1 /*- 2 * Copyright (c) 2006,2007 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Benjamin Close <Benjamin.Close@clearchain.com> 5 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /* 24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters. 25 * 26 * The 3945ABG network adapter doesn't use traditional hardware as 27 * many other adaptors do. Instead at run time the eeprom is set into a known 28 * state and told to load boot firmware. The boot firmware loads an init and a 29 * main binary firmware image into SRAM on the card via DMA. 30 * Once the firmware is loaded, the driver/hw then 31 * communicate by way of circular dma rings via the SRAM to the firmware. 32 * 33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings. 34 * The 4 tx data rings allow for prioritization QoS. 35 * 36 * The rx data ring consists of 32 dma buffers. Two registers are used to 37 * indicate where in the ring the driver and the firmware are up to. The 38 * driver sets the initial read index (reg1) and the initial write index (reg2), 39 * the firmware updates the read index (reg1) on rx of a packet and fires an 40 * interrupt. The driver then processes the buffers starting at reg1 indicating 41 * to the firmware which buffers have been accessed by updating reg2. At the 42 * same time allocating new memory for the processed buffer. 43 * 44 * A similar thing happens with the tx rings. The difference is the firmware 45 * stop processing buffers once the queue is full and until confirmation 46 * of a successful transmition (tx_done) has occurred. 47 * 48 * The command ring operates in the same manner as the tx queues. 49 * 50 * All communication direct to the card (ie eeprom) is classed as Stage1 51 * communication 52 * 53 * All communication via the firmware to the card is classed as State2. 54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime 55 * firmware. The bootstrap firmware and runtime firmware are loaded 56 * from host memory via dma to the card then told to execute. From this point 57 * on the majority of communications between the driver and the card goes 58 * via the firmware. 59 */ 60 61 #include "opt_wlan.h" 62 #include "opt_wpi.h" 63 64 #include <sys/param.h> 65 #include <sys/sysctl.h> 66 #include <sys/sockio.h> 67 #include <sys/mbuf.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/queue.h> 73 #include <sys/taskqueue.h> 74 #include <sys/module.h> 75 #include <sys/bus.h> 76 #include <sys/endian.h> 77 #include <sys/linker.h> 78 #include <sys/firmware.h> 79 80 #include <machine/bus.h> 81 #include <machine/resource.h> 82 #include <sys/rman.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 87 #include <net/bpf.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 #include <net/if_types.h> 95 96 #include <netinet/in.h> 97 #include <netinet/in_systm.h> 98 #include <netinet/in_var.h> 99 #include <netinet/if_ether.h> 100 #include <netinet/ip.h> 101 102 #include <net80211/ieee80211_var.h> 103 #include <net80211/ieee80211_radiotap.h> 104 #include <net80211/ieee80211_regdomain.h> 105 #include <net80211/ieee80211_ratectl.h> 106 107 #include <dev/wpi/if_wpireg.h> 108 #include <dev/wpi/if_wpivar.h> 109 #include <dev/wpi/if_wpi_debug.h> 110 111 struct wpi_ident { 112 uint16_t vendor; 113 uint16_t device; 114 uint16_t subdevice; 115 const char *name; 116 }; 117 118 static const struct wpi_ident wpi_ident_table[] = { 119 /* The below entries support ABG regardless of the subid */ 120 { 0x8086, 0x4222, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 121 { 0x8086, 0x4227, 0x0, "Intel(R) PRO/Wireless 3945ABG" }, 122 /* The below entries only support BG */ 123 { 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG" }, 124 { 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG" }, 125 { 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG" }, 126 { 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG" }, 127 { 0, 0, 0, NULL } 128 }; 129 130 static int wpi_probe(device_t); 131 static int wpi_attach(device_t); 132 static void wpi_radiotap_attach(struct wpi_softc *); 133 static void wpi_sysctlattach(struct wpi_softc *); 134 static void wpi_init_beacon(struct wpi_vap *); 135 static struct ieee80211vap *wpi_vap_create(struct ieee80211com *, 136 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 137 const uint8_t [IEEE80211_ADDR_LEN], 138 const uint8_t [IEEE80211_ADDR_LEN]); 139 static void wpi_vap_delete(struct ieee80211vap *); 140 static int wpi_detach(device_t); 141 static int wpi_shutdown(device_t); 142 static int wpi_suspend(device_t); 143 static int wpi_resume(device_t); 144 static int wpi_nic_lock(struct wpi_softc *); 145 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int); 146 static void wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int); 147 static int wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *, 148 void **, bus_size_t, bus_size_t); 149 static void wpi_dma_contig_free(struct wpi_dma_info *); 150 static int wpi_alloc_shared(struct wpi_softc *); 151 static void wpi_free_shared(struct wpi_softc *); 152 static int wpi_alloc_fwmem(struct wpi_softc *); 153 static void wpi_free_fwmem(struct wpi_softc *); 154 static int wpi_alloc_rx_ring(struct wpi_softc *); 155 static void wpi_update_rx_ring(struct wpi_softc *); 156 static void wpi_update_rx_ring_ps(struct wpi_softc *); 157 static void wpi_reset_rx_ring(struct wpi_softc *); 158 static void wpi_free_rx_ring(struct wpi_softc *); 159 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, 160 uint8_t); 161 static void wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 162 static void wpi_update_tx_ring_ps(struct wpi_softc *, 163 struct wpi_tx_ring *); 164 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 165 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *); 166 static int wpi_read_eeprom(struct wpi_softc *, 167 uint8_t macaddr[IEEE80211_ADDR_LEN]); 168 static uint32_t wpi_eeprom_channel_flags(struct wpi_eeprom_chan *); 169 static void wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *, 170 struct ieee80211_channel[]); 171 static int wpi_read_eeprom_channels(struct wpi_softc *, uint8_t); 172 static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *, 173 struct ieee80211_channel *); 174 static void wpi_getradiocaps(struct ieee80211com *, int, int *, 175 struct ieee80211_channel[]); 176 static int wpi_setregdomain(struct ieee80211com *, 177 struct ieee80211_regdomain *, int, 178 struct ieee80211_channel[]); 179 static int wpi_read_eeprom_group(struct wpi_softc *, uint8_t); 180 static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *, 181 const uint8_t mac[IEEE80211_ADDR_LEN]); 182 static void wpi_node_free(struct ieee80211_node *); 183 static void wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int, 184 const struct ieee80211_rx_stats *, 185 int, int); 186 static void wpi_restore_node(void *, struct ieee80211_node *); 187 static void wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *); 188 static int wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int); 189 static void wpi_calib_timeout(void *); 190 static void wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *, 191 struct wpi_rx_data *); 192 static void wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *, 193 struct wpi_rx_data *); 194 static void wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *); 195 static void wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *); 196 static void wpi_notif_intr(struct wpi_softc *); 197 static void wpi_wakeup_intr(struct wpi_softc *); 198 #ifdef WPI_DEBUG 199 static void wpi_debug_registers(struct wpi_softc *); 200 #endif 201 static void wpi_fatal_intr(struct wpi_softc *); 202 static void wpi_intr(void *); 203 static void wpi_free_txfrags(struct wpi_softc *, uint16_t); 204 static int wpi_cmd2(struct wpi_softc *, struct wpi_buf *); 205 static int wpi_tx_data(struct wpi_softc *, struct mbuf *, 206 struct ieee80211_node *); 207 static int wpi_tx_data_raw(struct wpi_softc *, struct mbuf *, 208 struct ieee80211_node *, 209 const struct ieee80211_bpf_params *); 210 static int wpi_raw_xmit(struct ieee80211_node *, struct mbuf *, 211 const struct ieee80211_bpf_params *); 212 static int wpi_transmit(struct ieee80211com *, struct mbuf *); 213 static void wpi_watchdog_rfkill(void *); 214 static void wpi_scan_timeout(void *); 215 static void wpi_tx_timeout(void *); 216 static void wpi_parent(struct ieee80211com *); 217 static int wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t, 218 int); 219 static int wpi_mrr_setup(struct wpi_softc *); 220 static int wpi_add_node(struct wpi_softc *, struct ieee80211_node *); 221 static int wpi_add_broadcast_node(struct wpi_softc *, int); 222 static int wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *); 223 static void wpi_del_node(struct wpi_softc *, struct ieee80211_node *); 224 static int wpi_updateedca(struct ieee80211com *); 225 static void wpi_set_promisc(struct wpi_softc *); 226 static void wpi_update_promisc(struct ieee80211com *); 227 static void wpi_update_mcast(struct ieee80211com *); 228 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t); 229 static int wpi_set_timing(struct wpi_softc *, struct ieee80211_node *); 230 static void wpi_power_calibration(struct wpi_softc *); 231 static int wpi_set_txpower(struct wpi_softc *, int); 232 static int wpi_get_power_index(struct wpi_softc *, 233 struct wpi_power_group *, uint8_t, int, int); 234 static int wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int); 235 static int wpi_send_btcoex(struct wpi_softc *); 236 static int wpi_send_rxon(struct wpi_softc *, int, int); 237 static int wpi_config(struct wpi_softc *); 238 static uint16_t wpi_get_active_dwell_time(struct wpi_softc *, 239 struct ieee80211_channel *, uint8_t); 240 static uint16_t wpi_limit_dwell(struct wpi_softc *, uint16_t); 241 static uint16_t wpi_get_passive_dwell_time(struct wpi_softc *, 242 struct ieee80211_channel *); 243 static uint32_t wpi_get_scan_pause_time(uint32_t, uint16_t); 244 static int wpi_scan(struct wpi_softc *, struct ieee80211_channel *); 245 static int wpi_auth(struct wpi_softc *, struct ieee80211vap *); 246 static int wpi_config_beacon(struct wpi_vap *); 247 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *); 248 static void wpi_update_beacon(struct ieee80211vap *, int); 249 static void wpi_newassoc(struct ieee80211_node *, int); 250 static int wpi_run(struct wpi_softc *, struct ieee80211vap *); 251 static int wpi_load_key(struct ieee80211_node *, 252 const struct ieee80211_key *); 253 static void wpi_load_key_cb(void *, struct ieee80211_node *); 254 static int wpi_set_global_keys(struct ieee80211_node *); 255 static int wpi_del_key(struct ieee80211_node *, 256 const struct ieee80211_key *); 257 static void wpi_del_key_cb(void *, struct ieee80211_node *); 258 static int wpi_process_key(struct ieee80211vap *, 259 const struct ieee80211_key *, int); 260 static int wpi_key_set(struct ieee80211vap *, 261 const struct ieee80211_key *); 262 static int wpi_key_delete(struct ieee80211vap *, 263 const struct ieee80211_key *); 264 static int wpi_post_alive(struct wpi_softc *); 265 static int wpi_load_bootcode(struct wpi_softc *, const uint8_t *, 266 uint32_t); 267 static int wpi_load_firmware(struct wpi_softc *); 268 static int wpi_read_firmware(struct wpi_softc *); 269 static void wpi_unload_firmware(struct wpi_softc *); 270 static int wpi_clock_wait(struct wpi_softc *); 271 static int wpi_apm_init(struct wpi_softc *); 272 static void wpi_apm_stop_master(struct wpi_softc *); 273 static void wpi_apm_stop(struct wpi_softc *); 274 static void wpi_nic_config(struct wpi_softc *); 275 static int wpi_hw_init(struct wpi_softc *); 276 static void wpi_hw_stop(struct wpi_softc *); 277 static void wpi_radio_on(void *, int); 278 static void wpi_radio_off(void *, int); 279 static int wpi_init(struct wpi_softc *); 280 static void wpi_stop_locked(struct wpi_softc *); 281 static void wpi_stop(struct wpi_softc *); 282 static void wpi_scan_start(struct ieee80211com *); 283 static void wpi_scan_end(struct ieee80211com *); 284 static void wpi_set_channel(struct ieee80211com *); 285 static void wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long); 286 static void wpi_scan_mindwell(struct ieee80211_scan_state *); 287 288 static device_method_t wpi_methods[] = { 289 /* Device interface */ 290 DEVMETHOD(device_probe, wpi_probe), 291 DEVMETHOD(device_attach, wpi_attach), 292 DEVMETHOD(device_detach, wpi_detach), 293 DEVMETHOD(device_shutdown, wpi_shutdown), 294 DEVMETHOD(device_suspend, wpi_suspend), 295 DEVMETHOD(device_resume, wpi_resume), 296 297 DEVMETHOD_END 298 }; 299 300 static driver_t wpi_driver = { 301 "wpi", 302 wpi_methods, 303 sizeof (struct wpi_softc) 304 }; 305 static devclass_t wpi_devclass; 306 307 DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL); 308 309 MODULE_VERSION(wpi, 1); 310 311 MODULE_DEPEND(wpi, pci, 1, 1, 1); 312 MODULE_DEPEND(wpi, wlan, 1, 1, 1); 313 MODULE_DEPEND(wpi, firmware, 1, 1, 1); 314 315 static int 316 wpi_probe(device_t dev) 317 { 318 const struct wpi_ident *ident; 319 320 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 321 if (pci_get_vendor(dev) == ident->vendor && 322 pci_get_device(dev) == ident->device) { 323 device_set_desc(dev, ident->name); 324 return (BUS_PROBE_DEFAULT); 325 } 326 } 327 return ENXIO; 328 } 329 330 static int 331 wpi_attach(device_t dev) 332 { 333 struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev); 334 struct ieee80211com *ic; 335 uint8_t i; 336 int error, rid; 337 #ifdef WPI_DEBUG 338 int supportsa = 1; 339 const struct wpi_ident *ident; 340 #endif 341 342 sc->sc_dev = dev; 343 344 #ifdef WPI_DEBUG 345 error = resource_int_value(device_get_name(sc->sc_dev), 346 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 347 if (error != 0) 348 sc->sc_debug = 0; 349 #else 350 sc->sc_debug = 0; 351 #endif 352 353 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 354 355 /* 356 * Get the offset of the PCI Express Capability Structure in PCI 357 * Configuration Space. 358 */ 359 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 360 if (error != 0) { 361 device_printf(dev, "PCIe capability structure not found!\n"); 362 return error; 363 } 364 365 /* 366 * Some card's only support 802.11b/g not a, check to see if 367 * this is one such card. A 0x0 in the subdevice table indicates 368 * the entire subdevice range is to be ignored. 369 */ 370 #ifdef WPI_DEBUG 371 for (ident = wpi_ident_table; ident->name != NULL; ident++) { 372 if (ident->subdevice && 373 pci_get_subdevice(dev) == ident->subdevice) { 374 supportsa = 0; 375 break; 376 } 377 } 378 #endif 379 380 /* Clear device-specific "PCI retry timeout" register (41h). */ 381 pci_write_config(dev, 0x41, 0, 1); 382 383 /* Enable bus-mastering. */ 384 pci_enable_busmaster(dev); 385 386 rid = PCIR_BAR(0); 387 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 388 RF_ACTIVE); 389 if (sc->mem == NULL) { 390 device_printf(dev, "can't map mem space\n"); 391 return ENOMEM; 392 } 393 sc->sc_st = rman_get_bustag(sc->mem); 394 sc->sc_sh = rman_get_bushandle(sc->mem); 395 396 rid = 1; 397 if (pci_alloc_msi(dev, &rid) == 0) 398 rid = 1; 399 else 400 rid = 0; 401 /* Install interrupt handler. */ 402 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 403 (rid != 0 ? 0 : RF_SHAREABLE)); 404 if (sc->irq == NULL) { 405 device_printf(dev, "can't map interrupt\n"); 406 error = ENOMEM; 407 goto fail; 408 } 409 410 WPI_LOCK_INIT(sc); 411 WPI_TX_LOCK_INIT(sc); 412 WPI_RXON_LOCK_INIT(sc); 413 WPI_NT_LOCK_INIT(sc); 414 WPI_TXQ_LOCK_INIT(sc); 415 WPI_TXQ_STATE_LOCK_INIT(sc); 416 417 /* Allocate DMA memory for firmware transfers. */ 418 if ((error = wpi_alloc_fwmem(sc)) != 0) { 419 device_printf(dev, 420 "could not allocate memory for firmware, error %d\n", 421 error); 422 goto fail; 423 } 424 425 /* Allocate shared page. */ 426 if ((error = wpi_alloc_shared(sc)) != 0) { 427 device_printf(dev, "could not allocate shared page\n"); 428 goto fail; 429 } 430 431 /* Allocate TX rings - 4 for QoS purposes, 1 for commands. */ 432 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { 433 if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 434 device_printf(dev, 435 "could not allocate TX ring %d, error %d\n", i, 436 error); 437 goto fail; 438 } 439 } 440 441 /* Allocate RX ring. */ 442 if ((error = wpi_alloc_rx_ring(sc)) != 0) { 443 device_printf(dev, "could not allocate RX ring, error %d\n", 444 error); 445 goto fail; 446 } 447 448 /* Clear pending interrupts. */ 449 WPI_WRITE(sc, WPI_INT, 0xffffffff); 450 451 ic = &sc->sc_ic; 452 ic->ic_softc = sc; 453 ic->ic_name = device_get_nameunit(dev); 454 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 455 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 456 457 /* Set device capabilities. */ 458 ic->ic_caps = 459 IEEE80211_C_STA /* station mode supported */ 460 | IEEE80211_C_IBSS /* IBSS mode supported */ 461 | IEEE80211_C_HOSTAP /* Host access point mode */ 462 | IEEE80211_C_MONITOR /* monitor mode supported */ 463 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 464 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 465 | IEEE80211_C_TXFRAG /* handle tx frags */ 466 | IEEE80211_C_TXPMGT /* tx power management */ 467 | IEEE80211_C_SHSLOT /* short slot time supported */ 468 | IEEE80211_C_WPA /* 802.11i */ 469 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 470 | IEEE80211_C_WME /* 802.11e */ 471 | IEEE80211_C_PMGT /* Station-side power mgmt */ 472 ; 473 474 ic->ic_cryptocaps = 475 IEEE80211_CRYPTO_AES_CCM; 476 477 /* 478 * Read in the eeprom and also setup the channels for 479 * net80211. We don't set the rates as net80211 does this for us 480 */ 481 if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) { 482 device_printf(dev, "could not read EEPROM, error %d\n", 483 error); 484 goto fail; 485 } 486 487 #ifdef WPI_DEBUG 488 if (bootverbose) { 489 device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", 490 sc->domain); 491 device_printf(sc->sc_dev, "Hardware Type: %c\n", 492 sc->type > 1 ? 'B': '?'); 493 device_printf(sc->sc_dev, "Hardware Revision: %c\n", 494 ((sc->rev & 0xf0) == 0xd0) ? 'D': '?'); 495 device_printf(sc->sc_dev, "SKU %s support 802.11a\n", 496 supportsa ? "does" : "does not"); 497 498 /* XXX hw_config uses the PCIDEV for the Hardware rev. Must 499 check what sc->rev really represents - benjsc 20070615 */ 500 } 501 #endif 502 503 ieee80211_ifattach(ic); 504 ic->ic_vap_create = wpi_vap_create; 505 ic->ic_vap_delete = wpi_vap_delete; 506 ic->ic_parent = wpi_parent; 507 ic->ic_raw_xmit = wpi_raw_xmit; 508 ic->ic_transmit = wpi_transmit; 509 ic->ic_node_alloc = wpi_node_alloc; 510 sc->sc_node_free = ic->ic_node_free; 511 ic->ic_node_free = wpi_node_free; 512 ic->ic_wme.wme_update = wpi_updateedca; 513 ic->ic_update_promisc = wpi_update_promisc; 514 ic->ic_update_mcast = wpi_update_mcast; 515 ic->ic_newassoc = wpi_newassoc; 516 ic->ic_scan_start = wpi_scan_start; 517 ic->ic_scan_end = wpi_scan_end; 518 ic->ic_set_channel = wpi_set_channel; 519 ic->ic_scan_curchan = wpi_scan_curchan; 520 ic->ic_scan_mindwell = wpi_scan_mindwell; 521 ic->ic_getradiocaps = wpi_getradiocaps; 522 ic->ic_setregdomain = wpi_setregdomain; 523 524 sc->sc_update_rx_ring = wpi_update_rx_ring; 525 sc->sc_update_tx_ring = wpi_update_tx_ring; 526 527 wpi_radiotap_attach(sc); 528 529 /* Setup Tx status flags (constant). */ 530 sc->sc_txs.flags = IEEE80211_RATECTL_STATUS_PKTLEN | 531 IEEE80211_RATECTL_STATUS_SHORT_RETRY | 532 IEEE80211_RATECTL_STATUS_LONG_RETRY; 533 534 callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0); 535 callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0); 536 callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0); 537 callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0); 538 TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc); 539 TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc); 540 541 wpi_sysctlattach(sc); 542 543 /* 544 * Hook our interrupt after all initialization is complete. 545 */ 546 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 547 NULL, wpi_intr, sc, &sc->sc_ih); 548 if (error != 0) { 549 device_printf(dev, "can't establish interrupt, error %d\n", 550 error); 551 goto fail; 552 } 553 554 if (bootverbose) 555 ieee80211_announce(ic); 556 557 #ifdef WPI_DEBUG 558 if (sc->sc_debug & WPI_DEBUG_HW) 559 ieee80211_announce_channels(ic); 560 #endif 561 562 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 563 return 0; 564 565 fail: wpi_detach(dev); 566 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 567 return error; 568 } 569 570 /* 571 * Attach the interface to 802.11 radiotap. 