1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_done) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include "opt_wlan.h" 62 #include "opt_wpi.h" 63 64 #include <sys/param.h> 65 #include <sys/sysctl.h> 66 #include <sys/sockio.h> 67 #include <sys/mbuf.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/queue.h> 73 #include <sys/taskqueue.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/endian.h> 77 #include <sys/linker.h> 78 #include <sys/firmware.h> 79 80 #include <machine/bus.h> 81 #include <machine/resource.h> 82 #include <sys/rman.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 #include <net/if_types.h> 95 96 #include <netinet/in.h> 97 #include <netinet/in_systm.h> 98 #include <netinet/in_var.h> 99 #include <netinet/if_ether.h> 100 #include <netinet/ip.h> 101 102 #include <net80211/ieee80211_var.h> 103 #include <net80211/ieee80211_radiotap.h> 104 #include <net80211/ieee80211_regdomain.h> 105 #include <net80211/ieee80211_ratectl.h> 106 107 #include <dev/wpi/if_wpireg.h> 108 #include <dev/wpi/if_wpivar.h> 109 #include <dev/wpi/if_wpi_debug.h> 110 111 struct wpi_ident { 112 uint16_t vendor; 113 uint16_t device; 114 uint16_t subdevice; 115 const char *name; 116 }; 117 118 static const struct wpi_ident wpi_ident_table[] = { 119 /* The below entries support ABG regardless of the subid */ 120 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 121 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 122 /* The below entries only support BG */ 123 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 124 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 125 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 126 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 127 { 0, 0, 0, NULL } 128 }; 129 130 static int wpi_probe(device_t); 131 static int wpi_attach(device_t); 132 static void wpi_radiotap_attach(struct wpi_softc *); 133 static void wpi_sysctlattach(struct wpi_softc *); 134 static void wpi_init_beacon(struct wpi_vap *); 135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 136 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 137 const uint8_t [IEEE80211_ADDR_LEN], 138 const uint8_t [IEEE80211_ADDR_LEN]); 139 static void wpi_vap_delete(struct ieee80211vap *); 140 static int wpi_detach(device_t); 141 static int wpi_shutdown(device_t); 142 static int wpi_suspend(device_t); 143 static int wpi_resume(device_t); 144 static int wpi_nic_lock(struct wpi_softc *); 145 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 146 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 147 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 148 void **, bus_size_t, bus_size_t); 149 static void wpi_dma_contig_free(struct wpi_dma_info *); 150 static int wpi_alloc_shared(struct wpi_softc *); 151 static void wpi_free_shared(struct wpi_softc *); 152 static int wpi_alloc_fwmem(struct wpi_softc *); 153 static void wpi_free_fwmem(struct wpi_softc *); 154 static int wpi_alloc_rx_ring(struct wpi_softc *); 155 static void wpi_update_rx_ring(struct wpi_softc *); 156 static void wpi_update_rx_ring_ps(struct wpi_softc *); 157 static void wpi_reset_rx_ring(struct wpi_softc *); 158 static void wpi_free_rx_ring(struct wpi_softc *); 159 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 160 uint8_t); 161 static void wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 162 static void wpi_update_tx_ring_ps(struct wpi_softc *, 163 struct wpi_tx_ring *); 164 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 165 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 166 static int wpi_read_eeprom(struct wpi_softc *, 167 uint8_t macaddr[IEEE80211_ADDR_LEN]); 168 static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *); 169 static void wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *, 170 struct ieee80211_channel[]); 171 static int wpi_read_eeprom_channels(struct wpi_softc *, uint8_t); 172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *, 173 struct ieee80211_channel *); 174 static void wpi_getradiocaps(struct ieee80211com *, int, int *, 175 struct ieee80211_channel[]); 176 static int wpi_setregdomain(struct ieee80211com *, 177 struct ieee80211_regdomain *, int, 178 struct ieee80211_channel[]); 179 static int wpi_read_eeprom_group(struct wpi_softc *, uint8_t); 180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 181 const uint8_t mac[IEEE80211_ADDR_LEN]); 182 static void wpi_node_free(struct ieee80211_node *); 183 static void wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, 184 const struct ieee80211_rx_stats *, 185 int, int); 186 static void wpi_restore_node(void *, struct ieee80211_node *); 187 static void wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *); 188 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 189 static void wpi_calib_timeout(void *); 190 static void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *, 191 struct wpi_rx_data *); 192 static void wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *, 193 struct wpi_rx_data *); 194 static void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *); 196 static void wpi_notif_intr(struct wpi_softc *); 197 static void wpi_wakeup_intr(struct wpi_softc *); 198 #ifdef WPI_DEBUG 199 static void wpi_debug_registers(struct wpi_softc *); 200 #endif 201 static void wpi_fatal_intr(struct wpi_softc *); 202 static void wpi_intr(void *); 203 static void wpi_free_txfrags(struct wpi_softc *, uint16_t); 204 static int wpi_cmd2(struct wpi_softc *, struct wpi_buf *); 205 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 206 struct ieee80211_node *); 207 static int wpi_tx_data_raw(struct wpi_softc *, struct mbuf *, 208 struct ieee80211_node *, 209 const struct ieee80211_bpf_params *); 210 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 211 const struct ieee80211_bpf_params *); 212 static int wpi_transmit(struct ieee80211com *, struct mbuf *); 213 static void wpi_watchdog_rfkill(void *); 214 static void wpi_scan_timeout(void *); 215 static void wpi_tx_timeout(void *); 216 static void wpi_parent(struct ieee80211com *); 217 static int wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t, 218 int); 219 static int wpi_mrr_setup(struct wpi_softc *); 220 static int wpi_add_node(struct wpi_softc *, struct ieee80211_node *); 221 static int wpi_add_broadcast_node(struct wpi_softc *, int); 222 static int wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *); 223 static void wpi_del_node(struct wpi_softc *, struct ieee80211_node *); 224 static int wpi_updateedca(struct ieee80211com *); 225 static void wpi_set_promisc(struct wpi_softc *); 226 static void wpi_update_promisc(struct ieee80211com *); 227 static void wpi_update_mcast(struct ieee80211com *); 228 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 229 static int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *); 230 static void wpi_power_calibration(struct wpi_softc *); 231 static int wpi_set_txpower(struct wpi_softc *, int); 232 static int wpi_get_power_index(struct wpi_softc *, 233 struct wpi_power_group *, uint8_t, int, int); 234 static int wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int); 235 static int wpi_send_btcoex(struct wpi_softc *); 236 static int wpi_send_rxon(struct wpi_softc *, int, int); 237 static int wpi_config(struct wpi_softc *); 238 static uint16_t wpi_get_active_dwell_time(struct wpi_softc *, 239 struct ieee80211_channel *, uint8_t); 240 static uint16_t wpi_limit_dwell(struct wpi_softc *, uint16_t); 241 static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *, 242 struct ieee80211_channel *); 243 static uint32_t wpi_get_scan_pause_time(uint32_t, uint16_t); 244 static int wpi_scan(struct wpi_softc *, struct ieee80211_channel *); 245 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 246 static int wpi_config_beacon(struct wpi_vap *); 247 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 248 static void wpi_update_beacon(struct ieee80211vap *, int); 249 static void wpi_newassoc(struct ieee80211_node *, int); 250 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 251 static int wpi_load_key(struct ieee80211_node *, 252 const struct ieee80211_key *); 253 static void wpi_load_key_cb(void *, struct ieee80211_node *); 254 static int wpi_set_global_keys(struct ieee80211_node *); 255 static int wpi_del_key(struct ieee80211_node *, 256 const struct ieee80211_key *); 257 static void wpi_del_key_cb(void *, struct ieee80211_node *); 258 static int wpi_process_key(struct ieee80211vap *, 259 const struct ieee80211_key *, int); 260 static int wpi_key_set(struct ieee80211vap *, 261 const struct ieee80211_key *); 262 static int wpi_key_delete(struct ieee80211vap *, 263 const struct ieee80211_key *); 264 static int wpi_post_alive(struct wpi_softc *); 265 static int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, 266 uint32_t); 267 static int wpi_load_firmware(struct wpi_softc *); 268 static int wpi_read_firmware(struct wpi_softc *); 269 static void wpi_unload_firmware(struct wpi_softc *); 270 static int wpi_clock_wait(struct wpi_softc *); 271 static int wpi_apm_init(struct wpi_softc *); 272 static void wpi_apm_stop_master(struct wpi_softc *); 273 static void wpi_apm_stop(struct wpi_softc *); 274 static void wpi_nic_config(struct wpi_softc *); 275 static int wpi_hw_init(struct wpi_softc *); 276 static void wpi_hw_stop(struct wpi_softc *); 277 static void wpi_radio_on(void *, int); 278 static void wpi_radio_off(void *, int); 279 static int wpi_init(struct wpi_softc *); 280 static void wpi_stop_locked(struct wpi_softc *); 281 static void wpi_stop(struct wpi_softc *); 282 static void wpi_scan_start(struct ieee80211com *); 283 static void wpi_scan_end(struct ieee80211com *); 284 static void wpi_set_channel(struct ieee80211com *); 285 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 286 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 287 288 static device_method_t wpi_methods[] = { 289 /* Device interface */ 290 DEVMETHOD(device_probe, wpi_probe), 291 DEVMETHOD(device_attach, wpi_attach), 292 DEVMETHOD(device_detach, wpi_detach), 293 DEVMETHOD(device_shutdown, wpi_shutdown), 294 DEVMETHOD(device_suspend, wpi_suspend), 295 DEVMETHOD(device_resume, wpi_resume), 296 297 DEVMETHOD_END 298 }; 299 300 static driver_t wpi_driver = { 301 "wpi", 302 wpi_methods, 303 sizeof (struct wpi_softc) 304 }; 305 static devclass_t wpi_devclass; 306 307 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL); 308 309 MODULE_VERSION(wpi, 1); 310 311 MODULE_DEPEND(wpi, pci, 1, 1, 1); 312 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 313 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 314 315 static int 316 wpi_probe(device_t dev) 317 { 318 const struct wpi_ident *ident; 319 320 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 321 if (pci_get_vendor(dev) == ident->vendor && 322 pci_get_device(dev) == ident->device) { 323 device_set_desc(dev, ident->name); 324 return (BUS_PROBE_DEFAULT); 325 } 326 } 327 return ENXIO; 328 } 329 330 static int 331 wpi_attach(device_t dev) 332 { 333 struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev); 334 struct ieee80211com *ic; 335 uint8_t i; 336 int error, rid; 337 #ifdef WPI_DEBUG 338 int supportsa = 1; 339 const struct wpi_ident *ident; 340 #endif 341 342 sc->sc_dev = dev; 343 344 #ifdef WPI_DEBUG 345 error = resource_int_value(device_get_name(sc->sc_dev), 346 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 347 if (error != 0) 348 sc->sc_debug = 0; 349 #else 350 sc->sc_debug = 0; 351 #endif 352 353 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 354 355 /* 356 * Get the offset of the PCI Express Capability Structure in PCI 357 * Configuration Space. 358 */ 359 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 360 if (error != 0) { 361 device_printf(dev, "PCIe capability structure not found!\n"); 362 return error; 363 } 364 365 /* 366 * Some card's only support 802.11b/g not a, check to see if 367 * this is one such card. A 0x0 in the subdevice table indicates 368 * the entire subdevice range is to be ignored. 369 */ 370 #ifdef WPI_DEBUG 371 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 372 if (ident->subdevice && 373 pci_get_subdevice(dev) == ident->subdevice) { 374 supportsa = 0; 375 break; 376 } 377 } 378 #endif 379 380 /* Clear device-specific "PCI retry timeout" register (41h). */ 381 pci_write_config(dev, 0x41, 0, 1); 382 383 /* Enable bus-mastering. */ 384 pci_enable_busmaster(dev); 385 386 rid = PCIR_BAR(0); 387 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 388 RF_ACTIVE); 389 if (sc->mem == NULL) { 390 device_printf(dev, "can't map mem space\n"); 391 return ENOMEM; 392 } 393 sc->sc_st = rman_get_bustag(sc->mem); 394 sc->sc_sh = rman_get_bushandle(sc->mem); 395 396 rid = 1; 397 if (pci_alloc_msi(dev, &rid) == 0) 398 rid = 1; 399 else 400 rid = 0; 401 /* Install interrupt handler. */ 402 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 403 (rid != 0 ? 0 : RF_SHAREABLE)); 404 if (sc->irq == NULL) { 405 device_printf(dev, "can't map interrupt\n"); 406 error = ENOMEM; 407 goto fail; 408 } 409 410 WPI_LOCK_INIT(sc); 411 WPI_TX_LOCK_INIT(sc); 412 WPI_RXON_LOCK_INIT(sc); 413 WPI_NT_LOCK_INIT(sc); 414 WPI_TXQ_LOCK_INIT(sc); 415 WPI_TXQ_STATE_LOCK_INIT(sc); 416 417 /* Allocate DMA memory for firmware transfers. */ 418 if ((error = wpi_alloc_fwmem(sc)) != 0) { 419 device_printf(dev, 420 "could not allocate memory for firmware, error %d\n", 421 error); 422 goto fail; 423 } 424 425 /* Allocate shared page. */ 426 if ((error = wpi_alloc_shared(sc)) != 0) { 427 device_printf(dev, "could not allocate shared page\n"); 428 goto fail; 429 } 430 431 /* Allocate TX rings - 4 for QoS purposes, 1 for commands. */ 432 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { 433 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 434 device_printf(dev, 435 "could not allocate TX ring %d, error %d\n", i, 436 error); 437 goto fail; 438 } 439 } 440 441 /* Allocate RX ring. */ 442 if ((error = wpi_alloc_rx_ring(sc)) != 0) { 443 device_printf(dev, "could not allocate RX ring, error %d\n", 444 error); 445 goto fail; 446 } 447 448 /* Clear pending interrupts. */ 449 WPI_WRITE(sc, WPI_INT, 0xffffffff); 450 451 ic = &sc->sc_ic; 452 ic->ic_softc = sc; 453 ic->ic_name = device_get_nameunit(dev); 454 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 455 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 456 457 /* Set device capabilities. */ 458 ic->ic_caps = 459 IEEE80211_C_STA /* station mode supported */ 460 | IEEE80211_C_IBSS /* IBSS mode supported */ 461 | IEEE80211_C_HOSTAP /* Host access point mode */ 462 | IEEE80211_C_MONITOR /* monitor mode supported */ 463 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 464 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 465 | IEEE80211_C_TXFRAG /* handle tx frags */ 466 | IEEE80211_C_TXPMGT /* tx power management */ 467 | IEEE80211_C_SHSLOT /* short slot time supported */ 468 | IEEE80211_C_WPA /* 802.11i */ 469 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 470 | IEEE80211_C_WME /* 802.11e */ 471 | IEEE80211_C_PMGT /* Station-side power mgmt */ 472 ; 473 474 ic->ic_cryptocaps = 475 IEEE80211_CRYPTO_AES_CCM; 476 477 /* 478 * Read in the eeprom and also setup the channels for 479 * net80211. We don't set the rates as net80211 does this for us 480 */ 481 if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) { 482 device_printf(dev, "could not read EEPROM, error %d\n", 483 error); 484 goto fail; 485 } 486 487 #ifdef WPI_DEBUG 488 if (bootverbose) { 489 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", 490 sc->domain); 491 device_printf(sc->sc_dev, "Hardware Type: %c\n", 492 sc->type > 1 ? 'B': '?'); 493 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 494 ((sc->rev & 0xf0) == 0xd0) ? 'D': '?'); 495 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 496 supportsa ? "does" : "does not"); 497 498 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must 499 check what sc->rev really represents - benjsc 20070615 */ 500 } 501 #endif 502 503 ieee80211_ifattach(ic); 504 ic->ic_vap_create = wpi_vap_create; 505 ic->ic_vap_delete = wpi_vap_delete; 506 ic->ic_parent = wpi_parent; 507 ic->ic_raw_xmit = wpi_raw_xmit; 508 ic->ic_transmit = wpi_transmit; 509 ic->ic_node_alloc = wpi_node_alloc; 510 sc->sc_node_free = ic->ic_node_free; 511 ic->ic_node_free = wpi_node_free; 512 ic->ic_wme.wme_update = wpi_updateedca; 513 ic->ic_update_promisc = wpi_update_promisc; 514 ic->ic_update_mcast = wpi_update_mcast; 515 ic->ic_newassoc = wpi_newassoc; 516 ic->ic_scan_start = wpi_scan_start; 517 ic->ic_scan_end = wpi_scan_end; 518 ic->ic_set_channel = wpi_set_channel; 519 ic->ic_scan_curchan = wpi_scan_curchan; 520 ic->ic_scan_mindwell = wpi_scan_mindwell; 521 ic->ic_getradiocaps = wpi_getradiocaps; 522 ic->ic_setregdomain = wpi_setregdomain; 523 524 sc->sc_update_rx_ring = wpi_update_rx_ring; 525 sc->sc_update_tx_ring = wpi_update_tx_ring; 526 527 wpi_radiotap_attach(sc); 528 529 callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0); 530 callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0); 531 callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0); 532 callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0); 533 TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc); 534 TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc); 535 536 wpi_sysctlattach(sc); 537 538 /* 539 * Hook our interrupt after all initialization is complete. 540 */ 541 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 542 NULL, wpi_intr, sc, &sc->sc_ih); 543 if (error != 0) { 544 device_printf(dev, "can't establish interrupt, error %d\n", 545 error); 546 goto fail; 547 } 548 549 if (bootverbose) 550 ieee80211_announce(ic); 551 552 #ifdef WPI_DEBUG 553 if (sc->sc_debug & WPI_DEBUG_HW) 554 ieee80211_announce_channels(ic); 555 #endif 556 557 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 558 return 0; 559 560 fail: wpi_detach(dev); 561 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 562 return error; 563 } 564 565 /* 566 * Attach the interface to 802.11 radiotap. 567 */ 568 static void 569 wpi_radiotap_attach(struct wpi_softc *sc) 570 { 571 struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap; 572 struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap; 573 574 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 575 ieee80211_radiotap_attach(&sc->sc_ic, 576 &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT, 577 &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT); 578 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 579 } 580 581 static void 582 wpi_sysctlattach(struct wpi_softc *sc) 583 { 584 #ifdef WPI_DEBUG 585 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 586 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 587 588 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 589 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 590 "control debugging printfs"); 591 #endif 592 } 593 594 static void 595 wpi_init_beacon(struct wpi_vap *wvp) 596 { 597 struct wpi_buf *bcn = &wvp->wv_bcbuf; 598 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; 599 600 cmd->id = WPI_ID_BROADCAST; 601 cmd->ofdm_mask = 0xff; 602 cmd->cck_mask = 0x0f; 603 cmd->lifetime = htole32(WPI_LIFETIME_INFINITE); 604 605 /* 606 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue 607 * XXX by using WPI_TX_NEED_ACK instead (with some side effects). 