815 		/* Retrieve key for TX. */
2816 		k = ieee80211_crypto_encap(ni, m);
2817 		if (k == NULL) {
2818 			error = ENOBUFS;
2819 			goto fail;
2820 		}
2821 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2822 
2823 		/* 802.11 header may have moved. */
2824 		wh = mtod(m, struct ieee80211_frame *);
2825 	}
2826 	totlen = m->m_pkthdr.len;
2827 
2828 	if (ieee80211_radiotap_active_vap(vap)) {
2829 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2830 
2831 		tap->wt_flags = 0;
2832 		tap->wt_rate = rate;
2833 		if (k != NULL)
2834 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2835 
2836 		ieee80211_radiotap_tx(vap, m);
2837 	}
2838 
2839 	flags = 0;
2840 	if (!ismcast) {
2841 		/* Unicast frame, check if an ACK is expected. */
2842 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2843 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2844 			flags |= WPI_TX_NEED_ACK;
2845 	}
2846 
2847 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2848 		flags |= WPI_TX_AUTO_SEQ;
2849 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2850 		flags |= WPI_TX_MORE_FRAG;	/* Cannot happen yet. */
2851 
2852 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2853 	if (!ismcast) {
2854 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2855 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2856 			flags |= WPI_TX_NEED_RTS;
2857 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2858 		    WPI_RATE_IS_OFDM(rate)) {
2859 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2860 				flags |= WPI_TX_NEED_CTS;
2861 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2862 				flags |= WPI_TX_NEED_RTS;
2863 		}
2864 
2865 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2866 			flags |= WPI_TX_FULL_TXOP;
2867 	}
2868 
2869 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2870 	if (type == IEEE80211_FC0_TYPE_MGT) {
2871 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2872 
2873 		/* Tell HW to set timestamp in probe responses. */
2874 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2875 			flags |= WPI_TX_INSERT_TSTAMP;
2876 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2877 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2878 			tx->timeout = htole16(3);
2879 		else
2880 			tx->timeout = htole16(2);
2881 	}
2882 
2883 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2884 		tx->id = WPI_ID_BROADCAST;
2885 	else {
2886 		if (wn->id == WPI_ID_UNDEFINED) {
2887 			device_printf(sc->sc_dev,
2888 			    "%s: undefined node id\n", __func__);
2889 			error = EINVAL;
2890 			goto fail;
2891 		}
2892 
2893 		tx->id = wn->id;
2894 	}
2895 
2896 	if (k != NULL && !swcrypt) {
2897 		switch (k->wk_cipher->ic_cipher) {
2898 		case IEEE80211_CIPHER_AES_CCM:
2899 			tx->security = WPI_CIPHER_CCMP;
2900 			break;
2901 
2902 		default:
2903 			break;
2904 		}
2905 
2906 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2907 	}
2908 
2909 	tx->len = htole16(totlen);
2910 	tx->flags = htole32(flags);
2911 	tx->plcp = rate2plcp(rate);
2912 	tx->tid = tid;
2913 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2914 	tx->ofdm_mask = 0xff;
2915 	tx->cck_mask = 0x0f;
2916 	tx->rts_ntries = 7;
2917 	tx->data_ntries = tp->maxretry;
2918 
2919 	tx_data.ni = ni;
2920 	tx_data.m = m;
2921 	tx_data.size = sizeof(struct wpi_cmd_data);
2922 	tx_data.code = WPI_CMD_TX_DATA;
2923 	tx_data.ac = ac;
2924 
2925 	return wpi_cmd2(sc, &tx_data);
2926 
2927 fail:	m_freem(m);
2928 	return error;
2929 }
2930 
2931 static int
2932 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2933     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2934 {
2935 	struct ieee80211vap *vap = ni->ni_vap;
2936 	struct ieee80211_key *k = NULL;
2937 	struct ieee80211_frame *wh;
2938 	struct wpi_buf tx_data;
2939 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2940 	uint32_t flags;
2941 	uint8_t type;
2942 	int ac, rate, swcrypt, totlen;
2943 
2944 	wh = mtod(m, struct ieee80211_frame *);
2945 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2946 
2947 	ac = params->ibp_pri & 3;
2948 
2949 	/* Choose a TX rate index. */
2950 	rate = params->ibp_rate0;
2951 
2952 	flags = 0;
2953 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2954 		flags |= WPI_TX_AUTO_SEQ;
2955 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2956 		flags |= WPI_TX_NEED_ACK;
2957 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2958 		flags |= WPI_TX_NEED_RTS;
2959 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2960 		flags |= WPI_TX_NEED_CTS;
2961 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2962 		flags |= WPI_TX_FULL_TXOP;
2963 
2964 	/* Encrypt the frame if need be. */
2965 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2966 		/* Retrieve key for TX. */
2967 		k = ieee80211_crypto_encap(ni, m);
2968 		if (k == NULL) {
2969 			m_freem(m);
2970 			return ENOBUFS;
2971 		}
2972 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2973 
2974 		/* 802.11 header may have moved. */
2975 		wh = mtod(m, struct ieee80211_frame *);
2976 	}
2977 	totlen = m->m_pkthdr.len;
2978 
2979 	if (ieee80211_radiotap_active_vap(vap)) {
2980 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2981 
2982 		tap->wt_flags = 0;
2983 		tap->wt_rate = rate;
2984 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2985 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2986 
2987 		ieee80211_radiotap_tx(vap, m);
2988 	}
2989 
2990 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2991 	if (type == IEEE80211_FC0_TYPE_MGT) {
2992 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2993 
2994 		/* Tell HW to set timestamp in probe responses. */
2995 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2996 			flags |= WPI_TX_INSERT_TSTAMP;
2997 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2998 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2999 			tx->timeout = htole16(3);
3000 		else
3001 			tx->timeout = htole16(2);
3002 	}
3003 
3004 	if (k != NULL && !swcrypt) {
3005 		switch (k->wk_cipher->ic_cipher) {
3006 		case IEEE80211_CIPHER_AES_CCM:
3007 			tx->security = WPI_CIPHER_CCMP;
3008 			break;
3009 
3010 		default:
3011 			break;
3012 		}
3013 
3014 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3015 	}
3016 
3017 	tx->len = htole16(totlen);
3018 	tx->flags = htole32(flags);
3019 	tx->plcp = rate2plcp(rate);
3020 	tx->id = WPI_ID_BROADCAST;
3021 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3022 	tx->rts_ntries = params->ibp_try1;
3023 	tx->data_ntries = params->ibp_try0;
3024 
3025 	tx_data.ni = ni;
3026 	tx_data.m = m;
3027 	tx_data.size = sizeof(struct wpi_cmd_data);
3028 	tx_data.code = WPI_CMD_TX_DATA;
3029 	tx_data.ac = ac;
3030 
3031 	return wpi_cmd2(sc, &tx_data);
3032 }
3033 
3034 static int
3035 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3036     const struct ieee80211_bpf_params *params)
3037 {
3038 	struct ieee80211com *ic = ni->ni_ic;
3039 	struct ifnet *ifp = ic->ic_ifp;
3040 	struct wpi_softc *sc = ifp->if_softc;
3041 	int error = 0;
3042 
3043 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3044 
3045 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3046 		ieee80211_free_node(ni);
3047 		m_freem(m);
3048 		return ENETDOWN;
3049 	}
3050 
3051 	WPI_TX_LOCK(sc);
3052 	if (params == NULL) {
3053 		/*
3054 		 * Legacy path; interpret frame contents to decide
3055 		 * precisely how to send the frame.
3056 		 */
3057 		error = wpi_tx_data(sc, m, ni);
3058 	} else {
3059 		/*
3060 		 * Caller supplied explicit parameters to use in
3061 		 * sending the frame.
3062 		 */
3063 		error = wpi_tx_data_raw(sc, m, ni, params);
3064 	}
3065 	WPI_TX_UNLOCK(sc);
3066 
3067 	if (error != 0) {
3068 		/* NB: m is reclaimed on tx failure */
3069 		ieee80211_free_node(ni);
3070 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3071 
3072 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3073 
3074 		return error;
3075 	}
3076 
3077 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3078 
3079 	return 0;
3080 }
3081 
3082 /**
3083  * Process data waiting to be sent on the IFNET output queue
3084  */
3085 static void
3086 wpi_start(struct ifnet *ifp)
3087 {
3088 	struct wpi_softc *sc = ifp->if_softc;
3089 	struct ieee80211_node *ni;
3090 	struct mbuf *m;
3091 
3092 	WPI_TX_LOCK(sc);
3093 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3094 
3095 	for (;;) {
3096 		IF_LOCK(&ifp->if_snd);
3097 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3098 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3099 			IF_UNLOCK(&ifp->if_snd);
3100 			break;
3101 		}
3102 		IF_UNLOCK(&ifp->if_snd);
3103 
3104 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3105 		if (m == NULL)
3106 			break;
3107 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3108 		if (wpi_tx_data(sc, m, ni) != 0) {
3109 			ieee80211_free_node(ni);
3110 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3111 		}
3112 	}
3113 
3114 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3115 	WPI_TX_UNLOCK(sc);
3116 }
3117 
3118 static void
3119 wpi_start_task(void *arg0, int pending)
3120 {
3121 	struct wpi_softc *sc = arg0;
3122 	struct ifnet *ifp = sc->sc_ifp;
3123 
3124 	wpi_start(ifp);
3125 }
3126 
3127 static void
3128 wpi_watchdog_rfkill(void *arg)
3129 {
3130 	struct wpi_softc *sc = arg;
3131 	struct ifnet *ifp = sc->sc_ifp;
3132 	struct ieee80211com *ic = ifp->if_l2com;
3133 
3134 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3135 
3136 	/* No need to lock firmware memory. */
3137 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3138 		/* Radio kill switch is still off. */
3139 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3140 		    sc);
3141 	} else
3142 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3143 }
3144 
3145 static void
3146 wpi_scan_timeout(void *arg)
3147 {
3148 	struct wpi_softc *sc = arg;
3149 	struct ifnet *ifp = sc->sc_ifp;
3150 
3151 	if_printf(ifp, "scan timeout\n");
3152 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3153 }
3154 
3155 static void
3156 wpi_tx_timeout(void *arg)
3157 {
3158 	struct wpi_softc *sc = arg;
3159 	struct ifnet *ifp = sc->sc_ifp;
3160 
3161 	if_printf(ifp, "device timeout\n");
3162 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3163 	taskqueue_enqueue(sc->sc_tq, &sc->sc_reinittask);
3164 }
3165 
3166 static int
3167 wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3168 {
3169 	struct wpi_softc *sc = ifp->if_softc;
3170 	struct ieee80211com *ic = ifp->if_l2com;
3171 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3172 	struct ifreq *ifr = (struct ifreq *) data;
3173 	int error = 0;
3174 
3175 	switch (cmd) {
3176 	case SIOCGIFADDR:
3177 		error = ether_ioctl(ifp, cmd, data);
3178 		break;
3179 	case SIOCSIFFLAGS:
3180 		if (ifp->if_flags & IFF_UP) {
3181 			wpi_init(sc);
3182 
3183 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
3184 			    vap != NULL)
3185 				ieee80211_stop(vap);
3186 		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3187 			wpi_stop(sc);
3188 		break;
3189 	case SIOCGIFMEDIA:
3190 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3191 		break;
3192 	default:
3193 		error = EINVAL;
3194 		break;
3195 	}
3196 	return error;
3197 }
3198 
3199 /*
3200  * Send a command to the firmware.