572 */ 573 static void 574 wpi_radiotap_attach(struct wpi_softc *sc) 575 { 576 struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap; 577 struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap; 578 579 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 580 ieee80211_radiotap_attach(&sc->sc_ic, 581 &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT, 582 &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT); 583 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 584 } 585 586 static void 587 wpi_sysctlattach(struct wpi_softc *sc) 588 { 589 #ifdef WPI_DEBUG 590 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 591 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 592 593 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 594 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 595 "control debugging printfs"); 596 #endif 597 } 598 599 static void 600 wpi_init_beacon(struct wpi_vap *wvp) 601 { 602 struct wpi_buf *bcn = &wvp->wv_bcbuf; 603 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; 604 605 cmd->id = WPI_ID_BROADCAST; 606 cmd->ofdm_mask = 0xff; 607 cmd->cck_mask = 0x0f; 608 cmd->lifetime = htole32(WPI_LIFETIME_INFINITE); 609 610 /* 611 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue 612 * XXX by using WPI_TX_NEED_ACK instead (with some side effects). 613 */ 614 cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP); 615 616 bcn->code = WPI_CMD_SET_BEACON; 617 bcn->ac = WPI_CMD_QUEUE_NUM; 618 bcn->size = sizeof(struct wpi_cmd_beacon); 619 } 620 621 static struct ieee80211vap * 622 wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 623 enum ieee80211_opmode opmode, int flags, 624 const uint8_t bssid[IEEE80211_ADDR_LEN], 625 const uint8_t mac[IEEE80211_ADDR_LEN]) 626 { 627 struct wpi_vap *wvp; 628 struct ieee80211vap *vap; 629 630 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 631 return NULL; 632 633 wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO); 634 vap = &wvp->wv_vap; 635 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 636 637 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { 638 WPI_VAP_LOCK_INIT(wvp); 639 wpi_init_beacon(wvp); 640 } 641 642 /* Override with driver methods. */ 643 vap->iv_key_set = wpi_key_set; 644 vap->iv_key_delete = wpi_key_delete; 645 if (opmode == IEEE80211_M_IBSS) { 646 wvp->wv_recv_mgmt = vap->iv_recv_mgmt; 647 vap->iv_recv_mgmt = wpi_ibss_recv_mgmt; 648 } 649 wvp->wv_newstate = vap->iv_newstate; 650 vap->iv_newstate = wpi_newstate; 651 vap->iv_update_beacon = wpi_update_beacon; 652 vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1; 653 654 ieee80211_ratectl_init(vap); 655 /* Complete setup. */ 656 ieee80211_vap_attach(vap, ieee80211_media_change, 657 ieee80211_media_status, mac); 658 ic->ic_opmode = opmode; 659 return vap; 660 } 661 662 static void 663 wpi_vap_delete(struct ieee80211vap *vap) 664 { 665 struct wpi_vap *wvp = WPI_VAP(vap); 666 struct wpi_buf *bcn = &wvp->wv_bcbuf; 667 enum ieee80211_opmode opmode = vap->iv_opmode; 668 669 ieee80211_ratectl_deinit(vap); 670 ieee80211_vap_detach(vap); 671 672 if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) { 673 if (bcn->m != NULL) 674 m_freem(bcn->m); 675 676 WPI_VAP_LOCK_DESTROY(wvp); 677 } 678 679 free(wvp, M_80211_VAP); 680 } 681 682 static int 683 wpi_detach(device_t dev) 684 { 685 struct wpi_softc *sc = device_get_softc(dev); 686 struct ieee80211com *ic = &sc->sc_ic; 687 uint8_t qid; 688 689 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 690 691 if (ic->ic_vap_create == wpi_vap_create) { 692 ieee80211_draintask(ic, &sc->sc_radioon_task); 693 ieee80211_draintask(ic, &sc->sc_radiooff_task); 694 695 wpi_stop(sc); 696 697 callout_drain(&sc->watchdog_rfkill); 698 callout_drain(&sc->tx_timeout); 699 callout_drain(&sc->scan_timeout); 700 callout_drain(&sc->calib_to); 701 ieee80211_ifdetach(ic); 702 } 703 704 /* Uninstall interrupt handler. */ 705 if (sc->irq != NULL) { 706 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 707 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 708 sc->irq); 709 pci_release_msi(dev); 710 } 711 712 if (sc->txq[0].data_dmat) { 713 /* Free DMA resources. */ 714 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) 715 wpi_free_tx_ring(sc, &sc->txq[qid]); 716 717 wpi_free_rx_ring(sc); 718 wpi_free_shared(sc); 719 } 720 721 if (sc->fw_dma.tag) 722 wpi_free_fwmem(sc); 723 724 if (sc->mem != NULL) 725 bus_release_resource(dev, SYS_RES_MEMORY, 726 rman_get_rid(sc->mem), sc->mem); 727 728 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 729 WPI_TXQ_STATE_LOCK_DESTROY(sc); 730 WPI_TXQ_LOCK_DESTROY(sc); 731 WPI_NT_LOCK_DESTROY(sc); 732 WPI_RXON_LOCK_DESTROY(sc); 733 WPI_TX_LOCK_DESTROY(sc); 734 WPI_LOCK_DESTROY(sc); 735 return 0; 736 } 737 738 static int 739 wpi_shutdown(device_t dev) 740 { 741 struct wpi_softc *sc = device_get_softc(dev); 742 743 wpi_stop(sc); 744 return 0; 745 } 746 747 static int 748 wpi_suspend(device_t dev) 749 { 750 struct wpi_softc *sc = device_get_softc(dev); 751 struct ieee80211com *ic = &sc->sc_ic; 752 753 ieee80211_suspend_all(ic); 754 return 0; 755 } 756 757 static int 758 wpi_resume(device_t dev) 759 { 760 struct wpi_softc *sc = device_get_softc(dev); 761 struct ieee80211com *ic = &sc->sc_ic; 762 763 /* Clear device-specific "PCI retry timeout" register (41h). */ 764 pci_write_config(dev, 0x41, 0, 1); 765 766 ieee80211_resume_all(ic); 767 return 0; 768 } 769 770 /* 771 * Grab exclusive access to NIC memory. 772 */ 773 static int 774 wpi_nic_lock(struct wpi_softc *sc) 775 { 776 int ntries; 777 778 /* Request exclusive access to NIC. */ 779 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 780 781 /* Spin until we actually get the lock. */ 782 for (ntries = 0; ntries < 1000; ntries++) { 783 if ((WPI_READ(sc, WPI_GP_CNTRL) & 784 (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) == 785 WPI_GP_CNTRL_MAC_ACCESS_ENA) 786 return 0; 787 DELAY(10); 788 } 789 790 device_printf(sc->sc_dev, "could not lock memory\n"); 791 792 return ETIMEDOUT; 793 } 794 795 /* 796 * Release lock on NIC memory. 797 */ 798 static __inline void 799 wpi_nic_unlock(struct wpi_softc *sc) 800 { 801 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 802 } 803 804 static __inline uint32_t 805 wpi_prph_read(struct wpi_softc *sc, uint32_t addr) 806 { 807 WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr); 808 WPI_BARRIER_READ_WRITE(sc); 809 return WPI_READ(sc, WPI_PRPH_RDATA); 810 } 811 812 static __inline void 813 wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data) 814 { 815 WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr); 816 WPI_BARRIER_WRITE(sc); 817 WPI_WRITE(sc, WPI_PRPH_WDATA, data); 818 } 819 820 static __inline void 821 wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 822 { 823 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask); 824 } 825 826 static __inline void 827 wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask) 828 { 829 wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask); 830 } 831 832 static __inline void 833 wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr, 834 const uint32_t *data, uint32_t count) 835 { 836 for (; count != 0; count--, data++, addr += 4) 837 wpi_prph_write(sc, addr, *data); 838 } 839 840 static __inline uint32_t 841 wpi_mem_read(struct wpi_softc *sc, uint32_t addr) 842 { 843 WPI_WRITE(sc, WPI_MEM_RADDR, addr); 844 WPI_BARRIER_READ_WRITE(sc); 845 return WPI_READ(sc, WPI_MEM_RDATA); 846 } 847 848 static __inline void 849 wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data, 850 int count) 851 { 852 for (; count > 0; count--, addr += 4) 853 *data++ = wpi_mem_read(sc, addr); 854 } 855 856 static int 857 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count) 858 { 859 uint8_t *out = data; 860 uint32_t val; 861 int error, ntries; 862 863 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 864 865 if ((error = wpi_nic_lock(sc)) != 0) 866 return error; 867 868 for (; count > 0; count -= 2, addr++) { 869 WPI_WRITE(sc, WPI_EEPROM, addr << 2); 870 for (ntries = 0; ntries < 10; ntries++) { 871 val = WPI_READ(sc, WPI_EEPROM); 872 if (val & WPI_EEPROM_READ_VALID) 873 break; 874 DELAY(5); 875 } 876 if (ntries == 10) { 877 device_printf(sc->sc_dev, 878 "timeout reading ROM at 0x%x\n", addr); 879 return ETIMEDOUT; 880 } 881 *out++= val >> 16; 882 if (count > 1) 883 *out ++= val >> 24; 884 } 885 886 wpi_nic_unlock(sc); 887 888 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 889 890 return 0; 891 } 892 893 static void 894 wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 895 { 896 if (error != 0) 897 return; 898 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 899 *(bus_addr_t *)arg = segs[0].ds_addr; 900 } 901 902 /* 903 * Allocates a contiguous block of dma memory of the requested size and 904 * alignment. 905 */ 906 static int 907 wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma, 908 void **kvap, bus_size_t size, bus_size_t alignment) 909 { 910 int error; 911 912 dma->tag = NULL; 913 dma->size = size; 914 915 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 916 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 917 1, size, 0, NULL, NULL, &dma->tag); 918 if (error != 0) 919 goto fail; 920 921 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 922 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 923 if (error != 0) 924 goto fail; 925 926 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 927 wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 928 if (error != 0) 929 goto fail; 930 931 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 932 933 if (kvap != NULL) 934 *kvap = dma->vaddr; 935 936 return 0; 937 938 fail: wpi_dma_contig_free(dma); 939 return error; 940 } 941 942 static void 943 wpi_dma_contig_free(struct wpi_dma_info *dma) 944 { 945 if (dma->vaddr != NULL) { 946 bus_dmamap_sync(dma->tag, dma->map, 947 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 948 bus_dmamap_unload(dma->tag, dma->map); 949 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 950 dma->vaddr = NULL; 951 } 952 if (dma->tag != NULL) { 953 bus_dma_tag_destroy(dma->tag); 954 dma->tag = NULL; 955 } 956 } 957 958 /* 959 * Allocate a shared page between host and NIC. 960 */ 961 static int 962 wpi_alloc_shared(struct wpi_softc *sc) 963 { 964 /* Shared buffer must be aligned on a 4KB boundary. */ 965 return wpi_dma_contig_alloc(sc, &sc->shared_dma, 966 (void **)&sc->shared, sizeof (struct wpi_shared), 4096); 967 } 968 969 static void 970 wpi_free_shared(struct wpi_softc *sc) 971 { 972 wpi_dma_contig_free(&sc->shared_dma); 973 } 974 975 /* 976 * Allocate DMA-safe memory for firmware transfer. 977 */ 978 static int 979 wpi_alloc_fwmem(struct wpi_softc *sc) 980 { 981 /* Must be aligned on a 16-byte boundary. */ 982 return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL, 983 WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16); 984 } 985 986 static void 987 wpi_free_fwmem(struct wpi_softc *sc) 988 { 989 wpi_dma_contig_free(&sc->fw_dma); 990 } 991 992 static int 993 wpi_alloc_rx_ring(struct wpi_softc *sc) 994 { 995 struct wpi_rx_ring *ring = &sc->rxq; 996 bus_size_t size; 997 int i, error; 998 999 ring->cur = 0; 1000 ring->update = 0; 1001 1002 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1003 1004 /* Allocate RX descriptors (16KB aligned.) */ 1005 size = WPI_RX_RING_COUNT * sizeof (uint32_t); 1006 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, 1007 (void **)&ring->desc, size, WPI_RING_DMA_ALIGN); 1008 if (error != 0) { 1009 device_printf(sc->sc_dev, 1010 "%s: could not allocate RX ring DMA memory, error %d\n", 1011 __func__, error); 1012 goto fail; 1013 } 1014 1015 /* Create RX buffer DMA tag. */ 1016 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1017 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1018 MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat); 1019 if (error != 0) { 1020 device_printf(sc->sc_dev, 1021 "%s: could not create RX buf DMA tag, error %d\n", 1022 __func__, error); 1023 goto fail; 1024 } 1025 1026 /* 1027 * Allocate and map RX buffers. 1028 */ 1029 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1030 struct wpi_rx_data *data = &ring->data[i]; 1031 bus_addr_t paddr; 1032 1033 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1034 if (error != 0) { 1035 device_printf(sc->sc_dev, 1036 "%s: could not create RX buf DMA map, error %d\n", 1037 __func__, error); 1038 goto fail; 1039 } 1040 1041 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1042 if (data->m == NULL) { 1043 device_printf(sc->sc_dev, 1044 "%s: could not allocate RX mbuf\n", __func__); 1045 error = ENOBUFS; 1046 goto fail; 1047 } 1048 1049 error = bus_dmamap_load(ring->data_dmat, data->map, 1050 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, 1051 &paddr, BUS_DMA_NOWAIT); 1052 if (error != 0 && error != EFBIG) { 1053 device_printf(sc->sc_dev, 1054 "%s: can't map mbuf (error %d)\n", __func__, 1055 error); 1056 goto fail; 1057 } 1058 1059 /* Set physical address of RX buffer. */ 1060 ring->desc[i] = htole32(paddr); 1061 } 1062 1063 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1064 BUS_DMASYNC_PREWRITE); 1065 1066 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1067 1068 return 0; 1069 1070 fail: wpi_free_rx_ring(sc); 1071 1072 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1073 1074 return error; 1075 } 1076 1077 static void 1078 wpi_update_rx_ring(struct wpi_softc *sc) 1079 { 1080 WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7); 1081 } 1082 1083 static void 1084 wpi_update_rx_ring_ps(struct wpi_softc *sc) 1085 { 1086 struct wpi_rx_ring *ring = &sc->rxq; 1087 1088 if (ring->update != 0) { 1089 /* Wait for INT_WAKEUP event. */ 1090 return; 1091 } 1092 1093 WPI_TXQ_LOCK(sc); 1094 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1095 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { 1096 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n", 1097 __func__); 1098 ring->update = 1; 1099 } else { 1100 wpi_update_rx_ring(sc); 1101 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1102 } 1103 WPI_TXQ_UNLOCK(sc); 1104 } 1105 1106 static void 1107 wpi_reset_rx_ring(struct wpi_softc *sc) 1108 { 1109 struct wpi_rx_ring *ring = &sc->rxq; 1110 int ntries; 1111 1112 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1113 1114 if (wpi_nic_lock(sc) == 0) { 1115 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0); 1116 for (ntries = 0; ntries < 1000; ntries++) { 1117 if (WPI_READ(sc, WPI_FH_RX_STATUS) & 1118 WPI_FH_RX_STATUS_IDLE) 1119 break; 1120 DELAY(10); 1121 } 1122 wpi_nic_unlock(sc); 1123 } 1124 1125 ring->cur = 0; 1126 ring->update = 0; 1127 } 1128 1129 static void 1130 wpi_free_rx_ring(struct wpi_softc *sc) 1131 { 1132 struct wpi_rx_ring *ring = &sc->rxq; 1133 int i; 1134 1135 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1136 1137 wpi_dma_contig_free(&ring->desc_dma); 1138 1139 for (i = 0; i < WPI_RX_RING_COUNT; i++) { 1140 struct wpi_rx_data *data = &ring->data[i]; 1141 1142 if (data->m != NULL) { 1143 bus_dmamap_sync(ring->data_dmat, data->map, 1144 BUS_DMASYNC_POSTREAD); 1145 bus_dmamap_unload(ring->data_dmat, data->map); 1146 m_freem(data->m); 1147 data->m = NULL; 1148 } 1149 if (data->map != NULL) 1150 bus_dmamap_destroy(ring->data_dmat, data->map); 1151 } 1152 if (ring->data_dmat != NULL) { 1153 bus_dma_tag_destroy(ring->data_dmat); 1154 ring->data_dmat = NULL; 1155 } 1156 } 1157 1158 static int 1159 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid) 1160 { 1161 bus_addr_t paddr; 1162 bus_size_t size; 1163 int i, error; 1164 1165 ring->qid = qid; 1166 ring->queued = 0; 1167 ring->cur = 0; 1168 ring->pending = 0; 1169 ring->update = 0; 1170 1171 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1172 1173 /* Allocate TX descriptors (16KB aligned.) */ 1174 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc); 1175 error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1176 size, WPI_RING_DMA_ALIGN); 1177 if (error != 0) { 1178 device_printf(sc->sc_dev, 1179 "%s: could not allocate TX ring DMA memory, error %d\n", 1180 __func__, error); 1181 goto fail; 1182 } 1183 1184 /* Update shared area with ring physical address. */ 1185 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr); 1186 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 1187 BUS_DMASYNC_PREWRITE); 1188 1189 size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd); 1190 error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1191 size, 4); 1192 if (error != 0) { 1193 device_printf(sc->sc_dev, 1194 "%s: could not allocate TX cmd DMA memory, error %d\n", 1195 __func__, error); 1196 goto fail; 1197 } 1198 1199 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1200 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1201 WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 1202 if (error != 0) { 1203 device_printf(sc->sc_dev, 1204 "%s: could not create TX buf DMA tag, error %d\n", 1205 __func__, error); 1206 goto fail; 1207 } 1208 1209 paddr = ring->cmd_dma.paddr; 1210 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1211 struct wpi_tx_data *data = &ring->data[i]; 1212 1213 data->cmd_paddr = paddr; 1214 paddr += sizeof (struct wpi_tx_cmd); 1215 1216 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1217 if (error != 0) { 1218 device_printf(sc->sc_dev, 1219 "%s: could not create TX buf DMA map, error %d\n", 1220 __func__, error); 1221 goto fail; 1222 } 1223 } 1224 1225 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1226 1227 return 0; 1228 1229 fail: wpi_free_tx_ring(sc, ring); 1230 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1231 return error; 1232 } 1233 1234 static void 1235 wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1236 { 1237 WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 1238 } 1239 1240 static void 1241 wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1242 { 1243 1244 if (ring->update != 0) { 1245 /* Wait for INT_WAKEUP event. */ 1246 return; 1247 } 1248 1249 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1250 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) { 1251 DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n", 1252 __func__, ring->qid); 1253 ring->update = 1; 1254 } else { 1255 wpi_update_tx_ring(sc, ring); 1256 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 1257 } 1258 } 1259 1260 static void 1261 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1262 { 1263 int i; 1264 1265 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1266 1267 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1268 struct wpi_tx_data *data = &ring->data[i]; 1269 1270 if (data->m != NULL) { 1271 bus_dmamap_sync(ring->data_dmat, data->map, 1272 BUS_DMASYNC_POSTWRITE); 1273 bus_dmamap_unload(ring->data_dmat, data->map); 1274 m_freem(data->m); 1275 data->m = NULL; 1276 } 1277 if (data->ni != NULL) { 1278 ieee80211_free_node(data->ni); 1279 data->ni = NULL; 1280 } 1281 } 1282 /* Clear TX descriptors. */ 1283 memset(ring->desc, 0, ring->desc_dma.size); 1284 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1285 BUS_DMASYNC_PREWRITE); 1286 ring->queued = 0; 1287 ring->cur = 0; 1288 ring->pending = 0; 1289 ring->update = 0; 1290 } 1291 1292 static void 1293 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring) 1294 { 1295 int i; 1296 1297 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 1298 1299 wpi_dma_contig_free(&ring->desc_dma); 1300 wpi_dma_contig_free(&ring->cmd_dma); 1301 1302 for (i = 0; i < WPI_TX_RING_COUNT; i++) { 1303 struct wpi_tx_data *data = &ring->data[i]; 1304 1305 if (data->m != NULL) { 1306 bus_dmamap_sync(ring->data_dmat, data->map, 1307 BUS_DMASYNC_POSTWRITE); 1308 bus_dmamap_unload(ring->data_dmat, data->map); 1309 m_freem(data->m); 1310 } 1311 if (data->map != NULL) 1312 bus_dmamap_destroy(ring->data_dmat, data->map); 1313 } 1314 if (ring->data_dmat != NULL) { 1315 bus_dma_tag_destroy(ring->data_dmat); 1316 ring->data_dmat = NULL; 1317 } 1318 } 1319 1320 /* 1321 * Extract various information from EEPROM. 1322 */ 1323 static int 1324 wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 1325 { 1326 #define WPI_CHK(res) do { \ 1327 if ((error = res) != 0) \ 1328 goto fail; \ 1329 } while (0) 1330 uint8_t i; 1331 int error; 1332 1333 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1334 1335 /* Adapter has to be powered on for EEPROM access to work. */ 1336 if ((error = wpi_apm_init(sc)) != 0) { 1337 device_printf(sc->sc_dev, 1338 "%s: could not power ON adapter, error %d\n", __func__, 1339 error); 1340 return error; 1341 } 1342 1343 if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) { 1344 device_printf(sc->sc_dev, "bad EEPROM signature\n"); 1345 error = EIO; 1346 goto fail; 1347 } 1348 /* Clear HW ownership of EEPROM. */ 1349 WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER); 1350 1351 /* Read the hardware capabilities, revision and SKU type. */ 1352 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap, 1353 sizeof(sc->cap))); 1354 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 1355 sizeof(sc->rev))); 1356 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1357 sizeof(sc->type))); 1358 1359 sc->rev = le16toh(sc->rev); 1360 DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap, 1361 sc->rev, sc->type); 1362 1363 /* Read the regulatory domain (4 ASCII characters.) */ 1364 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 1365 sizeof(sc->domain))); 1366 1367 /* Read MAC address. */ 1368 WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 1369 IEEE80211_ADDR_LEN)); 1370 1371 /* Read the list of authorized channels. */ 1372 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++) 1373 WPI_CHK(wpi_read_eeprom_channels(sc, i)); 1374 1375 /* Read the list of TX power groups. */ 1376 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++) 1377 WPI_CHK(wpi_read_eeprom_group(sc, i)); 1378 1379 fail: wpi_apm_stop(sc); /* Power OFF adapter. */ 1380 1381 DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, 1382 __func__); 1383 1384 return error; 1385 #undef WPI_CHK 1386 } 1387 1388 /* 1389 * Translate EEPROM flags to net80211. 