608 */ 609 cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP); 610 611 bcn->code = WPI_CMD_SET_BEACON; 612 bcn->ac = WPI_CMD_QUEUE_NUM; 613 bcn->size = sizeof(struct wpi_cmd_beacon); 614 } 615 616 static struct ieee80211vap * 617 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 618 enum ieee80211_opmode opmode, int flags, 619 const uint8_t bssid[IEEE80211_ADDR_LEN], 620 const uint8_t mac[IEEE80211_ADDR_LEN]) 621 { 622 struct wpi_vap *wvp; 623 struct ieee80211vap *vap; 624 625 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 626 return NULL; 627 628 wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 629 vap = &wvp->wv_vap; 630 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 631 632 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { 633 WPI_VAP_LOCK_INIT(wvp); 634 wpi_init_beacon(wvp); 635 } 636 637 /* Override with driver methods. */ 638 vap->iv_key_set = wpi_key_set; 639 vap->iv_key_delete = wpi_key_delete; 640 if (opmode == IEEE80211_M_IBSS) { 641 wvp->wv_recv_mgmt = vap->iv_recv_mgmt; 642 vap->iv_recv_mgmt = wpi_ibss_recv_mgmt; 643 } 644 wvp->wv_newstate = vap->iv_newstate; 645 vap->iv_newstate = wpi_newstate; 646 vap->iv_update_beacon = wpi_update_beacon; 647 vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1; 648 649 ieee80211_ratectl_init(vap); 650 /* Complete setup. */ 651 ieee80211_vap_attach(vap, ieee80211_media_change, 652 ieee80211_media_status, mac); 653 ic->ic_opmode = opmode; 654 return vap; 655 } 656 657 static void 658 wpi_vap_delete(struct ieee80211vap *vap) 659 { 660 struct wpi_vap *wvp = WPI_VAP(vap); 661 struct wpi_buf *bcn = &wvp->wv_bcbuf; 662 enum ieee80211_opmode opmode = vap->iv_opmode; 663 664 ieee80211_ratectl_deinit(vap); 665 ieee80211_vap_detach(vap); 666 667 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { 668 if (bcn->m != NULL) 669 m_freem(bcn->m); 670 671 WPI_VAP_LOCK_DESTROY(wvp); 672 } 673 674 free(wvp, M_80211_VAP); 675 } 676 677 static int 678 wpi_detach(device_t dev) 679 { 680 struct wpi_softc *sc = device_get_softc(dev); 681 struct ieee80211com *ic = &sc->sc_ic; 682 uint8_t qid; 683 684 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 685 686 if (ic->ic_vap_create == wpi_vap_create) { 687 ieee80211_draintask(ic, &sc->sc_radioon_task); 688 ieee80211_draintask(ic, &sc->sc_radiooff_task); 689 690 wpi_stop(sc); 691 692 callout_drain(&sc->watchdog_rfkill); 693 callout_drain(&sc->tx_timeout); 694 callout_drain(&sc->scan_timeout); 695 callout_drain(&sc->calib_to); 696 ieee80211_ifdetach(ic); 697 } 698 699 /* Uninstall interrupt handler. */ 700 if (sc->irq != NULL) { 701 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 702 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 703 sc->irq); 704 pci_release_msi(dev); 705 } 706 707 if (sc->txq[0].data_dmat) { 708 /* Free DMA resources. */ 709 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) 710 wpi_free_tx_ring(sc, &sc->txq[qid]); 711 712 wpi_free_rx_ring(sc); 713 wpi_free_shared(sc); 714 } 715 716 if (sc->fw_dma.tag) 717 wpi_free_fwmem(sc); 718 719 if (sc->mem != NULL) 720 bus_release_resource(dev, SYS_RES_MEMORY, 721 rman_get_rid(sc->mem), sc->mem); 722 723 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 724 WPI_TXQ_STATE_LOCK_DESTROY(sc); 725 WPI_TXQ_LOCK_DESTROY(sc); 726 WPI_NT_LOCK_DESTROY(sc); 727 WPI_RXON_LOCK_DESTROY(sc); 728 WPI_TX_LOCK_DESTROY(sc); 729 WPI_LOCK_DESTROY(sc); 730 return 0; 731 } 732 733 static int 734 wpi_shutdown(device_t dev) 735 { 736 struct wpi_softc *sc = device_get_softc(dev); 737 738 wpi_stop(sc); 739 return 0; 740 } 741 742 static int 743 wpi_suspend(device_t dev) 744 { 745 struct wpi_softc *sc = device_get_softc(dev); 746 struct ieee80211com *ic = &sc->sc_ic; 747 748 ieee80211_suspend_all(ic); 749 return 0; 750 } 751 752 static int 753 wpi_resume(device_t dev) 754 { 755 struct wpi_softc *sc = device_get_softc(dev); 756 struct ieee80211com *ic = &sc->sc_ic; 757 758 /* Clear device-specific "PCI retry timeout" register (41h). */ 759 pci_write_config(dev, 0x41, 0, 1); 760 761 ieee80211_resume_all(ic); 762 return 0; 763 } 764 765 /* 766 * Grab exclusive access to NIC memory. 767 */ 768 static int 769 wpi_nic_lock(struct wpi_softc *sc) 770 { 771 int ntries; 772 773 /* Request exclusive access to NIC. */ 774 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 775 776 /* Spin until we actually get the lock. */ 777 for (ntries = 0; ntries < 1000; ntries++) { 778 if ((WPI_READ(sc, WPI_GP_CNTRL) & 779 (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) == 780 WPI_GP_CNTRL_MAC_ACCESS_ENA) 781 return 0; 782 DELAY(10); 783 } 784 785 device_printf(sc->sc_dev, "could not lock memory\n"); 786 787 return ETIMEDOUT; 788 } 789 790 /* 791 * Release lock on NIC memory. 792 */ 793 static __inline void 794 wpi_nic_unlock(struct wpi_softc *sc) 795 { 796 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 797 } 798 799 static __inline uint32_t 800 wpi_prph_read(struct wpi_softc *sc, uint32_t addr) 801 { 802 WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr); 803 WPI_BARRIER_READ_WRITE(sc); 804 return WPI_READ(sc, WPI_PRPH_RDATA); 805 } 806 807 static __inline void 808 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) 809 { 810 WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr); 811 WPI_BARRIER_WRITE(sc); 812 WPI_WRITE(sc, WPI_PRPH_WDATA, data); 813 } 814 815 static __inline void 816 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 817 { 818 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask); 819 } 820 821 static __inline void 822 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 823 { 824 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask); 825 } 826 827 static __inline void 828 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr, 829 const uint32_t *data, uint32_t count) 830 { 831 for (; count != 0; count--, data++, addr += 4) 832 wpi_prph_write(sc, addr, *data); 833 } 834 835 static __inline uint32_t 836 wpi_mem_read(struct wpi_softc *sc, uint32_t addr) 837 { 838 WPI_WRITE(sc, WPI_MEM_RADDR, addr); 839 WPI_BARRIER_READ_WRITE(sc); 840 return WPI_READ(sc, WPI_MEM_RDATA); 841 } 842 843 static __inline void 844 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data, 845 int count) 846 { 847 for (; count > 0; count--, addr += 4) 848 *data++ = wpi_mem_read(sc, addr); 849 } 850 851 static int 852 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count) 853 { 854 uint8_t *out = data; 855 uint32_t val; 856 int error, ntries; 857 858 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 859 860 if ((error = wpi_nic_lock(sc)) != 0) 861 return error; 862 863 for (; count > 0; count -= 2, addr++) { 864 WPI_WRITE(sc, WPI_EEPROM, addr << 2); 865 for (ntries = 0; ntries < 10; ntries++) { 866 val = WPI_READ(sc, WPI_EEPROM); 867 if (val & WPI_EEPROM_READ_VALID) 868 break; 869 DELAY(5); 870 } 871 if (ntries == 10) { 872 device_printf(sc->sc_dev, 873 "timeout reading ROM at 0x%x\n", addr); 874 return ETIMEDOUT; 875 } 876 *out++= val >> 16; 877 if (count > 1) 878 *out ++= val >> 24; 879 } 880 881 wpi_nic_unlock(sc); 882 883 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 884 885 return 0; 886 } 887 888 static void 889 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 890 { 891 if (error != 0) 892 return; 893 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 894 *(bus_addr_t *)arg = segs[0].ds_addr; 895 } 896 897 /* 898 * Allocates a contiguous block of dma memory of the requested size and 899 * alignment. 900 */ 901 static int 902 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 903 void **kvap, bus_size_t size, bus_size_t alignment) 904 { 905 int error; 906 907 dma->tag = NULL; 908 dma->size = size; 909 910 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 911 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 912 1, size, 0, NULL, NULL, &dma->tag); 913 if (error != 0) 914 goto fail; 915 916 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 917 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 918 if (error != 0) 919 goto fail; 920 921 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 922 wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 923 if (error != 0) 924 goto fail; 925 926 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 927 928 if (kvap != NULL) 929 *kvap = dma->vaddr; 930 931 return 0; 932 933 fail: wpi_dma_contig_free(dma); 934 return error; 935 } 936 937 static void 938 wpi_dma_contig_free(struct wpi_dma_info *dma) 939 { 940 if (dma->vaddr != NULL) { 941 bus_dmamap_sync(dma->tag, dma->map, 942 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 943 bus_dmamap_unload(dma->tag, dma->map); 944 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 945 dma->vaddr = NULL; 946 } 947 if (dma->tag != NULL) { 948 bus_dma_tag_destroy(dma->tag); 949 dma->tag = NULL; 950 } 951 } 952 953 /* 954 * Allocate a shared page between host and NIC. 955 */ 956 static int 957 wpi_alloc_shared(struct wpi_softc *sc) 958 { 959 /* Shared buffer must be aligned on a 4KB boundary. */ 960 return wpi_dma_contig_alloc(sc, &sc->shared_dma, 961 (void **)&sc->shared, sizeof (struct wpi_shared), 4096); 962 } 963 964 static void 965 wpi_free_shared(struct wpi_softc *sc) 966 { 967 wpi_dma_contig_free(&sc->shared_dma); 968 } 969 970 /* 971 * Allocate DMA-safe memory for firmware transfer. 972 */ 973 static int 974 wpi_alloc_fwmem(struct wpi_softc *sc) 975 { 976 /* Must be aligned on a 16-byte boundary. */ 977 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 978 WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16); 979 } 980 981 static void 982 wpi_free_fwmem(struct wpi_softc *sc) 983 { 984 wpi_dma_contig_free(&sc->fw_dma); 985 } 986 987 static int 988 wpi_alloc_rx_ring(struct wpi_softc *sc) 989 { 990 struct wpi_rx_ring *ring = &sc->rxq; 991 bus_size_t size; 992 int i, error; 993 994 ring->cur = 0; 995 ring->update = 0; 996 997 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 998 999 /* Allocate RX descriptors (16KB aligned.) */ 1000 size = WPI_RX_RING_COUNT * sizeof (uint32_t); 1001 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1002 (void **)&ring->desc, size, WPI_RING_DMA_ALIGN); 1003 if (error != 0) { 1004 device_printf(sc->sc_dev, 1005 "%s: could not allocate RX ring DMA memory, error %d\n", 1006 __func__, error); 1007 goto fail; 1008 } 1009 1010 /* Create RX buffer DMA tag. */ 1011 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1012 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1013 MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat); 1014 if (error != 0) { 1015 device_printf(sc->sc_dev, 1016 "%s: could not create RX buf DMA tag, error %d\n", 1017 __func__, error); 1018 goto fail; 1019 } 1020 1021 /* 1022 * Allocate and map RX buffers. 1023 */ 1024 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1025 struct wpi_rx_data *data = &ring->data[i]; 1026 bus_addr_t paddr; 1027 1028 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1029 if (error != 0) { 1030 device_printf(sc->sc_dev, 1031 "%s: could not create RX buf DMA map, error %d\n", 1032 __func__, error); 1033 goto fail; 1034 } 1035 1036 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1037 if (data->m == NULL) { 1038 device_printf(sc->sc_dev, 1039 "%s: could not allocate RX mbuf\n", __func__); 1040 error = ENOBUFS; 1041 goto fail; 1042 } 1043 1044 error = bus_dmamap_load(ring->data_dmat, data->map, 1045 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, 1046 &paddr, BUS_DMA_NOWAIT); 1047 if (error != 0 && error != EFBIG) { 1048 device_printf(sc->sc_dev, 1049 "%s: can't map mbuf (error %d)\n", __func__, 1050 error); 1051 goto fail; 1052 } 1053 1054 /* Set physical address of RX buffer. */ 1055 ring->desc[i] = htole32(paddr); 1056 } 1057 1058 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1059 BUS_DMASYNC_PREWRITE); 1060 1061 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1062 1063 return 0; 1064 1065 fail: wpi_free_rx_ring(sc); 1066 1067 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1068 1069 return error; 1070 } 1071 1072 static void 1073 wpi_update_rx_ring(struct wpi_softc *sc) 1074 { 1075 WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7); 1076 } 1077 1078 static void 1079 wpi_update_rx_ring_ps(struct wpi_softc *sc) 1080 { 1081 struct wpi_rx_ring *ring = &sc->rxq; 1082 1083 if (ring->update != 0) { 1084 /* Wait for INT_WAKEUP event. */ 1085 return; 1086 } 1087 1088 WPI_TXQ_LOCK(sc); 1089 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1090 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { 1091 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n", 1092 __func__); 1093 ring->update = 1; 1094 } else { 1095 wpi_update_rx_ring(sc); 1096 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1097 } 1098 WPI_TXQ_UNLOCK(sc); 1099 } 1100 1101 static void 1102 wpi_reset_rx_ring(struct wpi_softc *sc) 1103 { 1104 struct wpi_rx_ring *ring = &sc->rxq; 1105 int ntries; 1106 1107 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1108 1109 if (wpi_nic_lock(sc) == 0) { 1110 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0); 1111 for (ntries = 0; ntries < 1000; ntries++) { 1112 if (WPI_READ(sc, WPI_FH_RX_STATUS) & 1113 WPI_FH_RX_STATUS_IDLE) 1114 break; 1115 DELAY(10); 1116 } 1117 wpi_nic_unlock(sc); 1118 } 1119 1120 ring->cur = 0; 1121 ring->update = 0; 1122 } 1123 1124 static void 1125 wpi_free_rx_ring(struct wpi_softc *sc) 1126 { 1127 struct wpi_rx_ring *ring = &sc->rxq; 1128 int i; 1129 1130 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1131 1132 wpi_dma_contig_free(&ring->desc_dma); 1133 1134 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1135 struct wpi_rx_data *data = &ring->data[i]; 1136 1137 if (data->m != NULL) { 1138 bus_dmamap_sync(ring->data_dmat, data->map, 1139 BUS_DMASYNC_POSTREAD); 1140 bus_dmamap_unload(ring->data_dmat, data->map); 1141 m_freem(data->m); 1142 data->m = NULL; 1143 } 1144 if (data->map != NULL) 1145 bus_dmamap_destroy(ring->data_dmat, data->map); 1146 } 1147 if (ring->data_dmat != NULL) { 1148 bus_dma_tag_destroy(ring->data_dmat); 1149 ring->data_dmat = NULL; 1150 } 1151 } 1152 1153 static int 1154 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid) 1155 { 1156 bus_addr_t paddr; 1157 bus_size_t size; 1158 int i, error; 1159 1160 ring->qid = qid; 1161 ring->queued = 0; 1162 ring->cur = 0; 1163 ring->pending = 0; 1164 ring->update = 0; 1165 1166 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1167 1168 /* Allocate TX descriptors (16KB aligned.) */ 1169 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc); 1170 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1171 size, WPI_RING_DMA_ALIGN); 1172 if (error != 0) { 1173 device_printf(sc->sc_dev, 1174 "%s: could not allocate TX ring DMA memory, error %d\n", 1175 __func__, error); 1176 goto fail; 1177 } 1178 1179 /* Update shared area with ring physical address. */ 1180 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1181 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1182 BUS_DMASYNC_PREWRITE); 1183 1184 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd); 1185 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1186 size, 4); 1187 if (error != 0) { 1188 device_printf(sc->sc_dev, 1189 "%s: could not allocate TX cmd DMA memory, error %d\n", 1190 __func__, error); 1191 goto fail; 1192 } 1193 1194 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1195 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1196 WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 1197 if (error != 0) { 1198 device_printf(sc->sc_dev, 1199 "%s: could not create TX buf DMA tag, error %d\n", 1200 __func__, error); 1201 goto fail; 1202 } 1203 1204 paddr = ring->cmd_dma.paddr; 1205 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1206 struct wpi_tx_data *data = &ring->data[i]; 1207 1208 data->cmd_paddr = paddr; 1209 paddr += sizeof (struct wpi_tx_cmd); 1210 1211 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1212 if (error != 0) { 1213 device_printf(sc->sc_dev, 1214 "%s: could not create TX buf DMA map, error %d\n", 1215 __func__, error); 1216 goto fail; 1217 } 1218 } 1219 1220 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1221 1222 return 0; 1223 1224 fail: wpi_free_tx_ring(sc, ring); 1225 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1226 return error; 1227 } 1228 1229 static void 1230 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1231 { 1232 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 1233 } 1234 1235 static void 1236 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1237 { 1238 1239 if (ring->update != 0) { 1240 /* Wait for INT_WAKEUP event. */ 1241 return; 1242 } 1243 1244 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1245 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { 1246 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n", 1247 __func__, ring->qid); 1248 ring->update = 1; 1249 } else { 1250 wpi_update_tx_ring(sc, ring); 1251 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1252 } 1253 } 1254 1255 static void 1256 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1257 { 1258 int i; 1259 1260 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1261 1262 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1263 struct wpi_tx_data *data = &ring->data[i]; 1264 1265 if (data->m != NULL) { 1266 bus_dmamap_sync(ring->data_dmat, data->map, 1267 BUS_DMASYNC_POSTWRITE); 1268 bus_dmamap_unload(ring->data_dmat, data->map); 1269 m_freem(data->m); 1270 data->m = NULL; 1271 } 1272 if (data->ni != NULL) { 1273 ieee80211_free_node(data->ni); 1274 data->ni = NULL; 1275 } 1276 } 1277 /* Clear TX descriptors. */ 1278 memset(ring->desc, 0, ring->desc_dma.size); 1279 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1280 BUS_DMASYNC_PREWRITE); 1281 ring->queued = 0; 1282 ring->cur = 0; 1283 ring->pending = 0; 1284 ring->update = 0; 1285 } 1286 1287 static void 1288 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1289 { 1290 int i; 1291 1292 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1293 1294 wpi_dma_contig_free(&ring->desc_dma); 1295 wpi_dma_contig_free(&ring->cmd_dma); 1296 1297 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1298 struct wpi_tx_data *data = &ring->data[i]; 1299 1300 if (data->m != NULL) { 1301 bus_dmamap_sync(ring->data_dmat, data->map, 1302 BUS_DMASYNC_POSTWRITE); 1303 bus_dmamap_unload(ring->data_dmat, data->map); 1304 m_freem(data->m); 1305 } 1306 if (data->map != NULL) 1307 bus_dmamap_destroy(ring->data_dmat, data->map); 1308 } 1309 if (ring->data_dmat != NULL) { 1310 bus_dma_tag_destroy(ring->data_dmat); 1311 ring->data_dmat = NULL; 1312 } 1313 } 1314 1315 /* 1316 * Extract various information from EEPROM. 1317 */ 1318 static int 1319 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 1320 { 1321 #define WPI_CHK(res) do { \ 1322 if ((error = res) != 0) \ 1323 goto fail; \ 1324 } while (0) 1325 uint8_t i; 1326 int error; 1327 1328 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1329 1330 /* Adapter has to be powered on for EEPROM access to work. */ 1331 if ((error = wpi_apm_init(sc)) != 0) { 1332 device_printf(sc->sc_dev, 1333 "%s: could not power ON adapter, error %d\n", __func__, 1334 error); 1335 return error; 1336 } 1337 1338 if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) { 1339 device_printf(sc->sc_dev, "bad EEPROM signature\n"); 1340 error = EIO; 1341 goto fail; 1342 } 1343 /* Clear HW ownership of EEPROM. */ 1344 WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER); 1345 1346 /* Read the hardware capabilities, revision and SKU type. */ 1347 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap, 1348 sizeof(sc->cap))); 1349 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 1350 sizeof(sc->rev))); 1351 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1352 sizeof(sc->type))); 1353 1354 sc->rev = le16toh(sc->rev); 1355 DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, 1356 sc->rev, sc->type); 1357 1358 /* Read the regulatory domain (4 ASCII characters.) */ 1359 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 1360 sizeof(sc->domain))); 1361 1362 /* Read MAC address. */ 1363 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 1364 IEEE80211_ADDR_LEN)); 1365 1366 /* Read the list of authorized channels. */ 1367 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 1368 WPI_CHK(wpi_read_eeprom_channels(sc, i)); 1369 1370 /* Read the list of TX power groups. */ 1371 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 1372 WPI_CHK(wpi_read_eeprom_group(sc, i)); 1373 1374 fail: wpi_apm_stop(sc); /* Power OFF adapter. */ 1375 1376 DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, 1377 __func__); 1378 1379 return error; 1380 #undef WPI_CHK 1381 } 1382 1383 /* 1384 * Translate EEPROM flags to net80211. 