3201  */
3202 static int
3203 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, size_t size,
3204     int async)
3205 {
3206 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3207 	struct wpi_tx_desc *desc;
3208 	struct wpi_tx_data *data;
3209 	struct wpi_tx_cmd *cmd;
3210 	struct mbuf *m;
3211 	bus_addr_t paddr;
3212 	int totlen, error;
3213 
3214 	WPI_TXQ_LOCK(sc);
3215 
3216 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3217 
3218 	if (sc->txq_active == 0) {
3219 		/* wpi_stop() was called */
3220 		error = 0;
3221 		goto fail;
3222 	}
3223 
3224 	if (async == 0)
3225 		WPI_LOCK_ASSERT(sc);
3226 
3227 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %zu async %d\n",
3228 	    __func__, wpi_cmd_str(code), size, async);
3229 
3230 	desc = &ring->desc[ring->cur];
3231 	data = &ring->data[ring->cur];
3232 	totlen = 4 + size;
3233 
3234 	if (size > sizeof cmd->data) {
3235 		/* Command is too large to fit in a descriptor. */
3236 		if (totlen > MCLBYTES) {
3237 			error = EINVAL;
3238 			goto fail;
3239 		}
3240 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3241 		if (m == NULL) {
3242 			error = ENOMEM;
3243 			goto fail;
3244 		}
3245 		cmd = mtod(m, struct wpi_tx_cmd *);
3246 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3247 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3248 		if (error != 0) {
3249 			m_freem(m);
3250 			goto fail;
3251 		}
3252 		data->m = m;
3253 	} else {
3254 		cmd = &ring->cmd[ring->cur];
3255 		paddr = data->cmd_paddr;
3256 	}
3257 
3258 	cmd->code = code;
3259 	cmd->flags = 0;
3260 	cmd->qid = ring->qid;
3261 	cmd->idx = ring->cur;
3262 	memcpy(cmd->data, buf, size);
3263 
3264 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3265 	desc->segs[0].addr = htole32(paddr);
3266 	desc->segs[0].len  = htole32(totlen);
3267 
3268 	if (size > sizeof cmd->data) {
3269 		bus_dmamap_sync(ring->data_dmat, data->map,
3270 		    BUS_DMASYNC_PREWRITE);
3271 	} else {
3272 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3273 		    BUS_DMASYNC_PREWRITE);
3274 	}
3275 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3276 	    BUS_DMASYNC_PREWRITE);
3277 
3278 	/* Kick command ring. */
3279 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3280 	sc->sc_update_tx_ring(sc, ring);
3281 
3282 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3283 
3284 	WPI_TXQ_UNLOCK(sc);
3285 
3286 	if (async)
3287 		return 0;
3288 
3289 	return mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3290 
3291 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3292 
3293 	WPI_TXQ_UNLOCK(sc);
3294 
3295 	return error;
3296 }
3297 
3298 /*
3299  * Configure HW multi-rate retries.
3300  */
3301 static int
3302 wpi_mrr_setup(struct wpi_softc *sc)
3303 {
3304 	struct ifnet *ifp = sc->sc_ifp;
3305 	struct ieee80211com *ic = ifp->if_l2com;
3306 	struct wpi_mrr_setup mrr;
3307 	int i, error;
3308 
3309 	/* CCK rates (not used with 802.11a). */
3310 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3311 		mrr.rates[i].flags = 0;
3312 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3313 		/* Fallback to the immediate lower CCK rate (if any.) */
3314 		mrr.rates[i].next =
3315 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3316 		/* Try twice at this rate before falling back to "next". */
3317 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3318 	}
3319 	/* OFDM rates (not used with 802.11b). */
3320 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3321 		mrr.rates[i].flags = 0;
3322 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3323 		/* Fallback to the immediate lower rate (if any.) */
3324 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3325 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3326 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3327 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3328 		    i - 1;
3329 		/* Try twice at this rate before falling back to "next". */
3330 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3331 	}
3332 	/* Setup MRR for control frames. */
3333 	mrr.which = htole32(WPI_MRR_CTL);
3334 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3335 	if (error != 0) {
3336 		device_printf(sc->sc_dev,
3337 		    "could not setup MRR for control frames\n");
3338 		return error;
3339 	}
3340 	/* Setup MRR for data frames. */
3341 	mrr.which = htole32(WPI_MRR_DATA);
3342 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3343 	if (error != 0) {
3344 		device_printf(sc->sc_dev,
3345 		    "could not setup MRR for data frames\n");
3346 		return error;
3347 	}
3348 	return 0;
3349 }
3350 
3351 static int
3352 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3353 {
3354 	struct ieee80211com *ic = ni->ni_ic;
3355 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3356 	struct wpi_node *wn = WPI_NODE(ni);
3357 	struct wpi_node_info node;
3358 	int error;
3359 
3360 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3361 
3362 	if (wn->id == WPI_ID_UNDEFINED)
3363 		return EINVAL;
3364 
3365 	memset(&node, 0, sizeof node);
3366 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3367 	node.id = wn->id;
3368 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3369 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3370 	node.action = htole32(WPI_ACTION_SET_RATE);
3371 	node.antenna = WPI_ANTENNA_BOTH;
3372 
3373 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3374 	    wn->id, ether_sprintf(ni->ni_macaddr));
3375 
3376 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3377 	if (error != 0) {
3378 		device_printf(sc->sc_dev,
3379 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3380 		    error);
3381 		return error;
3382 	}
3383 
3384 	if (wvp->wv_gtk != 0) {
3385 		error = wpi_set_global_keys(ni);
3386 		if (error != 0) {
3387 			device_printf(sc->sc_dev,
3388 			    "%s: error while setting global keys\n", __func__);
3389 			return ENXIO;
3390 		}
3391 	}
3392 
3393 	return 0;
3394 }
3395 
3396 /*
3397  * Broadcast node is used to send group-addressed and management frames.
3398  */
3399 static int
3400 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3401 {
3402 	struct ifnet *ifp = sc->sc_ifp;
3403 	struct ieee80211com *ic = ifp->if_l2com;
3404 	struct wpi_node_info node;
3405 
3406 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3407 
3408 	memset(&node, 0, sizeof node);
3409 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3410 	node.id = WPI_ID_BROADCAST;
3411 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3412 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3413 	node.action = htole32(WPI_ACTION_SET_RATE);
3414 	node.antenna = WPI_ANTENNA_BOTH;
3415 
3416 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3417 
3418 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3419 }
3420 
3421 static int
3422 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3423 {
3424 	struct wpi_node *wn = WPI_NODE(ni);
3425 	int error;
3426 
3427 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3428 
3429 	wn->id = wpi_add_node_entry_sta(sc);
3430 
3431 	if ((error = wpi_add_node(sc, ni)) != 0) {
3432 		wpi_del_node_entry(sc, wn->id);
3433 		wn->id = WPI_ID_UNDEFINED;
3434 		return error;
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 static int
3441 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3442 {
3443 	struct wpi_node *wn = WPI_NODE(ni);
3444 	int error;
3445 
3446 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3447 	    ("the node %d was added before", wn->id));
3448 
3449 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3450 
3451 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3452 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3453 		return ENOMEM;
3454 	}
3455 
3456 	if ((error = wpi_add_node(sc, ni)) != 0) {
3457 		wpi_del_node_entry(sc, wn->id);
3458 		wn->id = WPI_ID_UNDEFINED;
3459 		return error;
3460 	}
3461 
3462 	return 0;
3463 }
3464 
3465 static void
3466 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3467 {
3468 	struct wpi_node *wn = WPI_NODE(ni);
3469 	struct wpi_cmd_del_node node;
3470 	int error;
3471 
3472 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3473 
3474 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3475 
3476 	memset(&node, 0, sizeof node);
3477 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3478 	node.count = 1;
3479 
3480 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3481 	    wn->id, ether_sprintf(ni->ni_macaddr));
3482 
3483 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3484 	if (error != 0) {
3485 		device_printf(sc->sc_dev,
3486 		    "%s: could not delete node %u, error %d\n", __func__,
3487 		    wn->id, error);
3488 	}
3489 }
3490 
3491 static int
3492 wpi_updateedca(struct ieee80211com *ic)
3493 {
3494 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3495 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
3496 	struct wpi_edca_params cmd;
3497 	int aci, error;
3498 
3499 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3500 
3501 	memset(&cmd, 0, sizeof cmd);
3502 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3503 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3504 		const struct wmeParams *ac =
3505 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3506 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3507 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3508 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3509 		cmd.ac[aci].txoplimit =
3510 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3511 
3512 		DPRINTF(sc, WPI_DEBUG_EDCA,
3513 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3514 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3515 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3516 		    cmd.ac[aci].txoplimit);
3517 	}
3518 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3519 
3520 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3521 
3522 	return error;
3523 #undef WPI_EXP2
3524 }
3525 
3526 static void
3527 wpi_set_promisc(struct wpi_softc *sc)
3528 {
3529 	struct ifnet *ifp = sc->sc_ifp;
3530 	struct ieee80211com *ic = ifp->if_l2com;
3531 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3532 	uint32_t promisc_filter;
3533 
3534 	promisc_filter = WPI_FILTER_CTL;
3535 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3536 		promisc_filter |= WPI_FILTER_PROMISC;
3537 
3538 	if (ifp->if_flags & IFF_PROMISC)
3539 		sc->rxon.filter |= htole32(promisc_filter);
3540 	else
3541 		sc->rxon.filter &= ~htole32(promisc_filter);
3542 }
3543 
3544 static void
3545 wpi_update_promisc(struct ieee80211com *ic)
3546 {
3547 	struct wpi_softc *sc = ic->ic_softc;
3548 
3549 	WPI_RXON_LOCK(sc);
3550 	wpi_set_promisc(sc);
3551 
3552 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3553 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3554 		    __func__);
3555 	}
3556 	WPI_RXON_UNLOCK(sc);
3557 }
3558 
3559 static void
3560 wpi_update_mcast(struct ieee80211com *ic)
3561 {
3562 	/* Ignore */
3563 }
3564 
3565 static void
3566 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3567 {
3568 	struct wpi_cmd_led led;
3569 
3570 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3571 
3572 	led.which = which;
3573 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3574 	led.off = off;
3575 	led.on = on;
3576 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3577 }
3578 
3579 static int
3580 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3581 {
3582 	struct wpi_cmd_timing cmd;
3583 	uint64_t val, mod;
3584 
3585 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3586 
3587 	memset(&cmd, 0, sizeof cmd);
3588 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3589 	cmd.bintval = htole16(ni->ni_intval);
3590 	cmd.lintval = htole16(10);
3591 
3592 	/* Compute remaining time until next beacon. */
3593 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3594 	mod = le64toh(cmd.tstamp) % val;
3595 	cmd.binitval = htole32((uint32_t)(val - mod));
3596 
3597 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3598 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3599 
3600 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3601 }
3602 
3603 /*
3604  * This function is called periodically (every 60 seconds) to adjust output
3605  * power to temperature changes.