1390 */ 1391 static uint32_t 1392 wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel) 1393 { 1394 uint32_t nflags; 1395 1396 nflags = 0; 1397 if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0) 1398 nflags |= IEEE80211_CHAN_PASSIVE; 1399 if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0) 1400 nflags |= IEEE80211_CHAN_NOADHOC; 1401 if (channel->flags & WPI_EEPROM_CHAN_RADAR) { 1402 nflags |= IEEE80211_CHAN_DFS; 1403 /* XXX apparently IBSS may still be marked */ 1404 nflags |= IEEE80211_CHAN_NOADHOC; 1405 } 1406 1407 /* XXX HOSTAP uses WPI_MODE_IBSS */ 1408 if (nflags & IEEE80211_CHAN_NOADHOC) 1409 nflags |= IEEE80211_CHAN_NOHOSTAP; 1410 1411 return nflags; 1412 } 1413 1414 static void 1415 wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans, 1416 int *nchans, struct ieee80211_channel chans[]) 1417 { 1418 struct wpi_eeprom_chan *channels = sc->eeprom_channels[n]; 1419 const struct wpi_chan_band *band = &wpi_bands[n]; 1420 uint32_t nflags; 1421 uint8_t bands[IEEE80211_MODE_BYTES]; 1422 uint8_t chan, i; 1423 int error; 1424 1425 memset(bands, 0, sizeof(bands)); 1426 1427 if (n == 0) { 1428 setbit(bands, IEEE80211_MODE_11B); 1429 setbit(bands, IEEE80211_MODE_11G); 1430 } else 1431 setbit(bands, IEEE80211_MODE_11A); 1432 1433 for (i = 0; i < band->nchan; i++) { 1434 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) { 1435 DPRINTF(sc, WPI_DEBUG_EEPROM, 1436 "Channel Not Valid: %d, band %d\n", 1437 band->chan[i],n); 1438 continue; 1439 } 1440 1441 chan = band->chan[i]; 1442 nflags = wpi_eeprom_channel_flags(&channels[i]); 1443 error = ieee80211_add_channel(chans, maxchans, nchans, 1444 chan, 0, channels[i].maxpwr, nflags, bands); 1445 if (error != 0) 1446 break; 1447 1448 /* Save maximum allowed TX power for this channel. */ 1449 sc->maxpwr[chan] = channels[i].maxpwr; 1450 1451 DPRINTF(sc, WPI_DEBUG_EEPROM, 1452 "adding chan %d flags=0x%x maxpwr=%d, offset %d\n", 1453 chan, channels[i].flags, sc->maxpwr[chan], *nchans); 1454 } 1455 } 1456 1457 /** 1458 * Read the eeprom to find out what channels are valid for the given 1459 * band and update net80211 with what we find. 1460 */ 1461 static int 1462 wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n) 1463 { 1464 struct ieee80211com *ic = &sc->sc_ic; 1465 const struct wpi_chan_band *band = &wpi_bands[n]; 1466 int error; 1467 1468 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1469 1470 error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n], 1471 band->nchan * sizeof (struct wpi_eeprom_chan)); 1472 if (error != 0) { 1473 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1474 return error; 1475 } 1476 1477 wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 1478 ic->ic_channels); 1479 1480 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 1481 1482 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1483 1484 return 0; 1485 } 1486 1487 static struct wpi_eeprom_chan * 1488 wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c) 1489 { 1490 int i, j; 1491 1492 for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++) 1493 for (i = 0; i < wpi_bands[j].nchan; i++) 1494 if (wpi_bands[j].chan[i] == c->ic_ieee && 1495 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) 1496 return &sc->eeprom_channels[j][i]; 1497 1498 return NULL; 1499 } 1500 1501 static void 1502 wpi_getradiocaps(struct ieee80211com *ic, 1503 int maxchans, int *nchans, struct ieee80211_channel chans[]) 1504 { 1505 struct wpi_softc *sc = ic->ic_softc; 1506 int i; 1507 1508 /* Parse the list of authorized channels. */ 1509 for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++) 1510 wpi_read_eeprom_band(sc, i, maxchans, nchans, chans); 1511 } 1512 1513 /* 1514 * Enforce flags read from EEPROM. 1515 */ 1516 static int 1517 wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 1518 int nchan, struct ieee80211_channel chans[]) 1519 { 1520 struct wpi_softc *sc = ic->ic_softc; 1521 int i; 1522 1523 for (i = 0; i < nchan; i++) { 1524 struct ieee80211_channel *c = &chans[i]; 1525 struct wpi_eeprom_chan *channel; 1526 1527 channel = wpi_find_eeprom_channel(sc, c); 1528 if (channel == NULL) { 1529 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 1530 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 1531 return EINVAL; 1532 } 1533 c->ic_flags |= wpi_eeprom_channel_flags(channel); 1534 } 1535 1536 return 0; 1537 } 1538 1539 static int 1540 wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n) 1541 { 1542 struct wpi_power_group *group = &sc->groups[n]; 1543 struct wpi_eeprom_group rgroup; 1544 int i, error; 1545 1546 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1547 1548 if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, 1549 &rgroup, sizeof rgroup)) != 0) { 1550 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1551 return error; 1552 } 1553 1554 /* Save TX power group information. */ 1555 group->chan = rgroup.chan; 1556 group->maxpwr = rgroup.maxpwr; 1557 /* Retrieve temperature at which the samples were taken. */ 1558 group->temp = (int16_t)le16toh(rgroup.temp); 1559 1560 DPRINTF(sc, WPI_DEBUG_EEPROM, 1561 "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan, 1562 group->maxpwr, group->temp); 1563 1564 for (i = 0; i < WPI_SAMPLES_COUNT; i++) { 1565 group->samples[i].index = rgroup.samples[i].index; 1566 group->samples[i].power = rgroup.samples[i].power; 1567 1568 DPRINTF(sc, WPI_DEBUG_EEPROM, 1569 "\tsample %d: index=%d power=%d\n", i, 1570 group->samples[i].index, group->samples[i].power); 1571 } 1572 1573 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1574 1575 return 0; 1576 } 1577 1578 static __inline uint8_t 1579 wpi_add_node_entry_adhoc(struct wpi_softc *sc) 1580 { 1581 uint8_t newid = WPI_ID_IBSS_MIN; 1582 1583 for (; newid <= WPI_ID_IBSS_MAX; newid++) { 1584 if ((sc->nodesmsk & (1 << newid)) == 0) { 1585 sc->nodesmsk |= 1 << newid; 1586 return newid; 1587 } 1588 } 1589 1590 return WPI_ID_UNDEFINED; 1591 } 1592 1593 static __inline uint8_t 1594 wpi_add_node_entry_sta(struct wpi_softc *sc) 1595 { 1596 sc->nodesmsk |= 1 << WPI_ID_BSS; 1597 1598 return WPI_ID_BSS; 1599 } 1600 1601 static __inline int 1602 wpi_check_node_entry(struct wpi_softc *sc, uint8_t id) 1603 { 1604 if (id == WPI_ID_UNDEFINED) 1605 return 0; 1606 1607 return (sc->nodesmsk >> id) & 1; 1608 } 1609 1610 static __inline void 1611 wpi_clear_node_table(struct wpi_softc *sc) 1612 { 1613 sc->nodesmsk = 0; 1614 } 1615 1616 static __inline void 1617 wpi_del_node_entry(struct wpi_softc *sc, uint8_t id) 1618 { 1619 sc->nodesmsk &= ~(1 << id); 1620 } 1621 1622 static struct ieee80211_node * 1623 wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1624 { 1625 struct wpi_node *wn; 1626 1627 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, 1628 M_NOWAIT | M_ZERO); 1629 1630 if (wn == NULL) 1631 return NULL; 1632 1633 wn->id = WPI_ID_UNDEFINED; 1634 1635 return &wn->ni; 1636 } 1637 1638 static void 1639 wpi_node_free(struct ieee80211_node *ni) 1640 { 1641 struct wpi_softc *sc = ni->ni_ic->ic_softc; 1642 struct wpi_node *wn = WPI_NODE(ni); 1643 1644 if (wn->id != WPI_ID_UNDEFINED) { 1645 WPI_NT_LOCK(sc); 1646 if (wpi_check_node_entry(sc, wn->id)) { 1647 wpi_del_node_entry(sc, wn->id); 1648 wpi_del_node(sc, ni); 1649 } 1650 WPI_NT_UNLOCK(sc); 1651 } 1652 1653 sc->sc_node_free(ni); 1654 } 1655 1656 static __inline int 1657 wpi_check_bss_filter(struct wpi_softc *sc) 1658 { 1659 return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0; 1660 } 1661 1662 static void 1663 wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype, 1664 const struct ieee80211_rx_stats *rxs, 1665 int rssi, int nf) 1666 { 1667 struct ieee80211vap *vap = ni->ni_vap; 1668 struct wpi_softc *sc = vap->iv_ic->ic_softc; 1669 struct wpi_vap *wvp = WPI_VAP(vap); 1670 uint64_t ni_tstamp, rx_tstamp; 1671 1672 wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf); 1673 1674 if (vap->iv_state == IEEE80211_S_RUN && 1675 (subtype == IEEE80211_FC0_SUBTYPE_BEACON || 1676 subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) { 1677 ni_tstamp = le64toh(ni->ni_tstamp.tsf); 1678 rx_tstamp = le64toh(sc->rx_tstamp); 1679 1680 if (ni_tstamp >= rx_tstamp) { 1681 DPRINTF(sc, WPI_DEBUG_STATE, 1682 "ibss merge, tsf %ju tstamp %ju\n", 1683 (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp); 1684 (void) ieee80211_ibss_merge(ni); 1685 } 1686 } 1687 } 1688 1689 static void 1690 wpi_restore_node(void *arg, struct ieee80211_node *ni) 1691 { 1692 struct wpi_softc *sc = arg; 1693 struct wpi_node *wn = WPI_NODE(ni); 1694 int error; 1695 1696 WPI_NT_LOCK(sc); 1697 if (wn->id != WPI_ID_UNDEFINED) { 1698 wn->id = WPI_ID_UNDEFINED; 1699 if ((error = wpi_add_ibss_node(sc, ni)) != 0) { 1700 device_printf(sc->sc_dev, 1701 "%s: could not add IBSS node, error %d\n", 1702 __func__, error); 1703 } 1704 } 1705 WPI_NT_UNLOCK(sc); 1706 } 1707 1708 static void 1709 wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp) 1710 { 1711 struct ieee80211com *ic = &sc->sc_ic; 1712 1713 /* Set group keys once. */ 1714 WPI_NT_LOCK(sc); 1715 wvp->wv_gtk = 0; 1716 WPI_NT_UNLOCK(sc); 1717 1718 ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc); 1719 ieee80211_crypto_reload_keys(ic); 1720 } 1721 1722 /** 1723 * Called by net80211 when ever there is a change to 80211 state machine 1724 */ 1725 static int 1726 wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1727 { 1728 struct wpi_vap *wvp = WPI_VAP(vap); 1729 struct ieee80211com *ic = vap->iv_ic; 1730 struct wpi_softc *sc = ic->ic_softc; 1731 int error = 0; 1732 1733 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 1734 1735 WPI_TXQ_LOCK(sc); 1736 if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) { 1737 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1738 WPI_TXQ_UNLOCK(sc); 1739 1740 return ENXIO; 1741 } 1742 WPI_TXQ_UNLOCK(sc); 1743 1744 DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__, 1745 ieee80211_state_name[vap->iv_state], 1746 ieee80211_state_name[nstate]); 1747 1748 if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) { 1749 if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) { 1750 device_printf(sc->sc_dev, 1751 "%s: could not set power saving level\n", 1752 __func__); 1753 return error; 1754 } 1755 1756 wpi_set_led(sc, WPI_LED_LINK, 1, 0); 1757 } 1758 1759 switch (nstate) { 1760 case IEEE80211_S_SCAN: 1761 WPI_RXON_LOCK(sc); 1762 if (wpi_check_bss_filter(sc) != 0) { 1763 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1764 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 1765 device_printf(sc->sc_dev, 1766 "%s: could not send RXON\n", __func__); 1767 } 1768 } 1769 WPI_RXON_UNLOCK(sc); 1770 break; 1771 1772 case IEEE80211_S_ASSOC: 1773 if (vap->iv_state != IEEE80211_S_RUN) 1774 break; 1775 /* FALLTHROUGH */ 1776 case IEEE80211_S_AUTH: 1777 /* 1778 * NB: do not optimize AUTH -> AUTH state transmission - 1779 * this will break powersave with non-QoS AP! 1780 */ 1781 1782 /* 1783 * The node must be registered in the firmware before auth. 1784 * Also the associd must be cleared on RUN -> ASSOC 1785 * transitions. 1786 */ 1787 if ((error = wpi_auth(sc, vap)) != 0) { 1788 device_printf(sc->sc_dev, 1789 "%s: could not move to AUTH state, error %d\n", 1790 __func__, error); 1791 } 1792 break; 1793 1794 case IEEE80211_S_RUN: 1795 /* 1796 * RUN -> RUN transition: 1797 * STA mode: Just restart the timers. 1798 * IBSS mode: Process IBSS merge. 1799 */ 1800 if (vap->iv_state == IEEE80211_S_RUN) { 1801 if (vap->iv_opmode != IEEE80211_M_IBSS) { 1802 WPI_RXON_LOCK(sc); 1803 wpi_calib_timeout(sc); 1804 WPI_RXON_UNLOCK(sc); 1805 break; 1806 } else { 1807 /* 1808 * Drop the BSS_FILTER bit 1809 * (there is no another way to change bssid). 1810 */ 1811 WPI_RXON_LOCK(sc); 1812 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 1813 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 1814 device_printf(sc->sc_dev, 1815 "%s: could not send RXON\n", 1816 __func__); 1817 } 1818 WPI_RXON_UNLOCK(sc); 1819 1820 /* Restore all what was lost. */ 1821 wpi_restore_node_table(sc, wvp); 1822 1823 /* XXX set conditionally? */ 1824 wpi_updateedca(ic); 1825 } 1826 } 1827 1828 /* 1829 * !RUN -> RUN requires setting the association id 1830 * which is done with a firmware cmd. We also defer 1831 * starting the timers until that work is done. 1832 */ 1833 if ((error = wpi_run(sc, vap)) != 0) { 1834 device_printf(sc->sc_dev, 1835 "%s: could not move to RUN state\n", __func__); 1836 } 1837 break; 1838 1839 default: 1840 break; 1841 } 1842 if (error != 0) { 1843 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 1844 return error; 1845 } 1846 1847 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 1848 1849 return wvp->wv_newstate(vap, nstate, arg); 1850 } 1851 1852 static void 1853 wpi_calib_timeout(void *arg) 1854 { 1855 struct wpi_softc *sc = arg; 1856 1857 if (wpi_check_bss_filter(sc) == 0) 1858 return; 1859 1860 wpi_power_calibration(sc); 1861 1862 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 1863 } 1864 1865 static __inline uint8_t 1866 rate2plcp(const uint8_t rate) 1867 { 1868 switch (rate) { 1869 case 12: return 0xd; 1870 case 18: return 0xf; 1871 case 24: return 0x5; 1872 case 36: return 0x7; 1873 case 48: return 0x9; 1874 case 72: return 0xb; 1875 case 96: return 0x1; 1876 case 108: return 0x3; 1877 case 2: return 10; 1878 case 4: return 20; 1879 case 11: return 55; 1880 case 22: return 110; 1881 default: return 0; 1882 } 1883 } 1884 1885 static __inline uint8_t 1886 plcp2rate(const uint8_t plcp) 1887 { 1888 switch (plcp) { 1889 case 0xd: return 12; 1890 case 0xf: return 18; 1891 case 0x5: return 24; 1892 case 0x7: return 36; 1893 case 0x9: return 48; 1894 case 0xb: return 72; 1895 case 0x1: return 96; 1896 case 0x3: return 108; 1897 case 10: return 2; 1898 case 20: return 4; 1899 case 55: return 11; 1900 case 110: return 22; 1901 default: return 0; 1902 } 1903 } 1904 1905 /* Quickly determine if a given rate is CCK or OFDM. */ 1906 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1907 1908 static void 1909 wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc, 1910 struct wpi_rx_data *data) 1911 { 1912 struct epoch_tracker et; 1913 struct ieee80211com *ic = &sc->sc_ic; 1914 struct wpi_rx_ring *ring = &sc->rxq; 1915 struct wpi_rx_stat *stat; 1916 struct wpi_rx_head *head; 1917 struct wpi_rx_tail *tail; 1918 struct ieee80211_frame *wh; 1919 struct ieee80211_node *ni; 1920 struct mbuf *m, *m1; 1921 bus_addr_t paddr; 1922 uint32_t flags; 1923 uint16_t len; 1924 int error; 1925 1926 stat = (struct wpi_rx_stat *)(desc + 1); 1927 1928 if (__predict_false(stat->len > WPI_STAT_MAXLEN)) { 1929 device_printf(sc->sc_dev, "invalid RX statistic header\n"); 1930 goto fail1; 1931 } 1932 1933 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1934 head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len); 1935 len = le16toh(head->len); 1936 tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len); 1937 flags = le32toh(tail->flags); 1938 1939 DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d" 1940 " rate %x chan %d tstamp %ju\n", __func__, ring->cur, 1941 le32toh(desc->len), len, (int8_t)stat->rssi, 1942 head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp)); 1943 1944 /* Discard frames with a bad FCS early. */ 1945 if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) { 1946 DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n", 1947 __func__, flags); 1948 goto fail1; 1949 } 1950 /* Discard frames that are too short. */ 1951 if (len < sizeof (struct ieee80211_frame_ack)) { 1952 DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n", 1953 __func__, len); 1954 goto fail1; 1955 } 1956 1957 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1958 if (__predict_false(m1 == NULL)) { 1959 DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n", 1960 __func__); 1961 goto fail1; 1962 } 1963 bus_dmamap_unload(ring->data_dmat, data->map); 1964 1965 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 1966 MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1967 if (__predict_false(error != 0 && error != EFBIG)) { 1968 device_printf(sc->sc_dev, 1969 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1970 m_freem(m1); 1971 1972 /* Try to reload the old mbuf. */ 1973 error = bus_dmamap_load(ring->data_dmat, data->map, 1974 mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr, 1975 &paddr, BUS_DMA_NOWAIT); 1976 if (error != 0 && error != EFBIG) { 1977 panic("%s: could not load old RX mbuf", __func__); 1978 } 1979 /* Physical address may have changed. */ 1980 ring->desc[ring->cur] = htole32(paddr); 1981 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 1982 BUS_DMASYNC_PREWRITE); 1983 goto fail1; 1984 } 1985 1986 m = data->m; 1987 data->m = m1; 1988 /* Update RX descriptor. */ 1989 ring->desc[ring->cur] = htole32(paddr); 1990 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1991 BUS_DMASYNC_PREWRITE); 1992 1993 /* Finalize mbuf. */ 1994 m->m_data = (caddr_t)(head + 1); 1995 m->m_pkthdr.len = m->m_len = len; 1996 1997 /* Grab a reference to the source node. */ 1998 wh = mtod(m, struct ieee80211_frame *); 1999 2000 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && 2001 (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) { 2002 /* Check whether decryption was successful or not. */ 2003 if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) { 2004 DPRINTF(sc, WPI_DEBUG_RECV, 2005 "CCMP decryption failed 0x%x\n", flags); 2006 goto fail2; 2007 } 2008 m->m_flags |= M_WEP; 2009 } 2010 2011 if (len >= sizeof(struct ieee80211_frame_min)) 2012 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2013 else 2014 ni = NULL; 2015 2016 sc->rx_tstamp = tail->tstamp; 2017 2018 if (ieee80211_radiotap_active(ic)) { 2019 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap; 2020 2021 tap->wr_flags = 0; 2022 if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE)) 2023 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2024 tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET); 2025 tap->wr_dbm_antnoise = WPI_RSSI_OFFSET; 2026 tap->wr_tsft = tail->tstamp; 2027 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf; 2028 tap->wr_rate = plcp2rate(head->plcp); 2029 } 2030 2031 WPI_UNLOCK(sc); 2032 NET_EPOCH_ENTER(et); 2033 2034 /* Send the frame to the 802.11 layer. */ 2035 if (ni != NULL) { 2036 (void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET); 2037 /* Node is no longer needed. */ 2038 ieee80211_free_node(ni); 2039 } else 2040 (void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET); 2041 2042 NET_EPOCH_EXIT(et); 2043 WPI_LOCK(sc); 2044 2045 return; 2046 2047 fail2: m_freem(m); 2048 2049 fail1: counter_u64_add(ic->ic_ierrors, 1); 2050 } 2051 2052 static void 2053 wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc, 2054 struct wpi_rx_data *data) 2055 { 2056 /* Ignore */ 2057 } 2058 2059 static void 2060 wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 2061 { 2062 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 2063 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3]; 2064 struct wpi_tx_data *data = &ring->data[desc->idx]; 2065 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1); 2066 struct mbuf *m; 2067 struct ieee80211_node *ni; 2068 uint32_t status = le32toh(stat->status); 2069 2070 KASSERT(data->ni != NULL, ("no node")); 2071 KASSERT(data->m != NULL, ("no mbuf")); 2072 2073 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 2074 2075 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: " 2076 "qid %d idx %d retries %d btkillcnt %d rate %x duration %d " 2077 "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt, 2078 stat->btkillcnt, stat->rate, le32toh(stat->duration), status); 2079 2080 /* Unmap and free mbuf. */ 2081 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 2082 bus_dmamap_unload(ring->data_dmat, data->map); 2083 m = data->m, data->m = NULL; 2084 ni = data->ni, data->ni = NULL; 2085 2086 /* Restore frame header. */ 2087 KASSERT(M_LEADINGSPACE(m) >= data->hdrlen, ("no frame header!")); 2088 M_PREPEND(m, data->hdrlen, M_NOWAIT); 2089 KASSERT(m != NULL, ("%s: m is NULL\n", __func__)); 2090 2091 /* 2092 * Update rate control statistics for the node. 2093 */ 2094 txs->pktlen = m->m_pkthdr.len; 2095 txs->short_retries = stat->rtsfailcnt; 2096 txs->long_retries = stat->ackfailcnt / WPI_NTRIES_DEFAULT; 2097 if (!