1385 */ 1386 static uint32_t 1387 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel) 1388 { 1389 uint32_t nflags; 1390 1391 nflags = 0; 1392 if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0) 1393 nflags |= IEEE80211_CHAN_PASSIVE; 1394 if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0) 1395 nflags |= IEEE80211_CHAN_NOADHOC; 1396 if (channel->flags & WPI_EEPROM_CHAN_RADAR) { 1397 nflags |= IEEE80211_CHAN_DFS; 1398 /* XXX apparently IBSS may still be marked */ 1399 nflags |= IEEE80211_CHAN_NOADHOC; 1400 } 1401 1402 /* XXX HOSTAP uses WPI_MODE_IBSS */ 1403 if (nflags & IEEE80211_CHAN_NOADHOC) 1404 nflags |= IEEE80211_CHAN_NOHOSTAP; 1405 1406 return nflags; 1407 } 1408 1409 static void 1410 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans, 1411 int *nchans, struct ieee80211_channel chans[]) 1412 { 1413 struct wpi_eeprom_chan *channels = sc->eeprom_channels[n]; 1414 const struct wpi_chan_band *band = &wpi_bands[n]; 1415 struct ieee80211_channel *c; 1416 uint32_t nflags; 1417 uint8_t chan, i; 1418 1419 for (i = 0; i < band->nchan; i++) { 1420 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 1421 DPRINTF(sc, WPI_DEBUG_EEPROM, 1422 "Channel Not Valid: %d, band %d\n", 1423 band->chan[i],n); 1424 continue; 1425 } 1426 1427 if (*nchans >= maxchans) 1428 break; 1429 1430 chan = band->chan[i]; 1431 nflags = wpi_eeprom_channel_flags(&channels[i]); 1432 1433 c = &chans[(*nchans)++]; 1434 c->ic_ieee = chan; 1435 c->ic_maxregpower = channels[i].maxpwr; 1436 c->ic_maxpower = 2*c->ic_maxregpower; 1437 1438 if (n == 0) { /* 2GHz band */ 1439 c->ic_freq = ieee80211_ieee2mhz(chan, 1440 IEEE80211_CHAN_G); 1441 1442 /* G =>'s B is supported */ 1443 c->ic_flags = IEEE80211_CHAN_B | nflags; 1444 1445 if (*nchans >= maxchans) 1446 break; 1447 1448 c = &chans[(*nchans)++]; 1449 c[0] = c[-1]; 1450 c->ic_flags = IEEE80211_CHAN_G | nflags; 1451 } else { /* 5GHz band */ 1452 c->ic_freq = ieee80211_ieee2mhz(chan, 1453 IEEE80211_CHAN_A); 1454 1455 c->ic_flags = IEEE80211_CHAN_A | nflags; 1456 } 1457 1458 /* Save maximum allowed TX power for this channel. */ 1459 sc->maxpwr[chan] = channels[i].maxpwr; 1460 1461 DPRINTF(sc, WPI_DEBUG_EEPROM, 1462 "adding chan %d (%dMHz) flags=0x%x maxpwr=%d passive=%d," 1463 " offset %d\n", chan, c->ic_freq, 1464 channels[i].flags, sc->maxpwr[chan], 1465 IEEE80211_IS_CHAN_PASSIVE(c), *nchans); 1466 } 1467 } 1468 1469 /** 1470 * Read the eeprom to find out what channels are valid for the given 1471 * band and update net80211 with what we find. 1472 */ 1473 static int 1474 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n) 1475 { 1476 struct ieee80211com *ic = &sc->sc_ic; 1477 const struct wpi_chan_band *band = &wpi_bands[n]; 1478 int error; 1479 1480 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1481 1482 error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n], 1483 band->nchan * sizeof (struct wpi_eeprom_chan)); 1484 if (error != 0) { 1485 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1486 return error; 1487 } 1488 1489 wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 1490 ic->ic_channels); 1491 1492 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 1493 1494 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1495 1496 return 0; 1497 } 1498 1499 static struct wpi_eeprom_chan * 1500 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c) 1501 { 1502 int i, j; 1503 1504 for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++) 1505 for (i = 0; i < wpi_bands[j].nchan; i++) 1506 if (wpi_bands[j].chan[i] == c->ic_ieee && 1507 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) 1508 return &sc->eeprom_channels[j][i]; 1509 1510 return NULL; 1511 } 1512 1513 static void 1514 wpi_getradiocaps(struct ieee80211com *ic, 1515 int maxchans, int *nchans, struct ieee80211_channel chans[]) 1516 { 1517 struct wpi_softc *sc = ic->ic_softc; 1518 int i; 1519 1520 /* Parse the list of authorized channels. */ 1521 for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++) 1522 wpi_read_eeprom_band(sc, i, maxchans, nchans, chans); 1523 } 1524 1525 /* 1526 * Enforce flags read from EEPROM. 1527 */ 1528 static int 1529 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 1530 int nchan, struct ieee80211_channel chans[]) 1531 { 1532 struct wpi_softc *sc = ic->ic_softc; 1533 int i; 1534 1535 for (i = 0; i < nchan; i++) { 1536 struct ieee80211_channel *c = &chans[i]; 1537 struct wpi_eeprom_chan *channel; 1538 1539 channel = wpi_find_eeprom_channel(sc, c); 1540 if (channel == NULL) { 1541 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 1542 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 1543 return EINVAL; 1544 } 1545 c->ic_flags |= wpi_eeprom_channel_flags(channel); 1546 } 1547 1548 return 0; 1549 } 1550 1551 static int 1552 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n) 1553 { 1554 struct wpi_power_group *group = &sc->groups[n]; 1555 struct wpi_eeprom_group rgroup; 1556 int i, error; 1557 1558 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1559 1560 if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, 1561 &rgroup, sizeof rgroup)) != 0) { 1562 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1563 return error; 1564 } 1565 1566 /* Save TX power group information. */ 1567 group->chan = rgroup.chan; 1568 group->maxpwr = rgroup.maxpwr; 1569 /* Retrieve temperature at which the samples were taken. */ 1570 group->temp = (int16_t)le16toh(rgroup.temp); 1571 1572 DPRINTF(sc, WPI_DEBUG_EEPROM, 1573 "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan, 1574 group->maxpwr, group->temp); 1575 1576 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 1577 group->samples[i].index = rgroup.samples[i].index; 1578 group->samples[i].power = rgroup.samples[i].power; 1579 1580 DPRINTF(sc, WPI_DEBUG_EEPROM, 1581 "\tsample %d: index=%d power=%d\n", i, 1582 group->samples[i].index, group->samples[i].power); 1583 } 1584 1585 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1586 1587 return 0; 1588 } 1589 1590 static __inline uint8_t 1591 wpi_add_node_entry_adhoc(struct wpi_softc *sc) 1592 { 1593 uint8_t newid = WPI_ID_IBSS_MIN; 1594 1595 for (; newid <= WPI_ID_IBSS_MAX; newid++) { 1596 if ((sc->nodesmsk & (1 << newid)) == 0) { 1597 sc->nodesmsk |= 1 << newid; 1598 return newid; 1599 } 1600 } 1601 1602 return WPI_ID_UNDEFINED; 1603 } 1604 1605 static __inline uint8_t 1606 wpi_add_node_entry_sta(struct wpi_softc *sc) 1607 { 1608 sc->nodesmsk |= 1 << WPI_ID_BSS; 1609 1610 return WPI_ID_BSS; 1611 } 1612 1613 static __inline int 1614 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id) 1615 { 1616 if (id == WPI_ID_UNDEFINED) 1617 return 0; 1618 1619 return (sc->nodesmsk >> id) & 1; 1620 } 1621 1622 static __inline void 1623 wpi_clear_node_table(struct wpi_softc *sc) 1624 { 1625 sc->nodesmsk = 0; 1626 } 1627 1628 static __inline void 1629 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id) 1630 { 1631 sc->nodesmsk &= ~(1 << id); 1632 } 1633 1634 static struct ieee80211_node * 1635 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1636 { 1637 struct wpi_node *wn; 1638 1639 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, 1640 M_NOWAIT | M_ZERO); 1641 1642 if (wn == NULL) 1643 return NULL; 1644 1645 wn->id = WPI_ID_UNDEFINED; 1646 1647 return &wn->ni; 1648 } 1649 1650 static void 1651 wpi_node_free(struct ieee80211_node *ni) 1652 { 1653 struct wpi_softc *sc = ni->ni_ic->ic_softc; 1654 struct wpi_node *wn = WPI_NODE(ni); 1655 1656 if (wn->id != WPI_ID_UNDEFINED) { 1657 WPI_NT_LOCK(sc); 1658 if (wpi_check_node_entry(sc, wn->id)) { 1659 wpi_del_node_entry(sc, wn->id); 1660 wpi_del_node(sc, ni); 1661 } 1662 WPI_NT_UNLOCK(sc); 1663 } 1664 1665 sc->sc_node_free(ni); 1666 } 1667 1668 static __inline int 1669 wpi_check_bss_filter(struct wpi_softc *sc) 1670 { 1671 return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0; 1672 } 1673 1674 static void 1675 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 1676 const struct ieee80211_rx_stats *rxs, 1677 int rssi, int nf) 1678 { 1679 struct ieee80211vap *vap = ni->ni_vap; 1680 struct wpi_softc *sc = vap->iv_ic->ic_softc; 1681 struct wpi_vap *wvp = WPI_VAP(vap); 1682 uint64_t ni_tstamp, rx_tstamp; 1683 1684 wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf); 1685 1686 if (vap->iv_state == IEEE80211_S_RUN && 1687 (subtype == IEEE80211_FC0_SUBTYPE_BEACON || 1688 subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) { 1689 ni_tstamp = le64toh(ni->ni_tstamp.tsf); 1690 rx_tstamp = le64toh(sc->rx_tstamp); 1691 1692 if (ni_tstamp >= rx_tstamp) { 1693 DPRINTF(sc, WPI_DEBUG_STATE, 1694 "ibss merge, tsf %ju tstamp %ju\n", 1695 (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp); 1696 (void) ieee80211_ibss_merge(ni); 1697 } 1698 } 1699 } 1700 1701 static void 1702 wpi_restore_node(void *arg, struct ieee80211_node *ni) 1703 { 1704 struct wpi_softc *sc = arg; 1705 struct wpi_node *wn = WPI_NODE(ni); 1706 int error; 1707 1708 WPI_NT_LOCK(sc); 1709 if (wn->id != WPI_ID_UNDEFINED) { 1710 wn->id = WPI_ID_UNDEFINED; 1711 if ((error = wpi_add_ibss_node(sc, ni)) != 0) { 1712 device_printf(sc->sc_dev, 1713 "%s: could not add IBSS node, error %d\n", 1714 __func__, error); 1715 } 1716 } 1717 WPI_NT_UNLOCK(sc); 1718 } 1719 1720 static void 1721 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp) 1722 { 1723 struct ieee80211com *ic = &sc->sc_ic; 1724 1725 /* Set group keys once. */ 1726 WPI_NT_LOCK(sc); 1727 wvp->wv_gtk = 0; 1728 WPI_NT_UNLOCK(sc); 1729 1730 ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc); 1731 ieee80211_crypto_reload_keys(ic); 1732 } 1733 1734 /** 1735 * Called by net80211 when ever there is a change to 80211 state machine 1736 */ 1737 static int 1738 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1739 { 1740 struct wpi_vap *wvp = WPI_VAP(vap); 1741 struct ieee80211com *ic = vap->iv_ic; 1742 struct wpi_softc *sc = ic->ic_softc; 1743 int error = 0; 1744 1745 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1746 1747 WPI_TXQ_LOCK(sc); 1748 if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) { 1749 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1750 WPI_TXQ_UNLOCK(sc); 1751 1752 return ENXIO; 1753 } 1754 WPI_TXQ_UNLOCK(sc); 1755 1756 DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__, 1757 ieee80211_state_name[vap->iv_state], 1758 ieee80211_state_name[nstate]); 1759 1760 if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) { 1761 if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) { 1762 device_printf(sc->sc_dev, 1763 "%s: could not set power saving level\n", 1764 __func__); 1765 return error; 1766 } 1767 1768 wpi_set_led(sc, WPI_LED_LINK, 1, 0); 1769 } 1770 1771 switch (nstate) { 1772 case IEEE80211_S_SCAN: 1773 WPI_RXON_LOCK(sc); 1774 if (wpi_check_bss_filter(sc) != 0) { 1775 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1776 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 1777 device_printf(sc->sc_dev, 1778 "%s: could not send RXON\n", __func__); 1779 } 1780 } 1781 WPI_RXON_UNLOCK(sc); 1782 break; 1783 1784 case IEEE80211_S_ASSOC: 1785 if (vap->iv_state != IEEE80211_S_RUN) 1786 break; 1787 /* FALLTHROUGH */ 1788 case IEEE80211_S_AUTH: 1789 /* 1790 * NB: do not optimize AUTH -> AUTH state transmission - 1791 * this will break powersave with non-QoS AP! 1792 */ 1793 1794 /* 1795 * The node must be registered in the firmware before auth. 1796 * Also the associd must be cleared on RUN -> ASSOC 1797 * transitions. 1798 */ 1799 if ((error = wpi_auth(sc, vap)) != 0) { 1800 device_printf(sc->sc_dev, 1801 "%s: could not move to AUTH state, error %d\n", 1802 __func__, error); 1803 } 1804 break; 1805 1806 case IEEE80211_S_RUN: 1807 /* 1808 * RUN -> RUN transition: 1809 * STA mode: Just restart the timers. 1810 * IBSS mode: Process IBSS merge. 1811 */ 1812 if (vap->iv_state == IEEE80211_S_RUN) { 1813 if (vap->iv_opmode != IEEE80211_M_IBSS) { 1814 WPI_RXON_LOCK(sc); 1815 wpi_calib_timeout(sc); 1816 WPI_RXON_UNLOCK(sc); 1817 break; 1818 } else { 1819 /* 1820 * Drop the BSS_FILTER bit 1821 * (there is no another way to change bssid). 1822 */ 1823 WPI_RXON_LOCK(sc); 1824 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1825 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 1826 device_printf(sc->sc_dev, 1827 "%s: could not send RXON\n", 1828 __func__); 1829 } 1830 WPI_RXON_UNLOCK(sc); 1831 1832 /* Restore all what was lost. */ 1833 wpi_restore_node_table(sc, wvp); 1834 1835 /* XXX set conditionally? */ 1836 wpi_updateedca(ic); 1837 } 1838 } 1839 1840 /* 1841 * !RUN -> RUN requires setting the association id 1842 * which is done with a firmware cmd. We also defer 1843 * starting the timers until that work is done. 1844 */ 1845 if ((error = wpi_run(sc, vap)) != 0) { 1846 device_printf(sc->sc_dev, 1847 "%s: could not move to RUN state\n", __func__); 1848 } 1849 break; 1850 1851 default: 1852 break; 1853 } 1854 if (error != 0) { 1855 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1856 return error; 1857 } 1858 1859 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1860 1861 return wvp->wv_newstate(vap, nstate, arg); 1862 } 1863 1864 static void 1865 wpi_calib_timeout(void *arg) 1866 { 1867 struct wpi_softc *sc = arg; 1868 1869 if (wpi_check_bss_filter(sc) == 0) 1870 return; 1871 1872 wpi_power_calibration(sc); 1873 1874 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 1875 } 1876 1877 static __inline uint8_t 1878 rate2plcp(const uint8_t rate) 1879 { 1880 switch (rate) { 1881 case 12: return 0xd; 1882 case 18: return 0xf; 1883 case 24: return 0x5; 1884 case 36: return 0x7; 1885 case 48: return 0x9; 1886 case 72: return 0xb; 1887 case 96: return 0x1; 1888 case 108: return 0x3; 1889 case 2: return 10; 1890 case 4: return 20; 1891 case 11: return 55; 1892 case 22: return 110; 1893 default: return 0; 1894 } 1895 } 1896 1897 static __inline uint8_t 1898 plcp2rate(const uint8_t plcp) 1899 { 1900 switch (plcp) { 1901 case 0xd: return 12; 1902 case 0xf: return 18; 1903 case 0x5: return 24; 1904 case 0x7: return 36; 1905 case 0x9: return 48; 1906 case 0xb: return 72; 1907 case 0x1: return 96; 1908 case 0x3: return 108; 1909 case 10: return 2; 1910 case 20: return 4; 1911 case 55: return 11; 1912 case 110: return 22; 1913 default: return 0; 1914 } 1915 } 1916 1917 /* Quickly determine if a given rate is CCK or OFDM. */ 1918 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1919 1920 static void 1921 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1922 struct wpi_rx_data *data) 1923 { 1924 struct ieee80211com *ic = &sc->sc_ic; 1925 struct wpi_rx_ring *ring = &sc->rxq; 1926 struct wpi_rx_stat *stat; 1927 struct wpi_rx_head *head; 1928 struct wpi_rx_tail *tail; 1929 struct ieee80211_frame *wh; 1930 struct ieee80211_node *ni; 1931 struct mbuf *m, *m1; 1932 bus_addr_t paddr; 1933 uint32_t flags; 1934 uint16_t len; 1935 int error; 1936 1937 stat = (struct wpi_rx_stat *)(desc + 1); 1938 1939 if (__predict_false(stat->len > WPI_STAT_MAXLEN)) { 1940 device_printf(sc->sc_dev, "invalid RX statistic header\n"); 1941 goto fail1; 1942 } 1943 1944 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1945 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1946 len = le16toh(head->len); 1947 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len); 1948 flags = le32toh(tail->flags); 1949 1950 DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d" 1951 " rate %x chan %d tstamp %ju\n", __func__, ring->cur, 1952 le32toh(desc->len), len, (int8_t)stat->rssi, 1953 head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp)); 1954 1955 /* Discard frames with a bad FCS early. */ 1956 if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1957 DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n", 1958 __func__, flags); 1959 goto fail1; 1960 } 1961 /* Discard frames that are too short. */ 1962 if (len < sizeof (struct ieee80211_frame_ack)) { 1963 DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n", 1964 __func__, len); 1965 goto fail1; 1966 } 1967 1968 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1969 if (__predict_false(m1 == NULL)) { 1970 DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n", 1971 __func__); 1972 goto fail1; 1973 } 1974 bus_dmamap_unload(ring->data_dmat, data->map); 1975 1976 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 1977 MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1978 if (__predict_false(error != 0 && error != EFBIG)) { 1979 device_printf(sc->sc_dev, 1980 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1981 m_freem(m1); 1982 1983 /* Try to reload the old mbuf. */ 1984 error = bus_dmamap_load(ring->data_dmat, data->map, 1985 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, 1986 &paddr, BUS_DMA_NOWAIT); 1987 if (error != 0 && error != EFBIG) { 1988 panic("%s: could not load old RX mbuf", __func__); 1989 } 1990 /* Physical address may have changed. */ 1991 ring->desc[ring->cur] = htole32(paddr); 1992 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 1993 BUS_DMASYNC_PREWRITE); 1994 goto fail1; 1995 } 1996 1997 m = data->m; 1998 data->m = m1; 1999 /* Update RX descriptor. */ 2000 ring->desc[ring->cur] = htole32(paddr); 2001 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2002 BUS_DMASYNC_PREWRITE); 2003 2004 /* Finalize mbuf. */ 2005 m->m_data = (caddr_t)(head + 1); 2006 m->m_pkthdr.len = m->m_len = len; 2007 2008 /* Grab a reference to the source node. */ 2009 wh = mtod(m, struct ieee80211_frame *); 2010 2011 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 2012 (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) { 2013 /* Check whether decryption was successful or not. */ 2014 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) { 2015 DPRINTF(sc, WPI_DEBUG_RECV, 2016 "CCMP decryption failed 0x%x\n", flags); 2017 goto fail2; 2018 } 2019 m->m_flags |= M_WEP; 2020 } 2021 2022 if (len >= sizeof(struct ieee80211_frame_min)) 2023 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2024 else 2025 ni = NULL; 2026 2027 sc->rx_tstamp = tail->tstamp; 2028 2029 if (ieee80211_radiotap_active(ic)) { 2030 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 2031 2032 tap->wr_flags = 0; 2033 if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE)) 2034 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2035 tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET); 2036 tap->wr_dbm_antnoise = WPI_RSSI_OFFSET; 2037 tap->wr_tsft = tail->tstamp; 2038 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 2039 tap->wr_rate = plcp2rate(head->plcp); 2040 } 2041 2042 WPI_UNLOCK(sc); 2043 2044 /* Send the frame to the 802.11 layer. */ 2045 if (ni != NULL) { 2046 (void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET); 2047 /* Node is no longer needed. */ 2048 ieee80211_free_node(ni); 2049 } else 2050 (void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET); 2051 2052 WPI_LOCK(sc); 2053 2054 return; 2055 2056 fail2: m_freem(m); 2057 2058 fail1: counter_u64_add(ic->ic_ierrors, 1); 2059 } 2060 2061 static void 2062 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc, 2063 struct wpi_rx_data *data) 2064 { 2065 /* Ignore */ 2066 } 2067 2068 static void 2069 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 2070 { 2071 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 2072 struct wpi_tx_data *data = &ring->data[desc->idx]; 2073 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 2074 struct mbuf *m; 2075 struct ieee80211_node *ni; 2076 struct ieee80211vap *vap; 2077 struct ieee80211com *ic; 2078 uint32_t status = le32toh(stat->status); 2079 int ackfailcnt = stat->ackfailcnt / WPI_NTRIES_DEFAULT; 2080 2081 KASSERT(data->ni != NULL, ("no node")); 2082 KASSERT(data->m != NULL, ("no mbuf")); 2083 2084 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 2085 2086 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: " 2087 "qid %d idx %d retries %d btkillcnt %d rate %x duration %d " 2088 "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt, 2089 stat->btkillcnt, stat->rate, le32toh(stat->duration), status); 2090 2091 /* Unmap and free mbuf. */ 2092 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 2093 bus_dmamap_unload(ring->data_dmat, data->map); 2094 m = data->m, data->m = NULL; 2095 ni = data->ni, data->ni = NULL; 2096 vap = ni->ni_vap; 2097 ic = vap->iv_ic; 2098 2099 /* 2100 * Update rate control statistics for the node. 2101 */ 2102 if (status & WPI_TX_STATUS_FAIL) { 2103 ieee80211_ratectl_tx_complete(vap, ni, 2104 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 2105 } else 2106 ieee80211_ratectl_tx_complete(vap, ni, 2107 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 2108 2109 ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0); 2110 2111 WPI_TXQ_STATE_LOCK(sc); 2112 if (--ring->queued > 0) 2113 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc); 2114 else 2115 callout_stop(&sc->tx_timeout); 2116 WPI_TXQ_STATE_UNLOCK(sc); 2117 2118 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 2119 } 2120 2121 /* 2122 * Process a "command done" firmware notification. This is where we wakeup 2123 * processes waiting for a synchronous command completion. 