xref: /freebsd/sys/dev/wpi/if_wpi.c (revision d9f0ce31900a48d1a2bfc1c8c86f79d1e831451a)
1 /*-
2  * Copyright (c) 2006,2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *	Benjamin Close <Benjamin.Close@clearchain.com>
5  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*
24  * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25  *
26  * The 3945ABG network adapter doesn't use traditional hardware as
27  * many other adaptors do. Instead at run time the eeprom is set into a known
28  * state and told to load boot firmware. The boot firmware loads an init and a
29  * main  binary firmware image into SRAM on the card via DMA.
30  * Once the firmware is loaded, the driver/hw then
31  * communicate by way of circular dma rings via the SRAM to the firmware.
32  *
33  * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34  * The 4 tx data rings allow for prioritization QoS.
35  *
36  * The rx data ring consists of 32 dma buffers. Two registers are used to
37  * indicate where in the ring the driver and the firmware are up to. The
38  * driver sets the initial read index (reg1) and the initial write index (reg2),
39  * the firmware updates the read index (reg1) on rx of a packet and fires an
40  * interrupt. The driver then processes the buffers starting at reg1 indicating
41  * to the firmware which buffers have been accessed by updating reg2. At the
42  * same time allocating new memory for the processed buffer.
43  *
44  * A similar thing happens with the tx rings. The difference is the firmware
45  * stop processing buffers once the queue is full and until confirmation
46  * of a successful transmition (tx_done) has occurred.
47  *
48  * The command ring operates in the same manner as the tx queues.
49  *
50  * All communication direct to the card (ie eeprom) is classed as Stage1
51  * communication
52  *
53  * All communication via the firmware to the card is classed as State2.
54  * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55  * firmware. The bootstrap firmware and runtime firmware are loaded
56  * from host memory via dma to the card then told to execute. From this point
57  * on the majority of communications between the driver and the card goes
58  * via the firmware.
59  */
60 
61 #include "opt_wlan.h"
62 #include "opt_wpi.h"
63 
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/sockio.h>
67 #include <sys/mbuf.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/queue.h>
73 #include <sys/taskqueue.h>
74 #include <sys/module.h>
75 #include <sys/bus.h>
76 #include <sys/endian.h>
77 #include <sys/linker.h>
78 #include <sys/firmware.h>
79 
80 #include <machine/bus.h>
81 #include <machine/resource.h>
82 #include <sys/rman.h>
83 
84 #include <dev/pci/pcireg.h>
85 #include <dev/pci/pcivar.h>
86 
87 #include <net/bpf.h>
88 #include <net/if.h>
89 #include <net/if_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_types.h>
95 
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/if_ether.h>
100 #include <netinet/ip.h>
101 
102 #include <net80211/ieee80211_var.h>
103 #include <net80211/ieee80211_radiotap.h>
104 #include <net80211/ieee80211_regdomain.h>
105 #include <net80211/ieee80211_ratectl.h>
106 
107 #include <dev/wpi/if_wpireg.h>
108 #include <dev/wpi/if_wpivar.h>
109 #include <dev/wpi/if_wpi_debug.h>
110 
111 struct wpi_ident {
112 	uint16_t	vendor;
113 	uint16_t	device;
114 	uint16_t	subdevice;
115 	const char	*name;
116 };
117 
118 static const struct wpi_ident wpi_ident_table[] = {
119 	/* The below entries support ABG regardless of the subid */
120 	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
121 	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
122 	/* The below entries only support BG */
123 	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
124 	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
125 	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
126 	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
127 	{ 0, 0, 0, NULL }
128 };
129 
130 static int	wpi_probe(device_t);
131 static int	wpi_attach(device_t);
132 static void	wpi_radiotap_attach(struct wpi_softc *);
133 static void	wpi_sysctlattach(struct wpi_softc *);
134 static void	wpi_init_beacon(struct wpi_vap *);
135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
136 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
137 		    const uint8_t [IEEE80211_ADDR_LEN],
138 		    const uint8_t [IEEE80211_ADDR_LEN]);
139 static void	wpi_vap_delete(struct ieee80211vap *);
140 static int	wpi_detach(device_t);
141 static int	wpi_shutdown(device_t);
142 static int	wpi_suspend(device_t);
143 static int	wpi_resume(device_t);
144 static int	wpi_nic_lock(struct wpi_softc *);
145 static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
146 static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
147 static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
148 		    void **, bus_size_t, bus_size_t);
149 static void	wpi_dma_contig_free(struct wpi_dma_info *);
150 static int	wpi_alloc_shared(struct wpi_softc *);
151 static void	wpi_free_shared(struct wpi_softc *);
152 static int	wpi_alloc_fwmem(struct wpi_softc *);
153 static void	wpi_free_fwmem(struct wpi_softc *);
154 static int	wpi_alloc_rx_ring(struct wpi_softc *);
155 static void	wpi_update_rx_ring(struct wpi_softc *);
156 static void	wpi_update_rx_ring_ps(struct wpi_softc *);
157 static void	wpi_reset_rx_ring(struct wpi_softc *);
158 static void	wpi_free_rx_ring(struct wpi_softc *);
159 static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
160 		    uint8_t);
161 static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162 static void	wpi_update_tx_ring_ps(struct wpi_softc *,
163 		    struct wpi_tx_ring *);
164 static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
165 static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
166 static int	wpi_read_eeprom(struct wpi_softc *,
167 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
168 static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
169 static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
170 		    struct ieee80211_channel[]);
171 static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
173 		    struct ieee80211_channel *);
174 static void	wpi_getradiocaps(struct ieee80211com *, int, int *,
175 		    struct ieee80211_channel[]);
176 static int	wpi_setregdomain(struct ieee80211com *,
177 		    struct ieee80211_regdomain *, int,
178 		    struct ieee80211_channel[]);
179 static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
181 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
182 static void	wpi_node_free(struct ieee80211_node *);
183 static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
184 		    const struct ieee80211_rx_stats *,
185 		    int, int);
186 static void	wpi_restore_node(void *, struct ieee80211_node *);
187 static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
188 static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189 static void	wpi_calib_timeout(void *);
190 static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
191 		    struct wpi_rx_data *);
192 static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
193 		    struct wpi_rx_data *);
194 static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
195 static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
196 static void	wpi_notif_intr(struct wpi_softc *);
197 static void	wpi_wakeup_intr(struct wpi_softc *);
198 #ifdef WPI_DEBUG
199 static void	wpi_debug_registers(struct wpi_softc *);
200 #endif
201 static void	wpi_fatal_intr(struct wpi_softc *);
202 static void	wpi_intr(void *);
203 static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
204 static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
205 static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
206 		    struct ieee80211_node *);
207 static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
208 		    struct ieee80211_node *,
209 		    const struct ieee80211_bpf_params *);
210 static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
211 		    const struct ieee80211_bpf_params *);
212 static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
213 static void	wpi_watchdog_rfkill(void *);
214 static void	wpi_scan_timeout(void *);
215 static void	wpi_tx_timeout(void *);
216 static void	wpi_parent(struct ieee80211com *);
217 static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
218 		    int);
219 static int	wpi_mrr_setup(struct wpi_softc *);
220 static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
221 static int	wpi_add_broadcast_node(struct wpi_softc *, int);
222 static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
223 static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
224 static int	wpi_updateedca(struct ieee80211com *);
225 static void	wpi_set_promisc(struct wpi_softc *);
226 static void	wpi_update_promisc(struct ieee80211com *);
227 static void	wpi_update_mcast(struct ieee80211com *);
228 static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
229 static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
230 static void	wpi_power_calibration(struct wpi_softc *);
231 static int	wpi_set_txpower(struct wpi_softc *, int);
232 static int	wpi_get_power_index(struct wpi_softc *,
233 		    struct wpi_power_group *, uint8_t, int, int);
234 static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
235 static int	wpi_send_btcoex(struct wpi_softc *);
236 static int	wpi_send_rxon(struct wpi_softc *, int, int);
237 static int	wpi_config(struct wpi_softc *);
238 static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
239 		    struct ieee80211_channel *, uint8_t);
240 static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
241 static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
242 		    struct ieee80211_channel *);
243 static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
244 static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
245 static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
246 static int	wpi_config_beacon(struct wpi_vap *);
247 static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
248 static void	wpi_update_beacon(struct ieee80211vap *, int);
249 static void	wpi_newassoc(struct ieee80211_node *, int);
250 static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
251 static int	wpi_load_key(struct ieee80211_node *,
252 		    const struct ieee80211_key *);
253 static void	wpi_load_key_cb(void *, struct ieee80211_node *);
254 static int	wpi_set_global_keys(struct ieee80211_node *);
255 static int	wpi_del_key(struct ieee80211_node *,
256 		    const struct ieee80211_key *);
257 static void	wpi_del_key_cb(void *, struct ieee80211_node *);
258 static int	wpi_process_key(struct ieee80211vap *,
259 		    const struct ieee80211_key *, int);
260 static int	wpi_key_set(struct ieee80211vap *,
261 		    const struct ieee80211_key *);
262 static int	wpi_key_delete(struct ieee80211vap *,
263 		    const struct ieee80211_key *);
264 static int	wpi_post_alive(struct wpi_softc *);
265 static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
266 		    uint32_t);
267 static int	wpi_load_firmware(struct wpi_softc *);
268 static int	wpi_read_firmware(struct wpi_softc *);
269 static void	wpi_unload_firmware(struct wpi_softc *);
270 static int	wpi_clock_wait(struct wpi_softc *);
271 static int	wpi_apm_init(struct wpi_softc *);
272 static void	wpi_apm_stop_master(struct wpi_softc *);
273 static void	wpi_apm_stop(struct wpi_softc *);
274 static void	wpi_nic_config(struct wpi_softc *);
275 static int	wpi_hw_init(struct wpi_softc *);
276 static void	wpi_hw_stop(struct wpi_softc *);
277 static void	wpi_radio_on(void *, int);
278 static void	wpi_radio_off(void *, int);
279 static int	wpi_init(struct wpi_softc *);
280 static void	wpi_stop_locked(struct wpi_softc *);
281 static void	wpi_stop(struct wpi_softc *);
282 static void	wpi_scan_start(struct ieee80211com *);
283 static void	wpi_scan_end(struct ieee80211com *);
284 static void	wpi_set_channel(struct ieee80211com *);
285 static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
286 static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
287 
288 static device_method_t wpi_methods[] = {
289 	/* Device interface */
290 	DEVMETHOD(device_probe,		wpi_probe),
291 	DEVMETHOD(device_attach,	wpi_attach),
292 	DEVMETHOD(device_detach,	wpi_detach),
293 	DEVMETHOD(device_shutdown,	wpi_shutdown),
294 	DEVMETHOD(device_suspend,	wpi_suspend),
295 	DEVMETHOD(device_resume,	wpi_resume),
296 
297 	DEVMETHOD_END
298 };
299 
300 static driver_t wpi_driver = {
301 	"wpi",
302 	wpi_methods,
303 	sizeof (struct wpi_softc)
304 };
305 static devclass_t wpi_devclass;
306 
307 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
308 
309 MODULE_VERSION(wpi, 1);
310 
311 MODULE_DEPEND(wpi, pci,  1, 1, 1);
312 MODULE_DEPEND(wpi, wlan, 1, 1, 1);
313 MODULE_DEPEND(wpi, firmware, 1, 1, 1);
314 
315 static int
316 wpi_probe(device_t dev)
317 {
318 	const struct wpi_ident *ident;
319 
320 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
321 		if (pci_get_vendor(dev) == ident->vendor &&
322 		    pci_get_device(dev) == ident->device) {
323 			device_set_desc(dev, ident->name);
324 			return (BUS_PROBE_DEFAULT);
325 		}
326 	}
327 	return ENXIO;
328 }
329 
330 static int
331 wpi_attach(device_t dev)
332 {
333 	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
334 	struct ieee80211com *ic;
335 	uint8_t i;
336 	int error, rid;
337 #ifdef WPI_DEBUG
338 	int supportsa = 1;
339 	const struct wpi_ident *ident;
340 #endif
341 
342 	sc->sc_dev = dev;
343 
344 #ifdef WPI_DEBUG
345 	error = resource_int_value(device_get_name(sc->sc_dev),
346 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
347 	if (error != 0)
348 		sc->sc_debug = 0;
349 #else
350 	sc->sc_debug = 0;
351 #endif
352 
353 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
354 
355 	/*
356 	 * Get the offset of the PCI Express Capability Structure in PCI
357 	 * Configuration Space.
358 	 */
359 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
360 	if (error != 0) {
361 		device_printf(dev, "PCIe capability structure not found!\n");
362 		return error;
363 	}
364 
365 	/*
366 	 * Some card's only support 802.11b/g not a, check to see if
367 	 * this is one such card. A 0x0 in the subdevice table indicates
368 	 * the entire subdevice range is to be ignored.
369 	 */
370 #ifdef WPI_DEBUG
371 	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
372 		if (ident->subdevice &&
373 		    pci_get_subdevice(dev) == ident->subdevice) {
374 		    supportsa = 0;
375 		    break;
376 		}
377 	}
378 #endif
379 
380 	/* Clear device-specific "PCI retry timeout" register (41h). */
381 	pci_write_config(dev, 0x41, 0, 1);
382 
383 	/* Enable bus-mastering. */
384 	pci_enable_busmaster(dev);
385 
386 	rid = PCIR_BAR(0);
387 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
388 	    RF_ACTIVE);
389 	if (sc->mem == NULL) {
390 		device_printf(dev, "can't map mem space\n");
391 		return ENOMEM;
392 	}
393 	sc->sc_st = rman_get_bustag(sc->mem);
394 	sc->sc_sh = rman_get_bushandle(sc->mem);
395 
396 	rid = 1;
397 	if (pci_alloc_msi(dev, &rid) == 0)
398 		rid = 1;
399 	else
400 		rid = 0;
401 	/* Install interrupt handler. */
402 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
403 	    (rid != 0 ? 0 : RF_SHAREABLE));
404 	if (sc->irq == NULL) {
405 		device_printf(dev, "can't map interrupt\n");
406 		error = ENOMEM;
407 		goto fail;
408 	}
409 
410 	WPI_LOCK_INIT(sc);
411 	WPI_TX_LOCK_INIT(sc);
412 	WPI_RXON_LOCK_INIT(sc);
413 	WPI_NT_LOCK_INIT(sc);
414 	WPI_TXQ_LOCK_INIT(sc);
415 	WPI_TXQ_STATE_LOCK_INIT(sc);
416 
417 	/* Allocate DMA memory for firmware transfers. */
418 	if ((error = wpi_alloc_fwmem(sc)) != 0) {
419 		device_printf(dev,
420 		    "could not allocate memory for firmware, error %d\n",
421 		    error);
422 		goto fail;
423 	}
424 
425 	/* Allocate shared page. */
426 	if ((error = wpi_alloc_shared(sc)) != 0) {
427 		device_printf(dev, "could not allocate shared page\n");
428 		goto fail;
429 	}
430 
431 	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
432 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
433 		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
434 			device_printf(dev,
435 			    "could not allocate TX ring %d, error %d\n", i,
436 			    error);
437 			goto fail;
438 		}
439 	}
440 
441 	/* Allocate RX ring. */
442 	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
443 		device_printf(dev, "could not allocate RX ring, error %d\n",
444 		    error);
445 		goto fail;
446 	}
447 
448 	/* Clear pending interrupts. */
449 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
450 
451 	ic = &sc->sc_ic;
452 	ic->ic_softc = sc;
453 	ic->ic_name = device_get_nameunit(dev);
454 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
455 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
456 
457 	/* Set device capabilities. */
458 	ic->ic_caps =
459 		  IEEE80211_C_STA		/* station mode supported */
460 		| IEEE80211_C_IBSS		/* IBSS mode supported */
461 		| IEEE80211_C_HOSTAP		/* Host access point mode */
462 		| IEEE80211_C_MONITOR		/* monitor mode supported */
463 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
464 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
465 		| IEEE80211_C_TXFRAG		/* handle tx frags */
466 		| IEEE80211_C_TXPMGT		/* tx power management */
467 		| IEEE80211_C_SHSLOT		/* short slot time supported */
468 		| IEEE80211_C_WPA		/* 802.11i */
469 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
470 		| IEEE80211_C_WME		/* 802.11e */
471 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
472 		;
473 
474 	ic->ic_cryptocaps =
475 		  IEEE80211_CRYPTO_AES_CCM;
476 
477 	/*
478 	 * Read in the eeprom and also setup the channels for
479 	 * net80211. We don't set the rates as net80211 does this for us
480 	 */
481 	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
482 		device_printf(dev, "could not read EEPROM, error %d\n",
483 		    error);
484 		goto fail;
485 	}
486 
487 #ifdef WPI_DEBUG
488 	if (bootverbose) {
489 		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
490 		    sc->domain);
491 		device_printf(sc->sc_dev, "Hardware Type: %c\n",
492 		    sc->type > 1 ? 'B': '?');
493 		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
494 		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
495 		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
496 		    supportsa ? "does" : "does not");
497 
498 		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
499 		   check what sc->rev really represents - benjsc 20070615 */
500 	}
501 #endif
502 
503 	ieee80211_ifattach(ic);
504 	ic->ic_vap_create = wpi_vap_create;
505 	ic->ic_vap_delete = wpi_vap_delete;
506 	ic->ic_parent = wpi_parent;
507 	ic->ic_raw_xmit = wpi_raw_xmit;
508 	ic->ic_transmit = wpi_transmit;
509 	ic->ic_node_alloc = wpi_node_alloc;
510 	sc->sc_node_free = ic->ic_node_free;
511 	ic->ic_node_free = wpi_node_free;
512 	ic->ic_wme.wme_update = wpi_updateedca;
513 	ic->ic_update_promisc = wpi_update_promisc;
514 	ic->ic_update_mcast = wpi_update_mcast;
515 	ic->ic_newassoc = wpi_newassoc;
516 	ic->ic_scan_start = wpi_scan_start;
517 	ic->ic_scan_end = wpi_scan_end;
518 	ic->ic_set_channel = wpi_set_channel;
519 	ic->ic_scan_curchan = wpi_scan_curchan;
520 	ic->ic_scan_mindwell = wpi_scan_mindwell;
521 	ic->ic_getradiocaps = wpi_getradiocaps;
522 	ic->ic_setregdomain = wpi_setregdomain;
523 
524 	sc->sc_update_rx_ring = wpi_update_rx_ring;
525 	sc->sc_update_tx_ring = wpi_update_tx_ring;
526 
527 	wpi_radiotap_attach(sc);
528 
529 	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
530 	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
531 	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
532 	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
533 	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
534 	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
535 
536 	wpi_sysctlattach(sc);
537 
538 	/*
539 	 * Hook our interrupt after all initialization is complete.
540 	 */
541 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
542 	    NULL, wpi_intr, sc, &sc->sc_ih);
543 	if (error != 0) {
544 		device_printf(dev, "can't establish interrupt, error %d\n",
545 		    error);
546 		goto fail;
547 	}
548 
549 	if (bootverbose)
550 		ieee80211_announce(ic);
551 
552 #ifdef WPI_DEBUG
553 	if (sc->sc_debug & WPI_DEBUG_HW)
554 		ieee80211_announce_channels(ic);
555 #endif
556 
557 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
558 	return 0;
559 
560 fail:	wpi_detach(dev);
561 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
562 	return error;
563 }
564 
565 /*
566  * Attach the interface to 802.11 radiotap.