(status & WPI_TX_STATUS_FAIL)) 2098 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 2099 else { 2100 switch (status & 0xff) { 2101 case WPI_TX_STATUS_FAIL_SHORT_LIMIT: 2102 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; 2103 break; 2104 case WPI_TX_STATUS_FAIL_LONG_LIMIT: 2105 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; 2106 break; 2107 case WPI_TX_STATUS_FAIL_LIFE_EXPIRE: 2108 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; 2109 break; 2110 default: 2111 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 2112 break; 2113 } 2114 } 2115 2116 ieee80211_ratectl_tx_complete(ni, txs); 2117 ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0); 2118 2119 WPI_TXQ_STATE_LOCK(sc); 2120 if (--ring->queued > 0) 2121 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc); 2122 else 2123 callout_stop(&sc->tx_timeout); 2124 WPI_TXQ_STATE_UNLOCK(sc); 2125 2126 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 2127 } 2128 2129 /* 2130 * Process a "command done" firmware notification. This is where we wakeup 2131 * processes waiting for a synchronous command completion. 2132 */ 2133 static void 2134 wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc) 2135 { 2136 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; 2137 struct wpi_tx_data *data; 2138 struct wpi_tx_cmd *cmd; 2139 2140 DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x " 2141 "type %s len %d\n", desc->qid, desc->idx, 2142 desc->flags, wpi_cmd_str(desc->type), 2143 le32toh(desc->len)); 2144 2145 if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM) 2146 return; /* Not a command ack. */ 2147 2148 KASSERT(ring->queued == 0, ("ring->queued must be 0")); 2149 2150 data = &ring->data[desc->idx]; 2151 cmd = &ring->cmd[desc->idx]; 2152 2153 /* If the command was mapped in an mbuf, free it. */ 2154 if (data->m != NULL) { 2155 bus_dmamap_sync(ring->data_dmat, data->map, 2156 BUS_DMASYNC_POSTWRITE); 2157 bus_dmamap_unload(ring->data_dmat, data->map); 2158 m_freem(data->m); 2159 data->m = NULL; 2160 } 2161 2162 wakeup(cmd); 2163 2164 if (desc->type == WPI_CMD_SET_POWER_MODE) { 2165 struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data; 2166 2167 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 2168 BUS_DMASYNC_POSTREAD); 2169 2170 WPI_TXQ_LOCK(sc); 2171 if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) { 2172 sc->sc_update_rx_ring = wpi_update_rx_ring_ps; 2173 sc->sc_update_tx_ring = wpi_update_tx_ring_ps; 2174 } else { 2175 sc->sc_update_rx_ring = wpi_update_rx_ring; 2176 sc->sc_update_tx_ring = wpi_update_tx_ring; 2177 } 2178 WPI_TXQ_UNLOCK(sc); 2179 } 2180 } 2181 2182 static void 2183 wpi_notif_intr(struct wpi_softc *sc) 2184 { 2185 struct ieee80211com *ic = &sc->sc_ic; 2186 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2187 uint32_t hw; 2188 2189 bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map, 2190 BUS_DMASYNC_POSTREAD); 2191 2192 hw = le32toh(sc->shared->next) & 0xfff; 2193 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1; 2194 2195 while (sc->rxq.cur != hw) { 2196 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT; 2197 2198 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2199 struct wpi_rx_desc *desc; 2200 2201 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2202 BUS_DMASYNC_POSTREAD); 2203 desc = mtod(data->m, struct wpi_rx_desc *); 2204 2205 DPRINTF(sc, WPI_DEBUG_NOTIFY, 2206 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 2207 __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags, 2208 desc->type, wpi_cmd_str(desc->type), le32toh(desc->len)); 2209 2210 if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) { 2211 /* Reply to a command. */ 2212 wpi_cmd_done(sc, desc); 2213 } 2214 2215 switch (desc->type) { 2216 case WPI_RX_DONE: 2217 /* An 802.11 frame has been received. */ 2218 wpi_rx_done(sc, desc, data); 2219 2220 if (__predict_false(sc->sc_running == 0)) { 2221 /* wpi_stop() was called. */ 2222 return; 2223 } 2224 2225 break; 2226 2227 case WPI_TX_DONE: 2228 /* An 802.11 frame has been transmitted. */ 2229 wpi_tx_done(sc, desc); 2230 break; 2231 2232 case WPI_RX_STATISTICS: 2233 case WPI_BEACON_STATISTICS: 2234 wpi_rx_statistics(sc, desc, data); 2235 break; 2236 2237 case WPI_BEACON_MISSED: 2238 { 2239 struct wpi_beacon_missed *miss = 2240 (struct wpi_beacon_missed *)(desc + 1); 2241 uint32_t expected, misses, received, threshold; 2242 2243 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2244 BUS_DMASYNC_POSTREAD); 2245 2246 misses = le32toh(miss->consecutive); 2247 expected = le32toh(miss->expected); 2248 received = le32toh(miss->received); 2249 threshold = MAX(2, vap->iv_bmissthreshold); 2250 2251 DPRINTF(sc, WPI_DEBUG_BMISS, 2252 "%s: beacons missed %u(%u) (received %u/%u)\n", 2253 __func__, misses, le32toh(miss->total), received, 2254 expected); 2255 2256 if (misses >= threshold || 2257 (received == 0 && expected >= threshold)) { 2258 WPI_RXON_LOCK(sc); 2259 if (callout_pending(&sc->scan_timeout)) { 2260 wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL, 2261 0, 1); 2262 } 2263 WPI_RXON_UNLOCK(sc); 2264 if (vap->iv_state == IEEE80211_S_RUN && 2265 (ic->ic_flags & IEEE80211_F_SCAN) == 0) 2266 ieee80211_beacon_miss(ic); 2267 } 2268 2269 break; 2270 } 2271 #ifdef WPI_DEBUG 2272 case WPI_BEACON_SENT: 2273 { 2274 struct wpi_tx_stat *stat = 2275 (struct wpi_tx_stat *)(desc + 1); 2276 uint64_t *tsf = (uint64_t *)(stat + 1); 2277 uint32_t *mode = (uint32_t *)(tsf + 1); 2278 2279 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2280 BUS_DMASYNC_POSTREAD); 2281 2282 DPRINTF(sc, WPI_DEBUG_BEACON, 2283 "beacon sent: rts %u, ack %u, btkill %u, rate %u, " 2284 "duration %u, status %x, tsf %ju, mode %x\n", 2285 stat->rtsfailcnt, stat->ackfailcnt, 2286 stat->btkillcnt, stat->rate, le32toh(stat->duration), 2287 le32toh(stat->status), le64toh(*tsf), 2288 le32toh(*mode)); 2289 2290 break; 2291 } 2292 #endif 2293 case WPI_UC_READY: 2294 { 2295 struct wpi_ucode_info *uc = 2296 (struct wpi_ucode_info *)(desc + 1); 2297 2298 /* The microcontroller is ready. */ 2299 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2300 BUS_DMASYNC_POSTREAD); 2301 DPRINTF(sc, WPI_DEBUG_RESET, 2302 "microcode alive notification version=%d.%d " 2303 "subtype=%x alive=%x\n", uc->major, uc->minor, 2304 uc->subtype, le32toh(uc->valid)); 2305 2306 if (le32toh(uc->valid) != 1) { 2307 device_printf(sc->sc_dev, 2308 "microcontroller initialization failed\n"); 2309 wpi_stop_locked(sc); 2310 return; 2311 } 2312 /* Save the address of the error log in SRAM. */ 2313 sc->errptr = le32toh(uc->errptr); 2314 break; 2315 } 2316 case WPI_STATE_CHANGED: 2317 { 2318 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2319 BUS_DMASYNC_POSTREAD); 2320 2321 uint32_t *status = (uint32_t *)(desc + 1); 2322 2323 DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n", 2324 le32toh(*status)); 2325 2326 if (le32toh(*status) & 1) { 2327 WPI_NT_LOCK(sc); 2328 wpi_clear_node_table(sc); 2329 WPI_NT_UNLOCK(sc); 2330 ieee80211_runtask(ic, 2331 &sc->sc_radiooff_task); 2332 return; 2333 } 2334 break; 2335 } 2336 #ifdef WPI_DEBUG 2337 case WPI_START_SCAN: 2338 { 2339 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2340 BUS_DMASYNC_POSTREAD); 2341 2342 struct wpi_start_scan *scan = 2343 (struct wpi_start_scan *)(desc + 1); 2344 DPRINTF(sc, WPI_DEBUG_SCAN, 2345 "%s: scanning channel %d status %x\n", 2346 __func__, scan->chan, le32toh(scan->status)); 2347 2348 break; 2349 } 2350 #endif 2351 case WPI_STOP_SCAN: 2352 { 2353 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2354 BUS_DMASYNC_POSTREAD); 2355 2356 struct wpi_stop_scan *scan = 2357 (struct wpi_stop_scan *)(desc + 1); 2358 2359 DPRINTF(sc, WPI_DEBUG_SCAN, 2360 "scan finished nchan=%d status=%d chan=%d\n", 2361 scan->nchan, scan->status, scan->chan); 2362 2363 WPI_RXON_LOCK(sc); 2364 callout_stop(&sc->scan_timeout); 2365 WPI_RXON_UNLOCK(sc); 2366 if (scan->status == WPI_SCAN_ABORTED) 2367 ieee80211_cancel_scan(vap); 2368 else 2369 ieee80211_scan_next(vap); 2370 break; 2371 } 2372 } 2373 2374 if (sc->rxq.cur % 8 == 0) { 2375 /* Tell the firmware what we have processed. */ 2376 sc->sc_update_rx_ring(sc); 2377 } 2378 } 2379 } 2380 2381 /* 2382 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2383 * from power-down sleep mode. 2384 */ 2385 static void 2386 wpi_wakeup_intr(struct wpi_softc *sc) 2387 { 2388 int qid; 2389 2390 DPRINTF(sc, WPI_DEBUG_PWRSAVE, 2391 "%s: ucode wakeup from power-down sleep\n", __func__); 2392 2393 /* Wakeup RX and TX rings. */ 2394 if (sc->rxq.update) { 2395 sc->rxq.update = 0; 2396 wpi_update_rx_ring(sc); 2397 } 2398 WPI_TXQ_LOCK(sc); 2399 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) { 2400 struct wpi_tx_ring *ring = &sc->txq[qid]; 2401 2402 if (ring->update) { 2403 ring->update = 0; 2404 wpi_update_tx_ring(sc, ring); 2405 } 2406 } 2407 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ); 2408 WPI_TXQ_UNLOCK(sc); 2409 } 2410 2411 /* 2412 * This function prints firmware registers 2413 */ 2414 #ifdef WPI_DEBUG 2415 static void 2416 wpi_debug_registers(struct wpi_softc *sc) 2417 { 2418 size_t i; 2419 static const uint32_t csr_tbl[] = { 2420 WPI_HW_IF_CONFIG, 2421 WPI_INT, 2422 WPI_INT_MASK, 2423 WPI_FH_INT, 2424 WPI_GPIO_IN, 2425 WPI_RESET, 2426 WPI_GP_CNTRL, 2427 WPI_EEPROM, 2428 WPI_EEPROM_GP, 2429 WPI_GIO, 2430 WPI_UCODE_GP1, 2431 WPI_UCODE_GP2, 2432 WPI_GIO_CHICKEN, 2433 WPI_ANA_PLL, 2434 WPI_DBG_HPET_MEM, 2435 }; 2436 static const uint32_t prph_tbl[] = { 2437 WPI_APMG_CLK_CTRL, 2438 WPI_APMG_PS, 2439 WPI_APMG_PCI_STT, 2440 WPI_APMG_RFKILL, 2441 }; 2442 2443 DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n"); 2444 2445 for (i = 0; i < nitems(csr_tbl); i++) { 2446 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", 2447 wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i])); 2448 2449 if ((i + 1) % 2 == 0) 2450 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2451 } 2452 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n"); 2453 2454 if (wpi_nic_lock(sc) == 0) { 2455 for (i = 0; i < nitems(prph_tbl); i++) { 2456 DPRINTF(sc, WPI_DEBUG_REGISTER, " %-18s: 0x%08x ", 2457 wpi_get_prph_string(prph_tbl[i]), 2458 wpi_prph_read(sc, prph_tbl[i])); 2459 2460 if ((i + 1) % 2 == 0) 2461 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2462 } 2463 DPRINTF(sc, WPI_DEBUG_REGISTER, "\n"); 2464 wpi_nic_unlock(sc); 2465 } else { 2466 DPRINTF(sc, WPI_DEBUG_REGISTER, 2467 "Cannot access internal registers.\n"); 2468 } 2469 } 2470 #endif 2471 2472 /* 2473 * Dump the error log of the firmware when a firmware panic occurs. Although 2474 * we can't debug the firmware because it is neither open source nor free, it 2475 * can help us to identify certain classes of problems. 2476 */ 2477 static void 2478 wpi_fatal_intr(struct wpi_softc *sc) 2479 { 2480 struct wpi_fw_dump dump; 2481 uint32_t i, offset, count; 2482 2483 /* Check that the error log address is valid. */ 2484 if (sc->errptr < WPI_FW_DATA_BASE || 2485 sc->errptr + sizeof (dump) > 2486 WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) { 2487 printf("%s: bad firmware error log address 0x%08x\n", __func__, 2488 sc->errptr); 2489 return; 2490 } 2491 if (wpi_nic_lock(sc) != 0) { 2492 printf("%s: could not read firmware error log\n", __func__); 2493 return; 2494 } 2495 /* Read number of entries in the log. */ 2496 count = wpi_mem_read(sc, sc->errptr); 2497 if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) { 2498 printf("%s: invalid count field (count = %u)\n", __func__, 2499 count); 2500 wpi_nic_unlock(sc); 2501 return; 2502 } 2503 /* Skip "count" field. */ 2504 offset = sc->errptr + sizeof (uint32_t); 2505 printf("firmware error log (count = %u):\n", count); 2506 for (i = 0; i < count; i++) { 2507 wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump, 2508 sizeof (dump) / sizeof (uint32_t)); 2509 2510 printf(" error type = \"%s\" (0x%08X)\n", 2511 (dump.desc < nitems(wpi_fw_errmsg)) ? 2512 wpi_fw_errmsg[dump.desc] : "UNKNOWN", 2513 dump.desc); 2514 printf(" error data = 0x%08X\n", 2515 dump.data); 2516 printf(" branch link = 0x%08X%08X\n", 2517 dump.blink[0], dump.blink[1]); 2518 printf(" interrupt link = 0x%08X%08X\n", 2519 dump.ilink[0], dump.ilink[1]); 2520 printf(" time = %u\n", dump.time); 2521 2522 offset += sizeof (dump); 2523 } 2524 wpi_nic_unlock(sc); 2525 /* Dump driver status (TX and RX rings) while we're here. */ 2526 printf("driver status:\n"); 2527 WPI_TXQ_LOCK(sc); 2528 for (i = 0; i < WPI_DRV_NTXQUEUES; i++) { 2529 struct wpi_tx_ring *ring = &sc->txq[i]; 2530 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2531 i, ring->qid, ring->cur, ring->queued); 2532 } 2533 WPI_TXQ_UNLOCK(sc); 2534 printf(" rx ring: cur=%d\n", sc->rxq.cur); 2535 } 2536 2537 static void 2538 wpi_intr(void *arg) 2539 { 2540 struct wpi_softc *sc = arg; 2541 uint32_t r1, r2; 2542 2543 WPI_LOCK(sc); 2544 2545 /* Disable interrupts. */ 2546 WPI_WRITE(sc, WPI_INT_MASK, 0); 2547 2548 r1 = WPI_READ(sc, WPI_INT); 2549 2550 if (__predict_false(r1 == 0xffffffff || 2551 (r1 & 0xfffffff0) == 0xa5a5a5a0)) 2552 goto end; /* Hardware gone! */ 2553 2554 r2 = WPI_READ(sc, WPI_FH_INT); 2555 2556 DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__, 2557 r1, r2); 2558 2559 if (r1 == 0 && r2 == 0) 2560 goto done; /* Interrupt not for us. */ 2561 2562 /* Acknowledge interrupts. */ 2563 WPI_WRITE(sc, WPI_INT, r1); 2564 WPI_WRITE(sc, WPI_FH_INT, r2); 2565 2566 if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) { 2567 struct ieee80211com *ic = &sc->sc_ic; 2568 2569 device_printf(sc->sc_dev, "fatal firmware error\n"); 2570 #ifdef WPI_DEBUG 2571 wpi_debug_registers(sc); 2572 #endif 2573 wpi_fatal_intr(sc); 2574 DPRINTF(sc, WPI_DEBUG_HW, 2575 "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" : 2576 "(Hardware Error)"); 2577 ieee80211_restart_all(ic); 2578 goto end; 2579 } 2580 2581 if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) || 2582 (r2 & WPI_FH_INT_RX)) 2583 wpi_notif_intr(sc); 2584 2585 if (r1 & WPI_INT_ALIVE) 2586 wakeup(sc); /* Firmware is alive. */ 2587 2588 if (r1 & WPI_INT_WAKEUP) 2589 wpi_wakeup_intr(sc); 2590 2591 done: 2592 /* Re-enable interrupts. */ 2593 if (__predict_true(sc->sc_running)) 2594 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); 2595 2596 end: WPI_UNLOCK(sc); 2597 } 2598 2599 static void 2600 wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac) 2601 { 2602 struct wpi_tx_ring *ring; 2603 struct wpi_tx_data *data; 2604 uint8_t cur; 2605 2606 WPI_TXQ_LOCK(sc); 2607 ring = &sc->txq[ac]; 2608 2609 while (ring->pending != 0) { 2610 ring->pending--; 2611 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2612 data = &ring->data[cur]; 2613 2614 bus_dmamap_sync(ring->data_dmat, data->map, 2615 BUS_DMASYNC_POSTWRITE); 2616 bus_dmamap_unload(ring->data_dmat, data->map); 2617 m_freem(data->m); 2618 data->m = NULL; 2619 2620 ieee80211_node_decref(data->ni); 2621 data->ni = NULL; 2622 } 2623 2624 WPI_TXQ_UNLOCK(sc); 2625 } 2626 2627 static int 2628 wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf) 2629 { 2630 struct ieee80211_frame *wh; 2631 struct wpi_tx_cmd *cmd; 2632 struct wpi_tx_data *data; 2633 struct wpi_tx_desc *desc; 2634 struct wpi_tx_ring *ring; 2635 struct mbuf *m1; 2636 bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER]; 2637 uint8_t cur, pad; 2638 uint16_t hdrlen; 2639 int error, i, nsegs, totlen, frag; 2640 2641 WPI_TXQ_LOCK(sc); 2642 2643 KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow")); 2644 2645 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 2646 2647 if (__predict_false(sc->sc_running == 0)) { 2648 /* wpi_stop() was called */ 2649 error = ENETDOWN; 2650 goto end; 2651 } 2652 2653 wh = mtod(buf->m, struct ieee80211_frame *); 2654 hdrlen = ieee80211_anyhdrsize(wh); 2655 totlen = buf->m->m_pkthdr.len; 2656 frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG); 2657 2658 if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) { 2659 error = EINVAL; 2660 goto end; 2661 } 2662 2663 if (hdrlen & 3) { 2664 /* First segment length must be a multiple of 4. */ 2665 pad = 4 - (hdrlen & 3); 2666 } else 2667 pad = 0; 2668 2669 ring = &sc->txq[buf->ac]; 2670 cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2671 desc = &ring->desc[cur]; 2672 data = &ring->data[cur]; 2673 2674 /* Prepare TX firmware command. */ 2675 cmd = &ring->cmd[cur]; 2676 cmd->code = buf->code; 2677 cmd->flags = 0; 2678 cmd->qid = ring->qid; 2679 cmd->idx = cur; 2680 2681 memcpy(cmd->data, buf->data, buf->size); 2682 2683 /* Save and trim IEEE802.11 header. */ 2684 memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen); 2685 m_adj(buf->m, hdrlen); 2686 2687 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m, 2688 segs, &nsegs, BUS_DMA_NOWAIT); 2689 if (error != 0 && error != EFBIG) { 2690 device_printf(sc->sc_dev, 2691 "%s: can't map mbuf (error %d)\n", __func__, error); 2692 goto end; 2693 } 2694 if (error != 0) { 2695 /* Too many DMA segments, linearize mbuf. */ 2696 m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1); 2697 if (m1 == NULL) { 2698 device_printf(sc->sc_dev, 2699 "%s: could not defrag mbuf\n", __func__); 2700 error = ENOBUFS; 2701 goto end; 2702 } 2703 buf->m = m1; 2704 2705 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 2706 buf->m, segs, &nsegs, BUS_DMA_NOWAIT); 2707 if (__predict_false(error != 0)) { 2708 /* XXX fix this (applicable to the iwn(4) too) */ 2709 /* 2710 * NB: Do not return error; 2711 * original mbuf does not exist anymore. 2712 */ 2713 device_printf(sc->sc_dev, 2714 "%s: can't map mbuf (error %d)\n", __func__, 2715 error); 2716 if (ring->qid < WPI_CMD_QUEUE_NUM) { 2717 if_inc_counter(buf->ni->ni_vap->iv_ifp, 2718 IFCOUNTER_OERRORS, 1); 2719 if (!frag) 2720 ieee80211_free_node(buf->ni); 2721 } 2722 m_freem(buf->m); 2723 error = 0; 2724 goto end; 2725 } 2726 } 2727 2728 KASSERT(nsegs < WPI_MAX_SCATTER, 2729 ("too many DMA segments, nsegs (%d) should be less than %d", 2730 nsegs, WPI_MAX_SCATTER)); 2731 2732 data->m = buf->m; 2733 data->ni = buf->ni; 2734 data->hdrlen = hdrlen; 2735 2736 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 2737 __func__, ring->qid, cur, totlen, nsegs); 2738 2739 /* Fill TX descriptor. */ 2740 desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs); 2741 /* First DMA segment is used by the TX command. */ 2742 desc->segs[0].addr = htole32(data->cmd_paddr); 2743 desc->segs[0].len = htole32(4 + buf->size + hdrlen + pad); 2744 /* Other DMA segments are for data payload. */ 2745 seg = &segs[0]; 2746 for (i = 1; i <= nsegs; i++) { 2747 desc->segs[i].addr = htole32(seg->ds_addr); 2748 desc->segs[i].len = htole32(seg->ds_len); 2749 seg++; 2750 } 2751 2752 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 2753 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 2754 BUS_DMASYNC_PREWRITE); 2755 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2756 BUS_DMASYNC_PREWRITE); 2757 2758 ring->pending += 1; 2759 2760 if (!frag) { 2761 if (ring->qid < WPI_CMD_QUEUE_NUM) { 2762 WPI_TXQ_STATE_LOCK(sc); 2763 ring->queued += ring->pending; 2764 callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, 2765 sc); 2766 WPI_TXQ_STATE_UNLOCK(sc); 2767 } 2768 2769 /* Kick TX ring. */ 2770 ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT; 2771 ring->pending = 0; 2772 sc->sc_update_tx_ring(sc, ring); 2773 } else 2774 ieee80211_node_incref(data->ni); 2775 2776 end: DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END, 2777 __func__); 2778 2779 WPI_TXQ_UNLOCK(sc); 2780 2781 return (error); 2782 } 2783 2784 /* 2785 * Construct the data packet for a transmit buffer. 