2124 */ 2125 static void 2126 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 2127 { 2128 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; 2129 struct wpi_tx_data *data; 2130 struct wpi_tx_cmd *cmd; 2131 2132 DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x " 2133 "type %s len %d\n", desc->qid, desc->idx, 2134 desc->flags, wpi_cmd_str(desc->type), 2135 le32toh(desc->len)); 2136 2137 if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM) 2138 return; /* Not a command ack. */ 2139 2140 KASSERT(ring->queued == 0, ("ring->queued must be 0")); 2141 2142 data = &ring->data[desc->idx]; 2143 cmd = &ring->cmd[desc->idx]; 2144 2145 /* If the command was mapped in an mbuf, free it. */ 2146 if (data->m != NULL) { 2147 bus_dmamap_sync(ring->data_dmat, data->map, 2148 BUS_DMASYNC_POSTWRITE); 2149 bus_dmamap_unload(ring->data_dmat, data->map); 2150 m_freem(data->m); 2151 data->m = NULL; 2152 } 2153 2154 wakeup(cmd); 2155 2156 if (desc->type == WPI_CMD_SET_POWER_MODE) { 2157 struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data; 2158 2159 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 2160 BUS_DMASYNC_POSTREAD); 2161 2162 WPI_TXQ_LOCK(sc); 2163 if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) { 2164 sc->sc_update_rx_ring = wpi_update_rx_ring_ps; 2165 sc->sc_update_tx_ring = wpi_update_tx_ring_ps; 2166 } else { 2167 sc->sc_update_rx_ring = wpi_update_rx_ring; 2168 sc->sc_update_tx_ring = wpi_update_tx_ring; 2169 } 2170 WPI_TXQ_UNLOCK(sc); 2171 } 2172 } 2173 2174 static void 2175 wpi_notif_intr(struct wpi_softc *sc) 2176 { 2177 struct ieee80211com *ic = &sc->sc_ic; 2178 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2179 uint32_t hw; 2180 2181 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 2182 BUS_DMASYNC_POSTREAD); 2183 2184 hw = le32toh(sc->shared->next) & 0xfff; 2185 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 2186 2187 while (sc->rxq.cur != hw) { 2188 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 2189 2190 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2191 struct wpi_rx_desc *desc; 2192 2193 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2194 BUS_DMASYNC_POSTREAD); 2195 desc = mtod(data->m, struct wpi_rx_desc *); 2196 2197 DPRINTF(sc, WPI_DEBUG_NOTIFY, 2198 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 2199 __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags, 2200 desc->type, wpi_cmd_str(desc->type), le32toh(desc->len)); 2201 2202 if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) { 2203 /* Reply to a command. */ 2204 wpi_cmd_done(sc, desc); 2205 } 2206 2207 switch (desc->type) { 2208 case WPI_RX_DONE: 2209 /* An 802.11 frame has been received. */ 2210 wpi_rx_done(sc, desc, data); 2211 2212 if (__predict_false(sc->sc_running == 0)) { 2213 /* wpi_stop() was called. */ 2214 return; 2215 } 2216 2217 break; 2218 2219 case WPI_TX_DONE: 2220 /* An 802.11 frame has been transmitted. */ 2221 wpi_tx_done(sc, desc); 2222 break; 2223 2224 case WPI_RX_STATISTICS: 2225 case WPI_BEACON_STATISTICS: 2226 wpi_rx_statistics(sc, desc, data); 2227 break; 2228 2229 case WPI_BEACON_MISSED: 2230 { 2231 struct wpi_beacon_missed *miss = 2232 (struct wpi_beacon_missed *)(desc + 1); 2233 uint32_t expected, misses, received, threshold; 2234 2235 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2236 BUS_DMASYNC_POSTREAD); 2237 2238 misses = le32toh(miss->consecutive); 2239 expected = le32toh(miss->expected); 2240 received = le32toh(miss->received); 2241 threshold = MAX(2, vap->iv_bmissthreshold); 2242 2243 DPRINTF(sc, WPI_DEBUG_BMISS, 2244 "%s: beacons missed %u(%u) (received %u/%u)\n", 2245 __func__, misses, le32toh(miss->total), received, 2246 expected); 2247 2248 if (misses >= threshold || 2249 (received == 0 && expected >= threshold)) { 2250 WPI_RXON_LOCK(sc); 2251 if (callout_pending(&sc->scan_timeout)) { 2252 wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL, 2253 0, 1); 2254 } 2255 WPI_RXON_UNLOCK(sc); 2256 if (vap->iv_state == IEEE80211_S_RUN && 2257 (ic->ic_flags & IEEE80211_F_SCAN) == 0) 2258 ieee80211_beacon_miss(ic); 2259 } 2260 2261 break; 2262 } 2263 #ifdef WPI_DEBUG 2264 case WPI_BEACON_SENT: 2265 { 2266 struct wpi_tx_stat *stat = 2267 (struct wpi_tx_stat *)(desc + 1); 2268 uint64_t *tsf = (uint64_t *)(stat + 1); 2269 uint32_t *mode = (uint32_t *)(tsf + 1); 2270 2271 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2272 BUS_DMASYNC_POSTREAD); 2273 2274 DPRINTF(sc, WPI_DEBUG_BEACON, 2275 "beacon sent: rts %u, ack %u, btkill %u, rate %u, " 2276 "duration %u, status %x, tsf %ju, mode %x\n", 2277 stat->rtsfailcnt, stat->ackfailcnt, 2278 stat->btkillcnt, stat->rate, le32toh(stat->duration), 2279 le32toh(stat->status), le64toh(*tsf), 2280 le32toh(*mode)); 2281 2282 break; 2283 } 2284 #endif 2285 case WPI_UC_READY: 2286 { 2287 struct wpi_ucode_info *uc = 2288 (struct wpi_ucode_info *)(desc + 1); 2289 2290 /* The microcontroller is ready. */ 2291 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2292 BUS_DMASYNC_POSTREAD); 2293 DPRINTF(sc, WPI_DEBUG_RESET, 2294 "microcode alive notification version=%d.%d " 2295 "subtype=%x alive=%x\n", uc->major, uc->minor, 2296 uc->subtype, le32toh(uc->valid)); 2297 2298 if (le32toh(uc->valid) != 1) { 2299 device_printf(sc->sc_dev, 2300 "microcontroller initialization failed\n"); 2301 wpi_stop_locked(sc); 2302 return; 2303 } 2304 /* Save the address of the error log in SRAM. */ 2305 sc->errptr = le32toh(uc->errptr); 2306 break; 2307 } 2308 case WPI_STATE_CHANGED: 2309 { 2310 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2311 BUS_DMASYNC_POSTREAD); 2312 2313 uint32_t *status = (uint32_t *)(desc + 1); 2314 2315 DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n", 2316 le32toh(*status)); 2317 2318 if (le32toh(*status) & 1) { 2319 WPI_NT_LOCK(sc); 2320 wpi_clear_node_table(sc); 2321 WPI_NT_UNLOCK(sc); 2322 ieee80211_runtask(ic, 2323 &sc->sc_radiooff_task); 2324 return; 2325 } 2326 break; 2327 } 2328 #ifdef WPI_DEBUG 2329 case WPI_START_SCAN: 2330 { 2331 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2332 BUS_DMASYNC_POSTREAD); 2333 2334 struct wpi_start_scan *scan = 2335 (struct wpi_start_scan *)(desc + 1); 2336 DPRINTF(sc, WPI_DEBUG_SCAN, 2337 "%s: scanning channel %d status %x\n", 2338 __func__, scan->chan, le32toh(scan->status)); 2339 2340 break; 2341 } 2342 #endif 2343 case WPI_STOP_SCAN: 2344 { 2345 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2346 BUS_DMASYNC_POSTREAD); 2347 2348 struct wpi_stop_scan *scan = 2349 (struct wpi_stop_scan *)(desc + 1); 2350 2351 DPRINTF(sc, WPI_DEBUG_SCAN, 2352 "scan finished nchan=%d status=%d chan=%d\n", 2353 scan->nchan, scan->status, scan->chan); 2354 2355 WPI_RXON_LOCK(sc); 2356 callout_stop(&sc->scan_timeout); 2357 WPI_RXON_UNLOCK(sc); 2358 if (scan->status == WPI_SCAN_ABORTED) 2359 ieee80211_cancel_scan(vap); 2360 else 2361 ieee80211_scan_next(vap); 2362 break; 2363 } 2364 } 2365 2366 if (sc->rxq.cur % 8 == 0) { 2367 /* Tell the firmware what we have processed. */ 2368 sc->sc_update_rx_ring(sc); 2369 } 2370 } 2371 } 2372 2373 /* 2374 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2375 * from power-down sleep mode. 2376 */ 2377 static void 2378 wpi_wakeup_intr(struct wpi_softc *sc) 2379 { 2380 int qid; 2381 2382 DPRINTF(sc, WPI_DEBUG_PWRSAVE, 2383 "%s: ucode wakeup from power-down sleep\n", __func__); 2384 2385 /* Wakeup RX and TX rings. */ 2386 if (sc->rxq.update) { 2387 sc->rxq.update = 0; 2388 wpi_update_rx_ring(sc); 2389 } 2390 WPI_TXQ_LOCK(sc); 2391 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) { 2392 struct wpi_tx_ring *ring = &sc->txq[qid]; 2393 2394 if (ring->update) { 2395 ring->update = 0; 2396 wpi_update_tx_ring(sc, ring); 2397 } 2398 } 2399 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 2400 WPI_TXQ_UNLOCK(sc); 2401 } 2402 2403 /* 2404 * This function prints firmware registers 2405 */ 2406 #ifdef WPI_DEBUG 2407 static void 2408 wpi_debug_registers(struct wpi_softc *sc) 2409 { 2410 size_t i; 2411 static const uint32_t csr_tbl[] = { 2412 WPI_HW_IF_CONFIG, 2413 WPI_INT, 2414 WPI_INT_MASK, 2415 WPI_FH_INT, 2416 WPI_GPIO_IN, 2417 WPI_RESET, 2418 WPI_GP_CNTRL, 2419 WPI_EEPROM, 2420 WPI_EEPROM_GP, 2421 WPI_GIO, 2422 WPI_UCODE_GP1, 2423 WPI_UCODE_GP2, 2424 WPI_GIO_CHICKEN, 2425 WPI_ANA_PLL, 2426 WPI_DBG_HPET_MEM, 2427 }; 2428 static const uint32_t prph_tbl[] = { 2429 WPI_APMG_CLK_CTRL, 2430 WPI_APMG_PS, 2431 WPI_APMG_PCI_STT, 2432 WPI_APMG_RFKILL, 2433 }; 2434 2435 DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n"); 2436 2437 for (i = 0; i < nitems(csr_tbl); i++) { 2438 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", 2439 wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i])); 2440 2441 if ((i + 1) % 2 == 0) 2442 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2443 } 2444 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n"); 2445 2446 if (wpi_nic_lock(sc) == 0) { 2447 for (i = 0; i < nitems(prph_tbl); i++) { 2448 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", 2449 wpi_get_prph_string(prph_tbl[i]), 2450 wpi_prph_read(sc, prph_tbl[i])); 2451 2452 if ((i + 1) % 2 == 0) 2453 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2454 } 2455 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2456 wpi_nic_unlock(sc); 2457 } else { 2458 DPRINTF(sc, WPI_DEBUG_REGISTER, 2459 "Cannot access internal registers.\n"); 2460 } 2461 } 2462 #endif 2463 2464 /* 2465 * Dump the error log of the firmware when a firmware panic occurs. Although 2466 * we can't debug the firmware because it is neither open source nor free, it 2467 * can help us to identify certain classes of problems. 2468 */ 2469 static void 2470 wpi_fatal_intr(struct wpi_softc *sc) 2471 { 2472 struct wpi_fw_dump dump; 2473 uint32_t i, offset, count; 2474 2475 /* Check that the error log address is valid. */ 2476 if (sc->errptr < WPI_FW_DATA_BASE || 2477 sc->errptr + sizeof (dump) > 2478 WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) { 2479 printf("%s: bad firmware error log address 0x%08x\n", __func__, 2480 sc->errptr); 2481 return; 2482 } 2483 if (wpi_nic_lock(sc) != 0) { 2484 printf("%s: could not read firmware error log\n", __func__); 2485 return; 2486 } 2487 /* Read number of entries in the log. */ 2488 count = wpi_mem_read(sc, sc->errptr); 2489 if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) { 2490 printf("%s: invalid count field (count = %u)\n", __func__, 2491 count); 2492 wpi_nic_unlock(sc); 2493 return; 2494 } 2495 /* Skip "count" field. */ 2496 offset = sc->errptr + sizeof (uint32_t); 2497 printf("firmware error log (count = %u):\n", count); 2498 for (i = 0; i < count; i++) { 2499 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump, 2500 sizeof (dump) / sizeof (uint32_t)); 2501 2502 printf(" error type = \"%s\" (0x%08X)\n", 2503 (dump.desc < nitems(wpi_fw_errmsg)) ? 2504 wpi_fw_errmsg[dump.desc] : "UNKNOWN", 2505 dump.desc); 2506 printf(" error data = 0x%08X\n", 2507 dump.data); 2508 printf(" branch link = 0x%08X%08X\n", 2509 dump.blink[0], dump.blink[1]); 2510 printf(" interrupt link = 0x%08X%08X\n", 2511 dump.ilink[0], dump.ilink[1]); 2512 printf(" time = %u\n", dump.time); 2513 2514 offset += sizeof (dump); 2515 } 2516 wpi_nic_unlock(sc); 2517 /* Dump driver status (TX and RX rings) while we're here. */ 2518 printf("driver status:\n"); 2519 WPI_TXQ_LOCK(sc); 2520 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { 2521 struct wpi_tx_ring *ring = &sc->txq[i]; 2522 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2523 i, ring->qid, ring->cur, ring->queued); 2524 } 2525 WPI_TXQ_UNLOCK(sc); 2526 printf(" rx ring: cur=%d\n", sc->rxq.cur); 2527 } 2528 2529 static void 2530 wpi_intr(void *arg) 2531 { 2532 struct wpi_softc *sc = arg; 2533 uint32_t r1, r2; 2534 2535 WPI_LOCK(sc); 2536 2537 /* Disable interrupts. */ 2538 WPI_WRITE(sc, WPI_INT_MASK, 0); 2539 2540 r1 = WPI_READ(sc, WPI_INT); 2541 2542 if (__predict_false(r1 == 0xffffffff || 2543 (r1 & 0xfffffff0) == 0xa5a5a5a0)) 2544 goto end; /* Hardware gone! */ 2545 2546 r2 = WPI_READ(sc, WPI_FH_INT); 2547 2548 DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__, 2549 r1, r2); 2550 2551 if (r1 == 0 && r2 == 0) 2552 goto done; /* Interrupt not for us. */ 2553 2554 /* Acknowledge interrupts. */ 2555 WPI_WRITE(sc, WPI_INT, r1); 2556 WPI_WRITE(sc, WPI_FH_INT, r2); 2557 2558 if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) { 2559 struct ieee80211com *ic = &sc->sc_ic; 2560 2561 device_printf(sc->sc_dev, "fatal firmware error\n"); 2562 #ifdef WPI_DEBUG 2563 wpi_debug_registers(sc); 2564 #endif 2565 wpi_fatal_intr(sc); 2566 DPRINTF(sc, WPI_DEBUG_HW, 2567 "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" : 2568 "(Hardware Error)"); 2569 ieee80211_restart_all(ic); 2570 goto end; 2571 } 2572 2573 if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) || 2574 (r2 & WPI_FH_INT_RX)) 2575 wpi_notif_intr(sc); 2576 2577 if (r1 & WPI_INT_ALIVE) 2578 wakeup(sc); /* Firmware is alive. */ 2579 2580 if (r1 & WPI_INT_WAKEUP) 2581 wpi_wakeup_intr(sc); 2582 2583 done: 2584 /* Re-enable interrupts. */ 2585 if (__predict_true(sc->sc_running)) 2586 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); 2587 2588 end: WPI_UNLOCK(sc); 2589 } 2590 2591 static void 2592 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac) 2593 { 2594 struct wpi_tx_ring *ring; 2595 struct wpi_tx_data *data; 2596 uint8_t cur; 2597 2598 WPI_TXQ_LOCK(sc); 2599 ring = &sc->txq[ac]; 2600 2601 while (ring->pending != 0) { 2602 ring->pending--; 2603 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2604 data = &ring->data[cur]; 2605 2606 bus_dmamap_sync(ring->data_dmat, data->map, 2607 BUS_DMASYNC_POSTWRITE); 2608 bus_dmamap_unload(ring->data_dmat, data->map); 2609 m_freem(data->m); 2610 data->m = NULL; 2611 2612 ieee80211_node_decref(data->ni); 2613 data->ni = NULL; 2614 } 2615 2616 WPI_TXQ_UNLOCK(sc); 2617 } 2618 2619 static int 2620 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf) 2621 { 2622 struct ieee80211_frame *wh; 2623 struct wpi_tx_cmd *cmd; 2624 struct wpi_tx_data *data; 2625 struct wpi_tx_desc *desc; 2626 struct wpi_tx_ring *ring; 2627 struct mbuf *m1; 2628 bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER]; 2629 uint8_t cur, pad; 2630 uint16_t hdrlen; 2631 int error, i, nsegs, totlen, frag; 2632 2633 WPI_TXQ_LOCK(sc); 2634 2635 KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow")); 2636 2637 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 2638 2639 if (__predict_false(sc->sc_running == 0)) { 2640 /* wpi_stop() was called */ 2641 error = ENETDOWN; 2642 goto end; 2643 } 2644 2645 wh = mtod(buf->m, struct ieee80211_frame *); 2646 hdrlen = ieee80211_anyhdrsize(wh); 2647 totlen = buf->m->m_pkthdr.len; 2648 frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG); 2649 2650 if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) { 2651 error = EINVAL; 2652 goto end; 2653 } 2654 2655 if (hdrlen & 3) { 2656 /* First segment length must be a multiple of 4. */ 2657 pad = 4 - (hdrlen & 3); 2658 } else 2659 pad = 0; 2660 2661 ring = &sc->txq[buf->ac]; 2662 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2663 desc = &ring->desc[cur]; 2664 data = &ring->data[cur]; 2665 2666 /* Prepare TX firmware command. */ 2667 cmd = &ring->cmd[cur]; 2668 cmd->code = buf->code; 2669 cmd->flags = 0; 2670 cmd->qid = ring->qid; 2671 cmd->idx = cur; 2672 2673 memcpy(cmd->data, buf->data, buf->size); 2674 2675 /* Save and trim IEEE802.11 header. */ 2676 memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen); 2677 m_adj(buf->m, hdrlen); 2678 2679 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m, 2680 segs, &nsegs, BUS_DMA_NOWAIT); 2681 if (error != 0 && error != EFBIG) { 2682 device_printf(sc->sc_dev, 2683 "%s: can't map mbuf (error %d)\n", __func__, error); 2684 goto end; 2685 } 2686 if (error != 0) { 2687 /* Too many DMA segments, linearize mbuf. */ 2688 m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1); 2689 if (m1 == NULL) { 2690 device_printf(sc->sc_dev, 2691 "%s: could not defrag mbuf\n", __func__); 2692 error = ENOBUFS; 2693 goto end; 2694 } 2695 buf->m = m1; 2696 2697 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 2698 buf->m, segs, &nsegs, BUS_DMA_NOWAIT); 2699 if (__predict_false(error != 0)) { 2700 /* XXX fix this (applicable to the iwn(4) too) */ 2701 /* 2702 * NB: Do not return error; 2703 * original mbuf does not exist anymore. 2704 */ 2705 device_printf(sc->sc_dev, 2706 "%s: can't map mbuf (error %d)\n", __func__, 2707 error); 2708 if (ring->qid < WPI_CMD_QUEUE_NUM) { 2709 if_inc_counter(buf->ni->ni_vap->iv_ifp, 2710 IFCOUNTER_OERRORS, 1); 2711 if (!frag) 2712 ieee80211_free_node(buf->ni); 2713 } 2714 m_freem(buf->m); 2715 error = 0; 2716 goto end; 2717 } 2718 } 2719 2720 KASSERT(nsegs < WPI_MAX_SCATTER, 2721 ("too many DMA segments, nsegs (%d) should be less than %d", 2722 nsegs, WPI_MAX_SCATTER)); 2723 2724 data->m = buf->m; 2725 data->ni = buf->ni; 2726 2727 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 2728 __func__, ring->qid, cur, totlen, nsegs); 2729 2730 /* Fill TX descriptor. */ 2731 desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs); 2732 /* First DMA segment is used by the TX command. */ 2733 desc->segs[0].addr = htole32(data->cmd_paddr); 2734 desc->segs[0].len = htole32(4 + buf->size + hdrlen + pad); 2735 /* Other DMA segments are for data payload. */ 2736 seg = &segs[0]; 2737 for (i = 1; i <= nsegs; i++) { 2738 desc->segs[i].addr = htole32(seg->ds_addr); 2739 desc->segs[i].len = htole32(seg->ds_len); 2740 seg++; 2741 } 2742 2743 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2744 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 2745 BUS_DMASYNC_PREWRITE); 2746 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2747 BUS_DMASYNC_PREWRITE); 2748 2749 ring->pending += 1; 2750 2751 if (!frag) { 2752 if (ring->qid < WPI_CMD_QUEUE_NUM) { 2753 WPI_TXQ_STATE_LOCK(sc); 2754 ring->queued += ring->pending; 2755 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, 2756 sc); 2757 WPI_TXQ_STATE_UNLOCK(sc); 2758 } 2759 2760 /* Kick TX ring. */ 2761 ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2762 ring->pending = 0; 2763 sc->sc_update_tx_ring(sc, ring); 2764 } else 2765 ieee80211_node_incref(data->ni); 2766 2767 end: DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, 2768 __func__); 2769 2770 WPI_TXQ_UNLOCK(sc); 2771 2772 return (error); 2773 } 2774 2775 /* 2776 * Construct the data packet for a transmit buffer. 2777 */ 2778 static int 2779 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2780 { 2781 const struct ieee80211_txparam *tp; 2782 struct ieee80211vap *vap = ni->ni_vap; 2783 struct ieee80211com *ic = ni->ni_ic; 2784 struct wpi_node *wn = WPI_NODE(ni); 2785 struct ieee80211_channel *chan; 2786 struct ieee80211_frame *wh; 2787 struct ieee80211_key *k = NULL; 2788 struct wpi_buf tx_data; 2789 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; 2790 uint32_t flags; 2791 uint16_t ac, qos; 2792 uint8_t tid, type, rate; 2793 int swcrypt, ismcast, totlen; 2794 2795 wh = mtod(m, struct ieee80211_frame *); 2796 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2797 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2798 swcrypt = 1; 2799 2800 /* Select EDCA Access Category and TX ring for this frame. */ 2801 if (IEEE80211_QOS_HAS_SEQ(wh)) { 2802 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 2803 tid = qos & IEEE80211_QOS_TID; 2804 } else { 2805 qos = 0; 2806 tid = 0; 2807 } 2808 ac = M_WME_GETAC(m); 2809 2810 chan = (ni->ni_chan != IEEE80211_CHAN_ANYC) ? 