xref: /freebsd/sys/dev/wpi/if_wpi.c (revision eb9da1ada8b6b2c74378a5c17029ec5a7fb199e6)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_done) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include "opt_wlan.h"
62 #include "opt_wpi.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_types.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/if_ether.h>
100 #include <netinet/ip.h>
101 
102 #include <net80211/ieee80211_var.h>
103 #include <net80211/ieee80211_radiotap.h>
104 #include <net80211/ieee80211_regdomain.h>
105 #include <net80211/ieee80211_ratectl.h>
106 
107 #include <dev/wpi/if_wpireg.h>
108 #include <dev/wpi/if_wpivar.h>
109 #include <dev/wpi/if_wpi_debug.h>
110 
111 struct wpi_ident {
112 	uint16_t	vendor;
113 	uint16_t	device;
114 	uint16_t	subdevice;
115 	const char	*name;
116 };
117 
118 static const struct wpi_ident wpi_ident_table[] = {
119 	/* The below entries support ABG regardless of the subid */
120 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
122 	/* The below entries only support BG */
123 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
127 	{ 0, 0, 0, NULL }
128 };
129 
130 static int	wpi_probe(device_t);
131 static int	wpi_attach(device_t);
132 static void	wpi_radiotap_attach(struct wpi_softc *);
133 static void	wpi_sysctlattach(struct wpi_softc *);
134 static void	wpi_init_beacon(struct wpi_vap *);
135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
136 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
137 		    const uint8_t [IEEE80211_ADDR_LEN],
138 		    const uint8_t [IEEE80211_ADDR_LEN]);
139 static void	wpi_vap_delete(struct ieee80211vap *);
140 static int	wpi_detach(device_t);
141 static int	wpi_shutdown(device_t);
142 static int	wpi_suspend(device_t);
143 static int	wpi_resume(device_t);
144 static int	wpi_nic_lock(struct wpi_softc *);
145 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
146 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
147 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	wpi_dma_contig_free(struct wpi_dma_info *);
150 static int	wpi_alloc_shared(struct wpi_softc *);
151 static void	wpi_free_shared(struct wpi_softc *);
152 static int	wpi_alloc_fwmem(struct wpi_softc *);
153 static void	wpi_free_fwmem(struct wpi_softc *);
154 static int	wpi_alloc_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring(struct wpi_softc *);
156 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
157 static void	wpi_reset_rx_ring(struct wpi_softc *);
158 static void	wpi_free_rx_ring(struct wpi_softc *);
159 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
160 		    uint8_t);
161 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
163 		    struct wpi_tx_ring *);
164 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
166 static int	wpi_read_eeprom(struct wpi_softc *,
167 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
168 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
169 static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
170 		    struct ieee80211_channel[]);
171 static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
173 		    struct ieee80211_channel *);
174 static void	wpi_getradiocaps(struct ieee80211com *, int, int *,
175 		    struct ieee80211_channel[]);
176 static int	wpi_setregdomain(struct ieee80211com *,
177 		    struct ieee80211_regdomain *, int,
178 		    struct ieee80211_channel[]);
179 static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static void	wpi_node_free(struct ieee80211_node *);
183 static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
184 		    const struct ieee80211_rx_stats *,
185 		    int, int);
186 static void	wpi_restore_node(void *, struct ieee80211_node *);
187 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
188 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189 static void	wpi_calib_timeout(void *);
190 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
191 		    struct wpi_rx_data *);
192 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
193 		    struct wpi_rx_data *);
194 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_wakeup_intr(struct wpi_softc *);
198 #ifdef WPI_DEBUG
199 static void	wpi_debug_registers(struct wpi_softc *);
200 #endif
201 static void	wpi_fatal_intr(struct wpi_softc *);
202 static void	wpi_intr(void *);
203 static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
204 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
205 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
206 		    struct ieee80211_node *);
207 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
208 		    struct ieee80211_node *,
209 		    const struct ieee80211_bpf_params *);
210 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
211 		    const struct ieee80211_bpf_params *);
212 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
213 static void	wpi_watchdog_rfkill(void *);
214 static void	wpi_scan_timeout(void *);
215 static void	wpi_tx_timeout(void *);
216 static void	wpi_parent(struct ieee80211com *);
217 static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
218 		    int);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
221 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
222 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
223 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
224 static int	wpi_updateedca(struct ieee80211com *);
225 static void	wpi_set_promisc(struct wpi_softc *);
226 static void	wpi_update_promisc(struct ieee80211com *);
227 static void	wpi_update_mcast(struct ieee80211com *);
228 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
229 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
230 static void	wpi_power_calibration(struct wpi_softc *);
231 static int	wpi_set_txpower(struct wpi_softc *, int);
232 static int	wpi_get_power_index(struct wpi_softc *,
233 		    struct wpi_power_group *, uint8_t, int, int);
234 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
235 static int	wpi_send_btcoex(struct wpi_softc *);
236 static int	wpi_send_rxon(struct wpi_softc *, int, int);
237 static int	wpi_config(struct wpi_softc *);
238 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
239 		    struct ieee80211_channel *, uint8_t);
240 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
241 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
242 		    struct ieee80211_channel *);
243 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
244 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
245 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
246 static int	wpi_config_beacon(struct wpi_vap *);
247 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
248 static void	wpi_update_beacon(struct ieee80211vap *, int);
249 static void	wpi_newassoc(struct ieee80211_node *, int);
250 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
251 static int	wpi_load_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_set_global_keys(struct ieee80211_node *);
255 static int	wpi_del_key(struct ieee80211_node *,
256 		    const struct ieee80211_key *);
257 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
258 static int	wpi_process_key(struct ieee80211vap *,
259 		    const struct ieee80211_key *, int);
260 static int	wpi_key_set(struct ieee80211vap *,
261 		    const struct ieee80211_key *);
262 static int	wpi_key_delete(struct ieee80211vap *,
263 		    const struct ieee80211_key *);
264 static int	wpi_post_alive(struct wpi_softc *);
265 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
266 		    uint32_t);
267 static int	wpi_load_firmware(struct wpi_softc *);
268 static int	wpi_read_firmware(struct wpi_softc *);
269 static void	wpi_unload_firmware(struct wpi_softc *);
270 static int	wpi_clock_wait(struct wpi_softc *);
271 static int	wpi_apm_init(struct wpi_softc *);
272 static void	wpi_apm_stop_master(struct wpi_softc *);
273 static void	wpi_apm_stop(struct wpi_softc *);
274 static void	wpi_nic_config(struct wpi_softc *);
275 static int	wpi_hw_init(struct wpi_softc *);
276 static void	wpi_hw_stop(struct wpi_softc *);
277 static void	wpi_radio_on(void *, int);
278 static void	wpi_radio_off(void *, int);
279 static int	wpi_init(struct wpi_softc *);
280 static void	wpi_stop_locked(struct wpi_softc *);
281 static void	wpi_stop(struct wpi_softc *);
282 static void	wpi_scan_start(struct ieee80211com *);
283 static void	wpi_scan_end(struct ieee80211com *);
284 static void	wpi_set_channel(struct ieee80211com *);
285 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
286 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
287 
288 static device_method_t wpi_methods[] = {
289 	/* Device interface */
290 	DEVMETHOD(device_probe,		wpi_probe),
291 	DEVMETHOD(device_attach,	wpi_attach),
292 	DEVMETHOD(device_detach,	wpi_detach),
293 	DEVMETHOD(device_shutdown,	wpi_shutdown),
294 	DEVMETHOD(device_suspend,	wpi_suspend),
295 	DEVMETHOD(device_resume,	wpi_resume),
296 
297 	DEVMETHOD_END
298 };
299 
300 static driver_t wpi_driver = {
301 	"wpi",
302 	wpi_methods,
303 	sizeof (struct wpi_softc)
304 };
305 static devclass_t wpi_devclass;
306 
307 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
308 
309 MODULE_VERSION(wpi, 1);
310 
311 MODULE_DEPEND(wpi, pci,  1, 1, 1);
312 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
313 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
314 
315 static int
316 wpi_probe(device_t dev)
317 {
318 	const struct wpi_ident *ident;
319 
320 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
321 		if (pci_get_vendor(dev) == ident->vendor &&
322 		    pci_get_device(dev) == ident->device) {
323 			device_set_desc(dev, ident->name);
324 			return (BUS_PROBE_DEFAULT);
325 		}
326 	}
327 	return ENXIO;
328 }
329 
330 static int
331 wpi_attach(device_t dev)
332 {
333 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
334 	struct ieee80211com *ic;
335 	uint8_t i;
336 	int error, rid;
337 #ifdef WPI_DEBUG
338 	int supportsa = 1;
339 	const struct wpi_ident *ident;
340 #endif
341 
342 	sc->sc_dev = dev;
343 
344 #ifdef WPI_DEBUG
345 	error = resource_int_value(device_get_name(sc->sc_dev),
346 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
347 	if (error != 0)
348 		sc->sc_debug = 0;
349 #else
350 	sc->sc_debug = 0;
351 #endif
352 
353 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
354 
355 	/*
356 	 * Get the offset of the PCI Express Capability Structure in PCI
357 	 * Configuration Space.
358 	 */
359 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
360 	if (error != 0) {
361 		device_printf(dev, "PCIe capability structure not found!\n");
362 		return error;
363 	}
364 
365 	/*
366 	 * Some card's only support 802.11b/g not a, check to see if
367 	 * this is one such card. A 0x0 in the subdevice table indicates
368 	 * the entire subdevice range is to be ignored.
369 	 */
370 #ifdef WPI_DEBUG
371 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
372 		if (ident->subdevice &&
373 		    pci_get_subdevice(dev) == ident->subdevice) {
374 		    supportsa = 0;
375 		    break;
376 		}
377 	}
378 #endif
379 
380 	/* Clear device-specific "PCI retry timeout" register (41h). */
381 	pci_write_config(dev, 0x41, 0, 1);
382 
383 	/* Enable bus-mastering. */
384 	pci_enable_busmaster(dev);
385 
386 	rid = PCIR_BAR(0);
387 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
388 	    RF_ACTIVE);
389 	if (sc->mem == NULL) {
390 		device_printf(dev, "can't map mem space\n");
391 		return ENOMEM;
392 	}
393 	sc->sc_st = rman_get_bustag(sc->mem);
394 	sc->sc_sh = rman_get_bushandle(sc->mem);
395 
396 	rid = 1;
397 	if (pci_alloc_msi(dev, &rid) == 0)
398 		rid = 1;
399 	else
400 		rid = 0;
401 	/* Install interrupt handler. */
402 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
403 	    (rid != 0 ? 0 : RF_SHAREABLE));
404 	if (sc->irq == NULL) {
405 		device_printf(dev, "can't map interrupt\n");
406 		error = ENOMEM;
407 		goto fail;
408 	}
409 
410 	WPI_LOCK_INIT(sc);
411 	WPI_TX_LOCK_INIT(sc);
412 	WPI_RXON_LOCK_INIT(sc);
413 	WPI_NT_LOCK_INIT(sc);
414 	WPI_TXQ_LOCK_INIT(sc);
415 	WPI_TXQ_STATE_LOCK_INIT(sc);
416 
417 	/* Allocate DMA memory for firmware transfers. */
418 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
419 		device_printf(dev,
420 		    "could not allocate memory for firmware, error %d\n",
421 		    error);
422 		goto fail;
423 	}
424 
425 	/* Allocate shared page. */
426 	if ((error = wpi_alloc_shared(sc)) != 0) {
427 		device_printf(dev, "could not allocate shared page\n");
428 		goto fail;
429 	}
430 
431 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
432 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
433 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
434 			device_printf(dev,
435 			    "could not allocate TX ring %d, error %d\n", i,
436 			    error);
437 			goto fail;
438 		}
439 	}
440 
441 	/* Allocate RX ring. */
442 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
443 		device_printf(dev, "could not allocate RX ring, error %d\n",
444 		    error);
445 		goto fail;
446 	}
447 
448 	/* Clear pending interrupts. */
449 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
450 
451 	ic = &sc->sc_ic;
452 	ic->ic_softc = sc;
453 	ic->ic_name = device_get_nameunit(dev);
454 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
455 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
456 
457 	/* Set device capabilities. */
458 	ic->ic_caps =
459 		  IEEE80211_C_STA		/* station mode supported */
460 		| IEEE80211_C_IBSS		/* IBSS mode supported */
461 		| IEEE80211_C_HOSTAP		/* Host access point mode */
462 		| IEEE80211_C_MONITOR		/* monitor mode supported */
463 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
464 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
465 		| IEEE80211_C_TXFRAG		/* handle tx frags */
466 		| IEEE80211_C_TXPMGT		/* tx power management */
467 		| IEEE80211_C_SHSLOT		/* short slot time supported */
468 		| IEEE80211_C_WPA		/* 802.11i */
469 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
470 		| IEEE80211_C_WME		/* 802.11e */
471 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
472 		;
473 
474 	ic->ic_cryptocaps =
475 		  IEEE80211_CRYPTO_AES_CCM;
476 
477 	/*
478 	 * Read in the eeprom and also setup the channels for
479 	 * net80211. We don't set the rates as net80211 does this for us
480 	 */
481 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
482 		device_printf(dev, "could not read EEPROM, error %d\n",
483 		    error);
484 		goto fail;
485 	}
486 
487 #ifdef WPI_DEBUG
488 	if (bootverbose) {
489 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
490 		    sc->domain);
491 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
492 		    sc->type > 1 ? 'B': '?');
493 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
494 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
495 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
496 		    supportsa ? "does" : "does not");
497 
498 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
499 		   check what sc->rev really represents - benjsc 20070615 */
500 	}
501 #endif
502 
503 	ieee80211_ifattach(ic);
504 	ic->ic_vap_create = wpi_vap_create;
505 	ic->ic_vap_delete = wpi_vap_delete;
506 	ic->ic_parent = wpi_parent;
507 	ic->ic_raw_xmit = wpi_raw_xmit;
508 	ic->ic_transmit = wpi_transmit;
509 	ic->ic_node_alloc = wpi_node_alloc;
510 	sc->sc_node_free = ic->ic_node_free;
511 	ic->ic_node_free = wpi_node_free;
512 	ic->ic_wme.wme_update = wpi_updateedca;
513 	ic->ic_update_promisc = wpi_update_promisc;
514 	ic->ic_update_mcast = wpi_update_mcast;
515 	ic->ic_newassoc = wpi_newassoc;
516 	ic->ic_scan_start = wpi_scan_start;
517 	ic->ic_scan_end = wpi_scan_end;
518 	ic->ic_set_channel = wpi_set_channel;
519 	ic->ic_scan_curchan = wpi_scan_curchan;
520 	ic->ic_scan_mindwell = wpi_scan_mindwell;
521 	ic->ic_getradiocaps = wpi_getradiocaps;
522 	ic->ic_setregdomain = wpi_setregdomain;
523 
524 	sc->sc_update_rx_ring = wpi_update_rx_ring;
525 	sc->sc_update_tx_ring = wpi_update_tx_ring;
526 
527 	wpi_radiotap_attach(sc);
528 
529 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
530 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
531 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
532 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
533 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
534 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
535 
536 	wpi_sysctlattach(sc);
537 
538 	/*
539 	 * Hook our interrupt after all initialization is complete.
540 	 */
541 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
542 	    NULL, wpi_intr, sc, &sc->sc_ih);
543 	if (error != 0) {
544 		device_printf(dev, "can't establish interrupt, error %d\n",
545 		    error);
546 		goto fail;
547 	}
548 
549 	if (bootverbose)
550 		ieee80211_announce(ic);
551 
552 #ifdef WPI_DEBUG
553 	if (sc->sc_debug & WPI_DEBUG_HW)
554 		ieee80211_announce_channels(ic);
555 #endif
556 
557 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
558 	return 0;
559 
560 fail:	wpi_detach(dev);
561 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
562 	return error;
563 }
564 
565 /*
566  * Attach the interface to 802.11 radiotap.
567  */
568 static void
569 wpi_radiotap_attach(struct wpi_softc *sc)
570 {
571 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
572 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
573 
574 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
575 	ieee80211_radiotap_attach(&sc->sc_ic,
576 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
577 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
578 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
579 }
580 
581 static void
582 wpi_sysctlattach(struct wpi_softc *sc)
583 {
584 #ifdef WPI_DEBUG
585 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
586 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
587 
588 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
589 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
590 		"control debugging printfs");
591 #endif
592 }
593 
594 static void
595 wpi_init_beacon(struct wpi_vap *wvp)
596 {
597 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
598 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
599 
600 	cmd->id = WPI_ID_BROADCAST;
601 	cmd->ofdm_mask = 0xff;
602 	cmd->cck_mask = 0x0f;
603 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
604 
605 	/*
606 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
607 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
608 	 */
609 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
610 
611 	bcn->code = WPI_CMD_SET_BEACON;
612 	bcn->ac = WPI_CMD_QUEUE_NUM;
613 	bcn->size = sizeof(struct wpi_cmd_beacon);
614 }
615 
616 static struct ieee80211vap *
617 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
618     enum ieee80211_opmode opmode, int flags,
619     const uint8_t bssid[IEEE80211_ADDR_LEN],
620     const uint8_t mac[IEEE80211_ADDR_LEN])
621 {
622 	struct wpi_vap *wvp;
623 	struct ieee80211vap *vap;
624 
625 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
626 		return NULL;
627 
628 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
629 	vap = &wvp->wv_vap;
630 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
631 
632 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
633 		WPI_VAP_LOCK_INIT(wvp);
634 		wpi_init_beacon(wvp);
635 	}
636 
637 	/* Override with driver methods. */
638 	vap->iv_key_set = wpi_key_set;
639 	vap->iv_key_delete = wpi_key_delete;
640 	if (opmode == IEEE80211_M_IBSS) {
641 		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
642 		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
643 	}
644 	wvp->wv_newstate = vap->iv_newstate;
645 	vap->iv_newstate = wpi_newstate;
646 	vap->iv_update_beacon = wpi_update_beacon;
647 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
648 
649 	ieee80211_ratectl_init(vap);
650 	/* Complete setup. */
651 	ieee80211_vap_attach(vap, ieee80211_media_change,
652 	    ieee80211_media_status, mac);
653 	ic->ic_opmode = opmode;
654 	return vap;
655 }
656 
657 static void
658 wpi_vap_delete(struct ieee80211vap *vap)
659 {
660 	struct wpi_vap *wvp = WPI_VAP(vap);
661 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
662 	enum ieee80211_opmode opmode = vap->iv_opmode;
663 
664 	ieee80211_ratectl_deinit(vap);
665 	ieee80211_vap_detach(vap);
666 
667 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
668 		if (bcn->m != NULL)
669 			m_freem(bcn->m);
670 
671 		WPI_VAP_LOCK_DESTROY(wvp);
672 	}
673 
674 	free(wvp, M_80211_VAP);
675 }
676 
677 static int
678 wpi_detach(device_t dev)
679 {
680 	struct wpi_softc *sc = device_get_softc(dev);
681 	struct ieee80211com *ic = &sc->sc_ic;
682 	uint8_t qid;
683 
684 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
685 
686 	if (ic->ic_vap_create == wpi_vap_create) {
687 		ieee80211_draintask(ic, &sc->sc_radioon_task);
688 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
689 
690 		wpi_stop(sc);
691 
692 		callout_drain(&sc->watchdog_rfkill);
693 		callout_drain(&sc->tx_timeout);
694 		callout_drain(&sc->scan_timeout);
695 		callout_drain(&sc->calib_to);
696 		ieee80211_ifdetach(ic);
697 	}
698 
699 	/* Uninstall interrupt handler. */
700 	if (sc->irq != NULL) {
701 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
702 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
703 		    sc->irq);
704 		pci_release_msi(dev);
705 	}
706 
707 	if (sc->txq[0].data_dmat) {
708 		/* Free DMA resources. */
709 		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
710 			wpi_free_tx_ring(sc, &sc->txq[qid]);
711 
712 		wpi_free_rx_ring(sc);
713 		wpi_free_shared(sc);
714 	}
715 
716 	if (sc->fw_dma.tag)
717 		wpi_free_fwmem(sc);
718 
719 	if (sc->mem != NULL)
720 		bus_release_resource(dev, SYS_RES_MEMORY,
721 		    rman_get_rid(sc->mem), sc->mem);
722 
723 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
724 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
725 	WPI_TXQ_LOCK_DESTROY(sc);
726 	WPI_NT_LOCK_DESTROY(sc);
727 	WPI_RXON_LOCK_DESTROY(sc);
728 	WPI_TX_LOCK_DESTROY(sc);
729 	WPI_LOCK_DESTROY(sc);
730 	return 0;
731 }
732 
733 static int
734 wpi_shutdown(device_t dev)
735 {
736 	struct wpi_softc *sc = device_get_softc(dev);
737 
738 	wpi_stop(sc);
739 	return 0;
740 }
741 
742 static int
743 wpi_suspend(device_t dev)
744 {
745 	struct wpi_softc *sc = device_get_softc(dev);
746 	struct ieee80211com *ic = &sc->sc_ic;
747 
748 	ieee80211_suspend_all(ic);
749 	return 0;
750 }
751 
752 static int
753 wpi_resume(device_t dev)
754 {
755 	struct wpi_softc *sc = device_get_softc(dev);
756 	struct ieee80211com *ic = &sc->sc_ic;
757 
758 	/* Clear device-specific "PCI retry timeout" register (41h). */
759 	pci_write_config(dev, 0x41, 0, 1);
760 
761 	ieee80211_resume_all(ic);
762 	return 0;
763 }
764 
765 /*
766  * Grab exclusive access to NIC memory.