3606  */
3607 static void
3608 wpi_power_calibration(struct wpi_softc *sc)
3609 {
3610 	int temp;
3611 
3612 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3613 
3614 	/* Update sensor data. */
3615 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3616 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3617 
3618 	/* Sanity-check read value. */
3619 	if (temp < -260 || temp > 25) {
3620 		/* This can't be correct, ignore. */
3621 		DPRINTF(sc, WPI_DEBUG_TEMP,
3622 		    "out-of-range temperature reported: %d\n", temp);
3623 		return;
3624 	}
3625 
3626 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3627 
3628 	/* Adjust Tx power if need be. */
3629 	if (abs(temp - sc->temp) <= 6)
3630 		return;
3631 
3632 	sc->temp = temp;
3633 
3634 	if (wpi_set_txpower(sc, 1) != 0) {
3635 		/* just warn, too bad for the automatic calibration... */
3636 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3637 	}
3638 }
3639 
3640 /*
3641  * Set TX power for current channel.
3642  */
3643 static int
3644 wpi_set_txpower(struct wpi_softc *sc, int async)
3645 {
3646 	struct wpi_power_group *group;
3647 	struct wpi_cmd_txpower cmd;
3648 	uint8_t chan;
3649 	int idx, is_chan_5ghz, i;
3650 
3651 	/* Retrieve current channel from last RXON. */
3652 	chan = sc->rxon.chan;
3653 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3654 
3655 	/* Find the TX power group to which this channel belongs. */
3656 	if (is_chan_5ghz) {
3657 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3658 			if (chan <= group->chan)
3659 				break;
3660 	} else
3661 		group = &sc->groups[0];
3662 
3663 	memset(&cmd, 0, sizeof cmd);
3664 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3665 	cmd.chan = htole16(chan);
3666 
3667 	/* Set TX power for all OFDM and CCK rates. */
3668 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3669 		/* Retrieve TX power for this channel/rate. */
3670 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3671 
3672 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3673 
3674 		if (is_chan_5ghz) {
3675 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3676 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3677 		} else {
3678 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3679 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3680 		}
3681 		DPRINTF(sc, WPI_DEBUG_TEMP,
3682 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3683 	}
3684 
3685 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3686 }
3687 
3688 /*
3689  * Determine Tx power index for a given channel/rate combination.
3690  * This takes into account the regulatory information from EEPROM and the
3691  * current temperature.
3692  */
3693 static int
3694 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3695     uint8_t chan, int is_chan_5ghz, int ridx)
3696 {
3697 /* Fixed-point arithmetic division using a n-bit fractional part. */
3698 #define fdivround(a, b, n)	\
3699 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3700 
3701 /* Linear interpolation. */
3702 #define interpolate(x, x1, y1, x2, y2, n)	\
3703 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3704 
3705 	struct wpi_power_sample *sample;
3706 	int pwr, idx;
3707 
3708 	/* Default TX power is group maximum TX power minus 3dB. */
3709 	pwr = group->maxpwr / 2;
3710 
3711 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3712 	switch (ridx) {
3713 	case WPI_RIDX_OFDM36:
3714 		pwr -= is_chan_5ghz ?  5 : 0;
3715 		break;
3716 	case WPI_RIDX_OFDM48:
3717 		pwr -= is_chan_5ghz ? 10 : 7;
3718 		break;
3719 	case WPI_RIDX_OFDM54:
3720 		pwr -= is_chan_5ghz ? 12 : 9;
3721 		break;
3722 	}
3723 
3724 	/* Never exceed the channel maximum allowed TX power. */
3725 	pwr = min(pwr, sc->maxpwr[chan]);
3726 
3727 	/* Retrieve TX power index into gain tables from samples. */
3728 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3729 		if (pwr > sample[1].power)
3730 			break;
3731 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3732 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3733 	    sample[1].power, sample[1].index, 19);
3734 
3735 	/*-
3736 	 * Adjust power index based on current temperature:
3737 	 * - if cooler than factory-calibrated: decrease output power
3738 	 * - if warmer than factory-calibrated: increase output power
3739 	 */
3740 	idx -= (sc->temp - group->temp) * 11 / 100;
3741 
3742 	/* Decrease TX power for CCK rates (-5dB). */
3743 	if (ridx >= WPI_RIDX_CCK1)
3744 		idx += 10;
3745 
3746 	/* Make sure idx stays in a valid range. */
3747 	if (idx < 0)
3748 		return 0;
3749 	if (idx > WPI_MAX_PWR_INDEX)
3750 		return WPI_MAX_PWR_INDEX;
3751 	return idx;
3752 
3753 #undef interpolate
3754 #undef fdivround
3755 }
3756 
3757 /*
3758  * Set STA mode power saving level (between 0 and 5).
3759  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3760  */
3761 static int
3762 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3763 {
3764 	struct wpi_pmgt_cmd cmd;
3765 	const struct wpi_pmgt *pmgt;
3766 	uint32_t max, skip_dtim;
3767 	uint32_t reg;
3768 	int i;
3769 
3770 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3771 	    "%s: dtim=%d, level=%d, async=%d\n",
3772 	    __func__, dtim, level, async);
3773 
3774 	/* Select which PS parameters to use. */
3775 	if (dtim <= 10)
3776 		pmgt = &wpi_pmgt[0][level];
3777 	else
3778 		pmgt = &wpi_pmgt[1][level];
3779 
3780 	memset(&cmd, 0, sizeof cmd);
3781 	WPI_TXQ_LOCK(sc);
3782 	if (level != 0)	{	/* not CAM */
3783 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3784 		sc->sc_flags |= WPI_PS_PATH;
3785 	} else
3786 		sc->sc_flags &= ~WPI_PS_PATH;
3787 	WPI_TXQ_UNLOCK(sc);
3788 	/* Retrieve PCIe Active State Power Management (ASPM). */
3789 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
3790 	if (!(reg & 0x1))	/* L0s Entry disabled. */
3791 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3792 
3793 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3794 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3795 
3796 	if (dtim == 0) {
3797 		dtim = 1;
3798 		skip_dtim = 0;
3799 	} else
3800 		skip_dtim = pmgt->skip_dtim;
3801 
3802 	if (skip_dtim != 0) {
3803 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3804 		max = pmgt->intval[4];
3805 		if (max == (uint32_t)-1)
3806 			max = dtim * (skip_dtim + 1);
3807 		else if (max > dtim)
3808 			max = (max / dtim) * dtim;
3809 	} else
3810 		max = dtim;
3811 
3812 	for (i = 0; i < 5; i++)
3813 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3814 
3815 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3816 }
3817 
3818 static int
3819 wpi_send_btcoex(struct wpi_softc *sc)
3820 {
3821 	struct wpi_bluetooth cmd;
3822 
3823 	memset(&cmd, 0, sizeof cmd);
3824 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3825 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3826 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3827 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3828 	    __func__);
3829 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3830 }
3831 
3832 static int
3833 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3834 {
3835 	int error;
3836 
3837 	if (async)
3838 		WPI_RXON_LOCK_ASSERT(sc);
3839 
3840 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3841 		struct wpi_assoc rxon_assoc;
3842 
3843 		rxon_assoc.flags = sc->rxon.flags;
3844 		rxon_assoc.filter = sc->rxon.filter;
3845 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3846 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3847 		rxon_assoc.reserved = 0;
3848 
3849 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3850 		    sizeof (struct wpi_assoc), async);
3851 		if (error != 0) {
3852 			device_printf(sc->sc_dev,
3853 			    "RXON_ASSOC command failed, error %d\n", error);
3854 			return error;
3855 		}
3856 	} else {
3857 		if (async) {
3858 			WPI_NT_LOCK(sc);
3859 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3860 			    sizeof (struct wpi_rxon), async);
3861 			if (error == 0)
3862 				wpi_clear_node_table(sc);
3863 			WPI_NT_UNLOCK(sc);
3864 		} else {
3865 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3866 			    sizeof (struct wpi_rxon), async);
3867 			if (error == 0)
3868 				wpi_clear_node_table(sc);
3869 		}
3870 
3871 		if (error != 0) {
3872 			device_printf(sc->sc_dev,
3873 			    "RXON command failed, error %d\n", error);
3874 			return error;
3875 		}
3876 
3877 		/* Add broadcast node. */
3878 		error = wpi_add_broadcast_node(sc, async);
3879 		if (error != 0) {
3880 			device_printf(sc->sc_dev,
3881 			    "could not add broadcast node, error %d\n", error);
3882 			return error;
3883 		}
3884 	}
3885 
3886 	/* Configuration has changed, set Tx power accordingly. */
3887 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3888 		device_printf(sc->sc_dev,
3889 		    "%s: could not set TX power, error %d\n", __func__, error);
3890 		return error;
3891 	}
3892 
3893 	return 0;
3894 }
3895 
3896 /**
3897  * Configure the card to listen to a particular channel, this transisions the
3898  * card in to being able to receive frames from remote devices.