2786 */ 2787 static int 2788 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2789 { 2790 const struct ieee80211_txparam *tp = ni->ni_txparms; 2791 struct ieee80211vap *vap = ni->ni_vap; 2792 struct ieee80211com *ic = ni->ni_ic; 2793 struct wpi_node *wn = WPI_NODE(ni); 2794 struct ieee80211_frame *wh; 2795 struct ieee80211_key *k = NULL; 2796 struct wpi_buf tx_data; 2797 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; 2798 uint32_t flags; 2799 uint16_t ac, qos; 2800 uint8_t tid, type, rate; 2801 int swcrypt, ismcast, totlen; 2802 2803 wh = mtod(m, struct ieee80211_frame *); 2804 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2805 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 2806 swcrypt = 1; 2807 2808 /* Select EDCA Access Category and TX ring for this frame. */ 2809 if (IEEE80211_QOS_HAS_SEQ(wh)) { 2810 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 2811 tid = qos & IEEE80211_QOS_TID; 2812 } else { 2813 qos = 0; 2814 tid = 0; 2815 } 2816 ac = M_WME_GETAC(m); 2817 2818 /* Choose a TX rate index. */ 2819 if (type == IEEE80211_FC0_TYPE_MGT || 2820 type == IEEE80211_FC0_TYPE_CTL || 2821 (m->m_flags & M_EAPOL) != 0) 2822 rate = tp->mgmtrate; 2823 else if (ismcast) 2824 rate = tp->mcastrate; 2825 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2826 rate = tp->ucastrate; 2827 else { 2828 /* XXX pass pktlen */ 2829 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2830 rate = ni->ni_txrate; 2831 } 2832 2833 /* Encrypt the frame if need be. */ 2834 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2835 /* Retrieve key for TX. */ 2836 k = ieee80211_crypto_encap(ni, m); 2837 if (k == NULL) 2838 return (ENOBUFS); 2839 2840 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; 2841 2842 /* 802.11 header may have moved. */ 2843 wh = mtod(m, struct ieee80211_frame *); 2844 } 2845 totlen = m->m_pkthdr.len; 2846 2847 if (ieee80211_radiotap_active_vap(vap)) { 2848 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 2849 2850 tap->wt_flags = 0; 2851 tap->wt_rate = rate; 2852 if (k != NULL) 2853 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2854 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2855 tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 2856 2857 ieee80211_radiotap_tx(vap, m); 2858 } 2859 2860 flags = 0; 2861 if (!ismcast) { 2862 /* Unicast frame, check if an ACK is expected. */ 2863 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 2864 IEEE80211_QOS_ACKPOLICY_NOACK) 2865 flags |= WPI_TX_NEED_ACK; 2866 } 2867 2868 if (!IEEE80211_QOS_HAS_SEQ(wh)) 2869 flags |= WPI_TX_AUTO_SEQ; 2870 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2871 flags |= WPI_TX_MORE_FRAG; 2872 2873 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2874 if (!ismcast) { 2875 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2876 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 2877 flags |= WPI_TX_NEED_RTS; 2878 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2879 WPI_RATE_IS_OFDM(rate)) { 2880 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2881 flags |= WPI_TX_NEED_CTS; 2882 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2883 flags |= WPI_TX_NEED_RTS; 2884 } 2885 2886 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) 2887 flags |= WPI_TX_FULL_TXOP; 2888 } 2889 2890 memset(tx, 0, sizeof (struct wpi_cmd_data)); 2891 if (type == IEEE80211_FC0_TYPE_MGT) { 2892 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2893 2894 /* Tell HW to set timestamp in probe responses. */ 2895 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2896 flags |= WPI_TX_INSERT_TSTAMP; 2897 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2898 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2899 tx->timeout = htole16(3); 2900 else 2901 tx->timeout = htole16(2); 2902 } 2903 2904 if (ismcast || type != IEEE80211_FC0_TYPE_DATA) 2905 tx->id = WPI_ID_BROADCAST; 2906 else { 2907 if (wn->id == WPI_ID_UNDEFINED) { 2908 device_printf(sc->sc_dev, 2909 "%s: undefined node id\n", __func__); 2910 return (EINVAL); 2911 } 2912 2913 tx->id = wn->id; 2914 } 2915 2916 if (!swcrypt) { 2917 switch (k->wk_cipher->ic_cipher) { 2918 case IEEE80211_CIPHER_AES_CCM: 2919 tx->security = WPI_CIPHER_CCMP; 2920 break; 2921 2922 default: 2923 break; 2924 } 2925 2926 memcpy(tx->key, k->wk_key, k->wk_keylen); 2927 } 2928 2929 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 2930 struct mbuf *next = m->m_nextpkt; 2931 2932 tx->lnext = htole16(next->m_pkthdr.len); 2933 tx->fnext = htole32(tx->security | 2934 (flags & WPI_TX_NEED_ACK) | 2935 WPI_NEXT_STA_ID(tx->id)); 2936 } 2937 2938 tx->len = htole16(totlen); 2939 tx->flags = htole32(flags); 2940 tx->plcp = rate2plcp(rate); 2941 tx->tid = tid; 2942 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 2943 tx->ofdm_mask = 0xff; 2944 tx->cck_mask = 0x0f; 2945 tx->rts_ntries = 7; 2946 tx->data_ntries = tp->maxretry; 2947 2948 tx_data.ni = ni; 2949 tx_data.m = m; 2950 tx_data.size = sizeof(struct wpi_cmd_data); 2951 tx_data.code = WPI_CMD_TX_DATA; 2952 tx_data.ac = ac; 2953 2954 return wpi_cmd2(sc, &tx_data); 2955 } 2956 2957 static int 2958 wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m, 2959 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 2960 { 2961 struct ieee80211vap *vap = ni->ni_vap; 2962 struct ieee80211_key *k = NULL; 2963 struct ieee80211_frame *wh; 2964 struct wpi_buf tx_data; 2965 struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data; 2966 uint32_t flags; 2967 uint8_t ac, type, rate; 2968 int swcrypt, totlen; 2969 2970 wh = mtod(m, struct ieee80211_frame *); 2971 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2972 swcrypt = 1; 2973 2974 ac = params->ibp_pri & 3; 2975 2976 /* Choose a TX rate index. */ 2977 rate = params->ibp_rate0; 2978 2979 flags = 0; 2980 if (!IEEE80211_QOS_HAS_SEQ(wh)) 2981 flags |= WPI_TX_AUTO_SEQ; 2982 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 2983 flags |= WPI_TX_NEED_ACK; 2984 if (params->ibp_flags & IEEE80211_BPF_RTS) 2985 flags |= WPI_TX_NEED_RTS; 2986 if (params->ibp_flags & IEEE80211_BPF_CTS) 2987 flags |= WPI_TX_NEED_CTS; 2988 if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS)) 2989 flags |= WPI_TX_FULL_TXOP; 2990 2991 /* Encrypt the frame if need be. */ 2992 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 2993 /* Retrieve key for TX. */ 2994 k = ieee80211_crypto_encap(ni, m); 2995 if (k == NULL) 2996 return (ENOBUFS); 2997 2998 swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT; 2999 3000 /* 802.11 header may have moved. */ 3001 wh = mtod(m, struct ieee80211_frame *); 3002 } 3003 totlen = m->m_pkthdr.len; 3004 3005 if (ieee80211_radiotap_active_vap(vap)) { 3006 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap; 3007 3008 tap->wt_flags = 0; 3009 tap->wt_rate = rate; 3010 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) 3011 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3012 3013 ieee80211_radiotap_tx(vap, m); 3014 } 3015 3016 memset(tx, 0, sizeof (struct wpi_cmd_data)); 3017 if (type == IEEE80211_FC0_TYPE_MGT) { 3018 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3019 3020 /* Tell HW to set timestamp in probe responses. */ 3021 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3022 flags |= WPI_TX_INSERT_TSTAMP; 3023 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3024 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3025 tx->timeout = htole16(3); 3026 else 3027 tx->timeout = htole16(2); 3028 } 3029 3030 if (!swcrypt) { 3031 switch (k->wk_cipher->ic_cipher) { 3032 case IEEE80211_CIPHER_AES_CCM: 3033 tx->security = WPI_CIPHER_CCMP; 3034 break; 3035 3036 default: 3037 break; 3038 } 3039 3040 memcpy(tx->key, k->wk_key, k->wk_keylen); 3041 } 3042 3043 tx->len = htole16(totlen); 3044 tx->flags = htole32(flags); 3045 tx->plcp = rate2plcp(rate); 3046 tx->id = WPI_ID_BROADCAST; 3047 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 3048 tx->rts_ntries = params->ibp_try1; 3049 tx->data_ntries = params->ibp_try0; 3050 3051 tx_data.ni = ni; 3052 tx_data.m = m; 3053 tx_data.size = sizeof(struct wpi_cmd_data); 3054 tx_data.code = WPI_CMD_TX_DATA; 3055 tx_data.ac = ac; 3056 3057 return wpi_cmd2(sc, &tx_data); 3058 } 3059 3060 static __inline int 3061 wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac) 3062 { 3063 struct wpi_tx_ring *ring = &sc->txq[ac]; 3064 int retval; 3065 3066 WPI_TXQ_STATE_LOCK(sc); 3067 retval = WPI_TX_RING_HIMARK - ring->queued; 3068 WPI_TXQ_STATE_UNLOCK(sc); 3069 3070 return retval; 3071 } 3072 3073 static int 3074 wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3075 const struct ieee80211_bpf_params *params) 3076 { 3077 struct ieee80211com *ic = ni->ni_ic; 3078 struct wpi_softc *sc = ic->ic_softc; 3079 uint16_t ac; 3080 int error = 0; 3081 3082 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3083 3084 ac = M_WME_GETAC(m); 3085 3086 WPI_TX_LOCK(sc); 3087 3088 /* NB: no fragments here */ 3089 if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) { 3090 error = sc->sc_running ? ENOBUFS : ENETDOWN; 3091 goto unlock; 3092 } 3093 3094 if (params == NULL) { 3095 /* 3096 * Legacy path; interpret frame contents to decide 3097 * precisely how to send the frame. 3098 */ 3099 error = wpi_tx_data(sc, m, ni); 3100 } else { 3101 /* 3102 * Caller supplied explicit parameters to use in 3103 * sending the frame. 3104 */ 3105 error = wpi_tx_data_raw(sc, m, ni, params); 3106 } 3107 3108 unlock: WPI_TX_UNLOCK(sc); 3109 3110 if (error != 0) { 3111 m_freem(m); 3112 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 3113 3114 return error; 3115 } 3116 3117 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3118 3119 return 0; 3120 } 3121 3122 static int 3123 wpi_transmit(struct ieee80211com *ic, struct mbuf *m) 3124 { 3125 struct wpi_softc *sc = ic->ic_softc; 3126 struct ieee80211_node *ni; 3127 struct mbuf *mnext; 3128 uint16_t ac; 3129 int error, nmbufs; 3130 3131 WPI_TX_LOCK(sc); 3132 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__); 3133 3134 /* Check if interface is up & running. */ 3135 if (__predict_false(sc->sc_running == 0)) { 3136 error = ENXIO; 3137 goto unlock; 3138 } 3139 3140 nmbufs = 1; 3141 for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt) 3142 nmbufs++; 3143 3144 /* Check for available space. */ 3145 ac = M_WME_GETAC(m); 3146 if (wpi_tx_ring_free_space(sc, ac) < nmbufs) { 3147 error = ENOBUFS; 3148 goto unlock; 3149 } 3150 3151 error = 0; 3152 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3153 do { 3154 mnext = m->m_nextpkt; 3155 if (wpi_tx_data(sc, m, ni) != 0) { 3156 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 3157 nmbufs); 3158 wpi_free_txfrags(sc, ac); 3159 ieee80211_free_mbuf(m); 3160 ieee80211_free_node(ni); 3161 break; 3162 } 3163 } while((m = mnext) != NULL); 3164 3165 DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__); 3166 3167 unlock: WPI_TX_UNLOCK(sc); 3168 3169 return (error); 3170 } 3171 3172 static void 3173 wpi_watchdog_rfkill(void *arg) 3174 { 3175 struct wpi_softc *sc = arg; 3176 struct ieee80211com *ic = &sc->sc_ic; 3177 3178 DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n"); 3179 3180 /* No need to lock firmware memory. */ 3181 if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) { 3182 /* Radio kill switch is still off. */ 3183 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, 3184 sc); 3185 } else 3186 ieee80211_runtask(ic, &sc->sc_radioon_task); 3187 } 3188 3189 static void 3190 wpi_scan_timeout(void *arg) 3191 { 3192 struct wpi_softc *sc = arg; 3193 struct ieee80211com *ic = &sc->sc_ic; 3194 3195 ic_printf(ic, "scan timeout\n"); 3196 ieee80211_restart_all(ic); 3197 } 3198 3199 static void 3200 wpi_tx_timeout(void *arg) 3201 { 3202 struct wpi_softc *sc = arg; 3203 struct ieee80211com *ic = &sc->sc_ic; 3204 3205 ic_printf(ic, "device timeout\n"); 3206 ieee80211_restart_all(ic); 3207 } 3208 3209 static void 3210 wpi_parent(struct ieee80211com *ic) 3211 { 3212 struct wpi_softc *sc = ic->ic_softc; 3213 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3214 3215 if (ic->ic_nrunning > 0) { 3216 if (wpi_init(sc) == 0) { 3217 ieee80211_notify_radio(ic, 1); 3218 ieee80211_start_all(ic); 3219 } else { 3220 ieee80211_notify_radio(ic, 0); 3221 ieee80211_stop(vap); 3222 } 3223 } else { 3224 ieee80211_notify_radio(ic, 0); 3225 wpi_stop(sc); 3226 } 3227 } 3228 3229 /* 3230 * Send a command to the firmware. 3231 */ 3232 static int 3233 wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size, 3234 int async) 3235 { 3236 struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM]; 3237 struct wpi_tx_desc *desc; 3238 struct wpi_tx_data *data; 3239 struct wpi_tx_cmd *cmd; 3240 struct mbuf *m; 3241 bus_addr_t paddr; 3242 uint16_t totlen; 3243 int error; 3244 3245 WPI_TXQ_LOCK(sc); 3246 3247 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3248 3249 if (__predict_false(sc->sc_running == 0)) { 3250 /* wpi_stop() was called */ 3251 if (code == WPI_CMD_SCAN) 3252 error = ENETDOWN; 3253 else 3254 error = 0; 3255 3256 goto fail; 3257 } 3258 3259 if (async == 0) 3260 WPI_LOCK_ASSERT(sc); 3261 3262 DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n", 3263 __func__, wpi_cmd_str(code), size, async); 3264 3265 desc = &ring->desc[ring->cur]; 3266 data = &ring->data[ring->cur]; 3267 totlen = 4 + size; 3268 3269 if (size > sizeof cmd->data) { 3270 /* Command is too large to fit in a descriptor. */ 3271 if (totlen > MCLBYTES) { 3272 error = EINVAL; 3273 goto fail; 3274 } 3275 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 3276 if (m == NULL) { 3277 error = ENOMEM; 3278 goto fail; 3279 } 3280 cmd = mtod(m, struct wpi_tx_cmd *); 3281 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 3282 totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3283 if (error != 0) { 3284 m_freem(m); 3285 goto fail; 3286 } 3287 data->m = m; 3288 } else { 3289 cmd = &ring->cmd[ring->cur]; 3290 paddr = data->cmd_paddr; 3291 } 3292 3293 cmd->code = code; 3294 cmd->flags = 0; 3295 cmd->qid = ring->qid; 3296 cmd->idx = ring->cur; 3297 memcpy(cmd->data, buf, size); 3298 3299 desc->nsegs = 1 + (WPI_PAD32(size) << 4); 3300 desc->segs[0].addr = htole32(paddr); 3301 desc->segs[0].len = htole32(totlen); 3302 3303 if (size > sizeof cmd->data) { 3304 bus_dmamap_sync(ring->data_dmat, data->map, 3305 BUS_DMASYNC_PREWRITE); 3306 } else { 3307 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3308 BUS_DMASYNC_PREWRITE); 3309 } 3310 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3311 BUS_DMASYNC_PREWRITE); 3312 3313 /* Kick command ring. */ 3314 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT; 3315 sc->sc_update_tx_ring(sc, ring); 3316 3317 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3318 3319 WPI_TXQ_UNLOCK(sc); 3320 3321 return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz); 3322 3323 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 3324 3325 WPI_TXQ_UNLOCK(sc); 3326 3327 return error; 3328 } 3329 3330 /* 3331 * Configure HW multi-rate retries. 3332 */ 3333 static int 3334 wpi_mrr_setup(struct wpi_softc *sc) 3335 { 3336 struct ieee80211com *ic = &sc->sc_ic; 3337 struct wpi_mrr_setup mrr; 3338 uint8_t i; 3339 int error; 3340 3341 /* CCK rates (not used with 802.11a). */ 3342 for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) { 3343 mrr.rates[i].flags = 0; 3344 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 3345 /* Fallback to the immediate lower CCK rate (if any.) */ 3346 mrr.rates[i].next = 3347 (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1; 3348 /* Try twice at this rate before falling back to "next". */ 3349 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; 3350 } 3351 /* OFDM rates (not used with 802.11b). */ 3352 for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) { 3353 mrr.rates[i].flags = 0; 3354 mrr.rates[i].plcp = wpi_ridx_to_plcp[i]; 3355 /* Fallback to the immediate lower rate (if any.) */ 3356 /* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */ 3357 mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ? 3358 ((ic->ic_curmode == IEEE80211_MODE_11A) ? 3359 WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) : 3360 i - 1; 3361 /* Try twice at this rate before falling back to "next". */ 3362 mrr.rates[i].ntries = WPI_NTRIES_DEFAULT; 3363 } 3364 /* Setup MRR for control frames. */ 3365 mrr.which = htole32(WPI_MRR_CTL); 3366 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 3367 if (error != 0) { 3368 device_printf(sc->sc_dev, 3369 "could not setup MRR for control frames\n"); 3370 return error; 3371 } 3372 /* Setup MRR for data frames. */ 3373 mrr.which = htole32(WPI_MRR_DATA); 3374 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0); 3375 if (error != 0) { 3376 device_printf(sc->sc_dev, 3377 "could not setup MRR for data frames\n"); 3378 return error; 3379 } 3380 return 0; 3381 } 3382 3383 static int 3384 wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3385 { 3386 struct ieee80211com *ic = ni->ni_ic; 3387 struct wpi_vap *wvp = WPI_VAP(ni->ni_vap); 3388 struct wpi_node *wn = WPI_NODE(ni); 3389 struct wpi_node_info node; 3390 int error; 3391 3392 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3393 3394 if (wn->id == WPI_ID_UNDEFINED) 3395 return EINVAL; 3396 3397 memset(&node, 0, sizeof node); 3398 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 3399 node.id = wn->id; 3400 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3401 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 3402 node.action = htole32(WPI_ACTION_SET_RATE); 3403 node.antenna = WPI_ANTENNA_BOTH; 3404 3405 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__, 3406 wn->id, ether_sprintf(ni->ni_macaddr)); 3407 3408 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 3409 if (error != 0) { 3410 device_printf(sc->sc_dev, 3411 "%s: wpi_cmd() call failed with error code %d\n", __func__, 3412 error); 3413 return error; 3414 } 3415 3416 if (wvp->wv_gtk != 0) { 3417 error = wpi_set_global_keys(ni); 3418 if (error != 0) { 3419 device_printf(sc->sc_dev, 3420 "%s: error while setting global keys\n", __func__); 3421 return ENXIO; 3422 } 3423 } 3424 3425 return 0; 3426 } 3427 3428 /* 3429 * Broadcast node is used to send group-addressed and management frames. 3430 */ 3431 static int 3432 wpi_add_broadcast_node(struct wpi_softc *sc, int async) 3433 { 3434 struct ieee80211com *ic = &sc->sc_ic; 3435 struct wpi_node_info node; 3436 3437 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3438 3439 memset(&node, 0, sizeof node); 3440 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 3441 node.id = WPI_ID_BROADCAST; 3442 node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3443 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 3444 node.action = htole32(WPI_ACTION_SET_RATE); 3445 node.antenna = WPI_ANTENNA_BOTH; 3446 3447 DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__); 3448 3449 return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async); 3450 } 3451 3452 static int 3453 wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3454 { 3455 struct wpi_node *wn = WPI_NODE(ni); 3456 int error; 3457 3458 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3459 3460 wn->id = wpi_add_node_entry_sta(sc); 3461 3462 if ((error = wpi_add_node(sc, ni)) != 0) { 3463 wpi_del_node_entry(sc, wn->id); 3464 wn->id = WPI_ID_UNDEFINED; 3465 return error; 3466 } 3467 3468 return 0; 3469 } 3470 3471 static int 3472 wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3473 { 3474 struct wpi_node *wn = WPI_NODE(ni); 3475 int error; 3476 3477 KASSERT(wn->id == WPI_ID_UNDEFINED, 3478 ("the node %d was added before", wn->id)); 3479 3480 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3481 3482 if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) { 3483 device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__); 3484 return ENOMEM; 3485 } 3486 3487 if ((error = wpi_add_node(sc, ni)) != 0) { 3488 wpi_del_node_entry(sc, wn->id); 3489 wn->id = WPI_ID_UNDEFINED; 3490 return error; 3491 } 3492 3493 return 0; 3494 } 3495 3496 static void 3497 wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni) 3498 { 3499 struct wpi_node *wn = WPI_NODE(ni); 3500 struct wpi_cmd_del_node node; 3501 int error; 3502 3503 KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed")); 3504 3505 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3506 3507 memset(&node, 0, sizeof node); 3508 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 3509 node.count = 1; 3510 3511 DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__, 3512 wn->id, ether_sprintf(ni->ni_macaddr)); 3513 3514 error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1); 3515 if (error != 0) { 3516 device_printf(sc->sc_dev, 3517 "%s: could not delete node %u, error %d\n", __func__, 3518 wn->id, error); 3519 } 3520 } 3521 3522 static int 3523 wpi_updateedca(struct ieee80211com *ic) 3524 { 3525 #define WPI_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 3526 struct wpi_softc *sc = ic->ic_softc; 3527 struct chanAccParams chp; 3528 struct wpi_edca_params cmd; 3529 int aci, error; 3530 3531 ieee80211_wme_ic_getparams(ic, &chp); 3532 3533 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3534 3535 memset(&cmd, 0, sizeof cmd); 3536 cmd.flags = htole32(WPI_EDCA_UPDATE); 3537 for (aci = 0; aci < WME_NUM_AC; aci++) { 3538 const struct wmeParams *ac = &chp.cap_wmeParams[aci]; 3539 cmd.ac[aci].aifsn = ac->wmep_aifsn; 3540 cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin)); 3541 cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax)); 3542 cmd.ac[aci].txoplimit = 3543 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 3544 3545 DPRINTF(sc, WPI_DEBUG_EDCA, 3546 "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d " 3547 "txoplimit=%d\n", aci, cmd.ac[aci].aifsn, 3548 cmd.ac[aci].cwmin, cmd.ac[aci].cwmax, 3549 cmd.ac[aci].txoplimit); 3550 } 3551 error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 3552 3553 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 3554 3555 return error; 3556 #undef WPI_EXP2 3557 } 3558 3559 static void 3560 wpi_set_promisc(struct wpi_softc *sc) 3561 { 3562 struct ieee80211com *ic = &sc->sc_ic; 3563 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3564 uint32_t promisc_filter; 3565 3566 promisc_filter = WPI_FILTER_CTL; 3567 if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP) 3568 promisc_filter |= WPI_FILTER_PROMISC; 3569 3570 if (ic->ic_promisc > 0) 3571 sc->rxon.filter |= htole32(promisc_filter); 3572 else 3573 sc->rxon.filter &= ~htole32(promisc_filter); 3574 } 3575 3576 static void 3577 wpi_update_promisc(struct ieee80211com *ic) 3578 { 3579 struct wpi_softc *sc = ic->ic_softc; 3580 3581 WPI_LOCK(sc); 3582 if (sc->sc_running == 0) { 3583 WPI_UNLOCK(sc); 3584 return; 3585 } 3586 WPI_UNLOCK(sc); 3587 3588 WPI_RXON_LOCK(sc); 3589 wpi_set_promisc(sc); 3590 3591 if (wpi_send_rxon(sc, 1, 1) != 0) { 3592 device_printf(sc->sc_dev, "%s: could not send RXON\n", 3593 __func__); 3594 } 3595 WPI_RXON_UNLOCK(sc); 3596 } 3597 3598 static void 3599 wpi_update_mcast(struct ieee80211com *ic) 3600 { 3601 /* Ignore */ 3602 } 3603 3604 static void 3605 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3606 { 3607 struct wpi_cmd_led led; 3608 3609 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3610 3611 led.which = which; 3612 led.unit = htole32(100000); /* on/off in unit of 100ms */ 3613 led.off = off; 3614 led.on = on; 3615 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1); 3616 } 3617 3618 static int 3619 wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni) 3620 { 3621 struct wpi_cmd_timing cmd; 3622 uint64_t val, mod; 3623 3624 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3625 3626 memset(&cmd, 0, sizeof cmd); 3627 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3628 cmd.bintval = htole16(ni->ni_intval); 3629 cmd.lintval = htole16(10); 3630 3631 /* Compute remaining time until next beacon. */ 3632 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 3633 mod = le64toh(cmd.tstamp) % val; 3634 cmd.binitval = htole32((uint32_t)(val - mod)); 3635 3636 DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 3637 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 3638 3639 return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1); 3640 } 3641 3642 /* 3643 * This function is called periodically (every 60 seconds) to adjust output 3644 * power to temperature changes. 