767  */
768 static int
769 wpi_nic_lock(struct wpi_softc *sc)
770 {
771 	int ntries;
772 
773 	/* Request exclusive access to NIC. */
774 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
775 
776 	/* Spin until we actually get the lock. */
777 	for (ntries = 0; ntries < 1000; ntries++) {
778 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
779 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
780 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
781 			return 0;
782 		DELAY(10);
783 	}
784 
785 	device_printf(sc->sc_dev, "could not lock memory\n");
786 
787 	return ETIMEDOUT;
788 }
789 
790 /*
791  * Release lock on NIC memory.
792  */
793 static __inline void
794 wpi_nic_unlock(struct wpi_softc *sc)
795 {
796 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
797 }
798 
799 static __inline uint32_t
800 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
801 {
802 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
803 	WPI_BARRIER_READ_WRITE(sc);
804 	return WPI_READ(sc, WPI_PRPH_RDATA);
805 }
806 
807 static __inline void
808 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
809 {
810 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
811 	WPI_BARRIER_WRITE(sc);
812 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
813 }
814 
815 static __inline void
816 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
817 {
818 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
819 }
820 
821 static __inline void
822 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
823 {
824 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
825 }
826 
827 static __inline void
828 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
829     const uint32_t *data, uint32_t count)
830 {
831 	for (; count != 0; count--, data++, addr += 4)
832 		wpi_prph_write(sc, addr, *data);
833 }
834 
835 static __inline uint32_t
836 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
837 {
838 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
839 	WPI_BARRIER_READ_WRITE(sc);
840 	return WPI_READ(sc, WPI_MEM_RDATA);
841 }
842 
843 static __inline void
844 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
845     int count)
846 {
847 	for (; count > 0; count--, addr += 4)
848 		*data++ = wpi_mem_read(sc, addr);
849 }
850 
851 static int
852 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
853 {
854 	uint8_t *out = data;
855 	uint32_t val;
856 	int error, ntries;
857 
858 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
859 
860 	if ((error = wpi_nic_lock(sc)) != 0)
861 		return error;
862 
863 	for (; count > 0; count -= 2, addr++) {
864 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
865 		for (ntries = 0; ntries < 10; ntries++) {
866 			val = WPI_READ(sc, WPI_EEPROM);
867 			if (val & WPI_EEPROM_READ_VALID)
868 				break;
869 			DELAY(5);
870 		}
871 		if (ntries == 10) {
872 			device_printf(sc->sc_dev,
873 			    "timeout reading ROM at 0x%x\n", addr);
874 			return ETIMEDOUT;
875 		}
876 		*out++= val >> 16;
877 		if (count > 1)
878 			*out ++= val >> 24;
879 	}
880 
881 	wpi_nic_unlock(sc);
882 
883 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
884 
885 	return 0;
886 }
887 
888 static void
889 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
890 {
891 	if (error != 0)
892 		return;
893 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
894 	*(bus_addr_t *)arg = segs[0].ds_addr;
895 }
896 
897 /*
898  * Allocates a contiguous block of dma memory of the requested size and
899  * alignment.
900  */
901 static int
902 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
903     void **kvap, bus_size_t size, bus_size_t alignment)
904 {
905 	int error;
906 
907 	dma->tag = NULL;
908 	dma->size = size;
909 
910 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
911 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
912 	    1, size, 0, NULL, NULL, &dma->tag);
913 	if (error != 0)
914 		goto fail;
915 
916 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
917 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
918 	if (error != 0)
919 		goto fail;
920 
921 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
922 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
923 	if (error != 0)
924 		goto fail;
925 
926 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
927 
928 	if (kvap != NULL)
929 		*kvap = dma->vaddr;
930 
931 	return 0;
932 
933 fail:	wpi_dma_contig_free(dma);
934 	return error;
935 }
936 
937 static void
938 wpi_dma_contig_free(struct wpi_dma_info *dma)
939 {
940 	if (dma->vaddr != NULL) {
941 		bus_dmamap_sync(dma->tag, dma->map,
942 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
943 		bus_dmamap_unload(dma->tag, dma->map);
944 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
945 		dma->vaddr = NULL;
946 	}
947 	if (dma->tag != NULL) {
948 		bus_dma_tag_destroy(dma->tag);
949 		dma->tag = NULL;
950 	}
951 }
952 
953 /*
954  * Allocate a shared page between host and NIC.
955  */
956 static int
957 wpi_alloc_shared(struct wpi_softc *sc)
958 {
959 	/* Shared buffer must be aligned on a 4KB boundary. */
960 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
961 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
962 }
963 
964 static void
965 wpi_free_shared(struct wpi_softc *sc)
966 {
967 	wpi_dma_contig_free(&sc->shared_dma);
968 }
969 
970 /*
971  * Allocate DMA-safe memory for firmware transfer.
972  */
973 static int
974 wpi_alloc_fwmem(struct wpi_softc *sc)
975 {
976 	/* Must be aligned on a 16-byte boundary. */
977 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
978 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
979 }
980 
981 static void
982 wpi_free_fwmem(struct wpi_softc *sc)
983 {
984 	wpi_dma_contig_free(&sc->fw_dma);
985 }
986 
987 static int
988 wpi_alloc_rx_ring(struct wpi_softc *sc)
989 {
990 	struct wpi_rx_ring *ring = &sc->rxq;
991 	bus_size_t size;
992 	int i, error;
993 
994 	ring->cur = 0;
995 	ring->update = 0;
996 
997 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
998 
999 	/* Allocate RX descriptors (16KB aligned.) */
1000 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1001 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1002 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1003 	if (error != 0) {
1004 		device_printf(sc->sc_dev,
1005 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1006 		    __func__, error);
1007 		goto fail;
1008 	}
1009 
1010 	/* Create RX buffer DMA tag. */
1011 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1012 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1013 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1014 	if (error != 0) {
1015 		device_printf(sc->sc_dev,
1016 		    "%s: could not create RX buf DMA tag, error %d\n",
1017 		    __func__, error);
1018 		goto fail;
1019 	}
1020 
1021 	/*
1022 	 * Allocate and map RX buffers.
1023 	 */
1024 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1025 		struct wpi_rx_data *data = &ring->data[i];
1026 		bus_addr_t paddr;
1027 
1028 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1029 		if (error != 0) {
1030 			device_printf(sc->sc_dev,
1031 			    "%s: could not create RX buf DMA map, error %d\n",
1032 			    __func__, error);
1033 			goto fail;
1034 		}
1035 
1036 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1037 		if (data->m == NULL) {
1038 			device_printf(sc->sc_dev,
1039 			    "%s: could not allocate RX mbuf\n", __func__);
1040 			error = ENOBUFS;
1041 			goto fail;
1042 		}
1043 
1044 		error = bus_dmamap_load(ring->data_dmat, data->map,
1045 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1046 		    &paddr, BUS_DMA_NOWAIT);
1047 		if (error != 0 && error != EFBIG) {
1048 			device_printf(sc->sc_dev,
1049 			    "%s: can't map mbuf (error %d)\n", __func__,
1050 			    error);
1051 			goto fail;
1052 		}
1053 
1054 		/* Set physical address of RX buffer. */
1055 		ring->desc[i] = htole32(paddr);
1056 	}
1057 
1058 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1059 	    BUS_DMASYNC_PREWRITE);
1060 
1061 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1062 
1063 	return 0;
1064 
1065 fail:	wpi_free_rx_ring(sc);
1066 
1067 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1068 
1069 	return error;
1070 }
1071 
1072 static void
1073 wpi_update_rx_ring(struct wpi_softc *sc)
1074 {
1075 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1076 }
1077 
1078 static void
1079 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1080 {
1081 	struct wpi_rx_ring *ring = &sc->rxq;
1082 
1083 	if (ring->update != 0) {
1084 		/* Wait for INT_WAKEUP event. */
1085 		return;
1086 	}
1087 
1088 	WPI_TXQ_LOCK(sc);
1089 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1090 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1091 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1092 		    __func__);
1093 		ring->update = 1;
1094 	} else {
1095 		wpi_update_rx_ring(sc);
1096 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1097 	}
1098 	WPI_TXQ_UNLOCK(sc);
1099 }
1100 
1101 static void
1102 wpi_reset_rx_ring(struct wpi_softc *sc)
1103 {
1104 	struct wpi_rx_ring *ring = &sc->rxq;
1105 	int ntries;
1106 
1107 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1108 
1109 	if (wpi_nic_lock(sc) == 0) {
1110 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1111 		for (ntries = 0; ntries < 1000; ntries++) {
1112 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1113 			    WPI_FH_RX_STATUS_IDLE)
1114 				break;
1115 			DELAY(10);
1116 		}
1117 		wpi_nic_unlock(sc);
1118 	}
1119 
1120 	ring->cur = 0;
1121 	ring->update = 0;
1122 }
1123 
1124 static void
1125 wpi_free_rx_ring(struct wpi_softc *sc)
1126 {
1127 	struct wpi_rx_ring *ring = &sc->rxq;
1128 	int i;
1129 
1130 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1131 
1132 	wpi_dma_contig_free(&ring->desc_dma);
1133 
1134 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1135 		struct wpi_rx_data *data = &ring->data[i];
1136 
1137 		if (data->m != NULL) {
1138 			bus_dmamap_sync(ring->data_dmat, data->map,
1139 			    BUS_DMASYNC_POSTREAD);
1140 			bus_dmamap_unload(ring->data_dmat, data->map);
1141 			m_freem(data->m);
1142 			data->m = NULL;
1143 		}
1144 		if (data->map != NULL)
1145 			bus_dmamap_destroy(ring->data_dmat, data->map);
1146 	}
1147 	if (ring->data_dmat != NULL) {
1148 		bus_dma_tag_destroy(ring->data_dmat);
1149 		ring->data_dmat = NULL;
1150 	}
1151 }
1152 
1153 static int
1154 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1155 {
1156 	bus_addr_t paddr;
1157 	bus_size_t size;
1158 	int i, error;
1159 
1160 	ring->qid = qid;
1161 	ring->queued = 0;
1162 	ring->cur = 0;
1163 	ring->pending = 0;
1164 	ring->update = 0;
1165 
1166 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1167 
1168 	/* Allocate TX descriptors (16KB aligned.) */
1169 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1170 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1171 	    size, WPI_RING_DMA_ALIGN);
1172 	if (error != 0) {
1173 		device_printf(sc->sc_dev,
1174 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1175 		    __func__, error);
1176 		goto fail;
1177 	}
1178 
1179 	/* Update shared area with ring physical address. */
1180 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1181 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1182 	    BUS_DMASYNC_PREWRITE);
1183 
1184 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1185 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1186 	    size, 4);
1187 	if (error != 0) {
1188 		device_printf(sc->sc_dev,
1189 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1190 		    __func__, error);
1191 		goto fail;
1192 	}
1193 
1194 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1195 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1196 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1197 	if (error != 0) {
1198 		device_printf(sc->sc_dev,
1199 		    "%s: could not create TX buf DMA tag, error %d\n",
1200 		    __func__, error);
1201 		goto fail;
1202 	}
1203 
1204 	paddr = ring->cmd_dma.paddr;
1205 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1206 		struct wpi_tx_data *data = &ring->data[i];
1207 
1208 		data->cmd_paddr = paddr;
1209 		paddr += sizeof (struct wpi_tx_cmd);
1210 
1211 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1212 		if (error != 0) {
1213 			device_printf(sc->sc_dev,
1214 			    "%s: could not create TX buf DMA map, error %d\n",
1215 			    __func__, error);
1216 			goto fail;
1217 		}
1218 	}
1219 
1220 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1221 
1222 	return 0;
1223 
1224 fail:	wpi_free_tx_ring(sc, ring);
1225 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1226 	return error;
1227 }
1228 
1229 static void
1230 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1231 {
1232 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1233 }
1234 
1235 static void
1236 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1237 {
1238 
1239 	if (ring->update != 0) {
1240 		/* Wait for INT_WAKEUP event. */
1241 		return;
1242 	}
1243 
1244 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1245 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1246 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1247 		    __func__, ring->qid);
1248 		ring->update = 1;
1249 	} else {
1250 		wpi_update_tx_ring(sc, ring);
1251 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1252 	}
1253 }
1254 
1255 static void
1256 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1257 {
1258 	int i;
1259 
1260 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1261 
1262 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1263 		struct wpi_tx_data *data = &ring->data[i];
1264 
1265 		if (data->m != NULL) {
1266 			bus_dmamap_sync(ring->data_dmat, data->map,
1267 			    BUS_DMASYNC_POSTWRITE);
1268 			bus_dmamap_unload(ring->data_dmat, data->map);
1269 			m_freem(data->m);
1270 			data->m = NULL;
1271 		}
1272 		if (data->ni != NULL) {
1273 			ieee80211_free_node(data->ni);
1274 			data->ni = NULL;
1275 		}
1276 	}
1277 	/* Clear TX descriptors. */
1278 	memset(ring->desc, 0, ring->desc_dma.size);
1279 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1280 	    BUS_DMASYNC_PREWRITE);
1281 	ring->queued = 0;
1282 	ring->cur = 0;
1283 	ring->pending = 0;
1284 	ring->update = 0;
1285 }
1286 
1287 static void
1288 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1289 {
1290 	int i;
1291 
1292 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1293 
1294 	wpi_dma_contig_free(&ring->desc_dma);
1295 	wpi_dma_contig_free(&ring->cmd_dma);
1296 
1297 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1298 		struct wpi_tx_data *data = &ring->data[i];
1299 
1300 		if (data->m != NULL) {
1301 			bus_dmamap_sync(ring->data_dmat, data->map,
1302 			    BUS_DMASYNC_POSTWRITE);
1303 			bus_dmamap_unload(ring->data_dmat, data->map);
1304 			m_freem(data->m);
1305 		}
1306 		if (data->map != NULL)
1307 			bus_dmamap_destroy(ring->data_dmat, data->map);
1308 	}
1309 	if (ring->data_dmat != NULL) {
1310 		bus_dma_tag_destroy(ring->data_dmat);
1311 		ring->data_dmat = NULL;
1312 	}
1313 }
1314 
1315 /*
1316  * Extract various information from EEPROM.
1317  */
1318 static int
1319 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1320 {
1321 #define WPI_CHK(res) do {		\
1322 	if ((error = res) != 0)		\
1323 		goto fail;		\
1324 } while (0)
1325 	uint8_t i;
1326 	int error;
1327 
1328 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1329 
1330 	/* Adapter has to be powered on for EEPROM access to work. */
1331 	if ((error = wpi_apm_init(sc)) != 0) {
1332 		device_printf(sc->sc_dev,
1333 		    "%s: could not power ON adapter, error %d\n", __func__,
1334 		    error);
1335 		return error;
1336 	}
1337 
1338 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1339 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1340 		error = EIO;
1341 		goto fail;
1342 	}
1343 	/* Clear HW ownership of EEPROM. */
1344 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1345 
1346 	/* Read the hardware capabilities, revision and SKU type. */
1347 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1348 	    sizeof(sc->cap)));
1349 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1350 	    sizeof(sc->rev)));
1351 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1352 	    sizeof(sc->type)));
1353 
1354 	sc->rev = le16toh(sc->rev);
1355 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1356 	    sc->rev, sc->type);
1357 
1358 	/* Read the regulatory domain (4 ASCII characters.) */
1359 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1360 	    sizeof(sc->domain)));
1361 
1362 	/* Read MAC address. */
1363 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1364 	    IEEE80211_ADDR_LEN));
1365 
1366 	/* Read the list of authorized channels. */
1367 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1368 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1369 
1370 	/* Read the list of TX power groups. */
1371 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1372 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1373 
1374 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1375 
1376 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1377 	    __func__);
1378 
1379 	return error;
1380 #undef WPI_CHK
1381 }
1382 
1383 /*
1384  * Translate EEPROM flags to net80211.
1385  */
1386 static uint32_t
1387 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1388 {
1389 	uint32_t nflags;
1390 
1391 	nflags = 0;
1392 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1393 		nflags |= IEEE80211_CHAN_PASSIVE;
1394 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1395 		nflags |= IEEE80211_CHAN_NOADHOC;
1396 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1397 		nflags |= IEEE80211_CHAN_DFS;
1398 		/* XXX apparently IBSS may still be marked */
1399 		nflags |= IEEE80211_CHAN_NOADHOC;
1400 	}
1401 
1402 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1403 	if (nflags & IEEE80211_CHAN_NOADHOC)
1404 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1405 
1406 	return nflags;
1407 }
1408 
1409 static void
1410 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1411     int *nchans, struct ieee80211_channel chans[])
1412 {
1413 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1414 	const struct wpi_chan_band *band = &wpi_bands[n];
1415 	uint32_t nflags;
1416 	uint8_t bands[IEEE80211_MODE_BYTES];
1417 	uint8_t chan, i;
1418 	int error;
1419 
1420 	memset(bands, 0, sizeof(bands));
1421 
1422 	if (n == 0) {
1423 		setbit(bands, IEEE80211_MODE_11B);
1424 		setbit(bands, IEEE80211_MODE_11G);
1425 	} else
1426 		setbit(bands, IEEE80211_MODE_11A);
1427 
1428 	for (i = 0; i < band->nchan; i++) {
1429 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1430 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1431 			    "Channel Not Valid: %d, band %d\n",
1432 			     band->chan[i],n);
1433 			continue;
1434 		}
1435 
1436 		chan = band->chan[i];
1437 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1438 		error = ieee80211_add_channel(chans, maxchans, nchans,
1439 		    chan, 0, channels[i].maxpwr, nflags, bands);
1440 		if (error != 0)
1441 			break;
1442 
1443 		/* Save maximum allowed TX power for this channel. */
1444 		sc->maxpwr[chan] = channels[i].maxpwr;
1445 
1446 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1447 		    "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
1448 		    chan, channels[i].flags, sc->maxpwr[chan], *nchans);
1449 	}
1450 }
1451 
1452 /**
1453  * Read the eeprom to find out what channels are valid for the given
1454  * band and update net80211 with what we find.