567  */
568 static void
569 wpi_radiotap_attach(struct wpi_softc *sc)
570 {
571 	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
572 	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
573 
574 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
575 	ieee80211_radiotap_attach(&sc->sc_ic,
576 	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
577 	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
578 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
579 }
580 
581 static void
582 wpi_sysctlattach(struct wpi_softc *sc)
583 {
584 #ifdef WPI_DEBUG
585 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
586 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
587 
588 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
589 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
590 		"control debugging printfs");
591 #endif
592 }
593 
594 static void
595 wpi_init_beacon(struct wpi_vap *wvp)
596 {
597 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
598 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
599 
600 	cmd->id = WPI_ID_BROADCAST;
601 	cmd->ofdm_mask = 0xff;
602 	cmd->cck_mask = 0x0f;
603 	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
604 
605 	/*
606 	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
607 	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
608 	 */
609 	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
610 
611 	bcn->code = WPI_CMD_SET_BEACON;
612 	bcn->ac = WPI_CMD_QUEUE_NUM;
613 	bcn->size = sizeof(struct wpi_cmd_beacon);
614 }
615 
616 static struct ieee80211vap *
617 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
618     enum ieee80211_opmode opmode, int flags,
619     const uint8_t bssid[IEEE80211_ADDR_LEN],
620     const uint8_t mac[IEEE80211_ADDR_LEN])
621 {
622 	struct wpi_vap *wvp;
623 	struct ieee80211vap *vap;
624 
625 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
626 		return NULL;
627 
628 	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
629 	vap = &wvp->wv_vap;
630 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
631 
632 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
633 		WPI_VAP_LOCK_INIT(wvp);
634 		wpi_init_beacon(wvp);
635 	}
636 
637 	/* Override with driver methods. */
638 	vap->iv_key_set = wpi_key_set;
639 	vap->iv_key_delete = wpi_key_delete;
640 	if (opmode == IEEE80211_M_IBSS) {
641 		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
642 		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
643 	}
644 	wvp->wv_newstate = vap->iv_newstate;
645 	vap->iv_newstate = wpi_newstate;
646 	vap->iv_update_beacon = wpi_update_beacon;
647 	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
648 
649 	ieee80211_ratectl_init(vap);
650 	/* Complete setup. */
651 	ieee80211_vap_attach(vap, ieee80211_media_change,
652 	    ieee80211_media_status, mac);
653 	ic->ic_opmode = opmode;
654 	return vap;
655 }
656 
657 static void
658 wpi_vap_delete(struct ieee80211vap *vap)
659 {
660 	struct wpi_vap *wvp = WPI_VAP(vap);
661 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
662 	enum ieee80211_opmode opmode = vap->iv_opmode;
663 
664 	ieee80211_ratectl_deinit(vap);
665 	ieee80211_vap_detach(vap);
666 
667 	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
668 		if (bcn->m != NULL)
669 			m_freem(bcn->m);
670 
671 		WPI_VAP_LOCK_DESTROY(wvp);
672 	}
673 
674 	free(wvp, M_80211_VAP);
675 }
676 
677 static int
678 wpi_detach(device_t dev)
679 {
680 	struct wpi_softc *sc = device_get_softc(dev);
681 	struct ieee80211com *ic = &sc->sc_ic;
682 	uint8_t qid;
683 
684 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
685 
686 	if (ic->ic_vap_create == wpi_vap_create) {
687 		ieee80211_draintask(ic, &sc->sc_radioon_task);
688 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
689 
690 		wpi_stop(sc);
691 
692 		callout_drain(&sc->watchdog_rfkill);
693 		callout_drain(&sc->tx_timeout);
694 		callout_drain(&sc->scan_timeout);
695 		callout_drain(&sc->calib_to);
696 		ieee80211_ifdetach(ic);
697 	}
698 
699 	/* Uninstall interrupt handler. */
700 	if (sc->irq != NULL) {
701 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
702 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
703 		    sc->irq);
704 		pci_release_msi(dev);
705 	}
706 
707 	if (sc->txq[0].data_dmat) {
708 		/* Free DMA resources. */
709 		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
710 			wpi_free_tx_ring(sc, &sc->txq[qid]);
711 
712 		wpi_free_rx_ring(sc);
713 		wpi_free_shared(sc);
714 	}
715 
716 	if (sc->fw_dma.tag)
717 		wpi_free_fwmem(sc);
718 
719 	if (sc->mem != NULL)
720 		bus_release_resource(dev, SYS_RES_MEMORY,
721 		    rman_get_rid(sc->mem), sc->mem);
722 
723 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
724 	WPI_TXQ_STATE_LOCK_DESTROY(sc);
725 	WPI_TXQ_LOCK_DESTROY(sc);
726 	WPI_NT_LOCK_DESTROY(sc);
727 	WPI_RXON_LOCK_DESTROY(sc);
728 	WPI_TX_LOCK_DESTROY(sc);
729 	WPI_LOCK_DESTROY(sc);
730 	return 0;
731 }
732 
733 static int
734 wpi_shutdown(device_t dev)
735 {
736 	struct wpi_softc *sc = device_get_softc(dev);
737 
738 	wpi_stop(sc);
739 	return 0;
740 }
741 
742 static int
743 wpi_suspend(device_t dev)
744 {
745 	struct wpi_softc *sc = device_get_softc(dev);
746 	struct ieee80211com *ic = &sc->sc_ic;
747 
748 	ieee80211_suspend_all(ic);
749 	return 0;
750 }
751 
752 static int
753 wpi_resume(device_t dev)
754 {
755 	struct wpi_softc *sc = device_get_softc(dev);
756 	struct ieee80211com *ic = &sc->sc_ic;
757 
758 	/* Clear device-specific "PCI retry timeout" register (41h). */
759 	pci_write_config(dev, 0x41, 0, 1);
760 
761 	ieee80211_resume_all(ic);
762 	return 0;
763 }
764 
765 /*
766  * Grab exclusive access to NIC memory.
767  */
768 static int
769 wpi_nic_lock(struct wpi_softc *sc)
770 {
771 	int ntries;
772 
773 	/* Request exclusive access to NIC. */
774 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
775 
776 	/* Spin until we actually get the lock. */
777 	for (ntries = 0; ntries < 1000; ntries++) {
778 		if ((WPI_READ(sc, WPI_GP_CNTRL) &
779 		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
780 		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
781 			return 0;
782 		DELAY(10);
783 	}
784 
785 	device_printf(sc->sc_dev, "could not lock memory\n");
786 
787 	return ETIMEDOUT;
788 }
789 
790 /*
791  * Release lock on NIC memory.
792  */
793 static __inline void
794 wpi_nic_unlock(struct wpi_softc *sc)
795 {
796 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
797 }
798 
799 static __inline uint32_t
800 wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
801 {
802 	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
803 	WPI_BARRIER_READ_WRITE(sc);
804 	return WPI_READ(sc, WPI_PRPH_RDATA);
805 }
806 
807 static __inline void
808 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
809 {
810 	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
811 	WPI_BARRIER_WRITE(sc);
812 	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
813 }
814 
815 static __inline void
816 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
817 {
818 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
819 }
820 
821 static __inline void
822 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
823 {
824 	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
825 }
826 
827 static __inline void
828 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
829     const uint32_t *data, uint32_t count)
830 {
831 	for (; count != 0; count--, data++, addr += 4)
832 		wpi_prph_write(sc, addr, *data);
833 }
834 
835 static __inline uint32_t
836 wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
837 {
838 	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
839 	WPI_BARRIER_READ_WRITE(sc);
840 	return WPI_READ(sc, WPI_MEM_RDATA);
841 }
842 
843 static __inline void
844 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
845     int count)
846 {
847 	for (; count > 0; count--, addr += 4)
848 		*data++ = wpi_mem_read(sc, addr);
849 }
850 
851 static int
852 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
853 {
854 	uint8_t *out = data;
855 	uint32_t val;
856 	int error, ntries;
857 
858 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
859 
860 	if ((error = wpi_nic_lock(sc)) != 0)
861 		return error;
862 
863 	for (; count > 0; count -= 2, addr++) {
864 		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
865 		for (ntries = 0; ntries < 10; ntries++) {
866 			val = WPI_READ(sc, WPI_EEPROM);
867 			if (val & WPI_EEPROM_READ_VALID)
868 				break;
869 			DELAY(5);
870 		}
871 		if (ntries == 10) {
872 			device_printf(sc->sc_dev,
873 			    "timeout reading ROM at 0x%x\n", addr);
874 			return ETIMEDOUT;
875 		}
876 		*out++= val >> 16;
877 		if (count > 1)
878 			*out ++= val >> 24;
879 	}
880 
881 	wpi_nic_unlock(sc);
882 
883 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
884 
885 	return 0;
886 }
887 
888 static void
889 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
890 {
891 	if (error != 0)
892 		return;
893 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
894 	*(bus_addr_t *)arg = segs[0].ds_addr;
895 }
896 
897 /*
898  * Allocates a contiguous block of dma memory of the requested size and
899  * alignment.
900  */
901 static int
902 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
903     void **kvap, bus_size_t size, bus_size_t alignment)
904 {
905 	int error;
906 
907 	dma->tag = NULL;
908 	dma->size = size;
909 
910 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
911 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
912 	    1, size, 0, NULL, NULL, &dma->tag);
913 	if (error != 0)
914 		goto fail;
915 
916 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
917 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
918 	if (error != 0)
919 		goto fail;
920 
921 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
922 	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
923 	if (error != 0)
924 		goto fail;
925 
926 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
927 
928 	if (kvap != NULL)
929 		*kvap = dma->vaddr;
930 
931 	return 0;
932 
933 fail:	wpi_dma_contig_free(dma);
934 	return error;
935 }
936 
937 static void
938 wpi_dma_contig_free(struct wpi_dma_info *dma)
939 {
940 	if (dma->vaddr != NULL) {
941 		bus_dmamap_sync(dma->tag, dma->map,
942 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
943 		bus_dmamap_unload(dma->tag, dma->map);
944 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
945 		dma->vaddr = NULL;
946 	}
947 	if (dma->tag != NULL) {
948 		bus_dma_tag_destroy(dma->tag);
949 		dma->tag = NULL;
950 	}
951 }
952 
953 /*
954  * Allocate a shared page between host and NIC.
955  */
956 static int
957 wpi_alloc_shared(struct wpi_softc *sc)
958 {
959 	/* Shared buffer must be aligned on a 4KB boundary. */
960 	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
961 	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
962 }
963 
964 static void
965 wpi_free_shared(struct wpi_softc *sc)
966 {
967 	wpi_dma_contig_free(&sc->shared_dma);
968 }
969 
970 /*
971  * Allocate DMA-safe memory for firmware transfer.
972  */
973 static int
974 wpi_alloc_fwmem(struct wpi_softc *sc)
975 {
976 	/* Must be aligned on a 16-byte boundary. */
977 	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
978 	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
979 }
980 
981 static void
982 wpi_free_fwmem(struct wpi_softc *sc)
983 {
984 	wpi_dma_contig_free(&sc->fw_dma);
985 }
986 
987 static int
988 wpi_alloc_rx_ring(struct wpi_softc *sc)
989 {
990 	struct wpi_rx_ring *ring = &sc->rxq;
991 	bus_size_t size;
992 	int i, error;
993 
994 	ring->cur = 0;
995 	ring->update = 0;
996 
997 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
998 
999 	/* Allocate RX descriptors (16KB aligned.) */
1000 	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1001 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1002 	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1003 	if (error != 0) {
1004 		device_printf(sc->sc_dev,
1005 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1006 		    __func__, error);
1007 		goto fail;
1008 	}
1009 
1010 	/* Create RX buffer DMA tag. */
1011 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1012 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1013 	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1014 	if (error != 0) {
1015 		device_printf(sc->sc_dev,
1016 		    "%s: could not create RX buf DMA tag, error %d\n",
1017 		    __func__, error);
1018 		goto fail;
1019 	}
1020 
1021 	/*
1022 	 * Allocate and map RX buffers.
1023 	 */
1024 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1025 		struct wpi_rx_data *data = &ring->data[i];
1026 		bus_addr_t paddr;
1027 
1028 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1029 		if (error != 0) {
1030 			device_printf(sc->sc_dev,
1031 			    "%s: could not create RX buf DMA map, error %d\n",
1032 			    __func__, error);
1033 			goto fail;
1034 		}
1035 
1036 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1037 		if (data->m == NULL) {
1038 			device_printf(sc->sc_dev,
1039 			    "%s: could not allocate RX mbuf\n", __func__);
1040 			error = ENOBUFS;
1041 			goto fail;
1042 		}
1043 
1044 		error = bus_dmamap_load(ring->data_dmat, data->map,
1045 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1046 		    &paddr, BUS_DMA_NOWAIT);
1047 		if (error != 0 && error != EFBIG) {
1048 			device_printf(sc->sc_dev,
1049 			    "%s: can't map mbuf (error %d)\n", __func__,
1050 			    error);
1051 			goto fail;
1052 		}
1053 
1054 		/* Set physical address of RX buffer. */
1055 		ring->desc[i] = htole32(paddr);
1056 	}
1057 
1058 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1059 	    BUS_DMASYNC_PREWRITE);
1060 
1061 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1062 
1063 	return 0;
1064 
1065 fail:	wpi_free_rx_ring(sc);
1066 
1067 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1068 
1069 	return error;
1070 }
1071 
1072 static void
1073 wpi_update_rx_ring(struct wpi_softc *sc)
1074 {
1075 	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1076 }
1077 
1078 static void
1079 wpi_update_rx_ring_ps(struct wpi_softc *sc)
1080 {
1081 	struct wpi_rx_ring *ring = &sc->rxq;
1082 
1083 	if (ring->update != 0) {
1084 		/* Wait for INT_WAKEUP event. */
1085 		return;
1086 	}
1087 
1088 	WPI_TXQ_LOCK(sc);
1089 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1090 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1091 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1092 		    __func__);
1093 		ring->update = 1;
1094 	} else {
1095 		wpi_update_rx_ring(sc);
1096 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1097 	}
1098 	WPI_TXQ_UNLOCK(sc);
1099 }
1100 
1101 static void
1102 wpi_reset_rx_ring(struct wpi_softc *sc)
1103 {
1104 	struct wpi_rx_ring *ring = &sc->rxq;
1105 	int ntries;
1106 
1107 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1108 
1109 	if (wpi_nic_lock(sc) == 0) {
1110 		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1111 		for (ntries = 0; ntries < 1000; ntries++) {
1112 			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1113 			    WPI_FH_RX_STATUS_IDLE)
1114 				break;
1115 			DELAY(10);
1116 		}
1117 		wpi_nic_unlock(sc);
1118 	}
1119 
1120 	ring->cur = 0;
1121 	ring->update = 0;
1122 }
1123 
1124 static void
1125 wpi_free_rx_ring(struct wpi_softc *sc)
1126 {
1127 	struct wpi_rx_ring *ring = &sc->rxq;
1128 	int i;
1129 
1130 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1131 
1132 	wpi_dma_contig_free(&ring->desc_dma);
1133 
1134 	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1135 		struct wpi_rx_data *data = &ring->data[i];
1136 
1137 		if (data->m != NULL) {
1138 			bus_dmamap_sync(ring->data_dmat, data->map,
1139 			    BUS_DMASYNC_POSTREAD);
1140 			bus_dmamap_unload(ring->data_dmat, data->map);
1141 			m_freem(data->m);
1142 			data->m = NULL;
1143 		}
1144 		if (data->map != NULL)
1145 			bus_dmamap_destroy(ring->data_dmat, data->map);
1146 	}
1147 	if (ring->data_dmat != NULL) {
1148 		bus_dma_tag_destroy(ring->data_dmat);
1149 		ring->data_dmat = NULL;
1150 	}
1151 }
1152 
1153 static int
1154 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1155 {
1156 	bus_addr_t paddr;
1157 	bus_size_t size;
1158 	int i, error;
1159 
1160 	ring->qid = qid;
1161 	ring->queued = 0;
1162 	ring->cur = 0;
1163 	ring->pending = 0;
1164 	ring->update = 0;
1165 
1166 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1167 
1168 	/* Allocate TX descriptors (16KB aligned.) */
1169 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1170 	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1171 	    size, WPI_RING_DMA_ALIGN);
1172 	if (error != 0) {
1173 		device_printf(sc->sc_dev,
1174 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1175 		    __func__, error);
1176 		goto fail;
1177 	}
1178 
1179 	/* Update shared area with ring physical address. */
1180 	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1181 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1182 	    BUS_DMASYNC_PREWRITE);
1183 
1184 	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1185 	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1186 	    size, 4);
1187 	if (error != 0) {
1188 		device_printf(sc->sc_dev,
1189 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1190 		    __func__, error);
1191 		goto fail;
1192 	}
1193 
1194 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1195 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1196 	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1197 	if (error != 0) {
1198 		device_printf(sc->sc_dev,
1199 		    "%s: could not create TX buf DMA tag, error %d\n",
1200 		    __func__, error);
1201 		goto fail;
1202 	}
1203 
1204 	paddr = ring->cmd_dma.paddr;
1205 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1206 		struct wpi_tx_data *data = &ring->data[i];
1207 
1208 		data->cmd_paddr = paddr;
1209 		paddr += sizeof (struct wpi_tx_cmd);
1210 
1211 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1212 		if (error != 0) {
1213 			device_printf(sc->sc_dev,
1214 			    "%s: could not create TX buf DMA map, error %d\n",
1215 			    __func__, error);
1216 			goto fail;
1217 		}
1218 	}
1219 
1220 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1221 
1222 	return 0;
1223 
1224 fail:	wpi_free_tx_ring(sc, ring);
1225 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1226 	return error;
1227 }
1228 
1229 static void
1230 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1231 {
1232 	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1233 }
1234 
1235 static void
1236 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1237 {
1238 
1239 	if (ring->update != 0) {
1240 		/* Wait for INT_WAKEUP event. */
1241 		return;
1242 	}
1243 
1244 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1245 	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1246 		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1247 		    __func__, ring->qid);
1248 		ring->update = 1;
1249 	} else {
1250 		wpi_update_tx_ring(sc, ring);
1251 		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1252 	}
1253 }
1254 
1255 static void
1256 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1257 {
1258 	int i;
1259 
1260 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1261 
1262 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1263 		struct wpi_tx_data *data = &ring->data[i];
1264 
1265 		if (data->m != NULL) {
1266 			bus_dmamap_sync(ring->data_dmat, data->map,
1267 			    BUS_DMASYNC_POSTWRITE);
1268 			bus_dmamap_unload(ring->data_dmat, data->map);
1269 			m_freem(data->m);
1270 			data->m = NULL;
1271 		}
1272 		if (data->ni != NULL) {
1273 			ieee80211_free_node(data->ni);
1274 			data->ni = NULL;
1275 		}
1276 	}
1277 	/* Clear TX descriptors. */
1278 	memset(ring->desc, 0, ring->desc_dma.size);
1279 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1280 	    BUS_DMASYNC_PREWRITE);
1281 	ring->queued = 0;
1282 	ring->cur = 0;
1283 	ring->pending = 0;
1284 	ring->update = 0;
1285 }
1286 
1287 static void
1288 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1289 {
1290 	int i;
1291 
1292 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1293 
1294 	wpi_dma_contig_free(&ring->desc_dma);
1295 	wpi_dma_contig_free(&ring->cmd_dma);
1296 
1297 	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1298 		struct wpi_tx_data *data = &ring->data[i];
1299 
1300 		if (data->m != NULL) {
1301 			bus_dmamap_sync(ring->data_dmat, data->map,
1302 			    BUS_DMASYNC_POSTWRITE);
1303 			bus_dmamap_unload(ring->data_dmat, data->map);
1304 			m_freem(data->m);
1305 		}
1306 		if (data->map != NULL)
1307 			bus_dmamap_destroy(ring->data_dmat, data->map);
1308 	}
1309 	if (ring->data_dmat != NULL) {
1310 		bus_dma_tag_destroy(ring->data_dmat);
1311 		ring->data_dmat = NULL;
1312 	}
1313 }
1314 
1315 /*
1316  * Extract various information from EEPROM.
1317  */
1318 static int
1319 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1320 {
1321 #define WPI_CHK(res) do {		\
1322 	if ((error = res) != 0)		\
1323 		goto fail;		\
1324 } while (0)
1325 	uint8_t i;
1326 	int error;
1327 
1328 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1329 
1330 	/* Adapter has to be powered on for EEPROM access to work. */
1331 	if ((error = wpi_apm_init(sc)) != 0) {
1332 		device_printf(sc->sc_dev,
1333 		    "%s: could not power ON adapter, error %d\n", __func__,
1334 		    error);
1335 		return error;
1336 	}
1337 
1338 	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1339 		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1340 		error = EIO;
1341 		goto fail;
1342 	}
1343 	/* Clear HW ownership of EEPROM. */
1344 	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1345 
1346 	/* Read the hardware capabilities, revision and SKU type. */
1347 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1348 	    sizeof(sc->cap)));
1349 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1350 	    sizeof(sc->rev)));
1351 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1352 	    sizeof(sc->type)));
1353 
1354 	sc->rev = le16toh(sc->rev);
1355 	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1356 	    sc->rev, sc->type);
1357 
1358 	/* Read the regulatory domain (4 ASCII characters.) */
1359 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1360 	    sizeof(sc->domain)));
1361 
1362 	/* Read MAC address. */
1363 	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1364 	    IEEE80211_ADDR_LEN));
1365 
1366 	/* Read the list of authorized channels. */
1367 	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1368 		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1369 
1370 	/* Read the list of TX power groups. */
1371 	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1372 		WPI_CHK(wpi_read_eeprom_group(sc, i));
1373 
1374 fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1375 
1376 	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1377 	    __func__);
1378 
1379 	return error;
1380 #undef WPI_CHK
1381 }
1382 
1383 /*
1384  * Translate EEPROM flags to net80211.