3899  */
3900 static int
3901 wpi_config(struct wpi_softc *sc)
3902 {
3903 	struct ifnet *ifp = sc->sc_ifp;
3904 	struct ieee80211com *ic = ifp->if_l2com;
3905 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3906 	struct ieee80211_channel *c = ic->ic_curchan;
3907 	int error;
3908 
3909 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3910 
3911 	/* Set power saving level to CAM during initialization. */
3912 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3913 		device_printf(sc->sc_dev,
3914 		    "%s: could not set power saving level\n", __func__);
3915 		return error;
3916 	}
3917 
3918 	/* Configure bluetooth coexistence. */
3919 	if ((error = wpi_send_btcoex(sc)) != 0) {
3920 		device_printf(sc->sc_dev,
3921 		    "could not configure bluetooth coexistence\n");
3922 		return error;
3923 	}
3924 
3925 	/* Configure adapter. */
3926 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3927 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3928 
3929 	/* Set default channel. */
3930 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3931 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3932 	if (IEEE80211_IS_CHAN_2GHZ(c))
3933 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3934 
3935 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3936 	switch (ic->ic_opmode) {
3937 	case IEEE80211_M_STA:
3938 		sc->rxon.mode = WPI_MODE_STA;
3939 		break;
3940 	case IEEE80211_M_IBSS:
3941 		sc->rxon.mode = WPI_MODE_IBSS;
3942 		sc->rxon.filter |= WPI_FILTER_BEACON;
3943 		break;
3944 	case IEEE80211_M_HOSTAP:
3945 		/* XXX workaround for beaconing */
3946 		sc->rxon.mode = WPI_MODE_IBSS;
3947 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3948 		break;
3949 	case IEEE80211_M_AHDEMO:
3950 		sc->rxon.mode = WPI_MODE_HOSTAP;
3951 		break;
3952 	case IEEE80211_M_MONITOR:
3953 		sc->rxon.mode = WPI_MODE_MONITOR;
3954 		break;
3955 	default:
3956 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3957 		    ic->ic_opmode);
3958 		return EINVAL;
3959 	}
3960 	sc->rxon.filter = htole32(sc->rxon.filter);
3961 	wpi_set_promisc(sc);
3962 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3963 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3964 
3965 	/* XXX Current configuration may be unusable. */
3966 	if (IEEE80211_IS_CHAN_NOADHOC(c) && sc->rxon.mode == WPI_MODE_IBSS) {
3967 		device_printf(sc->sc_dev,
3968 		    "%s: invalid channel (%d) selected for IBSS mode\n",
3969 		    __func__, ieee80211_chan2ieee(ic, c));
3970 		return EINVAL;
3971 	}
3972 
3973 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3974 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3975 		    __func__);
3976 		return error;
3977 	}
3978 
3979 	/* Setup rate scalling. */
3980 	if ((error = wpi_mrr_setup(sc)) != 0) {
3981 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3982 		    error);
3983 		return error;
3984 	}
3985 
3986 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3987 
3988 	return 0;
3989 }
3990 
3991 static uint16_t
3992 wpi_get_active_dwell_time(struct wpi_softc *sc,
3993     struct ieee80211_channel *c, uint8_t n_probes)
3994 {
3995 	/* No channel? Default to 2GHz settings. */
3996 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3997 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3998 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3999 	}
4000 
4001 	/* 5GHz dwell time. */
4002 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4003 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4004 }
4005 
4006 /*
4007  * Limit the total dwell time.
4008  *
4009  * Returns the dwell time in milliseconds.
4010  */
4011 static uint16_t
4012 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4013 {
4014 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4015 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4016 	int bintval = 0;
4017 
4018 	/* bintval is in TU (1.024mS) */
4019 	if (vap != NULL)
4020 		bintval = vap->iv_bss->ni_intval;
4021 
4022 	/*
4023 	 * If it's non-zero, we should calculate the minimum of
4024 	 * it and the DWELL_BASE.
4025 	 *
4026 	 * XXX Yes, the math should take into account that bintval
4027 	 * is 1.024mS, not 1mS..
4028 	 */
4029 	if (bintval > 0) {
4030 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4031 		    bintval);
4032 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4033 	}
4034 
4035 	/* No association context? Default. */
4036 	return dwell_time;
4037 }
4038 
4039 static uint16_t
4040 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4041 {
4042 	uint16_t passive;
4043 
4044 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4045 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4046 	else
4047 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4048 
4049 	/* Clamp to the beacon interval if we're associated. */
4050 	return (wpi_limit_dwell(sc, passive));
4051 }
4052 
4053 static uint32_t
4054 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4055 {
4056 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4057 	uint32_t nbeacons = time / bintval;
4058 
4059 	if (mod > WPI_PAUSE_MAX_TIME)
4060 		mod = WPI_PAUSE_MAX_TIME;
4061 
4062 	return WPI_PAUSE_SCAN(nbeacons, mod);
4063 }
4064 
4065 /*
4066  * Send a scan request to the firmware.
4067  */
4068 static int
4069 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4070 {
4071 	struct ifnet *ifp = sc->sc_ifp;
4072 	struct ieee80211com *ic = ifp->if_l2com;
4073 	struct ieee80211_scan_state *ss = ic->ic_scan;
4074 	struct ieee80211vap *vap = ss->ss_vap;
4075 	struct wpi_scan_hdr *hdr;
4076 	struct wpi_cmd_data *tx;
4077 	struct wpi_scan_essid *essids;
4078 	struct wpi_scan_chan *chan;
4079 	struct ieee80211_frame *wh;
4080 	struct ieee80211_rateset *rs;
4081 	uint16_t dwell_active, dwell_passive;
4082 	uint8_t *buf, *frm;
4083 	int bgscan, bintval, buflen, error, i, nssid;
4084 
4085 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4086 
4087 	/*
4088 	 * We are absolutely not allowed to send a scan command when another
4089 	 * scan command is pending.
4090 	 */
4091 	if (callout_pending(&sc->scan_timeout)) {
4092 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4093 		    __func__);
4094 		error = EAGAIN;
4095 		goto fail;
4096 	}
4097 
4098 	bgscan = wpi_check_bss_filter(sc);
4099 	bintval = vap->iv_bss->ni_intval;
4100 	if (bgscan != 0 &&
4101 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4102 		error = EOPNOTSUPP;
4103 		goto fail;
4104 	}
4105 
4106 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4107 	if (buf == NULL) {
4108 		device_printf(sc->sc_dev,
4109 		    "%s: could not allocate buffer for scan command\n",
4110 		    __func__);
4111 		error = ENOMEM;
4112 		goto fail;
4113 	}
4114 	hdr = (struct wpi_scan_hdr *)buf;
4115 
4116 	/*
4117 	 * Move to the next channel if no packets are received within 10 msecs
4118 	 * after sending the probe request.
4119 	 */
4120 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4121 	hdr->quiet_threshold = htole16(1);
4122 
4123 	if (bgscan != 0) {
4124 		/*
4125 		 * Max needs to be greater than active and passive and quiet!
4126 		 * It's also in microseconds!
4127 		 */
4128 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4129 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4130 		    bintval));
4131 	}
4132 
4133 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4134 
4135 	tx = (struct wpi_cmd_data *)(hdr + 1);
4136 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4137 	tx->id = WPI_ID_BROADCAST;
4138 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4139 
4140 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4141 		/* Send probe requests at 6Mbps. */
4142 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4143 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4144 	} else {
4145 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4146 		/* Send probe requests at 1Mbps. */
4147 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4148 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4149 	}
4150 
4151 	essids = (struct wpi_scan_essid *)(tx + 1);
4152 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4153 	for (i = 0; i < nssid; i++) {
4154 		essids[i].id = IEEE80211_ELEMID_SSID;
4155 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4156 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4157 #ifdef WPI_DEBUG
4158 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4159 			printf("Scanning Essid: ");
4160 			ieee80211_print_essid(essids[i].data, essids[i].len);
4161 			printf("\n");
4162 		}
4163 #endif
4164 	}
4165 
4166 	/*
4167 	 * Build a probe request frame.  Most of the following code is a
4168 	 * copy & paste of what is done in net80211.
4169 	 */
4170 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4171 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4172 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4173 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4174 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4175 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4176 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4177 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
4178 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
4179 
4180 	frm = (uint8_t *)(wh + 1);
4181 	frm = ieee80211_add_ssid(frm, NULL, 0);
4182 	frm = ieee80211_add_rates(frm, rs);
4183 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4184 		frm = ieee80211_add_xrates(frm, rs);
4185 
4186 	/* Set length of probe request. */
4187 	tx->len = htole16(frm - (uint8_t *)wh);
4188 
4189 	/*
4190 	 * Construct information about the channel that we
4191 	 * want to scan. The firmware expects this to be directly
4192 	 * after the scan probe request
4193 	 */
4194 	chan = (struct wpi_scan_chan *)frm;
4195 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4196 	chan->flags = 0;
4197 	if (nssid) {
4198 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4199 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4200 	} else
4201 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4202 
4203 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4204 		chan->flags |= WPI_CHAN_ACTIVE;
4205 
4206 	/*
4207 	 * Calculate the active/passive dwell times.