3645 */ 3646 static void 3647 wpi_power_calibration(struct wpi_softc *sc) 3648 { 3649 int temp; 3650 3651 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 3652 3653 /* Update sensor data. */ 3654 temp = (int)WPI_READ(sc, WPI_UCODE_GP2); 3655 DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp); 3656 3657 /* Sanity-check read value. */ 3658 if (temp < -260 || temp > 25) { 3659 /* This can't be correct, ignore. */ 3660 DPRINTF(sc, WPI_DEBUG_TEMP, 3661 "out-of-range temperature reported: %d\n", temp); 3662 return; 3663 } 3664 3665 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp); 3666 3667 /* Adjust Tx power if need be. */ 3668 if (abs(temp - sc->temp) <= 6) 3669 return; 3670 3671 sc->temp = temp; 3672 3673 if (wpi_set_txpower(sc, 1) != 0) { 3674 /* just warn, too bad for the automatic calibration... */ 3675 device_printf(sc->sc_dev,"could not adjust Tx power\n"); 3676 } 3677 } 3678 3679 /* 3680 * Set TX power for current channel. 3681 */ 3682 static int 3683 wpi_set_txpower(struct wpi_softc *sc, int async) 3684 { 3685 struct wpi_power_group *group; 3686 struct wpi_cmd_txpower cmd; 3687 uint8_t chan; 3688 int idx, is_chan_5ghz, i; 3689 3690 /* Retrieve current channel from last RXON. */ 3691 chan = sc->rxon.chan; 3692 is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0; 3693 3694 /* Find the TX power group to which this channel belongs. */ 3695 if (is_chan_5ghz) { 3696 for (group = &sc->groups[1]; group < &sc->groups[4]; group++) 3697 if (chan <= group->chan) 3698 break; 3699 } else 3700 group = &sc->groups[0]; 3701 3702 memset(&cmd, 0, sizeof cmd); 3703 cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ; 3704 cmd.chan = htole16(chan); 3705 3706 /* Set TX power for all OFDM and CCK rates. */ 3707 for (i = 0; i <= WPI_RIDX_MAX ; i++) { 3708 /* Retrieve TX power for this channel/rate. */ 3709 idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i); 3710 3711 cmd.rates[i].plcp = wpi_ridx_to_plcp[i]; 3712 3713 if (is_chan_5ghz) { 3714 cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx]; 3715 cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx]; 3716 } else { 3717 cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx]; 3718 cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx]; 3719 } 3720 DPRINTF(sc, WPI_DEBUG_TEMP, 3721 "chan %d/ridx %d: power index %d\n", chan, i, idx); 3722 } 3723 3724 return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async); 3725 } 3726 3727 /* 3728 * Determine Tx power index for a given channel/rate combination. 3729 * This takes into account the regulatory information from EEPROM and the 3730 * current temperature. 3731 */ 3732 static int 3733 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group, 3734 uint8_t chan, int is_chan_5ghz, int ridx) 3735 { 3736 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3737 #define fdivround(a, b, n) \ 3738 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3739 3740 /* Linear interpolation. */ 3741 #define interpolate(x, x1, y1, x2, y2, n) \ 3742 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3743 3744 struct wpi_power_sample *sample; 3745 int pwr, idx; 3746 3747 /* Default TX power is group maximum TX power minus 3dB. */ 3748 pwr = group->maxpwr / 2; 3749 3750 /* Decrease TX power for highest OFDM rates to reduce distortion. */ 3751 switch (ridx) { 3752 case WPI_RIDX_OFDM36: 3753 pwr -= is_chan_5ghz ? 5 : 0; 3754 break; 3755 case WPI_RIDX_OFDM48: 3756 pwr -= is_chan_5ghz ? 10 : 7; 3757 break; 3758 case WPI_RIDX_OFDM54: 3759 pwr -= is_chan_5ghz ? 12 : 9; 3760 break; 3761 } 3762 3763 /* Never exceed the channel maximum allowed TX power. */ 3764 pwr = min(pwr, sc->maxpwr[chan]); 3765 3766 /* Retrieve TX power index into gain tables from samples. */ 3767 for (sample = group->samples; sample < &group->samples[3]; sample++) 3768 if (pwr > sample[1].power) 3769 break; 3770 /* Fixed-point linear interpolation using a 19-bit fractional part. */ 3771 idx = interpolate(pwr, sample[0].power, sample[0].index, 3772 sample[1].power, sample[1].index, 19); 3773 3774 /*- 3775 * Adjust power index based on current temperature: 3776 * - if cooler than factory-calibrated: decrease output power 3777 * - if warmer than factory-calibrated: increase output power 3778 */ 3779 idx -= (sc->temp - group->temp) * 11 / 100; 3780 3781 /* Decrease TX power for CCK rates (-5dB). */ 3782 if (ridx >= WPI_RIDX_CCK1) 3783 idx += 10; 3784 3785 /* Make sure idx stays in a valid range. */ 3786 if (idx < 0) 3787 return 0; 3788 if (idx > WPI_MAX_PWR_INDEX) 3789 return WPI_MAX_PWR_INDEX; 3790 return idx; 3791 3792 #undef interpolate 3793 #undef fdivround 3794 } 3795 3796 /* 3797 * Set STA mode power saving level (between 0 and 5). 3798 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 3799 */ 3800 static int 3801 wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async) 3802 { 3803 struct wpi_pmgt_cmd cmd; 3804 const struct wpi_pmgt *pmgt; 3805 uint32_t max, reg; 3806 uint8_t skip_dtim; 3807 int i; 3808 3809 DPRINTF(sc, WPI_DEBUG_PWRSAVE, 3810 "%s: dtim=%d, level=%d, async=%d\n", 3811 __func__, dtim, level, async); 3812 3813 /* Select which PS parameters to use. */ 3814 if (dtim <= 10) 3815 pmgt = &wpi_pmgt[0][level]; 3816 else 3817 pmgt = &wpi_pmgt[1][level]; 3818 3819 memset(&cmd, 0, sizeof cmd); 3820 if (level != 0) /* not CAM */ 3821 cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP); 3822 /* Retrieve PCIe Active State Power Management (ASPM). */ 3823 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); 3824 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 3825 cmd.flags |= htole16(WPI_PS_PCI_PMGT); 3826 3827 cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU); 3828 cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU); 3829 3830 if (dtim == 0) { 3831 dtim = 1; 3832 skip_dtim = 0; 3833 } else 3834 skip_dtim = pmgt->skip_dtim; 3835 3836 if (skip_dtim != 0) { 3837 cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM); 3838 max = pmgt->intval[4]; 3839 if (max == (uint32_t)-1) 3840 max = dtim * (skip_dtim + 1); 3841 else if (max > dtim) 3842 max = rounddown(max, dtim); 3843 } else 3844 max = dtim; 3845 3846 for (i = 0; i < 5; i++) 3847 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 3848 3849 return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 3850 } 3851 3852 static int 3853 wpi_send_btcoex(struct wpi_softc *sc) 3854 { 3855 struct wpi_bluetooth cmd; 3856 3857 memset(&cmd, 0, sizeof cmd); 3858 cmd.flags = WPI_BT_COEX_MODE_4WIRE; 3859 cmd.lead_time = WPI_BT_LEAD_TIME_DEF; 3860 cmd.max_kill = WPI_BT_MAX_KILL_DEF; 3861 DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 3862 __func__); 3863 return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 3864 } 3865 3866 static int 3867 wpi_send_rxon(struct wpi_softc *sc, int assoc, int async) 3868 { 3869 int error; 3870 3871 if (async) 3872 WPI_RXON_LOCK_ASSERT(sc); 3873 3874 if (assoc && wpi_check_bss_filter(sc) != 0) { 3875 struct wpi_assoc rxon_assoc; 3876 3877 rxon_assoc.flags = sc->rxon.flags; 3878 rxon_assoc.filter = sc->rxon.filter; 3879 rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask; 3880 rxon_assoc.cck_mask = sc->rxon.cck_mask; 3881 rxon_assoc.reserved = 0; 3882 3883 error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc, 3884 sizeof (struct wpi_assoc), async); 3885 if (error != 0) { 3886 device_printf(sc->sc_dev, 3887 "RXON_ASSOC command failed, error %d\n", error); 3888 return error; 3889 } 3890 } else { 3891 if (async) { 3892 WPI_NT_LOCK(sc); 3893 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, 3894 sizeof (struct wpi_rxon), async); 3895 if (error == 0) 3896 wpi_clear_node_table(sc); 3897 WPI_NT_UNLOCK(sc); 3898 } else { 3899 error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon, 3900 sizeof (struct wpi_rxon), async); 3901 if (error == 0) 3902 wpi_clear_node_table(sc); 3903 } 3904 3905 if (error != 0) { 3906 device_printf(sc->sc_dev, 3907 "RXON command failed, error %d\n", error); 3908 return error; 3909 } 3910 3911 /* Add broadcast node. */ 3912 error = wpi_add_broadcast_node(sc, async); 3913 if (error != 0) { 3914 device_printf(sc->sc_dev, 3915 "could not add broadcast node, error %d\n", error); 3916 return error; 3917 } 3918 } 3919 3920 /* Configuration has changed, set Tx power accordingly. */ 3921 if ((error = wpi_set_txpower(sc, async)) != 0) { 3922 device_printf(sc->sc_dev, 3923 "%s: could not set TX power, error %d\n", __func__, error); 3924 return error; 3925 } 3926 3927 return 0; 3928 } 3929 3930 /** 3931 * Configure the card to listen to a particular channel, this transisions the 3932 * card in to being able to receive frames from remote devices. 3933 */ 3934 static int 3935 wpi_config(struct wpi_softc *sc) 3936 { 3937 struct ieee80211com *ic = &sc->sc_ic; 3938 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3939 struct ieee80211_channel *c = ic->ic_curchan; 3940 int error; 3941 3942 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 3943 3944 /* Set power saving level to CAM during initialization. */ 3945 if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) { 3946 device_printf(sc->sc_dev, 3947 "%s: could not set power saving level\n", __func__); 3948 return error; 3949 } 3950 3951 /* Configure bluetooth coexistence. */ 3952 if ((error = wpi_send_btcoex(sc)) != 0) { 3953 device_printf(sc->sc_dev, 3954 "could not configure bluetooth coexistence\n"); 3955 return error; 3956 } 3957 3958 /* Configure adapter. */ 3959 memset(&sc->rxon, 0, sizeof (struct wpi_rxon)); 3960 IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr); 3961 3962 /* Set default channel. */ 3963 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 3964 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 3965 if (IEEE80211_IS_CHAN_2GHZ(c)) 3966 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 3967 3968 sc->rxon.filter = WPI_FILTER_MULTICAST; 3969 switch (ic->ic_opmode) { 3970 case IEEE80211_M_STA: 3971 sc->rxon.mode = WPI_MODE_STA; 3972 break; 3973 case IEEE80211_M_IBSS: 3974 sc->rxon.mode = WPI_MODE_IBSS; 3975 sc->rxon.filter |= WPI_FILTER_BEACON; 3976 break; 3977 case IEEE80211_M_HOSTAP: 3978 /* XXX workaround for beaconing */ 3979 sc->rxon.mode = WPI_MODE_IBSS; 3980 sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC; 3981 break; 3982 case IEEE80211_M_AHDEMO: 3983 sc->rxon.mode = WPI_MODE_HOSTAP; 3984 break; 3985 case IEEE80211_M_MONITOR: 3986 sc->rxon.mode = WPI_MODE_MONITOR; 3987 break; 3988 default: 3989 device_printf(sc->sc_dev, "unknown opmode %d\n", 3990 ic->ic_opmode); 3991 return EINVAL; 3992 } 3993 sc->rxon.filter = htole32(sc->rxon.filter); 3994 wpi_set_promisc(sc); 3995 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 3996 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 3997 3998 if ((error = wpi_send_rxon(sc, 0, 0)) != 0) { 3999 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4000 __func__); 4001 return error; 4002 } 4003 4004 /* Setup rate scalling. */ 4005 if ((error = wpi_mrr_setup(sc)) != 0) { 4006 device_printf(sc->sc_dev, "could not setup MRR, error %d\n", 4007 error); 4008 return error; 4009 } 4010 4011 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4012 4013 return 0; 4014 } 4015 4016 static uint16_t 4017 wpi_get_active_dwell_time(struct wpi_softc *sc, 4018 struct ieee80211_channel *c, uint8_t n_probes) 4019 { 4020 /* No channel? Default to 2GHz settings. */ 4021 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 4022 return (WPI_ACTIVE_DWELL_TIME_2GHZ + 4023 WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 4024 } 4025 4026 /* 5GHz dwell time. */ 4027 return (WPI_ACTIVE_DWELL_TIME_5GHZ + 4028 WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 4029 } 4030 4031 /* 4032 * Limit the total dwell time. 4033 * 4034 * Returns the dwell time in milliseconds. 4035 */ 4036 static uint16_t 4037 wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time) 4038 { 4039 struct ieee80211com *ic = &sc->sc_ic; 4040 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4041 uint16_t bintval = 0; 4042 4043 /* bintval is in TU (1.024mS) */ 4044 if (vap != NULL) 4045 bintval = vap->iv_bss->ni_intval; 4046 4047 /* 4048 * If it's non-zero, we should calculate the minimum of 4049 * it and the DWELL_BASE. 4050 * 4051 * XXX Yes, the math should take into account that bintval 4052 * is 1.024mS, not 1mS.. 4053 */ 4054 if (bintval > 0) { 4055 DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__, 4056 bintval); 4057 return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2)); 4058 } 4059 4060 /* No association context? Default. */ 4061 return dwell_time; 4062 } 4063 4064 static uint16_t 4065 wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c) 4066 { 4067 uint16_t passive; 4068 4069 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) 4070 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ; 4071 else 4072 passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ; 4073 4074 /* Clamp to the beacon interval if we're associated. */ 4075 return (wpi_limit_dwell(sc, passive)); 4076 } 4077 4078 static uint32_t 4079 wpi_get_scan_pause_time(uint32_t time, uint16_t bintval) 4080 { 4081 uint32_t mod = (time % bintval) * IEEE80211_DUR_TU; 4082 uint32_t nbeacons = time / bintval; 4083 4084 if (mod > WPI_PAUSE_MAX_TIME) 4085 mod = WPI_PAUSE_MAX_TIME; 4086 4087 return WPI_PAUSE_SCAN(nbeacons, mod); 4088 } 4089 4090 /* 4091 * Send a scan request to the firmware. 4092 */ 4093 static int 4094 wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c) 4095 { 4096 struct ieee80211com *ic = &sc->sc_ic; 4097 struct ieee80211_scan_state *ss = ic->ic_scan; 4098 struct ieee80211vap *vap = ss->ss_vap; 4099 struct wpi_scan_hdr *hdr; 4100 struct wpi_cmd_data *tx; 4101 struct wpi_scan_essid *essids; 4102 struct wpi_scan_chan *chan; 4103 struct ieee80211_frame *wh; 4104 struct ieee80211_rateset *rs; 4105 uint16_t bintval, buflen, dwell_active, dwell_passive; 4106 uint8_t *buf, *frm, i, nssid; 4107 int bgscan, error; 4108 4109 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4110 4111 /* 4112 * We are absolutely not allowed to send a scan command when another 4113 * scan command is pending. 4114 */ 4115 if (callout_pending(&sc->scan_timeout)) { 4116 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 4117 __func__); 4118 error = EAGAIN; 4119 goto fail; 4120 } 4121 4122 bgscan = wpi_check_bss_filter(sc); 4123 bintval = vap->iv_bss->ni_intval; 4124 if (bgscan != 0 && 4125 bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) { 4126 error = EOPNOTSUPP; 4127 goto fail; 4128 } 4129 4130 buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4131 if (buf == NULL) { 4132 device_printf(sc->sc_dev, 4133 "%s: could not allocate buffer for scan command\n", 4134 __func__); 4135 error = ENOMEM; 4136 goto fail; 4137 } 4138 hdr = (struct wpi_scan_hdr *)buf; 4139 4140 /* 4141 * Move to the next channel if no packets are received within 10 msecs 4142 * after sending the probe request. 4143 */ 4144 hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT); 4145 hdr->quiet_threshold = htole16(1); 4146 4147 if (bgscan != 0) { 4148 /* 4149 * Max needs to be greater than active and passive and quiet! 4150 * It's also in microseconds! 4151 */ 4152 hdr->max_svc = htole32(250 * IEEE80211_DUR_TU); 4153 hdr->pause_svc = htole32(wpi_get_scan_pause_time(100, 4154 bintval)); 4155 } 4156 4157 hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON); 4158 4159 tx = (struct wpi_cmd_data *)(hdr + 1); 4160 tx->flags = htole32(WPI_TX_AUTO_SEQ); 4161 tx->id = WPI_ID_BROADCAST; 4162 tx->lifetime = htole32(WPI_LIFETIME_INFINITE); 4163 4164 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4165 /* Send probe requests at 6Mbps. */ 4166 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6]; 4167 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4168 } else { 4169 hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO); 4170 /* Send probe requests at 1Mbps. */ 4171 tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 4172 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4173 } 4174 4175 essids = (struct wpi_scan_essid *)(tx + 1); 4176 nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS); 4177 for (i = 0; i < nssid; i++) { 4178 essids[i].id = IEEE80211_ELEMID_SSID; 4179 essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN); 4180 memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len); 4181 #ifdef WPI_DEBUG 4182 if (sc->sc_debug & WPI_DEBUG_SCAN) { 4183 printf("Scanning Essid: "); 4184 ieee80211_print_essid(essids[i].data, essids[i].len); 4185 printf("\n"); 4186 } 4187 #endif 4188 } 4189 4190 /* 4191 * Build a probe request frame. Most of the following code is a 4192 * copy & paste of what is done in net80211. 4193 */ 4194 wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS); 4195 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4196 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4197 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4198 IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr); 4199 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 4200 IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr); 4201 4202 frm = (uint8_t *)(wh + 1); 4203 frm = ieee80211_add_ssid(frm, NULL, 0); 4204 frm = ieee80211_add_rates(frm, rs); 4205 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 4206 frm = ieee80211_add_xrates(frm, rs); 4207 4208 /* Set length of probe request. */ 4209 tx->len = htole16(frm - (uint8_t *)wh); 4210 4211 /* 4212 * Construct information about the channel that we 4213 * want to scan. The firmware expects this to be directly 4214 * after the scan probe request 4215 */ 4216 chan = (struct wpi_scan_chan *)frm; 4217 chan->chan = ieee80211_chan2ieee(ic, c); 4218 chan->flags = 0; 4219 if (nssid) { 4220 hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT; 4221 chan->flags |= WPI_CHAN_NPBREQS(nssid); 4222 } else 4223 hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER; 4224 4225 if (!IEEE80211_IS_CHAN_PASSIVE(c)) 4226 chan->flags |= WPI_CHAN_ACTIVE; 4227 4228 /* 4229 * Calculate the active/passive dwell times. 