1385  */
1386 static uint32_t
1387 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1388 {
1389 	uint32_t nflags;
1390 
1391 	nflags = 0;
1392 	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1393 		nflags |= IEEE80211_CHAN_PASSIVE;
1394 	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1395 		nflags |= IEEE80211_CHAN_NOADHOC;
1396 	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1397 		nflags |= IEEE80211_CHAN_DFS;
1398 		/* XXX apparently IBSS may still be marked */
1399 		nflags |= IEEE80211_CHAN_NOADHOC;
1400 	}
1401 
1402 	/* XXX HOSTAP uses WPI_MODE_IBSS */
1403 	if (nflags & IEEE80211_CHAN_NOADHOC)
1404 		nflags |= IEEE80211_CHAN_NOHOSTAP;
1405 
1406 	return nflags;
1407 }
1408 
1409 static void
1410 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1411     int *nchans, struct ieee80211_channel chans[])
1412 {
1413 	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1414 	const struct wpi_chan_band *band = &wpi_bands[n];
1415 	struct ieee80211_channel *c;
1416 	uint32_t nflags;
1417 	uint8_t chan, i;
1418 
1419 	for (i = 0; i < band->nchan; i++) {
1420 		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1421 			DPRINTF(sc, WPI_DEBUG_EEPROM,
1422 			    "Channel Not Valid: %d, band %d\n",
1423 			     band->chan[i],n);
1424 			continue;
1425 		}
1426 
1427 		if (*nchans >= maxchans)
1428 			break;
1429 
1430 		chan = band->chan[i];
1431 		nflags = wpi_eeprom_channel_flags(&channels[i]);
1432 
1433 		c = &chans[(*nchans)++];
1434 		c->ic_ieee = chan;
1435 		c->ic_maxregpower = channels[i].maxpwr;
1436 		c->ic_maxpower = 2*c->ic_maxregpower;
1437 
1438 		if (n == 0) {	/* 2GHz band */
1439 			c->ic_freq = ieee80211_ieee2mhz(chan,
1440 			    IEEE80211_CHAN_G);
1441 
1442 			/* G =>'s B is supported */
1443 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1444 
1445 			if (*nchans >= maxchans)
1446 				break;
1447 
1448 			c = &chans[(*nchans)++];
1449 			c[0] = c[-1];
1450 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1451 		} else {	/* 5GHz band */
1452 			c->ic_freq = ieee80211_ieee2mhz(chan,
1453 			    IEEE80211_CHAN_A);
1454 
1455 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1456 		}
1457 
1458 		/* Save maximum allowed TX power for this channel. */
1459 		sc->maxpwr[chan] = channels[i].maxpwr;
1460 
1461 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1462 		    "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d,"
1463 		    " offset %d\n", chan, c->ic_freq,
1464 		    channels[i].flags, sc->maxpwr[chan],
1465 		    IEEE80211_IS_CHAN_PASSIVE(c), *nchans);
1466 	}
1467 }
1468 
1469 /**
1470  * Read the eeprom to find out what channels are valid for the given
1471  * band and update net80211 with what we find.
1472  */
1473 static int
1474 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1475 {
1476 	struct ieee80211com *ic = &sc->sc_ic;
1477 	const struct wpi_chan_band *band = &wpi_bands[n];
1478 	int error;
1479 
1480 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1481 
1482 	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1483 	    band->nchan * sizeof (struct wpi_eeprom_chan));
1484 	if (error != 0) {
1485 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1486 		return error;
1487 	}
1488 
1489 	wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1490 	    ic->ic_channels);
1491 
1492 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1493 
1494 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1495 
1496 	return 0;
1497 }
1498 
1499 static struct wpi_eeprom_chan *
1500 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1501 {
1502 	int i, j;
1503 
1504 	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1505 		for (i = 0; i < wpi_bands[j].nchan; i++)
1506 			if (wpi_bands[j].chan[i] == c->ic_ieee &&
1507 			    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
1508 				return &sc->eeprom_channels[j][i];
1509 
1510 	return NULL;
1511 }
1512 
1513 static void
1514 wpi_getradiocaps(struct ieee80211com *ic,
1515     int maxchans, int *nchans, struct ieee80211_channel chans[])
1516 {
1517 	struct wpi_softc *sc = ic->ic_softc;
1518 	int i;
1519 
1520 	/* Parse the list of authorized channels. */
1521 	for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1522 		wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1523 }
1524 
1525 /*
1526  * Enforce flags read from EEPROM.
1527  */
1528 static int
1529 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1530     int nchan, struct ieee80211_channel chans[])
1531 {
1532 	struct wpi_softc *sc = ic->ic_softc;
1533 	int i;
1534 
1535 	for (i = 0; i < nchan; i++) {
1536 		struct ieee80211_channel *c = &chans[i];
1537 		struct wpi_eeprom_chan *channel;
1538 
1539 		channel = wpi_find_eeprom_channel(sc, c);
1540 		if (channel == NULL) {
1541 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1542 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1543 			return EINVAL;
1544 		}
1545 		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1546 	}
1547 
1548 	return 0;
1549 }
1550 
1551 static int
1552 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1553 {
1554 	struct wpi_power_group *group = &sc->groups[n];
1555 	struct wpi_eeprom_group rgroup;
1556 	int i, error;
1557 
1558 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1559 
1560 	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1561 	    &rgroup, sizeof rgroup)) != 0) {
1562 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1563 		return error;
1564 	}
1565 
1566 	/* Save TX power group information. */
1567 	group->chan   = rgroup.chan;
1568 	group->maxpwr = rgroup.maxpwr;
1569 	/* Retrieve temperature at which the samples were taken. */
1570 	group->temp   = (int16_t)le16toh(rgroup.temp);
1571 
1572 	DPRINTF(sc, WPI_DEBUG_EEPROM,
1573 	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1574 	    group->maxpwr, group->temp);
1575 
1576 	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1577 		group->samples[i].index = rgroup.samples[i].index;
1578 		group->samples[i].power = rgroup.samples[i].power;
1579 
1580 		DPRINTF(sc, WPI_DEBUG_EEPROM,
1581 		    "\tsample %d: index=%d power=%d\n", i,
1582 		    group->samples[i].index, group->samples[i].power);
1583 	}
1584 
1585 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1586 
1587 	return 0;
1588 }
1589 
1590 static __inline uint8_t
1591 wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1592 {
1593 	uint8_t newid = WPI_ID_IBSS_MIN;
1594 
1595 	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1596 		if ((sc->nodesmsk & (1 << newid)) == 0) {
1597 			sc->nodesmsk |= 1 << newid;
1598 			return newid;
1599 		}
1600 	}
1601 
1602 	return WPI_ID_UNDEFINED;
1603 }
1604 
1605 static __inline uint8_t
1606 wpi_add_node_entry_sta(struct wpi_softc *sc)
1607 {
1608 	sc->nodesmsk |= 1 << WPI_ID_BSS;
1609 
1610 	return WPI_ID_BSS;
1611 }
1612 
1613 static __inline int
1614 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1615 {
1616 	if (id == WPI_ID_UNDEFINED)
1617 		return 0;
1618 
1619 	return (sc->nodesmsk >> id) & 1;
1620 }
1621 
1622 static __inline void
1623 wpi_clear_node_table(struct wpi_softc *sc)
1624 {
1625 	sc->nodesmsk = 0;
1626 }
1627 
1628 static __inline void
1629 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1630 {
1631 	sc->nodesmsk &= ~(1 << id);
1632 }
1633 
1634 static struct ieee80211_node *
1635 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1636 {
1637 	struct wpi_node *wn;
1638 
1639 	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1640 	    M_NOWAIT | M_ZERO);
1641 
1642 	if (wn == NULL)
1643 		return NULL;
1644 
1645 	wn->id = WPI_ID_UNDEFINED;
1646 
1647 	return &wn->ni;
1648 }
1649 
1650 static void
1651 wpi_node_free(struct ieee80211_node *ni)
1652 {
1653 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1654 	struct wpi_node *wn = WPI_NODE(ni);
1655 
1656 	if (wn->id != WPI_ID_UNDEFINED) {
1657 		WPI_NT_LOCK(sc);
1658 		if (wpi_check_node_entry(sc, wn->id)) {
1659 			wpi_del_node_entry(sc, wn->id);
1660 			wpi_del_node(sc, ni);
1661 		}
1662 		WPI_NT_UNLOCK(sc);
1663 	}
1664 
1665 	sc->sc_node_free(ni);
1666 }
1667 
1668 static __inline int
1669 wpi_check_bss_filter(struct wpi_softc *sc)
1670 {
1671 	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1672 }
1673 
1674 static void
1675 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1676     const struct ieee80211_rx_stats *rxs,
1677     int rssi, int nf)
1678 {
1679 	struct ieee80211vap *vap = ni->ni_vap;
1680 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1681 	struct wpi_vap *wvp = WPI_VAP(vap);
1682 	uint64_t ni_tstamp, rx_tstamp;
1683 
1684 	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1685 
1686 	if (vap->iv_state == IEEE80211_S_RUN &&
1687 	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1688 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1689 		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1690 		rx_tstamp = le64toh(sc->rx_tstamp);
1691 
1692 		if (ni_tstamp >= rx_tstamp) {
1693 			DPRINTF(sc, WPI_DEBUG_STATE,
1694 			    "ibss merge, tsf %ju tstamp %ju\n",
1695 			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1696 			(void) ieee80211_ibss_merge(ni);
1697 		}
1698 	}
1699 }
1700 
1701 static void
1702 wpi_restore_node(void *arg, struct ieee80211_node *ni)
1703 {
1704 	struct wpi_softc *sc = arg;
1705 	struct wpi_node *wn = WPI_NODE(ni);
1706 	int error;
1707 
1708 	WPI_NT_LOCK(sc);
1709 	if (wn->id != WPI_ID_UNDEFINED) {
1710 		wn->id = WPI_ID_UNDEFINED;
1711 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1712 			device_printf(sc->sc_dev,
1713 			    "%s: could not add IBSS node, error %d\n",
1714 			    __func__, error);
1715 		}
1716 	}
1717 	WPI_NT_UNLOCK(sc);
1718 }
1719 
1720 static void
1721 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1722 {
1723 	struct ieee80211com *ic = &sc->sc_ic;
1724 
1725 	/* Set group keys once. */
1726 	WPI_NT_LOCK(sc);
1727 	wvp->wv_gtk = 0;
1728 	WPI_NT_UNLOCK(sc);
1729 
1730 	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1731 	ieee80211_crypto_reload_keys(ic);
1732 }
1733 
1734 /**
1735  * Called by net80211 when ever there is a change to 80211 state machine
1736  */
1737 static int
1738 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1739 {
1740 	struct wpi_vap *wvp = WPI_VAP(vap);
1741 	struct ieee80211com *ic = vap->iv_ic;
1742 	struct wpi_softc *sc = ic->ic_softc;
1743 	int error = 0;
1744 
1745 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1746 
1747 	WPI_TXQ_LOCK(sc);
1748 	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1749 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1750 		WPI_TXQ_UNLOCK(sc);
1751 
1752 		return ENXIO;
1753 	}
1754 	WPI_TXQ_UNLOCK(sc);
1755 
1756 	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1757 		ieee80211_state_name[vap->iv_state],
1758 		ieee80211_state_name[nstate]);
1759 
1760 	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1761 		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1762 			device_printf(sc->sc_dev,
1763 			    "%s: could not set power saving level\n",
1764 			    __func__);
1765 			return error;
1766 		}
1767 
1768 		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1769 	}
1770 
1771 	switch (nstate) {
1772 	case IEEE80211_S_SCAN:
1773 		WPI_RXON_LOCK(sc);
1774 		if (wpi_check_bss_filter(sc) != 0) {
1775 			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1776 			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1777 				device_printf(sc->sc_dev,
1778 				    "%s: could not send RXON\n", __func__);
1779 			}
1780 		}
1781 		WPI_RXON_UNLOCK(sc);
1782 		break;
1783 
1784 	case IEEE80211_S_ASSOC:
1785 		if (vap->iv_state != IEEE80211_S_RUN)
1786 			break;
1787 		/* FALLTHROUGH */
1788 	case IEEE80211_S_AUTH:
1789 		/*
1790 		 * NB: do not optimize AUTH -> AUTH state transmission -
1791 		 * this will break powersave with non-QoS AP!
1792 		 */
1793 
1794 		/*
1795 		 * The node must be registered in the firmware before auth.
1796 		 * Also the associd must be cleared on RUN -> ASSOC
1797 		 * transitions.
1798 		 */
1799 		if ((error = wpi_auth(sc, vap)) != 0) {
1800 			device_printf(sc->sc_dev,
1801 			    "%s: could not move to AUTH state, error %d\n",
1802 			    __func__, error);
1803 		}
1804 		break;
1805 
1806 	case IEEE80211_S_RUN:
1807 		/*
1808 		 * RUN -> RUN transition:
1809 		 * STA mode: Just restart the timers.
1810 		 * IBSS mode: Process IBSS merge.
1811 		 */
1812 		if (vap->iv_state == IEEE80211_S_RUN) {
1813 			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1814 				WPI_RXON_LOCK(sc);
1815 				wpi_calib_timeout(sc);
1816 				WPI_RXON_UNLOCK(sc);
1817 				break;
1818 			} else {
1819 				/*
1820 				 * Drop the BSS_FILTER bit
1821 				 * (there is no another way to change bssid).
1822 				 */
1823 				WPI_RXON_LOCK(sc);
1824 				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1825 				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1826 					device_printf(sc->sc_dev,
1827 					    "%s: could not send RXON\n",
1828 					    __func__);
1829 				}
1830 				WPI_RXON_UNLOCK(sc);
1831 
1832 				/* Restore all what was lost. */
1833 				wpi_restore_node_table(sc, wvp);
1834 
1835 				/* XXX set conditionally? */
1836 				wpi_updateedca(ic);
1837 			}
1838 		}
1839 
1840 		/*
1841 		 * !RUN -> RUN requires setting the association id
1842 		 * which is done with a firmware cmd.  We also defer
1843 		 * starting the timers until that work is done.
1844 		 */
1845 		if ((error = wpi_run(sc, vap)) != 0) {
1846 			device_printf(sc->sc_dev,
1847 			    "%s: could not move to RUN state\n", __func__);
1848 		}
1849 		break;
1850 
1851 	default:
1852 		break;
1853 	}
1854 	if (error != 0) {
1855 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1856 		return error;
1857 	}
1858 
1859 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1860 
1861 	return wvp->wv_newstate(vap, nstate, arg);
1862 }
1863 
1864 static void
1865 wpi_calib_timeout(void *arg)
1866 {
1867 	struct wpi_softc *sc = arg;
1868 
1869 	if (wpi_check_bss_filter(sc) == 0)
1870 		return;
1871 
1872 	wpi_power_calibration(sc);
1873 
1874 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1875 }
1876 
1877 static __inline uint8_t
1878 rate2plcp(const uint8_t rate)
1879 {
1880 	switch (rate) {
1881 	case 12:	return 0xd;
1882 	case 18:	return 0xf;
1883 	case 24:	return 0x5;
1884 	case 36:	return 0x7;
1885 	case 48:	return 0x9;
1886 	case 72:	return 0xb;
1887 	case 96:	return 0x1;
1888 	case 108:	return 0x3;
1889 	case 2:		return 10;
1890 	case 4:		return 20;
1891 	case 11:	return 55;
1892 	case 22:	return 110;
1893 	default:	return 0;
1894 	}
1895 }
1896 
1897 static __inline uint8_t
1898 plcp2rate(const uint8_t plcp)
1899 {
1900 	switch (plcp) {
1901 	case 0xd:	return 12;
1902 	case 0xf:	return 18;
1903 	case 0x5:	return 24;
1904 	case 0x7:	return 36;
1905 	case 0x9:	return 48;
1906 	case 0xb:	return 72;
1907 	case 0x1:	return 96;
1908 	case 0x3:	return 108;
1909 	case 10:	return 2;
1910 	case 20:	return 4;
1911 	case 55:	return 11;
1912 	case 110:	return 22;
1913 	default:	return 0;
1914 	}
1915 }
1916 
1917 /* Quickly determine if a given rate is CCK or OFDM. */
1918 #define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1919 
1920 static void
1921 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1922     struct wpi_rx_data *data)
1923 {
1924 	struct ieee80211com *ic = &sc->sc_ic;
1925 	struct wpi_rx_ring *ring = &sc->rxq;
1926 	struct wpi_rx_stat *stat;
1927 	struct wpi_rx_head *head;
1928 	struct wpi_rx_tail *tail;
1929 	struct ieee80211_frame *wh;
1930 	struct ieee80211_node *ni;
1931 	struct mbuf *m, *m1;
1932 	bus_addr_t paddr;
1933 	uint32_t flags;
1934 	uint16_t len;
1935 	int error;
1936 
1937 	stat = (struct wpi_rx_stat *)(desc + 1);
1938 
1939 	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1940 		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1941 		goto fail1;
1942 	}
1943 
1944 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1945 	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1946 	len = le16toh(head->len);
1947 	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1948 	flags = le32toh(tail->flags);
1949 
1950 	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1951 	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1952 	    le32toh(desc->len), len, (int8_t)stat->rssi,
1953 	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1954 
1955 	/* Discard frames with a bad FCS early. */
1956 	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1957 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1958 		    __func__, flags);
1959 		goto fail1;
1960 	}
1961 	/* Discard frames that are too short. */
1962 	if (len < sizeof (struct ieee80211_frame_ack)) {
1963 		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1964 		    __func__, len);
1965 		goto fail1;
1966 	}
1967 
1968 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1969 	if (__predict_false(m1 == NULL)) {
1970 		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1971 		    __func__);
1972 		goto fail1;
1973 	}
1974 	bus_dmamap_unload(ring->data_dmat, data->map);
1975 
1976 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1977 	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1978 	if (__predict_false(error != 0 && error != EFBIG)) {
1979 		device_printf(sc->sc_dev,
1980 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1981 		m_freem(m1);
1982 
1983 		/* Try to reload the old mbuf. */
1984 		error = bus_dmamap_load(ring->data_dmat, data->map,
1985 		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1986 		    &paddr, BUS_DMA_NOWAIT);
1987 		if (error != 0 && error != EFBIG) {
1988 			panic("%s: could not load old RX mbuf", __func__);
1989 		}
1990 		/* Physical address may have changed. */
1991 		ring->desc[ring->cur] = htole32(paddr);
1992 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1993 		    BUS_DMASYNC_PREWRITE);
1994 		goto fail1;
1995 	}
1996 
1997 	m = data->m;
1998 	data->m = m1;
1999 	/* Update RX descriptor. */
2000 	ring->desc[ring->cur] = htole32(paddr);
2001 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2002 	    BUS_DMASYNC_PREWRITE);
2003 
2004 	/* Finalize mbuf. */
2005 	m->m_data = (caddr_t)(head + 1);
2006 	m->m_pkthdr.len = m->m_len = len;
2007 
2008 	/* Grab a reference to the source node. */
2009 	wh = mtod(m, struct ieee80211_frame *);
2010 
2011 	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2012 	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
2013 		/* Check whether decryption was successful or not. */
2014 		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2015 			DPRINTF(sc, WPI_DEBUG_RECV,
2016 			    "CCMP decryption failed 0x%x\n", flags);
2017 			goto fail2;
2018 		}
2019 		m->m_flags |= M_WEP;
2020 	}
2021 
2022 	if (len >= sizeof(struct ieee80211_frame_min))
2023 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2024 	else
2025 		ni = NULL;
2026 
2027 	sc->rx_tstamp = tail->tstamp;
2028 
2029 	if (ieee80211_radiotap_active(ic)) {
2030 		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2031 
2032 		tap->wr_flags = 0;
2033 		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2034 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2035 		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2036 		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2037 		tap->wr_tsft = tail->tstamp;
2038 		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2039 		tap->wr_rate = plcp2rate(head->plcp);
2040 	}
2041 
2042 	WPI_UNLOCK(sc);
2043 
2044 	/* Send the frame to the 802.11 layer. */
2045 	if (ni != NULL) {
2046 		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2047 		/* Node is no longer needed. */
2048 		ieee80211_free_node(ni);
2049 	} else
2050 		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2051 
2052 	WPI_LOCK(sc);
2053 
2054 	return;
2055 
2056 fail2:	m_freem(m);
2057 
2058 fail1:	counter_u64_add(ic->ic_ierrors, 1);
2059 }
2060 
2061 static void
2062 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2063     struct wpi_rx_data *data)
2064 {
2065 	/* Ignore */
2066 }
2067 
2068 static void
2069 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2070 {
2071 	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2072 	struct wpi_tx_data *data = &ring->data[desc->idx];
2073 	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2074 	struct mbuf *m;
2075 	struct ieee80211_node *ni;
2076 	struct ieee80211vap *vap;
2077 	struct ieee80211com *ic;
2078 	uint32_t status = le32toh(stat->status);
2079 	int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2080 
2081 	KASSERT(data->ni != NULL, ("no node"));
2082 	KASSERT(data->m != NULL, ("no mbuf"));
2083 
2084 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2085 
2086 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2087 	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2088 	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2089 	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2090 
2091 	/* Unmap and free mbuf. */
2092 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2093 	bus_dmamap_unload(ring->data_dmat, data->map);
2094 	m = data->m, data->m = NULL;
2095 	ni = data->ni, data->ni = NULL;
2096 	vap = ni->ni_vap;
2097 	ic = vap->iv_ic;
2098 
2099 	/*
2100 	 * Update rate control statistics for the node.