2811 ni->ni_chan : ic->ic_curchan; 2812 tp = &vap->iv_txparms[ieee80211_chan2mode(chan)]; 2813 2814 /* Choose a TX rate index. */ 2815 if (type == IEEE80211_FC0_TYPE_MGT) 2816 rate = tp->mgmtrate; 2817 else if (ismcast) 2818 rate = tp->mcastrate; 2819 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2820 rate = tp->ucastrate; 2821 else if (m->m_flags & M_EAPOL) 2822 rate = tp->mgmtrate; 2823 else { 2824 /* XXX pass pktlen */ 2825 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2826 rate = ni->ni_txrate; 2827 } 2828 2829 /* Encrypt the frame if need be. */ 2830 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2831 /* Retrieve key for TX. */ 2832 k = ieee80211_crypto_encap(ni, m); 2833 if (k == NULL) 2834 return (ENOBUFS); 2835 2836 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; 2837 2838 /* 802.11 header may have moved. */ 2839 wh = mtod(m, struct ieee80211_frame *); 2840 } 2841 totlen = m->m_pkthdr.len; 2842 2843 if (ieee80211_radiotap_active_vap(vap)) { 2844 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 2845 2846 tap->wt_flags = 0; 2847 tap->wt_rate = rate; 2848 if (k != NULL) 2849 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2850 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2851 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2852 2853 ieee80211_radiotap_tx(vap, m); 2854 } 2855 2856 flags = 0; 2857 if (!ismcast) { 2858 /* Unicast frame, check if an ACK is expected. */ 2859 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 2860 IEEE80211_QOS_ACKPOLICY_NOACK) 2861 flags |= WPI_TX_NEED_ACK; 2862 } 2863 2864 if (!IEEE80211_QOS_HAS_SEQ(wh)) 2865 flags |= WPI_TX_AUTO_SEQ; 2866 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2867 flags |= WPI_TX_MORE_FRAG; 2868 2869 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2870 if (!ismcast) { 2871 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2872 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 2873 flags |= WPI_TX_NEED_RTS; 2874 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2875 WPI_RATE_IS_OFDM(rate)) { 2876 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2877 flags |= WPI_TX_NEED_CTS; 2878 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2879 flags |= WPI_TX_NEED_RTS; 2880 } 2881 2882 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) 2883 flags |= WPI_TX_FULL_TXOP; 2884 } 2885 2886 memset(tx, 0, sizeof (struct wpi_cmd_data)); 2887 if (type == IEEE80211_FC0_TYPE_MGT) { 2888 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2889 2890 /* Tell HW to set timestamp in probe responses. */ 2891 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2892 flags |= WPI_TX_INSERT_TSTAMP; 2893 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2894 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2895 tx->timeout = htole16(3); 2896 else 2897 tx->timeout = htole16(2); 2898 } 2899 2900 if (ismcast || type != IEEE80211_FC0_TYPE_DATA) 2901 tx->id = WPI_ID_BROADCAST; 2902 else { 2903 if (wn->id == WPI_ID_UNDEFINED) { 2904 device_printf(sc->sc_dev, 2905 "%s: undefined node id\n", __func__); 2906 return (EINVAL); 2907 } 2908 2909 tx->id = wn->id; 2910 } 2911 2912 if (!swcrypt) { 2913 switch (k->wk_cipher->ic_cipher) { 2914 case IEEE80211_CIPHER_AES_CCM: 2915 tx->security = WPI_CIPHER_CCMP; 2916 break; 2917 2918 default: 2919 break; 2920 } 2921 2922 memcpy(tx->key, k->wk_key, k->wk_keylen); 2923 } 2924 2925 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 2926 struct mbuf *next = m->m_nextpkt; 2927 2928 tx->lnext = htole16(next->m_pkthdr.len); 2929 tx->fnext = htole32(tx->security | 2930 (flags & WPI_TX_NEED_ACK) | 2931 WPI_NEXT_STA_ID(tx->id)); 2932 } 2933 2934 tx->len = htole16(totlen); 2935 tx->flags = htole32(flags); 2936 tx->plcp = rate2plcp(rate); 2937 tx->tid = tid; 2938 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2939 tx->ofdm_mask = 0xff; 2940 tx->cck_mask = 0x0f; 2941 tx->rts_ntries = 7; 2942 tx->data_ntries = tp->maxretry; 2943 2944 tx_data.ni = ni; 2945 tx_data.m = m; 2946 tx_data.size = sizeof(struct wpi_cmd_data); 2947 tx_data.code = WPI_CMD_TX_DATA; 2948 tx_data.ac = ac; 2949 2950 return wpi_cmd2(sc, &tx_data); 2951 } 2952 2953 static int 2954 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, 2955 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 2956 { 2957 struct ieee80211vap *vap = ni->ni_vap; 2958 struct ieee80211_key *k = NULL; 2959 struct ieee80211_frame *wh; 2960 struct wpi_buf tx_data; 2961 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; 2962 uint32_t flags; 2963 uint8_t ac, type, rate; 2964 int swcrypt, totlen; 2965 2966 wh = mtod(m, struct ieee80211_frame *); 2967 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2968 swcrypt = 1; 2969 2970 ac = params->ibp_pri & 3; 2971 2972 /* Choose a TX rate index. */ 2973 rate = params->ibp_rate0; 2974 2975 flags = 0; 2976 if (!IEEE80211_QOS_HAS_SEQ(wh)) 2977 flags |= WPI_TX_AUTO_SEQ; 2978 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 2979 flags |= WPI_TX_NEED_ACK; 2980 if (params->ibp_flags & IEEE80211_BPF_RTS) 2981 flags |= WPI_TX_NEED_RTS; 2982 if (params->ibp_flags & IEEE80211_BPF_CTS) 2983 flags |= WPI_TX_NEED_CTS; 2984 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) 2985 flags |= WPI_TX_FULL_TXOP; 2986 2987 /* Encrypt the frame if need be. */ 2988 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 2989 /* Retrieve key for TX. */ 2990 k = ieee80211_crypto_encap(ni, m); 2991 if (k == NULL) 2992 return (ENOBUFS); 2993 2994 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; 2995 2996 /* 802.11 header may have moved. */ 2997 wh = mtod(m, struct ieee80211_frame *); 2998 } 2999 totlen = m->m_pkthdr.len; 3000 3001 if (ieee80211_radiotap_active_vap(vap)) { 3002 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 3003 3004 tap->wt_flags = 0; 3005 tap->wt_rate = rate; 3006 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) 3007 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3008 3009 ieee80211_radiotap_tx(vap, m); 3010 } 3011 3012 memset(tx, 0, sizeof (struct wpi_cmd_data)); 3013 if (type == IEEE80211_FC0_TYPE_MGT) { 3014 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3015 3016 /* Tell HW to set timestamp in probe responses. */ 3017 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3018 flags |= WPI_TX_INSERT_TSTAMP; 3019 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3020 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3021 tx->timeout = htole16(3); 3022 else 3023 tx->timeout = htole16(2); 3024 } 3025 3026 if (!swcrypt) { 3027 switch (k->wk_cipher->ic_cipher) { 3028 case IEEE80211_CIPHER_AES_CCM: 3029 tx->security = WPI_CIPHER_CCMP; 3030 break; 3031 3032 default: 3033 break; 3034 } 3035 3036 memcpy(tx->key, k->wk_key, k->wk_keylen); 3037 } 3038 3039 tx->len = htole16(totlen); 3040 tx->flags = htole32(flags); 3041 tx->plcp = rate2plcp(rate); 3042 tx->id = WPI_ID_BROADCAST; 3043 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 3044 tx->rts_ntries = params->ibp_try1; 3045 tx->data_ntries = params->ibp_try0; 3046 3047 tx_data.ni = ni; 3048 tx_data.m = m; 3049 tx_data.size = sizeof(struct wpi_cmd_data); 3050 tx_data.code = WPI_CMD_TX_DATA; 3051 tx_data.ac = ac; 3052 3053 return wpi_cmd2(sc, &tx_data); 3054 } 3055 3056 static __inline int 3057 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac) 3058 { 3059 struct wpi_tx_ring *ring = &sc->txq[ac]; 3060 int retval; 3061 3062 WPI_TXQ_STATE_LOCK(sc); 3063 retval = WPI_TX_RING_HIMARK - ring->queued; 3064 WPI_TXQ_STATE_UNLOCK(sc); 3065 3066 return retval; 3067 } 3068 3069 static int 3070 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3071 const struct ieee80211_bpf_params *params) 3072 { 3073 struct ieee80211com *ic = ni->ni_ic; 3074 struct wpi_softc *sc = ic->ic_softc; 3075 uint16_t ac; 3076 int error = 0; 3077 3078 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3079 3080 ac = M_WME_GETAC(m); 3081 3082 WPI_TX_LOCK(sc); 3083 3084 /* NB: no fragments here */ 3085 if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) { 3086 error = sc->sc_running ? ENOBUFS : ENETDOWN; 3087 goto unlock; 3088 } 3089 3090 if (params == NULL) { 3091 /* 3092 * Legacy path; interpret frame contents to decide 3093 * precisely how to send the frame. 3094 */ 3095 error = wpi_tx_data(sc, m, ni); 3096 } else { 3097 /* 3098 * Caller supplied explicit parameters to use in 3099 * sending the frame. 3100 */ 3101 error = wpi_tx_data_raw(sc, m, ni, params); 3102 } 3103 3104 unlock: WPI_TX_UNLOCK(sc); 3105 3106 if (error != 0) { 3107 m_freem(m); 3108 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 3109 3110 return error; 3111 } 3112 3113 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3114 3115 return 0; 3116 } 3117 3118 static int 3119 wpi_transmit(struct ieee80211com *ic, struct mbuf *m) 3120 { 3121 struct wpi_softc *sc = ic->ic_softc; 3122 struct ieee80211_node *ni; 3123 struct mbuf *mnext; 3124 uint16_t ac; 3125 int error, nmbufs; 3126 3127 WPI_TX_LOCK(sc); 3128 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__); 3129 3130 /* Check if interface is up & running. */ 3131 if (__predict_false(sc->sc_running == 0)) { 3132 error = ENXIO; 3133 goto unlock; 3134 } 3135 3136 nmbufs = 1; 3137 for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt) 3138 nmbufs++; 3139 3140 /* Check for available space. */ 3141 ac = M_WME_GETAC(m); 3142 if (wpi_tx_ring_free_space(sc, ac) < nmbufs) { 3143 error = ENOBUFS; 3144 goto unlock; 3145 } 3146 3147 error = 0; 3148 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3149 do { 3150 mnext = m->m_nextpkt; 3151 if (wpi_tx_data(sc, m, ni) != 0) { 3152 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 3153 nmbufs); 3154 wpi_free_txfrags(sc, ac); 3155 ieee80211_free_mbuf(m); 3156 ieee80211_free_node(ni); 3157 break; 3158 } 3159 } while((m = mnext) != NULL); 3160 3161 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__); 3162 3163 unlock: WPI_TX_UNLOCK(sc); 3164 3165 return (error); 3166 } 3167 3168 static void 3169 wpi_watchdog_rfkill(void *arg) 3170 { 3171 struct wpi_softc *sc = arg; 3172 struct ieee80211com *ic = &sc->sc_ic; 3173 3174 DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n"); 3175 3176 /* No need to lock firmware memory. */ 3177 if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) { 3178 /* Radio kill switch is still off. */ 3179 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, 3180 sc); 3181 } else 3182 ieee80211_runtask(ic, &sc->sc_radioon_task); 3183 } 3184 3185 static void 3186 wpi_scan_timeout(void *arg) 3187 { 3188 struct wpi_softc *sc = arg; 3189 struct ieee80211com *ic = &sc->sc_ic; 3190 3191 ic_printf(ic, "scan timeout\n"); 3192 ieee80211_restart_all(ic); 3193 } 3194 3195 static void 3196 wpi_tx_timeout(void *arg) 3197 { 3198 struct wpi_softc *sc = arg; 3199 struct ieee80211com *ic = &sc->sc_ic; 3200 3201 ic_printf(ic, "device timeout\n"); 3202 ieee80211_restart_all(ic); 3203 } 3204 3205 static void 3206 wpi_parent(struct ieee80211com *ic) 3207 { 3208 struct wpi_softc *sc = ic->ic_softc; 3209 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3210 3211 if (ic->ic_nrunning > 0) { 3212 if (wpi_init(sc) == 0) { 3213 ieee80211_notify_radio(ic, 1); 3214 ieee80211_start_all(ic); 3215 } else { 3216 ieee80211_notify_radio(ic, 0); 3217 ieee80211_stop(vap); 3218 } 3219 } else { 3220 ieee80211_notify_radio(ic, 0); 3221 wpi_stop(sc); 3222 } 3223 } 3224 3225 /* 3226 * Send a command to the firmware. 3227 */ 3228 static int 3229 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size, 3230 int async) 3231 { 3232 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; 3233 struct wpi_tx_desc *desc; 3234 struct wpi_tx_data *data; 3235 struct wpi_tx_cmd *cmd; 3236 struct mbuf *m; 3237 bus_addr_t paddr; 3238 uint16_t totlen; 3239 int error; 3240 3241 WPI_TXQ_LOCK(sc); 3242 3243 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3244 3245 if (__predict_false(sc->sc_running == 0)) { 3246 /* wpi_stop() was called */ 3247 if (code == WPI_CMD_SCAN) 3248 error = ENETDOWN; 3249 else 3250 error = 0; 3251 3252 goto fail; 3253 } 3254 3255 if (async == 0) 3256 WPI_LOCK_ASSERT(sc); 3257 3258 DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n", 3259 __func__, wpi_cmd_str(code), size, async); 3260 3261 desc = &ring->desc[ring->cur]; 3262 data = &ring->data[ring->cur]; 3263 totlen = 4 + size; 3264 3265 if (size > sizeof cmd->data) { 3266 /* Command is too large to fit in a descriptor. */ 3267 if (totlen > MCLBYTES) { 3268 error = EINVAL; 3269 goto fail; 3270 } 3271 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 3272 if (m == NULL) { 3273 error = ENOMEM; 3274 goto fail; 3275 } 3276 cmd = mtod(m, struct wpi_tx_cmd *); 3277 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 3278 totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3279 if (error != 0) { 3280 m_freem(m); 3281 goto fail; 3282 } 3283 data->m = m; 3284 } else { 3285 cmd = &ring->cmd[ring->cur]; 3286 paddr = data->cmd_paddr; 3287 } 3288 3289 cmd->code = code; 3290 cmd->flags = 0; 3291 cmd->qid = ring->qid; 3292 cmd->idx = ring->cur; 3293 memcpy(cmd->data, buf, size); 3294 3295 desc->nsegs = 1 + (WPI_PAD32(size) << 4); 3296 desc->segs[0].addr = htole32(paddr); 3297 desc->segs[0].len = htole32(totlen); 3298 3299 if (size > sizeof cmd->data) { 3300 bus_dmamap_sync(ring->data_dmat, data->map, 3301 BUS_DMASYNC_PREWRITE); 3302 } else { 3303 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3304 BUS_DMASYNC_PREWRITE); 3305 } 3306 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3307 BUS_DMASYNC_PREWRITE); 3308 3309 /* Kick command ring. */ 3310 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 3311 sc->sc_update_tx_ring(sc, ring); 3312 3313 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3314 3315 WPI_TXQ_UNLOCK(sc); 3316 3317 return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 3318 3319 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 3320 3321 WPI_TXQ_UNLOCK(sc); 3322 3323 return error; 3324 } 3325 3326 /* 3327 * Configure HW multi-rate retries. 3328 */ 3329 static int 3330 wpi_mrr_setup(struct wpi_softc *sc) 3331 { 3332 struct ieee80211com *ic = &sc->sc_ic; 3333 struct wpi_mrr_setup mrr; 3334 uint8_t i; 3335 int error; 3336 3337 /* CCK rates (not used with 802.11a). */ 3338 for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) { 3339 mrr.rates[i].flags = 0; 3340 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 3341 /* Fallback to the immediate lower CCK rate (if any.) */ 3342 mrr.rates[i].next = 3343 (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1; 3344 /* Try twice at this rate before falling back to "next". */ 3345 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; 3346 } 3347 /* OFDM rates (not used with 802.11b). */ 3348 for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) { 3349 mrr.rates[i].flags = 0; 3350 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 3351 /* Fallback to the immediate lower rate (if any.) */ 3352 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */ 3353 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ? 3354 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 3355 WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) : 3356 i - 1; 3357 /* Try twice at this rate before falling back to "next". */ 3358 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; 3359 } 3360 /* Setup MRR for control frames. */ 3361 mrr.which = htole32(WPI_MRR_CTL); 3362 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 3363 if (error != 0) { 3364 device_printf(sc->sc_dev, 3365 "could not setup MRR for control frames\n"); 3366 return error; 3367 } 3368 /* Setup MRR for data frames. */ 3369 mrr.which = htole32(WPI_MRR_DATA); 3370 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 3371 if (error != 0) { 3372 device_printf(sc->sc_dev, 3373 "could not setup MRR for data frames\n"); 3374 return error; 3375 } 3376 return 0; 3377 } 3378 3379 static int 3380 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3381 { 3382 struct ieee80211com *ic = ni->ni_ic; 3383 struct wpi_vap *wvp = WPI_VAP(ni->ni_vap); 3384 struct wpi_node *wn = WPI_NODE(ni); 3385 struct wpi_node_info node; 3386 int error; 3387 3388 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3389 3390 if (wn->id == WPI_ID_UNDEFINED) 3391 return EINVAL; 3392 3393 memset(&node, 0, sizeof node); 3394 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 3395 node.id = wn->id; 3396 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3397 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 3398 node.action = htole32(WPI_ACTION_SET_RATE); 3399 node.antenna = WPI_ANTENNA_BOTH; 3400 3401 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__, 3402 wn->id, ether_sprintf(ni->ni_macaddr)); 3403 3404 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 3405 if (error != 0) { 3406 device_printf(sc->sc_dev, 3407 "%s: wpi_cmd() call failed with error code %d\n", __func__, 3408 error); 3409 return error; 3410 } 3411 3412 if (wvp->wv_gtk != 0) { 3413 error = wpi_set_global_keys(ni); 3414 if (error != 0) { 3415 device_printf(sc->sc_dev, 3416 "%s: error while setting global keys\n", __func__); 3417 return ENXIO; 3418 } 3419 } 3420 3421 return 0; 3422 } 3423 3424 /* 3425 * Broadcast node is used to send group-addressed and management frames. 3426 */ 3427 static int 3428 wpi_add_broadcast_node(struct wpi_softc *sc, int async) 3429 { 3430 struct ieee80211com *ic = &sc->sc_ic; 3431 struct wpi_node_info node; 3432 3433 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3434 3435 memset(&node, 0, sizeof node); 3436 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 3437 node.id = WPI_ID_BROADCAST; 3438 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3439 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 3440 node.action = htole32(WPI_ACTION_SET_RATE); 3441 node.antenna = WPI_ANTENNA_BOTH; 3442 3443 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__); 3444 3445 return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async); 3446 } 3447 3448 static int 3449 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3450 { 3451 struct wpi_node *wn = WPI_NODE(ni); 3452 int error; 3453 3454 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3455 3456 wn->id = wpi_add_node_entry_sta(sc); 3457 3458 if ((error = wpi_add_node(sc, ni)) != 0) { 3459 wpi_del_node_entry(sc, wn->id); 3460 wn->id = WPI_ID_UNDEFINED; 3461 return error; 3462 } 3463 3464 return 0; 3465 } 3466 3467 static int 3468 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3469 { 3470 struct wpi_node *wn = WPI_NODE(ni); 3471 int error; 3472 3473 KASSERT(wn->id == WPI_ID_UNDEFINED, 3474 ("the node %d was added before", wn->id)); 3475 3476 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3477 3478 if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) { 3479 device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__); 3480 return ENOMEM; 3481 } 3482 3483 if ((error = wpi_add_node(sc, ni)) != 0) { 3484 wpi_del_node_entry(sc, wn->id); 3485 wn->id = WPI_ID_UNDEFINED; 3486 return error; 3487 } 3488 3489 return 0; 3490 } 3491 3492 static void 3493 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3494 { 3495 struct wpi_node *wn = WPI_NODE(ni); 3496 struct wpi_cmd_del_node node; 3497 int error; 3498 3499 KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed")); 3500 3501 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3502 3503 memset(&node, 0, sizeof node); 3504 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 3505 node.count = 1; 3506 3507 DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__, 3508 wn->id, ether_sprintf(ni->ni_macaddr)); 3509 3510 error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1); 3511 if (error != 0) { 3512 device_printf(sc->sc_dev, 3513 "%s: could not delete node %u, error %d\n", __func__, 3514 wn->id, error); 3515 } 3516 } 3517 3518 static int 3519 wpi_updateedca(struct ieee80211com *ic) 3520 { 3521 #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 3522 struct wpi_softc *sc = ic->ic_softc; 3523 struct wpi_edca_params cmd; 3524 int aci, error; 3525 3526 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3527 3528 memset(&cmd, 0, sizeof cmd); 3529 cmd.flags = htole32(WPI_EDCA_UPDATE); 3530 for (aci = 0; aci < WME_NUM_AC; aci++) { 3531 const struct wmeParams *ac = 3532 &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; 3533 cmd.ac[aci].aifsn = ac->wmep_aifsn; 3534 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin)); 3535 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax)); 3536 cmd.ac[aci].txoplimit = 3537 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 3538 3539 DPRINTF(sc, WPI_DEBUG_EDCA, 3540 "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 3541 "txoplimit=%d\n", aci, cmd.ac[aci].aifsn, 3542 cmd.ac[aci].cwmin, cmd.ac[aci].cwmax, 3543 cmd.ac[aci].txoplimit); 3544 } 3545 error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 3546 3547 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3548 3549 return error; 3550 #undef WPI_EXP2 3551 } 3552 3553 static void 3554 wpi_set_promisc(struct wpi_softc *sc) 3555 { 3556 struct ieee80211com *ic = &sc->sc_ic; 3557 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3558 uint32_t promisc_filter; 3559 3560 promisc_filter = WPI_FILTER_CTL; 3561 if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP) 3562 promisc_filter |= WPI_FILTER_PROMISC; 3563 3564 if (ic->ic_promisc > 0) 3565 sc->rxon.filter |= htole32(promisc_filter); 3566 else 3567 sc->rxon.filter &= ~htole32(promisc_filter); 3568 } 3569 3570 static void 3571 wpi_update_promisc(struct ieee80211com *ic) 3572 { 3573 struct wpi_softc *sc = ic->ic_softc; 3574 3575 WPI_LOCK(sc); 3576 if (sc->sc_running == 0) { 3577 WPI_UNLOCK(sc); 3578 return; 3579 } 3580 WPI_UNLOCK(sc); 3581 3582 WPI_RXON_LOCK(sc); 3583 wpi_set_promisc(sc); 3584 3585 if (wpi_send_rxon(sc, 1, 1) != 0) { 3586 device_printf(sc->sc_dev, "%s: could not send RXON\n", 3587 __func__); 3588 } 3589 WPI_RXON_UNLOCK(sc); 3590 } 3591 3592 static void 3593 wpi_update_mcast(struct ieee80211com *ic) 3594 { 3595 /* Ignore */ 3596 } 3597 3598 static void 3599 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3600 { 3601 struct wpi_cmd_led led; 3602 3603 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3604 3605 led.which = which; 3606 led.unit = htole32(100000); /* on/off in unit of 100ms */ 3607 led.off = off; 3608 led.on = on; 3609 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 3610 } 3611 3612 static int 3613 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni) 3614 { 3615 struct wpi_cmd_timing cmd; 3616 uint64_t val, mod; 3617 3618 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3619 3620 memset(&cmd, 0, sizeof cmd); 3621 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3622 cmd.bintval = htole16(ni->ni_intval); 3623 cmd.lintval = htole16(10); 3624 3625 /* Compute remaining time until next beacon. */ 3626 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 3627 mod = le64toh(cmd.tstamp) % val; 3628 cmd.binitval = htole32((uint32_t)(val - mod)); 3629 3630 DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 3631 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 3632 3633 return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1); 3634 } 3635 3636 /* 3637 * This function is called periodically (every 60 seconds) to adjust output 3638 * power to temperature changes. 