4230 */ 4231 dwell_active = wpi_get_active_dwell_time(sc, c, nssid); 4232 dwell_passive = wpi_get_passive_dwell_time(sc, c); 4233 4234 /* Make sure they're valid. */ 4235 if (dwell_active > dwell_passive) 4236 dwell_active = dwell_passive; 4237 4238 chan->active = htole16(dwell_active); 4239 chan->passive = htole16(dwell_passive); 4240 4241 chan->dsp_gain = 0x6e; /* Default level */ 4242 4243 if (IEEE80211_IS_CHAN_5GHZ(c)) 4244 chan->rf_gain = 0x3b; 4245 else 4246 chan->rf_gain = 0x28; 4247 4248 DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n", 4249 chan->chan, IEEE80211_IS_CHAN_PASSIVE(c)); 4250 4251 hdr->nchan++; 4252 4253 if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) { 4254 /* XXX Force probe request transmission. */ 4255 memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan)); 4256 4257 chan++; 4258 4259 /* Reduce unnecessary delay. */ 4260 chan->flags = 0; 4261 chan->passive = chan->active = hdr->quiet_time; 4262 4263 hdr->nchan++; 4264 } 4265 4266 chan++; 4267 4268 buflen = (uint8_t *)chan - buf; 4269 hdr->len = htole16(buflen); 4270 4271 DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n", 4272 hdr->nchan); 4273 error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1); 4274 free(buf, M_DEVBUF); 4275 4276 if (error != 0) 4277 goto fail; 4278 4279 callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc); 4280 4281 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4282 4283 return 0; 4284 4285 fail: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 4286 4287 return error; 4288 } 4289 4290 static int 4291 wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap) 4292 { 4293 struct ieee80211com *ic = vap->iv_ic; 4294 struct ieee80211_node *ni = vap->iv_bss; 4295 struct ieee80211_channel *c = ni->ni_chan; 4296 int error; 4297 4298 WPI_RXON_LOCK(sc); 4299 4300 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4301 4302 /* Update adapter configuration. */ 4303 sc->rxon.associd = 0; 4304 sc->rxon.filter &= ~htole32(WPI_FILTER_BSS); 4305 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4306 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 4307 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 4308 if (IEEE80211_IS_CHAN_2GHZ(c)) 4309 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 4310 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4311 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 4312 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4313 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 4314 if (IEEE80211_IS_CHAN_A(c)) { 4315 sc->rxon.cck_mask = 0; 4316 sc->rxon.ofdm_mask = 0x15; 4317 } else if (IEEE80211_IS_CHAN_B(c)) { 4318 sc->rxon.cck_mask = 0x03; 4319 sc->rxon.ofdm_mask = 0; 4320 } else { 4321 /* Assume 802.11b/g. */ 4322 sc->rxon.cck_mask = 0x0f; 4323 sc->rxon.ofdm_mask = 0x15; 4324 } 4325 4326 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 4327 sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask, 4328 sc->rxon.ofdm_mask); 4329 4330 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 4331 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4332 __func__); 4333 } 4334 4335 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4336 4337 WPI_RXON_UNLOCK(sc); 4338 4339 return error; 4340 } 4341 4342 static int 4343 wpi_config_beacon(struct wpi_vap *wvp) 4344 { 4345 struct ieee80211vap *vap = &wvp->wv_vap; 4346 struct ieee80211com *ic = vap->iv_ic; 4347 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 4348 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4349 struct wpi_softc *sc = ic->ic_softc; 4350 struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data; 4351 struct ieee80211_tim_ie *tie; 4352 struct mbuf *m; 4353 uint8_t *ptr; 4354 int error; 4355 4356 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4357 4358 WPI_VAP_LOCK_ASSERT(wvp); 4359 4360 cmd->len = htole16(bcn->m->m_pkthdr.len); 4361 cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ? 4362 wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1]; 4363 4364 /* XXX seems to be unused */ 4365 if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) { 4366 tie = (struct ieee80211_tim_ie *) bo->bo_tim; 4367 ptr = mtod(bcn->m, uint8_t *); 4368 4369 cmd->tim = htole16(bo->bo_tim - ptr); 4370 cmd->timsz = tie->tim_len; 4371 } 4372 4373 /* Necessary for recursion in ieee80211_beacon_update(). */ 4374 m = bcn->m; 4375 bcn->m = m_dup(m, M_NOWAIT); 4376 if (bcn->m == NULL) { 4377 device_printf(sc->sc_dev, 4378 "%s: could not copy beacon frame\n", __func__); 4379 error = ENOMEM; 4380 goto end; 4381 } 4382 4383 if ((error = wpi_cmd2(sc, bcn)) != 0) { 4384 device_printf(sc->sc_dev, 4385 "%s: could not update beacon frame, error %d", __func__, 4386 error); 4387 m_freem(bcn->m); 4388 } 4389 4390 /* Restore mbuf. */ 4391 end: bcn->m = m; 4392 4393 return error; 4394 } 4395 4396 static int 4397 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni) 4398 { 4399 struct ieee80211vap *vap = ni->ni_vap; 4400 struct wpi_vap *wvp = WPI_VAP(vap); 4401 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4402 struct mbuf *m; 4403 int error; 4404 4405 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4406 4407 if (ni->ni_chan == IEEE80211_CHAN_ANYC) 4408 return EINVAL; 4409 4410 m = ieee80211_beacon_alloc(ni); 4411 if (m == NULL) { 4412 device_printf(sc->sc_dev, 4413 "%s: could not allocate beacon frame\n", __func__); 4414 return ENOMEM; 4415 } 4416 4417 WPI_VAP_LOCK(wvp); 4418 if (bcn->m != NULL) 4419 m_freem(bcn->m); 4420 4421 bcn->m = m; 4422 4423 error = wpi_config_beacon(wvp); 4424 WPI_VAP_UNLOCK(wvp); 4425 4426 return error; 4427 } 4428 4429 static void 4430 wpi_update_beacon(struct ieee80211vap *vap, int item) 4431 { 4432 struct wpi_softc *sc = vap->iv_ic->ic_softc; 4433 struct wpi_vap *wvp = WPI_VAP(vap); 4434 struct wpi_buf *bcn = &wvp->wv_bcbuf; 4435 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 4436 struct ieee80211_node *ni = vap->iv_bss; 4437 int mcast = 0; 4438 4439 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4440 4441 WPI_VAP_LOCK(wvp); 4442 if (bcn->m == NULL) { 4443 bcn->m = ieee80211_beacon_alloc(ni); 4444 if (bcn->m == NULL) { 4445 device_printf(sc->sc_dev, 4446 "%s: could not allocate beacon frame\n", __func__); 4447 4448 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, 4449 __func__); 4450 4451 WPI_VAP_UNLOCK(wvp); 4452 return; 4453 } 4454 } 4455 WPI_VAP_UNLOCK(wvp); 4456 4457 if (item == IEEE80211_BEACON_TIM) 4458 mcast = 1; /* TODO */ 4459 4460 setbit(bo->bo_flags, item); 4461 ieee80211_beacon_update(ni, bcn->m, mcast); 4462 4463 WPI_VAP_LOCK(wvp); 4464 wpi_config_beacon(wvp); 4465 WPI_VAP_UNLOCK(wvp); 4466 4467 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4468 } 4469 4470 static void 4471 wpi_newassoc(struct ieee80211_node *ni, int isnew) 4472 { 4473 struct ieee80211vap *vap = ni->ni_vap; 4474 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4475 struct wpi_node *wn = WPI_NODE(ni); 4476 int error; 4477 4478 WPI_NT_LOCK(sc); 4479 4480 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4481 4482 if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) { 4483 if ((error = wpi_add_ibss_node(sc, ni)) != 0) { 4484 device_printf(sc->sc_dev, 4485 "%s: could not add IBSS node, error %d\n", 4486 __func__, error); 4487 } 4488 } 4489 WPI_NT_UNLOCK(sc); 4490 } 4491 4492 static int 4493 wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap) 4494 { 4495 struct ieee80211com *ic = vap->iv_ic; 4496 struct ieee80211_node *ni = vap->iv_bss; 4497 struct ieee80211_channel *c = ni->ni_chan; 4498 int error; 4499 4500 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 4501 4502 if (vap->iv_opmode == IEEE80211_M_MONITOR) { 4503 /* Link LED blinks while monitoring. */ 4504 wpi_set_led(sc, WPI_LED_LINK, 5, 5); 4505 return 0; 4506 } 4507 4508 /* XXX kernel panic workaround */ 4509 if (c == IEEE80211_CHAN_ANYC) { 4510 device_printf(sc->sc_dev, "%s: incomplete configuration\n", 4511 __func__); 4512 return EINVAL; 4513 } 4514 4515 if ((error = wpi_set_timing(sc, ni)) != 0) { 4516 device_printf(sc->sc_dev, 4517 "%s: could not set timing, error %d\n", __func__, error); 4518 return error; 4519 } 4520 4521 /* Update adapter configuration. */ 4522 WPI_RXON_LOCK(sc); 4523 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4524 sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni)); 4525 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 4526 sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF); 4527 if (IEEE80211_IS_CHAN_2GHZ(c)) 4528 sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ); 4529 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4530 sc->rxon.flags |= htole32(WPI_RXON_SHSLOT); 4531 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4532 sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE); 4533 if (IEEE80211_IS_CHAN_A(c)) { 4534 sc->rxon.cck_mask = 0; 4535 sc->rxon.ofdm_mask = 0x15; 4536 } else if (IEEE80211_IS_CHAN_B(c)) { 4537 sc->rxon.cck_mask = 0x03; 4538 sc->rxon.ofdm_mask = 0; 4539 } else { 4540 /* Assume 802.11b/g. */ 4541 sc->rxon.cck_mask = 0x0f; 4542 sc->rxon.ofdm_mask = 0x15; 4543 } 4544 sc->rxon.filter |= htole32(WPI_FILTER_BSS); 4545 4546 DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n", 4547 sc->rxon.chan, sc->rxon.flags); 4548 4549 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) { 4550 WPI_RXON_UNLOCK(sc); 4551 device_printf(sc->sc_dev, "%s: could not send RXON\n", 4552 __func__); 4553 return error; 4554 } 4555 4556 /* Start periodic calibration timer. */ 4557 callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc); 4558 4559 WPI_RXON_UNLOCK(sc); 4560 4561 if (vap->iv_opmode == IEEE80211_M_IBSS || 4562 vap->iv_opmode == IEEE80211_M_HOSTAP) { 4563 if ((error = wpi_setup_beacon(sc, ni)) != 0) { 4564 device_printf(sc->sc_dev, 4565 "%s: could not setup beacon, error %d\n", __func__, 4566 error); 4567 return error; 4568 } 4569 } 4570 4571 if (vap->iv_opmode == IEEE80211_M_STA) { 4572 /* Add BSS node. */ 4573 WPI_NT_LOCK(sc); 4574 error = wpi_add_sta_node(sc, ni); 4575 WPI_NT_UNLOCK(sc); 4576 if (error != 0) { 4577 device_printf(sc->sc_dev, 4578 "%s: could not add BSS node, error %d\n", __func__, 4579 error); 4580 return error; 4581 } 4582 } 4583 4584 /* Link LED always on while associated. */ 4585 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 4586 4587 /* Enable power-saving mode if requested by user. */ 4588 if ((vap->iv_flags & IEEE80211_F_PMGTON) && 4589 vap->iv_opmode != IEEE80211_M_IBSS) 4590 (void)wpi_set_pslevel(sc, 0, 3, 1); 4591 4592 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 4593 4594 return 0; 4595 } 4596 4597 static int 4598 wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k) 4599 { 4600 const struct ieee80211_cipher *cip = k->wk_cipher; 4601 struct ieee80211vap *vap = ni->ni_vap; 4602 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4603 struct wpi_node *wn = WPI_NODE(ni); 4604 struct wpi_node_info node; 4605 uint16_t kflags; 4606 int error; 4607 4608 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4609 4610 if (wpi_check_node_entry(sc, wn->id) == 0) { 4611 device_printf(sc->sc_dev, "%s: node does not exist\n", 4612 __func__); 4613 return 0; 4614 } 4615 4616 switch (cip->ic_cipher) { 4617 case IEEE80211_CIPHER_AES_CCM: 4618 kflags = WPI_KFLAG_CCMP; 4619 break; 4620 4621 default: 4622 device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__, 4623 cip->ic_cipher); 4624 return 0; 4625 } 4626 4627 kflags |= WPI_KFLAG_KID(k->wk_keyix); 4628 if (k->wk_flags & IEEE80211_KEY_GROUP) 4629 kflags |= WPI_KFLAG_MULTICAST; 4630 4631 memset(&node, 0, sizeof node); 4632 node.id = wn->id; 4633 node.control = WPI_NODE_UPDATE; 4634 node.flags = WPI_FLAG_KEY_SET; 4635 node.kflags = htole16(kflags); 4636 memcpy(node.key, k->wk_key, k->wk_keylen); 4637 again: 4638 DPRINTF(sc, WPI_DEBUG_KEY, 4639 "%s: setting %s key id %d for node %d (%s)\n", __func__, 4640 (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix, 4641 node.id, ether_sprintf(ni->ni_macaddr)); 4642 4643 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 4644 if (error != 0) { 4645 device_printf(sc->sc_dev, "can't update node info, error %d\n", 4646 error); 4647 return !error; 4648 } 4649 4650 if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && 4651 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4652 kflags |= WPI_KFLAG_MULTICAST; 4653 node.kflags = htole16(kflags); 4654 4655 goto again; 4656 } 4657 4658 return 1; 4659 } 4660 4661 static void 4662 wpi_load_key_cb(void *arg, struct ieee80211_node *ni) 4663 { 4664 const struct ieee80211_key *k = arg; 4665 struct ieee80211vap *vap = ni->ni_vap; 4666 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4667 struct wpi_node *wn = WPI_NODE(ni); 4668 int error; 4669 4670 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) 4671 return; 4672 4673 WPI_NT_LOCK(sc); 4674 error = wpi_load_key(ni, k); 4675 WPI_NT_UNLOCK(sc); 4676 4677 if (error == 0) { 4678 device_printf(sc->sc_dev, "%s: error while setting key\n", 4679 __func__); 4680 } 4681 } 4682 4683 static int 4684 wpi_set_global_keys(struct ieee80211_node *ni) 4685 { 4686 struct ieee80211vap *vap = ni->ni_vap; 4687 struct ieee80211_key *wk = &vap->iv_nw_keys[0]; 4688 int error = 1; 4689 4690 for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++) 4691 if (wk->wk_keyix != IEEE80211_KEYIX_NONE) 4692 error = wpi_load_key(ni, wk); 4693 4694 return !error; 4695 } 4696 4697 static int 4698 wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k) 4699 { 4700 struct ieee80211vap *vap = ni->ni_vap; 4701 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4702 struct wpi_node *wn = WPI_NODE(ni); 4703 struct wpi_node_info node; 4704 uint16_t kflags; 4705 int error; 4706 4707 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4708 4709 if (wpi_check_node_entry(sc, wn->id) == 0) { 4710 DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__); 4711 return 1; /* Nothing to do. */ 4712 } 4713 4714 kflags = WPI_KFLAG_KID(k->wk_keyix); 4715 if (k->wk_flags & IEEE80211_KEY_GROUP) 4716 kflags |= WPI_KFLAG_MULTICAST; 4717 4718 memset(&node, 0, sizeof node); 4719 node.id = wn->id; 4720 node.control = WPI_NODE_UPDATE; 4721 node.flags = WPI_FLAG_KEY_SET; 4722 node.kflags = htole16(kflags); 4723 again: 4724 DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n", 4725 __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", 4726 k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr)); 4727 4728 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1); 4729 if (error != 0) { 4730 device_printf(sc->sc_dev, "can't update node info, error %d\n", 4731 error); 4732 return !error; 4733 } 4734 4735 if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k && 4736 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4737 kflags |= WPI_KFLAG_MULTICAST; 4738 node.kflags = htole16(kflags); 4739 4740 goto again; 4741 } 4742 4743 return 1; 4744 } 4745 4746 static void 4747 wpi_del_key_cb(void *arg, struct ieee80211_node *ni) 4748 { 4749 const struct ieee80211_key *k = arg; 4750 struct ieee80211vap *vap = ni->ni_vap; 4751 struct wpi_softc *sc = ni->ni_ic->ic_softc; 4752 struct wpi_node *wn = WPI_NODE(ni); 4753 int error; 4754 4755 if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED) 4756 return; 4757 4758 WPI_NT_LOCK(sc); 4759 error = wpi_del_key(ni, k); 4760 WPI_NT_UNLOCK(sc); 4761 4762 if (error == 0) { 4763 device_printf(sc->sc_dev, "%s: error while deleting key\n", 4764 __func__); 4765 } 4766 } 4767 4768 static int 4769 wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k, 4770 int set) 4771 { 4772 struct ieee80211com *ic = vap->iv_ic; 4773 struct wpi_softc *sc = ic->ic_softc; 4774 struct wpi_vap *wvp = WPI_VAP(vap); 4775 struct ieee80211_node *ni; 4776 int error, ni_ref = 0; 4777 4778 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4779 4780 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 4781 /* Not for us. */ 4782 return 1; 4783 } 4784 4785 if (!(k->wk_flags & IEEE80211_KEY_RECV)) { 4786 /* XMIT keys are handled in wpi_tx_data(). */ 4787 return 1; 4788 } 4789 4790 /* Handle group keys. */ 4791 if (&vap->iv_nw_keys[0] <= k && 4792 k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) { 4793 WPI_NT_LOCK(sc); 4794 if (set) 4795 wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix); 4796 else 4797 wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix); 4798 WPI_NT_UNLOCK(sc); 4799 4800 if (vap->iv_state == IEEE80211_S_RUN) { 4801 ieee80211_iterate_nodes(&ic->ic_sta, 4802 set ? wpi_load_key_cb : wpi_del_key_cb, 4803 __DECONST(void *, k)); 4804 } 4805 4806 return 1; 4807 } 4808 4809 switch (vap->iv_opmode) { 4810 case IEEE80211_M_STA: 4811 ni = vap->iv_bss; 4812 break; 4813 4814 case IEEE80211_M_IBSS: 4815 case IEEE80211_M_AHDEMO: 4816 case IEEE80211_M_HOSTAP: 4817 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr); 4818 if (ni == NULL) 4819 return 0; /* should not happen */ 4820 4821 ni_ref = 1; 4822 break; 4823 4824 default: 4825 device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__, 4826 vap->iv_opmode); 4827 return 0; 4828 } 4829 4830 WPI_NT_LOCK(sc); 4831 if (set) 4832 error = wpi_load_key(ni, k); 4833 else 4834 error = wpi_del_key(ni, k); 4835 WPI_NT_UNLOCK(sc); 4836 4837 if (ni_ref) 4838 ieee80211_node_decref(ni); 4839 4840 return error; 4841 } 4842 4843 static int 4844 wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) 4845 { 4846 return wpi_process_key(vap, k, 1); 4847 } 4848 4849 static int 4850 wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) 4851 { 4852 return wpi_process_key(vap, k, 0); 4853 } 4854 4855 /* 4856 * This function is called after the runtime firmware notifies us of its 4857 * readiness (called in a process context). 4858 */ 4859 static int 4860 wpi_post_alive(struct wpi_softc *sc) 4861 { 4862 int ntries, error; 4863 4864 /* Check (again) that the radio is not disabled. */ 4865 if ((error = wpi_nic_lock(sc)) != 0) 4866 return error; 4867 4868 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4869 4870 /* NB: Runtime firmware must be up and running. */ 4871 if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) { 4872 device_printf(sc->sc_dev, 4873 "RF switch: radio disabled (%s)\n", __func__); 4874 wpi_nic_unlock(sc); 4875 return EPERM; /* :-) */ 4876 } 4877 wpi_nic_unlock(sc); 4878 4879 /* Wait for thermal sensor to calibrate. */ 4880 for (ntries = 0; ntries < 1000; ntries++) { 4881 if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0) 4882 break; 4883 DELAY(10); 4884 } 4885 4886 if (ntries == 1000) { 4887 device_printf(sc->sc_dev, 4888 "timeout waiting for thermal sensor calibration\n"); 4889 return ETIMEDOUT; 4890 } 4891 4892 DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp); 4893 return 0; 4894 } 4895 4896 /* 4897 * The firmware boot code is small and is intended to be copied directly into 4898 * the NIC internal memory (no DMA transfer). 