2101 	 */
2102 	if (status & WPI_TX_STATUS_FAIL) {
2103 		ieee80211_ratectl_tx_complete(vap, ni,
2104 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2105 	} else
2106 		ieee80211_ratectl_tx_complete(vap, ni,
2107 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2108 
2109 	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2110 
2111 	WPI_TXQ_STATE_LOCK(sc);
2112 	if (--ring->queued > 0)
2113 		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2114 	else
2115 		callout_stop(&sc->tx_timeout);
2116 	WPI_TXQ_STATE_UNLOCK(sc);
2117 
2118 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2119 }
2120 
2121 /*
2122  * Process a "command done" firmware notification.  This is where we wakeup
2123  * processes waiting for a synchronous command completion.
2124  */
2125 static void
2126 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2127 {
2128 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2129 	struct wpi_tx_data *data;
2130 	struct wpi_tx_cmd *cmd;
2131 
2132 	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2133 				   "type %s len %d\n", desc->qid, desc->idx,
2134 				   desc->flags, wpi_cmd_str(desc->type),
2135 				   le32toh(desc->len));
2136 
2137 	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2138 		return;	/* Not a command ack. */
2139 
2140 	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2141 
2142 	data = &ring->data[desc->idx];
2143 	cmd = &ring->cmd[desc->idx];
2144 
2145 	/* If the command was mapped in an mbuf, free it. */
2146 	if (data->m != NULL) {
2147 		bus_dmamap_sync(ring->data_dmat, data->map,
2148 		    BUS_DMASYNC_POSTWRITE);
2149 		bus_dmamap_unload(ring->data_dmat, data->map);
2150 		m_freem(data->m);
2151 		data->m = NULL;
2152 	}
2153 
2154 	wakeup(cmd);
2155 
2156 	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2157 		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2158 
2159 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2160 		    BUS_DMASYNC_POSTREAD);
2161 
2162 		WPI_TXQ_LOCK(sc);
2163 		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2164 			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2165 			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2166 		} else {
2167 			sc->sc_update_rx_ring = wpi_update_rx_ring;
2168 			sc->sc_update_tx_ring = wpi_update_tx_ring;
2169 		}
2170 		WPI_TXQ_UNLOCK(sc);
2171 	}
2172 }
2173 
2174 static void
2175 wpi_notif_intr(struct wpi_softc *sc)
2176 {
2177 	struct ieee80211com *ic = &sc->sc_ic;
2178 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2179 	uint32_t hw;
2180 
2181 	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2182 	    BUS_DMASYNC_POSTREAD);
2183 
2184 	hw = le32toh(sc->shared->next) & 0xfff;
2185 	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2186 
2187 	while (sc->rxq.cur != hw) {
2188 		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2189 
2190 		struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2191 		struct wpi_rx_desc *desc;
2192 
2193 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2194 		    BUS_DMASYNC_POSTREAD);
2195 		desc = mtod(data->m, struct wpi_rx_desc *);
2196 
2197 		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2198 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2199 		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2200 		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2201 
2202 		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2203 			/* Reply to a command. */
2204 			wpi_cmd_done(sc, desc);
2205 		}
2206 
2207 		switch (desc->type) {
2208 		case WPI_RX_DONE:
2209 			/* An 802.11 frame has been received. */
2210 			wpi_rx_done(sc, desc, data);
2211 
2212 			if (__predict_false(sc->sc_running == 0)) {
2213 				/* wpi_stop() was called. */
2214 				return;
2215 			}
2216 
2217 			break;
2218 
2219 		case WPI_TX_DONE:
2220 			/* An 802.11 frame has been transmitted. */
2221 			wpi_tx_done(sc, desc);
2222 			break;
2223 
2224 		case WPI_RX_STATISTICS:
2225 		case WPI_BEACON_STATISTICS:
2226 			wpi_rx_statistics(sc, desc, data);
2227 			break;
2228 
2229 		case WPI_BEACON_MISSED:
2230 		{
2231 			struct wpi_beacon_missed *miss =
2232 			    (struct wpi_beacon_missed *)(desc + 1);
2233 			uint32_t expected, misses, received, threshold;
2234 
2235 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2236 			    BUS_DMASYNC_POSTREAD);
2237 
2238 			misses = le32toh(miss->consecutive);
2239 			expected = le32toh(miss->expected);
2240 			received = le32toh(miss->received);
2241 			threshold = MAX(2, vap->iv_bmissthreshold);
2242 
2243 			DPRINTF(sc, WPI_DEBUG_BMISS,
2244 			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2245 			    __func__, misses, le32toh(miss->total), received,
2246 			    expected);
2247 
2248 			if (misses >= threshold ||
2249 			    (received == 0 && expected >= threshold)) {
2250 				WPI_RXON_LOCK(sc);
2251 				if (callout_pending(&sc->scan_timeout)) {
2252 					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2253 					    0, 1);
2254 				}
2255 				WPI_RXON_UNLOCK(sc);
2256 				if (vap->iv_state == IEEE80211_S_RUN &&
2257 				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2258 					ieee80211_beacon_miss(ic);
2259 			}
2260 
2261 			break;
2262 		}
2263 #ifdef WPI_DEBUG
2264 		case WPI_BEACON_SENT:
2265 		{
2266 			struct wpi_tx_stat *stat =
2267 			    (struct wpi_tx_stat *)(desc + 1);
2268 			uint64_t *tsf = (uint64_t *)(stat + 1);
2269 			uint32_t *mode = (uint32_t *)(tsf + 1);
2270 
2271 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2272 			    BUS_DMASYNC_POSTREAD);
2273 
2274 			DPRINTF(sc, WPI_DEBUG_BEACON,
2275 			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2276 			    "duration %u, status %x, tsf %ju, mode %x\n",
2277 			    stat->rtsfailcnt, stat->ackfailcnt,
2278 			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2279 			    le32toh(stat->status), le64toh(*tsf),
2280 			    le32toh(*mode));
2281 
2282 			break;
2283 		}
2284 #endif
2285 		case WPI_UC_READY:
2286 		{
2287 			struct wpi_ucode_info *uc =
2288 			    (struct wpi_ucode_info *)(desc + 1);
2289 
2290 			/* The microcontroller is ready. */
2291 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2292 			    BUS_DMASYNC_POSTREAD);
2293 			DPRINTF(sc, WPI_DEBUG_RESET,
2294 			    "microcode alive notification version=%d.%d "
2295 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2296 			    uc->subtype, le32toh(uc->valid));
2297 
2298 			if (le32toh(uc->valid) != 1) {
2299 				device_printf(sc->sc_dev,
2300 				    "microcontroller initialization failed\n");
2301 				wpi_stop_locked(sc);
2302 				return;
2303 			}
2304 			/* Save the address of the error log in SRAM. */
2305 			sc->errptr = le32toh(uc->errptr);
2306 			break;
2307 		}
2308 		case WPI_STATE_CHANGED:
2309 		{
2310 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2311 			    BUS_DMASYNC_POSTREAD);
2312 
2313 			uint32_t *status = (uint32_t *)(desc + 1);
2314 
2315 			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2316 			    le32toh(*status));
2317 
2318 			if (le32toh(*status) & 1) {
2319 				WPI_NT_LOCK(sc);
2320 				wpi_clear_node_table(sc);
2321 				WPI_NT_UNLOCK(sc);
2322 				ieee80211_runtask(ic,
2323 				    &sc->sc_radiooff_task);
2324 				return;
2325 			}
2326 			break;
2327 		}
2328 #ifdef WPI_DEBUG
2329 		case WPI_START_SCAN:
2330 		{
2331 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2332 			    BUS_DMASYNC_POSTREAD);
2333 
2334 			struct wpi_start_scan *scan =
2335 			    (struct wpi_start_scan *)(desc + 1);
2336 			DPRINTF(sc, WPI_DEBUG_SCAN,
2337 			    "%s: scanning channel %d status %x\n",
2338 			    __func__, scan->chan, le32toh(scan->status));
2339 
2340 			break;
2341 		}
2342 #endif
2343 		case WPI_STOP_SCAN:
2344 		{
2345 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2346 			    BUS_DMASYNC_POSTREAD);
2347 
2348 			struct wpi_stop_scan *scan =
2349 			    (struct wpi_stop_scan *)(desc + 1);
2350 
2351 			DPRINTF(sc, WPI_DEBUG_SCAN,
2352 			    "scan finished nchan=%d status=%d chan=%d\n",
2353 			    scan->nchan, scan->status, scan->chan);
2354 
2355 			WPI_RXON_LOCK(sc);
2356 			callout_stop(&sc->scan_timeout);
2357 			WPI_RXON_UNLOCK(sc);
2358 			if (scan->status == WPI_SCAN_ABORTED)
2359 				ieee80211_cancel_scan(vap);
2360 			else
2361 				ieee80211_scan_next(vap);
2362 			break;
2363 		}
2364 		}
2365 
2366 		if (sc->rxq.cur % 8 == 0) {
2367 			/* Tell the firmware what we have processed. */
2368 			sc->sc_update_rx_ring(sc);
2369 		}
2370 	}
2371 }
2372 
2373 /*
2374  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2375  * from power-down sleep mode.
2376  */
2377 static void
2378 wpi_wakeup_intr(struct wpi_softc *sc)
2379 {
2380 	int qid;
2381 
2382 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2383 	    "%s: ucode wakeup from power-down sleep\n", __func__);
2384 
2385 	/* Wakeup RX and TX rings. */
2386 	if (sc->rxq.update) {
2387 		sc->rxq.update = 0;
2388 		wpi_update_rx_ring(sc);
2389 	}
2390 	WPI_TXQ_LOCK(sc);
2391 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2392 		struct wpi_tx_ring *ring = &sc->txq[qid];
2393 
2394 		if (ring->update) {
2395 			ring->update = 0;
2396 			wpi_update_tx_ring(sc, ring);
2397 		}
2398 	}
2399 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2400 	WPI_TXQ_UNLOCK(sc);
2401 }
2402 
2403 /*
2404  * This function prints firmware registers
2405  */
2406 #ifdef WPI_DEBUG
2407 static void
2408 wpi_debug_registers(struct wpi_softc *sc)
2409 {
2410 	size_t i;
2411 	static const uint32_t csr_tbl[] = {
2412 		WPI_HW_IF_CONFIG,
2413 		WPI_INT,
2414 		WPI_INT_MASK,
2415 		WPI_FH_INT,
2416 		WPI_GPIO_IN,
2417 		WPI_RESET,
2418 		WPI_GP_CNTRL,
2419 		WPI_EEPROM,
2420 		WPI_EEPROM_GP,
2421 		WPI_GIO,
2422 		WPI_UCODE_GP1,
2423 		WPI_UCODE_GP2,
2424 		WPI_GIO_CHICKEN,
2425 		WPI_ANA_PLL,
2426 		WPI_DBG_HPET_MEM,
2427 	};
2428 	static const uint32_t prph_tbl[] = {
2429 		WPI_APMG_CLK_CTRL,
2430 		WPI_APMG_PS,
2431 		WPI_APMG_PCI_STT,
2432 		WPI_APMG_RFKILL,
2433 	};
2434 
2435 	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2436 
2437 	for (i = 0; i < nitems(csr_tbl); i++) {
2438 		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2439 		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2440 
2441 		if ((i + 1) % 2 == 0)
2442 			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2443 	}
2444 	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2445 
2446 	if (wpi_nic_lock(sc) == 0) {
2447 		for (i = 0; i < nitems(prph_tbl); i++) {
2448 			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2449 			    wpi_get_prph_string(prph_tbl[i]),
2450 			    wpi_prph_read(sc, prph_tbl[i]));
2451 
2452 			if ((i + 1) % 2 == 0)
2453 				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2454 		}
2455 		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2456 		wpi_nic_unlock(sc);
2457 	} else {
2458 		DPRINTF(sc, WPI_DEBUG_REGISTER,
2459 		    "Cannot access internal registers.\n");
2460 	}
2461 }
2462 #endif
2463 
2464 /*
2465  * Dump the error log of the firmware when a firmware panic occurs.  Although
2466  * we can't debug the firmware because it is neither open source nor free, it
2467  * can help us to identify certain classes of problems.
2468  */
2469 static void
2470 wpi_fatal_intr(struct wpi_softc *sc)
2471 {
2472 	struct wpi_fw_dump dump;
2473 	uint32_t i, offset, count;
2474 
2475 	/* Check that the error log address is valid. */
2476 	if (sc->errptr < WPI_FW_DATA_BASE ||
2477 	    sc->errptr + sizeof (dump) >
2478 	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2479 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2480 		    sc->errptr);
2481 		return;
2482 	}
2483 	if (wpi_nic_lock(sc) != 0) {
2484 		printf("%s: could not read firmware error log\n", __func__);
2485 		return;
2486 	}
2487 	/* Read number of entries in the log. */
2488 	count = wpi_mem_read(sc, sc->errptr);
2489 	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2490 		printf("%s: invalid count field (count = %u)\n", __func__,
2491 		    count);
2492 		wpi_nic_unlock(sc);
2493 		return;
2494 	}
2495 	/* Skip "count" field. */
2496 	offset = sc->errptr + sizeof (uint32_t);
2497 	printf("firmware error log (count = %u):\n", count);
2498 	for (i = 0; i < count; i++) {
2499 		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2500 		    sizeof (dump) / sizeof (uint32_t));
2501 
2502 		printf("  error type = \"%s\" (0x%08X)\n",
2503 		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2504 		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2505 		    dump.desc);
2506 		printf("  error data      = 0x%08X\n",
2507 		    dump.data);
2508 		printf("  branch link     = 0x%08X%08X\n",
2509 		    dump.blink[0], dump.blink[1]);
2510 		printf("  interrupt link  = 0x%08X%08X\n",
2511 		    dump.ilink[0], dump.ilink[1]);
2512 		printf("  time            = %u\n", dump.time);
2513 
2514 		offset += sizeof (dump);
2515 	}
2516 	wpi_nic_unlock(sc);
2517 	/* Dump driver status (TX and RX rings) while we're here. */
2518 	printf("driver status:\n");
2519 	WPI_TXQ_LOCK(sc);
2520 	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2521 		struct wpi_tx_ring *ring = &sc->txq[i];
2522 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2523 		    i, ring->qid, ring->cur, ring->queued);
2524 	}
2525 	WPI_TXQ_UNLOCK(sc);
2526 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2527 }
2528 
2529 static void
2530 wpi_intr(void *arg)
2531 {
2532 	struct wpi_softc *sc = arg;
2533 	uint32_t r1, r2;
2534 
2535 	WPI_LOCK(sc);
2536 
2537 	/* Disable interrupts. */
2538 	WPI_WRITE(sc, WPI_INT_MASK, 0);
2539 
2540 	r1 = WPI_READ(sc, WPI_INT);
2541 
2542 	if (__predict_false(r1 == 0xffffffff ||
2543 			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2544 		goto end;	/* Hardware gone! */
2545 
2546 	r2 = WPI_READ(sc, WPI_FH_INT);
2547 
2548 	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2549 	    r1, r2);
2550 
2551 	if (r1 == 0 && r2 == 0)
2552 		goto done;	/* Interrupt not for us. */
2553 
2554 	/* Acknowledge interrupts. */
2555 	WPI_WRITE(sc, WPI_INT, r1);
2556 	WPI_WRITE(sc, WPI_FH_INT, r2);
2557 
2558 	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2559 		struct ieee80211com *ic = &sc->sc_ic;
2560 
2561 		device_printf(sc->sc_dev, "fatal firmware error\n");
2562 #ifdef WPI_DEBUG
2563 		wpi_debug_registers(sc);
2564 #endif
2565 		wpi_fatal_intr(sc);
2566 		DPRINTF(sc, WPI_DEBUG_HW,
2567 		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2568 		    "(Hardware Error)");
2569 		ieee80211_restart_all(ic);
2570 		goto end;
2571 	}
2572 
2573 	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2574 	    (r2 & WPI_FH_INT_RX))
2575 		wpi_notif_intr(sc);
2576 
2577 	if (r1 & WPI_INT_ALIVE)
2578 		wakeup(sc);	/* Firmware is alive. */
2579 
2580 	if (r1 & WPI_INT_WAKEUP)
2581 		wpi_wakeup_intr(sc);
2582 
2583 done:
2584 	/* Re-enable interrupts. */
2585 	if (__predict_true(sc->sc_running))
2586 		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2587 
2588 end:	WPI_UNLOCK(sc);
2589 }
2590 
2591 static void
2592 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2593 {
2594 	struct wpi_tx_ring *ring;
2595 	struct wpi_tx_data *data;
2596 	uint8_t cur;
2597 
2598 	WPI_TXQ_LOCK(sc);
2599 	ring = &sc->txq[ac];
2600 
2601 	while (ring->pending != 0) {
2602 		ring->pending--;
2603 		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2604 		data = &ring->data[cur];
2605 
2606 		bus_dmamap_sync(ring->data_dmat, data->map,
2607 		    BUS_DMASYNC_POSTWRITE);
2608 		bus_dmamap_unload(ring->data_dmat, data->map);
2609 		m_freem(data->m);
2610 		data->m = NULL;
2611 
2612 		ieee80211_node_decref(data->ni);
2613 		data->ni = NULL;
2614 	}
2615 
2616 	WPI_TXQ_UNLOCK(sc);
2617 }
2618 
2619 static int
2620 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2621 {
2622 	struct ieee80211_frame *wh;
2623 	struct wpi_tx_cmd *cmd;
2624 	struct wpi_tx_data *data;
2625 	struct wpi_tx_desc *desc;
2626 	struct wpi_tx_ring *ring;
2627 	struct mbuf *m1;
2628 	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2629 	uint8_t cur, pad;
2630 	uint16_t hdrlen;
2631 	int error, i, nsegs, totlen, frag;
2632 
2633 	WPI_TXQ_LOCK(sc);
2634 
2635 	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2636 
2637 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2638 
2639 	if (__predict_false(sc->sc_running == 0)) {
2640 		/* wpi_stop() was called */
2641 		error = ENETDOWN;
2642 		goto end;
2643 	}
2644 
2645 	wh = mtod(buf->m, struct ieee80211_frame *);
2646 	hdrlen = ieee80211_anyhdrsize(wh);
2647 	totlen = buf->m->m_pkthdr.len;
2648 	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2649 
2650 	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2651 		error = EINVAL;
2652 		goto end;
2653 	}
2654 
2655 	if (hdrlen & 3) {
2656 		/* First segment length must be a multiple of 4. */
2657 		pad = 4 - (hdrlen & 3);
2658 	} else
2659 		pad = 0;
2660 
2661 	ring = &sc->txq[buf->ac];
2662 	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2663 	desc = &ring->desc[cur];
2664 	data = &ring->data[cur];
2665 
2666 	/* Prepare TX firmware command. */
2667 	cmd = &ring->cmd[cur];
2668 	cmd->code = buf->code;
2669 	cmd->flags = 0;
2670 	cmd->qid = ring->qid;
2671 	cmd->idx = cur;
2672 
2673 	memcpy(cmd->data, buf->data, buf->size);
2674 
2675 	/* Save and trim IEEE802.11 header. */
2676 	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2677 	m_adj(buf->m, hdrlen);
2678 
2679 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2680 	    segs, &nsegs, BUS_DMA_NOWAIT);
2681 	if (error != 0 && error != EFBIG) {
2682 		device_printf(sc->sc_dev,
2683 		    "%s: can't map mbuf (error %d)\n", __func__, error);
2684 		goto end;
2685 	}
2686 	if (error != 0) {
2687 		/* Too many DMA segments, linearize mbuf. */
2688 		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2689 		if (m1 == NULL) {
2690 			device_printf(sc->sc_dev,
2691 			    "%s: could not defrag mbuf\n", __func__);
2692 			error = ENOBUFS;
2693 			goto end;
2694 		}
2695 		buf->m = m1;
2696 
2697 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2698 		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2699 		if (__predict_false(error != 0)) {
2700 			/* XXX fix this (applicable to the iwn(4) too) */
2701 			/*
2702 			 * NB: Do not return error;
2703 			 * original mbuf does not exist anymore.
2704 			 */
2705 			device_printf(sc->sc_dev,
2706 			    "%s: can't map mbuf (error %d)\n", __func__,
2707 			    error);
2708 			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2709 				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2710 				    IFCOUNTER_OERRORS, 1);
2711 				if (!frag)
2712 					ieee80211_free_node(buf->ni);
2713 			}
2714 			m_freem(buf->m);
2715 			error = 0;
2716 			goto end;
2717 		}
2718 	}
2719 
2720 	KASSERT(nsegs < WPI_MAX_SCATTER,
2721 	    ("too many DMA segments, nsegs (%d) should be less than %d",
2722 	     nsegs, WPI_MAX_SCATTER));
2723 
2724 	data->m = buf->m;
2725 	data->ni = buf->ni;
2726 
2727 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2728 	    __func__, ring->qid, cur, totlen, nsegs);
2729 
2730 	/* Fill TX descriptor. */
2731 	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2732 	/* First DMA segment is used by the TX command. */
2733 	desc->segs[0].addr = htole32(data->cmd_paddr);
2734 	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2735 	/* Other DMA segments are for data payload. */
2736 	seg = &segs[0];
2737 	for (i = 1; i <= nsegs; i++) {
2738 		desc->segs[i].addr = htole32(seg->ds_addr);
2739 		desc->segs[i].len  = htole32(seg->ds_len);
2740 		seg++;
2741 	}
2742 
2743 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2744 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2745 	    BUS_DMASYNC_PREWRITE);
2746 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2747 	    BUS_DMASYNC_PREWRITE);
2748 
2749 	ring->pending += 1;
2750 
2751 	if (!frag) {
2752 		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2753 			WPI_TXQ_STATE_LOCK(sc);
2754 			ring->queued += ring->pending;
2755 			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2756 			    sc);
2757 			WPI_TXQ_STATE_UNLOCK(sc);
2758 		}
2759 
2760 		/* Kick TX ring. */
2761 		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2762 		ring->pending = 0;
2763 		sc->sc_update_tx_ring(sc, ring);
2764 	} else
2765 		ieee80211_node_incref(data->ni);
2766 
2767 end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2768 	    __func__);
2769 
2770 	WPI_TXQ_UNLOCK(sc);
2771 
2772 	return (error);
2773 }
2774 
2775 /*
2776  * Construct the data packet for a transmit buffer.