1455  */
1456 static int
1457 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1458 {
1459 	struct ieee80211com *ic = &sc->sc_ic;
1460 	const struct wpi_chan_band *band = &wpi_bands[n];
1461 	int error;
1462 
1463 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1464 
1465 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1466 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1467 	if (error != 0) {
1468 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1469 		return error;
1470 	}
1471 
1472 	wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1473 	    ic->ic_channels);
1474 
1475 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1476 
1477 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1478 
1479 	return 0;
1480 }
1481 
1482 static struct wpi_eeprom_chan *
1483 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1484 {
1485 	int i, j;
1486 
1487 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1488 		for (i = 0; i < wpi_bands[j].nchan; i++)
1489 			if (wpi_bands[j].chan[i] == c->ic_ieee &&
1490 			    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
1491 				return &sc->eeprom_channels[j][i];
1492 
1493 	return NULL;
1494 }
1495 
1496 static void
1497 wpi_getradiocaps(struct ieee80211com *ic,
1498     int maxchans, int *nchans, struct ieee80211_channel chans[])
1499 {
1500 	struct wpi_softc *sc = ic->ic_softc;
1501 	int i;
1502 
1503 	/* Parse the list of authorized channels. */
1504 	for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1505 		wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1506 }
1507 
1508 /*
1509  * Enforce flags read from EEPROM.
1510  */
1511 static int
1512 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1513     int nchan, struct ieee80211_channel chans[])
1514 {
1515 	struct wpi_softc *sc = ic->ic_softc;
1516 	int i;
1517 
1518 	for (i = 0; i < nchan; i++) {
1519 		struct ieee80211_channel *c = &chans[i];
1520 		struct wpi_eeprom_chan *channel;
1521 
1522 		channel = wpi_find_eeprom_channel(sc, c);
1523 		if (channel == NULL) {
1524 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1525 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1526 			return EINVAL;
1527 		}
1528 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 static int
1535 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1536 {
1537 	struct wpi_power_group *group = &sc->groups[n];
1538 	struct wpi_eeprom_group rgroup;
1539 	int i, error;
1540 
1541 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1542 
1543 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1544 	    &rgroup, sizeof rgroup)) != 0) {
1545 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1546 		return error;
1547 	}
1548 
1549 	/* Save TX power group information. */
1550 	group->chan   = rgroup.chan;
1551 	group->maxpwr = rgroup.maxpwr;
1552 	/* Retrieve temperature at which the samples were taken. */
1553 	group->temp   = (int16_t)le16toh(rgroup.temp);
1554 
1555 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1556 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1557 	    group->maxpwr, group->temp);
1558 
1559 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1560 		group->samples[i].index = rgroup.samples[i].index;
1561 		group->samples[i].power = rgroup.samples[i].power;
1562 
1563 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1564 		    "\tsample %d: index=%d power=%d\n", i,
1565 		    group->samples[i].index, group->samples[i].power);
1566 	}
1567 
1568 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1569 
1570 	return 0;
1571 }
1572 
1573 static __inline uint8_t
1574 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1575 {
1576 	uint8_t newid = WPI_ID_IBSS_MIN;
1577 
1578 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1579 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1580 			sc->nodesmsk |= 1 << newid;
1581 			return newid;
1582 		}
1583 	}
1584 
1585 	return WPI_ID_UNDEFINED;
1586 }
1587 
1588 static __inline uint8_t
1589 wpi_add_node_entry_sta(struct wpi_softc *sc)
1590 {
1591 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1592 
1593 	return WPI_ID_BSS;
1594 }
1595 
1596 static __inline int
1597 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1598 {
1599 	if (id == WPI_ID_UNDEFINED)
1600 		return 0;
1601 
1602 	return (sc->nodesmsk >> id) & 1;
1603 }
1604 
1605 static __inline void
1606 wpi_clear_node_table(struct wpi_softc *sc)
1607 {
1608 	sc->nodesmsk = 0;
1609 }
1610 
1611 static __inline void
1612 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1613 {
1614 	sc->nodesmsk &= ~(1 << id);
1615 }
1616 
1617 static struct ieee80211_node *
1618 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1619 {
1620 	struct wpi_node *wn;
1621 
1622 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1623 	    M_NOWAIT | M_ZERO);
1624 
1625 	if (wn == NULL)
1626 		return NULL;
1627 
1628 	wn->id = WPI_ID_UNDEFINED;
1629 
1630 	return &wn->ni;
1631 }
1632 
1633 static void
1634 wpi_node_free(struct ieee80211_node *ni)
1635 {
1636 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1637 	struct wpi_node *wn = WPI_NODE(ni);
1638 
1639 	if (wn->id != WPI_ID_UNDEFINED) {
1640 		WPI_NT_LOCK(sc);
1641 		if (wpi_check_node_entry(sc, wn->id)) {
1642 			wpi_del_node_entry(sc, wn->id);
1643 			wpi_del_node(sc, ni);
1644 		}
1645 		WPI_NT_UNLOCK(sc);
1646 	}
1647 
1648 	sc->sc_node_free(ni);
1649 }
1650 
1651 static __inline int
1652 wpi_check_bss_filter(struct wpi_softc *sc)
1653 {
1654 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1655 }
1656 
1657 static void
1658 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1659     const struct ieee80211_rx_stats *rxs,
1660     int rssi, int nf)
1661 {
1662 	struct ieee80211vap *vap = ni->ni_vap;
1663 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1664 	struct wpi_vap *wvp = WPI_VAP(vap);
1665 	uint64_t ni_tstamp, rx_tstamp;
1666 
1667 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1668 
1669 	if (vap->iv_state == IEEE80211_S_RUN &&
1670 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1671 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1672 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1673 		rx_tstamp = le64toh(sc->rx_tstamp);
1674 
1675 		if (ni_tstamp >= rx_tstamp) {
1676 			DPRINTF(sc, WPI_DEBUG_STATE,
1677 			    "ibss merge, tsf %ju tstamp %ju\n",
1678 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1679 			(void) ieee80211_ibss_merge(ni);
1680 		}
1681 	}
1682 }
1683 
1684 static void
1685 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1686 {
1687 	struct wpi_softc *sc = arg;
1688 	struct wpi_node *wn = WPI_NODE(ni);
1689 	int error;
1690 
1691 	WPI_NT_LOCK(sc);
1692 	if (wn->id != WPI_ID_UNDEFINED) {
1693 		wn->id = WPI_ID_UNDEFINED;
1694 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1695 			device_printf(sc->sc_dev,
1696 			    "%s: could not add IBSS node, error %d\n",
1697 			    __func__, error);
1698 		}
1699 	}
1700 	WPI_NT_UNLOCK(sc);
1701 }
1702 
1703 static void
1704 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1705 {
1706 	struct ieee80211com *ic = &sc->sc_ic;
1707 
1708 	/* Set group keys once. */
1709 	WPI_NT_LOCK(sc);
1710 	wvp->wv_gtk = 0;
1711 	WPI_NT_UNLOCK(sc);
1712 
1713 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1714 	ieee80211_crypto_reload_keys(ic);
1715 }
1716 
1717 /**
1718  * Called by net80211 when ever there is a change to 80211 state machine
1719  */
1720 static int
1721 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1722 {
1723 	struct wpi_vap *wvp = WPI_VAP(vap);
1724 	struct ieee80211com *ic = vap->iv_ic;
1725 	struct wpi_softc *sc = ic->ic_softc;
1726 	int error = 0;
1727 
1728 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1729 
1730 	WPI_TXQ_LOCK(sc);
1731 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1732 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1733 		WPI_TXQ_UNLOCK(sc);
1734 
1735 		return ENXIO;
1736 	}
1737 	WPI_TXQ_UNLOCK(sc);
1738 
1739 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1740 		ieee80211_state_name[vap->iv_state],
1741 		ieee80211_state_name[nstate]);
1742 
1743 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1744 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1745 			device_printf(sc->sc_dev,
1746 			    "%s: could not set power saving level\n",
1747 			    __func__);
1748 			return error;
1749 		}
1750 
1751 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1752 	}
1753 
1754 	switch (nstate) {
1755 	case IEEE80211_S_SCAN:
1756 		WPI_RXON_LOCK(sc);
1757 		if (wpi_check_bss_filter(sc) != 0) {
1758 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1759 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1760 				device_printf(sc->sc_dev,
1761 				    "%s: could not send RXON\n", __func__);
1762 			}
1763 		}
1764 		WPI_RXON_UNLOCK(sc);
1765 		break;
1766 
1767 	case IEEE80211_S_ASSOC:
1768 		if (vap->iv_state != IEEE80211_S_RUN)
1769 			break;
1770 		/* FALLTHROUGH */
1771 	case IEEE80211_S_AUTH:
1772 		/*
1773 		 * NB: do not optimize AUTH -> AUTH state transmission -
1774 		 * this will break powersave with non-QoS AP!
1775 		 */
1776 
1777 		/*
1778 		 * The node must be registered in the firmware before auth.
1779 		 * Also the associd must be cleared on RUN -> ASSOC
1780 		 * transitions.
1781 		 */
1782 		if ((error = wpi_auth(sc, vap)) != 0) {
1783 			device_printf(sc->sc_dev,
1784 			    "%s: could not move to AUTH state, error %d\n",
1785 			    __func__, error);
1786 		}
1787 		break;
1788 
1789 	case IEEE80211_S_RUN:
1790 		/*
1791 		 * RUN -> RUN transition:
1792 		 * STA mode: Just restart the timers.
1793 		 * IBSS mode: Process IBSS merge.
1794 		 */
1795 		if (vap->iv_state == IEEE80211_S_RUN) {
1796 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1797 				WPI_RXON_LOCK(sc);
1798 				wpi_calib_timeout(sc);
1799 				WPI_RXON_UNLOCK(sc);
1800 				break;
1801 			} else {
1802 				/*
1803 				 * Drop the BSS_FILTER bit
1804 				 * (there is no another way to change bssid).
1805 				 */
1806 				WPI_RXON_LOCK(sc);
1807 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1808 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1809 					device_printf(sc->sc_dev,
1810 					    "%s: could not send RXON\n",
1811 					    __func__);
1812 				}
1813 				WPI_RXON_UNLOCK(sc);
1814 
1815 				/* Restore all what was lost. */
1816 				wpi_restore_node_table(sc, wvp);
1817 
1818 				/* XXX set conditionally? */
1819 				wpi_updateedca(ic);
1820 			}
1821 		}
1822 
1823 		/*
1824 		 * !RUN -> RUN requires setting the association id
1825 		 * which is done with a firmware cmd.  We also defer
1826 		 * starting the timers until that work is done.
1827 		 */
1828 		if ((error = wpi_run(sc, vap)) != 0) {
1829 			device_printf(sc->sc_dev,
1830 			    "%s: could not move to RUN state\n", __func__);
1831 		}
1832 		break;
1833 
1834 	default:
1835 		break;
1836 	}
1837 	if (error != 0) {
1838 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1839 		return error;
1840 	}
1841 
1842 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1843 
1844 	return wvp->wv_newstate(vap, nstate, arg);
1845 }
1846 
1847 static void
1848 wpi_calib_timeout(void *arg)
1849 {
1850 	struct wpi_softc *sc = arg;
1851 
1852 	if (wpi_check_bss_filter(sc) == 0)
1853 		return;
1854 
1855 	wpi_power_calibration(sc);
1856 
1857 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1858 }
1859 
1860 static __inline uint8_t
1861 rate2plcp(const uint8_t rate)
1862 {
1863 	switch (rate) {
1864 	case 12:	return 0xd;
1865 	case 18:	return 0xf;
1866 	case 24:	return 0x5;
1867 	case 36:	return 0x7;
1868 	case 48:	return 0x9;
1869 	case 72:	return 0xb;
1870 	case 96:	return 0x1;
1871 	case 108:	return 0x3;
1872 	case 2:		return 10;
1873 	case 4:		return 20;
1874 	case 11:	return 55;
1875 	case 22:	return 110;
1876 	default:	return 0;
1877 	}
1878 }
1879 
1880 static __inline uint8_t
1881 plcp2rate(const uint8_t plcp)
1882 {
1883 	switch (plcp) {
1884 	case 0xd:	return 12;
1885 	case 0xf:	return 18;
1886 	case 0x5:	return 24;
1887 	case 0x7:	return 36;
1888 	case 0x9:	return 48;
1889 	case 0xb:	return 72;
1890 	case 0x1:	return 96;
1891 	case 0x3:	return 108;
1892 	case 10:	return 2;
1893 	case 20:	return 4;
1894 	case 55:	return 11;
1895 	case 110:	return 22;
1896 	default:	return 0;
1897 	}
1898 }
1899 
1900 /* Quickly determine if a given rate is CCK or OFDM. */
1901 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1902 
1903 static void
1904 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1905     struct wpi_rx_data *data)
1906 {
1907 	struct ieee80211com *ic = &sc->sc_ic;
1908 	struct wpi_rx_ring *ring = &sc->rxq;
1909 	struct wpi_rx_stat *stat;
1910 	struct wpi_rx_head *head;
1911 	struct wpi_rx_tail *tail;
1912 	struct ieee80211_frame *wh;
1913 	struct ieee80211_node *ni;
1914 	struct mbuf *m, *m1;
1915 	bus_addr_t paddr;
1916 	uint32_t flags;
1917 	uint16_t len;
1918 	int error;
1919 
1920 	stat = (struct wpi_rx_stat *)(desc + 1);
1921 
1922 	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1923 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1924 		goto fail1;
1925 	}
1926 
1927 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1928 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1929 	len = le16toh(head->len);
1930 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1931 	flags = le32toh(tail->flags);
1932 
1933 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1934 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1935 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1936 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1937 
1938 	/* Discard frames with a bad FCS early. */
1939 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1940 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1941 		    __func__, flags);
1942 		goto fail1;
1943 	}
1944 	/* Discard frames that are too short. */
1945 	if (len < sizeof (struct ieee80211_frame_ack)) {
1946 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1947 		    __func__, len);
1948 		goto fail1;
1949 	}
1950 
1951 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1952 	if (__predict_false(m1 == NULL)) {
1953 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1954 		    __func__);
1955 		goto fail1;
1956 	}
1957 	bus_dmamap_unload(ring->data_dmat, data->map);
1958 
1959 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1960 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1961 	if (__predict_false(error != 0 && error != EFBIG)) {
1962 		device_printf(sc->sc_dev,
1963 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1964 		m_freem(m1);
1965 
1966 		/* Try to reload the old mbuf. */
1967 		error = bus_dmamap_load(ring->data_dmat, data->map,
1968 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1969 		    &paddr, BUS_DMA_NOWAIT);
1970 		if (error != 0 && error != EFBIG) {
1971 			panic("%s: could not load old RX mbuf", __func__);
1972 		}
1973 		/* Physical address may have changed. */
1974 		ring->desc[ring->cur] = htole32(paddr);
1975 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1976 		    BUS_DMASYNC_PREWRITE);
1977 		goto fail1;
1978 	}
1979 
1980 	m = data->m;
1981 	data->m = m1;
1982 	/* Update RX descriptor. */
1983 	ring->desc[ring->cur] = htole32(paddr);
1984 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1985 	    BUS_DMASYNC_PREWRITE);
1986 
1987 	/* Finalize mbuf. */
1988 	m->m_data = (caddr_t)(head + 1);
1989 	m->m_pkthdr.len = m->m_len = len;
1990 
1991 	/* Grab a reference to the source node. */
1992 	wh = mtod(m, struct ieee80211_frame *);
1993 
1994 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1995 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1996 		/* Check whether decryption was successful or not. */
1997 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
1998 			DPRINTF(sc, WPI_DEBUG_RECV,
1999 			    "CCMP decryption failed 0x%x\n", flags);
2000 			goto fail2;
2001 		}
2002 		m->m_flags |= M_WEP;
2003 	}
2004 
2005 	if (len >= sizeof(struct ieee80211_frame_min))
2006 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2007 	else
2008 		ni = NULL;
2009 
2010 	sc->rx_tstamp = tail->tstamp;
2011 
2012 	if (ieee80211_radiotap_active(ic)) {
2013 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2014 
2015 		tap->wr_flags = 0;
2016 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2017 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2018 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2019 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2020 		tap->wr_tsft = tail->tstamp;
2021 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2022 		tap->wr_rate = plcp2rate(head->plcp);
2023 	}
2024 
2025 	WPI_UNLOCK(sc);
2026 
2027 	/* Send the frame to the 802.11 layer. */
2028 	if (ni != NULL) {
2029 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2030 		/* Node is no longer needed. */
2031 		ieee80211_free_node(ni);
2032 	} else
2033 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2034 
2035 	WPI_LOCK(sc);
2036 
2037 	return;
2038 
2039 fail2:	m_freem(m);
2040 
2041 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2042 }
2043 
2044 static void
2045 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2046     struct wpi_rx_data *data)
2047 {
2048 	/* Ignore */
2049 }
2050 
2051 static void
2052 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2053 {
2054 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2055 	struct wpi_tx_data *data = &ring->data[desc->idx];
2056 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2057 	struct mbuf *m;
2058 	struct ieee80211_node *ni;
2059 	struct ieee80211vap *vap;
2060 	uint32_t status = le32toh(stat->status);
2061 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2062 
2063 	KASSERT(data->ni != NULL, ("no node"));
2064 	KASSERT(data->m != NULL, ("no mbuf"));
2065 
2066 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2067 
2068 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2069 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2070 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2071 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2072 
2073 	/* Unmap and free mbuf. */
2074 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2075 	bus_dmamap_unload(ring->data_dmat, data->map);
2076 	m = data->m, data->m = NULL;
2077 	ni = data->ni, data->ni = NULL;
2078 	vap = ni->ni_vap;
2079 
2080 	/*
2081 	 * Update rate control statistics for the node.
2082 	 */
2083 	if (status & WPI_TX_STATUS_FAIL) {
2084 		ieee80211_ratectl_tx_complete(vap, ni,
2085 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2086 	} else
2087 		ieee80211_ratectl_tx_complete(vap, ni,
2088 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2089 
2090 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2091 
2092 	WPI_TXQ_STATE_LOCK(sc);
2093 	if (--ring->queued > 0)
2094 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2095 	else
2096 		callout_stop(&sc->tx_timeout);
2097 	WPI_TXQ_STATE_UNLOCK(sc);
2098 
2099 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2100 }
2101 
2102 /*
2103  * Process a "command done" firmware notification.  This is where we wakeup
2104  * processes waiting for a synchronous command completion.