4208 	 */
4209 
4210 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4211 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4212 
4213 	/* Make sure they're valid. */
4214 	if (dwell_active > dwell_passive)
4215 		dwell_active = dwell_passive;
4216 
4217 	chan->active = htole16(dwell_active);
4218 	chan->passive = htole16(dwell_passive);
4219 
4220 	chan->dsp_gain = 0x6e;  /* Default level */
4221 
4222 	if (IEEE80211_IS_CHAN_5GHZ(c))
4223 		chan->rf_gain = 0x3b;
4224 	else
4225 		chan->rf_gain = 0x28;
4226 
4227 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4228 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4229 
4230 	hdr->nchan++;
4231 
4232 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4233 		/* XXX Force probe request transmission. */
4234 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4235 
4236 		chan++;
4237 
4238 		/* Reduce unnecessary delay. */
4239 		chan->flags = 0;
4240 		chan->passive = chan->active = hdr->quiet_time;
4241 
4242 		hdr->nchan++;
4243 	}
4244 
4245 	chan++;
4246 
4247 	buflen = (uint8_t *)chan - buf;
4248 	hdr->len = htole16(buflen);
4249 
4250 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4251 	    hdr->nchan);
4252 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4253 	free(buf, M_DEVBUF);
4254 
4255 	if (error != 0)
4256 		goto fail;
4257 
4258 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4259 
4260 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4261 
4262 	return 0;
4263 
4264 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4265 
4266 	return error;
4267 }
4268 
4269 static int
4270 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4271 {
4272 	struct ieee80211com *ic = vap->iv_ic;
4273 	struct ieee80211_node *ni = vap->iv_bss;
4274 	struct ieee80211_channel *c = ni->ni_chan;
4275 	int error;
4276 
4277 	WPI_RXON_LOCK(sc);
4278 
4279 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4280 
4281 	/* Update adapter configuration. */
4282 	sc->rxon.associd = 0;
4283 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4284 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4285 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4286 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4287 	if (IEEE80211_IS_CHAN_2GHZ(c))
4288 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4289 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4290 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4291 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4292 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4293 	if (IEEE80211_IS_CHAN_A(c)) {
4294 		sc->rxon.cck_mask  = 0;
4295 		sc->rxon.ofdm_mask = 0x15;
4296 	} else if (IEEE80211_IS_CHAN_B(c)) {
4297 		sc->rxon.cck_mask  = 0x03;
4298 		sc->rxon.ofdm_mask = 0;
4299 	} else {
4300 		/* Assume 802.11b/g. */
4301 		sc->rxon.cck_mask  = 0x0f;
4302 		sc->rxon.ofdm_mask = 0x15;
4303 	}
4304 
4305 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4306 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4307 	    sc->rxon.ofdm_mask);
4308 
4309 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4310 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4311 		    __func__);
4312 	}
4313 
4314 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4315 
4316 	WPI_RXON_UNLOCK(sc);
4317 
4318 	return error;
4319 }
4320 
4321 static int
4322 wpi_config_beacon(struct wpi_vap *wvp)
4323 {
4324 	struct ieee80211com *ic = wvp->wv_vap.iv_ic;
4325 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4326 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4327 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4328 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4329 	struct ieee80211_tim_ie *tie;
4330 	struct mbuf *m;
4331 	uint8_t *ptr;
4332 	int error;
4333 
4334 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4335 
4336 	WPI_VAP_LOCK_ASSERT(wvp);
4337 
4338 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4339 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4340 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4341 
4342 	/* XXX seems to be unused */
4343 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4344 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4345 		ptr = mtod(bcn->m, uint8_t *);
4346 
4347 		cmd->tim = htole16(bo->bo_tim - ptr);
4348 		cmd->timsz = tie->tim_len;
4349 	}
4350 
4351 	/* Necessary for recursion in ieee80211_beacon_update(). */
4352 	m = bcn->m;
4353 	bcn->m = m_dup(m, M_NOWAIT);
4354 	if (bcn->m == NULL) {
4355 		device_printf(sc->sc_dev,
4356 		    "%s: could not copy beacon frame\n", __func__);
4357 		error = ENOMEM;
4358 		goto end;
4359 	}
4360 
4361 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4362 		device_printf(sc->sc_dev,
4363 		    "%s: could not update beacon frame, error %d", __func__,
4364 		    error);
4365 	}
4366 
4367 	/* Restore mbuf. */
4368 end:	bcn->m = m;
4369 
4370 	return error;
4371 }
4372 
4373 static int
4374 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4375 {
4376 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
4377 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4378 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4379 	struct mbuf *m;
4380 	int error;
4381 
4382 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4383 
4384 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4385 		return EINVAL;
4386 
4387 	m = ieee80211_beacon_alloc(ni, bo);
4388 	if (m == NULL) {
4389 		device_printf(sc->sc_dev,
4390 		    "%s: could not allocate beacon frame\n", __func__);
4391 		return ENOMEM;
4392 	}
4393 
4394 	WPI_VAP_LOCK(wvp);
4395 	if (bcn->m != NULL)
4396 		m_freem(bcn->m);
4397 
4398 	bcn->m = m;
4399 
4400 	error = wpi_config_beacon(wvp);
4401 	WPI_VAP_UNLOCK(wvp);
4402 
4403 	return error;
4404 }
4405 
4406 static void
4407 wpi_update_beacon(struct ieee80211vap *vap, int item)
4408 {
4409 	struct wpi_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4410 	struct wpi_vap *wvp = WPI_VAP(vap);
4411 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4412 	struct ieee80211_beacon_offsets *bo = &wvp->wv_boff;
4413 	struct ieee80211_node *ni = vap->iv_bss;
4414 	int mcast = 0;
4415 
4416 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4417 
4418 	WPI_VAP_LOCK(wvp);
4419 	if (bcn->m == NULL) {
4420 		bcn->m = ieee80211_beacon_alloc(ni, bo);
4421 		if (bcn->m == NULL) {
4422 			device_printf(sc->sc_dev,
4423 			    "%s: could not allocate beacon frame\n", __func__);
4424 
4425 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4426 			    __func__);
4427 
4428 			WPI_VAP_UNLOCK(wvp);
4429 			return;
4430 		}
4431 	}
4432 	WPI_VAP_UNLOCK(wvp);
4433 
4434 	if (item == IEEE80211_BEACON_TIM)
4435 		mcast = 1;	/* TODO */
4436 
4437 	setbit(bo->bo_flags, item);
4438 	ieee80211_beacon_update(ni, bo, bcn->m, mcast);
4439 
4440 	WPI_VAP_LOCK(wvp);
4441 	wpi_config_beacon(wvp);
4442 	WPI_VAP_UNLOCK(wvp);
4443 
4444 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4445 }
4446 
4447 static void
4448 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4449 {
4450 	struct ieee80211vap *vap = ni->ni_vap;
4451 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4452 	struct wpi_node *wn = WPI_NODE(ni);
4453 	int error;
4454 
4455 	WPI_NT_LOCK(sc);
4456 
4457 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4458 
4459 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4460 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4461 			device_printf(sc->sc_dev,
4462 			    "%s: could not add IBSS node, error %d\n",
4463 			    __func__, error);
4464 		}
4465 	}
4466 	WPI_NT_UNLOCK(sc);
4467 }
4468 
4469 static int
4470 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4471 {
4472 	struct ieee80211com *ic = vap->iv_ic;
4473 	struct ieee80211_node *ni = vap->iv_bss;
4474 	struct ieee80211_channel *c = ni->ni_chan;
4475 	int error;
4476 
4477 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4478 
4479 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4480 		/* Link LED blinks while monitoring. */
4481 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4482 		return 0;
4483 	}
4484 
4485 	/* XXX kernel panic workaround */
4486 	if (c == IEEE80211_CHAN_ANYC) {
4487 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4488 		    __func__);
4489 		return EINVAL;
4490 	}
4491 
4492 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4493 		device_printf(sc->sc_dev,
4494 		    "%s: could not set timing, error %d\n", __func__, error);
4495 		return error;
4496 	}
4497 
4498 	/* Update adapter configuration. */
4499 	WPI_RXON_LOCK(sc);
4500 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4501 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4502 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4503 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4504 	if (IEEE80211_IS_CHAN_2GHZ(c))
4505 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4506 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4507 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4508 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4509 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4510 	if (IEEE80211_IS_CHAN_A(c)) {
4511 		sc->rxon.cck_mask  = 0;
4512 		sc->rxon.ofdm_mask = 0x15;
4513 	} else if (IEEE80211_IS_CHAN_B(c)) {
4514 		sc->rxon.cck_mask  = 0x03;
4515 		sc->rxon.ofdm_mask = 0;
4516 	} else {
4517 		/* Assume 802.11b/g. */
4518 		sc->rxon.cck_mask  = 0x0f;
4519 		sc->rxon.ofdm_mask = 0x15;
4520 	}
4521 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4522 
4523 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4524 	    sc->rxon.chan, sc->rxon.flags);
4525 
4526 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4527 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4528 		    __func__);
4529 		return error;
4530 	}
4531 
4532 	/* Start periodic calibration timer. */