2777  */
2778 static int
2779 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2780 {
2781 	const struct ieee80211_txparam *tp;
2782 	struct ieee80211vap *vap = ni->ni_vap;
2783 	struct ieee80211com *ic = ni->ni_ic;
2784 	struct wpi_node *wn = WPI_NODE(ni);
2785 	struct ieee80211_channel *chan;
2786 	struct ieee80211_frame *wh;
2787 	struct ieee80211_key *k = NULL;
2788 	struct wpi_buf tx_data;
2789 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2790 	uint32_t flags;
2791 	uint16_t ac, qos;
2792 	uint8_t tid, type, rate;
2793 	int swcrypt, ismcast, totlen;
2794 
2795 	wh = mtod(m, struct ieee80211_frame *);
2796 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2797 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2798 	swcrypt = 1;
2799 
2800 	/* Select EDCA Access Category and TX ring for this frame. */
2801 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2802 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2803 		tid = qos & IEEE80211_QOS_TID;
2804 	} else {
2805 		qos = 0;
2806 		tid = 0;
2807 	}
2808 	ac = M_WME_GETAC(m);
2809 
2810 	chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ?
2811 		ni->ni_chan : ic->ic_curchan;
2812 	tp = &vap->iv_txparms[ieee80211_chan2mode(chan)];
2813 
2814 	/* Choose a TX rate index. */
2815 	if (type == IEEE80211_FC0_TYPE_MGT)
2816 		rate = tp->mgmtrate;
2817 	else if (ismcast)
2818 		rate = tp->mcastrate;
2819 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2820 		rate = tp->ucastrate;
2821 	else if (m->m_flags & M_EAPOL)
2822 		rate = tp->mgmtrate;
2823 	else {
2824 		/* XXX pass pktlen */
2825 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2826 		rate = ni->ni_txrate;
2827 	}
2828 
2829 	/* Encrypt the frame if need be. */
2830 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2831 		/* Retrieve key for TX. */
2832 		k = ieee80211_crypto_encap(ni, m);
2833 		if (k == NULL)
2834 			return (ENOBUFS);
2835 
2836 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2837 
2838 		/* 802.11 header may have moved. */
2839 		wh = mtod(m, struct ieee80211_frame *);
2840 	}
2841 	totlen = m->m_pkthdr.len;
2842 
2843 	if (ieee80211_radiotap_active_vap(vap)) {
2844 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2845 
2846 		tap->wt_flags = 0;
2847 		tap->wt_rate = rate;
2848 		if (k != NULL)
2849 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2850 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2851 			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2852 
2853 		ieee80211_radiotap_tx(vap, m);
2854 	}
2855 
2856 	flags = 0;
2857 	if (!ismcast) {
2858 		/* Unicast frame, check if an ACK is expected. */
2859 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2860 		    IEEE80211_QOS_ACKPOLICY_NOACK)
2861 			flags |= WPI_TX_NEED_ACK;
2862 	}
2863 
2864 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2865 		flags |= WPI_TX_AUTO_SEQ;
2866 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2867 		flags |= WPI_TX_MORE_FRAG;
2868 
2869 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2870 	if (!ismcast) {
2871 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2872 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2873 			flags |= WPI_TX_NEED_RTS;
2874 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2875 		    WPI_RATE_IS_OFDM(rate)) {
2876 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2877 				flags |= WPI_TX_NEED_CTS;
2878 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2879 				flags |= WPI_TX_NEED_RTS;
2880 		}
2881 
2882 		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2883 			flags |= WPI_TX_FULL_TXOP;
2884 	}
2885 
2886 	memset(tx, 0, sizeof (struct wpi_cmd_data));
2887 	if (type == IEEE80211_FC0_TYPE_MGT) {
2888 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2889 
2890 		/* Tell HW to set timestamp in probe responses. */
2891 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2892 			flags |= WPI_TX_INSERT_TSTAMP;
2893 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2894 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2895 			tx->timeout = htole16(3);
2896 		else
2897 			tx->timeout = htole16(2);
2898 	}
2899 
2900 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2901 		tx->id = WPI_ID_BROADCAST;
2902 	else {
2903 		if (wn->id == WPI_ID_UNDEFINED) {
2904 			device_printf(sc->sc_dev,
2905 			    "%s: undefined node id\n", __func__);
2906 			return (EINVAL);
2907 		}
2908 
2909 		tx->id = wn->id;
2910 	}
2911 
2912 	if (!swcrypt) {
2913 		switch (k->wk_cipher->ic_cipher) {
2914 		case IEEE80211_CIPHER_AES_CCM:
2915 			tx->security = WPI_CIPHER_CCMP;
2916 			break;
2917 
2918 		default:
2919 			break;
2920 		}
2921 
2922 		memcpy(tx->key, k->wk_key, k->wk_keylen);
2923 	}
2924 
2925 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2926 		struct mbuf *next = m->m_nextpkt;
2927 
2928 		tx->lnext = htole16(next->m_pkthdr.len);
2929 		tx->fnext = htole32(tx->security |
2930 				    (flags & WPI_TX_NEED_ACK) |
2931 				    WPI_NEXT_STA_ID(tx->id));
2932 	}
2933 
2934 	tx->len = htole16(totlen);
2935 	tx->flags = htole32(flags);
2936 	tx->plcp = rate2plcp(rate);
2937 	tx->tid = tid;
2938 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2939 	tx->ofdm_mask = 0xff;
2940 	tx->cck_mask = 0x0f;
2941 	tx->rts_ntries = 7;
2942 	tx->data_ntries = tp->maxretry;
2943 
2944 	tx_data.ni = ni;
2945 	tx_data.m = m;
2946 	tx_data.size = sizeof(struct wpi_cmd_data);
2947 	tx_data.code = WPI_CMD_TX_DATA;
2948 	tx_data.ac = ac;
2949 
2950 	return wpi_cmd2(sc, &tx_data);
2951 }
2952 
2953 static int
2954 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2955     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2956 {
2957 	struct ieee80211vap *vap = ni->ni_vap;
2958 	struct ieee80211_key *k = NULL;
2959 	struct ieee80211_frame *wh;
2960 	struct wpi_buf tx_data;
2961 	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2962 	uint32_t flags;
2963 	uint8_t ac, type, rate;
2964 	int swcrypt, totlen;
2965 
2966 	wh = mtod(m, struct ieee80211_frame *);
2967 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2968 	swcrypt = 1;
2969 
2970 	ac = params->ibp_pri & 3;
2971 
2972 	/* Choose a TX rate index. */
2973 	rate = params->ibp_rate0;
2974 
2975 	flags = 0;
2976 	if (!IEEE80211_QOS_HAS_SEQ(wh))
2977 		flags |= WPI_TX_AUTO_SEQ;
2978 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2979 		flags |= WPI_TX_NEED_ACK;
2980 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2981 		flags |= WPI_TX_NEED_RTS;
2982 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2983 		flags |= WPI_TX_NEED_CTS;
2984 	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2985 		flags |= WPI_TX_FULL_TXOP;
2986 
2987 	/* Encrypt the frame if need be. */
2988 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2989 		/* Retrieve key for TX. */
2990 		k = ieee80211_crypto_encap(ni, m);
2991 		if (k == NULL)
2992 			return (ENOBUFS);
2993 
2994 		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2995 
2996 		/* 802.11 header may have moved. */
2997 		wh = mtod(m, struct ieee80211_frame *);
2998 	}
2999 	totlen = m->m_pkthdr.len;
3000 
3001 	if (ieee80211_radiotap_active_vap(vap)) {
3002 		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
3003 
3004 		tap->wt_flags = 0;
3005 		tap->wt_rate = rate;
3006 		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
3007 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3008 
3009 		ieee80211_radiotap_tx(vap, m);
3010 	}
3011 
3012 	memset(tx, 0, sizeof (struct wpi_cmd_data));
3013 	if (type == IEEE80211_FC0_TYPE_MGT) {
3014 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3015 
3016 		/* Tell HW to set timestamp in probe responses. */
3017 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3018 			flags |= WPI_TX_INSERT_TSTAMP;
3019 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3020 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3021 			tx->timeout = htole16(3);
3022 		else
3023 			tx->timeout = htole16(2);
3024 	}
3025 
3026 	if (!swcrypt) {
3027 		switch (k->wk_cipher->ic_cipher) {
3028 		case IEEE80211_CIPHER_AES_CCM:
3029 			tx->security = WPI_CIPHER_CCMP;
3030 			break;
3031 
3032 		default:
3033 			break;
3034 		}
3035 
3036 		memcpy(tx->key, k->wk_key, k->wk_keylen);
3037 	}
3038 
3039 	tx->len = htole16(totlen);
3040 	tx->flags = htole32(flags);
3041 	tx->plcp = rate2plcp(rate);
3042 	tx->id = WPI_ID_BROADCAST;
3043 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3044 	tx->rts_ntries = params->ibp_try1;
3045 	tx->data_ntries = params->ibp_try0;
3046 
3047 	tx_data.ni = ni;
3048 	tx_data.m = m;
3049 	tx_data.size = sizeof(struct wpi_cmd_data);
3050 	tx_data.code = WPI_CMD_TX_DATA;
3051 	tx_data.ac = ac;
3052 
3053 	return wpi_cmd2(sc, &tx_data);
3054 }
3055 
3056 static __inline int
3057 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3058 {
3059 	struct wpi_tx_ring *ring = &sc->txq[ac];
3060 	int retval;
3061 
3062 	WPI_TXQ_STATE_LOCK(sc);
3063 	retval = WPI_TX_RING_HIMARK - ring->queued;
3064 	WPI_TXQ_STATE_UNLOCK(sc);
3065 
3066 	return retval;
3067 }
3068 
3069 static int
3070 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3071     const struct ieee80211_bpf_params *params)
3072 {
3073 	struct ieee80211com *ic = ni->ni_ic;
3074 	struct wpi_softc *sc = ic->ic_softc;
3075 	uint16_t ac;
3076 	int error = 0;
3077 
3078 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3079 
3080 	ac = M_WME_GETAC(m);
3081 
3082 	WPI_TX_LOCK(sc);
3083 
3084 	/* NB: no fragments here */
3085 	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3086 		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3087 		goto unlock;
3088 	}
3089 
3090 	if (params == NULL) {
3091 		/*
3092 		 * Legacy path; interpret frame contents to decide
3093 		 * precisely how to send the frame.
3094 		 */
3095 		error = wpi_tx_data(sc, m, ni);
3096 	} else {
3097 		/*
3098 		 * Caller supplied explicit parameters to use in
3099 		 * sending the frame.
3100 		 */
3101 		error = wpi_tx_data_raw(sc, m, ni, params);
3102 	}
3103 
3104 unlock:	WPI_TX_UNLOCK(sc);
3105 
3106 	if (error != 0) {
3107 		m_freem(m);
3108 		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3109 
3110 		return error;
3111 	}
3112 
3113 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3114 
3115 	return 0;
3116 }
3117 
3118 static int
3119 wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3120 {
3121 	struct wpi_softc *sc = ic->ic_softc;
3122 	struct ieee80211_node *ni;
3123 	struct mbuf *mnext;
3124 	uint16_t ac;
3125 	int error, nmbufs;
3126 
3127 	WPI_TX_LOCK(sc);
3128 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3129 
3130 	/* Check if interface is up & running. */
3131 	if (__predict_false(sc->sc_running == 0)) {
3132 		error = ENXIO;
3133 		goto unlock;
3134 	}
3135 
3136 	nmbufs = 1;
3137 	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3138 		nmbufs++;
3139 
3140 	/* Check for available space. */
3141 	ac = M_WME_GETAC(m);
3142 	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3143 		error = ENOBUFS;
3144 		goto unlock;
3145 	}
3146 
3147 	error = 0;
3148 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3149 	do {
3150 		mnext = m->m_nextpkt;
3151 		if (wpi_tx_data(sc, m, ni) != 0) {
3152 			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3153 			    nmbufs);
3154 			wpi_free_txfrags(sc, ac);
3155 			ieee80211_free_mbuf(m);
3156 			ieee80211_free_node(ni);
3157 			break;
3158 		}
3159 	} while((m = mnext) != NULL);
3160 
3161 	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3162 
3163 unlock:	WPI_TX_UNLOCK(sc);
3164 
3165 	return (error);
3166 }
3167 
3168 static void
3169 wpi_watchdog_rfkill(void *arg)
3170 {
3171 	struct wpi_softc *sc = arg;
3172 	struct ieee80211com *ic = &sc->sc_ic;
3173 
3174 	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3175 
3176 	/* No need to lock firmware memory. */
3177 	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3178 		/* Radio kill switch is still off. */
3179 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3180 		    sc);
3181 	} else
3182 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3183 }
3184 
3185 static void
3186 wpi_scan_timeout(void *arg)
3187 {
3188 	struct wpi_softc *sc = arg;
3189 	struct ieee80211com *ic = &sc->sc_ic;
3190 
3191 	ic_printf(ic, "scan timeout\n");
3192 	ieee80211_restart_all(ic);
3193 }
3194 
3195 static void
3196 wpi_tx_timeout(void *arg)
3197 {
3198 	struct wpi_softc *sc = arg;
3199 	struct ieee80211com *ic = &sc->sc_ic;
3200 
3201 	ic_printf(ic, "device timeout\n");
3202 	ieee80211_restart_all(ic);
3203 }
3204 
3205 static void
3206 wpi_parent(struct ieee80211com *ic)
3207 {
3208 	struct wpi_softc *sc = ic->ic_softc;
3209 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3210 
3211 	if (ic->ic_nrunning > 0) {
3212 		if (wpi_init(sc) == 0) {
3213 			ieee80211_notify_radio(ic, 1);
3214 			ieee80211_start_all(ic);
3215 		} else {
3216 			ieee80211_notify_radio(ic, 0);
3217 			ieee80211_stop(vap);
3218 		}
3219 	} else {
3220 		ieee80211_notify_radio(ic, 0);
3221 		wpi_stop(sc);
3222 	}
3223 }
3224 
3225 /*
3226  * Send a command to the firmware.
3227  */
3228 static int
3229 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3230     int async)
3231 {
3232 	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3233 	struct wpi_tx_desc *desc;
3234 	struct wpi_tx_data *data;
3235 	struct wpi_tx_cmd *cmd;
3236 	struct mbuf *m;
3237 	bus_addr_t paddr;
3238 	uint16_t totlen;
3239 	int error;
3240 
3241 	WPI_TXQ_LOCK(sc);
3242 
3243 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3244 
3245 	if (__predict_false(sc->sc_running == 0)) {
3246 		/* wpi_stop() was called */
3247 		if (code == WPI_CMD_SCAN)
3248 			error = ENETDOWN;
3249 		else
3250 			error = 0;
3251 
3252 		goto fail;
3253 	}
3254 
3255 	if (async == 0)
3256 		WPI_LOCK_ASSERT(sc);
3257 
3258 	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3259 	    __func__, wpi_cmd_str(code), size, async);
3260 
3261 	desc = &ring->desc[ring->cur];
3262 	data = &ring->data[ring->cur];
3263 	totlen = 4 + size;
3264 
3265 	if (size > sizeof cmd->data) {
3266 		/* Command is too large to fit in a descriptor. */
3267 		if (totlen > MCLBYTES) {
3268 			error = EINVAL;
3269 			goto fail;
3270 		}
3271 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3272 		if (m == NULL) {
3273 			error = ENOMEM;
3274 			goto fail;
3275 		}
3276 		cmd = mtod(m, struct wpi_tx_cmd *);
3277 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3278 		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3279 		if (error != 0) {
3280 			m_freem(m);
3281 			goto fail;
3282 		}
3283 		data->m = m;
3284 	} else {
3285 		cmd = &ring->cmd[ring->cur];
3286 		paddr = data->cmd_paddr;
3287 	}
3288 
3289 	cmd->code = code;
3290 	cmd->flags = 0;
3291 	cmd->qid = ring->qid;
3292 	cmd->idx = ring->cur;
3293 	memcpy(cmd->data, buf, size);
3294 
3295 	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3296 	desc->segs[0].addr = htole32(paddr);
3297 	desc->segs[0].len  = htole32(totlen);
3298 
3299 	if (size > sizeof cmd->data) {
3300 		bus_dmamap_sync(ring->data_dmat, data->map,
3301 		    BUS_DMASYNC_PREWRITE);
3302 	} else {
3303 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3304 		    BUS_DMASYNC_PREWRITE);
3305 	}
3306 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3307 	    BUS_DMASYNC_PREWRITE);
3308 
3309 	/* Kick command ring. */
3310 	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3311 	sc->sc_update_tx_ring(sc, ring);
3312 
3313 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3314 
3315 	WPI_TXQ_UNLOCK(sc);
3316 
3317 	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3318 
3319 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3320 
3321 	WPI_TXQ_UNLOCK(sc);
3322 
3323 	return error;
3324 }
3325 
3326 /*
3327  * Configure HW multi-rate retries.
3328  */
3329 static int
3330 wpi_mrr_setup(struct wpi_softc *sc)
3331 {
3332 	struct ieee80211com *ic = &sc->sc_ic;
3333 	struct wpi_mrr_setup mrr;
3334 	uint8_t i;
3335 	int error;
3336 
3337 	/* CCK rates (not used with 802.11a). */
3338 	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3339 		mrr.rates[i].flags = 0;
3340 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3341 		/* Fallback to the immediate lower CCK rate (if any.) */
3342 		mrr.rates[i].next =
3343 		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3344 		/* Try twice at this rate before falling back to "next". */
3345 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3346 	}
3347 	/* OFDM rates (not used with 802.11b). */
3348 	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3349 		mrr.rates[i].flags = 0;
3350 		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3351 		/* Fallback to the immediate lower rate (if any.) */
3352 		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3353 		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3354 		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3355 			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3356 		    i - 1;
3357 		/* Try twice at this rate before falling back to "next". */
3358 		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3359 	}
3360 	/* Setup MRR for control frames. */
3361 	mrr.which = htole32(WPI_MRR_CTL);
3362 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3363 	if (error != 0) {
3364 		device_printf(sc->sc_dev,
3365 		    "could not setup MRR for control frames\n");
3366 		return error;
3367 	}
3368 	/* Setup MRR for data frames. */
3369 	mrr.which = htole32(WPI_MRR_DATA);
3370 	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3371 	if (error != 0) {
3372 		device_printf(sc->sc_dev,
3373 		    "could not setup MRR for data frames\n");
3374 		return error;
3375 	}
3376 	return 0;
3377 }
3378 
3379 static int
3380 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3381 {
3382 	struct ieee80211com *ic = ni->ni_ic;
3383 	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3384 	struct wpi_node *wn = WPI_NODE(ni);
3385 	struct wpi_node_info node;
3386 	int error;
3387 
3388 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3389 
3390 	if (wn->id == WPI_ID_UNDEFINED)
3391 		return EINVAL;
3392 
3393 	memset(&node, 0, sizeof node);
3394 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3395 	node.id = wn->id;
3396 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3397 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3398 	node.action = htole32(WPI_ACTION_SET_RATE);
3399 	node.antenna = WPI_ANTENNA_BOTH;
3400 
3401 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3402 	    wn->id, ether_sprintf(ni->ni_macaddr));
3403 
3404 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3405 	if (error != 0) {
3406 		device_printf(sc->sc_dev,
3407 		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3408 		    error);
3409 		return error;
3410 	}
3411 
3412 	if (wvp->wv_gtk != 0) {
3413 		error = wpi_set_global_keys(ni);
3414 		if (error != 0) {
3415 			device_printf(sc->sc_dev,
3416 			    "%s: error while setting global keys\n", __func__);
3417 			return ENXIO;
3418 		}
3419 	}
3420 
3421 	return 0;
3422 }
3423 
3424 /*
3425  * Broadcast node is used to send group-addressed and management frames.