3639 */ 3640 static void 3641 wpi_power_calibration(struct wpi_softc *sc) 3642 { 3643 int temp; 3644 3645 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3646 3647 /* Update sensor data. */ 3648 temp = (int)WPI_READ(sc, WPI_UCODE_GP2); 3649 DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp); 3650 3651 /* Sanity-check read value. */ 3652 if (temp < -260 || temp > 25) { 3653 /* This can't be correct, ignore. */ 3654 DPRINTF(sc, WPI_DEBUG_TEMP, 3655 "out-of-range temperature reported: %d\n", temp); 3656 return; 3657 } 3658 3659 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp); 3660 3661 /* Adjust Tx power if need be. */ 3662 if (abs(temp - sc->temp) <= 6) 3663 return; 3664 3665 sc->temp = temp; 3666 3667 if (wpi_set_txpower(sc, 1) != 0) { 3668 /* just warn, too bad for the automatic calibration... */ 3669 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3670 } 3671 } 3672 3673 /* 3674 * Set TX power for current channel. 3675 */ 3676 static int 3677 wpi_set_txpower(struct wpi_softc *sc, int async) 3678 { 3679 struct wpi_power_group *group; 3680 struct wpi_cmd_txpower cmd; 3681 uint8_t chan; 3682 int idx, is_chan_5ghz, i; 3683 3684 /* Retrieve current channel from last RXON. */ 3685 chan = sc->rxon.chan; 3686 is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0; 3687 3688 /* Find the TX power group to which this channel belongs. */ 3689 if (is_chan_5ghz) { 3690 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3691 if (chan <= group->chan) 3692 break; 3693 } else 3694 group = &sc->groups[0]; 3695 3696 memset(&cmd, 0, sizeof cmd); 3697 cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ; 3698 cmd.chan = htole16(chan); 3699 3700 /* Set TX power for all OFDM and CCK rates. */ 3701 for (i = 0; i <= WPI_RIDX_MAX ; i++) { 3702 /* Retrieve TX power for this channel/rate. */ 3703 idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i); 3704 3705 cmd.rates[i].plcp = wpi_ridx_to_plcp[i]; 3706 3707 if (is_chan_5ghz) { 3708 cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 3709 cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 3710 } else { 3711 cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 3712 cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 3713 } 3714 DPRINTF(sc, WPI_DEBUG_TEMP, 3715 "chan %d/ridx %d: power index %d\n", chan, i, idx); 3716 } 3717 3718 return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async); 3719 } 3720 3721 /* 3722 * Determine Tx power index for a given channel/rate combination. 3723 * This takes into account the regulatory information from EEPROM and the 3724 * current temperature. 3725 */ 3726 static int 3727 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3728 uint8_t chan, int is_chan_5ghz, int ridx) 3729 { 3730 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3731 #define fdivround(a, b, n) \ 3732 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3733 3734 /* Linear interpolation. */ 3735 #define interpolate(x, x1, y1, x2, y2, n) \ 3736 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3737 3738 struct wpi_power_sample *sample; 3739 int pwr, idx; 3740 3741 /* Default TX power is group maximum TX power minus 3dB. */ 3742 pwr = group->maxpwr / 2; 3743 3744 /* Decrease TX power for highest OFDM rates to reduce distortion. */ 3745 switch (ridx) { 3746 case WPI_RIDX_OFDM36: 3747 pwr -= is_chan_5ghz ? 5 : 0; 3748 break; 3749 case WPI_RIDX_OFDM48: 3750 pwr -= is_chan_5ghz ? 10 : 7; 3751 break; 3752 case WPI_RIDX_OFDM54: 3753 pwr -= is_chan_5ghz ? 12 : 9; 3754 break; 3755 } 3756 3757 /* Never exceed the channel maximum allowed TX power. */ 3758 pwr = min(pwr, sc->maxpwr[chan]); 3759 3760 /* Retrieve TX power index into gain tables from samples. */ 3761 for (sample = group->samples; sample < &group->samples[3]; sample++) 3762 if (pwr > sample[1].power) 3763 break; 3764 /* Fixed-point linear interpolation using a 19-bit fractional part. */ 3765 idx = interpolate(pwr, sample[0].power, sample[0].index, 3766 sample[1].power, sample[1].index, 19); 3767 3768 /*- 3769 * Adjust power index based on current temperature: 3770 * - if cooler than factory-calibrated: decrease output power 3771 * - if warmer than factory-calibrated: increase output power 3772 */ 3773 idx -= (sc->temp - group->temp) * 11 / 100; 3774 3775 /* Decrease TX power for CCK rates (-5dB). */ 3776 if (ridx >= WPI_RIDX_CCK1) 3777 idx += 10; 3778 3779 /* Make sure idx stays in a valid range. */ 3780 if (idx < 0) 3781 return 0; 3782 if (idx > WPI_MAX_PWR_INDEX) 3783 return WPI_MAX_PWR_INDEX; 3784 return idx; 3785 3786 #undef interpolate 3787 #undef fdivround 3788 } 3789 3790 /* 3791 * Set STA mode power saving level (between 0 and 5). 3792 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 3793 */ 3794 static int 3795 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async) 3796 { 3797 struct wpi_pmgt_cmd cmd; 3798 const struct wpi_pmgt *pmgt; 3799 uint32_t max, reg; 3800 uint8_t skip_dtim; 3801 int i; 3802 3803 DPRINTF(sc, WPI_DEBUG_PWRSAVE, 3804 "%s: dtim=%d, level=%d, async=%d\n", 3805 __func__, dtim, level, async); 3806 3807 /* Select which PS parameters to use. */ 3808 if (dtim <= 10) 3809 pmgt = &wpi_pmgt[0][level]; 3810 else 3811 pmgt = &wpi_pmgt[1][level]; 3812 3813 memset(&cmd, 0, sizeof cmd); 3814 if (level != 0) /* not CAM */ 3815 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP); 3816 /* Retrieve PCIe Active State Power Management (ASPM). */ 3817 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); 3818 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 3819 cmd.flags |= htole16(WPI_PS_PCI_PMGT); 3820 3821 cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU); 3822 cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU); 3823 3824 if (dtim == 0) { 3825 dtim = 1; 3826 skip_dtim = 0; 3827 } else 3828 skip_dtim = pmgt->skip_dtim; 3829 3830 if (skip_dtim != 0) { 3831 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM); 3832 max = pmgt->intval[4]; 3833 if (max == (uint32_t)-1) 3834 max = dtim * (skip_dtim + 1); 3835 else if (max > dtim) 3836 max = (max / dtim) * dtim; 3837 } else 3838 max = dtim; 3839 3840 for (i = 0; i < 5; i++) 3841 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 3842 3843 return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 3844 } 3845 3846 static int 3847 wpi_send_btcoex(struct wpi_softc *sc) 3848 { 3849 struct wpi_bluetooth cmd; 3850 3851 memset(&cmd, 0, sizeof cmd); 3852 cmd.flags = WPI_BT_COEX_MODE_4WIRE; 3853 cmd.lead_time = WPI_BT_LEAD_TIME_DEF; 3854 cmd.max_kill = WPI_BT_MAX_KILL_DEF; 3855 DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 3856 __func__); 3857 return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 3858 } 3859 3860 static int 3861 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async) 3862 { 3863 int error; 3864 3865 if (async) 3866 WPI_RXON_LOCK_ASSERT(sc); 3867 3868 if (assoc && wpi_check_bss_filter(sc) != 0) { 3869 struct wpi_assoc rxon_assoc; 3870 3871 rxon_assoc.flags = sc->rxon.flags; 3872 rxon_assoc.filter = sc->rxon.filter; 3873 rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask; 3874 rxon_assoc.cck_mask = sc->rxon.cck_mask; 3875 rxon_assoc.reserved = 0; 3876 3877 error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc, 3878 sizeof (struct wpi_assoc), async); 3879 if (error != 0) { 3880 device_printf(sc->sc_dev, 3881 "RXON_ASSOC command failed, error %d\n", error); 3882 return error; 3883 } 3884 } else { 3885 if (async) { 3886 WPI_NT_LOCK(sc); 3887 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, 3888 sizeof (struct wpi_rxon), async); 3889 if (error == 0) 3890 wpi_clear_node_table(sc); 3891 WPI_NT_UNLOCK(sc); 3892 } else { 3893 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, 3894 sizeof (struct wpi_rxon), async); 3895 if (error == 0) 3896 wpi_clear_node_table(sc); 3897 } 3898 3899 if (error != 0) { 3900 device_printf(sc->sc_dev, 3901 "RXON command failed, error %d\n", error); 3902 return error; 3903 } 3904 3905 /* Add broadcast node. */ 3906 error = wpi_add_broadcast_node(sc, async); 3907 if (error != 0) { 3908 device_printf(sc->sc_dev, 3909 "could not add broadcast node, error %d\n", error); 3910 return error; 3911 } 3912 } 3913 3914 /* Configuration has changed, set Tx power accordingly. */ 3915 if ((error = wpi_set_txpower(sc, async)) != 0) { 3916 device_printf(sc->sc_dev, 3917 "%s: could not set TX power, error %d\n", __func__, error); 3918 return error; 3919 } 3920 3921 return 0; 3922 } 3923 3924 /** 3925 * Configure the card to listen to a particular channel, this transisions the 3926 * card in to being able to receive frames from remote devices. 3927 */ 3928 static int 3929 wpi_config(struct wpi_softc *sc) 3930 { 3931 struct ieee80211com *ic = &sc->sc_ic; 3932 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3933 struct ieee80211_channel *c = ic->ic_curchan; 3934 int error; 3935 3936 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3937 3938 /* Set power saving level to CAM during initialization. */ 3939 if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) { 3940 device_printf(sc->sc_dev, 3941 "%s: could not set power saving level\n", __func__); 3942 return error; 3943 } 3944 3945 /* Configure bluetooth coexistence. */ 3946 if ((error = wpi_send_btcoex(sc)) != 0) { 3947 device_printf(sc->sc_dev, 3948 "could not configure bluetooth coexistence\n"); 3949 return error; 3950 } 3951 3952 /* Configure adapter. */ 3953 memset(&sc->rxon, 0, sizeof (struct wpi_rxon)); 3954 IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr); 3955 3956 /* Set default channel. */ 3957 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 3958 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 3959 if (IEEE80211_IS_CHAN_2GHZ(c)) 3960 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 3961 3962 sc->rxon.filter = WPI_FILTER_MULTICAST; 3963 switch (ic->ic_opmode) { 3964 case IEEE80211_M_STA: 3965 sc->rxon.mode = WPI_MODE_STA; 3966 break; 3967 case IEEE80211_M_IBSS: 3968 sc->rxon.mode = WPI_MODE_IBSS; 3969 sc->rxon.filter |= WPI_FILTER_BEACON; 3970 break; 3971 case IEEE80211_M_HOSTAP: 3972 /* XXX workaround for beaconing */ 3973 sc->rxon.mode = WPI_MODE_IBSS; 3974 sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC; 3975 break; 3976 case IEEE80211_M_AHDEMO: 3977 sc->rxon.mode = WPI_MODE_HOSTAP; 3978 break; 3979 case IEEE80211_M_MONITOR: 3980 sc->rxon.mode = WPI_MODE_MONITOR; 3981 break; 3982 default: 3983 device_printf(sc->sc_dev, "unknown opmode %d\n", 3984 ic->ic_opmode); 3985 return EINVAL; 3986 } 3987 sc->rxon.filter = htole32(sc->rxon.filter); 3988 wpi_set_promisc(sc); 3989 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 3990 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 3991 3992 if ((error = wpi_send_rxon(sc, 0, 0)) != 0) { 3993 device_printf(sc->sc_dev, "%s: could not send RXON\n", 3994 __func__); 3995 return error; 3996 } 3997 3998 /* Setup rate scalling. */ 3999 if ((error = wpi_mrr_setup(sc)) != 0) { 4000 device_printf(sc->sc_dev, "could not setup MRR, error %d\n", 4001 error); 4002 return error; 4003 } 4004 4005 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4006 4007 return 0; 4008 } 4009 4010 static uint16_t 4011 wpi_get_active_dwell_time(struct wpi_softc *sc, 4012 struct ieee80211_channel *c, uint8_t n_probes) 4013 { 4014 /* No channel? Default to 2GHz settings. */ 4015 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 4016 return (WPI_ACTIVE_DWELL_TIME_2GHZ + 4017 WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 4018 } 4019 4020 /* 5GHz dwell time. */ 4021 return (WPI_ACTIVE_DWELL_TIME_5GHZ + 4022 WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 4023 } 4024 4025 /* 4026 * Limit the total dwell time. 4027 * 4028 * Returns the dwell time in milliseconds. 4029 */ 4030 static uint16_t 4031 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time) 4032 { 4033 struct ieee80211com *ic = &sc->sc_ic; 4034 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4035 uint16_t bintval = 0; 4036 4037 /* bintval is in TU (1.024mS) */ 4038 if (vap != NULL) 4039 bintval = vap->iv_bss->ni_intval; 4040 4041 /* 4042 * If it's non-zero, we should calculate the minimum of 4043 * it and the DWELL_BASE. 4044 * 4045 * XXX Yes, the math should take into account that bintval 4046 * is 1.024mS, not 1mS.. 4047 */ 4048 if (bintval > 0) { 4049 DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__, 4050 bintval); 4051 return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2)); 4052 } 4053 4054 /* No association context? Default. */ 4055 return dwell_time; 4056 } 4057 4058 static uint16_t 4059 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c) 4060 { 4061 uint16_t passive; 4062 4063 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) 4064 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ; 4065 else 4066 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ; 4067 4068 /* Clamp to the beacon interval if we're associated. */ 4069 return (wpi_limit_dwell(sc, passive)); 4070 } 4071 4072 static uint32_t 4073 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval) 4074 { 4075 uint32_t mod = (time % bintval) * IEEE80211_DUR_TU; 4076 uint32_t nbeacons = time / bintval; 4077 4078 if (mod > WPI_PAUSE_MAX_TIME) 4079 mod = WPI_PAUSE_MAX_TIME; 4080 4081 return WPI_PAUSE_SCAN(nbeacons, mod); 4082 } 4083 4084 /* 4085 * Send a scan request to the firmware. 4086 */ 4087 static int 4088 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c) 4089 { 4090 struct ieee80211com *ic = &sc->sc_ic; 4091 struct ieee80211_scan_state *ss = ic->ic_scan; 4092 struct ieee80211vap *vap = ss->ss_vap; 4093 struct wpi_scan_hdr *hdr; 4094 struct wpi_cmd_data *tx; 4095 struct wpi_scan_essid *essids; 4096 struct wpi_scan_chan *chan; 4097 struct ieee80211_frame *wh; 4098 struct ieee80211_rateset *rs; 4099 uint16_t bintval, buflen, dwell_active, dwell_passive; 4100 uint8_t *buf, *frm, i, nssid; 4101 int bgscan, error; 4102 4103 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4104 4105 /* 4106 * We are absolutely not allowed to send a scan command when another 4107 * scan command is pending. 4108 */ 4109 if (callout_pending(&sc->scan_timeout)) { 4110 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 4111 __func__); 4112 error = EAGAIN; 4113 goto fail; 4114 } 4115 4116 bgscan = wpi_check_bss_filter(sc); 4117 bintval = vap->iv_bss->ni_intval; 4118 if (bgscan != 0 && 4119 bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) { 4120 error = EOPNOTSUPP; 4121 goto fail; 4122 } 4123 4124 buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4125 if (buf == NULL) { 4126 device_printf(sc->sc_dev, 4127 "%s: could not allocate buffer for scan command\n", 4128 __func__); 4129 error = ENOMEM; 4130 goto fail; 4131 } 4132 hdr = (struct wpi_scan_hdr *)buf; 4133 4134 /* 4135 * Move to the next channel if no packets are received within 10 msecs 4136 * after sending the probe request. 4137 */ 4138 hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT); 4139 hdr->quiet_threshold = htole16(1); 4140 4141 if (bgscan != 0) { 4142 /* 4143 * Max needs to be greater than active and passive and quiet! 4144 * It's also in microseconds! 4145 */ 4146 hdr->max_svc = htole32(250 * IEEE80211_DUR_TU); 4147 hdr->pause_svc = htole32(wpi_get_scan_pause_time(100, 4148 bintval)); 4149 } 4150 4151 hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON); 4152 4153 tx = (struct wpi_cmd_data *)(hdr + 1); 4154 tx->flags = htole32(WPI_TX_AUTO_SEQ); 4155 tx->id = WPI_ID_BROADCAST; 4156 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 4157 4158 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4159 /* Send probe requests at 6Mbps. */ 4160 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6]; 4161 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4162 } else { 4163 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO); 4164 /* Send probe requests at 1Mbps. */ 4165 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 4166 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4167 } 4168 4169 essids = (struct wpi_scan_essid *)(tx + 1); 4170 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 4171 for (i = 0; i < nssid; i++) { 4172 essids[i].id = IEEE80211_ELEMID_SSID; 4173 essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN); 4174 memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len); 4175 #ifdef WPI_DEBUG 4176 if (sc->sc_debug & WPI_DEBUG_SCAN) { 4177 printf("Scanning Essid: "); 4178 ieee80211_print_essid(essids[i].data, essids[i].len); 4179 printf("\n"); 4180 } 4181 #endif 4182 } 4183 4184 /* 4185 * Build a probe request frame. Most of the following code is a 4186 * copy & paste of what is done in net80211. 4187 */ 4188 wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS); 4189 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4190 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4191 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4192 IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr); 4193 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 4194 IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr); 4195 4196 frm = (uint8_t *)(wh + 1); 4197 frm = ieee80211_add_ssid(frm, NULL, 0); 4198 frm = ieee80211_add_rates(frm, rs); 4199 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4200 frm = ieee80211_add_xrates(frm, rs); 4201 4202 /* Set length of probe request. */ 4203 tx->len = htole16(frm - (uint8_t *)wh); 4204 4205 /* 4206 * Construct information about the channel that we 4207 * want to scan. The firmware expects this to be directly 4208 * after the scan probe request 4209 */ 4210 chan = (struct wpi_scan_chan *)frm; 4211 chan->chan = ieee80211_chan2ieee(ic, c); 4212 chan->flags = 0; 4213 if (nssid) { 4214 hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT; 4215 chan->flags |= WPI_CHAN_NPBREQS(nssid); 4216 } else 4217 hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER; 4218 4219 if (!IEEE80211_IS_CHAN_PASSIVE(c)) 4220 chan->flags |= WPI_CHAN_ACTIVE; 4221 4222 /* 4223 * Calculate the active/passive dwell times. 