2105  */
2106 static void
2107 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2108 {
2109 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2110 	struct wpi_tx_data *data;
2111 	struct wpi_tx_cmd *cmd;
2112 
2113 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2114 				   "type %s len %d\n", desc->qid, desc->idx,
2115 				   desc->flags, wpi_cmd_str(desc->type),
2116 				   le32toh(desc->len));
2117 
2118 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2119 		return;	/* Not a command ack. */
2120 
2121 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2122 
2123 	data = &ring->data[desc->idx];
2124 	cmd = &ring->cmd[desc->idx];
2125 
2126 	/* If the command was mapped in an mbuf, free it. */
2127 	if (data->m != NULL) {
2128 		bus_dmamap_sync(ring->data_dmat, data->map,
2129 		    BUS_DMASYNC_POSTWRITE);
2130 		bus_dmamap_unload(ring->data_dmat, data->map);
2131 		m_freem(data->m);
2132 		data->m = NULL;
2133 	}
2134 
2135 	wakeup(cmd);
2136 
2137 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2138 		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2139 
2140 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2141 		    BUS_DMASYNC_POSTREAD);
2142 
2143 		WPI_TXQ_LOCK(sc);
2144 		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2145 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2146 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2147 		} else {
2148 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2149 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2150 		}
2151 		WPI_TXQ_UNLOCK(sc);
2152 	}
2153 }
2154 
2155 static void
2156 wpi_notif_intr(struct wpi_softc *sc)
2157 {
2158 	struct ieee80211com *ic = &sc->sc_ic;
2159 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2160 	uint32_t hw;
2161 
2162 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2163 	    BUS_DMASYNC_POSTREAD);
2164 
2165 	hw = le32toh(sc->shared->next) & 0xfff;
2166 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2167 
2168 	while (sc->rxq.cur != hw) {
2169 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2170 
2171 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2172 		struct wpi_rx_desc *desc;
2173 
2174 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2175 		    BUS_DMASYNC_POSTREAD);
2176 		desc = mtod(data->m, struct wpi_rx_desc *);
2177 
2178 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2179 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2180 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2181 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2182 
2183 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2184 			/* Reply to a command. */
2185 			wpi_cmd_done(sc, desc);
2186 		}
2187 
2188 		switch (desc->type) {
2189 		case WPI_RX_DONE:
2190 			/* An 802.11 frame has been received. */
2191 			wpi_rx_done(sc, desc, data);
2192 
2193 			if (__predict_false(sc->sc_running == 0)) {
2194 				/* wpi_stop() was called. */
2195 				return;
2196 			}
2197 
2198 			break;
2199 
2200 		case WPI_TX_DONE:
2201 			/* An 802.11 frame has been transmitted. */
2202 			wpi_tx_done(sc, desc);
2203 			break;
2204 
2205 		case WPI_RX_STATISTICS:
2206 		case WPI_BEACON_STATISTICS:
2207 			wpi_rx_statistics(sc, desc, data);
2208 			break;
2209 
2210 		case WPI_BEACON_MISSED:
2211 		{
2212 			struct wpi_beacon_missed *miss =
2213 			    (struct wpi_beacon_missed *)(desc + 1);
2214 			uint32_t expected, misses, received, threshold;
2215 
2216 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2217 			    BUS_DMASYNC_POSTREAD);
2218 
2219 			misses = le32toh(miss->consecutive);
2220 			expected = le32toh(miss->expected);
2221 			received = le32toh(miss->received);
2222 			threshold = MAX(2, vap->iv_bmissthreshold);
2223 
2224 			DPRINTF(sc, WPI_DEBUG_BMISS,
2225 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2226 			    __func__, misses, le32toh(miss->total), received,
2227 			    expected);
2228 
2229 			if (misses >= threshold ||
2230 			    (received == 0 && expected >= threshold)) {
2231 				WPI_RXON_LOCK(sc);
2232 				if (callout_pending(&sc->scan_timeout)) {
2233 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2234 					    0, 1);
2235 				}
2236 				WPI_RXON_UNLOCK(sc);
2237 				if (vap->iv_state == IEEE80211_S_RUN &&
2238 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2239 					ieee80211_beacon_miss(ic);
2240 			}
2241 
2242 			break;
2243 		}
2244 #ifdef WPI_DEBUG
2245 		case WPI_BEACON_SENT:
2246 		{
2247 			struct wpi_tx_stat *stat =
2248 			    (struct wpi_tx_stat *)(desc + 1);
2249 			uint64_t *tsf = (uint64_t *)(stat + 1);
2250 			uint32_t *mode = (uint32_t *)(tsf + 1);
2251 
2252 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2253 			    BUS_DMASYNC_POSTREAD);
2254 
2255 			DPRINTF(sc, WPI_DEBUG_BEACON,
2256 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2257 			    "duration %u, status %x, tsf %ju, mode %x\n",
2258 			    stat->rtsfailcnt, stat->ackfailcnt,
2259 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2260 			    le32toh(stat->status), le64toh(*tsf),
2261 			    le32toh(*mode));
2262 
2263 			break;
2264 		}
2265 #endif
2266 		case WPI_UC_READY:
2267 		{
2268 			struct wpi_ucode_info *uc =
2269 			    (struct wpi_ucode_info *)(desc + 1);
2270 
2271 			/* The microcontroller is ready. */
2272 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2273 			    BUS_DMASYNC_POSTREAD);
2274 			DPRINTF(sc, WPI_DEBUG_RESET,
2275 			    "microcode alive notification version=%d.%d "
2276 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2277 			    uc->subtype, le32toh(uc->valid));
2278 
2279 			if (le32toh(uc->valid) != 1) {
2280 				device_printf(sc->sc_dev,
2281 				    "microcontroller initialization failed\n");
2282 				wpi_stop_locked(sc);
2283 				return;
2284 			}
2285 			/* Save the address of the error log in SRAM. */
2286 			sc->errptr = le32toh(uc->errptr);
2287 			break;
2288 		}
2289 		case WPI_STATE_CHANGED:
2290 		{
2291 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2292 			    BUS_DMASYNC_POSTREAD);
2293 
2294 			uint32_t *status = (uint32_t *)(desc + 1);
2295 
2296 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2297 			    le32toh(*status));
2298 
2299 			if (le32toh(*status) & 1) {
2300 				WPI_NT_LOCK(sc);
2301 				wpi_clear_node_table(sc);
2302 				WPI_NT_UNLOCK(sc);
2303 				ieee80211_runtask(ic,
2304 				    &sc->sc_radiooff_task);
2305 				return;
2306 			}
2307 			break;
2308 		}
2309 #ifdef WPI_DEBUG
2310 		case WPI_START_SCAN:
2311 		{
2312 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2313 			    BUS_DMASYNC_POSTREAD);
2314 
2315 			struct wpi_start_scan *scan =
2316 			    (struct wpi_start_scan *)(desc + 1);
2317 			DPRINTF(sc, WPI_DEBUG_SCAN,
2318 			    "%s: scanning channel %d status %x\n",
2319 			    __func__, scan->chan, le32toh(scan->status));
2320 
2321 			break;
2322 		}
2323 #endif
2324 		case WPI_STOP_SCAN:
2325 		{
2326 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2327 			    BUS_DMASYNC_POSTREAD);
2328 
2329 			struct wpi_stop_scan *scan =
2330 			    (struct wpi_stop_scan *)(desc + 1);
2331 
2332 			DPRINTF(sc, WPI_DEBUG_SCAN,
2333 			    "scan finished nchan=%d status=%d chan=%d\n",
2334 			    scan->nchan, scan->status, scan->chan);
2335 
2336 			WPI_RXON_LOCK(sc);
2337 			callout_stop(&sc->scan_timeout);
2338 			WPI_RXON_UNLOCK(sc);
2339 			if (scan->status == WPI_SCAN_ABORTED)
2340 				ieee80211_cancel_scan(vap);
2341 			else
2342 				ieee80211_scan_next(vap);
2343 			break;
2344 		}
2345 		}
2346 
2347 		if (sc->rxq.cur % 8 == 0) {
2348 			/* Tell the firmware what we have processed. */
2349 			sc->sc_update_rx_ring(sc);
2350 		}
2351 	}
2352 }
2353 
2354 /*
2355  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2356  * from power-down sleep mode.
2357  */
2358 static void
2359 wpi_wakeup_intr(struct wpi_softc *sc)
2360 {
2361 	int qid;
2362 
2363 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2364 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2365 
2366 	/* Wakeup RX and TX rings. */
2367 	if (sc->rxq.update) {
2368 		sc->rxq.update = 0;
2369 		wpi_update_rx_ring(sc);
2370 	}
2371 	WPI_TXQ_LOCK(sc);
2372 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2373 		struct wpi_tx_ring *ring = &sc->txq[qid];
2374 
2375 		if (ring->update) {
2376 			ring->update = 0;
2377 			wpi_update_tx_ring(sc, ring);
2378 		}
2379 	}
2380 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2381 	WPI_TXQ_UNLOCK(sc);
2382 }
2383 
2384 /*
2385  * This function prints firmware registers
2386  */
2387 #ifdef WPI_DEBUG
2388 static void
2389 wpi_debug_registers(struct wpi_softc *sc)
2390 {
2391 	size_t i;
2392 	static const uint32_t csr_tbl[] = {
2393 		WPI_HW_IF_CONFIG,
2394 		WPI_INT,
2395 		WPI_INT_MASK,
2396 		WPI_FH_INT,
2397 		WPI_GPIO_IN,
2398 		WPI_RESET,
2399 		WPI_GP_CNTRL,
2400 		WPI_EEPROM,
2401 		WPI_EEPROM_GP,
2402 		WPI_GIO,
2403 		WPI_UCODE_GP1,
2404 		WPI_UCODE_GP2,
2405 		WPI_GIO_CHICKEN,
2406 		WPI_ANA_PLL,
2407 		WPI_DBG_HPET_MEM,
2408 	};
2409 	static const uint32_t prph_tbl[] = {
2410 		WPI_APMG_CLK_CTRL,
2411 		WPI_APMG_PS,
2412 		WPI_APMG_PCI_STT,
2413 		WPI_APMG_RFKILL,
2414 	};
2415 
2416 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2417 
2418 	for (i = 0; i < nitems(csr_tbl); i++) {
2419 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2420 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2421 
2422 		if ((i + 1) % 2 == 0)
2423 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2424 	}
2425 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2426 
2427 	if (wpi_nic_lock(sc) == 0) {
2428 		for (i = 0; i < nitems(prph_tbl); i++) {
2429 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2430 			    wpi_get_prph_string(prph_tbl[i]),
2431 			    wpi_prph_read(sc, prph_tbl[i]));
2432 
2433 			if ((i + 1) % 2 == 0)
2434 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2435 		}
2436 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2437 		wpi_nic_unlock(sc);
2438 	} else {
2439 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2440 		    "Cannot access internal registers.\n");
2441 	}
2442 }
2443 #endif
2444 
2445 /*
2446  * Dump the error log of the firmware when a firmware panic occurs.  Although
2447  * we can't debug the firmware because it is neither open source nor free, it
2448  * can help us to identify certain classes of problems.
2449  */
2450 static void
2451 wpi_fatal_intr(struct wpi_softc *sc)
2452 {
2453 	struct wpi_fw_dump dump;
2454 	uint32_t i, offset, count;
2455 
2456 	/* Check that the error log address is valid. */
2457 	if (sc->errptr < WPI_FW_DATA_BASE ||
2458 	    sc->errptr + sizeof (dump) >
2459 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2460 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2461 		    sc->errptr);
2462 		return;
2463 	}
2464 	if (wpi_nic_lock(sc) != 0) {
2465 		printf("%s: could not read firmware error log\n", __func__);
2466 		return;
2467 	}
2468 	/* Read number of entries in the log. */
2469 	count = wpi_mem_read(sc, sc->errptr);
2470 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2471 		printf("%s: invalid count field (count = %u)\n", __func__,
2472 		    count);
2473 		wpi_nic_unlock(sc);
2474 		return;
2475 	}
2476 	/* Skip "count" field. */
2477 	offset = sc->errptr + sizeof (uint32_t);
2478 	printf("firmware error log (count = %u):\n", count);
2479 	for (i = 0; i < count; i++) {
2480 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2481 		    sizeof (dump) / sizeof (uint32_t));
2482 
2483 		printf("  error type = \"%s\" (0x%08X)\n",
2484 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2485 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2486 		    dump.desc);
2487 		printf("  error data      = 0x%08X\n",
2488 		    dump.data);
2489 		printf("  branch link     = 0x%08X%08X\n",
2490 		    dump.blink[0], dump.blink[1]);
2491 		printf("  interrupt link  = 0x%08X%08X\n",
2492 		    dump.ilink[0], dump.ilink[1]);
2493 		printf("  time            = %u\n", dump.time);
2494 
2495 		offset += sizeof (dump);
2496 	}
2497 	wpi_nic_unlock(sc);
2498 	/* Dump driver status (TX and RX rings) while we're here. */
2499 	printf("driver status:\n");
2500 	WPI_TXQ_LOCK(sc);
2501 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2502 		struct wpi_tx_ring *ring = &sc->txq[i];
2503 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2504 		    i, ring->qid, ring->cur, ring->queued);
2505 	}
2506 	WPI_TXQ_UNLOCK(sc);
2507 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2508 }
2509 
2510 static void
2511 wpi_intr(void *arg)
2512 {
2513 	struct wpi_softc *sc = arg;
2514 	uint32_t r1, r2;
2515 
2516 	WPI_LOCK(sc);
2517 
2518 	/* Disable interrupts. */
2519 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2520 
2521 	r1 = WPI_READ(sc, WPI_INT);
2522 
2523 	if (__predict_false(r1 == 0xffffffff ||
2524 			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2525 		goto end;	/* Hardware gone! */
2526 
2527 	r2 = WPI_READ(sc, WPI_FH_INT);
2528 
2529 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2530 	    r1, r2);
2531 
2532 	if (r1 == 0 && r2 == 0)
2533 		goto done;	/* Interrupt not for us. */
2534 
2535 	/* Acknowledge interrupts. */
2536 	WPI_WRITE(sc, WPI_INT, r1);
2537 	WPI_WRITE(sc, WPI_FH_INT, r2);
2538 
2539 	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2540 		struct ieee80211com *ic = &sc->sc_ic;
2541 
2542 		device_printf(sc->sc_dev, "fatal firmware error\n");
2543 #ifdef WPI_DEBUG
2544 		wpi_debug_registers(sc);
2545 #endif
2546 		wpi_fatal_intr(sc);
2547 		DPRINTF(sc, WPI_DEBUG_HW,
2548 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2549 		    "(Hardware Error)");
2550 		ieee80211_restart_all(ic);
2551 		goto end;
2552 	}
2553 
2554 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2555 	    (r2 & WPI_FH_INT_RX))
2556 		wpi_notif_intr(sc);
2557 
2558 	if (r1 & WPI_INT_ALIVE)
2559 		wakeup(sc);	/* Firmware is alive. */
2560 
2561 	if (r1 & WPI_INT_WAKEUP)
2562 		wpi_wakeup_intr(sc);
2563 
2564 done:
2565 	/* Re-enable interrupts. */
2566 	if (__predict_true(sc->sc_running))
2567 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2568 
2569 end:	WPI_UNLOCK(sc);
2570 }
2571 
2572 static void
2573 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2574 {
2575 	struct wpi_tx_ring *ring;
2576 	struct wpi_tx_data *data;
2577 	uint8_t cur;
2578 
2579 	WPI_TXQ_LOCK(sc);
2580 	ring = &sc->txq[ac];
2581 
2582 	while (ring->pending != 0) {
2583 		ring->pending--;
2584 		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2585 		data = &ring->data[cur];
2586 
2587 		bus_dmamap_sync(ring->data_dmat, data->map,
2588 		    BUS_DMASYNC_POSTWRITE);
2589 		bus_dmamap_unload(ring->data_dmat, data->map);
2590 		m_freem(data->m);
2591 		data->m = NULL;
2592 
2593 		ieee80211_node_decref(data->ni);
2594 		data->ni = NULL;
2595 	}
2596 
2597 	WPI_TXQ_UNLOCK(sc);
2598 }
2599 
2600 static int
2601 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2602 {
2603 	struct ieee80211_frame *wh;
2604 	struct wpi_tx_cmd *cmd;
2605 	struct wpi_tx_data *data;
2606 	struct wpi_tx_desc *desc;
2607 	struct wpi_tx_ring *ring;
2608 	struct mbuf *m1;
2609 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2610 	uint8_t cur, pad;
2611 	uint16_t hdrlen;
2612 	int error, i, nsegs, totlen, frag;
2613 
2614 	WPI_TXQ_LOCK(sc);
2615 
2616 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2617 
2618 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2619 
2620 	if (__predict_false(sc->sc_running == 0)) {
2621 		/* wpi_stop() was called */
2622 		error = ENETDOWN;
2623 		goto end;
2624 	}
2625 
2626 	wh = mtod(buf->m, struct ieee80211_frame *);
2627 	hdrlen = ieee80211_anyhdrsize(wh);
2628 	totlen = buf->m->m_pkthdr.len;
2629 	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2630 
2631 	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2632 		error = EINVAL;
2633 		goto end;
2634 	}
2635 
2636 	if (hdrlen & 3) {
2637 		/* First segment length must be a multiple of 4. */
2638 		pad = 4 - (hdrlen & 3);
2639 	} else
2640 		pad = 0;
2641 
2642 	ring = &sc->txq[buf->ac];
2643 	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2644 	desc = &ring->desc[cur];
2645 	data = &ring->data[cur];
2646 
2647 	/* Prepare TX firmware command. */
2648 	cmd = &ring->cmd[cur];
2649 	cmd->code = buf->code;
2650 	cmd->flags = 0;
2651 	cmd->qid = ring->qid;
2652 	cmd->idx = cur;
2653 
2654 	memcpy(cmd->data, buf->data, buf->size);
2655 
2656 	/* Save and trim IEEE802.11 header. */
2657 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2658 	m_adj(buf->m, hdrlen);
2659 
2660 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2661 	    segs, &nsegs, BUS_DMA_NOWAIT);
2662 	if (error != 0 && error != EFBIG) {
2663 		device_printf(sc->sc_dev,
2664 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2665 		goto end;
2666 	}
2667 	if (error != 0) {
2668 		/* Too many DMA segments, linearize mbuf. */
2669 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2670 		if (m1 == NULL) {
2671 			device_printf(sc->sc_dev,
2672 			    "%s: could not defrag mbuf\n", __func__);
2673 			error = ENOBUFS;
2674 			goto end;
2675 		}
2676 		buf->m = m1;
2677 
2678 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2679 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2680 		if (__predict_false(error != 0)) {
2681 			/* XXX fix this (applicable to the iwn(4) too) */
2682 			/*
2683 			 * NB: Do not return error;
2684 			 * original mbuf does not exist anymore.
2685 			 */
2686 			device_printf(sc->sc_dev,
2687 			    "%s: can't map mbuf (error %d)\n", __func__,
2688 			    error);
2689 			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2690 				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2691 				    IFCOUNTER_OERRORS, 1);
2692 				if (!frag)
2693 					ieee80211_free_node(buf->ni);
2694 			}
2695 			m_freem(buf->m);
2696 			error = 0;
2697 			goto end;
2698 		}
2699 	}
2700 
2701 	KASSERT(nsegs < WPI_MAX_SCATTER,
2702 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2703 	     nsegs, WPI_MAX_SCATTER));
2704 
2705 	data->m = buf->m;
2706 	data->ni = buf->ni;
2707 
2708 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2709 	    __func__, ring->qid, cur, totlen, nsegs);
2710 
2711 	/* Fill TX descriptor. */
2712 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2713 	/* First DMA segment is used by the TX command. */
2714 	desc->segs[0].addr = htole32(data->cmd_paddr);
2715 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2716 	/* Other DMA segments are for data payload. */
2717 	seg = &segs[0];
2718 	for (i = 1; i <= nsegs; i++) {
2719 		desc->segs[i].addr = htole32(seg->ds_addr);
2720 		desc->segs[i].len  = htole32(seg->ds_len);
2721 		seg++;
2722 	}
2723 
2724 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2725 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2726 	    BUS_DMASYNC_PREWRITE);
2727 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2728 	    BUS_DMASYNC_PREWRITE);
2729 
2730 	ring->pending += 1;
2731 
2732 	if (!frag) {
2733 		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2734 			WPI_TXQ_STATE_LOCK(sc);
2735 			ring->queued += ring->pending;
2736 			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2737 			    sc);
2738 			WPI_TXQ_STATE_UNLOCK(sc);
2739 		}
2740 
2741 		/* Kick TX ring. */
2742 		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2743 		ring->pending = 0;
2744 		sc->sc_update_tx_ring(sc, ring);
2745 	} else
2746 		ieee80211_node_incref(data->ni);
2747 
2748 end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2749 	    __func__);
2750 
2751 	WPI_TXQ_UNLOCK(sc);
2752 
2753 	return (error);
2754 }
2755 
2756 /*
2757  * Construct the data packet for a transmit buffer.