3426  */
3427 static int
3428 wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3429 {
3430 	struct ieee80211com *ic = &sc->sc_ic;
3431 	struct wpi_node_info node;
3432 
3433 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3434 
3435 	memset(&node, 0, sizeof node);
3436 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3437 	node.id = WPI_ID_BROADCAST;
3438 	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3439 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3440 	node.action = htole32(WPI_ACTION_SET_RATE);
3441 	node.antenna = WPI_ANTENNA_BOTH;
3442 
3443 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3444 
3445 	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3446 }
3447 
3448 static int
3449 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3450 {
3451 	struct wpi_node *wn = WPI_NODE(ni);
3452 	int error;
3453 
3454 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3455 
3456 	wn->id = wpi_add_node_entry_sta(sc);
3457 
3458 	if ((error = wpi_add_node(sc, ni)) != 0) {
3459 		wpi_del_node_entry(sc, wn->id);
3460 		wn->id = WPI_ID_UNDEFINED;
3461 		return error;
3462 	}
3463 
3464 	return 0;
3465 }
3466 
3467 static int
3468 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3469 {
3470 	struct wpi_node *wn = WPI_NODE(ni);
3471 	int error;
3472 
3473 	KASSERT(wn->id == WPI_ID_UNDEFINED,
3474 	    ("the node %d was added before", wn->id));
3475 
3476 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3477 
3478 	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3479 		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3480 		return ENOMEM;
3481 	}
3482 
3483 	if ((error = wpi_add_node(sc, ni)) != 0) {
3484 		wpi_del_node_entry(sc, wn->id);
3485 		wn->id = WPI_ID_UNDEFINED;
3486 		return error;
3487 	}
3488 
3489 	return 0;
3490 }
3491 
3492 static void
3493 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3494 {
3495 	struct wpi_node *wn = WPI_NODE(ni);
3496 	struct wpi_cmd_del_node node;
3497 	int error;
3498 
3499 	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3500 
3501 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3502 
3503 	memset(&node, 0, sizeof node);
3504 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3505 	node.count = 1;
3506 
3507 	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3508 	    wn->id, ether_sprintf(ni->ni_macaddr));
3509 
3510 	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3511 	if (error != 0) {
3512 		device_printf(sc->sc_dev,
3513 		    "%s: could not delete node %u, error %d\n", __func__,
3514 		    wn->id, error);
3515 	}
3516 }
3517 
3518 static int
3519 wpi_updateedca(struct ieee80211com *ic)
3520 {
3521 #define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3522 	struct wpi_softc *sc = ic->ic_softc;
3523 	struct wpi_edca_params cmd;
3524 	int aci, error;
3525 
3526 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3527 
3528 	memset(&cmd, 0, sizeof cmd);
3529 	cmd.flags = htole32(WPI_EDCA_UPDATE);
3530 	for (aci = 0; aci < WME_NUM_AC; aci++) {
3531 		const struct wmeParams *ac =
3532 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
3533 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3534 		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3535 		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3536 		cmd.ac[aci].txoplimit =
3537 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3538 
3539 		DPRINTF(sc, WPI_DEBUG_EDCA,
3540 		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3541 		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3542 		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3543 		    cmd.ac[aci].txoplimit);
3544 	}
3545 	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3546 
3547 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3548 
3549 	return error;
3550 #undef WPI_EXP2
3551 }
3552 
3553 static void
3554 wpi_set_promisc(struct wpi_softc *sc)
3555 {
3556 	struct ieee80211com *ic = &sc->sc_ic;
3557 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3558 	uint32_t promisc_filter;
3559 
3560 	promisc_filter = WPI_FILTER_CTL;
3561 	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3562 		promisc_filter |= WPI_FILTER_PROMISC;
3563 
3564 	if (ic->ic_promisc > 0)
3565 		sc->rxon.filter |= htole32(promisc_filter);
3566 	else
3567 		sc->rxon.filter &= ~htole32(promisc_filter);
3568 }
3569 
3570 static void
3571 wpi_update_promisc(struct ieee80211com *ic)
3572 {
3573 	struct wpi_softc *sc = ic->ic_softc;
3574 
3575 	WPI_LOCK(sc);
3576 	if (sc->sc_running == 0) {
3577 		WPI_UNLOCK(sc);
3578 		return;
3579 	}
3580 	WPI_UNLOCK(sc);
3581 
3582 	WPI_RXON_LOCK(sc);
3583 	wpi_set_promisc(sc);
3584 
3585 	if (wpi_send_rxon(sc, 1, 1) != 0) {
3586 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3587 		    __func__);
3588 	}
3589 	WPI_RXON_UNLOCK(sc);
3590 }
3591 
3592 static void
3593 wpi_update_mcast(struct ieee80211com *ic)
3594 {
3595 	/* Ignore */
3596 }
3597 
3598 static void
3599 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3600 {
3601 	struct wpi_cmd_led led;
3602 
3603 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3604 
3605 	led.which = which;
3606 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3607 	led.off = off;
3608 	led.on = on;
3609 	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3610 }
3611 
3612 static int
3613 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3614 {
3615 	struct wpi_cmd_timing cmd;
3616 	uint64_t val, mod;
3617 
3618 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3619 
3620 	memset(&cmd, 0, sizeof cmd);
3621 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3622 	cmd.bintval = htole16(ni->ni_intval);
3623 	cmd.lintval = htole16(10);
3624 
3625 	/* Compute remaining time until next beacon. */
3626 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3627 	mod = le64toh(cmd.tstamp) % val;
3628 	cmd.binitval = htole32((uint32_t)(val - mod));
3629 
3630 	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3631 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3632 
3633 	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3634 }
3635 
3636 /*
3637  * This function is called periodically (every 60 seconds) to adjust output
3638  * power to temperature changes.
3639  */
3640 static void
3641 wpi_power_calibration(struct wpi_softc *sc)
3642 {
3643 	int temp;
3644 
3645 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3646 
3647 	/* Update sensor data. */
3648 	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3649 	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3650 
3651 	/* Sanity-check read value. */
3652 	if (temp < -260 || temp > 25) {
3653 		/* This can't be correct, ignore. */
3654 		DPRINTF(sc, WPI_DEBUG_TEMP,
3655 		    "out-of-range temperature reported: %d\n", temp);
3656 		return;
3657 	}
3658 
3659 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3660 
3661 	/* Adjust Tx power if need be. */
3662 	if (abs(temp - sc->temp) <= 6)
3663 		return;
3664 
3665 	sc->temp = temp;
3666 
3667 	if (wpi_set_txpower(sc, 1) != 0) {
3668 		/* just warn, too bad for the automatic calibration... */
3669 		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3670 	}
3671 }
3672 
3673 /*
3674  * Set TX power for current channel.
3675  */
3676 static int
3677 wpi_set_txpower(struct wpi_softc *sc, int async)
3678 {
3679 	struct wpi_power_group *group;
3680 	struct wpi_cmd_txpower cmd;
3681 	uint8_t chan;
3682 	int idx, is_chan_5ghz, i;
3683 
3684 	/* Retrieve current channel from last RXON. */
3685 	chan = sc->rxon.chan;
3686 	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3687 
3688 	/* Find the TX power group to which this channel belongs. */
3689 	if (is_chan_5ghz) {
3690 		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3691 			if (chan <= group->chan)
3692 				break;
3693 	} else
3694 		group = &sc->groups[0];
3695 
3696 	memset(&cmd, 0, sizeof cmd);
3697 	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3698 	cmd.chan = htole16(chan);
3699 
3700 	/* Set TX power for all OFDM and CCK rates. */
3701 	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3702 		/* Retrieve TX power for this channel/rate. */
3703 		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3704 
3705 		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3706 
3707 		if (is_chan_5ghz) {
3708 			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3709 			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3710 		} else {
3711 			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3712 			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3713 		}
3714 		DPRINTF(sc, WPI_DEBUG_TEMP,
3715 		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3716 	}
3717 
3718 	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3719 }
3720 
3721 /*
3722  * Determine Tx power index for a given channel/rate combination.
3723  * This takes into account the regulatory information from EEPROM and the
3724  * current temperature.
3725  */
3726 static int
3727 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3728     uint8_t chan, int is_chan_5ghz, int ridx)
3729 {
3730 /* Fixed-point arithmetic division using a n-bit fractional part. */
3731 #define fdivround(a, b, n)	\
3732 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3733 
3734 /* Linear interpolation. */
3735 #define interpolate(x, x1, y1, x2, y2, n)	\
3736 	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3737 
3738 	struct wpi_power_sample *sample;
3739 	int pwr, idx;
3740 
3741 	/* Default TX power is group maximum TX power minus 3dB. */
3742 	pwr = group->maxpwr / 2;
3743 
3744 	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3745 	switch (ridx) {
3746 	case WPI_RIDX_OFDM36:
3747 		pwr -= is_chan_5ghz ?  5 : 0;
3748 		break;
3749 	case WPI_RIDX_OFDM48:
3750 		pwr -= is_chan_5ghz ? 10 : 7;
3751 		break;
3752 	case WPI_RIDX_OFDM54:
3753 		pwr -= is_chan_5ghz ? 12 : 9;
3754 		break;
3755 	}
3756 
3757 	/* Never exceed the channel maximum allowed TX power. */
3758 	pwr = min(pwr, sc->maxpwr[chan]);
3759 
3760 	/* Retrieve TX power index into gain tables from samples. */
3761 	for (sample = group->samples; sample < &group->samples[3]; sample++)
3762 		if (pwr > sample[1].power)
3763 			break;
3764 	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3765 	idx = interpolate(pwr, sample[0].power, sample[0].index,
3766 	    sample[1].power, sample[1].index, 19);
3767 
3768 	/*-
3769 	 * Adjust power index based on current temperature:
3770 	 * - if cooler than factory-calibrated: decrease output power
3771 	 * - if warmer than factory-calibrated: increase output power
3772 	 */
3773 	idx -= (sc->temp - group->temp) * 11 / 100;
3774 
3775 	/* Decrease TX power for CCK rates (-5dB). */
3776 	if (ridx >= WPI_RIDX_CCK1)
3777 		idx += 10;
3778 
3779 	/* Make sure idx stays in a valid range. */
3780 	if (idx < 0)
3781 		return 0;
3782 	if (idx > WPI_MAX_PWR_INDEX)
3783 		return WPI_MAX_PWR_INDEX;
3784 	return idx;
3785 
3786 #undef interpolate
3787 #undef fdivround
3788 }
3789 
3790 /*
3791  * Set STA mode power saving level (between 0 and 5).
3792  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3793  */
3794 static int
3795 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3796 {
3797 	struct wpi_pmgt_cmd cmd;
3798 	const struct wpi_pmgt *pmgt;
3799 	uint32_t max, reg;
3800 	uint8_t skip_dtim;
3801 	int i;
3802 
3803 	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3804 	    "%s: dtim=%d, level=%d, async=%d\n",
3805 	    __func__, dtim, level, async);
3806 
3807 	/* Select which PS parameters to use. */
3808 	if (dtim <= 10)
3809 		pmgt = &wpi_pmgt[0][level];
3810 	else
3811 		pmgt = &wpi_pmgt[1][level];
3812 
3813 	memset(&cmd, 0, sizeof cmd);
3814 	if (level != 0)	/* not CAM */
3815 		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3816 	/* Retrieve PCIe Active State Power Management (ASPM). */
3817 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3818 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3819 		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3820 
3821 	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3822 	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3823 
3824 	if (dtim == 0) {
3825 		dtim = 1;
3826 		skip_dtim = 0;
3827 	} else
3828 		skip_dtim = pmgt->skip_dtim;
3829 
3830 	if (skip_dtim != 0) {
3831 		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3832 		max = pmgt->intval[4];
3833 		if (max == (uint32_t)-1)
3834 			max = dtim * (skip_dtim + 1);
3835 		else if (max > dtim)
3836 			max = (max / dtim) * dtim;
3837 	} else
3838 		max = dtim;
3839 
3840 	for (i = 0; i < 5; i++)
3841 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3842 
3843 	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3844 }
3845 
3846 static int
3847 wpi_send_btcoex(struct wpi_softc *sc)
3848 {
3849 	struct wpi_bluetooth cmd;
3850 
3851 	memset(&cmd, 0, sizeof cmd);
3852 	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3853 	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3854 	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3855 	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3856 	    __func__);
3857 	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3858 }
3859 
3860 static int
3861 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3862 {
3863 	int error;
3864 
3865 	if (async)
3866 		WPI_RXON_LOCK_ASSERT(sc);
3867 
3868 	if (assoc && wpi_check_bss_filter(sc) != 0) {
3869 		struct wpi_assoc rxon_assoc;
3870 
3871 		rxon_assoc.flags = sc->rxon.flags;
3872 		rxon_assoc.filter = sc->rxon.filter;
3873 		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3874 		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3875 		rxon_assoc.reserved = 0;
3876 
3877 		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3878 		    sizeof (struct wpi_assoc), async);
3879 		if (error != 0) {
3880 			device_printf(sc->sc_dev,
3881 			    "RXON_ASSOC command failed, error %d\n", error);
3882 			return error;
3883 		}
3884 	} else {
3885 		if (async) {
3886 			WPI_NT_LOCK(sc);
3887 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3888 			    sizeof (struct wpi_rxon), async);
3889 			if (error == 0)
3890 				wpi_clear_node_table(sc);
3891 			WPI_NT_UNLOCK(sc);
3892 		} else {
3893 			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3894 			    sizeof (struct wpi_rxon), async);
3895 			if (error == 0)
3896 				wpi_clear_node_table(sc);
3897 		}
3898 
3899 		if (error != 0) {
3900 			device_printf(sc->sc_dev,
3901 			    "RXON command failed, error %d\n", error);
3902 			return error;
3903 		}
3904 
3905 		/* Add broadcast node. */
3906 		error = wpi_add_broadcast_node(sc, async);
3907 		if (error != 0) {
3908 			device_printf(sc->sc_dev,
3909 			    "could not add broadcast node, error %d\n", error);
3910 			return error;
3911 		}
3912 	}
3913 
3914 	/* Configuration has changed, set Tx power accordingly. */
3915 	if ((error = wpi_set_txpower(sc, async)) != 0) {
3916 		device_printf(sc->sc_dev,
3917 		    "%s: could not set TX power, error %d\n", __func__, error);
3918 		return error;
3919 	}
3920 
3921 	return 0;
3922 }
3923 
3924 /**
3925  * Configure the card to listen to a particular channel, this transisions the
3926  * card in to being able to receive frames from remote devices.
3927  */
3928 static int
3929 wpi_config(struct wpi_softc *sc)
3930 {
3931 	struct ieee80211com *ic = &sc->sc_ic;
3932 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3933 	struct ieee80211_channel *c = ic->ic_curchan;
3934 	int error;
3935 
3936 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3937 
3938 	/* Set power saving level to CAM during initialization. */
3939 	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3940 		device_printf(sc->sc_dev,
3941 		    "%s: could not set power saving level\n", __func__);
3942 		return error;
3943 	}
3944 
3945 	/* Configure bluetooth coexistence. */
3946 	if ((error = wpi_send_btcoex(sc)) != 0) {
3947 		device_printf(sc->sc_dev,
3948 		    "could not configure bluetooth coexistence\n");
3949 		return error;
3950 	}
3951 
3952 	/* Configure adapter. */
3953 	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3954 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3955 
3956 	/* Set default channel. */
3957 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3958 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3959 	if (IEEE80211_IS_CHAN_2GHZ(c))
3960 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3961 
3962 	sc->rxon.filter = WPI_FILTER_MULTICAST;
3963 	switch (ic->ic_opmode) {
3964 	case IEEE80211_M_STA:
3965 		sc->rxon.mode = WPI_MODE_STA;
3966 		break;
3967 	case IEEE80211_M_IBSS:
3968 		sc->rxon.mode = WPI_MODE_IBSS;
3969 		sc->rxon.filter |= WPI_FILTER_BEACON;
3970 		break;
3971 	case IEEE80211_M_HOSTAP:
3972 		/* XXX workaround for beaconing */
3973 		sc->rxon.mode = WPI_MODE_IBSS;
3974 		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3975 		break;
3976 	case IEEE80211_M_AHDEMO:
3977 		sc->rxon.mode = WPI_MODE_HOSTAP;
3978 		break;
3979 	case IEEE80211_M_MONITOR:
3980 		sc->rxon.mode = WPI_MODE_MONITOR;
3981 		break;
3982 	default:
3983 		device_printf(sc->sc_dev, "unknown opmode %d\n",
3984 		    ic->ic_opmode);
3985 		return EINVAL;
3986 	}
3987 	sc->rxon.filter = htole32(sc->rxon.filter);
3988 	wpi_set_promisc(sc);
3989 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3990 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3991 
3992 	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
3993 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3994 		    __func__);
3995 		return error;
3996 	}
3997 
3998 	/* Setup rate scalling. */
3999 	if ((error = wpi_mrr_setup(sc)) != 0) {
4000 		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
4001 		    error);
4002 		return error;
4003 	}
4004 
4005 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4006 
4007 	return 0;
4008 }
4009 
4010 static uint16_t
4011 wpi_get_active_dwell_time(struct wpi_softc *sc,
4012     struct ieee80211_channel *c, uint8_t n_probes)
4013 {
4014 	/* No channel? Default to 2GHz settings. */
4015 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
4016 		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
4017 		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4018 	}
4019 
4020 	/* 5GHz dwell time. */
4021 	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4022 	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4023 }
4024 
4025 /*
4026  * Limit the total dwell time.
4027  *
4028  * Returns the dwell time in milliseconds.
4029  */
4030 static uint16_t
4031 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4032 {
4033 	struct ieee80211com *ic = &sc->sc_ic;
4034 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4035 	uint16_t bintval = 0;
4036 
4037 	/* bintval is in TU (1.024mS) */
4038 	if (vap != NULL)
4039 		bintval = vap->iv_bss->ni_intval;
4040 
4041 	/*
4042 	 * If it's non-zero, we should calculate the minimum of
4043 	 * it and the DWELL_BASE.
4044 	 *
4045 	 * XXX Yes, the math should take into account that bintval
4046 	 * is 1.024mS, not 1mS..
4047 	 */
4048 	if (bintval > 0) {
4049 		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4050 		    bintval);
4051 		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4052 	}
4053 
4054 	/* No association context? Default. */
4055 	return dwell_time;
4056 }
4057 
4058 static uint16_t
4059 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4060 {
4061 	uint16_t passive;
4062 
4063 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4064 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4065 	else
4066 		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4067 
4068 	/* Clamp to the beacon interval if we're associated. */
4069 	return (wpi_limit_dwell(sc, passive));
4070 }
4071 
4072 static uint32_t
4073 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4074 {
4075 	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4076 	uint32_t nbeacons = time / bintval;
4077 
4078 	if (mod > WPI_PAUSE_MAX_TIME)
4079 		mod = WPI_PAUSE_MAX_TIME;
4080 
4081 	return WPI_PAUSE_SCAN(nbeacons, mod);
4082 }
4083 
4084 /*
4085  * Send a scan request to the firmware.
4086  */
4087 static int
4088 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4089 {
4090 	struct ieee80211com *ic = &sc->sc_ic;
4091 	struct ieee80211_scan_state *ss = ic->ic_scan;
4092 	struct ieee80211vap *vap = ss->ss_vap;
4093 	struct wpi_scan_hdr *hdr;
4094 	struct wpi_cmd_data *tx;
4095 	struct wpi_scan_essid *essids;
4096 	struct wpi_scan_chan *chan;
4097 	struct ieee80211_frame *wh;
4098 	struct ieee80211_rateset *rs;
4099 	uint16_t bintval, buflen, dwell_active, dwell_passive;
4100 	uint8_t *buf, *frm, i, nssid;
4101 	int bgscan, error;
4102 
4103 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4104 
4105 	/*
4106 	 * We are absolutely not allowed to send a scan command when another
4107 	 * scan command is pending.
4108 	 */
4109 	if (callout_pending(&sc->scan_timeout)) {
4110 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4111 		    __func__);
4112 		error = EAGAIN;
4113 		goto fail;
4114 	}
4115 
4116 	bgscan = wpi_check_bss_filter(sc);
4117 	bintval = vap->iv_bss->ni_intval;
4118 	if (bgscan != 0 &&
4119 	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4120 		error = EOPNOTSUPP;
4121 		goto fail;
4122 	}
4123 
4124 	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4125 	if (buf == NULL) {
4126 		device_printf(sc->sc_dev,
4127 		    "%s: could not allocate buffer for scan command\n",
4128 		    __func__);
4129 		error = ENOMEM;
4130 		goto fail;
4131 	}
4132 	hdr = (struct wpi_scan_hdr *)buf;
4133 
4134 	/*
4135 	 * Move to the next channel if no packets are received within 10 msecs
4136 	 * after sending the probe request.
4137 	 */
4138 	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4139 	hdr->quiet_threshold = htole16(1);
4140 
4141 	if (bgscan != 0) {
4142 		/*
4143 		 * Max needs to be greater than active and passive and quiet!
4144 		 * It's also in microseconds!