4224 */ 4225 dwell_active = wpi_get_active_dwell_time(sc, c, nssid); 4226 dwell_passive = wpi_get_passive_dwell_time(sc, c); 4227 4228 /* Make sure they're valid. */ 4229 if (dwell_active > dwell_passive) 4230 dwell_active = dwell_passive; 4231 4232 chan->active = htole16(dwell_active); 4233 chan->passive = htole16(dwell_passive); 4234 4235 chan->dsp_gain = 0x6e; /* Default level */ 4236 4237 if (IEEE80211_IS_CHAN_5GHZ(c)) 4238 chan->rf_gain = 0x3b; 4239 else 4240 chan->rf_gain = 0x28; 4241 4242 DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n", 4243 chan->chan, IEEE80211_IS_CHAN_PASSIVE(c)); 4244 4245 hdr->nchan++; 4246 4247 if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) { 4248 /* XXX Force probe request transmission. */ 4249 memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan)); 4250 4251 chan++; 4252 4253 /* Reduce unnecessary delay. */ 4254 chan->flags = 0; 4255 chan->passive = chan->active = hdr->quiet_time; 4256 4257 hdr->nchan++; 4258 } 4259 4260 chan++; 4261 4262 buflen = (uint8_t *)chan - buf; 4263 hdr->len = htole16(buflen); 4264 4265 DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n", 4266 hdr->nchan); 4267 error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1); 4268 free(buf, M_DEVBUF); 4269 4270 if (error != 0) 4271 goto fail; 4272 4273 callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc); 4274 4275 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4276 4277 return 0; 4278 4279 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 4280 4281 return error; 4282 } 4283 4284 static int 4285 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 4286 { 4287 struct ieee80211com *ic = vap->iv_ic; 4288 struct ieee80211_node *ni = vap->iv_bss; 4289 struct ieee80211_channel *c = ni->ni_chan; 4290 int error; 4291 4292 WPI_RXON_LOCK(sc); 4293 4294 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4295 4296 /* Update adapter configuration. */ 4297 sc->rxon.associd = 0; 4298 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 4299 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4300 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 4301 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 4302 if (IEEE80211_IS_CHAN_2GHZ(c)) 4303 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 4304 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4305 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 4306 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4307 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 4308 if (IEEE80211_IS_CHAN_A(c)) { 4309 sc->rxon.cck_mask = 0; 4310 sc->rxon.ofdm_mask = 0x15; 4311 } else if (IEEE80211_IS_CHAN_B(c)) { 4312 sc->rxon.cck_mask = 0x03; 4313 sc->rxon.ofdm_mask = 0; 4314 } else { 4315 /* Assume 802.11b/g. */ 4316 sc->rxon.cck_mask = 0x0f; 4317 sc->rxon.ofdm_mask = 0x15; 4318 } 4319 4320 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 4321 sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask, 4322 sc->rxon.ofdm_mask); 4323 4324 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 4325 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4326 __func__); 4327 } 4328 4329 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4330 4331 WPI_RXON_UNLOCK(sc); 4332 4333 return error; 4334 } 4335 4336 static int 4337 wpi_config_beacon(struct wpi_vap *wvp) 4338 { 4339 struct ieee80211vap *vap = &wvp->wv_vap; 4340 struct ieee80211com *ic = vap->iv_ic; 4341 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 4342 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4343 struct wpi_softc *sc = ic->ic_softc; 4344 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; 4345 struct ieee80211_tim_ie *tie; 4346 struct mbuf *m; 4347 uint8_t *ptr; 4348 int error; 4349 4350 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4351 4352 WPI_VAP_LOCK_ASSERT(wvp); 4353 4354 cmd->len = htole16(bcn->m->m_pkthdr.len); 4355 cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 4356 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 4357 4358 /* XXX seems to be unused */ 4359 if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) { 4360 tie = (struct ieee80211_tim_ie *) bo->bo_tim; 4361 ptr = mtod(bcn->m, uint8_t *); 4362 4363 cmd->tim = htole16(bo->bo_tim - ptr); 4364 cmd->timsz = tie->tim_len; 4365 } 4366 4367 /* Necessary for recursion in ieee80211_beacon_update(). */ 4368 m = bcn->m; 4369 bcn->m = m_dup(m, M_NOWAIT); 4370 if (bcn->m == NULL) { 4371 device_printf(sc->sc_dev, 4372 "%s: could not copy beacon frame\n", __func__); 4373 error = ENOMEM; 4374 goto end; 4375 } 4376 4377 if ((error = wpi_cmd2(sc, bcn)) != 0) { 4378 device_printf(sc->sc_dev, 4379 "%s: could not update beacon frame, error %d", __func__, 4380 error); 4381 m_freem(bcn->m); 4382 } 4383 4384 /* Restore mbuf. */ 4385 end: bcn->m = m; 4386 4387 return error; 4388 } 4389 4390 static int 4391 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 4392 { 4393 struct ieee80211vap *vap = ni->ni_vap; 4394 struct wpi_vap *wvp = WPI_VAP(vap); 4395 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4396 struct mbuf *m; 4397 int error; 4398 4399 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4400 4401 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 4402 return EINVAL; 4403 4404 m = ieee80211_beacon_alloc(ni); 4405 if (m == NULL) { 4406 device_printf(sc->sc_dev, 4407 "%s: could not allocate beacon frame\n", __func__); 4408 return ENOMEM; 4409 } 4410 4411 WPI_VAP_LOCK(wvp); 4412 if (bcn->m != NULL) 4413 m_freem(bcn->m); 4414 4415 bcn->m = m; 4416 4417 error = wpi_config_beacon(wvp); 4418 WPI_VAP_UNLOCK(wvp); 4419 4420 return error; 4421 } 4422 4423 static void 4424 wpi_update_beacon(struct ieee80211vap *vap, int item) 4425 { 4426 struct wpi_softc *sc = vap->iv_ic->ic_softc; 4427 struct wpi_vap *wvp = WPI_VAP(vap); 4428 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4429 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 4430 struct ieee80211_node *ni = vap->iv_bss; 4431 int mcast = 0; 4432 4433 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4434 4435 WPI_VAP_LOCK(wvp); 4436 if (bcn->m == NULL) { 4437 bcn->m = ieee80211_beacon_alloc(ni); 4438 if (bcn->m == NULL) { 4439 device_printf(sc->sc_dev, 4440 "%s: could not allocate beacon frame\n", __func__); 4441 4442 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, 4443 __func__); 4444 4445 WPI_VAP_UNLOCK(wvp); 4446 return; 4447 } 4448 } 4449 WPI_VAP_UNLOCK(wvp); 4450 4451 if (item == IEEE80211_BEACON_TIM) 4452 mcast = 1; /* TODO */ 4453 4454 setbit(bo->bo_flags, item); 4455 ieee80211_beacon_update(ni, bcn->m, mcast); 4456 4457 WPI_VAP_LOCK(wvp); 4458 wpi_config_beacon(wvp); 4459 WPI_VAP_UNLOCK(wvp); 4460 4461 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4462 } 4463 4464 static void 4465 wpi_newassoc(struct ieee80211_node *ni, int isnew) 4466 { 4467 struct ieee80211vap *vap = ni->ni_vap; 4468 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4469 struct wpi_node *wn = WPI_NODE(ni); 4470 int error; 4471 4472 WPI_NT_LOCK(sc); 4473 4474 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4475 4476 if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) { 4477 if ((error = wpi_add_ibss_node(sc, ni)) != 0) { 4478 device_printf(sc->sc_dev, 4479 "%s: could not add IBSS node, error %d\n", 4480 __func__, error); 4481 } 4482 } 4483 WPI_NT_UNLOCK(sc); 4484 } 4485 4486 static int 4487 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 4488 { 4489 struct ieee80211com *ic = vap->iv_ic; 4490 struct ieee80211_node *ni = vap->iv_bss; 4491 struct ieee80211_channel *c = ni->ni_chan; 4492 int error; 4493 4494 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4495 4496 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 4497 /* Link LED blinks while monitoring. */ 4498 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 4499 return 0; 4500 } 4501 4502 /* XXX kernel panic workaround */ 4503 if (c == IEEE80211_CHAN_ANYC) { 4504 device_printf(sc->sc_dev, "%s: incomplete configuration\n", 4505 __func__); 4506 return EINVAL; 4507 } 4508 4509 if ((error = wpi_set_timing(sc, ni)) != 0) { 4510 device_printf(sc->sc_dev, 4511 "%s: could not set timing, error %d\n", __func__, error); 4512 return error; 4513 } 4514 4515 /* Update adapter configuration. */ 4516 WPI_RXON_LOCK(sc); 4517 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4518 sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni)); 4519 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 4520 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 4521 if (IEEE80211_IS_CHAN_2GHZ(c)) 4522 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 4523 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4524 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 4525 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4526 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 4527 if (IEEE80211_IS_CHAN_A(c)) { 4528 sc->rxon.cck_mask = 0; 4529 sc->rxon.ofdm_mask = 0x15; 4530 } else if (IEEE80211_IS_CHAN_B(c)) { 4531 sc->rxon.cck_mask = 0x03; 4532 sc->rxon.ofdm_mask = 0; 4533 } else { 4534 /* Assume 802.11b/g. */ 4535 sc->rxon.cck_mask = 0x0f; 4536 sc->rxon.ofdm_mask = 0x15; 4537 } 4538 sc->rxon.filter |= htole32(WPI_FILTER_BSS); 4539 4540 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n", 4541 sc->rxon.chan, sc->rxon.flags); 4542 4543 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 4544 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4545 __func__); 4546 return error; 4547 } 4548 4549 /* Start periodic calibration timer. */ 4550 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 4551 4552 WPI_RXON_UNLOCK(sc); 4553 4554 if (vap->iv_opmode == IEEE80211_M_IBSS || 4555 vap->iv_opmode == IEEE80211_M_HOSTAP) { 4556 if ((error = wpi_setup_beacon(sc, ni)) != 0) { 4557 device_printf(sc->sc_dev, 4558 "%s: could not setup beacon, error %d\n", __func__, 4559 error); 4560 return error; 4561 } 4562 } 4563 4564 if (vap->iv_opmode == IEEE80211_M_STA) { 4565 /* Add BSS node. */ 4566 WPI_NT_LOCK(sc); 4567 error = wpi_add_sta_node(sc, ni); 4568 WPI_NT_UNLOCK(sc); 4569 if (error != 0) { 4570 device_printf(sc->sc_dev, 4571 "%s: could not add BSS node, error %d\n", __func__, 4572 error); 4573 return error; 4574 } 4575 } 4576 4577 /* Link LED always on while associated. */ 4578 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 4579 4580 /* Enable power-saving mode if requested by user. */ 4581 if ((vap->iv_flags & IEEE80211_F_PMGTON) && 4582 vap->iv_opmode != IEEE80211_M_IBSS) 4583 (void)wpi_set_pslevel(sc, 0, 3, 1); 4584 4585 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4586 4587 return 0; 4588 } 4589 4590 static int 4591 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k) 4592 { 4593 const struct ieee80211_cipher *cip = k->wk_cipher; 4594 struct ieee80211vap *vap = ni->ni_vap; 4595 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4596 struct wpi_node *wn = WPI_NODE(ni); 4597 struct wpi_node_info node; 4598 uint16_t kflags; 4599 int error; 4600 4601 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4602 4603 if (wpi_check_node_entry(sc, wn->id) == 0) { 4604 device_printf(sc->sc_dev, "%s: node does not exist\n", 4605 __func__); 4606 return 0; 4607 } 4608 4609 switch (cip->ic_cipher) { 4610 case IEEE80211_CIPHER_AES_CCM: 4611 kflags = WPI_KFLAG_CCMP; 4612 break; 4613 4614 default: 4615 device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__, 4616 cip->ic_cipher); 4617 return 0; 4618 } 4619 4620 kflags |= WPI_KFLAG_KID(k->wk_keyix); 4621 if (k->wk_flags & IEEE80211_KEY_GROUP) 4622 kflags |= WPI_KFLAG_MULTICAST; 4623 4624 memset(&node, 0, sizeof node); 4625 node.id = wn->id; 4626 node.control = WPI_NODE_UPDATE; 4627 node.flags = WPI_FLAG_KEY_SET; 4628 node.kflags = htole16(kflags); 4629 memcpy(node.key, k->wk_key, k->wk_keylen); 4630 again: 4631 DPRINTF(sc, WPI_DEBUG_KEY, 4632 "%s: setting %s key id %d for node %d (%s)\n", __func__, 4633 (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix, 4634 node.id, ether_sprintf(ni->ni_macaddr)); 4635 4636 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 4637 if (error != 0) { 4638 device_printf(sc->sc_dev, "can't update node info, error %d\n", 4639 error); 4640 return !error; 4641 } 4642 4643 if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && 4644 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4645 kflags |= WPI_KFLAG_MULTICAST; 4646 node.kflags = htole16(kflags); 4647 4648 goto again; 4649 } 4650 4651 return 1; 4652 } 4653 4654 static void 4655 wpi_load_key_cb(void *arg, struct ieee80211_node *ni) 4656 { 4657 const struct ieee80211_key *k = arg; 4658 struct ieee80211vap *vap = ni->ni_vap; 4659 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4660 struct wpi_node *wn = WPI_NODE(ni); 4661 int error; 4662 4663 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) 4664 return; 4665 4666 WPI_NT_LOCK(sc); 4667 error = wpi_load_key(ni, k); 4668 WPI_NT_UNLOCK(sc); 4669 4670 if (error == 0) { 4671 device_printf(sc->sc_dev, "%s: error while setting key\n", 4672 __func__); 4673 } 4674 } 4675 4676 static int 4677 wpi_set_global_keys(struct ieee80211_node *ni) 4678 { 4679 struct ieee80211vap *vap = ni->ni_vap; 4680 struct ieee80211_key *wk = &vap->iv_nw_keys[0]; 4681 int error = 1; 4682 4683 for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++) 4684 if (wk->wk_keyix != IEEE80211_KEYIX_NONE) 4685 error = wpi_load_key(ni, wk); 4686 4687 return !error; 4688 } 4689 4690 static int 4691 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k) 4692 { 4693 struct ieee80211vap *vap = ni->ni_vap; 4694 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4695 struct wpi_node *wn = WPI_NODE(ni); 4696 struct wpi_node_info node; 4697 uint16_t kflags; 4698 int error; 4699 4700 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4701 4702 if (wpi_check_node_entry(sc, wn->id) == 0) { 4703 DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__); 4704 return 1; /* Nothing to do. */ 4705 } 4706 4707 kflags = WPI_KFLAG_KID(k->wk_keyix); 4708 if (k->wk_flags & IEEE80211_KEY_GROUP) 4709 kflags |= WPI_KFLAG_MULTICAST; 4710 4711 memset(&node, 0, sizeof node); 4712 node.id = wn->id; 4713 node.control = WPI_NODE_UPDATE; 4714 node.flags = WPI_FLAG_KEY_SET; 4715 node.kflags = htole16(kflags); 4716 again: 4717 DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n", 4718 __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", 4719 k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr)); 4720 4721 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 4722 if (error != 0) { 4723 device_printf(sc->sc_dev, "can't update node info, error %d\n", 4724 error); 4725 return !error; 4726 } 4727 4728 if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && 4729 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4730 kflags |= WPI_KFLAG_MULTICAST; 4731 node.kflags = htole16(kflags); 4732 4733 goto again; 4734 } 4735 4736 return 1; 4737 } 4738 4739 static void 4740 wpi_del_key_cb(void *arg, struct ieee80211_node *ni) 4741 { 4742 const struct ieee80211_key *k = arg; 4743 struct ieee80211vap *vap = ni->ni_vap; 4744 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4745 struct wpi_node *wn = WPI_NODE(ni); 4746 int error; 4747 4748 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) 4749 return; 4750 4751 WPI_NT_LOCK(sc); 4752 error = wpi_del_key(ni, k); 4753 WPI_NT_UNLOCK(sc); 4754 4755 if (error == 0) { 4756 device_printf(sc->sc_dev, "%s: error while deleting key\n", 4757 __func__); 4758 } 4759 } 4760 4761 static int 4762 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k, 4763 int set) 4764 { 4765 struct ieee80211com *ic = vap->iv_ic; 4766 struct wpi_softc *sc = ic->ic_softc; 4767 struct wpi_vap *wvp = WPI_VAP(vap); 4768 struct ieee80211_node *ni; 4769 int error, ni_ref = 0; 4770 4771 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4772 4773 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 4774 /* Not for us. */ 4775 return 1; 4776 } 4777 4778 if (!(k->wk_flags & IEEE80211_KEY_RECV)) { 4779 /* XMIT keys are handled in wpi_tx_data(). */ 4780 return 1; 4781 } 4782 4783 /* Handle group keys. */ 4784 if (&vap->iv_nw_keys[0] <= k && 4785 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4786 WPI_NT_LOCK(sc); 4787 if (set) 4788 wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix); 4789 else 4790 wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix); 4791 WPI_NT_UNLOCK(sc); 4792 4793 if (vap->iv_state == IEEE80211_S_RUN) { 4794 ieee80211_iterate_nodes(&ic->ic_sta, 4795 set ? wpi_load_key_cb : wpi_del_key_cb, 4796 __DECONST(void *, k)); 4797 } 4798 4799 return 1; 4800 } 4801 4802 switch (vap->iv_opmode) { 4803 case IEEE80211_M_STA: 4804 ni = vap->iv_bss; 4805 break; 4806 4807 case IEEE80211_M_IBSS: 4808 case IEEE80211_M_AHDEMO: 4809 case IEEE80211_M_HOSTAP: 4810 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr); 4811 if (ni == NULL) 4812 return 0; /* should not happen */ 4813 4814 ni_ref = 1; 4815 break; 4816 4817 default: 4818 device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__, 4819 vap->iv_opmode); 4820 return 0; 4821 } 4822 4823 WPI_NT_LOCK(sc); 4824 if (set) 4825 error = wpi_load_key(ni, k); 4826 else 4827 error = wpi_del_key(ni, k); 4828 WPI_NT_UNLOCK(sc); 4829 4830 if (ni_ref) 4831 ieee80211_node_decref(ni); 4832 4833 return error; 4834 } 4835 4836 static int 4837 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 4838 { 4839 return wpi_process_key(vap, k, 1); 4840 } 4841 4842 static int 4843 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 4844 { 4845 return wpi_process_key(vap, k, 0); 4846 } 4847 4848 /* 4849 * This function is called after the runtime firmware notifies us of its 4850 * readiness (called in a process context). 4851 */ 4852 static int 4853 wpi_post_alive(struct wpi_softc *sc) 4854 { 4855 int ntries, error; 4856 4857 /* Check (again) that the radio is not disabled. */ 4858 if ((error = wpi_nic_lock(sc)) != 0) 4859 return error; 4860 4861 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4862 4863 /* NB: Runtime firmware must be up and running. */ 4864 if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) { 4865 device_printf(sc->sc_dev, 4866 "RF switch: radio disabled (%s)\n", __func__); 4867 wpi_nic_unlock(sc); 4868 return EPERM; /* :-) */ 4869 } 4870 wpi_nic_unlock(sc); 4871 4872 /* Wait for thermal sensor to calibrate. */ 4873 for (ntries = 0; ntries < 1000; ntries++) { 4874 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0) 4875 break; 4876 DELAY(10); 4877 } 4878 4879 if (ntries == 1000) { 4880 device_printf(sc->sc_dev, 4881 "timeout waiting for thermal sensor calibration\n"); 4882 return ETIMEDOUT; 4883 } 4884 4885 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp); 4886 return 0; 4887 } 4888 4889 /* 4890 * The firmware boot code is small and is intended to be copied directly into 4891 * the NIC internal memory (no DMA transfer). 