2758  */
2759 static int
2760 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2761 {
2762 	const struct ieee80211_txparam *tp;
2763 	struct ieee80211vap *vap = ni->ni_vap;
2764 	struct ieee80211com *ic = ni->ni_ic;
2765 	struct wpi_node *wn = WPI_NODE(ni);
2766 	struct ieee80211_channel *chan;
2767 	struct ieee80211_frame *wh;
2768 	struct ieee80211_key *k = NULL;
2769 	struct wpi_buf tx_data;
2770 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2771 	uint32_t flags;
2772 	uint16_t ac, qos;
2773 	uint8_t tid, type, rate;
2774 	int swcrypt, ismcast, totlen;
2775 
2776 	wh = mtod(m, struct ieee80211_frame *);
2777 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2778 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2779 	swcrypt = 1;
2780 
2781 	/* Select EDCA Access Category and TX ring for this frame. */
2782 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2783 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2784 		tid = qos & IEEE80211_QOS_TID;
2785 	} else {
2786 		qos = 0;
2787 		tid = 0;
2788 	}
2789 	ac = M_WME_GETAC(m);
2790 
2791 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2792 		ni->ni_chan : ic->ic_curchan;
2793 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2794 
2795 	/* Choose a TX rate index. */
2796 	if (type == IEEE80211_FC0_TYPE_MGT)
2797 		rate = tp->mgmtrate;
2798 	else if (ismcast)
2799 		rate = tp->mcastrate;
2800 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2801 		rate = tp->ucastrate;
2802 	else if (m->m_flags & M_EAPOL)
2803 		rate = tp->mgmtrate;
2804 	else {
2805 		/* XXX pass pktlen */
2806 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2807 		rate = ni->ni_txrate;
2808 	}
2809 
2810 	/* Encrypt the frame if need be. */
2811 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2812 		/* Retrieve key for TX. */
2813 		k = ieee80211_crypto_encap(ni, m);
2814 		if (k == NULL)
2815 			return (ENOBUFS);
2816 
2817 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2818 
2819 		/* 802.11 header may have moved. */
2820 		wh = mtod(m, struct ieee80211_frame *);
2821 	}
2822 	totlen = m->m_pkthdr.len;
2823 
2824 	if (ieee80211_radiotap_active_vap(vap)) {
2825 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2826 
2827 		tap->wt_flags = 0;
2828 		tap->wt_rate = rate;
2829 		if (k != NULL)
2830 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2831 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2832 			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2833 
2834 		ieee80211_radiotap_tx(vap, m);
2835 	}
2836 
2837 	flags = 0;
2838 	if (!ismcast) {
2839 		/* Unicast frame, check if an ACK is expected. */
2840 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2841 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2842 			flags |= WPI_TX_NEED_ACK;
2843 	}
2844 
2845 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2846 		flags |= WPI_TX_AUTO_SEQ;
2847 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2848 		flags |= WPI_TX_MORE_FRAG;
2849 
2850 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2851 	if (!ismcast) {
2852 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2853 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2854 			flags |= WPI_TX_NEED_RTS;
2855 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2856 		    WPI_RATE_IS_OFDM(rate)) {
2857 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2858 				flags |= WPI_TX_NEED_CTS;
2859 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2860 				flags |= WPI_TX_NEED_RTS;
2861 		}
2862 
2863 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2864 			flags |= WPI_TX_FULL_TXOP;
2865 	}
2866 
2867 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2868 	if (type == IEEE80211_FC0_TYPE_MGT) {
2869 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2870 
2871 		/* Tell HW to set timestamp in probe responses. */
2872 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2873 			flags |= WPI_TX_INSERT_TSTAMP;
2874 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2875 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2876 			tx->timeout = htole16(3);
2877 		else
2878 			tx->timeout = htole16(2);
2879 	}
2880 
2881 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2882 		tx->id = WPI_ID_BROADCAST;
2883 	else {
2884 		if (wn->id == WPI_ID_UNDEFINED) {
2885 			device_printf(sc->sc_dev,
2886 			    "%s: undefined node id\n", __func__);
2887 			return (EINVAL);
2888 		}
2889 
2890 		tx->id = wn->id;
2891 	}
2892 
2893 	if (!swcrypt) {
2894 		switch (k->wk_cipher->ic_cipher) {
2895 		case IEEE80211_CIPHER_AES_CCM:
2896 			tx->security = WPI_CIPHER_CCMP;
2897 			break;
2898 
2899 		default:
2900 			break;
2901 		}
2902 
2903 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2904 	}
2905 
2906 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2907 		struct mbuf *next = m->m_nextpkt;
2908 
2909 		tx->lnext = htole16(next->m_pkthdr.len);
2910 		tx->fnext = htole32(tx->security |
2911 				    (flags & WPI_TX_NEED_ACK) |
2912 				    WPI_NEXT_STA_ID(tx->id));
2913 	}
2914 
2915 	tx->len = htole16(totlen);
2916 	tx->flags = htole32(flags);
2917 	tx->plcp = rate2plcp(rate);
2918 	tx->tid = tid;
2919 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2920 	tx->ofdm_mask = 0xff;
2921 	tx->cck_mask = 0x0f;
2922 	tx->rts_ntries = 7;
2923 	tx->data_ntries = tp->maxretry;
2924 
2925 	tx_data.ni = ni;
2926 	tx_data.m = m;
2927 	tx_data.size = sizeof(struct wpi_cmd_data);
2928 	tx_data.code = WPI_CMD_TX_DATA;
2929 	tx_data.ac = ac;
2930 
2931 	return wpi_cmd2(sc, &tx_data);
2932 }
2933 
2934 static int
2935 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2936     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2937 {
2938 	struct ieee80211vap *vap = ni->ni_vap;
2939 	struct ieee80211_key *k = NULL;
2940 	struct ieee80211_frame *wh;
2941 	struct wpi_buf tx_data;
2942 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2943 	uint32_t flags;
2944 	uint8_t ac, type, rate;
2945 	int swcrypt, totlen;
2946 
2947 	wh = mtod(m, struct ieee80211_frame *);
2948 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2949 	swcrypt = 1;
2950 
2951 	ac = params->ibp_pri & 3;
2952 
2953 	/* Choose a TX rate index. */
2954 	rate = params->ibp_rate0;
2955 
2956 	flags = 0;
2957 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2958 		flags |= WPI_TX_AUTO_SEQ;
2959 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2960 		flags |= WPI_TX_NEED_ACK;
2961 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2962 		flags |= WPI_TX_NEED_RTS;
2963 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2964 		flags |= WPI_TX_NEED_CTS;
2965 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2966 		flags |= WPI_TX_FULL_TXOP;
2967 
2968 	/* Encrypt the frame if need be. */
2969 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2970 		/* Retrieve key for TX. */
2971 		k = ieee80211_crypto_encap(ni, m);
2972 		if (k == NULL)
2973 			return (ENOBUFS);
2974 
2975 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2976 
2977 		/* 802.11 header may have moved. */
2978 		wh = mtod(m, struct ieee80211_frame *);
2979 	}
2980 	totlen = m->m_pkthdr.len;
2981 
2982 	if (ieee80211_radiotap_active_vap(vap)) {
2983 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2984 
2985 		tap->wt_flags = 0;
2986 		tap->wt_rate = rate;
2987 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
2988 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2989 
2990 		ieee80211_radiotap_tx(vap, m);
2991 	}
2992 
2993 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2994 	if (type == IEEE80211_FC0_TYPE_MGT) {
2995 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2996 
2997 		/* Tell HW to set timestamp in probe responses. */
2998 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2999 			flags |= WPI_TX_INSERT_TSTAMP;
3000 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3001 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3002 			tx->timeout = htole16(3);
3003 		else
3004 			tx->timeout = htole16(2);
3005 	}
3006 
3007 	if (!swcrypt) {
3008 		switch (k->wk_cipher->ic_cipher) {
3009 		case IEEE80211_CIPHER_AES_CCM:
3010 			tx->security = WPI_CIPHER_CCMP;
3011 			break;
3012 
3013 		default:
3014 			break;
3015 		}
3016 
3017 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3018 	}
3019 
3020 	tx->len = htole16(totlen);
3021 	tx->flags = htole32(flags);
3022 	tx->plcp = rate2plcp(rate);
3023 	tx->id = WPI_ID_BROADCAST;
3024 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3025 	tx->rts_ntries = params->ibp_try1;
3026 	tx->data_ntries = params->ibp_try0;
3027 
3028 	tx_data.ni = ni;
3029 	tx_data.m = m;
3030 	tx_data.size = sizeof(struct wpi_cmd_data);
3031 	tx_data.code = WPI_CMD_TX_DATA;
3032 	tx_data.ac = ac;
3033 
3034 	return wpi_cmd2(sc, &tx_data);
3035 }
3036 
3037 static __inline int
3038 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3039 {
3040 	struct wpi_tx_ring *ring = &sc->txq[ac];
3041 	int retval;
3042 
3043 	WPI_TXQ_STATE_LOCK(sc);
3044 	retval = WPI_TX_RING_HIMARK - ring->queued;
3045 	WPI_TXQ_STATE_UNLOCK(sc);
3046 
3047 	return retval;
3048 }
3049 
3050 static int
3051 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3052     const struct ieee80211_bpf_params *params)
3053 {
3054 	struct ieee80211com *ic = ni->ni_ic;
3055 	struct wpi_softc *sc = ic->ic_softc;
3056 	uint16_t ac;
3057 	int error = 0;
3058 
3059 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3060 
3061 	ac = M_WME_GETAC(m);
3062 
3063 	WPI_TX_LOCK(sc);
3064 
3065 	/* NB: no fragments here */
3066 	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3067 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3068 		goto unlock;
3069 	}
3070 
3071 	if (params == NULL) {
3072 		/*
3073 		 * Legacy path; interpret frame contents to decide
3074 		 * precisely how to send the frame.
3075 		 */
3076 		error = wpi_tx_data(sc, m, ni);
3077 	} else {
3078 		/*
3079 		 * Caller supplied explicit parameters to use in
3080 		 * sending the frame.
3081 		 */
3082 		error = wpi_tx_data_raw(sc, m, ni, params);
3083 	}
3084 
3085 unlock:	WPI_TX_UNLOCK(sc);
3086 
3087 	if (error != 0) {
3088 		m_freem(m);
3089 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3090 
3091 		return error;
3092 	}
3093 
3094 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3095 
3096 	return 0;
3097 }
3098 
3099 static int
3100 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3101 {
3102 	struct wpi_softc *sc = ic->ic_softc;
3103 	struct ieee80211_node *ni;
3104 	struct mbuf *mnext;
3105 	uint16_t ac;
3106 	int error, nmbufs;
3107 
3108 	WPI_TX_LOCK(sc);
3109 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3110 
3111 	/* Check if interface is up & running. */
3112 	if (__predict_false(sc->sc_running == 0)) {
3113 		error = ENXIO;
3114 		goto unlock;
3115 	}
3116 
3117 	nmbufs = 1;
3118 	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3119 		nmbufs++;
3120 
3121 	/* Check for available space. */
3122 	ac = M_WME_GETAC(m);
3123 	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3124 		error = ENOBUFS;
3125 		goto unlock;
3126 	}
3127 
3128 	error = 0;
3129 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3130 	do {
3131 		mnext = m->m_nextpkt;
3132 		if (wpi_tx_data(sc, m, ni) != 0) {
3133 			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3134 			    nmbufs);
3135 			wpi_free_txfrags(sc, ac);
3136 			ieee80211_free_mbuf(m);
3137 			ieee80211_free_node(ni);
3138 			break;
3139 		}
3140 	} while((m = mnext) != NULL);
3141 
3142 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3143 
3144 unlock:	WPI_TX_UNLOCK(sc);
3145 
3146 	return (error);
3147 }
3148 
3149 static void
3150 wpi_watchdog_rfkill(void *arg)
3151 {
3152 	struct wpi_softc *sc = arg;
3153 	struct ieee80211com *ic = &sc->sc_ic;
3154 
3155 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3156 
3157 	/* No need to lock firmware memory. */
3158 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3159 		/* Radio kill switch is still off. */
3160 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3161 		    sc);
3162 	} else
3163 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3164 }
3165 
3166 static void
3167 wpi_scan_timeout(void *arg)
3168 {
3169 	struct wpi_softc *sc = arg;
3170 	struct ieee80211com *ic = &sc->sc_ic;
3171 
3172 	ic_printf(ic, "scan timeout\n");
3173 	ieee80211_restart_all(ic);
3174 }
3175 
3176 static void
3177 wpi_tx_timeout(void *arg)
3178 {
3179 	struct wpi_softc *sc = arg;
3180 	struct ieee80211com *ic = &sc->sc_ic;
3181 
3182 	ic_printf(ic, "device timeout\n");
3183 	ieee80211_restart_all(ic);
3184 }
3185 
3186 static void
3187 wpi_parent(struct ieee80211com *ic)
3188 {
3189 	struct wpi_softc *sc = ic->ic_softc;
3190 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3191 
3192 	if (ic->ic_nrunning > 0) {
3193 		if (wpi_init(sc) == 0) {
3194 			ieee80211_notify_radio(ic, 1);
3195 			ieee80211_start_all(ic);
3196 		} else {
3197 			ieee80211_notify_radio(ic, 0);
3198 			ieee80211_stop(vap);
3199 		}
3200 	} else {
3201 		ieee80211_notify_radio(ic, 0);
3202 		wpi_stop(sc);
3203 	}
3204 }
3205 
3206 /*
3207  * Send a command to the firmware.
3208  */
3209 static int
3210 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3211     int async)
3212 {
3213 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3214 	struct wpi_tx_desc *desc;
3215 	struct wpi_tx_data *data;
3216 	struct wpi_tx_cmd *cmd;
3217 	struct mbuf *m;
3218 	bus_addr_t paddr;
3219 	uint16_t totlen;
3220 	int error;
3221 
3222 	WPI_TXQ_LOCK(sc);
3223 
3224 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3225 
3226 	if (__predict_false(sc->sc_running == 0)) {
3227 		/* wpi_stop() was called */
3228 		if (code == WPI_CMD_SCAN)
3229 			error = ENETDOWN;
3230 		else
3231 			error = 0;
3232 
3233 		goto fail;
3234 	}
3235 
3236 	if (async == 0)
3237 		WPI_LOCK_ASSERT(sc);
3238 
3239 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3240 	    __func__, wpi_cmd_str(code), size, async);
3241 
3242 	desc = &ring->desc[ring->cur];
3243 	data = &ring->data[ring->cur];
3244 	totlen = 4 + size;
3245 
3246 	if (size > sizeof cmd->data) {
3247 		/* Command is too large to fit in a descriptor. */
3248 		if (totlen > MCLBYTES) {
3249 			error = EINVAL;
3250 			goto fail;
3251 		}
3252 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3253 		if (m == NULL) {
3254 			error = ENOMEM;
3255 			goto fail;
3256 		}
3257 		cmd = mtod(m, struct wpi_tx_cmd *);
3258 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3259 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3260 		if (error != 0) {
3261 			m_freem(m);
3262 			goto fail;
3263 		}
3264 		data->m = m;
3265 	} else {
3266 		cmd = &ring->cmd[ring->cur];
3267 		paddr = data->cmd_paddr;
3268 	}
3269 
3270 	cmd->code = code;
3271 	cmd->flags = 0;
3272 	cmd->qid = ring->qid;
3273 	cmd->idx = ring->cur;
3274 	memcpy(cmd->data, buf, size);
3275 
3276 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3277 	desc->segs[0].addr = htole32(paddr);
3278 	desc->segs[0].len  = htole32(totlen);
3279 
3280 	if (size > sizeof cmd->data) {
3281 		bus_dmamap_sync(ring->data_dmat, data->map,
3282 		    BUS_DMASYNC_PREWRITE);
3283 	} else {
3284 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3285 		    BUS_DMASYNC_PREWRITE);
3286 	}
3287 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3288 	    BUS_DMASYNC_PREWRITE);
3289 
3290 	/* Kick command ring. */
3291 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3292 	sc->sc_update_tx_ring(sc, ring);
3293 
3294 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3295 
3296 	WPI_TXQ_UNLOCK(sc);
3297 
3298 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3299 
3300 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3301 
3302 	WPI_TXQ_UNLOCK(sc);
3303 
3304 	return error;
3305 }
3306 
3307 /*
3308  * Configure HW multi-rate retries.
3309  */
3310 static int
3311 wpi_mrr_setup(struct wpi_softc *sc)
3312 {
3313 	struct ieee80211com *ic = &sc->sc_ic;
3314 	struct wpi_mrr_setup mrr;
3315 	uint8_t i;
3316 	int error;
3317 
3318 	/* CCK rates (not used with 802.11a). */
3319 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3320 		mrr.rates[i].flags = 0;
3321 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3322 		/* Fallback to the immediate lower CCK rate (if any.) */
3323 		mrr.rates[i].next =
3324 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3325 		/* Try twice at this rate before falling back to "next". */
3326 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3327 	}
3328 	/* OFDM rates (not used with 802.11b). */
3329 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3330 		mrr.rates[i].flags = 0;
3331 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3332 		/* Fallback to the immediate lower rate (if any.) */
3333 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3334 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3335 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3336 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3337 		    i - 1;
3338 		/* Try twice at this rate before falling back to "next". */
3339 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3340 	}
3341 	/* Setup MRR for control frames. */
3342 	mrr.which = htole32(WPI_MRR_CTL);
3343 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3344 	if (error != 0) {
3345 		device_printf(sc->sc_dev,
3346 		    "could not setup MRR for control frames\n");
3347 		return error;
3348 	}
3349 	/* Setup MRR for data frames. */
3350 	mrr.which = htole32(WPI_MRR_DATA);
3351 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3352 	if (error != 0) {
3353 		device_printf(sc->sc_dev,
3354 		    "could not setup MRR for data frames\n");
3355 		return error;
3356 	}
3357 	return 0;
3358 }
3359 
3360 static int
3361 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3362 {
3363 	struct ieee80211com *ic = ni->ni_ic;
3364 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3365 	struct wpi_node *wn = WPI_NODE(ni);
3366 	struct wpi_node_info node;
3367 	int error;
3368 
3369 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3370 
3371 	if (wn->id == WPI_ID_UNDEFINED)
3372 		return EINVAL;
3373 
3374 	memset(&node, 0, sizeof node);
3375 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3376 	node.id = wn->id;
3377 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3378 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3379 	node.action = htole32(WPI_ACTION_SET_RATE);
3380 	node.antenna = WPI_ANTENNA_BOTH;
3381 
3382 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3383 	    wn->id, ether_sprintf(ni->ni_macaddr));
3384 
3385 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3386 	if (error != 0) {
3387 		device_printf(sc->sc_dev,
3388 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3389 		    error);
3390 		return error;
3391 	}
3392 
3393 	if (wvp->wv_gtk != 0) {
3394 		error = wpi_set_global_keys(ni);
3395 		if (error != 0) {
3396 			device_printf(sc->sc_dev,
3397 			    "%s: error while setting global keys\n", __func__);
3398 			return ENXIO;
3399 		}
3400 	}
3401 
3402 	return 0;
3403 }
3404 
3405 /*
3406  * Broadcast node is used to send group-addressed and management frames.