4899 */ 4900 static int 4901 wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size) 4902 { 4903 int error, ntries; 4904 4905 DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size); 4906 4907 size /= sizeof (uint32_t); 4908 4909 if ((error = wpi_nic_lock(sc)) != 0) 4910 return error; 4911 4912 /* Copy microcode image into NIC memory. */ 4913 wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE, 4914 (const uint32_t *)ucode, size); 4915 4916 wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0); 4917 wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE); 4918 wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size); 4919 4920 /* Start boot load now. */ 4921 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START); 4922 4923 /* Wait for transfer to complete. */ 4924 for (ntries = 0; ntries < 1000; ntries++) { 4925 uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS); 4926 DPRINTF(sc, WPI_DEBUG_HW, 4927 "firmware status=0x%x, val=0x%x, result=0x%x\n", status, 4928 WPI_FH_TX_STATUS_IDLE(6), 4929 status & WPI_FH_TX_STATUS_IDLE(6)); 4930 if (status & WPI_FH_TX_STATUS_IDLE(6)) { 4931 DPRINTF(sc, WPI_DEBUG_HW, 4932 "Status Match! - ntries = %d\n", ntries); 4933 break; 4934 } 4935 DELAY(10); 4936 } 4937 if (ntries == 1000) { 4938 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 4939 __func__); 4940 wpi_nic_unlock(sc); 4941 return ETIMEDOUT; 4942 } 4943 4944 /* Enable boot after power up. */ 4945 wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN); 4946 4947 wpi_nic_unlock(sc); 4948 return 0; 4949 } 4950 4951 static int 4952 wpi_load_firmware(struct wpi_softc *sc) 4953 { 4954 struct wpi_fw_info *fw = &sc->fw; 4955 struct wpi_dma_info *dma = &sc->fw_dma; 4956 int error; 4957 4958 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 4959 4960 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 4961 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 4962 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4963 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz); 4964 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4965 4966 /* Tell adapter where to find initialization sections. */ 4967 if ((error = wpi_nic_lock(sc)) != 0) 4968 return error; 4969 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 4970 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz); 4971 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 4972 dma->paddr + WPI_FW_DATA_MAXSZ); 4973 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 4974 wpi_nic_unlock(sc); 4975 4976 /* Load firmware boot code. */ 4977 error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 4978 if (error != 0) { 4979 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 4980 __func__); 4981 return error; 4982 } 4983 4984 /* Now press "execute". */ 4985 WPI_WRITE(sc, WPI_RESET, 0); 4986 4987 /* Wait at most one second for first alive notification. */ 4988 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 4989 device_printf(sc->sc_dev, 4990 "%s: timeout waiting for adapter to initialize, error %d\n", 4991 __func__, error); 4992 return error; 4993 } 4994 4995 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 4996 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 4997 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 4998 memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz); 4999 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 5000 5001 /* Tell adapter where to find runtime sections. */ 5002 if ((error = wpi_nic_lock(sc)) != 0) 5003 return error; 5004 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr); 5005 wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5006 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR, 5007 dma->paddr + WPI_FW_DATA_MAXSZ); 5008 wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, 5009 WPI_FW_UPDATED | fw->main.textsz); 5010 wpi_nic_unlock(sc); 5011 5012 return 0; 5013 } 5014 5015 static int 5016 wpi_read_firmware(struct wpi_softc *sc) 5017 { 5018 const struct firmware *fp; 5019 struct wpi_fw_info *fw = &sc->fw; 5020 const struct wpi_firmware_hdr *hdr; 5021 int error; 5022 5023 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5024 5025 DPRINTF(sc, WPI_DEBUG_FIRMWARE, 5026 "Attempting Loading Firmware from %s module\n", WPI_FW_NAME); 5027 5028 WPI_UNLOCK(sc); 5029 fp = firmware_get(WPI_FW_NAME); 5030 WPI_LOCK(sc); 5031 5032 if (fp == NULL) { 5033 device_printf(sc->sc_dev, 5034 "could not load firmware image '%s'\n", WPI_FW_NAME); 5035 return EINVAL; 5036 } 5037 5038 sc->fw_fp = fp; 5039 5040 if (fp->datasize < sizeof (struct wpi_firmware_hdr)) { 5041 device_printf(sc->sc_dev, 5042 "firmware file too short: %zu bytes\n", fp->datasize); 5043 error = EINVAL; 5044 goto fail; 5045 } 5046 5047 fw->size = fp->datasize; 5048 fw->data = (const uint8_t *)fp->data; 5049 5050 /* Extract firmware header information. */ 5051 hdr = (const struct wpi_firmware_hdr *)fw->data; 5052 5053 /* | RUNTIME FIRMWARE | INIT FIRMWARE | BOOT FW | 5054 |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */ 5055 5056 fw->main.textsz = le32toh(hdr->rtextsz); 5057 fw->main.datasz = le32toh(hdr->rdatasz); 5058 fw->init.textsz = le32toh(hdr->itextsz); 5059 fw->init.datasz = le32toh(hdr->idatasz); 5060 fw->boot.textsz = le32toh(hdr->btextsz); 5061 fw->boot.datasz = 0; 5062 5063 /* Sanity-check firmware header. */ 5064 if (fw->main.textsz > WPI_FW_TEXT_MAXSZ || 5065 fw->main.datasz > WPI_FW_DATA_MAXSZ || 5066 fw->init.textsz > WPI_FW_TEXT_MAXSZ || 5067 fw->init.datasz > WPI_FW_DATA_MAXSZ || 5068 fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ || 5069 (fw->boot.textsz & 3) != 0) { 5070 device_printf(sc->sc_dev, "invalid firmware header\n"); 5071 error = EINVAL; 5072 goto fail; 5073 } 5074 5075 /* Check that all firmware sections fit. */ 5076 if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz + 5077 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 5078 device_printf(sc->sc_dev, 5079 "firmware file too short: %zu bytes\n", fw->size); 5080 error = EINVAL; 5081 goto fail; 5082 } 5083 5084 /* Get pointers to firmware sections. */ 5085 fw->main.text = (const uint8_t *)(hdr + 1); 5086 fw->main.data = fw->main.text + fw->main.textsz; 5087 fw->init.text = fw->main.data + fw->main.datasz; 5088 fw->init.data = fw->init.text + fw->init.textsz; 5089 fw->boot.text = fw->init.data + fw->init.datasz; 5090 5091 DPRINTF(sc, WPI_DEBUG_FIRMWARE, 5092 "Firmware Version: Major %d, Minor %d, Driver %d, \n" 5093 "runtime (text: %u, data: %u) init (text: %u, data %u) " 5094 "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver), 5095 fw->main.textsz, fw->main.datasz, 5096 fw->init.textsz, fw->init.datasz, fw->boot.textsz); 5097 5098 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text); 5099 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data); 5100 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text); 5101 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data); 5102 DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text); 5103 5104 return 0; 5105 5106 fail: wpi_unload_firmware(sc); 5107 return error; 5108 } 5109 5110 /** 5111 * Free the referenced firmware image 5112 */ 5113 static void 5114 wpi_unload_firmware(struct wpi_softc *sc) 5115 { 5116 if (sc->fw_fp != NULL) { 5117 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 5118 sc->fw_fp = NULL; 5119 } 5120 } 5121 5122 static int 5123 wpi_clock_wait(struct wpi_softc *sc) 5124 { 5125 int ntries; 5126 5127 /* Set "initialization complete" bit. */ 5128 WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 5129 5130 /* Wait for clock stabilization. */ 5131 for (ntries = 0; ntries < 2500; ntries++) { 5132 if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY) 5133 return 0; 5134 DELAY(100); 5135 } 5136 device_printf(sc->sc_dev, 5137 "%s: timeout waiting for clock stabilization\n", __func__); 5138 5139 return ETIMEDOUT; 5140 } 5141 5142 static int 5143 wpi_apm_init(struct wpi_softc *sc) 5144 { 5145 uint32_t reg; 5146 int error; 5147 5148 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5149 5150 /* Disable L0s exit timer (NMI bug workaround). */ 5151 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER); 5152 /* Don't wait for ICH L0s (ICH bug workaround). */ 5153 WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX); 5154 5155 /* Set FH wait threshold to max (HW bug under stress workaround). */ 5156 WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000); 5157 5158 /* Retrieve PCIe Active State Power Management (ASPM). */ 5159 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1); 5160 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5161 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 5162 WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); 5163 else 5164 WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA); 5165 5166 WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT); 5167 5168 /* Wait for clock stabilization before accessing prph. */ 5169 if ((error = wpi_clock_wait(sc)) != 0) 5170 return error; 5171 5172 if ((error = wpi_nic_lock(sc)) != 0) 5173 return error; 5174 /* Cleanup. */ 5175 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400); 5176 wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200); 5177 5178 /* Enable DMA and BSM (Bootstrap State Machine). */ 5179 wpi_prph_write(sc, WPI_APMG_CLK_EN, 5180 WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT); 5181 DELAY(20); 5182 /* Disable L1-Active. */ 5183 wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS); 5184 wpi_nic_unlock(sc); 5185 5186 return 0; 5187 } 5188 5189 static void 5190 wpi_apm_stop_master(struct wpi_softc *sc) 5191 { 5192 int ntries; 5193 5194 /* Stop busmaster DMA activity. */ 5195 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER); 5196 5197 if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) == 5198 WPI_GP_CNTRL_MAC_PS) 5199 return; /* Already asleep. */ 5200 5201 for (ntries = 0; ntries < 100; ntries++) { 5202 if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED) 5203 return; 5204 DELAY(10); 5205 } 5206 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", 5207 __func__); 5208 } 5209 5210 static void 5211 wpi_apm_stop(struct wpi_softc *sc) 5212 { 5213 wpi_apm_stop_master(sc); 5214 5215 /* Reset the entire device. */ 5216 WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW); 5217 DELAY(10); 5218 /* Clear "initialization complete" bit. */ 5219 WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE); 5220 } 5221 5222 static void 5223 wpi_nic_config(struct wpi_softc *sc) 5224 { 5225 uint32_t rev; 5226 5227 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5228 5229 /* voodoo from the Linux "driver".. */ 5230 rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1); 5231 if ((rev & 0xc0) == 0x40) 5232 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB); 5233 else if (!(rev & 0x80)) 5234 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM); 5235 5236 if (sc->cap == 0x80) 5237 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC); 5238 5239 if ((sc->rev & 0xf0) == 0xd0) 5240 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 5241 else 5242 WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D); 5243 5244 if (sc->type > 1) 5245 WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B); 5246 } 5247 5248 static int 5249 wpi_hw_init(struct wpi_softc *sc) 5250 { 5251 uint8_t chnl; 5252 int ntries, error; 5253 5254 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 5255 5256 /* Clear pending interrupts. */ 5257 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5258 5259 if ((error = wpi_apm_init(sc)) != 0) { 5260 device_printf(sc->sc_dev, 5261 "%s: could not power ON adapter, error %d\n", __func__, 5262 error); 5263 return error; 5264 } 5265 5266 /* Select VMAIN power source. */ 5267 if ((error = wpi_nic_lock(sc)) != 0) 5268 return error; 5269 wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK); 5270 wpi_nic_unlock(sc); 5271 /* Spin until VMAIN gets selected. */ 5272 for (ntries = 0; ntries < 5000; ntries++) { 5273 if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN) 5274 break; 5275 DELAY(10); 5276 } 5277 if (ntries == 5000) { 5278 device_printf(sc->sc_dev, "timeout selecting power source\n"); 5279 return ETIMEDOUT; 5280 } 5281 5282 /* Perform adapter initialization. */ 5283 wpi_nic_config(sc); 5284 5285 /* Initialize RX ring. */ 5286 if ((error = wpi_nic_lock(sc)) != 0) 5287 return error; 5288 /* Set physical address of RX ring. */ 5289 WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr); 5290 /* Set physical address of RX read pointer. */ 5291 WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr + 5292 offsetof(struct wpi_shared, next)); 5293 WPI_WRITE(sc, WPI_FH_RX_WPTR, 0); 5294 /* Enable RX. */ 5295 WPI_WRITE(sc, WPI_FH_RX_CONFIG, 5296 WPI_FH_RX_CONFIG_DMA_ENA | 5297 WPI_FH_RX_CONFIG_RDRBD_ENA | 5298 WPI_FH_RX_CONFIG_WRSTATUS_ENA | 5299 WPI_FH_RX_CONFIG_MAXFRAG | 5300 WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) | 5301 WPI_FH_RX_CONFIG_IRQ_DST_HOST | 5302 WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1)); 5303 (void)WPI_READ(sc, WPI_FH_RSSR_TBL); /* barrier */ 5304 wpi_nic_unlock(sc); 5305 WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7); 5306 5307 /* Initialize TX rings. */ 5308 if ((error = wpi_nic_lock(sc)) != 0) 5309 return error; 5310 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2); /* bypass mode */ 5311 wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1); /* enable RA0 */ 5312 /* Enable all 6 TX rings. */ 5313 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f); 5314 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000); 5315 wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002); 5316 wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4); 5317 wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5); 5318 /* Set physical address of TX rings. */ 5319 WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr); 5320 WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5); 5321 5322 /* Enable all DMA channels. */ 5323 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 5324 WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0); 5325 WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0); 5326 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008); 5327 } 5328 wpi_nic_unlock(sc); 5329 (void)WPI_READ(sc, WPI_FH_TX_BASE); /* barrier */ 5330 5331 /* Clear "radio off" and "commands blocked" bits. */ 5332 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5333 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED); 5334 5335 /* Clear pending interrupts. */ 5336 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5337 /* Enable interrupts. */ 5338 WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF); 5339 5340 /* _Really_ make sure "radio off" bit is cleared! */ 5341 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5342 WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL); 5343 5344 if ((error = wpi_load_firmware(sc)) != 0) { 5345 device_printf(sc->sc_dev, 5346 "%s: could not load firmware, error %d\n", __func__, 5347 error); 5348 return error; 5349 } 5350 /* Wait at most one second for firmware alive notification. */ 5351 if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) { 5352 device_printf(sc->sc_dev, 5353 "%s: timeout waiting for adapter to initialize, error %d\n", 5354 __func__, error); 5355 return error; 5356 } 5357 5358 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 5359 5360 /* Do post-firmware initialization. */ 5361 return wpi_post_alive(sc); 5362 } 5363 5364 static void 5365 wpi_hw_stop(struct wpi_softc *sc) 5366 { 5367 uint8_t chnl, qid; 5368 int ntries; 5369 5370 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5371 5372 if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP) 5373 wpi_nic_lock(sc); 5374 5375 WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO); 5376 5377 /* Disable interrupts. */ 5378 WPI_WRITE(sc, WPI_INT_MASK, 0); 5379 WPI_WRITE(sc, WPI_INT, 0xffffffff); 5380 WPI_WRITE(sc, WPI_FH_INT, 0xffffffff); 5381 5382 /* Make sure we no longer hold the NIC lock. */ 5383 wpi_nic_unlock(sc); 5384 5385 if (wpi_nic_lock(sc) == 0) { 5386 /* Stop TX scheduler. */ 5387 wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0); 5388 wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0); 5389 5390 /* Stop all DMA channels. */ 5391 for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) { 5392 WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0); 5393 for (ntries = 0; ntries < 200; ntries++) { 5394 if (WPI_READ(sc, WPI_FH_TX_STATUS) & 5395 WPI_FH_TX_STATUS_IDLE(chnl)) 5396 break; 5397 DELAY(10); 5398 } 5399 } 5400 wpi_nic_unlock(sc); 5401 } 5402 5403 /* Stop RX ring. */ 5404 wpi_reset_rx_ring(sc); 5405 5406 /* Reset all TX rings. */ 5407 for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) 5408 wpi_reset_tx_ring(sc, &sc->txq[qid]); 5409 5410 if (wpi_nic_lock(sc) == 0) { 5411 wpi_prph_write(sc, WPI_APMG_CLK_DIS, 5412 WPI_APMG_CLK_CTRL_DMA_CLK_RQT); 5413 wpi_nic_unlock(sc); 5414 } 5415 DELAY(5); 5416 /* Power OFF adapter. */ 5417 wpi_apm_stop(sc); 5418 } 5419 5420 static void 5421 wpi_radio_on(void *arg0, int pending) 5422 { 5423 struct wpi_softc *sc = arg0; 5424 struct ieee80211com *ic = &sc->sc_ic; 5425 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5426 5427 device_printf(sc->sc_dev, "RF switch: radio enabled\n"); 5428 5429 WPI_LOCK(sc); 5430 callout_stop(&sc->watchdog_rfkill); 5431 WPI_UNLOCK(sc); 5432 5433 if (vap != NULL) 5434 ieee80211_init(vap); 5435 } 5436 5437 static void 5438 wpi_radio_off(void *arg0, int pending) 5439 { 5440 struct wpi_softc *sc = arg0; 5441 struct ieee80211com *ic = &sc->sc_ic; 5442 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5443 5444 device_printf(sc->sc_dev, "RF switch: radio disabled\n"); 5445 5446 ieee80211_notify_radio(ic, 0); 5447 wpi_stop(sc); 5448 if (vap != NULL) 5449 ieee80211_stop(vap); 5450 5451 WPI_LOCK(sc); 5452 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc); 5453 WPI_UNLOCK(sc); 5454 } 5455 5456 static int 5457 wpi_init(struct wpi_softc *sc) 5458 { 5459 int error = 0; 5460 5461 WPI_LOCK(sc); 5462 5463 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__); 5464 5465 if (sc->sc_running != 0) 5466 goto end; 5467 5468 /* Check that the radio is not disabled by hardware switch. */ 5469 if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) { 5470 device_printf(sc->sc_dev, 5471 "RF switch: radio disabled (%s)\n", __func__); 5472 callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, 5473 sc); 5474 error = EINPROGRESS; 5475 goto end; 5476 } 5477 5478 /* Read firmware images from the filesystem. */ 5479 if ((error = wpi_read_firmware(sc)) != 0) { 5480 device_printf(sc->sc_dev, 5481 "%s: could not read firmware, error %d\n", __func__, 5482 error); 5483 goto end; 5484 } 5485 5486 sc->sc_running = 1; 5487 5488 /* Initialize hardware and upload firmware. */ 5489 error = wpi_hw_init(sc); 5490 wpi_unload_firmware(sc); 5491 if (error != 0) { 5492 device_printf(sc->sc_dev, 5493 "%s: could not initialize hardware, error %d\n", __func__, 5494 error); 5495 goto fail; 5496 } 5497 5498 /* Configure adapter now that it is ready. */ 5499 if ((error = wpi_config(sc)) != 0) { 5500 device_printf(sc->sc_dev, 5501 "%s: could not configure device, error %d\n", __func__, 5502 error); 5503 goto fail; 5504 } 5505 5506 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__); 5507 5508 WPI_UNLOCK(sc); 5509 5510 return 0; 5511 5512 fail: wpi_stop_locked(sc); 5513 5514 end: DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__); 5515 WPI_UNLOCK(sc); 5516 5517 return error; 5518 } 5519 5520 static void 5521 wpi_stop_locked(struct wpi_softc *sc) 5522 { 5523 5524 WPI_LOCK_ASSERT(sc); 5525 5526 if (sc->sc_running == 0) 5527 return; 5528 5529 WPI_TX_LOCK(sc); 5530 WPI_TXQ_LOCK(sc); 5531 sc->sc_running = 0; 5532 WPI_TXQ_UNLOCK(sc); 5533 WPI_TX_UNLOCK(sc); 5534 5535 WPI_TXQ_STATE_LOCK(sc); 5536 callout_stop(&sc->tx_timeout); 5537 WPI_TXQ_STATE_UNLOCK(sc); 5538 5539 WPI_RXON_LOCK(sc); 5540 callout_stop(&sc->scan_timeout); 5541 callout_stop(&sc->calib_to); 5542 WPI_RXON_UNLOCK(sc); 5543 5544 /* Power OFF hardware. */ 5545 wpi_hw_stop(sc); 5546 } 5547 5548 static void 5549 wpi_stop(struct wpi_softc *sc) 5550 { 5551 WPI_LOCK(sc); 5552 wpi_stop_locked(sc); 5553 WPI_UNLOCK(sc); 5554 } 5555 5556 /* 5557 * Callback from net80211 to start a scan. 5558 */ 5559 static void 5560 wpi_scan_start(struct ieee80211com *ic) 5561 { 5562 struct wpi_softc *sc = ic->ic_softc; 5563 5564 wpi_set_led(sc, WPI_LED_LINK, 20, 2); 5565 } 5566 5567 /* 5568 * Callback from net80211 to terminate a scan. 5569 */ 5570 static void 5571 wpi_scan_end(struct ieee80211com *ic) 5572 { 5573 struct wpi_softc *sc = ic->ic_softc; 5574 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5575 5576 if (vap->iv_state == IEEE80211_S_RUN) 5577 wpi_set_led(sc, WPI_LED_LINK, 0, 1); 5578 } 5579 5580 /** 5581 * Called by the net80211 framework to indicate to the driver 5582 * that the channel should be changed 5583 */ 5584 static void 5585 wpi_set_channel(struct ieee80211com *ic) 5586 { 5587 const struct ieee80211_channel *c = ic->ic_curchan; 5588 struct wpi_softc *sc = ic->ic_softc; 5589 int error; 5590 5591 DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__); 5592 5593 WPI_LOCK(sc); 5594 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 5595 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 5596 WPI_UNLOCK(sc); 5597 WPI_TX_LOCK(sc); 5598 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 5599 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 5600 WPI_TX_UNLOCK(sc); 5601 5602 /* 5603 * Only need to set the channel in Monitor mode. AP scanning and auth 5604 * are already taken care of by their respective firmware commands. 5605 */ 5606 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 5607 WPI_RXON_LOCK(sc); 5608 sc->rxon.chan = ieee80211_chan2ieee(ic, c); 5609 if (IEEE80211_IS_CHAN_2GHZ(c)) { 5610 sc->rxon.flags |= htole32(WPI_RXON_AUTO | 5611 WPI_RXON_24GHZ); 5612 } else { 5613 sc->rxon.flags &= ~htole32(WPI_RXON_AUTO | 5614 WPI_RXON_24GHZ); 5615 } 5616 if ((error = wpi_send_rxon(sc, 0, 1)) != 0) 5617 device_printf(sc->sc_dev, 5618 "%s: error %d setting channel\n", __func__, 5619 error); 5620 WPI_RXON_UNLOCK(sc); 5621 } 5622 } 5623 5624 /** 5625 * Called by net80211 to indicate that we need to scan the current 5626 * channel. The channel is previously be set via the wpi_set_channel 5627 * callback. 5628 */ 5629 static void 5630 wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 5631 { 5632 struct ieee80211vap *vap = ss->ss_vap; 5633 struct ieee80211com *ic = vap->iv_ic; 5634 struct wpi_softc *sc = ic->ic_softc; 5635 int error; 5636 5637 WPI_RXON_LOCK(sc); 5638 error = wpi_scan(sc, ic->ic_curchan); 5639 WPI_RXON_UNLOCK(sc); 5640 if (error != 0) 5641 ieee80211_cancel_scan(vap); 5642 } 5643 5644 /** 5645 * Called by the net80211 framework to indicate 5646 * the minimum dwell time has been met, terminate the scan. 5647 * We don't actually terminate the scan as the firmware will notify 5648 * us when it's finished and we have no way to interrupt it. 5649 */ 5650 static void 5651 wpi_scan_mindwell(struct ieee80211_scan_state *ss) 5652 { 5653 /* NB: don't try to abort scan; wait for firmware to finish */ 5654 } 5655