4533 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4534 
4535 	WPI_RXON_UNLOCK(sc);
4536 
4537 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4538 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4539 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4540 			device_printf(sc->sc_dev,
4541 			    "%s: could not setup beacon, error %d\n", __func__,
4542 			    error);
4543 			return error;
4544 		}
4545 	}
4546 
4547 	if (vap->iv_opmode == IEEE80211_M_STA) {
4548 		/* Add BSS node. */
4549 		WPI_NT_LOCK(sc);
4550 		error = wpi_add_sta_node(sc, ni);
4551 		WPI_NT_UNLOCK(sc);
4552 		if (error != 0) {
4553 			device_printf(sc->sc_dev,
4554 			    "%s: could not add BSS node, error %d\n", __func__,
4555 			    error);
4556 			return error;
4557 		}
4558 	}
4559 
4560 	/* Link LED always on while associated. */
4561 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4562 
4563 	/* Enable power-saving mode if requested by user. */
4564 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4565 	    vap->iv_opmode != IEEE80211_M_IBSS)
4566 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4567 
4568 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4569 
4570 	return 0;
4571 }
4572 
4573 static int
4574 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4575 {
4576 	const struct ieee80211_cipher *cip = k->wk_cipher;
4577 	struct ieee80211vap *vap = ni->ni_vap;
4578 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4579 	struct wpi_node *wn = WPI_NODE(ni);
4580 	struct wpi_node_info node;
4581 	uint16_t kflags;
4582 	int error;
4583 
4584 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4585 
4586 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4587 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4588 		    __func__);
4589 		return 0;
4590 	}
4591 
4592 	switch (cip->ic_cipher) {
4593 	case IEEE80211_CIPHER_AES_CCM:
4594 		kflags = WPI_KFLAG_CCMP;
4595 		break;
4596 
4597 	default:
4598 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4599 		    cip->ic_cipher);
4600 		return 0;
4601 	}
4602 
4603 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4604 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4605 		kflags |= WPI_KFLAG_MULTICAST;
4606 
4607 	memset(&node, 0, sizeof node);
4608 	node.id = wn->id;
4609 	node.control = WPI_NODE_UPDATE;
4610 	node.flags = WPI_FLAG_KEY_SET;
4611 	node.kflags = htole16(kflags);
4612 	memcpy(node.key, k->wk_key, k->wk_keylen);
4613 again:
4614 	DPRINTF(sc, WPI_DEBUG_KEY,
4615 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4616 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4617 	    node.id, ether_sprintf(ni->ni_macaddr));
4618 
4619 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4620 	if (error != 0) {
4621 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4622 		    error);
4623 		return !error;
4624 	}
4625 
4626 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4627 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4628 		kflags |= WPI_KFLAG_MULTICAST;
4629 		node.kflags = htole16(kflags);
4630 
4631 		goto again;
4632 	}
4633 
4634 	return 1;
4635 }
4636 
4637 static void
4638 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4639 {
4640 	const struct ieee80211_key *k = arg;
4641 	struct ieee80211vap *vap = ni->ni_vap;
4642 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4643 	struct wpi_node *wn = WPI_NODE(ni);
4644 	int error;
4645 
4646 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4647 		return;
4648 
4649 	WPI_NT_LOCK(sc);
4650 	error = wpi_load_key(ni, k);
4651 	WPI_NT_UNLOCK(sc);
4652 
4653 	if (error == 0) {
4654 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4655 		    __func__);
4656 	}
4657 }
4658 
4659 static int
4660 wpi_set_global_keys(struct ieee80211_node *ni)
4661 {
4662 	struct ieee80211vap *vap = ni->ni_vap;
4663 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4664 	int error = 1;
4665 
4666 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4667 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4668 			error = wpi_load_key(ni, wk);
4669 
4670 	return !error;
4671 }
4672 
4673 static int
4674 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4675 {
4676 	struct ieee80211vap *vap = ni->ni_vap;
4677 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4678 	struct wpi_node *wn = WPI_NODE(ni);
4679 	struct wpi_node_info node;
4680 	uint16_t kflags;
4681 	int error;
4682 
4683 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4684 
4685 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4686 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4687 		return 1;	/* Nothing to do. */
4688 	}
4689 
4690 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4691 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4692 		kflags |= WPI_KFLAG_MULTICAST;
4693 
4694 	memset(&node, 0, sizeof node);
4695 	node.id = wn->id;
4696 	node.control = WPI_NODE_UPDATE;
4697 	node.flags = WPI_FLAG_KEY_SET;
4698 	node.kflags = htole16(kflags);
4699 again:
4700 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4701 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4702 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4703 
4704 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4705 	if (error != 0) {
4706 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4707 		    error);
4708 		return !error;
4709 	}
4710 
4711 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4712 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4713 		kflags |= WPI_KFLAG_MULTICAST;
4714 		node.kflags = htole16(kflags);
4715 
4716 		goto again;
4717 	}
4718 
4719 	return 1;
4720 }
4721 
4722 static void
4723 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4724 {
4725 	const struct ieee80211_key *k = arg;
4726 	struct ieee80211vap *vap = ni->ni_vap;
4727 	struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4728 	struct wpi_node *wn = WPI_NODE(ni);
4729 	int error;
4730 
4731 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4732 		return;
4733 
4734 	WPI_NT_LOCK(sc);
4735 	error = wpi_del_key(ni, k);
4736 	WPI_NT_UNLOCK(sc);
4737 
4738 	if (error == 0) {
4739 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4740 		    __func__);
4741 	}
4742 }
4743 
4744 static int
4745 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4746     int set)
4747 {
4748 	struct ieee80211com *ic = vap->iv_ic;
4749 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
4750 	struct wpi_vap *wvp = WPI_VAP(vap);
4751 	struct ieee80211_node *ni;
4752 	int error, ni_ref = 0;
4753 
4754 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4755 
4756 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4757 		/* Not for us. */
4758 		return 1;
4759 	}
4760 
4761 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4762 		/* XMIT keys are handled in wpi_tx_data(). */
4763 		return 1;
4764 	}
4765 
4766 	/* Handle group keys. */
4767 	if (&vap->iv_nw_keys[0] <= k &&
4768 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4769 		WPI_NT_LOCK(sc);
4770 		if (set)
4771 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4772 		else
4773 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4774 		WPI_NT_UNLOCK(sc);
4775 
4776 		if (vap->iv_state == IEEE80211_S_RUN) {
4777 			ieee80211_iterate_nodes(&ic->ic_sta,
4778 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4779 			    __DECONST(void *, k));
4780 		}
4781 
4782 		return 1;
4783 	}
4784 
4785 	switch (vap->iv_opmode) {
4786 	case IEEE80211_M_STA:
4787 		ni = vap->iv_bss;
4788 		break;
4789 
4790 	case IEEE80211_M_IBSS:
4791 	case IEEE80211_M_AHDEMO:
4792 	case IEEE80211_M_HOSTAP:
4793 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4794 		if (ni == NULL)
4795 			return 0;	/* should not happen */
4796 
4797 		ni_ref = 1;
4798 		break;
4799 
4800 	default:
4801 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4802 		    vap->iv_opmode);
4803 		return 0;
4804 	}
4805 
4806 	WPI_NT_LOCK(sc);
4807 	if (set)
4808 		error = wpi_load_key(ni, k);
4809 	else
4810 		error = wpi_del_key(ni, k);
4811 	WPI_NT_UNLOCK(sc);
4812 
4813 	if (ni_ref)
4814 		ieee80211_node_decref(ni);
4815 
4816 	return error;
4817 }
4818 
4819 static int
4820 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
4821     const uint8_t mac[IEEE80211_ADDR_LEN])
4822 {
4823 	return wpi_process_key(vap, k, 1);
4824 }
4825 
4826 static int
4827 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4828 {
4829 	return wpi_process_key(vap, k, 0);
4830 }
4831 
4832 /*
4833  * This function is called after the runtime firmware notifies us of its
4834  * readiness (called in a process context).
4835  */
4836 static int
4837 wpi_post_alive(struct wpi_softc *sc)
4838 {
4839 	int ntries, error;
4840 
4841 	/* Check (again) that the radio is not disabled. */
4842 	if ((error = wpi_nic_lock(sc)) != 0)
4843 		return error;
4844 
4845 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4846 
4847 	/* NB: Runtime firmware must be up and running. */
4848 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4849 		device_printf(sc->sc_dev,
4850 		    "RF switch: radio disabled (%s)\n", __func__);
4851 		wpi_nic_unlock(sc);
4852 		return EPERM;   /* :-) */
4853 	}
4854 	wpi_nic_unlock(sc);
4855 
4856 	/* Wait for thermal sensor to calibrate. */
4857 	for (ntries = 0; ntries < 1000; ntries++) {
4858 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4859 			break;
4860 		DELAY(10);
4861 	}
4862 
4863 	if (ntries == 1000) {
4864 		device_printf(sc->sc_dev,
4865 		    "timeout waiting for thermal sensor calibration\n");
4866 		return ETIMEDOUT;
4867 	}
4868 
4869 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4870 	return 0;
4871 }
4872 
4873 /*
4874  * The firmware boot code is small and is intended to be copied directly into
4875  * the NIC internal memory (no DMA transfer).