4892 */ 4893 static int 4894 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size) 4895 { 4896 int error, ntries; 4897 4898 DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size); 4899 4900 size /= sizeof (uint32_t); 4901 4902 if ((error = wpi_nic_lock(sc)) != 0) 4903 return error; 4904 4905 /* Copy microcode image into NIC memory. */ 4906 wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE, 4907 (const uint32_t *)ucode, size); 4908 4909 wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0); 4910 wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE); 4911 wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size); 4912 4913 /* Start boot load now. */ 4914 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START); 4915 4916 /* Wait for transfer to complete. */ 4917 for (ntries = 0; ntries < 1000; ntries++) { 4918 uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS); 4919 DPRINTF(sc, WPI_DEBUG_HW, 4920 "firmware status=0x%x, val=0x%x, result=0x%x\n", status, 4921 WPI_FH_TX_STATUS_IDLE(6), 4922 status & WPI_FH_TX_STATUS_IDLE(6)); 4923 if (status & WPI_FH_TX_STATUS_IDLE(6)) { 4924 DPRINTF(sc, WPI_DEBUG_HW, 4925 "Status Match! - ntries = %d\n", ntries); 4926 break; 4927 } 4928 DELAY(10); 4929 } 4930 if (ntries == 1000) { 4931 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 4932 __func__); 4933 wpi_nic_unlock(sc); 4934 return ETIMEDOUT; 4935 } 4936 4937 /* Enable boot after power up. */ 4938 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN); 4939 4940 wpi_nic_unlock(sc); 4941 return 0; 4942 } 4943 4944 static int 4945 wpi_load_firmware(struct wpi_softc *sc) 4946 { 4947 struct wpi_fw_info *fw = &sc->fw; 4948 struct wpi_dma_info *dma = &sc->fw_dma; 4949 int error; 4950 4951 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4952 4953 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 4954 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 4955 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4956 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz); 4957 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4958 4959 /* Tell adapter where to find initialization sections. */ 4960 if ((error = wpi_nic_lock(sc)) != 0) 4961 return error; 4962 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 4963 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz); 4964 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 4965 dma->paddr + WPI_FW_DATA_MAXSZ); 4966 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 4967 wpi_nic_unlock(sc); 4968 4969 /* Load firmware boot code. */ 4970 error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 4971 if (error != 0) { 4972 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 4973 __func__); 4974 return error; 4975 } 4976 4977 /* Now press "execute". */ 4978 WPI_WRITE(sc, WPI_RESET, 0); 4979 4980 /* Wait at most one second for first alive notification. */ 4981 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 4982 device_printf(sc->sc_dev, 4983 "%s: timeout waiting for adapter to initialize, error %d\n", 4984 __func__, error); 4985 return error; 4986 } 4987 4988 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 4989 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 4990 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4991 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz); 4992 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4993 4994 /* Tell adapter where to find runtime sections. */ 4995 if ((error = wpi_nic_lock(sc)) != 0) 4996 return error; 4997 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 4998 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz); 4999 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 5000 dma->paddr + WPI_FW_DATA_MAXSZ); 5001 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, 5002 WPI_FW_UPDATED | fw->main.textsz); 5003 wpi_nic_unlock(sc); 5004 5005 return 0; 5006 } 5007 5008 static int 5009 wpi_read_firmware(struct wpi_softc *sc) 5010 { 5011 const struct firmware *fp; 5012 struct wpi_fw_info *fw = &sc->fw; 5013 const struct wpi_firmware_hdr *hdr; 5014 int error; 5015 5016 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5017 5018 DPRINTF(sc, WPI_DEBUG_FIRMWARE, 5019 "Attempting Loading Firmware from %s module\n", WPI_FW_NAME); 5020 5021 WPI_UNLOCK(sc); 5022 fp = firmware_get(WPI_FW_NAME); 5023 WPI_LOCK(sc); 5024 5025 if (fp == NULL) { 5026 device_printf(sc->sc_dev, 5027 "could not load firmware image '%s'\n", WPI_FW_NAME); 5028 return EINVAL; 5029 } 5030 5031 sc->fw_fp = fp; 5032 5033 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 5034 device_printf(sc->sc_dev, 5035 "firmware file too short: %zu bytes\n", fp->datasize); 5036 error = EINVAL; 5037 goto fail; 5038 } 5039 5040 fw->size = fp->datasize; 5041 fw->data = (const uint8_t *)fp->data; 5042 5043 /* Extract firmware header information. */ 5044 hdr = (const struct wpi_firmware_hdr *)fw->data; 5045 5046 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 5047 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 5048 5049 fw->main.textsz = le32toh(hdr->rtextsz); 5050 fw->main.datasz = le32toh(hdr->rdatasz); 5051 fw->init.textsz = le32toh(hdr->itextsz); 5052 fw->init.datasz = le32toh(hdr->idatasz); 5053 fw->boot.textsz = le32toh(hdr->btextsz); 5054 fw->boot.datasz = 0; 5055 5056 /* Sanity-check firmware header. */ 5057 if (fw->main.textsz > WPI_FW_TEXT_MAXSZ || 5058 fw->main.datasz > WPI_FW_DATA_MAXSZ || 5059 fw->init.textsz > WPI_FW_TEXT_MAXSZ || 5060 fw->init.datasz > WPI_FW_DATA_MAXSZ || 5061 fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ || 5062 (fw->boot.textsz & 3) != 0) { 5063 device_printf(sc->sc_dev, "invalid firmware header\n"); 5064 error = EINVAL; 5065 goto fail; 5066 } 5067 5068 /* Check that all firmware sections fit. */ 5069 if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz + 5070 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5071 device_printf(sc->sc_dev, 5072 "firmware file too short: %zu bytes\n", fw->size); 5073 error = EINVAL; 5074 goto fail; 5075 } 5076 5077 /* Get pointers to firmware sections. */ 5078 fw->main.text = (const uint8_t *)(hdr + 1); 5079 fw->main.data = fw->main.text + fw->main.textsz; 5080 fw->init.text = fw->main.data + fw->main.datasz; 5081 fw->init.data = fw->init.text + fw->init.textsz; 5082 fw->boot.text = fw->init.data + fw->init.datasz; 5083 5084 DPRINTF(sc, WPI_DEBUG_FIRMWARE, 5085 "Firmware Version: Major %d, Minor %d, Driver %d, \n" 5086 "runtime (text: %u, data: %u) init (text: %u, data %u) " 5087 "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver), 5088 fw->main.textsz, fw->main.datasz, 5089 fw->init.textsz, fw->init.datasz, fw->boot.textsz); 5090 5091 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text); 5092 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data); 5093 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text); 5094 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data); 5095 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text); 5096 5097 return 0; 5098 5099 fail: wpi_unload_firmware(sc); 5100 return error; 5101 } 5102 5103 /** 5104 * Free the referenced firmware image 5105 */ 5106 static void 5107 wpi_unload_firmware(struct wpi_softc *sc) 5108 { 5109 if (sc->fw_fp != NULL) { 5110 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 5111 sc->fw_fp = NULL; 5112 } 5113 } 5114 5115 static int 5116 wpi_clock_wait(struct wpi_softc *sc) 5117 { 5118 int ntries; 5119 5120 /* Set "initialization complete" bit. */ 5121 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 5122 5123 /* Wait for clock stabilization. */ 5124 for (ntries = 0; ntries < 2500; ntries++) { 5125 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY) 5126 return 0; 5127 DELAY(100); 5128 } 5129 device_printf(sc->sc_dev, 5130 "%s: timeout waiting for clock stabilization\n", __func__); 5131 5132 return ETIMEDOUT; 5133 } 5134 5135 static int 5136 wpi_apm_init(struct wpi_softc *sc) 5137 { 5138 uint32_t reg; 5139 int error; 5140 5141 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5142 5143 /* Disable L0s exit timer (NMI bug workaround). */ 5144 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER); 5145 /* Don't wait for ICH L0s (ICH bug workaround). */ 5146 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX); 5147 5148 /* Set FH wait threshold to max (HW bug under stress workaround). */ 5149 WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000); 5150 5151 /* Retrieve PCIe Active State Power Management (ASPM). */ 5152 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); 5153 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5154 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 5155 WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); 5156 else 5157 WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); 5158 5159 WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT); 5160 5161 /* Wait for clock stabilization before accessing prph. */ 5162 if ((error = wpi_clock_wait(sc)) != 0) 5163 return error; 5164 5165 if ((error = wpi_nic_lock(sc)) != 0) 5166 return error; 5167 /* Cleanup. */ 5168 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400); 5169 wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200); 5170 5171 /* Enable DMA and BSM (Bootstrap State Machine). */ 5172 wpi_prph_write(sc, WPI_APMG_CLK_EN, 5173 WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT); 5174 DELAY(20); 5175 /* Disable L1-Active. */ 5176 wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS); 5177 wpi_nic_unlock(sc); 5178 5179 return 0; 5180 } 5181 5182 static void 5183 wpi_apm_stop_master(struct wpi_softc *sc) 5184 { 5185 int ntries; 5186 5187 /* Stop busmaster DMA activity. */ 5188 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER); 5189 5190 if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) == 5191 WPI_GP_CNTRL_MAC_PS) 5192 return; /* Already asleep. */ 5193 5194 for (ntries = 0; ntries < 100; ntries++) { 5195 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED) 5196 return; 5197 DELAY(10); 5198 } 5199 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", 5200 __func__); 5201 } 5202 5203 static void 5204 wpi_apm_stop(struct wpi_softc *sc) 5205 { 5206 wpi_apm_stop_master(sc); 5207 5208 /* Reset the entire device. */ 5209 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW); 5210 DELAY(10); 5211 /* Clear "initialization complete" bit. */ 5212 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 5213 } 5214 5215 static void 5216 wpi_nic_config(struct wpi_softc *sc) 5217 { 5218 uint32_t rev; 5219 5220 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5221 5222 /* voodoo from the Linux "driver".. */ 5223 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 5224 if ((rev & 0xc0) == 0x40) 5225 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB); 5226 else if (!(rev & 0x80)) 5227 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM); 5228 5229 if (sc->cap == 0x80) 5230 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC); 5231 5232 if ((sc->rev & 0xf0) == 0xd0) 5233 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 5234 else 5235 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 5236 5237 if (sc->type > 1) 5238 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B); 5239 } 5240 5241 static int 5242 wpi_hw_init(struct wpi_softc *sc) 5243 { 5244 uint8_t chnl; 5245 int ntries, error; 5246 5247 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 5248 5249 /* Clear pending interrupts. */ 5250 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5251 5252 if ((error = wpi_apm_init(sc)) != 0) { 5253 device_printf(sc->sc_dev, 5254 "%s: could not power ON adapter, error %d\n", __func__, 5255 error); 5256 return error; 5257 } 5258 5259 /* Select VMAIN power source. */ 5260 if ((error = wpi_nic_lock(sc)) != 0) 5261 return error; 5262 wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK); 5263 wpi_nic_unlock(sc); 5264 /* Spin until VMAIN gets selected. */ 5265 for (ntries = 0; ntries < 5000; ntries++) { 5266 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN) 5267 break; 5268 DELAY(10); 5269 } 5270 if (ntries == 5000) { 5271 device_printf(sc->sc_dev, "timeout selecting power source\n"); 5272 return ETIMEDOUT; 5273 } 5274 5275 /* Perform adapter initialization. */ 5276 wpi_nic_config(sc); 5277 5278 /* Initialize RX ring. */ 5279 if ((error = wpi_nic_lock(sc)) != 0) 5280 return error; 5281 /* Set physical address of RX ring. */ 5282 WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr); 5283 /* Set physical address of RX read pointer. */ 5284 WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr + 5285 offsetof(struct wpi_shared, next)); 5286 WPI_WRITE(sc, WPI_FH_RX_WPTR, 0); 5287 /* Enable RX. */ 5288 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 5289 WPI_FH_RX_CONFIG_DMA_ENA | 5290 WPI_FH_RX_CONFIG_RDRBD_ENA | 5291 WPI_FH_RX_CONFIG_WRSTATUS_ENA | 5292 WPI_FH_RX_CONFIG_MAXFRAG | 5293 WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) | 5294 WPI_FH_RX_CONFIG_IRQ_DST_HOST | 5295 WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1)); 5296 (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */ 5297 wpi_nic_unlock(sc); 5298 WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7); 5299 5300 /* Initialize TX rings. */ 5301 if ((error = wpi_nic_lock(sc)) != 0) 5302 return error; 5303 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */ 5304 wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */ 5305 /* Enable all 6 TX rings. */ 5306 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f); 5307 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000); 5308 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002); 5309 wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4); 5310 wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5); 5311 /* Set physical address of TX rings. */ 5312 WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr); 5313 WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5); 5314 5315 /* Enable all DMA channels. */ 5316 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 5317 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0); 5318 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0); 5319 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008); 5320 } 5321 wpi_nic_unlock(sc); 5322 (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */ 5323 5324 /* Clear "radio off" and "commands blocked" bits. */ 5325 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5326 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED); 5327 5328 /* Clear pending interrupts. */ 5329 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5330 /* Enable interrupts. */ 5331 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); 5332 5333 /* _Really_ make sure "radio off" bit is cleared! */ 5334 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5335 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5336 5337 if ((error = wpi_load_firmware(sc)) != 0) { 5338 device_printf(sc->sc_dev, 5339 "%s: could not load firmware, error %d\n", __func__, 5340 error); 5341 return error; 5342 } 5343 /* Wait at most one second for firmware alive notification. */ 5344 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 5345 device_printf(sc->sc_dev, 5346 "%s: timeout waiting for adapter to initialize, error %d\n", 5347 __func__, error); 5348 return error; 5349 } 5350 5351 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 5352 5353 /* Do post-firmware initialization. */ 5354 return wpi_post_alive(sc); 5355 } 5356 5357 static void 5358 wpi_hw_stop(struct wpi_softc *sc) 5359 { 5360 uint8_t chnl, qid; 5361 int ntries; 5362 5363 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5364 5365 if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) 5366 wpi_nic_lock(sc); 5367 5368 WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO); 5369 5370 /* Disable interrupts. */ 5371 WPI_WRITE(sc, WPI_INT_MASK, 0); 5372 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5373 WPI_WRITE(sc, WPI_FH_INT, 0xffffffff); 5374 5375 /* Make sure we no longer hold the NIC lock. */ 5376 wpi_nic_unlock(sc); 5377 5378 if (wpi_nic_lock(sc) == 0) { 5379 /* Stop TX scheduler. */ 5380 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0); 5381 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0); 5382 5383 /* Stop all DMA channels. */ 5384 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 5385 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0); 5386 for (ntries = 0; ntries < 200; ntries++) { 5387 if (WPI_READ(sc, WPI_FH_TX_STATUS) & 5388 WPI_FH_TX_STATUS_IDLE(chnl)) 5389 break; 5390 DELAY(10); 5391 } 5392 } 5393 wpi_nic_unlock(sc); 5394 } 5395 5396 /* Stop RX ring. */ 5397 wpi_reset_rx_ring(sc); 5398 5399 /* Reset all TX rings. */ 5400 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) 5401 wpi_reset_tx_ring(sc, &sc->txq[qid]); 5402 5403 if (wpi_nic_lock(sc) == 0) { 5404 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 5405 WPI_APMG_CLK_CTRL_DMA_CLK_RQT); 5406 wpi_nic_unlock(sc); 5407 } 5408 DELAY(5); 5409 /* Power OFF adapter. */ 5410 wpi_apm_stop(sc); 5411 } 5412 5413 static void 5414 wpi_radio_on(void *arg0, int pending) 5415 { 5416 struct wpi_softc *sc = arg0; 5417 struct ieee80211com *ic = &sc->sc_ic; 5418 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5419 5420 device_printf(sc->sc_dev, "RF switch: radio enabled\n"); 5421 5422 WPI_LOCK(sc); 5423 callout_stop(&sc->watchdog_rfkill); 5424 WPI_UNLOCK(sc); 5425 5426 if (vap != NULL) 5427 ieee80211_init(vap); 5428 } 5429 5430 static void 5431 wpi_radio_off(void *arg0, int pending) 5432 { 5433 struct wpi_softc *sc = arg0; 5434 struct ieee80211com *ic = &sc->sc_ic; 5435 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5436 5437 device_printf(sc->sc_dev, "RF switch: radio disabled\n"); 5438 5439 ieee80211_notify_radio(ic, 0); 5440 wpi_stop(sc); 5441 if (vap != NULL) 5442 ieee80211_stop(vap); 5443 5444 WPI_LOCK(sc); 5445 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc); 5446 WPI_UNLOCK(sc); 5447 } 5448 5449 static int 5450 wpi_init(struct wpi_softc *sc) 5451 { 5452 int error = 0; 5453 5454 WPI_LOCK(sc); 5455 5456 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 5457 5458 if (sc->sc_running != 0) 5459 goto end; 5460 5461 /* Check that the radio is not disabled by hardware switch. */ 5462 if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) { 5463 device_printf(sc->sc_dev, 5464 "RF switch: radio disabled (%s)\n", __func__); 5465 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, 5466 sc); 5467 error = EINPROGRESS; 5468 goto end; 5469 } 5470 5471 /* Read firmware images from the filesystem. */ 5472 if ((error = wpi_read_firmware(sc)) != 0) { 5473 device_printf(sc->sc_dev, 5474 "%s: could not read firmware, error %d\n", __func__, 5475 error); 5476 goto end; 5477 } 5478 5479 sc->sc_running = 1; 5480 5481 /* Initialize hardware and upload firmware. */ 5482 error = wpi_hw_init(sc); 5483 wpi_unload_firmware(sc); 5484 if (error != 0) { 5485 device_printf(sc->sc_dev, 5486 "%s: could not initialize hardware, error %d\n", __func__, 5487 error); 5488 goto fail; 5489 } 5490 5491 /* Configure adapter now that it is ready. */ 5492 if ((error = wpi_config(sc)) != 0) { 5493 device_printf(sc->sc_dev, 5494 "%s: could not configure device, error %d\n", __func__, 5495 error); 5496 goto fail; 5497 } 5498 5499 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 5500 5501 WPI_UNLOCK(sc); 5502 5503 return 0; 5504 5505 fail: wpi_stop_locked(sc); 5506 5507 end: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 5508 WPI_UNLOCK(sc); 5509 5510 return error; 5511 } 5512 5513 static void 5514 wpi_stop_locked(struct wpi_softc *sc) 5515 { 5516 5517 WPI_LOCK_ASSERT(sc); 5518 5519 if (sc->sc_running == 0) 5520 return; 5521 5522 WPI_TX_LOCK(sc); 5523 WPI_TXQ_LOCK(sc); 5524 sc->sc_running = 0; 5525 WPI_TXQ_UNLOCK(sc); 5526 WPI_TX_UNLOCK(sc); 5527 5528 WPI_TXQ_STATE_LOCK(sc); 5529 callout_stop(&sc->tx_timeout); 5530 WPI_TXQ_STATE_UNLOCK(sc); 5531 5532 WPI_RXON_LOCK(sc); 5533 callout_stop(&sc->scan_timeout); 5534 callout_stop(&sc->calib_to); 5535 WPI_RXON_UNLOCK(sc); 5536 5537 /* Power OFF hardware. */ 5538 wpi_hw_stop(sc); 5539 } 5540 5541 static void 5542 wpi_stop(struct wpi_softc *sc) 5543 { 5544 WPI_LOCK(sc); 5545 wpi_stop_locked(sc); 5546 WPI_UNLOCK(sc); 5547 } 5548 5549 /* 5550 * Callback from net80211 to start a scan. 5551 */ 5552 static void 5553 wpi_scan_start(struct ieee80211com *ic) 5554 { 5555 struct wpi_softc *sc = ic->ic_softc; 5556 5557 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 5558 } 5559 5560 /* 5561 * Callback from net80211 to terminate a scan. 5562 */ 5563 static void 5564 wpi_scan_end(struct ieee80211com *ic) 5565 { 5566 struct wpi_softc *sc = ic->ic_softc; 5567 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5568 5569 if (vap->iv_state == IEEE80211_S_RUN) 5570 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 5571 } 5572 5573 /** 5574 * Called by the net80211 framework to indicate to the driver 5575 * that the channel should be changed 5576 */ 5577 static void 5578 wpi_set_channel(struct ieee80211com *ic) 5579 { 5580 const struct ieee80211_channel *c = ic->ic_curchan; 5581 struct wpi_softc *sc = ic->ic_softc; 5582 int error; 5583 5584 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5585 5586 WPI_LOCK(sc); 5587 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 5588 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 5589 WPI_UNLOCK(sc); 5590 WPI_TX_LOCK(sc); 5591 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 5592 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 5593 WPI_TX_UNLOCK(sc); 5594 5595 /* 5596 * Only need to set the channel in Monitor mode. AP scanning and auth 5597 * are already taken care of by their respective firmware commands. 5598 */ 5599 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 5600 WPI_RXON_LOCK(sc); 5601 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 5602 if (IEEE80211_IS_CHAN_2GHZ(c)) { 5603 sc->rxon.flags |= htole32(WPI_RXON_AUTO | 5604 WPI_RXON_24GHZ); 5605 } else { 5606 sc->rxon.flags &= ~htole32(WPI_RXON_AUTO | 5607 WPI_RXON_24GHZ); 5608 } 5609 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) 5610 device_printf(sc->sc_dev, 5611 "%s: error %d setting channel\n", __func__, 5612 error); 5613 WPI_RXON_UNLOCK(sc); 5614 } 5615 } 5616 5617 /** 5618 * Called by net80211 to indicate that we need to scan the current 5619 * channel. The channel is previously be set via the wpi_set_channel 5620 * callback. 5621 */ 5622 static void 5623 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 5624 { 5625 struct ieee80211vap *vap = ss->ss_vap; 5626 struct ieee80211com *ic = vap->iv_ic; 5627 struct wpi_softc *sc = ic->ic_softc; 5628 int error; 5629 5630 WPI_RXON_LOCK(sc); 5631 error = wpi_scan(sc, ic->ic_curchan); 5632 WPI_RXON_UNLOCK(sc); 5633 if (error != 0) 5634 ieee80211_cancel_scan(vap); 5635 } 5636 5637 /** 5638 * Called by the net80211 framework to indicate 5639 * the minimum dwell time has been met, terminate the scan. 5640 * We don't actually terminate the scan as the firmware will notify 5641 * us when it's finished and we have no way to interrupt it. 5642 */ 5643 static void 5644 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 5645 { 5646 /* NB: don't try to abort scan; wait for firmware to finish */ 5647 } 5648