3407  */
3408 static int
3409 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3410 {
3411 	struct ieee80211com *ic = &sc->sc_ic;
3412 	struct wpi_node_info node;
3413 
3414 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3415 
3416 	memset(&node, 0, sizeof node);
3417 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3418 	node.id = WPI_ID_BROADCAST;
3419 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3420 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3421 	node.action = htole32(WPI_ACTION_SET_RATE);
3422 	node.antenna = WPI_ANTENNA_BOTH;
3423 
3424 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3425 
3426 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3427 }
3428 
3429 static int
3430 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3431 {
3432 	struct wpi_node *wn = WPI_NODE(ni);
3433 	int error;
3434 
3435 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3436 
3437 	wn->id = wpi_add_node_entry_sta(sc);
3438 
3439 	if ((error = wpi_add_node(sc, ni)) != 0) {
3440 		wpi_del_node_entry(sc, wn->id);
3441 		wn->id = WPI_ID_UNDEFINED;
3442 		return error;
3443 	}
3444 
3445 	return 0;
3446 }
3447 
3448 static int
3449 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3450 {
3451 	struct wpi_node *wn = WPI_NODE(ni);
3452 	int error;
3453 
3454 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3455 	    ("the node %d was added before", wn->id));
3456 
3457 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3458 
3459 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3460 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3461 		return ENOMEM;
3462 	}
3463 
3464 	if ((error = wpi_add_node(sc, ni)) != 0) {
3465 		wpi_del_node_entry(sc, wn->id);
3466 		wn->id = WPI_ID_UNDEFINED;
3467 		return error;
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 static void
3474 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3475 {
3476 	struct wpi_node *wn = WPI_NODE(ni);
3477 	struct wpi_cmd_del_node node;
3478 	int error;
3479 
3480 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3481 
3482 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3483 
3484 	memset(&node, 0, sizeof node);
3485 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3486 	node.count = 1;
3487 
3488 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3489 	    wn->id, ether_sprintf(ni->ni_macaddr));
3490 
3491 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3492 	if (error != 0) {
3493 		device_printf(sc->sc_dev,
3494 		    "%s: could not delete node %u, error %d\n", __func__,
3495 		    wn->id, error);
3496 	}
3497 }
3498 
3499 static int
3500 wpi_updateedca(struct ieee80211com *ic)
3501 {
3502 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3503 	struct wpi_softc *sc = ic->ic_softc;
3504 	struct wpi_edca_params cmd;
3505 	int aci, error;
3506 
3507 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3508 
3509 	memset(&cmd, 0, sizeof cmd);
3510 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3511 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3512 		const struct wmeParams *ac =
3513 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3514 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3515 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3516 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3517 		cmd.ac[aci].txoplimit =
3518 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3519 
3520 		DPRINTF(sc, WPI_DEBUG_EDCA,
3521 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3522 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3523 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3524 		    cmd.ac[aci].txoplimit);
3525 	}
3526 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3527 
3528 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3529 
3530 	return error;
3531 #undef WPI_EXP2
3532 }
3533 
3534 static void
3535 wpi_set_promisc(struct wpi_softc *sc)
3536 {
3537 	struct ieee80211com *ic = &sc->sc_ic;
3538 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3539 	uint32_t promisc_filter;
3540 
3541 	promisc_filter = WPI_FILTER_CTL;
3542 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3543 		promisc_filter |= WPI_FILTER_PROMISC;
3544 
3545 	if (ic->ic_promisc > 0)
3546 		sc->rxon.filter |= htole32(promisc_filter);
3547 	else
3548 		sc->rxon.filter &= ~htole32(promisc_filter);
3549 }
3550 
3551 static void
3552 wpi_update_promisc(struct ieee80211com *ic)
3553 {
3554 	struct wpi_softc *sc = ic->ic_softc;
3555 
3556 	WPI_LOCK(sc);
3557 	if (sc->sc_running == 0) {
3558 		WPI_UNLOCK(sc);
3559 		return;
3560 	}
3561 	WPI_UNLOCK(sc);
3562 
3563 	WPI_RXON_LOCK(sc);
3564 	wpi_set_promisc(sc);
3565 
3566 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3567 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3568 		    __func__);
3569 	}
3570 	WPI_RXON_UNLOCK(sc);
3571 }
3572 
3573 static void
3574 wpi_update_mcast(struct ieee80211com *ic)
3575 {
3576 	/* Ignore */
3577 }
3578 
3579 static void
3580 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3581 {
3582 	struct wpi_cmd_led led;
3583 
3584 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3585 
3586 	led.which = which;
3587 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3588 	led.off = off;
3589 	led.on = on;
3590 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3591 }
3592 
3593 static int
3594 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3595 {
3596 	struct wpi_cmd_timing cmd;
3597 	uint64_t val, mod;
3598 
3599 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3600 
3601 	memset(&cmd, 0, sizeof cmd);
3602 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3603 	cmd.bintval = htole16(ni->ni_intval);
3604 	cmd.lintval = htole16(10);
3605 
3606 	/* Compute remaining time until next beacon. */
3607 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3608 	mod = le64toh(cmd.tstamp) % val;
3609 	cmd.binitval = htole32((uint32_t)(val - mod));
3610 
3611 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3612 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3613 
3614 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3615 }
3616 
3617 /*
3618  * This function is called periodically (every 60 seconds) to adjust output
3619  * power to temperature changes.
3620  */
3621 static void
3622 wpi_power_calibration(struct wpi_softc *sc)
3623 {
3624 	int temp;
3625 
3626 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3627 
3628 	/* Update sensor data. */
3629 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3630 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3631 
3632 	/* Sanity-check read value. */
3633 	if (temp < -260 || temp > 25) {
3634 		/* This can't be correct, ignore. */
3635 		DPRINTF(sc, WPI_DEBUG_TEMP,
3636 		    "out-of-range temperature reported: %d\n", temp);
3637 		return;
3638 	}
3639 
3640 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3641 
3642 	/* Adjust Tx power if need be. */
3643 	if (abs(temp - sc->temp) <= 6)
3644 		return;
3645 
3646 	sc->temp = temp;
3647 
3648 	if (wpi_set_txpower(sc, 1) != 0) {
3649 		/* just warn, too bad for the automatic calibration... */
3650 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3651 	}
3652 }
3653 
3654 /*
3655  * Set TX power for current channel.
3656  */
3657 static int
3658 wpi_set_txpower(struct wpi_softc *sc, int async)
3659 {
3660 	struct wpi_power_group *group;
3661 	struct wpi_cmd_txpower cmd;
3662 	uint8_t chan;
3663 	int idx, is_chan_5ghz, i;
3664 
3665 	/* Retrieve current channel from last RXON. */
3666 	chan = sc->rxon.chan;
3667 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3668 
3669 	/* Find the TX power group to which this channel belongs. */
3670 	if (is_chan_5ghz) {
3671 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3672 			if (chan <= group->chan)
3673 				break;
3674 	} else
3675 		group = &sc->groups[0];
3676 
3677 	memset(&cmd, 0, sizeof cmd);
3678 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3679 	cmd.chan = htole16(chan);
3680 
3681 	/* Set TX power for all OFDM and CCK rates. */
3682 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3683 		/* Retrieve TX power for this channel/rate. */
3684 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3685 
3686 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3687 
3688 		if (is_chan_5ghz) {
3689 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3690 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3691 		} else {
3692 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3693 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3694 		}
3695 		DPRINTF(sc, WPI_DEBUG_TEMP,
3696 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3697 	}
3698 
3699 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3700 }
3701 
3702 /*
3703  * Determine Tx power index for a given channel/rate combination.
3704  * This takes into account the regulatory information from EEPROM and the
3705  * current temperature.
3706  */
3707 static int
3708 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3709     uint8_t chan, int is_chan_5ghz, int ridx)
3710 {
3711 /* Fixed-point arithmetic division using a n-bit fractional part. */
3712 #define fdivround(a, b, n)	\
3713 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3714 
3715 /* Linear interpolation. */
3716 #define interpolate(x, x1, y1, x2, y2, n)	\
3717 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3718 
3719 	struct wpi_power_sample *sample;
3720 	int pwr, idx;
3721 
3722 	/* Default TX power is group maximum TX power minus 3dB. */
3723 	pwr = group->maxpwr / 2;
3724 
3725 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3726 	switch (ridx) {
3727 	case WPI_RIDX_OFDM36:
3728 		pwr -= is_chan_5ghz ?  5 : 0;
3729 		break;
3730 	case WPI_RIDX_OFDM48:
3731 		pwr -= is_chan_5ghz ? 10 : 7;
3732 		break;
3733 	case WPI_RIDX_OFDM54:
3734 		pwr -= is_chan_5ghz ? 12 : 9;
3735 		break;
3736 	}
3737 
3738 	/* Never exceed the channel maximum allowed TX power. */
3739 	pwr = min(pwr, sc->maxpwr[chan]);
3740 
3741 	/* Retrieve TX power index into gain tables from samples. */
3742 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3743 		if (pwr > sample[1].power)
3744 			break;
3745 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3746 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3747 	    sample[1].power, sample[1].index, 19);
3748 
3749 	/*-
3750 	 * Adjust power index based on current temperature:
3751 	 * - if cooler than factory-calibrated: decrease output power
3752 	 * - if warmer than factory-calibrated: increase output power
3753 	 */
3754 	idx -= (sc->temp - group->temp) * 11 / 100;
3755 
3756 	/* Decrease TX power for CCK rates (-5dB). */
3757 	if (ridx >= WPI_RIDX_CCK1)
3758 		idx += 10;
3759 
3760 	/* Make sure idx stays in a valid range. */
3761 	if (idx < 0)
3762 		return 0;
3763 	if (idx > WPI_MAX_PWR_INDEX)
3764 		return WPI_MAX_PWR_INDEX;
3765 	return idx;
3766 
3767 #undef interpolate
3768 #undef fdivround
3769 }
3770 
3771 /*
3772  * Set STA mode power saving level (between 0 and 5).
3773  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3774  */
3775 static int
3776 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3777 {
3778 	struct wpi_pmgt_cmd cmd;
3779 	const struct wpi_pmgt *pmgt;
3780 	uint32_t max, reg;
3781 	uint8_t skip_dtim;
3782 	int i;
3783 
3784 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3785 	    "%s: dtim=%d, level=%d, async=%d\n",
3786 	    __func__, dtim, level, async);
3787 
3788 	/* Select which PS parameters to use. */
3789 	if (dtim <= 10)
3790 		pmgt = &wpi_pmgt[0][level];
3791 	else
3792 		pmgt = &wpi_pmgt[1][level];
3793 
3794 	memset(&cmd, 0, sizeof cmd);
3795 	if (level != 0)	/* not CAM */
3796 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3797 	/* Retrieve PCIe Active State Power Management (ASPM). */
3798 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3799 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3800 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3801 
3802 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3803 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3804 
3805 	if (dtim == 0) {
3806 		dtim = 1;
3807 		skip_dtim = 0;
3808 	} else
3809 		skip_dtim = pmgt->skip_dtim;
3810 
3811 	if (skip_dtim != 0) {
3812 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3813 		max = pmgt->intval[4];
3814 		if (max == (uint32_t)-1)
3815 			max = dtim * (skip_dtim + 1);
3816 		else if (max > dtim)
3817 			max = rounddown(max, dtim);
3818 	} else
3819 		max = dtim;
3820 
3821 	for (i = 0; i < 5; i++)
3822 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3823 
3824 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3825 }
3826 
3827 static int
3828 wpi_send_btcoex(struct wpi_softc *sc)
3829 {
3830 	struct wpi_bluetooth cmd;
3831 
3832 	memset(&cmd, 0, sizeof cmd);
3833 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3834 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3835 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3836 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3837 	    __func__);
3838 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3839 }
3840 
3841 static int
3842 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3843 {
3844 	int error;
3845 
3846 	if (async)
3847 		WPI_RXON_LOCK_ASSERT(sc);
3848 
3849 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3850 		struct wpi_assoc rxon_assoc;
3851 
3852 		rxon_assoc.flags = sc->rxon.flags;
3853 		rxon_assoc.filter = sc->rxon.filter;
3854 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3855 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3856 		rxon_assoc.reserved = 0;
3857 
3858 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3859 		    sizeof (struct wpi_assoc), async);
3860 		if (error != 0) {
3861 			device_printf(sc->sc_dev,
3862 			    "RXON_ASSOC command failed, error %d\n", error);
3863 			return error;
3864 		}
3865 	} else {
3866 		if (async) {
3867 			WPI_NT_LOCK(sc);
3868 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3869 			    sizeof (struct wpi_rxon), async);
3870 			if (error == 0)
3871 				wpi_clear_node_table(sc);
3872 			WPI_NT_UNLOCK(sc);
3873 		} else {
3874 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3875 			    sizeof (struct wpi_rxon), async);
3876 			if (error == 0)
3877 				wpi_clear_node_table(sc);
3878 		}
3879 
3880 		if (error != 0) {
3881 			device_printf(sc->sc_dev,
3882 			    "RXON command failed, error %d\n", error);
3883 			return error;
3884 		}
3885 
3886 		/* Add broadcast node. */
3887 		error = wpi_add_broadcast_node(sc, async);
3888 		if (error != 0) {
3889 			device_printf(sc->sc_dev,
3890 			    "could not add broadcast node, error %d\n", error);
3891 			return error;
3892 		}
3893 	}
3894 
3895 	/* Configuration has changed, set Tx power accordingly. */
3896 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3897 		device_printf(sc->sc_dev,
3898 		    "%s: could not set TX power, error %d\n", __func__, error);
3899 		return error;
3900 	}
3901 
3902 	return 0;
3903 }
3904 
3905 /**
3906  * Configure the card to listen to a particular channel, this transisions the
3907  * card in to being able to receive frames from remote devices.
3908  */
3909 static int
3910 wpi_config(struct wpi_softc *sc)
3911 {
3912 	struct ieee80211com *ic = &sc->sc_ic;
3913 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3914 	struct ieee80211_channel *c = ic->ic_curchan;
3915 	int error;
3916 
3917 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3918 
3919 	/* Set power saving level to CAM during initialization. */
3920 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3921 		device_printf(sc->sc_dev,
3922 		    "%s: could not set power saving level\n", __func__);
3923 		return error;
3924 	}
3925 
3926 	/* Configure bluetooth coexistence. */
3927 	if ((error = wpi_send_btcoex(sc)) != 0) {
3928 		device_printf(sc->sc_dev,
3929 		    "could not configure bluetooth coexistence\n");
3930 		return error;
3931 	}
3932 
3933 	/* Configure adapter. */
3934 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3935 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3936 
3937 	/* Set default channel. */
3938 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3939 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3940 	if (IEEE80211_IS_CHAN_2GHZ(c))
3941 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3942 
3943 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3944 	switch (ic->ic_opmode) {
3945 	case IEEE80211_M_STA:
3946 		sc->rxon.mode = WPI_MODE_STA;
3947 		break;
3948 	case IEEE80211_M_IBSS:
3949 		sc->rxon.mode = WPI_MODE_IBSS;
3950 		sc->rxon.filter |= WPI_FILTER_BEACON;
3951 		break;
3952 	case IEEE80211_M_HOSTAP:
3953 		/* XXX workaround for beaconing */
3954 		sc->rxon.mode = WPI_MODE_IBSS;
3955 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3956 		break;
3957 	case IEEE80211_M_AHDEMO:
3958 		sc->rxon.mode = WPI_MODE_HOSTAP;
3959 		break;
3960 	case IEEE80211_M_MONITOR:
3961 		sc->rxon.mode = WPI_MODE_MONITOR;
3962 		break;
3963 	default:
3964 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3965 		    ic->ic_opmode);
3966 		return EINVAL;
3967 	}
3968 	sc->rxon.filter = htole32(sc->rxon.filter);
3969 	wpi_set_promisc(sc);
3970 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3971 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3972 
3973 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3974 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3975 		    __func__);
3976 		return error;
3977 	}
3978 
3979 	/* Setup rate scalling. */
3980 	if ((error = wpi_mrr_setup(sc)) != 0) {
3981 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
3982 		    error);
3983 		return error;
3984 	}
3985 
3986 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3987 
3988 	return 0;
3989 }
3990 
3991 static uint16_t
3992 wpi_get_active_dwell_time(struct wpi_softc *sc,
3993     struct ieee80211_channel *c, uint8_t n_probes)
3994 {
3995 	/* No channel? Default to 2GHz settings. */
3996 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
3997 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
3998 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
3999 	}
4000 
4001 	/* 5GHz dwell time. */
4002 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4003 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4004 }
4005 
4006 /*
4007  * Limit the total dwell time.
4008  *
4009  * Returns the dwell time in milliseconds.
4010  */
4011 static uint16_t
4012 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4013 {
4014 	struct ieee80211com *ic = &sc->sc_ic;
4015 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4016 	uint16_t bintval = 0;
4017 
4018 	/* bintval is in TU (1.024mS) */
4019 	if (vap != NULL)
4020 		bintval = vap->iv_bss->ni_intval;
4021 
4022 	/*
4023 	 * If it's non-zero, we should calculate the minimum of
4024 	 * it and the DWELL_BASE.
4025 	 *
4026 	 * XXX Yes, the math should take into account that bintval
4027 	 * is 1.024mS, not 1mS..
4028 	 */
4029 	if (bintval > 0) {
4030 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4031 		    bintval);
4032 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4033 	}
4034 
4035 	/* No association context? Default. */
4036 	return dwell_time;
4037 }
4038 
4039 static uint16_t
4040 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4041 {
4042 	uint16_t passive;
4043 
4044 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4045 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4046 	else
4047 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4048 
4049 	/* Clamp to the beacon interval if we're associated. */
4050 	return (wpi_limit_dwell(sc, passive));
4051 }
4052 
4053 static uint32_t
4054 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4055 {
4056 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4057 	uint32_t nbeacons = time / bintval;
4058 
4059 	if (mod > WPI_PAUSE_MAX_TIME)
4060 		mod = WPI_PAUSE_MAX_TIME;
4061 
4062 	return WPI_PAUSE_SCAN(nbeacons, mod);
4063 }
4064 
4065 /*
4066  * Send a scan request to the firmware.
4067  */
4068 static int
4069 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4070 {
4071 	struct ieee80211com *ic = &sc->sc_ic;
4072 	struct ieee80211_scan_state *ss = ic->ic_scan;
4073 	struct ieee80211vap *vap = ss->ss_vap;
4074 	struct wpi_scan_hdr *hdr;
4075 	struct wpi_cmd_data *tx;
4076 	struct wpi_scan_essid *essids;
4077 	struct wpi_scan_chan *chan;
4078 	struct ieee80211_frame *wh;
4079 	struct ieee80211_rateset *rs;
4080 	uint16_t bintval, buflen, dwell_active, dwell_passive;
4081 	uint8_t *buf, *frm, i, nssid;
4082 	int bgscan, error;
4083 
4084 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4085 
4086 	/*
4087 	 * We are absolutely not allowed to send a scan command when another
4088 	 * scan command is pending.
4089 	 */
4090 	if (callout_pending(&sc->scan_timeout)) {
4091 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4092 		    __func__);
4093 		error = EAGAIN;
4094 		goto fail;
4095 	}
4096 
4097 	bgscan = wpi_check_bss_filter(sc);
4098 	bintval = vap->iv_bss->ni_intval;
4099 	if (bgscan != 0 &&
4100 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4101 		error = EOPNOTSUPP;
4102 		goto fail;
4103 	}
4104 
4105 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4106 	if (buf == NULL) {
4107 		device_printf(sc->sc_dev,
4108 		    "%s: could not allocate buffer for scan command\n",
4109 		    __func__);
4110 		error = ENOMEM;
4111 		goto fail;
4112 	}
4113 	hdr = (struct wpi_scan_hdr *)buf;
4114 
4115 	/*
4116 	 * Move to the next channel if no packets are received within 10 msecs
4117 	 * after sending the probe request.
4118 	 */
4119 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4120 	hdr->quiet_threshold = htole16(1);
4121 
4122 	if (bgscan != 0) {
4123 		/*
4124 		 * Max needs to be greater than active and passive and quiet!
4125 		 * It's also in microseconds!
4126 		 */
4127 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4128 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4129 		    bintval));
4130 	}
4131 
4132 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4133 
4134 	tx = (struct wpi_cmd_data *)(hdr + 1);
4135 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4136 	tx->id = WPI_ID_BROADCAST;
4137 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4138 
4139 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4140 		/* Send probe requests at 6Mbps. */
4141 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4142 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4143 	} else {
4144 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4145 		/* Send probe requests at 1Mbps. */
4146 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4147 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4148 	}
4149 
4150 	essids = (struct wpi_scan_essid *)(tx + 1);
4151 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4152 	for (i = 0; i < nssid; i++) {
4153 		essids[i].id = IEEE80211_ELEMID_SSID;
4154 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4155 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4156 #ifdef WPI_DEBUG
4157 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4158 			printf("Scanning Essid: ");
4159 			ieee80211_print_essid(essids[i].data, essids[i].len);
4160 			printf("\n");
4161 		}
4162 #endif
4163 	}
4164 
4165 	/*
4166 	 * Build a probe request frame.  Most of the following code is a
4167 	 * copy & paste of what is done in net80211.