4876  */
4877 static int
4878 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
4879 {
4880 	int error, ntries;
4881 
4882 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4883 
4884 	size /= sizeof (uint32_t);
4885 
4886 	if ((error = wpi_nic_lock(sc)) != 0)
4887 		return error;
4888 
4889 	/* Copy microcode image into NIC memory. */
4890 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4891 	    (const uint32_t *)ucode, size);
4892 
4893 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4894 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4895 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4896 
4897 	/* Start boot load now. */
4898 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4899 
4900 	/* Wait for transfer to complete. */
4901 	for (ntries = 0; ntries < 1000; ntries++) {
4902 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4903 		DPRINTF(sc, WPI_DEBUG_HW,
4904 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4905 		    WPI_FH_TX_STATUS_IDLE(6),
4906 		    status & WPI_FH_TX_STATUS_IDLE(6));
4907 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4908 			DPRINTF(sc, WPI_DEBUG_HW,
4909 			    "Status Match! - ntries = %d\n", ntries);
4910 			break;
4911 		}
4912 		DELAY(10);
4913 	}
4914 	if (ntries == 1000) {
4915 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4916 		    __func__);
4917 		wpi_nic_unlock(sc);
4918 		return ETIMEDOUT;
4919 	}
4920 
4921 	/* Enable boot after power up. */
4922 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4923 
4924 	wpi_nic_unlock(sc);
4925 	return 0;
4926 }
4927 
4928 static int
4929 wpi_load_firmware(struct wpi_softc *sc)
4930 {
4931 	struct wpi_fw_info *fw = &sc->fw;
4932 	struct wpi_dma_info *dma = &sc->fw_dma;
4933 	int error;
4934 
4935 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4936 
4937 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4938 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4939 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4940 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4941 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4942 
4943 	/* Tell adapter where to find initialization sections. */
4944 	if ((error = wpi_nic_lock(sc)) != 0)
4945 		return error;
4946 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4947 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4948 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4949 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4950 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4951 	wpi_nic_unlock(sc);
4952 
4953 	/* Load firmware boot code. */
4954 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4955 	if (error != 0) {
4956 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4957 		    __func__);
4958 		return error;
4959 	}
4960 
4961 	/* Now press "execute". */
4962 	WPI_WRITE(sc, WPI_RESET, 0);
4963 
4964 	/* Wait at most one second for first alive notification. */
4965 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4966 		device_printf(sc->sc_dev,
4967 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4968 		    __func__, error);
4969 		return error;
4970 	}
4971 
4972 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4973 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4974 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4975 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4976 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4977 
4978 	/* Tell adapter where to find runtime sections. */
4979 	if ((error = wpi_nic_lock(sc)) != 0)
4980 		return error;
4981 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4982 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4983 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4984 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4985 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4986 	    WPI_FW_UPDATED | fw->main.textsz);
4987 	wpi_nic_unlock(sc);
4988 
4989 	return 0;
4990 }
4991 
4992 static int
4993 wpi_read_firmware(struct wpi_softc *sc)
4994 {
4995 	const struct firmware *fp;
4996 	struct wpi_fw_info *fw = &sc->fw;
4997 	const struct wpi_firmware_hdr *hdr;
4998 	int error;
4999 
5000 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5001 
5002 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5003 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5004 
5005 	WPI_UNLOCK(sc);
5006 	fp = firmware_get(WPI_FW_NAME);
5007 	WPI_LOCK(sc);
5008 
5009 	if (fp == NULL) {
5010 		device_printf(sc->sc_dev,
5011 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5012 		return EINVAL;
5013 	}
5014 
5015 	sc->fw_fp = fp;
5016 
5017 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5018 		device_printf(sc->sc_dev,
5019 		    "firmware file too short: %zu bytes\n", fp->datasize);
5020 		error = EINVAL;
5021 		goto fail;
5022 	}
5023 
5024 	fw->size = fp->datasize;
5025 	fw->data = (const uint8_t *)fp->data;
5026 
5027 	/* Extract firmware header information. */
5028 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5029 
5030 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5031 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5032 
5033 	fw->main.textsz = le32toh(hdr->rtextsz);
5034 	fw->main.datasz = le32toh(hdr->rdatasz);
5035 	fw->init.textsz = le32toh(hdr->itextsz);
5036 	fw->init.datasz = le32toh(hdr->idatasz);
5037 	fw->boot.textsz = le32toh(hdr->btextsz);
5038 	fw->boot.datasz = 0;
5039 
5040 	/* Sanity-check firmware header. */
5041 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5042 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5043 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5044 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5045 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5046 	    (fw->boot.textsz & 3) != 0) {
5047 		device_printf(sc->sc_dev, "invalid firmware header\n");
5048 		error = EINVAL;
5049 		goto fail;
5050 	}
5051 
5052 	/* Check that all firmware sections fit. */
5053 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5054 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5055 		device_printf(sc->sc_dev,
5056 		    "firmware file too short: %zu bytes\n", fw->size);
5057 		error = EINVAL;
5058 		goto fail;
5059 	}
5060 
5061 	/* Get pointers to firmware sections. */
5062 	fw->main.text = (const uint8_t *)(hdr + 1);
5063 	fw->main.data = fw->main.text + fw->main.textsz;
5064 	fw->init.text = fw->main.data + fw->main.datasz;
5065 	fw->init.data = fw->init.text + fw->init.textsz;
5066 	fw->boot.text = fw->init.data + fw->init.datasz;
5067 
5068 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5069 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5070 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5071 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5072 	    fw->main.textsz, fw->main.datasz,
5073 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5074 
5075 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5076 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5077 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5078 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5079 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5080 
5081 	return 0;
5082 
5083 fail:	wpi_unload_firmware(sc);
5084 	return error;
5085 }
5086 
5087 /**
5088  * Free the referenced firmware image
5089  */
5090 static void
5091 wpi_unload_firmware(struct wpi_softc *sc)
5092 {
5093 	if (sc->fw_fp != NULL) {
5094 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5095 		sc->fw_fp = NULL;
5096 	}
5097 }
5098 
5099 static int
5100 wpi_clock_wait(struct wpi_softc *sc)
5101 {
5102 	int ntries;
5103 
5104 	/* Set "initialization complete" bit. */
5105 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5106 
5107 	/* Wait for clock stabilization. */
5108 	for (ntries = 0; ntries < 2500; ntries++) {
5109 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5110 			return 0;
5111 		DELAY(100);
5112 	}
5113 	device_printf(sc->sc_dev,
5114 	    "%s: timeout waiting for clock stabilization\n", __func__);
5115 
5116 	return ETIMEDOUT;
5117 }
5118 
5119 static int
5120 wpi_apm_init(struct wpi_softc *sc)
5121 {
5122 	uint32_t reg;
5123 	int error;
5124 
5125 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5126 
5127 	/* Disable L0s exit timer (NMI bug workaround). */
5128 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5129 	/* Don't wait for ICH L0s (ICH bug workaround). */
5130 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5131 
5132 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5133 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5134 
5135 	/* Retrieve PCIe Active State Power Management (ASPM). */
5136 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5137 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5138 	if (reg & 0x02)	/* L1 Entry enabled. */
5139 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5140 	else
5141 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5142 
5143 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5144 
5145 	/* Wait for clock stabilization before accessing prph. */
5146 	if ((error = wpi_clock_wait(sc)) != 0)
5147 		return error;
5148 
5149 	if ((error = wpi_nic_lock(sc)) != 0)
5150 		return error;
5151 	/* Cleanup. */
5152 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5153 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5154 
5155 	/* Enable DMA and BSM (Bootstrap State Machine). */
5156 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5157 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5158 	DELAY(20);
5159 	/* Disable L1-Active. */
5160 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5161 	wpi_nic_unlock(sc);
5162 
5163 	return 0;
5164 }
5165 
5166 static void
5167 wpi_apm_stop_master(struct wpi_softc *sc)
5168 {
5169 	int ntries;
5170 
5171 	/* Stop busmaster DMA activity. */
5172 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5173 
5174 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5175 	    WPI_GP_CNTRL_MAC_PS)
5176 		return; /* Already asleep. */
5177 
5178 	for (ntries = 0; ntries < 100; ntries++) {
5179 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5180 			return;
5181 		DELAY(10);
5182 	}
5183 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5184 	    __func__);
5185 }
5186 
5187 static void
5188 wpi_apm_stop(struct wpi_softc *sc)
5189 {
5190 	wpi_apm_stop_master(sc);
5191 
5192 	/* Reset the entire device. */
5193 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5194 	DELAY(10);
5195 	/* Clear "initialization complete" bit. */
5196 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5197 }
5198 
5199 static void
5200 wpi_nic_config(struct wpi_softc *sc)
5201 {
5202 	uint32_t rev;
5203 
5204 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5205 
5206 	/* voodoo from the Linux "driver".. */
5207 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5208 	if ((rev & 0xc0) == 0x40)
5209 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5210 	else if (!(rev & 0x80))
5211 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5212 
5213 	if (sc->cap == 0x80)
5214 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5215 
5216 	if ((sc->rev & 0xf0) == 0xd0)
5217 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5218 	else
5219 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5220 
5221 	if (sc->type > 1)
5222 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5223 }
5224 
5225 static int
5226 wpi_hw_init(struct wpi_softc *sc)
5227 {
5228 	int chnl, ntries, error;
5229 
5230 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5231 
5232 	/* Clear pending interrupts. */
5233 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5234 
5235 	if ((error = wpi_apm_init(sc)) != 0) {
5236 		device_printf(sc->sc_dev,
5237 		    "%s: could not power ON adapter, error %d\n", __func__,
5238 		    error);
5239 		return error;
5240 	}
5241 
5242 	/* Select VMAIN power source. */
5243 	if ((error = wpi_nic_lock(sc)) != 0)
5244 		return error;
5245 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5246 	wpi_nic_unlock(sc);
5247 	/* Spin until VMAIN gets selected. */
5248 	for (ntries = 0; ntries < 5000; ntries++) {
5249 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5250 			break;
5251 		DELAY(10);
5252 	}
5253 	if (ntries == 5000) {
5254 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5255 		return ETIMEDOUT;
5256 	}
5257 
5258 	/* Perform adapter initialization. */
5259 	wpi_nic_config(sc);
5260 
5261 	/* Initialize RX ring. */