4145 		 */
4146 		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4147 		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4148 		    bintval));
4149 	}
4150 
4151 	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4152 
4153 	tx = (struct wpi_cmd_data *)(hdr + 1);
4154 	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4155 	tx->id = WPI_ID_BROADCAST;
4156 	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4157 
4158 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4159 		/* Send probe requests at 6Mbps. */
4160 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4161 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4162 	} else {
4163 		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4164 		/* Send probe requests at 1Mbps. */
4165 		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4166 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4167 	}
4168 
4169 	essids = (struct wpi_scan_essid *)(tx + 1);
4170 	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4171 	for (i = 0; i < nssid; i++) {
4172 		essids[i].id = IEEE80211_ELEMID_SSID;
4173 		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4174 		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4175 #ifdef WPI_DEBUG
4176 		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4177 			printf("Scanning Essid: ");
4178 			ieee80211_print_essid(essids[i].data, essids[i].len);
4179 			printf("\n");
4180 		}
4181 #endif
4182 	}
4183 
4184 	/*
4185 	 * Build a probe request frame.  Most of the following code is a
4186 	 * copy & paste of what is done in net80211.
4187 	 */
4188 	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4189 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4190 		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4191 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4192 	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4193 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4194 	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4195 
4196 	frm = (uint8_t *)(wh + 1);
4197 	frm = ieee80211_add_ssid(frm, NULL, 0);
4198 	frm = ieee80211_add_rates(frm, rs);
4199 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4200 		frm = ieee80211_add_xrates(frm, rs);
4201 
4202 	/* Set length of probe request. */
4203 	tx->len = htole16(frm - (uint8_t *)wh);
4204 
4205 	/*
4206 	 * Construct information about the channel that we
4207 	 * want to scan. The firmware expects this to be directly
4208 	 * after the scan probe request
4209 	 */
4210 	chan = (struct wpi_scan_chan *)frm;
4211 	chan->chan = ieee80211_chan2ieee(ic, c);
4212 	chan->flags = 0;
4213 	if (nssid) {
4214 		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4215 		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4216 	} else
4217 		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4218 
4219 	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4220 		chan->flags |= WPI_CHAN_ACTIVE;
4221 
4222 	/*
4223 	 * Calculate the active/passive dwell times.
4224 	 */
4225 	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4226 	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4227 
4228 	/* Make sure they're valid. */
4229 	if (dwell_active > dwell_passive)
4230 		dwell_active = dwell_passive;
4231 
4232 	chan->active = htole16(dwell_active);
4233 	chan->passive = htole16(dwell_passive);
4234 
4235 	chan->dsp_gain = 0x6e;  /* Default level */
4236 
4237 	if (IEEE80211_IS_CHAN_5GHZ(c))
4238 		chan->rf_gain = 0x3b;
4239 	else
4240 		chan->rf_gain = 0x28;
4241 
4242 	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4243 	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4244 
4245 	hdr->nchan++;
4246 
4247 	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4248 		/* XXX Force probe request transmission. */
4249 		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4250 
4251 		chan++;
4252 
4253 		/* Reduce unnecessary delay. */
4254 		chan->flags = 0;
4255 		chan->passive = chan->active = hdr->quiet_time;
4256 
4257 		hdr->nchan++;
4258 	}
4259 
4260 	chan++;
4261 
4262 	buflen = (uint8_t *)chan - buf;
4263 	hdr->len = htole16(buflen);
4264 
4265 	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4266 	    hdr->nchan);
4267 	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4268 	free(buf, M_DEVBUF);
4269 
4270 	if (error != 0)
4271 		goto fail;
4272 
4273 	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4274 
4275 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4276 
4277 	return 0;
4278 
4279 fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4280 
4281 	return error;
4282 }
4283 
4284 static int
4285 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4286 {
4287 	struct ieee80211com *ic = vap->iv_ic;
4288 	struct ieee80211_node *ni = vap->iv_bss;
4289 	struct ieee80211_channel *c = ni->ni_chan;
4290 	int error;
4291 
4292 	WPI_RXON_LOCK(sc);
4293 
4294 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4295 
4296 	/* Update adapter configuration. */
4297 	sc->rxon.associd = 0;
4298 	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4299 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4300 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4301 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4302 	if (IEEE80211_IS_CHAN_2GHZ(c))
4303 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4304 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4305 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4306 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4307 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4308 	if (IEEE80211_IS_CHAN_A(c)) {
4309 		sc->rxon.cck_mask  = 0;
4310 		sc->rxon.ofdm_mask = 0x15;
4311 	} else if (IEEE80211_IS_CHAN_B(c)) {
4312 		sc->rxon.cck_mask  = 0x03;
4313 		sc->rxon.ofdm_mask = 0;
4314 	} else {
4315 		/* Assume 802.11b/g. */
4316 		sc->rxon.cck_mask  = 0x0f;
4317 		sc->rxon.ofdm_mask = 0x15;
4318 	}
4319 
4320 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4321 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4322 	    sc->rxon.ofdm_mask);
4323 
4324 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4325 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4326 		    __func__);
4327 	}
4328 
4329 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4330 
4331 	WPI_RXON_UNLOCK(sc);
4332 
4333 	return error;
4334 }
4335 
4336 static int
4337 wpi_config_beacon(struct wpi_vap *wvp)
4338 {
4339 	struct ieee80211vap *vap = &wvp->wv_vap;
4340 	struct ieee80211com *ic = vap->iv_ic;
4341 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4342 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4343 	struct wpi_softc *sc = ic->ic_softc;
4344 	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4345 	struct ieee80211_tim_ie *tie;
4346 	struct mbuf *m;
4347 	uint8_t *ptr;
4348 	int error;
4349 
4350 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4351 
4352 	WPI_VAP_LOCK_ASSERT(wvp);
4353 
4354 	cmd->len = htole16(bcn->m->m_pkthdr.len);
4355 	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4356 	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4357 
4358 	/* XXX seems to be unused */
4359 	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4360 		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4361 		ptr = mtod(bcn->m, uint8_t *);
4362 
4363 		cmd->tim = htole16(bo->bo_tim - ptr);
4364 		cmd->timsz = tie->tim_len;
4365 	}
4366 
4367 	/* Necessary for recursion in ieee80211_beacon_update(). */
4368 	m = bcn->m;
4369 	bcn->m = m_dup(m, M_NOWAIT);
4370 	if (bcn->m == NULL) {
4371 		device_printf(sc->sc_dev,
4372 		    "%s: could not copy beacon frame\n", __func__);
4373 		error = ENOMEM;
4374 		goto end;
4375 	}
4376 
4377 	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4378 		device_printf(sc->sc_dev,
4379 		    "%s: could not update beacon frame, error %d", __func__,
4380 		    error);
4381 		m_freem(bcn->m);
4382 	}
4383 
4384 	/* Restore mbuf. */
4385 end:	bcn->m = m;
4386 
4387 	return error;
4388 }
4389 
4390 static int
4391 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4392 {
4393 	struct ieee80211vap *vap = ni->ni_vap;
4394 	struct wpi_vap *wvp = WPI_VAP(vap);
4395 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4396 	struct mbuf *m;
4397 	int error;
4398 
4399 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4400 
4401 	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4402 		return EINVAL;
4403 
4404 	m = ieee80211_beacon_alloc(ni);
4405 	if (m == NULL) {
4406 		device_printf(sc->sc_dev,
4407 		    "%s: could not allocate beacon frame\n", __func__);
4408 		return ENOMEM;
4409 	}
4410 
4411 	WPI_VAP_LOCK(wvp);
4412 	if (bcn->m != NULL)
4413 		m_freem(bcn->m);
4414 
4415 	bcn->m = m;
4416 
4417 	error = wpi_config_beacon(wvp);
4418 	WPI_VAP_UNLOCK(wvp);
4419 
4420 	return error;
4421 }
4422 
4423 static void
4424 wpi_update_beacon(struct ieee80211vap *vap, int item)
4425 {
4426 	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4427 	struct wpi_vap *wvp = WPI_VAP(vap);
4428 	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4429 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4430 	struct ieee80211_node *ni = vap->iv_bss;
4431 	int mcast = 0;
4432 
4433 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4434 
4435 	WPI_VAP_LOCK(wvp);
4436 	if (bcn->m == NULL) {
4437 		bcn->m = ieee80211_beacon_alloc(ni);
4438 		if (bcn->m == NULL) {
4439 			device_printf(sc->sc_dev,
4440 			    "%s: could not allocate beacon frame\n", __func__);
4441 
4442 			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4443 			    __func__);
4444 
4445 			WPI_VAP_UNLOCK(wvp);
4446 			return;
4447 		}
4448 	}
4449 	WPI_VAP_UNLOCK(wvp);
4450 
4451 	if (item == IEEE80211_BEACON_TIM)
4452 		mcast = 1;	/* TODO */
4453 
4454 	setbit(bo->bo_flags, item);
4455 	ieee80211_beacon_update(ni, bcn->m, mcast);
4456 
4457 	WPI_VAP_LOCK(wvp);
4458 	wpi_config_beacon(wvp);
4459 	WPI_VAP_UNLOCK(wvp);
4460 
4461 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4462 }
4463 
4464 static void
4465 wpi_newassoc(struct ieee80211_node *ni, int isnew)
4466 {
4467 	struct ieee80211vap *vap = ni->ni_vap;
4468 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4469 	struct wpi_node *wn = WPI_NODE(ni);
4470 	int error;
4471 
4472 	WPI_NT_LOCK(sc);
4473 
4474 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4475 
4476 	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4477 		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4478 			device_printf(sc->sc_dev,
4479 			    "%s: could not add IBSS node, error %d\n",
4480 			    __func__, error);
4481 		}
4482 	}
4483 	WPI_NT_UNLOCK(sc);
4484 }
4485 
4486 static int
4487 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4488 {
4489 	struct ieee80211com *ic = vap->iv_ic;
4490 	struct ieee80211_node *ni = vap->iv_bss;
4491 	struct ieee80211_channel *c = ni->ni_chan;
4492 	int error;
4493 
4494 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4495 
4496 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4497 		/* Link LED blinks while monitoring. */
4498 		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4499 		return 0;
4500 	}
4501 
4502 	/* XXX kernel panic workaround */
4503 	if (c == IEEE80211_CHAN_ANYC) {
4504 		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4505 		    __func__);
4506 		return EINVAL;
4507 	}
4508 
4509 	if ((error = wpi_set_timing(sc, ni)) != 0) {
4510 		device_printf(sc->sc_dev,
4511 		    "%s: could not set timing, error %d\n", __func__, error);
4512 		return error;
4513 	}
4514 
4515 	/* Update adapter configuration. */
4516 	WPI_RXON_LOCK(sc);
4517 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4518 	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4519 	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4520 	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4521 	if (IEEE80211_IS_CHAN_2GHZ(c))
4522 		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4523 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4524 		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4525 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4526 		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4527 	if (IEEE80211_IS_CHAN_A(c)) {
4528 		sc->rxon.cck_mask  = 0;
4529 		sc->rxon.ofdm_mask = 0x15;
4530 	} else if (IEEE80211_IS_CHAN_B(c)) {
4531 		sc->rxon.cck_mask  = 0x03;
4532 		sc->rxon.ofdm_mask = 0;
4533 	} else {
4534 		/* Assume 802.11b/g. */
4535 		sc->rxon.cck_mask  = 0x0f;
4536 		sc->rxon.ofdm_mask = 0x15;
4537 	}
4538 	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4539 
4540 	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4541 	    sc->rxon.chan, sc->rxon.flags);
4542 
4543 	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4544 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4545 		    __func__);
4546 		return error;
4547 	}
4548 
4549 	/* Start periodic calibration timer. */
4550 	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4551 
4552 	WPI_RXON_UNLOCK(sc);
4553 
4554 	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4555 	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4556 		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4557 			device_printf(sc->sc_dev,
4558 			    "%s: could not setup beacon, error %d\n", __func__,
4559 			    error);
4560 			return error;
4561 		}
4562 	}
4563 
4564 	if (vap->iv_opmode == IEEE80211_M_STA) {
4565 		/* Add BSS node. */
4566 		WPI_NT_LOCK(sc);
4567 		error = wpi_add_sta_node(sc, ni);
4568 		WPI_NT_UNLOCK(sc);
4569 		if (error != 0) {
4570 			device_printf(sc->sc_dev,
4571 			    "%s: could not add BSS node, error %d\n", __func__,
4572 			    error);
4573 			return error;
4574 		}
4575 	}
4576 
4577 	/* Link LED always on while associated. */
4578 	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4579 
4580 	/* Enable power-saving mode if requested by user. */
4581 	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4582 	    vap->iv_opmode != IEEE80211_M_IBSS)
4583 		(void)wpi_set_pslevel(sc, 0, 3, 1);
4584 
4585 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4586 
4587 	return 0;
4588 }
4589 
4590 static int
4591 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4592 {
4593 	const struct ieee80211_cipher *cip = k->wk_cipher;
4594 	struct ieee80211vap *vap = ni->ni_vap;
4595 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4596 	struct wpi_node *wn = WPI_NODE(ni);
4597 	struct wpi_node_info node;
4598 	uint16_t kflags;
4599 	int error;
4600 
4601 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4602 
4603 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4604 		device_printf(sc->sc_dev, "%s: node does not exist\n",
4605 		    __func__);
4606 		return 0;
4607 	}
4608 
4609 	switch (cip->ic_cipher) {
4610 	case IEEE80211_CIPHER_AES_CCM:
4611 		kflags = WPI_KFLAG_CCMP;
4612 		break;
4613 
4614 	default:
4615 		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4616 		    cip->ic_cipher);
4617 		return 0;
4618 	}
4619 
4620 	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4621 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4622 		kflags |= WPI_KFLAG_MULTICAST;
4623 
4624 	memset(&node, 0, sizeof node);
4625 	node.id = wn->id;
4626 	node.control = WPI_NODE_UPDATE;
4627 	node.flags = WPI_FLAG_KEY_SET;
4628 	node.kflags = htole16(kflags);
4629 	memcpy(node.key, k->wk_key, k->wk_keylen);
4630 again:
4631 	DPRINTF(sc, WPI_DEBUG_KEY,
4632 	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4633 	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4634 	    node.id, ether_sprintf(ni->ni_macaddr));
4635 
4636 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4637 	if (error != 0) {
4638 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4639 		    error);
4640 		return !error;
4641 	}
4642 
4643 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4644 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4645 		kflags |= WPI_KFLAG_MULTICAST;
4646 		node.kflags = htole16(kflags);
4647 
4648 		goto again;
4649 	}
4650 
4651 	return 1;
4652 }
4653 
4654 static void
4655 wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4656 {
4657 	const struct ieee80211_key *k = arg;
4658 	struct ieee80211vap *vap = ni->ni_vap;
4659 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4660 	struct wpi_node *wn = WPI_NODE(ni);
4661 	int error;
4662 
4663 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4664 		return;
4665 
4666 	WPI_NT_LOCK(sc);
4667 	error = wpi_load_key(ni, k);
4668 	WPI_NT_UNLOCK(sc);
4669 
4670 	if (error == 0) {
4671 		device_printf(sc->sc_dev, "%s: error while setting key\n",
4672 		    __func__);
4673 	}
4674 }
4675 
4676 static int
4677 wpi_set_global_keys(struct ieee80211_node *ni)
4678 {
4679 	struct ieee80211vap *vap = ni->ni_vap;
4680 	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4681 	int error = 1;
4682 
4683 	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4684 		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4685 			error = wpi_load_key(ni, wk);
4686 
4687 	return !error;
4688 }
4689 
4690 static int
4691 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4692 {
4693 	struct ieee80211vap *vap = ni->ni_vap;
4694 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4695 	struct wpi_node *wn = WPI_NODE(ni);
4696 	struct wpi_node_info node;
4697 	uint16_t kflags;
4698 	int error;
4699 
4700 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4701 
4702 	if (wpi_check_node_entry(sc, wn->id) == 0) {
4703 		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4704 		return 1;	/* Nothing to do. */
4705 	}
4706 
4707 	kflags = WPI_KFLAG_KID(k->wk_keyix);
4708 	if (k->wk_flags & IEEE80211_KEY_GROUP)
4709 		kflags |= WPI_KFLAG_MULTICAST;
4710 
4711 	memset(&node, 0, sizeof node);
4712 	node.id = wn->id;
4713 	node.control = WPI_NODE_UPDATE;
4714 	node.flags = WPI_FLAG_KEY_SET;
4715 	node.kflags = htole16(kflags);
4716 again:
4717 	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4718 	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4719 	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4720 
4721 	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4722 	if (error != 0) {
4723 		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4724 		    error);
4725 		return !error;
4726 	}
4727 
4728 	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4729 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4730 		kflags |= WPI_KFLAG_MULTICAST;
4731 		node.kflags = htole16(kflags);
4732 
4733 		goto again;
4734 	}
4735 
4736 	return 1;
4737 }
4738 
4739 static void
4740 wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4741 {
4742 	const struct ieee80211_key *k = arg;
4743 	struct ieee80211vap *vap = ni->ni_vap;
4744 	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4745 	struct wpi_node *wn = WPI_NODE(ni);
4746 	int error;
4747 
4748 	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4749 		return;
4750 
4751 	WPI_NT_LOCK(sc);
4752 	error = wpi_del_key(ni, k);
4753 	WPI_NT_UNLOCK(sc);
4754 
4755 	if (error == 0) {
4756 		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4757 		    __func__);
4758 	}
4759 }
4760 
4761 static int
4762 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4763     int set)
4764 {
4765 	struct ieee80211com *ic = vap->iv_ic;
4766 	struct wpi_softc *sc = ic->ic_softc;
4767 	struct wpi_vap *wvp = WPI_VAP(vap);
4768 	struct ieee80211_node *ni;
4769 	int error, ni_ref = 0;
4770 
4771 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4772 
4773 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4774 		/* Not for us. */
4775 		return 1;
4776 	}
4777 
4778 	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4779 		/* XMIT keys are handled in wpi_tx_data(). */
4780 		return 1;
4781 	}
4782 
4783 	/* Handle group keys. */
4784 	if (&vap->iv_nw_keys[0] <= k &&
4785 	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4786 		WPI_NT_LOCK(sc);
4787 		if (set)
4788 			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4789 		else
4790 			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4791 		WPI_NT_UNLOCK(sc);
4792 
4793 		if (vap->iv_state == IEEE80211_S_RUN) {
4794 			ieee80211_iterate_nodes(&ic->ic_sta,
4795 			    set ? wpi_load_key_cb : wpi_del_key_cb,
4796 			    __DECONST(void *, k));
4797 		}
4798 
4799 		return 1;
4800 	}
4801 
4802 	switch (vap->iv_opmode) {
4803 	case IEEE80211_M_STA:
4804 		ni = vap->iv_bss;
4805 		break;
4806 
4807 	case IEEE80211_M_IBSS:
4808 	case IEEE80211_M_AHDEMO:
4809 	case IEEE80211_M_HOSTAP:
4810 		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4811 		if (ni == NULL)
4812 			return 0;	/* should not happen */
4813 
4814 		ni_ref = 1;
4815 		break;
4816 
4817 	default:
4818 		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4819 		    vap->iv_opmode);
4820 		return 0;
4821 	}
4822 
4823 	WPI_NT_LOCK(sc);
4824 	if (set)
4825 		error = wpi_load_key(ni, k);
4826 	else
4827 		error = wpi_del_key(ni, k);
4828 	WPI_NT_UNLOCK(sc);
4829 
4830 	if (ni_ref)
4831 		ieee80211_node_decref(ni);
4832 
4833 	return error;
4834 }
4835 
4836 static int
4837 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4838 {
4839 	return wpi_process_key(vap, k, 1);
4840 }
4841 
4842 static int
4843 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4844 {
4845 	return wpi_process_key(vap, k, 0);
4846 }
4847 
4848 /*
4849  * This function is called after the runtime firmware notifies us of its
4850  * readiness (called in a process context).
4851  */
4852 static int
4853 wpi_post_alive(struct wpi_softc *sc)
4854 {
4855 	int ntries, error;
4856 
4857 	/* Check (again) that the radio is not disabled. */
4858 	if ((error = wpi_nic_lock(sc)) != 0)
4859 		return error;
4860 
4861 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4862 
4863 	/* NB: Runtime firmware must be up and running. */
4864 	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4865 		device_printf(sc->sc_dev,
4866 		    "RF switch: radio disabled (%s)\n", __func__);
4867 		wpi_nic_unlock(sc);
4868 		return EPERM;   /* :-) */
4869 	}
4870 	wpi_nic_unlock(sc);
4871 
4872 	/* Wait for thermal sensor to calibrate. */
4873 	for (ntries = 0; ntries < 1000; ntries++) {
4874 		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4875 			break;
4876 		DELAY(10);
4877 	}
4878 
4879 	if (ntries == 1000) {
4880 		device_printf(sc->sc_dev,
4881 		    "timeout waiting for thermal sensor calibration\n");
4882 		return ETIMEDOUT;
4883 	}
4884 
4885 	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4886 	return 0;
4887 }
4888 
4889 /*
4890  * The firmware boot code is small and is intended to be copied directly into
4891  * the NIC internal memory (no DMA transfer).