4168 	 */
4169 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4170 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4171 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4172 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4173 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4174 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4175 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4176 
4177 	frm = (uint8_t *)(wh + 1);
4178 	frm = ieee80211_add_ssid(frm, NULL, 0);
4179 	frm = ieee80211_add_rates(frm, rs);
4180 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4181 		frm = ieee80211_add_xrates(frm, rs);
4182 
4183 	/* Set length of probe request. */
4184 	tx->len = htole16(frm - (uint8_t *)wh);
4185 
4186 	/*
4187 	 * Construct information about the channel that we
4188 	 * want to scan. The firmware expects this to be directly
4189 	 * after the scan probe request
4190 	 */
4191 	chan = (struct wpi_scan_chan *)frm;
4192 	chan->chan = ieee80211_chan2ieee(ic, c);
4193 	chan->flags = 0;
4194 	if (nssid) {
4195 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4196 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4197 	} else
4198 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4199 
4200 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4201 		chan->flags |= WPI_CHAN_ACTIVE;
4202 
4203 	/*
4204 	 * Calculate the active/passive dwell times.
4205 	 */
4206 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4207 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4208 
4209 	/* Make sure they're valid. */
4210 	if (dwell_active > dwell_passive)
4211 		dwell_active = dwell_passive;
4212 
4213 	chan->active = htole16(dwell_active);
4214 	chan->passive = htole16(dwell_passive);
4215 
4216 	chan->dsp_gain = 0x6e;  /* Default level */
4217 
4218 	if (IEEE80211_IS_CHAN_5GHZ(c))
4219 		chan->rf_gain = 0x3b;
4220 	else
4221 		chan->rf_gain = 0x28;
4222 
4223 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4224 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4225 
4226 	hdr->nchan++;
4227 
4228 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4229 		/* XXX Force probe request transmission. */
4230 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4231 
4232 		chan++;
4233 
4234 		/* Reduce unnecessary delay. */
4235 		chan->flags = 0;
4236 		chan->passive = chan->active = hdr->quiet_time;
4237 
4238 		hdr->nchan++;
4239 	}
4240 
4241 	chan++;
4242 
4243 	buflen = (uint8_t *)chan - buf;
4244 	hdr->len = htole16(buflen);
4245 
4246 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4247 	    hdr->nchan);
4248 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4249 	free(buf, M_DEVBUF);
4250 
4251 	if (error != 0)
4252 		goto fail;
4253 
4254 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4255 
4256 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4257 
4258 	return 0;
4259 
4260 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4261 
4262 	return error;
4263 }
4264 
4265 static int
4266 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4267 {
4268 	struct ieee80211com *ic = vap->iv_ic;
4269 	struct ieee80211_node *ni = vap->iv_bss;
4270 	struct ieee80211_channel *c = ni->ni_chan;
4271 	int error;
4272 
4273 	WPI_RXON_LOCK(sc);
4274 
4275 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4276 
4277 	/* Update adapter configuration. */
4278 	sc->rxon.associd = 0;
4279 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4280 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4281 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4282 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4283 	if (IEEE80211_IS_CHAN_2GHZ(c))
4284 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4285 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4286 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4287 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4288 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4289 	if (IEEE80211_IS_CHAN_A(c)) {
4290 		sc->rxon.cck_mask  = 0;
4291 		sc->rxon.ofdm_mask = 0x15;
4292 	} else if (IEEE80211_IS_CHAN_B(c)) {
4293 		sc->rxon.cck_mask  = 0x03;
4294 		sc->rxon.ofdm_mask = 0;
4295 	} else {
4296 		/* Assume 802.11b/g. */
4297 		sc->rxon.cck_mask  = 0x0f;
4298 		sc->rxon.ofdm_mask = 0x15;
4299 	}
4300 
4301 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4302 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4303 	    sc->rxon.ofdm_mask);
4304 
4305 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4306 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4307 		    __func__);
4308 	}
4309 
4310 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4311 
4312 	WPI_RXON_UNLOCK(sc);
4313 
4314 	return error;
4315 }
4316 
4317 static int
4318 wpi_config_beacon(struct wpi_vap *wvp)
4319 {
4320 	struct ieee80211vap *vap = &wvp->wv_vap;
4321 	struct ieee80211com *ic = vap->iv_ic;
4322 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4323 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4324 	struct wpi_softc *sc = ic->ic_softc;
4325 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4326 	struct ieee80211_tim_ie *tie;
4327 	struct mbuf *m;
4328 	uint8_t *ptr;
4329 	int error;
4330 
4331 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4332 
4333 	WPI_VAP_LOCK_ASSERT(wvp);
4334 
4335 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4336 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4337 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4338 
4339 	/* XXX seems to be unused */
4340 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4341 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4342 		ptr = mtod(bcn->m, uint8_t *);
4343 
4344 		cmd->tim = htole16(bo->bo_tim - ptr);
4345 		cmd->timsz = tie->tim_len;
4346 	}
4347 
4348 	/* Necessary for recursion in ieee80211_beacon_update(). */
4349 	m = bcn->m;
4350 	bcn->m = m_dup(m, M_NOWAIT);
4351 	if (bcn->m == NULL) {
4352 		device_printf(sc->sc_dev,
4353 		    "%s: could not copy beacon frame\n", __func__);
4354 		error = ENOMEM;
4355 		goto end;
4356 	}
4357 
4358 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4359 		device_printf(sc->sc_dev,
4360 		    "%s: could not update beacon frame, error %d", __func__,
4361 		    error);
4362 		m_freem(bcn->m);
4363 	}
4364 
4365 	/* Restore mbuf. */
4366 end:	bcn->m = m;
4367 
4368 	return error;
4369 }
4370 
4371 static int
4372 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4373 {
4374 	struct ieee80211vap *vap = ni->ni_vap;
4375 	struct wpi_vap *wvp = WPI_VAP(vap);
4376 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4377 	struct mbuf *m;
4378 	int error;
4379 
4380 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4381 
4382 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4383 		return EINVAL;
4384 
4385 	m = ieee80211_beacon_alloc(ni);
4386 	if (m == NULL) {
4387 		device_printf(sc->sc_dev,
4388 		    "%s: could not allocate beacon frame\n", __func__);
4389 		return ENOMEM;
4390 	}
4391 
4392 	WPI_VAP_LOCK(wvp);
4393 	if (bcn->m != NULL)
4394 		m_freem(bcn->m);
4395 
4396 	bcn->m = m;
4397 
4398 	error = wpi_config_beacon(wvp);
4399 	WPI_VAP_UNLOCK(wvp);
4400 
4401 	return error;
4402 }
4403 
4404 static void
4405 wpi_update_beacon(struct ieee80211vap *vap, int item)
4406 {
4407 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4408 	struct wpi_vap *wvp = WPI_VAP(vap);
4409 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4410 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4411 	struct ieee80211_node *ni = vap->iv_bss;
4412 	int mcast = 0;
4413 
4414 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4415 
4416 	WPI_VAP_LOCK(wvp);
4417 	if (bcn->m == NULL) {
4418 		bcn->m = ieee80211_beacon_alloc(ni);
4419 		if (bcn->m == NULL) {
4420 			device_printf(sc->sc_dev,
4421 			    "%s: could not allocate beacon frame\n", __func__);
4422 
4423 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4424 			    __func__);
4425 
4426 			WPI_VAP_UNLOCK(wvp);
4427 			return;
4428 		}
4429 	}
4430 	WPI_VAP_UNLOCK(wvp);
4431 
4432 	if (item == IEEE80211_BEACON_TIM)
4433 		mcast = 1;	/* TODO */
4434 
4435 	setbit(bo->bo_flags, item);
4436 	ieee80211_beacon_update(ni, bcn->m, mcast);
4437 
4438 	WPI_VAP_LOCK(wvp);
4439 	wpi_config_beacon(wvp);
4440 	WPI_VAP_UNLOCK(wvp);
4441 
4442 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4443 }
4444 
4445 static void
4446 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4447 {
4448 	struct ieee80211vap *vap = ni->ni_vap;
4449 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4450 	struct wpi_node *wn = WPI_NODE(ni);
4451 	int error;
4452 
4453 	WPI_NT_LOCK(sc);
4454 
4455 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4456 
4457 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4458 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4459 			device_printf(sc->sc_dev,
4460 			    "%s: could not add IBSS node, error %d\n",
4461 			    __func__, error);
4462 		}
4463 	}
4464 	WPI_NT_UNLOCK(sc);
4465 }
4466 
4467 static int
4468 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4469 {
4470 	struct ieee80211com *ic = vap->iv_ic;
4471 	struct ieee80211_node *ni = vap->iv_bss;
4472 	struct ieee80211_channel *c = ni->ni_chan;
4473 	int error;
4474 
4475 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4476 
4477 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4478 		/* Link LED blinks while monitoring. */
4479 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4480 		return 0;
4481 	}
4482 
4483 	/* XXX kernel panic workaround */
4484 	if (c == IEEE80211_CHAN_ANYC) {
4485 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4486 		    __func__);
4487 		return EINVAL;
4488 	}
4489 
4490 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4491 		device_printf(sc->sc_dev,
4492 		    "%s: could not set timing, error %d\n", __func__, error);
4493 		return error;
4494 	}
4495 
4496 	/* Update adapter configuration. */
4497 	WPI_RXON_LOCK(sc);
4498 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4499 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4500 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4501 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4502 	if (IEEE80211_IS_CHAN_2GHZ(c))
4503 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4504 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4505 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4506 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4507 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4508 	if (IEEE80211_IS_CHAN_A(c)) {
4509 		sc->rxon.cck_mask  = 0;
4510 		sc->rxon.ofdm_mask = 0x15;
4511 	} else if (IEEE80211_IS_CHAN_B(c)) {
4512 		sc->rxon.cck_mask  = 0x03;
4513 		sc->rxon.ofdm_mask = 0;
4514 	} else {
4515 		/* Assume 802.11b/g. */
4516 		sc->rxon.cck_mask  = 0x0f;
4517 		sc->rxon.ofdm_mask = 0x15;
4518 	}
4519 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4520 
4521 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4522 	    sc->rxon.chan, sc->rxon.flags);
4523 
4524 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4525 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4526 		    __func__);
4527 		return error;
4528 	}
4529 
4530 	/* Start periodic calibration timer. */
4531 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4532 
4533 	WPI_RXON_UNLOCK(sc);
4534 
4535 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4536 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4537 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4538 			device_printf(sc->sc_dev,
4539 			    "%s: could not setup beacon, error %d\n", __func__,
4540 			    error);
4541 			return error;
4542 		}
4543 	}
4544 
4545 	if (vap->iv_opmode == IEEE80211_M_STA) {
4546 		/* Add BSS node. */
4547 		WPI_NT_LOCK(sc);
4548 		error = wpi_add_sta_node(sc, ni);
4549 		WPI_NT_UNLOCK(sc);
4550 		if (error != 0) {
4551 			device_printf(sc->sc_dev,
4552 			    "%s: could not add BSS node, error %d\n", __func__,
4553 			    error);
4554 			return error;
4555 		}
4556 	}
4557 
4558 	/* Link LED always on while associated. */
4559 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4560 
4561 	/* Enable power-saving mode if requested by user. */
4562 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4563 	    vap->iv_opmode != IEEE80211_M_IBSS)
4564 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4565 
4566 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4567 
4568 	return 0;
4569 }
4570 
4571 static int
4572 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4573 {
4574 	const struct ieee80211_cipher *cip = k->wk_cipher;
4575 	struct ieee80211vap *vap = ni->ni_vap;
4576 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4577 	struct wpi_node *wn = WPI_NODE(ni);
4578 	struct wpi_node_info node;
4579 	uint16_t kflags;
4580 	int error;
4581 
4582 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4583 
4584 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4585 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4586 		    __func__);
4587 		return 0;
4588 	}
4589 
4590 	switch (cip->ic_cipher) {
4591 	case IEEE80211_CIPHER_AES_CCM:
4592 		kflags = WPI_KFLAG_CCMP;
4593 		break;
4594 
4595 	default:
4596 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4597 		    cip->ic_cipher);
4598 		return 0;
4599 	}
4600 
4601 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4602 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4603 		kflags |= WPI_KFLAG_MULTICAST;
4604 
4605 	memset(&node, 0, sizeof node);
4606 	node.id = wn->id;
4607 	node.control = WPI_NODE_UPDATE;
4608 	node.flags = WPI_FLAG_KEY_SET;
4609 	node.kflags = htole16(kflags);
4610 	memcpy(node.key, k->wk_key, k->wk_keylen);
4611 again:
4612 	DPRINTF(sc, WPI_DEBUG_KEY,
4613 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4614 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4615 	    node.id, ether_sprintf(ni->ni_macaddr));
4616 
4617 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4618 	if (error != 0) {
4619 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4620 		    error);
4621 		return !error;
4622 	}
4623 
4624 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4625 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4626 		kflags |= WPI_KFLAG_MULTICAST;
4627 		node.kflags = htole16(kflags);
4628 
4629 		goto again;
4630 	}
4631 
4632 	return 1;
4633 }
4634 
4635 static void
4636 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4637 {
4638 	const struct ieee80211_key *k = arg;
4639 	struct ieee80211vap *vap = ni->ni_vap;
4640 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4641 	struct wpi_node *wn = WPI_NODE(ni);
4642 	int error;
4643 
4644 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4645 		return;
4646 
4647 	WPI_NT_LOCK(sc);
4648 	error = wpi_load_key(ni, k);
4649 	WPI_NT_UNLOCK(sc);
4650 
4651 	if (error == 0) {
4652 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4653 		    __func__);
4654 	}
4655 }
4656 
4657 static int
4658 wpi_set_global_keys(struct ieee80211_node *ni)
4659 {
4660 	struct ieee80211vap *vap = ni->ni_vap;
4661 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4662 	int error = 1;
4663 
4664 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4665 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4666 			error = wpi_load_key(ni, wk);
4667 
4668 	return !error;
4669 }
4670 
4671 static int
4672 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4673 {
4674 	struct ieee80211vap *vap = ni->ni_vap;
4675 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4676 	struct wpi_node *wn = WPI_NODE(ni);
4677 	struct wpi_node_info node;
4678 	uint16_t kflags;
4679 	int error;
4680 
4681 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4682 
4683 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4684 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4685 		return 1;	/* Nothing to do. */
4686 	}
4687 
4688 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4689 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4690 		kflags |= WPI_KFLAG_MULTICAST;
4691 
4692 	memset(&node, 0, sizeof node);
4693 	node.id = wn->id;
4694 	node.control = WPI_NODE_UPDATE;
4695 	node.flags = WPI_FLAG_KEY_SET;
4696 	node.kflags = htole16(kflags);
4697 again:
4698 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4699 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4700 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4701 
4702 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4703 	if (error != 0) {
4704 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4705 		    error);
4706 		return !error;
4707 	}
4708 
4709 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4710 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4711 		kflags |= WPI_KFLAG_MULTICAST;
4712 		node.kflags = htole16(kflags);
4713 
4714 		goto again;
4715 	}
4716 
4717 	return 1;
4718 }
4719 
4720 static void
4721 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4722 {
4723 	const struct ieee80211_key *k = arg;
4724 	struct ieee80211vap *vap = ni->ni_vap;
4725 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4726 	struct wpi_node *wn = WPI_NODE(ni);
4727 	int error;
4728 
4729 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4730 		return;
4731 
4732 	WPI_NT_LOCK(sc);
4733 	error = wpi_del_key(ni, k);
4734 	WPI_NT_UNLOCK(sc);
4735 
4736 	if (error == 0) {
4737 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4738 		    __func__);
4739 	}
4740 }
4741 
4742 static int
4743 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4744     int set)
4745 {
4746 	struct ieee80211com *ic = vap->iv_ic;
4747 	struct wpi_softc *sc = ic->ic_softc;
4748 	struct wpi_vap *wvp = WPI_VAP(vap);
4749 	struct ieee80211_node *ni;
4750 	int error, ni_ref = 0;
4751 
4752 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4753 
4754 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4755 		/* Not for us. */
4756 		return 1;
4757 	}
4758 
4759 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4760 		/* XMIT keys are handled in wpi_tx_data(). */
4761 		return 1;
4762 	}
4763 
4764 	/* Handle group keys. */
4765 	if (&vap->iv_nw_keys[0] <= k &&
4766 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4767 		WPI_NT_LOCK(sc);
4768 		if (set)
4769 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4770 		else
4771 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4772 		WPI_NT_UNLOCK(sc);
4773 
4774 		if (vap->iv_state == IEEE80211_S_RUN) {
4775 			ieee80211_iterate_nodes(&ic->ic_sta,
4776 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4777 			    __DECONST(void *, k));
4778 		}
4779 
4780 		return 1;
4781 	}
4782 
4783 	switch (vap->iv_opmode) {
4784 	case IEEE80211_M_STA:
4785 		ni = vap->iv_bss;
4786 		break;
4787 
4788 	case IEEE80211_M_IBSS:
4789 	case IEEE80211_M_AHDEMO:
4790 	case IEEE80211_M_HOSTAP:
4791 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4792 		if (ni == NULL)
4793 			return 0;	/* should not happen */
4794 
4795 		ni_ref = 1;
4796 		break;
4797 
4798 	default:
4799 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4800 		    vap->iv_opmode);
4801 		return 0;
4802 	}
4803 
4804 	WPI_NT_LOCK(sc);
4805 	if (set)
4806 		error = wpi_load_key(ni, k);
4807 	else
4808 		error = wpi_del_key(ni, k);
4809 	WPI_NT_UNLOCK(sc);
4810 
4811 	if (ni_ref)
4812 		ieee80211_node_decref(ni);
4813 
4814 	return error;
4815 }
4816 
4817 static int
4818 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4819 {
4820 	return wpi_process_key(vap, k, 1);
4821 }
4822 
4823 static int
4824 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4825 {
4826 	return wpi_process_key(vap, k, 0);
4827 }
4828 
4829 /*
4830  * This function is called after the runtime firmware notifies us of its
4831  * readiness (called in a process context).
4832  */
4833 static int
4834 wpi_post_alive(struct wpi_softc *sc)
4835 {
4836 	int ntries, error;
4837 
4838 	/* Check (again) that the radio is not disabled. */
4839 	if ((error = wpi_nic_lock(sc)) != 0)
4840 		return error;
4841 
4842 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4843 
4844 	/* NB: Runtime firmware must be up and running. */
4845 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4846 		device_printf(sc->sc_dev,
4847 		    "RF switch: radio disabled (%s)\n", __func__);
4848 		wpi_nic_unlock(sc);
4849 		return EPERM;   /* :-) */
4850 	}
4851 	wpi_nic_unlock(sc);
4852 
4853 	/* Wait for thermal sensor to calibrate. */
4854 	for (ntries = 0; ntries < 1000; ntries++) {
4855 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4856 			break;
4857 		DELAY(10);
4858 	}
4859 
4860 	if (ntries == 1000) {
4861 		device_printf(sc->sc_dev,
4862 		    "timeout waiting for thermal sensor calibration\n");
4863 		return ETIMEDOUT;
4864 	}
4865 
4866 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4867 	return 0;
4868 }
4869 
4870 /*
4871  * The firmware boot code is small and is intended to be copied directly into
4872  * the NIC internal memory (no DMA transfer).