5262 	if ((error = wpi_nic_lock(sc)) != 0)
5263 		return error;
5264 	/* Set physical address of RX ring. */
5265 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5266 	/* Set physical address of RX read pointer. */
5267 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5268 	    offsetof(struct wpi_shared, next));
5269 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5270 	/* Enable RX. */
5271 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5272 	    WPI_FH_RX_CONFIG_DMA_ENA |
5273 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5274 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5275 	    WPI_FH_RX_CONFIG_MAXFRAG |
5276 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5277 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5278 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5279 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5280 	wpi_nic_unlock(sc);
5281 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5282 
5283 	/* Initialize TX rings. */
5284 	if ((error = wpi_nic_lock(sc)) != 0)
5285 		return error;
5286 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5287 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5288 	/* Enable all 6 TX rings. */
5289 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5290 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5291 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5292 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5293 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5294 	/* Set physical address of TX rings. */
5295 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5296 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5297 
5298 	/* Enable all DMA channels. */
5299 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5300 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5301 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5302 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5303 	}
5304 	wpi_nic_unlock(sc);
5305 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5306 
5307 	/* Clear "radio off" and "commands blocked" bits. */
5308 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5309 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5310 
5311 	/* Clear pending interrupts. */
5312 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5313 	/* Enable interrupts. */
5314 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5315 
5316 	/* _Really_ make sure "radio off" bit is cleared! */
5317 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5318 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5319 
5320 	if ((error = wpi_load_firmware(sc)) != 0) {
5321 		device_printf(sc->sc_dev,
5322 		    "%s: could not load firmware, error %d\n", __func__,
5323 		    error);
5324 		return error;
5325 	}
5326 	/* Wait at most one second for firmware alive notification. */
5327 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5328 		device_printf(sc->sc_dev,
5329 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5330 		    __func__, error);
5331 		return error;
5332 	}
5333 
5334 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5335 
5336 	/* Do post-firmware initialization. */
5337 	return wpi_post_alive(sc);
5338 }
5339 
5340 static void
5341 wpi_hw_stop(struct wpi_softc *sc)
5342 {
5343 	int chnl, qid, ntries;
5344 
5345 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5346 
5347 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5348 		wpi_nic_lock(sc);
5349 
5350 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5351 
5352 	/* Disable interrupts. */
5353 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5354 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5355 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5356 
5357 	/* Make sure we no longer hold the NIC lock. */
5358 	wpi_nic_unlock(sc);
5359 
5360 	if (wpi_nic_lock(sc) == 0) {
5361 		/* Stop TX scheduler. */
5362 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5363 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5364 
5365 		/* Stop all DMA channels. */
5366 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5367 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5368 			for (ntries = 0; ntries < 200; ntries++) {
5369 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5370 				    WPI_FH_TX_STATUS_IDLE(chnl))
5371 					break;
5372 				DELAY(10);
5373 			}
5374 		}
5375 		wpi_nic_unlock(sc);
5376 	}
5377 
5378 	/* Stop RX ring. */
5379 	wpi_reset_rx_ring(sc);
5380 
5381 	/* Reset all TX rings. */
5382 	for (qid = 0; qid < WPI_NTXQUEUES; qid++)
5383 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5384 
5385 	if (wpi_nic_lock(sc) == 0) {
5386 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5387 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5388 		wpi_nic_unlock(sc);
5389 	}
5390 	DELAY(5);
5391 	/* Power OFF adapter. */
5392 	wpi_apm_stop(sc);
5393 }
5394 
5395 static void
5396 wpi_radio_on(void *arg0, int pending)
5397 {
5398 	struct wpi_softc *sc = arg0;
5399 	struct ifnet *ifp = sc->sc_ifp;
5400 	struct ieee80211com *ic = ifp->if_l2com;
5401 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5402 
5403 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5404 
5405 	if (vap != NULL) {
5406 		wpi_init(sc);
5407 		ieee80211_init(vap);
5408 	}
5409 
5410 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL) {
5411 		WPI_LOCK(sc);
5412 		callout_stop(&sc->watchdog_rfkill);
5413 		WPI_UNLOCK(sc);
5414 	}
5415 }
5416 
5417 static void
5418 wpi_radio_off(void *arg0, int pending)
5419 {
5420 	struct wpi_softc *sc = arg0;
5421 	struct ifnet *ifp = sc->sc_ifp;
5422 	struct ieee80211com *ic = ifp->if_l2com;
5423 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5424 
5425 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5426 
5427 	wpi_stop(sc);
5428 	if (vap != NULL)
5429 		ieee80211_stop(vap);
5430 
5431 	WPI_LOCK(sc);
5432 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5433 	WPI_UNLOCK(sc);
5434 }
5435 
5436 static void
5437 wpi_init(void *arg)
5438 {
5439 	struct wpi_softc *sc = arg;
5440 	struct ifnet *ifp = sc->sc_ifp;
5441 	struct ieee80211com *ic = ifp->if_l2com;
5442 	int error;
5443 
5444 	WPI_LOCK(sc);
5445 
5446 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5447 
5448 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
5449 		goto end;
5450 
5451 	/* Check that the radio is not disabled by hardware switch. */
5452 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5453 		device_printf(sc->sc_dev,
5454 		    "RF switch: radio disabled (%s)\n", __func__);
5455 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5456 		    sc);
5457 		goto end;
5458 	}
5459 
5460 	/* Read firmware images from the filesystem. */
5461 	if ((error = wpi_read_firmware(sc)) != 0) {
5462 		device_printf(sc->sc_dev,
5463 		    "%s: could not read firmware, error %d\n", __func__,
5464 		    error);
5465 		goto fail;
5466 	}
5467 
5468 	/* Initialize hardware and upload firmware. */
5469 	error = wpi_hw_init(sc);
5470 	wpi_unload_firmware(sc);
5471 	if (error != 0) {
5472 		device_printf(sc->sc_dev,
5473 		    "%s: could not initialize hardware, error %d\n", __func__,
5474 		    error);
5475 		goto fail;
5476 	}
5477 
5478 	/* Configure adapter now that it is ready. */
5479 	sc->txq_active = 1;
5480 	if ((error = wpi_config(sc)) != 0) {
5481 		device_printf(sc->sc_dev,
5482 		    "%s: could not configure device, error %d\n", __func__,
5483 		    error);
5484 		goto fail;
5485 	}
5486 
5487 	IF_LOCK(&ifp->if_snd);
5488 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5489 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5490 	IF_UNLOCK(&ifp->if_snd);
5491 
5492 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5493 
5494 	WPI_UNLOCK(sc);
5495 
5496 	ieee80211_start_all(ic);
5497 
5498 	return;
5499 
5500 fail:	wpi_stop_locked(sc);
5501 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5502 	WPI_UNLOCK(sc);
5503 }
5504 
5505 static void
5506 wpi_stop_locked(struct wpi_softc *sc)
5507 {
5508 	struct ifnet *ifp = sc->sc_ifp;
5509 
5510 	WPI_LOCK_ASSERT(sc);
5511 
5512 	WPI_TXQ_LOCK(sc);
5513 	sc->txq_active = 0;
5514 	WPI_TXQ_UNLOCK(sc);
5515 
5516 	WPI_TXQ_STATE_LOCK(sc);
5517 	callout_stop(&sc->tx_timeout);
5518 	WPI_TXQ_STATE_UNLOCK(sc);
5519 
5520 	WPI_RXON_LOCK(sc);
5521 	callout_stop(&sc->scan_timeout);
5522 	callout_stop(&sc->calib_to);
5523 	WPI_RXON_UNLOCK(sc);
5524 
5525 	IF_LOCK(&ifp->if_snd);
5526 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
5527 	IF_UNLOCK(&ifp->if_snd);
5528 
5529 	/* Power OFF hardware. */
5530 	wpi_hw_stop(sc);
5531 }
5532 
5533 static void
5534 wpi_stop(struct wpi_softc *sc)
5535 {
5536 	WPI_LOCK(sc);
5537 	wpi_stop_locked(sc);
5538 	WPI_UNLOCK(sc);
5539 }
5540 
5541 /*
5542  * Callback from net80211 to start a scan.
5543  */
5544 static void
5545 wpi_scan_start(struct ieee80211com *ic)
5546 {
5547 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5548 
5549 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5550 }
5551 
5552 /*
5553  * Callback from net80211 to terminate a scan.
5554  */
5555 static void
5556 wpi_scan_end(struct ieee80211com *ic)
5557 {
5558 	struct ifnet *ifp = ic->ic_ifp;
5559 	struct wpi_softc *sc = ifp->if_softc;
5560 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5561 
5562 	if (vap->iv_state == IEEE80211_S_RUN)
5563 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5564 }
5565 
5566 /**
5567  * Called by the net80211 framework to indicate to the driver
5568  * that the channel should be changed
5569  */
5570 static void
5571 wpi_set_channel(struct ieee80211com *ic)
5572 {
5573 	const struct ieee80211_channel *c = ic->ic_curchan;
5574 	struct ifnet *ifp = ic->ic_ifp;
5575 	struct wpi_softc *sc = ifp->if_softc;
5576 	int error;
5577 
5578 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5579 
5580 	WPI_LOCK(sc);
5581 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5582 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5583 	WPI_UNLOCK(sc);
5584 	WPI_TX_LOCK(sc);
5585 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5586 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5587 	WPI_TX_UNLOCK(sc);
5588 
5589 	/*
5590 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5591 	 * are already taken care of by their respective firmware commands.
5592 	 */
5593 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5594 		WPI_RXON_LOCK(sc);
5595 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5596 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5597 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5598 			    WPI_RXON_24GHZ);
5599 		} else {
5600 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5601 			    WPI_RXON_24GHZ);
5602 		}
5603 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5604 			device_printf(sc->sc_dev,
5605 			    "%s: error %d setting channel\n", __func__,
5606 			    error);
5607 		WPI_RXON_UNLOCK(sc);
5608 	}
5609 }
5610 
5611 /**
5612  * Called by net80211 to indicate that we need to scan the current
5613  * channel. The channel is previously be set via the wpi_set_channel
5614  * callback.
5615  */
5616 static void
5617 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5618 {
5619 	struct ieee80211vap *vap = ss->ss_vap;
5620 	struct ieee80211com *ic = vap->iv_ic;
5621 	struct wpi_softc *sc = ic->ic_ifp->if_softc;
5622 	int error;
5623 
5624 	WPI_RXON_LOCK(sc);
5625 	error = wpi_scan(sc, ic->ic_curchan);
5626 	WPI_RXON_UNLOCK(sc);
5627 	if (error != 0)
5628 		ieee80211_cancel_scan(vap);
5629 }
5630 
5631 /**
5632  * Called by the net80211 framework to indicate
5633  * the minimum dwell time has been met, terminate the scan.
5634  * We don't actually terminate the scan as the firmware will notify
5635  * us when it's finished and we have no way to interrupt it.
5636  */
5637 static void
5638 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5639 {
5640 	/* NB: don't try to abort scan; wait for firmware to finish */
5641 }
5642 
5643 static void
5644 wpi_hw_reset(void *arg, int pending)
5645 {
5646 	struct wpi_softc *sc = arg;
5647 	struct ifnet *ifp = sc->sc_ifp;
5648 	struct ieee80211com *ic = ifp->if_l2com;
5649 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5650 
5651 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5652 
5653 	if (vap != NULL && (ic->ic_flags & IEEE80211_F_SCAN))
5654 		ieee80211_cancel_scan(vap);
5655 
5656 	wpi_stop(sc);
5657 	if (vap != NULL)
5658 		ieee80211_stop(vap);
5659 	wpi_init(sc);
5660 	if (vap != NULL)
5661 		ieee80211_init(vap);
5662 }
5663