4892  */
4893 static int
4894 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4895 {
4896 	int error, ntries;
4897 
4898 	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4899 
4900 	size /= sizeof (uint32_t);
4901 
4902 	if ((error = wpi_nic_lock(sc)) != 0)
4903 		return error;
4904 
4905 	/* Copy microcode image into NIC memory. */
4906 	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4907 	    (const uint32_t *)ucode, size);
4908 
4909 	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4910 	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4911 	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4912 
4913 	/* Start boot load now. */
4914 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4915 
4916 	/* Wait for transfer to complete. */
4917 	for (ntries = 0; ntries < 1000; ntries++) {
4918 		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4919 		DPRINTF(sc, WPI_DEBUG_HW,
4920 		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4921 		    WPI_FH_TX_STATUS_IDLE(6),
4922 		    status & WPI_FH_TX_STATUS_IDLE(6));
4923 		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4924 			DPRINTF(sc, WPI_DEBUG_HW,
4925 			    "Status Match! - ntries = %d\n", ntries);
4926 			break;
4927 		}
4928 		DELAY(10);
4929 	}
4930 	if (ntries == 1000) {
4931 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4932 		    __func__);
4933 		wpi_nic_unlock(sc);
4934 		return ETIMEDOUT;
4935 	}
4936 
4937 	/* Enable boot after power up. */
4938 	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4939 
4940 	wpi_nic_unlock(sc);
4941 	return 0;
4942 }
4943 
4944 static int
4945 wpi_load_firmware(struct wpi_softc *sc)
4946 {
4947 	struct wpi_fw_info *fw = &sc->fw;
4948 	struct wpi_dma_info *dma = &sc->fw_dma;
4949 	int error;
4950 
4951 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4952 
4953 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4954 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4955 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4956 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4957 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4958 
4959 	/* Tell adapter where to find initialization sections. */
4960 	if ((error = wpi_nic_lock(sc)) != 0)
4961 		return error;
4962 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4963 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4964 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4965 	    dma->paddr + WPI_FW_DATA_MAXSZ);
4966 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4967 	wpi_nic_unlock(sc);
4968 
4969 	/* Load firmware boot code. */
4970 	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4971 	if (error != 0) {
4972 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4973 		    __func__);
4974 		return error;
4975 	}
4976 
4977 	/* Now press "execute". */
4978 	WPI_WRITE(sc, WPI_RESET, 0);
4979 
4980 	/* Wait at most one second for first alive notification. */
4981 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4982 		device_printf(sc->sc_dev,
4983 		    "%s: timeout waiting for adapter to initialize, error %d\n",
4984 		    __func__, error);
4985 		return error;
4986 	}
4987 
4988 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4989 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4990 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4991 	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
4992 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4993 
4994 	/* Tell adapter where to find runtime sections. */
4995 	if ((error = wpi_nic_lock(sc)) != 0)
4996 		return error;
4997 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4998 	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
4999 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
5000 	    dma->paddr + WPI_FW_DATA_MAXSZ);
5001 	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
5002 	    WPI_FW_UPDATED | fw->main.textsz);
5003 	wpi_nic_unlock(sc);
5004 
5005 	return 0;
5006 }
5007 
5008 static int
5009 wpi_read_firmware(struct wpi_softc *sc)
5010 {
5011 	const struct firmware *fp;
5012 	struct wpi_fw_info *fw = &sc->fw;
5013 	const struct wpi_firmware_hdr *hdr;
5014 	int error;
5015 
5016 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5017 
5018 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5019 	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5020 
5021 	WPI_UNLOCK(sc);
5022 	fp = firmware_get(WPI_FW_NAME);
5023 	WPI_LOCK(sc);
5024 
5025 	if (fp == NULL) {
5026 		device_printf(sc->sc_dev,
5027 		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5028 		return EINVAL;
5029 	}
5030 
5031 	sc->fw_fp = fp;
5032 
5033 	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5034 		device_printf(sc->sc_dev,
5035 		    "firmware file too short: %zu bytes\n", fp->datasize);
5036 		error = EINVAL;
5037 		goto fail;
5038 	}
5039 
5040 	fw->size = fp->datasize;
5041 	fw->data = (const uint8_t *)fp->data;
5042 
5043 	/* Extract firmware header information. */
5044 	hdr = (const struct wpi_firmware_hdr *)fw->data;
5045 
5046 	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5047 	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5048 
5049 	fw->main.textsz = le32toh(hdr->rtextsz);
5050 	fw->main.datasz = le32toh(hdr->rdatasz);
5051 	fw->init.textsz = le32toh(hdr->itextsz);
5052 	fw->init.datasz = le32toh(hdr->idatasz);
5053 	fw->boot.textsz = le32toh(hdr->btextsz);
5054 	fw->boot.datasz = 0;
5055 
5056 	/* Sanity-check firmware header. */
5057 	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5058 	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5059 	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5060 	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5061 	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5062 	    (fw->boot.textsz & 3) != 0) {
5063 		device_printf(sc->sc_dev, "invalid firmware header\n");
5064 		error = EINVAL;
5065 		goto fail;
5066 	}
5067 
5068 	/* Check that all firmware sections fit. */
5069 	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5070 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5071 		device_printf(sc->sc_dev,
5072 		    "firmware file too short: %zu bytes\n", fw->size);
5073 		error = EINVAL;
5074 		goto fail;
5075 	}
5076 
5077 	/* Get pointers to firmware sections. */
5078 	fw->main.text = (const uint8_t *)(hdr + 1);
5079 	fw->main.data = fw->main.text + fw->main.textsz;
5080 	fw->init.text = fw->main.data + fw->main.datasz;
5081 	fw->init.data = fw->init.text + fw->init.textsz;
5082 	fw->boot.text = fw->init.data + fw->init.datasz;
5083 
5084 	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5085 	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5086 	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5087 	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5088 	    fw->main.textsz, fw->main.datasz,
5089 	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5090 
5091 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5092 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5093 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5094 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5095 	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5096 
5097 	return 0;
5098 
5099 fail:	wpi_unload_firmware(sc);
5100 	return error;
5101 }
5102 
5103 /**
5104  * Free the referenced firmware image
5105  */
5106 static void
5107 wpi_unload_firmware(struct wpi_softc *sc)
5108 {
5109 	if (sc->fw_fp != NULL) {
5110 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5111 		sc->fw_fp = NULL;
5112 	}
5113 }
5114 
5115 static int
5116 wpi_clock_wait(struct wpi_softc *sc)
5117 {
5118 	int ntries;
5119 
5120 	/* Set "initialization complete" bit. */
5121 	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5122 
5123 	/* Wait for clock stabilization. */
5124 	for (ntries = 0; ntries < 2500; ntries++) {
5125 		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5126 			return 0;
5127 		DELAY(100);
5128 	}
5129 	device_printf(sc->sc_dev,
5130 	    "%s: timeout waiting for clock stabilization\n", __func__);
5131 
5132 	return ETIMEDOUT;
5133 }
5134 
5135 static int
5136 wpi_apm_init(struct wpi_softc *sc)
5137 {
5138 	uint32_t reg;
5139 	int error;
5140 
5141 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5142 
5143 	/* Disable L0s exit timer (NMI bug workaround). */
5144 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5145 	/* Don't wait for ICH L0s (ICH bug workaround). */
5146 	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5147 
5148 	/* Set FH wait threshold to max (HW bug under stress workaround). */
5149 	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5150 
5151 	/* Retrieve PCIe Active State Power Management (ASPM). */
5152 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5153 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5154 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5155 		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5156 	else
5157 		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5158 
5159 	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5160 
5161 	/* Wait for clock stabilization before accessing prph. */
5162 	if ((error = wpi_clock_wait(sc)) != 0)
5163 		return error;
5164 
5165 	if ((error = wpi_nic_lock(sc)) != 0)
5166 		return error;
5167 	/* Cleanup. */
5168 	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5169 	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5170 
5171 	/* Enable DMA and BSM (Bootstrap State Machine). */
5172 	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5173 	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5174 	DELAY(20);
5175 	/* Disable L1-Active. */
5176 	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5177 	wpi_nic_unlock(sc);
5178 
5179 	return 0;
5180 }
5181 
5182 static void
5183 wpi_apm_stop_master(struct wpi_softc *sc)
5184 {
5185 	int ntries;
5186 
5187 	/* Stop busmaster DMA activity. */
5188 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5189 
5190 	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5191 	    WPI_GP_CNTRL_MAC_PS)
5192 		return; /* Already asleep. */
5193 
5194 	for (ntries = 0; ntries < 100; ntries++) {
5195 		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5196 			return;
5197 		DELAY(10);
5198 	}
5199 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5200 	    __func__);
5201 }
5202 
5203 static void
5204 wpi_apm_stop(struct wpi_softc *sc)
5205 {
5206 	wpi_apm_stop_master(sc);
5207 
5208 	/* Reset the entire device. */
5209 	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5210 	DELAY(10);
5211 	/* Clear "initialization complete" bit. */
5212 	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5213 }
5214 
5215 static void
5216 wpi_nic_config(struct wpi_softc *sc)
5217 {
5218 	uint32_t rev;
5219 
5220 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5221 
5222 	/* voodoo from the Linux "driver".. */
5223 	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5224 	if ((rev & 0xc0) == 0x40)
5225 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5226 	else if (!(rev & 0x80))
5227 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5228 
5229 	if (sc->cap == 0x80)
5230 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5231 
5232 	if ((sc->rev & 0xf0) == 0xd0)
5233 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5234 	else
5235 		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5236 
5237 	if (sc->type > 1)
5238 		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5239 }
5240 
5241 static int
5242 wpi_hw_init(struct wpi_softc *sc)
5243 {
5244 	uint8_t chnl;
5245 	int ntries, error;
5246 
5247 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5248 
5249 	/* Clear pending interrupts. */
5250 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5251 
5252 	if ((error = wpi_apm_init(sc)) != 0) {
5253 		device_printf(sc->sc_dev,
5254 		    "%s: could not power ON adapter, error %d\n", __func__,
5255 		    error);
5256 		return error;
5257 	}
5258 
5259 	/* Select VMAIN power source. */
5260 	if ((error = wpi_nic_lock(sc)) != 0)
5261 		return error;
5262 	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5263 	wpi_nic_unlock(sc);
5264 	/* Spin until VMAIN gets selected. */
5265 	for (ntries = 0; ntries < 5000; ntries++) {
5266 		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5267 			break;
5268 		DELAY(10);
5269 	}
5270 	if (ntries == 5000) {
5271 		device_printf(sc->sc_dev, "timeout selecting power source\n");
5272 		return ETIMEDOUT;
5273 	}
5274 
5275 	/* Perform adapter initialization. */
5276 	wpi_nic_config(sc);
5277 
5278 	/* Initialize RX ring. */
5279 	if ((error = wpi_nic_lock(sc)) != 0)
5280 		return error;
5281 	/* Set physical address of RX ring. */
5282 	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5283 	/* Set physical address of RX read pointer. */
5284 	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5285 	    offsetof(struct wpi_shared, next));
5286 	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5287 	/* Enable RX. */
5288 	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5289 	    WPI_FH_RX_CONFIG_DMA_ENA |
5290 	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5291 	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5292 	    WPI_FH_RX_CONFIG_MAXFRAG |
5293 	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5294 	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5295 	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5296 	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5297 	wpi_nic_unlock(sc);
5298 	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5299 
5300 	/* Initialize TX rings. */
5301 	if ((error = wpi_nic_lock(sc)) != 0)
5302 		return error;
5303 	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5304 	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5305 	/* Enable all 6 TX rings. */
5306 	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5307 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5308 	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5309 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5310 	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5311 	/* Set physical address of TX rings. */
5312 	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5313 	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5314 
5315 	/* Enable all DMA channels. */
5316 	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5317 		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5318 		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5319 		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5320 	}
5321 	wpi_nic_unlock(sc);
5322 	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5323 
5324 	/* Clear "radio off" and "commands blocked" bits. */
5325 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5326 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5327 
5328 	/* Clear pending interrupts. */
5329 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5330 	/* Enable interrupts. */
5331 	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5332 
5333 	/* _Really_ make sure "radio off" bit is cleared! */
5334 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5335 	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5336 
5337 	if ((error = wpi_load_firmware(sc)) != 0) {
5338 		device_printf(sc->sc_dev,
5339 		    "%s: could not load firmware, error %d\n", __func__,
5340 		    error);
5341 		return error;
5342 	}
5343 	/* Wait at most one second for firmware alive notification. */
5344 	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5345 		device_printf(sc->sc_dev,
5346 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5347 		    __func__, error);
5348 		return error;
5349 	}
5350 
5351 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5352 
5353 	/* Do post-firmware initialization. */
5354 	return wpi_post_alive(sc);
5355 }
5356 
5357 static void
5358 wpi_hw_stop(struct wpi_softc *sc)
5359 {
5360 	uint8_t chnl, qid;
5361 	int ntries;
5362 
5363 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5364 
5365 	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5366 		wpi_nic_lock(sc);
5367 
5368 	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5369 
5370 	/* Disable interrupts. */
5371 	WPI_WRITE(sc, WPI_INT_MASK, 0);
5372 	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5373 	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5374 
5375 	/* Make sure we no longer hold the NIC lock. */
5376 	wpi_nic_unlock(sc);
5377 
5378 	if (wpi_nic_lock(sc) == 0) {
5379 		/* Stop TX scheduler. */
5380 		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5381 		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5382 
5383 		/* Stop all DMA channels. */
5384 		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5385 			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5386 			for (ntries = 0; ntries < 200; ntries++) {
5387 				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5388 				    WPI_FH_TX_STATUS_IDLE(chnl))
5389 					break;
5390 				DELAY(10);
5391 			}
5392 		}
5393 		wpi_nic_unlock(sc);
5394 	}
5395 
5396 	/* Stop RX ring. */
5397 	wpi_reset_rx_ring(sc);
5398 
5399 	/* Reset all TX rings. */
5400 	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5401 		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5402 
5403 	if (wpi_nic_lock(sc) == 0) {
5404 		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5405 		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5406 		wpi_nic_unlock(sc);
5407 	}
5408 	DELAY(5);
5409 	/* Power OFF adapter. */
5410 	wpi_apm_stop(sc);
5411 }
5412 
5413 static void
5414 wpi_radio_on(void *arg0, int pending)
5415 {
5416 	struct wpi_softc *sc = arg0;
5417 	struct ieee80211com *ic = &sc->sc_ic;
5418 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5419 
5420 	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5421 
5422 	WPI_LOCK(sc);
5423 	callout_stop(&sc->watchdog_rfkill);
5424 	WPI_UNLOCK(sc);
5425 
5426 	if (vap != NULL)
5427 		ieee80211_init(vap);
5428 }
5429 
5430 static void
5431 wpi_radio_off(void *arg0, int pending)
5432 {
5433 	struct wpi_softc *sc = arg0;
5434 	struct ieee80211com *ic = &sc->sc_ic;
5435 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5436 
5437 	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5438 
5439 	ieee80211_notify_radio(ic, 0);
5440 	wpi_stop(sc);
5441 	if (vap != NULL)
5442 		ieee80211_stop(vap);
5443 
5444 	WPI_LOCK(sc);
5445 	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5446 	WPI_UNLOCK(sc);
5447 }
5448 
5449 static int
5450 wpi_init(struct wpi_softc *sc)
5451 {
5452 	int error = 0;
5453 
5454 	WPI_LOCK(sc);
5455 
5456 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5457 
5458 	if (sc->sc_running != 0)
5459 		goto end;
5460 
5461 	/* Check that the radio is not disabled by hardware switch. */
5462 	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5463 		device_printf(sc->sc_dev,
5464 		    "RF switch: radio disabled (%s)\n", __func__);
5465 		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5466 		    sc);
5467 		error = EINPROGRESS;
5468 		goto end;
5469 	}
5470 
5471 	/* Read firmware images from the filesystem. */
5472 	if ((error = wpi_read_firmware(sc)) != 0) {
5473 		device_printf(sc->sc_dev,
5474 		    "%s: could not read firmware, error %d\n", __func__,
5475 		    error);
5476 		goto end;
5477 	}
5478 
5479 	sc->sc_running = 1;
5480 
5481 	/* Initialize hardware and upload firmware. */
5482 	error = wpi_hw_init(sc);
5483 	wpi_unload_firmware(sc);
5484 	if (error != 0) {
5485 		device_printf(sc->sc_dev,
5486 		    "%s: could not initialize hardware, error %d\n", __func__,
5487 		    error);
5488 		goto fail;
5489 	}
5490 
5491 	/* Configure adapter now that it is ready. */
5492 	if ((error = wpi_config(sc)) != 0) {
5493 		device_printf(sc->sc_dev,
5494 		    "%s: could not configure device, error %d\n", __func__,
5495 		    error);
5496 		goto fail;
5497 	}
5498 
5499 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5500 
5501 	WPI_UNLOCK(sc);
5502 
5503 	return 0;
5504 
5505 fail:	wpi_stop_locked(sc);
5506 
5507 end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5508 	WPI_UNLOCK(sc);
5509 
5510 	return error;
5511 }
5512 
5513 static void
5514 wpi_stop_locked(struct wpi_softc *sc)
5515 {
5516 
5517 	WPI_LOCK_ASSERT(sc);
5518 
5519 	if (sc->sc_running == 0)
5520 		return;
5521 
5522 	WPI_TX_LOCK(sc);
5523 	WPI_TXQ_LOCK(sc);
5524 	sc->sc_running = 0;
5525 	WPI_TXQ_UNLOCK(sc);
5526 	WPI_TX_UNLOCK(sc);
5527 
5528 	WPI_TXQ_STATE_LOCK(sc);
5529 	callout_stop(&sc->tx_timeout);
5530 	WPI_TXQ_STATE_UNLOCK(sc);
5531 
5532 	WPI_RXON_LOCK(sc);
5533 	callout_stop(&sc->scan_timeout);
5534 	callout_stop(&sc->calib_to);
5535 	WPI_RXON_UNLOCK(sc);
5536 
5537 	/* Power OFF hardware. */
5538 	wpi_hw_stop(sc);
5539 }
5540 
5541 static void
5542 wpi_stop(struct wpi_softc *sc)
5543 {
5544 	WPI_LOCK(sc);
5545 	wpi_stop_locked(sc);
5546 	WPI_UNLOCK(sc);
5547 }
5548 
5549 /*
5550  * Callback from net80211 to start a scan.
5551  */
5552 static void
5553 wpi_scan_start(struct ieee80211com *ic)
5554 {
5555 	struct wpi_softc *sc = ic->ic_softc;
5556 
5557 	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5558 }
5559 
5560 /*
5561  * Callback from net80211 to terminate a scan.
5562  */
5563 static void
5564 wpi_scan_end(struct ieee80211com *ic)
5565 {
5566 	struct wpi_softc *sc = ic->ic_softc;
5567 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5568 
5569 	if (vap->iv_state == IEEE80211_S_RUN)
5570 		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5571 }
5572 
5573 /**
5574  * Called by the net80211 framework to indicate to the driver
5575  * that the channel should be changed
5576  */
5577 static void
5578 wpi_set_channel(struct ieee80211com *ic)
5579 {
5580 	const struct ieee80211_channel *c = ic->ic_curchan;
5581 	struct wpi_softc *sc = ic->ic_softc;
5582 	int error;
5583 
5584 	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5585 
5586 	WPI_LOCK(sc);
5587 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5588 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5589 	WPI_UNLOCK(sc);
5590 	WPI_TX_LOCK(sc);
5591 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5592 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5593 	WPI_TX_UNLOCK(sc);
5594 
5595 	/*
5596 	 * Only need to set the channel in Monitor mode. AP scanning and auth
5597 	 * are already taken care of by their respective firmware commands.
5598 	 */
5599 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5600 		WPI_RXON_LOCK(sc);
5601 		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5602 		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5603 			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5604 			    WPI_RXON_24GHZ);
5605 		} else {
5606 			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5607 			    WPI_RXON_24GHZ);
5608 		}
5609 		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5610 			device_printf(sc->sc_dev,
5611 			    "%s: error %d setting channel\n", __func__,
5612 			    error);
5613 		WPI_RXON_UNLOCK(sc);
5614 	}
5615 }
5616 
5617 /**
5618  * Called by net80211 to indicate that we need to scan the current
5619  * channel. The channel is previously be set via the wpi_set_channel
5620  * callback.
5621  */
5622 static void
5623 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5624 {
5625 	struct ieee80211vap *vap = ss->ss_vap;
5626 	struct ieee80211com *ic = vap->iv_ic;
5627 	struct wpi_softc *sc = ic->ic_softc;
5628 	int error;
5629 
5630 	WPI_RXON_LOCK(sc);
5631 	error = wpi_scan(sc, ic->ic_curchan);
5632 	WPI_RXON_UNLOCK(sc);
5633 	if (error != 0)
5634 		ieee80211_cancel_scan(vap);
5635 }
5636 
5637 /**
5638  * Called by the net80211 framework to indicate
5639  * the minimum dwell time has been met, terminate the scan.
5640  * We don't actually terminate the scan as the firmware will notify
5641  * us when it's finished and we have no way to interrupt it.
5642  */
5643 static void
5644 wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5645 {
5646 	/* NB: don't try to abort scan; wait for firmware to finish */
5647 }
5648