4873  */
4874 static int
4875 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4876 {
4877 	int error, ntries;
4878 
4879 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4880 
4881 	size /= sizeof (uint32_t);
4882 
4883 	if ((error = wpi_nic_lock(sc)) != 0)
4884 		return error;
4885 
4886 	/* Copy microcode image into NIC memory. */
4887 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4888 	    (const uint32_t *)ucode, size);
4889 
4890 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4891 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4892 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4893 
4894 	/* Start boot load now. */
4895 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4896 
4897 	/* Wait for transfer to complete. */
4898 	for (ntries = 0; ntries < 1000; ntries++) {
4899 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4900 		DPRINTF(sc, WPI_DEBUG_HW,
4901 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4902 		    WPI_FH_TX_STATUS_IDLE(6),
4903 		    status & WPI_FH_TX_STATUS_IDLE(6));
4904 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4905 			DPRINTF(sc, WPI_DEBUG_HW,
4906 			    "Status Match! - ntries = %d\n", ntries);
4907 			break;
4908 		}
4909 		DELAY(10);
4910 	}
4911 	if (ntries == 1000) {
4912 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4913 		    __func__);
4914 		wpi_nic_unlock(sc);
4915 		return ETIMEDOUT;
4916 	}
4917 
4918 	/* Enable boot after power up. */
4919 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4920 
4921 	wpi_nic_unlock(sc);
4922 	return 0;
4923 }
4924 
4925 static int
4926 wpi_load_firmware(struct wpi_softc *sc)
4927 {
4928 	struct wpi_fw_info *fw = &sc->fw;
4929 	struct wpi_dma_info *dma = &sc->fw_dma;
4930 	int error;
4931 
4932 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4933 
4934 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4935 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4936 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4937 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4938 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4939 
4940 	/* Tell adapter where to find initialization sections. */
4941 	if ((error = wpi_nic_lock(sc)) != 0)
4942 		return error;
4943 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4944 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4945 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4946 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4947 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4948 	wpi_nic_unlock(sc);
4949 
4950 	/* Load firmware boot code. */
4951 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4952 	if (error != 0) {
4953 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4954 		    __func__);
4955 		return error;
4956 	}
4957 
4958 	/* Now press "execute". */
4959 	WPI_WRITE(sc, WPI_RESET, 0);
4960 
4961 	/* Wait at most one second for first alive notification. */
4962 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4963 		device_printf(sc->sc_dev,
4964 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4965 		    __func__, error);
4966 		return error;
4967 	}
4968 
4969 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4970 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4971 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4972 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4973 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4974 
4975 	/* Tell adapter where to find runtime sections. */
4976 	if ((error = wpi_nic_lock(sc)) != 0)
4977 		return error;
4978 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4979 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4980 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4981 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4982 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
4983 	    WPI_FW_UPDATED | fw->main.textsz);
4984 	wpi_nic_unlock(sc);
4985 
4986 	return 0;
4987 }
4988 
4989 static int
4990 wpi_read_firmware(struct wpi_softc *sc)
4991 {
4992 	const struct firmware *fp;
4993 	struct wpi_fw_info *fw = &sc->fw;
4994 	const struct wpi_firmware_hdr *hdr;
4995 	int error;
4996 
4997 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4998 
4999 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5000 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5001 
5002 	WPI_UNLOCK(sc);
5003 	fp = firmware_get(WPI_FW_NAME);
5004 	WPI_LOCK(sc);
5005 
5006 	if (fp == NULL) {
5007 		device_printf(sc->sc_dev,
5008 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5009 		return EINVAL;
5010 	}
5011 
5012 	sc->fw_fp = fp;
5013 
5014 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5015 		device_printf(sc->sc_dev,
5016 		    "firmware file too short: %zu bytes\n", fp->datasize);
5017 		error = EINVAL;
5018 		goto fail;
5019 	}
5020 
5021 	fw->size = fp->datasize;
5022 	fw->data = (const uint8_t *)fp->data;
5023 
5024 	/* Extract firmware header information. */
5025 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5026 
5027 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5028 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5029 
5030 	fw->main.textsz = le32toh(hdr->rtextsz);
5031 	fw->main.datasz = le32toh(hdr->rdatasz);
5032 	fw->init.textsz = le32toh(hdr->itextsz);
5033 	fw->init.datasz = le32toh(hdr->idatasz);
5034 	fw->boot.textsz = le32toh(hdr->btextsz);
5035 	fw->boot.datasz = 0;
5036 
5037 	/* Sanity-check firmware header. */
5038 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5039 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5040 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5041 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5042 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5043 	    (fw->boot.textsz & 3) != 0) {
5044 		device_printf(sc->sc_dev, "invalid firmware header\n");
5045 		error = EINVAL;
5046 		goto fail;
5047 	}
5048 
5049 	/* Check that all firmware sections fit. */
5050 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5051 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5052 		device_printf(sc->sc_dev,
5053 		    "firmware file too short: %zu bytes\n", fw->size);
5054 		error = EINVAL;
5055 		goto fail;
5056 	}
5057 
5058 	/* Get pointers to firmware sections. */
5059 	fw->main.text = (const uint8_t *)(hdr + 1);
5060 	fw->main.data = fw->main.text + fw->main.textsz;
5061 	fw->init.text = fw->main.data + fw->main.datasz;
5062 	fw->init.data = fw->init.text + fw->init.textsz;
5063 	fw->boot.text = fw->init.data + fw->init.datasz;
5064 
5065 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5066 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5067 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5068 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5069 	    fw->main.textsz, fw->main.datasz,
5070 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5071 
5072 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5073 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5074 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5075 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5076 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5077 
5078 	return 0;
5079 
5080 fail:	wpi_unload_firmware(sc);
5081 	return error;
5082 }
5083 
5084 /**
5085  * Free the referenced firmware image
5086  */
5087 static void
5088 wpi_unload_firmware(struct wpi_softc *sc)
5089 {
5090 	if (sc->fw_fp != NULL) {
5091 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5092 		sc->fw_fp = NULL;
5093 	}
5094 }
5095 
5096 static int
5097 wpi_clock_wait(struct wpi_softc *sc)
5098 {
5099 	int ntries;
5100 
5101 	/* Set "initialization complete" bit. */
5102 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5103 
5104 	/* Wait for clock stabilization. */
5105 	for (ntries = 0; ntries < 2500; ntries++) {
5106 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5107 			return 0;
5108 		DELAY(100);
5109 	}
5110 	device_printf(sc->sc_dev,
5111 	    "%s: timeout waiting for clock stabilization\n", __func__);
5112 
5113 	return ETIMEDOUT;
5114 }
5115 
5116 static int
5117 wpi_apm_init(struct wpi_softc *sc)
5118 {
5119 	uint32_t reg;
5120 	int error;
5121 
5122 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5123 
5124 	/* Disable L0s exit timer (NMI bug workaround). */
5125 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5126 	/* Don't wait for ICH L0s (ICH bug workaround). */
5127 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5128 
5129 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5130 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5131 
5132 	/* Retrieve PCIe Active State Power Management (ASPM). */
5133 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5134 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5135 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5136 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5137 	else
5138 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5139 
5140 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5141 
5142 	/* Wait for clock stabilization before accessing prph. */
5143 	if ((error = wpi_clock_wait(sc)) != 0)
5144 		return error;
5145 
5146 	if ((error = wpi_nic_lock(sc)) != 0)
5147 		return error;
5148 	/* Cleanup. */
5149 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5150 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5151 
5152 	/* Enable DMA and BSM (Bootstrap State Machine). */
5153 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5154 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5155 	DELAY(20);
5156 	/* Disable L1-Active. */
5157 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5158 	wpi_nic_unlock(sc);
5159 
5160 	return 0;
5161 }
5162 
5163 static void
5164 wpi_apm_stop_master(struct wpi_softc *sc)
5165 {
5166 	int ntries;
5167 
5168 	/* Stop busmaster DMA activity. */
5169 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5170 
5171 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5172 	    WPI_GP_CNTRL_MAC_PS)
5173 		return; /* Already asleep. */
5174 
5175 	for (ntries = 0; ntries < 100; ntries++) {
5176 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5177 			return;
5178 		DELAY(10);
5179 	}
5180 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5181 	    __func__);
5182 }
5183 
5184 static void
5185 wpi_apm_stop(struct wpi_softc *sc)
5186 {
5187 	wpi_apm_stop_master(sc);
5188 
5189 	/* Reset the entire device. */
5190 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5191 	DELAY(10);
5192 	/* Clear "initialization complete" bit. */
5193 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5194 }
5195 
5196 static void
5197 wpi_nic_config(struct wpi_softc *sc)
5198 {
5199 	uint32_t rev;
5200 
5201 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5202 
5203 	/* voodoo from the Linux "driver".. */
5204 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5205 	if ((rev & 0xc0) == 0x40)
5206 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5207 	else if (!(rev & 0x80))
5208 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5209 
5210 	if (sc->cap == 0x80)
5211 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5212 
5213 	if ((sc->rev & 0xf0) == 0xd0)
5214 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5215 	else
5216 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5217 
5218 	if (sc->type > 1)
5219 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5220 }
5221 
5222 static int
5223 wpi_hw_init(struct wpi_softc *sc)
5224 {
5225 	uint8_t chnl;
5226 	int ntries, error;
5227 
5228 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5229 
5230 	/* Clear pending interrupts. */
5231 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5232 
5233 	if ((error = wpi_apm_init(sc)) != 0) {
5234 		device_printf(sc->sc_dev,
5235 		    "%s: could not power ON adapter, error %d\n", __func__,
5236 		    error);
5237 		return error;
5238 	}
5239 
5240 	/* Select VMAIN power source. */
5241 	if ((error = wpi_nic_lock(sc)) != 0)
5242 		return error;
5243 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5244 	wpi_nic_unlock(sc);
5245 	/* Spin until VMAIN gets selected. */
5246 	for (ntries = 0; ntries < 5000; ntries++) {
5247 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5248 			break;
5249 		DELAY(10);
5250 	}
5251 	if (ntries == 5000) {
5252 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5253 		return ETIMEDOUT;
5254 	}
5255 
5256 	/* Perform adapter initialization. */
5257 	wpi_nic_config(sc);
5258 
5259 	/* Initialize RX ring. */
5260 	if ((error = wpi_nic_lock(sc)) != 0)
5261 		return error;
5262 	/* Set physical address of RX ring. */
5263 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5264 	/* Set physical address of RX read pointer. */
5265 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5266 	    offsetof(struct wpi_shared, next));
5267 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5268 	/* Enable RX. */
5269 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5270 	    WPI_FH_RX_CONFIG_DMA_ENA |
5271 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5272 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5273 	    WPI_FH_RX_CONFIG_MAXFRAG |
5274 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5275 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5276 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5277 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5278 	wpi_nic_unlock(sc);
5279 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5280 
5281 	/* Initialize TX rings. */
5282 	if ((error = wpi_nic_lock(sc)) != 0)
5283 		return error;
5284 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5285 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5286 	/* Enable all 6 TX rings. */
5287 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5288 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5289 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5290 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5291 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5292 	/* Set physical address of TX rings. */
5293 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5294 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5295 
5296 	/* Enable all DMA channels. */
5297 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5298 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5299 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5300 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5301 	}
5302 	wpi_nic_unlock(sc);
5303 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5304 
5305 	/* Clear "radio off" and "commands blocked" bits. */
5306 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5307 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5308 
5309 	/* Clear pending interrupts. */
5310 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5311 	/* Enable interrupts. */
5312 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5313 
5314 	/* _Really_ make sure "radio off" bit is cleared! */
5315 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5316 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5317 
5318 	if ((error = wpi_load_firmware(sc)) != 0) {
5319 		device_printf(sc->sc_dev,
5320 		    "%s: could not load firmware, error %d\n", __func__,
5321 		    error);
5322 		return error;
5323 	}
5324 	/* Wait at most one second for firmware alive notification. */
5325 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5326 		device_printf(sc->sc_dev,
5327 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5328 		    __func__, error);
5329 		return error;
5330 	}
5331 
5332 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5333 
5334 	/* Do post-firmware initialization. */
5335 	return wpi_post_alive(sc);
5336 }
5337 
5338 static void
5339 wpi_hw_stop(struct wpi_softc *sc)
5340 {
5341 	uint8_t chnl, qid;
5342 	int ntries;
5343 
5344 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5345 
5346 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5347 		wpi_nic_lock(sc);
5348 
5349 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5350 
5351 	/* Disable interrupts. */
5352 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5353 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5354 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5355 
5356 	/* Make sure we no longer hold the NIC lock. */
5357 	wpi_nic_unlock(sc);
5358 
5359 	if (wpi_nic_lock(sc) == 0) {
5360 		/* Stop TX scheduler. */
5361 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5362 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5363 
5364 		/* Stop all DMA channels. */
5365 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5366 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5367 			for (ntries = 0; ntries < 200; ntries++) {
5368 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5369 				    WPI_FH_TX_STATUS_IDLE(chnl))
5370 					break;
5371 				DELAY(10);
5372 			}
5373 		}
5374 		wpi_nic_unlock(sc);
5375 	}
5376 
5377 	/* Stop RX ring. */
5378 	wpi_reset_rx_ring(sc);
5379 
5380 	/* Reset all TX rings. */
5381 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5382 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5383 
5384 	if (wpi_nic_lock(sc) == 0) {
5385 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5386 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5387 		wpi_nic_unlock(sc);
5388 	}
5389 	DELAY(5);
5390 	/* Power OFF adapter. */
5391 	wpi_apm_stop(sc);
5392 }
5393 
5394 static void
5395 wpi_radio_on(void *arg0, int pending)
5396 {
5397 	struct wpi_softc *sc = arg0;
5398 	struct ieee80211com *ic = &sc->sc_ic;
5399 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5400 
5401 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5402 
5403 	WPI_LOCK(sc);
5404 	callout_stop(&sc->watchdog_rfkill);
5405 	WPI_UNLOCK(sc);
5406 
5407 	if (vap != NULL)
5408 		ieee80211_init(vap);
5409 }
5410 
5411 static void
5412 wpi_radio_off(void *arg0, int pending)
5413 {
5414 	struct wpi_softc *sc = arg0;
5415 	struct ieee80211com *ic = &sc->sc_ic;
5416 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5417 
5418 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5419 
5420 	ieee80211_notify_radio(ic, 0);
5421 	wpi_stop(sc);
5422 	if (vap != NULL)
5423 		ieee80211_stop(vap);
5424 
5425 	WPI_LOCK(sc);
5426 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5427 	WPI_UNLOCK(sc);
5428 }
5429 
5430 static int
5431 wpi_init(struct wpi_softc *sc)
5432 {
5433 	int error = 0;
5434 
5435 	WPI_LOCK(sc);
5436 
5437 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5438 
5439 	if (sc->sc_running != 0)
5440 		goto end;
5441 
5442 	/* Check that the radio is not disabled by hardware switch. */
5443 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5444 		device_printf(sc->sc_dev,
5445 		    "RF switch: radio disabled (%s)\n", __func__);
5446 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5447 		    sc);
5448 		error = EINPROGRESS;
5449 		goto end;
5450 	}
5451 
5452 	/* Read firmware images from the filesystem. */
5453 	if ((error = wpi_read_firmware(sc)) != 0) {
5454 		device_printf(sc->sc_dev,
5455 		    "%s: could not read firmware, error %d\n", __func__,
5456 		    error);
5457 		goto end;
5458 	}
5459 
5460 	sc->sc_running = 1;
5461 
5462 	/* Initialize hardware and upload firmware. */
5463 	error = wpi_hw_init(sc);
5464 	wpi_unload_firmware(sc);
5465 	if (error != 0) {
5466 		device_printf(sc->sc_dev,
5467 		    "%s: could not initialize hardware, error %d\n", __func__,
5468 		    error);
5469 		goto fail;
5470 	}
5471 
5472 	/* Configure adapter now that it is ready. */
5473 	if ((error = wpi_config(sc)) != 0) {
5474 		device_printf(sc->sc_dev,
5475 		    "%s: could not configure device, error %d\n", __func__,
5476 		    error);
5477 		goto fail;
5478 	}
5479 
5480 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5481 
5482 	WPI_UNLOCK(sc);
5483 
5484 	return 0;
5485 
5486 fail:	wpi_stop_locked(sc);
5487 
5488 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5489 	WPI_UNLOCK(sc);
5490 
5491 	return error;
5492 }
5493 
5494 static void
5495 wpi_stop_locked(struct wpi_softc *sc)
5496 {
5497 
5498 	WPI_LOCK_ASSERT(sc);
5499 
5500 	if (sc->sc_running == 0)
5501 		return;
5502 
5503 	WPI_TX_LOCK(sc);
5504 	WPI_TXQ_LOCK(sc);
5505 	sc->sc_running = 0;
5506 	WPI_TXQ_UNLOCK(sc);
5507 	WPI_TX_UNLOCK(sc);
5508 
5509 	WPI_TXQ_STATE_LOCK(sc);
5510 	callout_stop(&sc->tx_timeout);
5511 	WPI_TXQ_STATE_UNLOCK(sc);
5512 
5513 	WPI_RXON_LOCK(sc);
5514 	callout_stop(&sc->scan_timeout);
5515 	callout_stop(&sc->calib_to);
5516 	WPI_RXON_UNLOCK(sc);
5517 
5518 	/* Power OFF hardware. */
5519 	wpi_hw_stop(sc);
5520 }
5521 
5522 static void
5523 wpi_stop(struct wpi_softc *sc)
5524 {
5525 	WPI_LOCK(sc);
5526 	wpi_stop_locked(sc);
5527 	WPI_UNLOCK(sc);
5528 }
5529 
5530 /*
5531  * Callback from net80211 to start a scan.
5532  */
5533 static void
5534 wpi_scan_start(struct ieee80211com *ic)
5535 {
5536 	struct wpi_softc *sc = ic->ic_softc;
5537 
5538 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5539 }
5540 
5541 /*
5542  * Callback from net80211 to terminate a scan.
5543  */
5544 static void
5545 wpi_scan_end(struct ieee80211com *ic)
5546 {
5547 	struct wpi_softc *sc = ic->ic_softc;
5548 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5549 
5550 	if (vap->iv_state == IEEE80211_S_RUN)
5551 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5552 }
5553 
5554 /**
5555  * Called by the net80211 framework to indicate to the driver
5556  * that the channel should be changed
5557  */
5558 static void
5559 wpi_set_channel(struct ieee80211com *ic)
5560 {
5561 	const struct ieee80211_channel *c = ic->ic_curchan;
5562 	struct wpi_softc *sc = ic->ic_softc;
5563 	int error;
5564 
5565 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5566 
5567 	WPI_LOCK(sc);
5568 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5569 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5570 	WPI_UNLOCK(sc);
5571 	WPI_TX_LOCK(sc);
5572 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5573 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5574 	WPI_TX_UNLOCK(sc);
5575 
5576 	/*
5577 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5578 	 * are already taken care of by their respective firmware commands.
5579 	 */
5580 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5581 		WPI_RXON_LOCK(sc);
5582 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5583 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5584 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5585 			    WPI_RXON_24GHZ);
5586 		} else {
5587 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5588 			    WPI_RXON_24GHZ);
5589 		}
5590 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5591 			device_printf(sc->sc_dev,
5592 			    "%s: error %d setting channel\n", __func__,
5593 			    error);
5594 		WPI_RXON_UNLOCK(sc);
5595 	}
5596 }
5597 
5598 /**
5599  * Called by net80211 to indicate that we need to scan the current
5600  * channel. The channel is previously be set via the wpi_set_channel
5601  * callback.
5602  */
5603 static void
5604 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5605 {
5606 	struct ieee80211vap *vap = ss->ss_vap;
5607 	struct ieee80211com *ic = vap->iv_ic;
5608 	struct wpi_softc *sc = ic->ic_softc;
5609 	int error;
5610 
5611 	WPI_RXON_LOCK(sc);
5612 	error = wpi_scan(sc, ic->ic_curchan);
5613 	WPI_RXON_UNLOCK(sc);
5614 	if (error != 0)
5615 		ieee80211_cancel_scan(vap);
5616 }
5617 
5618 /**
5619  * Called by the net80211 framework to indicate
5620  * the minimum dwell time has been met, terminate the scan.
5621  * We don't actually terminate the scan as the firmware will notify
5622  * us when it's finished and we have no way to interrupt it.
5623  */
5624 static void
5625 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5626 {
5627 	/* NB: don't try to abort scan; wait for firmware to finish */
5628 }
5629